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ERROR BOUNDS FOR DISCRETE MINIMIZERS OF THE

GINZBURG–LANDAU ENERGY IN THE HIGH-κ REGIME

BENJAMIN DÖRICH AND PATRICK HENNING

Abstract. In this work, we study discrete minimizers of the Ginzburg–Landau energy in finite
element spaces. Special focus is given to the influence of the Ginzburg–Landau parameter κ.

This parameter is of physical interest as large values can trigger the appearance of vortex lattices.

Since the vortices have to be resolved on sufficiently fine computational meshes, it is important to
translate the size of κ into a mesh resolution condition, which can be done through error estimates

that are explicit with respect to κ and the spatial mesh width h. For that, we first work in an

abstract framework for a general class of discrete spaces, where we present convergence results
in a problem-adapted κ-weighted norm. Afterwards we apply our findings to Lagrangian finite

elements and a particular generalized finite element construction. In numerical experiments we
confirm that our derived L2- and H1-error estimates are indeed optimal in κ and h.

1. Introduction

Superconductors are materials that allow to conduct electricity without any electrical resistance.
Letting Ω ⊂ Rd, d = 2, 3, denote a bounded polyhedral Lipschitz domain occupied by a supercon-
ducting material, the superconductivity in Ω can be modeled by a complex-valued wave function
u : Ω → C which is called the order parameter. The physical quantity of interest is |u|2 which
denotes the density of the superconducting electron pairs, where in the appropriate scaling, it holds
0 ≤ |u|2 ≤ 1. This means that the material is not superconducting (in normal state) in x ∈ Ω if
|u(x)|2 = 0 and behaves like a perfect superconductor if |u(x)|2 = 1. In between, different degrees
of superconductivity are possible. Of particular interest are mixed normal-superconducting states
where both phases coexist in a lattice of quantized vortices [1].

Mathematically, the order parameter can be characterized as a minimizer of the Ginzburg–Landau
energy (or Gibbs free energy) given by

(1.1) E(u) =
1

2

∫
Ω

|∇u+ iκAu|2 +
κ2

2

(
1− |u|2

)2
dx,

where A : Ω → Rd is a real-valued magnetic potential and κ is the so-called Ginzburg–Landau
parameter, a material parameter that correlates with the temperature and determines the type
of superconductor. By the necessary condition for local extrema, any minimizer u ∈ H1(Ω) must
fulfill the condition E′(u) = 0, which is known as the Ginzburg–Landau equation (GLE) and reads
written out (cf. [18])

Re

∫
Ω

(
∇u+ iκAu

)
·
(
∇ϕ+ iκAϕ

)∗
+ κ2

(
|u|2 − 1

)
uϕ∗ dx = 0 for ϕ ∈ H1(Ω).(1.2)

The real-valued magnetic potential A : Ω → Rd in the GLE is typically unknown and can be
inferred from an external magnetic field H through the condition H = curlA which is then added
as a penalty term to the energy. In this work we consider the simplifying case that A is given, where
the focus of our analysis is rather the influence of κ on the accuracy of numerical approximations.
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In fact, the size of the parameter κ is crucial for the appearance of vortices [38–41]. On the one
hand, if κ is too small, no vortices will appear. On the other hand, the larger the value of κ,
the more vortices appear in the lattice and the more point-like they become [2, 38]. The so-called
high-κ regime is hence the physically most interesting regime, but numerically it is also the most
challenging one because it requires fine meshes to resolve all lattice structures. This raises an
important practical question: how fine do we have to select the mesh size relative to the size of
κ so that the numerical approximations capture the correct vortex pattern? Motivated by this
question, the main goal of this work is to derive rigorous error bounds for the discrete minimizers
with constants that are explicit and optimal in the spatial parameter h and the Ginzburg–Landau
parameter κ.

To the best of our knowledge, the only work where the approximation properties of discrete solu-
tions to the stationary GLE were analyzed is the seminal SIAM Review article by Du, Gunzburger
and Peterson [18] (see also [19] for periodic boundary conditions). The paper considers H1-error
estimates in finite element spaces for both the order parameter u and the magnetic potential
A. The proof technique considers fixed (compact) intervals of κ-values and does not trace all
κ-dependencies that enter through the size of these intervals and through uniform bounds for cer-
tain operator norms (that are linked to the chosen interval). The proof also considers a modified
setting where E′′(u) is assumed to have a trivial kernel. However, the solutions to the GLE (1.2)
are known to be only locally unique up to gauge transformations [18]. In our case, these trans-
formations are of the form u 7→ eiθu for any θ ∈ R. In fact, it is easily seen that E(u) = E(eiθu)
for all such θ, which hence leads to a cluster of (qualitatively equivalent) solutions eiθu. In turn,
we have 〈E′′(u) eiπ/2u, ·〉 = 0 which shows that E′′(u) can become singular. Hence, it makes sense
to revisit the results [18] with new proof techniques that allow us to follow all κ-dependencies and
which allow us to avoid an assumption of local uniqueness.

Our analysis is performed in a general framework of finite element methods, and we state our
results under natural assumptions on the discrete spaces. We first establish bounds on the discrete
minimizers which are explicit in κ and independent of h. This enables us to provide an abstract
convergence result which identifies a suitable, continuous minimizer of (1.1). This a priori infor-
mation is crucial in the derivation of the error bounds. In order to exploit the structure of the
problem, we have to study the properties of the second Fréchet derivative of the energy E. In
particular, we carry over the inf-sup stability to our discrete setting under a smallness condition
related to the product κh. Let us emphasize that this is not a technical issue, but is indeed ob-
served in our numerical experiments. We employ a problem adapted scalar product and its Ritz
projection, which captures the one-dimensional kernel of E′′, to extract optimal error bounds not
only for the H1-norm, but also new error bounds for the L2-norm and the energy. Our numerical
experiments confirm that the predicted scaling of the error in κ and h is asymptotically sharp.

It is worth to mention that, aside from stationary Ginzburg–Lindau equations, there has been a lot
of work on the numerical analysis of the time-dependent problem that describes the dynamics of
superconductors, where we exemplarily refer to [11, 12, 14–17, 20, 22, 23, 30–32] and the references
therein. For works with a particular emphasis on tracing the influence of κ in the estimates, we
refer to [7–9] for the case of vanishing vector potentials A. Due to the different nature of the
time-dependent problem, we will not discuss the equation any further here.

The rest of the paper is organized as follows: In Section 2, we introduce the analytical framework
and present some results on continuous minimizers of (1.1). In particular, we discuss the assump-
tions concerning uniqueness of minimizers. For an abstract finite element space discretization,
we present in Section 3 our main results on the existence, boundedness, and approximation of
discrete minimizers. An application to linear Lagrange finite elements is also given. Numerical
experiments which illustrate our theoretical findings and confirm the convergence rates as well as
the κ-dependency of our bounds are shown in Section 4. The proofs of our main results are given
in Section 5. Finally, in Section 6 we present a nonstandard application of the abstract result to
spaces based on the Localized Orthogonal Decomposition for which we prove that the resolution
coupling between h and κ can be relaxed.
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Notation. For a complex number z ∈ C, we use z∗ for the complex conjugate of z. In the whole
paper we further denote by L2 := L2(Ω,C) the Hilbert space of L2-integratable complex functions,
but equipped with the real scalar product m(u, v) := Re

∫
Ω
v w∗ dx for v, w ∈ L2. Hence, we

interpret the space as a real Hilbert space. Analogously, we equip the space H1 := H1(Ω,C)
with the scalar product m(v, w) + m(∇v,∇w). This interpretation is crucial so that the Fréchet
derivatives of E are meaningful and exist on H1. For any space X, we denote its dual space by X ′.
Note that this implies, that the elements of the dual space of H1 consist of real-linear functionals,
which are not necessarily complex-linear. For example, if F (v) := m(f, v) for some f ∈ L2, then
it holds F (α v) = αF (v) if α ∈ R, but in general not if α ∈ C.

In the following C will denote a generic constant which is independent of κ and the spatial mesh
parameter h, but might depend on numerical constants as well as Ω and A. In particular, we will
write α . β if there is a constant C independent of κ and h such that α ≤ C β.

2. Analytical framework

In this section, we present several results concerning the continuous minimizers of (1.1).

From now on, we assume that the magnetic potential A satisfies

(2.1) A ∈ L∞(Ω,Rd), divA = 0 in Ω, A · ν = 0 on ∂Ω.

Further, we introduce the dual pairing 〈u, ϕ〉 := 〈u, ϕ〉(H1)′,H1 , and the bilinear forms given by

m(u, ϕ) := Re

∫
Ω

uϕ∗ dx, aA(u, ϕ) := Re

∫
Ω

(
∇u+ iκAu

)
·
(
∇ϕ+ iκAϕ

)∗
dx,(2.2)

as well as the norm ||ϕ||2H1 := ||∇ϕ||2L2 + ||ϕ||2L2 , the scaled norms

(2.3) ||ϕ||2H1
κ

:= ||∇ϕ||2L2 + κ2||ϕ||2L2 , ||ϕ||2H2
κ

:= ||ϕ||2H2 + κ2||ϕ||2H1
κ
,

and the induced norm ||f ||(H1
κ)′ = supϕ∈H1

f(ϕ)
||ϕ||H1

κ

. We abbreviate A∞ = ||A||L∞ , and define the

stabilized inner product on H1 = H1(Ω) for u, ϕ ∈ H1 by

(2.4) âκ(u, ϕ) := aA(u, ϕ) + β2m(u, ϕ)L2 , with β2 = κ2(A2
∞ + 1).

We call it stabilized since this modification enables us to show boundedness and coercicvity of
âκ(·, ·) with respect to the H1

κ-norm defined in (2.3).

Lemma 2.1. There are κ-independent constants Cbnd, Ccoe > 0 such that for all v, ϕ ∈ H1

âκ(v, ϕ) ≤ Cbnd ||v||H1
κ
||ϕ||H1

κ
, and âκ(ϕ,ϕ) ≥ Ccoe ||ϕ||2H1

κ
.

Proof. The boundedness is a straightforward application of the Cauchy-Schwarz inequality. For
the coercivity, we note that by Young’s inequality it holds

|∇ϕ+ iκAϕ|2 ≥ |∇ϕ|2 − 2|∇ϕ||κAϕ|+ |κAϕ|2 ≥ 1

2
|∇ϕ|2 − κ2A2

∞|ϕ|2.

By the choice of β, we conclude the lower bound. �

A straightforward calculation shows that the energy is (real-)Fréchet differentiable and satisfies for
all ϕ ∈ H1

〈E′(u), ϕ〉 = Re

∫
Ω

(
∇u+ iκAu

)
·
(
∇ϕ+ iκAϕ

)∗
+ κ2

(
|u|2 − 1

)
uϕ∗ dx.(2.5)

In particular any minimizer u ∈ H1 satisfies E′(u) = 0. Our first result collects the existence of a
minimizer u and its properties.

Theorem 2.2. For every κ ≥ 0 there exists a minimizer u ∈ H1 of (1.1). Further, any minimizer
fulfills

|u(x)| ≤ 1 for all x ∈ Ω, ||u||H1
κ
. κ, and if Ω is convex then u ∈ H2 and ||u||H2

κ
. κ2,

where the hidden constants in the above estimates are independent of κ and u.
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Proof. First note that the energy E is continuous in H1(Ω), and further weakly lower semi-
continuous, see e.g., [42, Thm. 1.6]. In addition, a simple calculation shows

E(u) = âκ(u, u) +
κ2

2

∫
Ω

(
1 +

2β2

κ2
− |u|2

)2
+ 1−

(
1 +

2β2

κ2

)2
dx,

and hence E(u) → ∞ as ||u||H1
κ
→ ∞. The standard arguments then imply the existence of a

minimizer, see e.g., [42, Thm. 1.2]. For the pointwise bound, we refer to [18, Prop. 3.11], which
implies a bound in L2 independent of κ. We further have

||∇u||L2 ≤ ||∇u+ iκAu||L2 + κA∞||u||L2 . E(0)1/2 + κ . κ.

Since E′(u) = 0, we rearrange to

aA(u, ϕ) = −κ2 Re

∫
Ω

(
|u|2 − 1

)
uϕ∗ dx = m(f, ϕ)

with ||f ||L2 . κ2, and obtain with (2.1)

Re

∫
Ω

∇u · ∇ϕ∗ dx = m(f, ϕ)− Re

∫
Ω

(
2iκA · ∇u+ κ2|A|2u

)
ϕ∗ dx.

If Ω is convex, standard elliptic regularity theory (cf. [24]) gives us

||u||H2 . ||f ||L2 + κ2||u||L2 + κ||∇u||L2 . κ2,

where we used the L2- and H1-bounds for u in the last step. �

Since u is a global minimizer of the energy E, it must not only hold 〈E′(u), ϕ〉 = 0 but also
〈E′′(u)ϕ,ϕ〉 ≥ 0 for all ϕ ∈ H1. Later we will make use of these conditions. For that we require
a corresponding representation of the second Fréchet derivative of E. This and its properties are
summarized in the following lemma.

Lemma 2.3. (a) The energy is twice (real-)Fréchet differentiable and satisfies for ϕ, v ∈ H1

〈E′′(u)v, ϕ〉 = Re

∫
Ω

(
∇v + iκAv

)
·
(
∇ϕ+ iκAϕ

)∗
+ κ2

(
(|u|2 − 1)vϕ∗ + u2v∗ϕ∗ + |u|2vϕ∗

)
dx.

(b) For ϕ, v ∈ H1 it holds

〈E′′(u)v, ϕ〉 = 〈E′′(u)ϕ, v〉 and |〈E′′(u)v, ϕ〉| . ||v||H1
κ
||ϕ||H1

κ
.

Proof. The Fréchet derivative is computed in a straightforward manner, and the symmetry follows
from the representation by noting the real part in front of the integral. For the bound, we employ
Lemma 2.1 as well as |u| ≤ 1. �

Let u be a minimizer of (1.1), then by the invariance under complex rotation, also eiφu is a
minimizer for any φ ∈ R. In particular, one easily shows that 〈E′′(u) iu, ϕ〉 = 0 holds for all
ϕ ∈ H1. To tackle this indefiniteness, we define the m(·, ·)-orthogonal complement of iu in H1 by

H1
iu := H1 ∩ (iu)⊥ := {ϕ ∈ H1 |m(iu, ϕ) = 0}.

In our error analysis we will restrict ourselves to this space. The choice of H1
iu is further discussed

in connection with Assumption 2.5 below.

Note that H1
iu is a closed subspace of H1. Since the variational problems in the following proofs

are posed on this subspace, we show the following properties of their solutions.

Lemma 2.4. For any f ∈ L2(Ω), there is z ∈ H1
iu ⊂ H1(Ω) such that

âκ(z, ϕ) = m(f, ϕ), for all ϕ ∈ H1
iu,

and there hold the bounds

||z||H1
κ
. ||f ||(H1

κ)′ .
1

κ
||f ||L2 and, if Ω is convex, then z ∈ H2 and ||z||H2

κ
. ||f ||L2 ,

where the (hidden) constants in the bounds are independent of κ.
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Proof. Since âκ(·, ·) is still coercive on H1
iu, we immediately obtain the unique solution, and also

the bounds in H1
κ. Furthermore, we have for any f ∈ L2 that

(2.6) ||f ||(H1
κ)′ = sup

||ϕ||H1
κ

=1

m(f, ϕ) ≤ sup
||ϕ||H1

κ
=1

1

κ
||f ||L2κ||ϕ||L2 ≤ 1

κ
||f ||L2 ,

which yields the second inequality. For the bound in the H2
κ-norm for convex domains, let ϕ ∈ H1

and decompose as ϕ = ϕ̂+ α(iu) with ϕ̂ ∈ H1
iu and α = m(ϕ, iu)||u||−2

L2 . Then,

âκ(z, ϕ) = âκ(z, ϕ̂) + α âκ(z, iu) = m(f, ϕ̂) + α âκ(z, iu)

= m(f, ϕ)− αm(f, iu) + αaA(z, iu),

where we used (2.4) in the last step. We first note

|m(f, ϕ)− αm(f, iu)| ≤ 2||f ||L2 ||ϕ||L2 ,

and then employ E′(iu) = 0 to obtain

|aA(z, iu)| = |〈E′(iu), z〉 − κ2 Re

∫
Ω

(
|u|2 − 1

)
iuz∗ dx| ≤ κ2||u||L2 ||z||L2 . ||f ||L2 ,

where we exploited κ2||z||L2 . ||f ||L2 in the last line. Altogether we have shown that there exists
some fz ∈ L2 such that it holds for all ϕ ∈ H1

âκ(z, ϕ) = m(fz, ϕ), ||fz||L2 . ||f ||L2 .(2.7)

We conclude as in Theorem 2.2: We write

(2.8) âκ(z, ϕ) = Re

∫
Ω

∇z · ∇ϕ∗ dx+ Re

∫
Ω

(
β2z + 2iκA · ∇z + κ2|A|2z

)
ϕ∗ dx,

and since the second term is in L2, we have z ∈ H2 and

||z||H2 . ||fz||L2 + κ2||z||L2 + κ||∇z||L2 . ||f ||L2 ,

where we used the L2- and H1-bounds for z in the last step. �

We now turn to the key assumption in our analysis. As we have seen above, we cannot expect
uniqueness of a minimizer due to the rotation invariance. However, we assume that apart from this,
the minimizer is locally unique. For that we can restrict the energy to an appropriate subspace. To
be precise, if u is a global minimizer of E, we know that E′(u) = 0 and that the spectrum of E′′(u)
is non-negative. On the other hand, it is easily seen that iu is an eigenfunction of E′′(u) with
eigenvalue 0. This eigenvalue corresponds to the aforementioned invariance of E under rotations of
the form eiφ. By assuming that the remaining spectrum of E′′(u) is strictly positive we can hence
guarantee that the solution u is locally unique (up to rotations). A positive spectrum of E′′(u)
on the m(·, ·)-orthogonal complement of the eigenfunction iu (i.e. the space H1

iu) implies inf-sup
stability of E′′(u) on H1

iu. This is precisely what the following assumption says.

Assumption 2.5. Let u be a minimizer of (1.1). Then, there is a constant Csol(u, κ) & 1 such
that

(2.9) C−1
sol (u, κ) ≤ inf

v∈H1
iu

sup
ϕ∈H1

iu

〈E′′(u)v, ϕ〉
||v||H1

κ
||ϕ||H1

κ

.

Let us note that the condition Csol(u, κ) & 1 is not a restriction, since one can drop the condition
replacing Csol(u, κ) by 1 + Csol(u, κ) at every occurrence.

Remark 2.6. From our numerical experiments, the precise growth of C−1
sol (u, κ) with respect to

κ does not become clearly visible. In fact, it turns out to be difficult to numerically compute the
inf-sup constants on a space which contains information on the exact solution. In addition, we are
not aware of any literature (neither in analysis nor numerics) addressing the (spectral) properties
of E′′(u). We are convinced that this an interesting research question which might be pursued in
the future, both analytically and numerically.
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From the above assumption, we can conclude solvability and a priori bounds which will play a
crucial role in the presented error analysis below. Let us note that the inclusion H1

iu ⊂ H1 implies
for the dual spaces (H1)′ ⊂ (H1

iu)′.

Corollary 2.7. Let Assumption 2.5 hold.

(a) For any f ∈ (H1
iu)′, there is a unique z ∈ H1

iu such that

(2.10) 〈E′′(u)z, ϕ〉 = 〈f, ϕ〉, for all ϕ ∈ H1
iu,

which satisfies the estimate

||z||H1
κ
≤ Csol(u, κ)||f ||(H1

κ)′ .

(b) Let z ∈ H1
iu be the solution of (2.10) with f ∈ L2. Then, it further holds

||z||H1
κ
≤ Csol(u, κ)

κ
||f ||L2 and, if Ω is convex, then z ∈ H2 and ||z||H2

κ
. Csol(u, κ)||f ||L2 .

Proof. By standard theory for indefinite differential equations (cf. [5]), the inf-sup stability in
Assumption 2.5 directly gives the well-posedness of (2.10) together with the stability estimate
||z||H1

κ
≤ Csol(u, κ)||f ||(H1

κ)′ , hence proving (a). The first estimate in (b) is obtained from (2.6).

Using this observation, we conclude that z ∈ H1
iu solves

âκ(z, ϕ) = m(f̃ , ϕ), for all ϕ ∈ H1
iu ,

for some f̃ ∈ L2 with ||f̃ ||L2 . Csol(u, κ)||f ||L2 , and thus Lemma 2.4 gives the claim. �

If one considers domains with smooth boundaries, and uses magnetic vector potential in some
higher order Sobolev spaces, higher regularity of the minimizer u can be derived. However, for our
purposes the H2-regularity is sufficient, and we hence turn to the spatial discretization.

3. Space discretization and main results

Let us consider some finite dimensional finite element space Vh which is a subspace of H1(Ω) and
where we recall that we assume Ω to be a polygonal (or polyhedral) Lipschitz domain. By h we
denote a spatial parameter which tends to zero for a finer spatial resolution. We consider the closed
subspace V ⊥h of Vh given by V ⊥h = Vh ∩ (iu)⊥ ⊂ H1

iu with orthogonality with respect to m(·, ·).
Further, we denote by R⊥κ,h : H1

iu → V ⊥h the orthogonal projection satisfying

âκ(R⊥κ,hw,ϕh) = âκ(w,ϕh), for all ϕh ∈ V ⊥h .

In the following assumption, we introduce some abstract conditions which are sufficient to carry
out our error analysis and which are later verified for our examples.

Assumption 3.1. The family of (non-empty) finite element spaces Vh has the following properties:

(a) The family of spaces Vh is dense in H1(Ω) in the sense that for each ϕh ∈ H1 we have

lim
h→0

inf
ϕh∈Vh

||ϕ− ϕh||H1 = 0.

(b) Let w ∈ H1
iu and f ∈ L2 such that âκ(w,ϕ) = m(f, ϕ) for all ϕ ∈ H1

iu. Then, it holds

(3.1) ||w − R⊥κ,hw||H1
κ
. h||f ||L2 ,

where the constant is independent of h and κ.

The most prominent example that fulfills Assumption 3.1 are linear Lagrange finite element spaces
which are discussed at the end of this section. Property (a) is obvious and to verify property (b),
one first replaces ||f ||L2 by ||w||H2

κ
, and uses (for a convex domain Ω) H2-regularity. We give the

details below. Another, non-trivial example of generalized finite elements spaces is presented in
Section 6.
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Recall that we want to minimize the functional E from (1.1) over Vh, i.e.,

(3.2) E(uh) = inf
ϕh∈Vh

E(ϕh), E(ϕh) =
1

2

∫
Ω

|∇ϕh + iκAϕh|2 +
κ2

2

(
1− |ϕh|2

)2
dx.

Note that since Vh is finite dimensional, the existence of a minimizer uh is always guaranteed. Our
first result shows bounds on the discrete minimizer uh in different norms and the corresponding
energy, which are independent of h and behave in the parameter κ the same way as the exact
minimizer u studied in Theorem 2.2. The proof is postponed to Section 5.

Lemma 3.2. For all h > 0 let uh be a minimizer of (3.2). Then there hold the bounds

E(uh) . κ2 ||uh||L2 . 1, ||∇uh||L2 . κ, ||uh||H1
κ
. κ,

where the hidden constants are independent of h and κ.

Our main findings are collected in the following theorem. We provide error bounds for the discrete
minimizers which are explicit in the parameter κ and the mesh width h. In addition, we show that
the error behaves as the quasi-best approximation of H1

iu in V ⊥h .

Theorem 3.3. Let Assumption 2.5 and 3.1 hold, and let h ≤ h0 be sufficiently small such that in
particular κCsol(u, κ)h is small. Then, there is neighborhood U ⊂ H1(Ω) of each discrete minimizer
uh of (3.2) such that there is a unique minimizer u ∈ U of (1.1) with

m(uh, iu) = 0,

and we have the error bounds

||u− uh||H1
κ
. (1 + κCsol(u, κ)h) inf

ϕh∈V ⊥
h

||u− ϕh||H1
κ
,

||u− uh||L2 . hCsol(u, κ) (1 + κCsol(u, κ)h) inf
ϕh∈V ⊥

h

||u− ϕh||H1
κ
,

as well as the following estimate on the error in the energy

0 ≤ E(uh)− E(u) . ||u− uh||2H1
κ

(
1 + κ1/2||u− uh||H1

κ
+ κ||u− uh||2H1

κ

)
,

where the hidden constants are independent of κ, Csol(u, κ), and h.

The proof is divided in several steps which are outlined in detail in Section 5. The first application
of the results are Lagrangian finite elements. In the following, we denote by Th a conforming
family of partitions of the domain Ω consisting of simplical elements K. For the space P1(K) of
complex-valued polynomials of degree less than or equal to 1 on K, we consider the finite element
space

(3.3) Vh := {ϕh ∈ H1(Ω) | ϕh|K ∈ P1(K) for all K ∈ Th}.

We assume that the partition Th is shape-regular and the L2-projection, defined via m(πhv, ϕh) =
m(v, ϕh) for all ϕh ∈ Vh, is H1-stable, i.e.,

(3.4) ||πhϕ||H1 . ||ϕ||H1 ,

with a constant independent of h. This condition is always fulfilled for quasi-uniform triangulations,
but is also valid for certain adaptively refined meshes. For a detailed discussion on criteria when
(3.4) holds, we refer to [6, 13]. In this setting, we obtain convergence rates which are explicit in
the parameter κ and the mesh width h.

Corollary 3.4. Let the conditions of Theorem 3.3 hold, and assume in addition that Ω is convex.
For Lagrangian finite elements which satisfy (3.4), the error bounds in Theorem 3.3 can be further
estimated by

||u− uh||H1
κ
. κ2h and ||u− uh||L2(Ω) . Csol(u, κ)κ2h2,

where the hidden constants are independent of κ, Csol(u, κ), and h.

The proof is presented in Section 5.
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κ−2-weighted H1-error
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Figure 1. Convergence in the mesh size h for κ-weighted errors in the H1- and
L2-norm and for the energy, for κ = 4, 8, 12, 16, 20, 24. The errors in L2 and H1

are scaled by κ−2 and the error in energy by κ−4. The dashed lines indicate order
O(h) in the left figure, and order O(h2) in the center and right figure.

4. Numerical experiments

Before we present the proof of our main result, we illustrate our theoretical findings with some
numerical examples confirming the rates and the κ-dependence in our error bounds.

4.1. Implementation. For the discretization in space with linear Lagrange finite elements, we
use the open source Python tool FEniCS [3, version 2018.1.0]. To compute a discrete minimizer,
we applied a steepest descent approach using an implicit Euler method for the L2 gradient flow.
A direct application yields the following nonlinear iteration

m(un+1
h , ϕh) = m(unh, ϕh)− τ 〈E′(un+1

h ), ϕh〉,

where τ > 0 is some parameter. To avoid the solution of nonlinear systems several times, we
replace E′(un+1) by the linearization

〈E′(un+1
h ), ϕh〉 → aA(un+1

h , ϕh) + κ2 Re

∫
Ω

(|unh|2 − 1)un+1
h ϕ∗h dx,

and thus have to solve the following linear system for un+1
h ∈ Vh

m(un+1
h , ϕh) + τ aA(un+1

h , ϕh) + τ κ2 Re

∫
Ω

(|unh|2 − 1)un+1
h ϕ∗h dx = m(unh, ϕh)

for all ϕh ∈ Vh. In our experiments, we set Ω = [−1, 1] × [−1, 1] ⊂ R2, and use (on the coarsest
mesh) the initial value u0 = 0.8 + 0.6i, For the finer grids, we use a “ramping” procedure, i.e.,
we use the minimizer on a coarser grid as the initial value on the next finer grid. The magnetic
potential is chosen as

A(x, y) :=
√

2

(
sin(πx) cos(πy)
− cos(πx) sin(πy)

)
,

and satisfies the assumptions in (2.1). Further, we set τ = 1, and used the stopping criterion
|E(un+1

h )− E(unh)| < δ for a tolerance δ = 10−10. The code to reproduce the results presented in
this paper is available on request.

4.2. Numerical results. We first illustrate the convergence in the spatial parameter h for different
values of κ. To this end, we computed a reference solution on a finer grid using hmax ∼ 2.5 · 10−3.
In order to compare the results for different values of κ, we divide the error in the H1

κ- and L2-norm
by κ2 and the energy by κ4, see Figure 1. Here we recall that according to Corollary 3.4 we expect
the H1

κ-error to convergence with the rate κ2h, the L2-error with the rate κ2h2 and the energy-
error with the rate κ4h4. Indeed, we observe the predicted convergence in h and, in particular,
the numerical experiments confirm the κ-scaling in our error estimates. The plot further indicates
that the constants in front of the normalized errors are independent of κ.
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Figure 2. Minimizers for the Ginzburg–Landau parameter κ = 48 and different
mesh widths h ≈ 8 · 10−2, 4 · 10−2, 2 · 10−2, 1 · 10−2 (from left to right).

Figure 3. Different minimizers corresponding to the Ginzburg–Landau parame-
ters κ = 16, 24, 36, 48 (from left to right) for h ≈ 2.5 · 10−3.

Let us also note that for larger values of κ, we observe a preasymptotic behavior in h. We expect
that this is related to the smallness condition for κCsol(u, κ)h stated in the theorem, which is
required below in Lemma 5.4 for the discrete inf-sup stability. Since beyond the (numerically
observed) threshold κh < 1, the errors coincide for all values of κ, this is still in alignment with
our theory.

In our second experiment, we first computed for κ = 48 the discrete minimizers for different values
of h ≈ 8 · 10−2, 4 · 10−2, 2 · 10−2, 1 · 10−2 , see Figure 2. We observe that the number of vortices
remains constant on the different discretization levels, but the precise pattern is only resolved on the
finest grids. On the other hand, we plotted the minimizers for different values of κ = 16, 24, 36, 48,
see Figure 3. We observe that the number of vortices increases with larger values of κ, which is in
agreement with analytical results [2, 38].

5. Proof of the main result

In this section, we provide the proof of our main results Theorem 3.3 and Corollary 3.4. We first
show an abstract convergence result in order to identify possible limits of a sequence of discrete
minimizers. Those are then used to establish convergence with rates, if we are sufficiently close to
a continuous minimizer. Throughout this section, we let Assumptions 2.5 and 3.1 hold.

5.1. Abstract convergence result. In order to deduce convergence, we first establish bounds on
minimizes in the discrete space Vh which are independent of the spatial parameter h as formulated
in Lemma 3.2.

Proof of Lemma 3.2. First note that for all h > 0 we have 0 ∈ Vh, and thus by the minimizing
property, we conclude the bound on the energy

E(uh) ≤ E(0) ≤ κ2

2
vol(Ω).

This gives on the one hand

||∇uh + iκAuh||L2 ≤ E(uh)1/2 ≤ κ vol(Ω)1/2,
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and on the other hand we estimate

κ2

2
||1− |uh| ||2L2 ≤

κ2

2

∫
Ω

(
1− |uh|

)2(
1 + |uh|

)2
dx ≤ E(0) =

κ2

2
vol(Ω)1/2,

and thus conclude
||uh||L2 ≤ ||1− |uh|||L2 + vol(Ω)1/2 ≤ 2 vol(Ω)1/2.

Combining the estimates above, the bound on ||∇uh||L2 directly follows. �

With the uniform estimates on the discrete minimizers, following the approach in [10], we employ
the Banach–Alaoglu theorem to obtain some limit which is an exact minimizer and by Assump-
tion 2.5 locally unique up to complex rotation.

Proposition 5.1. Denote by (uh)h>0 a family of minimizers of (3.2). Then, there exists a mini-
mizer u0 of (1.1) such that there is a monotonically decreasing sequence (hn)n∈N with

lim
n→∞

||u0 − uhn ||H1
κ

= 0.

In particular, we can define the twisted approximations

ũhn := eiφnuhn where φn ∈ [−π2 ,
π
2 ] is chosen such that m(ũhn , iu0) = 0 ,

which also converge in H1, i.e.,
lim
j→∞
||ũhn − u0||H1

κ
= 0.

Conversely, for any n, the minimizer uhn is an approximation to e−iφnu0.

Remark 5.2. The assertion of Proposition 5.1 can be interpreted as follows. Assume that there
exists a (sub-)sequence of discrete minimizers that keeps a positive distance to all exact minimizers,
then this would be a contradiction to Proposition 5.1. Hence, for h sufficiently small, one always
arrives at a neighborhood of some minimizer u0, which is precisely the claim in Theorem 3.3.

Proof of Proposition 5.1. The proof of convergence of a subsequence is along the lines of [10] if one
takes into account the bounds provided in Lemma 3.2 together with the weak lower semi-continuity
of E, see Theorem 2.2, and Assumption 3.1.

For the twisted approximations, we note that we can find some φn ∈ [−π2 ,
π
2 ] such that real part

of the inner product with iu0 vanishes if n is large enough. Thus, we obtain by the choice of φn

sinφn m(uhn , uhn) = m(eiφnuhn , iuhn) = m(eiφnuhn , iuhn − iu0).

Since the right-hand side tends to zero, either u0 = 0 or φn → 0 holds. In any case, we have

||ũhn − u0||H1
κ
≤ ||uhn − u0||H1

κ
+ |1− eiφn | ||uhn ||H1

κ
→ 0,

which yields the assertion. �

5.2. Discrete inf-sup stability. In order to derive the error estimates, we first establish a discrete
version of the inf-sup condition in (2.9). In the proof, we need the following consequence of
Assumption 3.1.

Corollary 5.3. Let Assumption 3.1 hold, and let z ∈ H1
iu be the solution of

〈E′′(u)z, ϕ〉 = 〈f, ϕ〉, for all ϕ ∈ H1
iu.

Then, it holds the estimate

(5.1) ||z − R⊥κ,hz||H1
κ
. Csol(u, κ)h||f ||L2 .

Proof. We rewrite with Lemma 2.3

âκ(z, ϕ) = m(f, ϕ)−m(fz, ϕ) for all ϕ ∈ H1
iu.

Here, fz satisfies
||fz||L2 . κ2||z||L2 . Csol(u, κ)||f ||L2 ,

where we used part (b) in Corollary 2.7, and the approximation (3.1) in Assumption 3.1 gives the
claim. �
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The proof of the next lemma, which states the discrete inf-sup stability, is inspired by the thesis
[37, Prop. 8.2.7], where this was done for the Helmholtz equation.

Lemma 5.4. (a) If κCsol(u, κ)h is sufficiently small, it holds for all wh ∈ V ⊥h

||wh||H1
κ
. Csol(u, κ) sup

ϕh∈V ⊥
h

〈E′′(u)wh, ϕh〉
||ϕh||H1

κ

,

where the constant is independent of h and κ.

(b) For any f ∈ (H1
iu)′, there is a unique wh ∈ V ⊥h such that

〈E′′(u)wh, ϕh〉 = 〈f, ϕh〉, for all ϕh ∈ V ⊥h
and it holds

||wh||H1
κ
. Csol(u, κ)||f ||(H1

κ)′ .

Proof. Part (b) is a classical stability bound for inf-sup stable problems, cf. [5, Thm. 2.1]. Hence,
claim (b) directly follows once we have shown (a). To do so, we fix wh ∈ V ⊥h and observe for
arbitrary z ∈ H1

iu

〈E′′(u)wh, wh + z〉 = aA(wh, wh) + κ2 Re

∫
Ω

(
2|u|2 − 1

)
whw

∗
h + u2w∗hw

∗
h dx+ 〈E′′(u)z, wh〉.(5.2)

Now let z ∈ H1
iu be the solution to

〈E′′(u)z, ϕ〉 = m(f, ϕ) for all ϕ ∈ H1
iu with f = (β2 + 2κ2)wh

and insert it into (5.2). Then, we obtain from (2.4) together with Lemma 2.1 and Lemma 2.3 that

||wh||2H1
κ
. 〈E′′(u)wh, wh + z〉 . 〈E′′(u)wh, wh + R⊥κ,hz〉+ ||wh||H1

κ
||R⊥κ,hz − z||H1

κ

. sup
ϕh∈V ⊥

h

〈E′′(u)wh, ϕh〉
||ϕh||H1

κ

||wh + R⊥κ,hz||H1
κ

+ ||wh||H1
κ
||R⊥κ,hz − z||H1

κ
.

It remains to study the terms with z. Here, we establish with Corollary 2.7 and (5.1) the bound

κ||z||H1
κ

+ h−1||z − R⊥κ,hz||H1
κ
. Csol(u, κ)||f ||L2 . κCsol(u, κ)||wh||H1

κ
.

From this, we finally conclude

||wh||2H1
κ
. sup
ϕh∈V ⊥

h

〈E′′(u)wh, ϕh〉
||ϕh||H1

κ

Csol(u, κ)||wh||H1
κ

+ κCsol(u, κ)h||wh||2H1
κ
,

and obtain the assertion (a) if κCsol(u, κ)h is sufficiently small by absorption. �

5.3. Convergence with rates. After these preparations, we can derive the error equation em-
ploying the second Fréchet derivative E′′. To this end, we strive for a representation of the form

〈E′′(u)(R⊥κ,hu− uh), ϕh〉 = εh(ϕh),(5.3)

for ϕh ∈ V ⊥h and employ Lemma 5.4 to conclude a bound for R⊥κ,hu− uh. The right-hand side εh
is studied in the following lemma.

Lemma 5.5. Let u and uh be minimizers of (1.1) and (3.2), respectively.

(a) For ϕh ∈ V ⊥h it holds the representation (5.3) where εh = εlin
h + εnonlin

h and

εlin
h (ϕh) = κ2 Re

∫
Ω

(
(|u|2 − 1)(R⊥κ,hu− u) + u2(R⊥κ,hu− u)∗ + |u|2(R⊥κ,hu− u)

)
ϕ∗h dx

− β2 Re

∫
Ω

(R⊥κ,hu− u)ϕ∗h dx,

εnonlin
h (ϕh) = 2κ2 Re

∫
Ω

|u|2uϕ∗h dx+ κ2 Re

∫
Ω

|uh|2uhϕ∗h dx− κ2 Re

∫
Ω

2
(
|u|2uh + u2u∗h

)
ϕ∗h dx.



12 B. DÖRICH AND P. HENNING

(b) The error terms are bounded by

||εlin
h ||(H1

κ)′ . κ||u− R⊥κ,hu||L2 ,

||εnonlin
h ||(H1

κ)′ . κ
(
||u− uh||2L4 + ||u− uh||3L6

)
,

where the constants are independent of h and κ.

Proof. Inserting the exact solution u, we decompose εh as

εlin
h (ϕh) = 〈E′′(u)(R⊥κ,hu− u), ϕh〉, εnonlin

h (ϕh) = 〈E′′(u)(u− uh), ϕh〉,
and treat the two terms separately. We begin with the linear part and use Lemma 2.3, the definition
of âκ(·, ·) in (2.4), and the orthogonality condition of R⊥κ,h to obtain

〈E′′(u)(R⊥κ,hu− u), ϕh〉

= aA(R⊥κ,hu− u, ϕh) + κ2 Re

∫
Ω

(
(|u|2 − 1)(R⊥κ,hu− u) + u2(R⊥κ,hu− u)∗ + |u|2(R⊥κ,hu− u)

)
ϕ∗h dx

= −β2 Re

∫
Ω

(R⊥κ,hu− u)ϕ∗h dx

+κ2 Re

∫
Ω

(
(|u|2 − 1)(R⊥κ,hu− u) + u2(R⊥κ,hu− u)∗ + |u|2(R⊥κ,hu− u)

)
ϕ∗h dx.

Using that κ||ϕh||L2 ≤ ||ϕh||H1
κ

gives the first estimate in part (b).

For the nonlinear part, we note with Lemma 2.3 the identity for v, ϕ ∈ H1

〈E′′(v)v, ϕ〉 = 〈E′(v), ϕ〉+ 2κ2 Re

∫
Ω

|v|2vϕ∗ dx.

Since 〈E′(u), ϕh〉 = 〈E′(uh), ϕh〉 = 0, we expand

〈E′′(u)(u− uh), ϕh〉 = 〈E′′(u)u, ϕh〉 − 〈E′′(uh)uh, ϕh〉+ 〈E′′(uh)uh, ϕh〉 − 〈E′′(u)uh, ϕh〉

= 2κ2 Re

∫
Ω

|u|2uϕ∗h dx− 2κ2 Re

∫
Ω

|uh|2uhϕ∗h dx

+ κ2 Re

∫
Ω

2
(
|uh|2 − |u|2

)
uhϕ

∗
h +

(
u2
h − u2

)
u∗hϕ

∗
h dx

= 2κ2 Re

∫
Ω

|u|2uϕ∗h dx+ κ2 Re

∫
Ω

|uh|2uhϕ∗h dx

− κ2 Re

∫
Ω

(
2|u|2uh + u2u∗h

)
ϕ∗h dx,

where we collected terms in the last step. For the estimate, we write uh = u− eh and compute

2|u|2u+ |uh|2uh −
(
2|u|2uh + u2u∗h

)
= 2u|eh|2 + e2

hu
∗ − |eh|2eh,(5.4)

which together with |u| ≤ 1 and the Hölder inequality gives the second bound. �

Now we have everything together to prove the first part of Theorem 3.3, i.e., the H1
κ-estimates for

the discrete minimizers.

Proposition 5.6. Let u and uh be minimizers of (1.1) and (3.2), respectively, and assume the
orthogonality m(uh, iu) = 0.

(a) We have for the fully discrete error

||u− uh||H1
κ
. ||u− R⊥κ,hu||H1

κ
+ κCsol,h(κ)||u− R⊥κ,hu||L2 + κCsol,h(κ)

(
||u− uh||2L4 + ||u− uh||3L6

)
(b) For h sufficiently small, we have for the (unique) minimizer u in Proposition 5.1

||u− uh||H1
κ
. ||u− R⊥κ,hu||H1

κ
+ κCsol,h(κ)||u− R⊥κ,hu||L2 .

Let us point out that (a) holds for any minimizers u and uh. But to ensure that the higher order
terms are indeed negligible, we need the a priori information from the abstract convergence result
in Proposition 5.1.
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Proof of Proposition 5.6. (a) Using the triangle inequality, we obtain

||u− uh||H1
κ
. ||u− R⊥κ,hu||H1

κ
+ ||R⊥κ,hu− uh||H1

κ
,

and are left to bound the second term. Lemmas 5.4 and 5.5 then give

||R⊥κ,hu− uh||H1
κ
. Csol(u, κ)||εh||(H1

κ)′ . κCsol(u, κ)
(
||u−R⊥κ,hu||L2 + ||u− uh||2L4 + ||u− uh||3L6

)
,

and the bound is established.

(b) With the convergence shown in Proposition 5.1 for h sufficiently small, we can absorb the
higher order terms, and obtain the claimed estimate for h ≤ h0. �

We can further show quadratic convergence in the L2-norm for the discrete minimizers using an
Aubin–Nitsche argument.

Lemma 5.7. Let u and uh be a minimizers of (1.1) and (3.2), respectively, and assume the
orthogonality m(uh, iu) = 0. We have for the fully discrete error

||u− uh||L2 . Csol(u, κ)h||u− uh||H1
κ

+ Csol(u, κ)κ||u− uh||L2

(
||u− uh||L3 + ||u− uh||2L6

)
,

and hence for h sufficiently small, it holds for the (unique) minimizer u in Proposition 5.1

||u− uh||L2 . Csol(u, κ)h||u− uh||H1
κ
.

Proof. Recall the abbreviation eh = u− uh, and let z ∈ H1
iu be the solution of

m(E′′(u)z, ϕ) = m(eh, ϕ),

and note that Corollary 2.7 and (5.1) give the estimate

(5.5) κ||z||H1
κ

+ h−1||z − R⊥κ,hz||H1
κ
≤ Csol(u, κ)||eh||L2 .

Using the symmetry of E′′, we can decompose the error as

||eh||2L2 = 〈E′′(u) eh, z − R⊥κ,hz〉+ 〈E′′(u) eh,R
⊥
κ,hz〉 = E1 + εnonlin

h (R⊥κ,hz),

where εnonlin
h is defined in Lemma 5.5. We estimate the first term with Lemma 2.3 and (5.5)

E1 . ||eh||H1
κ
||z − R⊥κ,hz||H1

κ
. Csol(u, κ)h||e||H1

κ
||eh||L2 .

For the second term, we use the representation of εnonlin
h in Lemma 5.5 and (5.4) together with

(5.5) and the Hölder equation to obtain

|εnonlin
h (R⊥κ,hz)| . κ2||u− uh||L2

(
||u− uh||L3 + ||u− uh||2L6

)
||R⊥κ,hz||H1

. κCsol(u, κ)||u− uh||L2

(
||u− uh||L3 + ||u− uh||2L6

)
||eh||L2 ,

where we used κ||R⊥κ,hz||H1 . κ||z||H1
κ
. Csol(u, κ)||eh||L2 in the last step. Combining the two

bounds and dividing by ||eh||L2 gives the desired estimate. �

A similar trick gives the improved convergence of R⊥κ,h in the L2-norm.

Lemma 5.8. For κh small enough, the following bound holds for all w ∈ H1
iu

||w − R⊥κ,h(w)||L2 . h||w − R⊥κ,h(w)||H1
κ
,

where the constant is independent of h and κ.

Proof. We use an Aubin–Nitsche argument and let z ∈ H1
iu be the solution of

âκ(z, ϕ) = m(w − R⊥κ,hw,ϕ), for all ϕ ∈ H1
iu.

Using orthogonality, we have by (3.1) that

||w − R⊥κ,hw||2L2 = âκ(z − R⊥κ,hz, w − R⊥κ,hw) . h||w − R⊥κ,hw||L2 ||w − R⊥κ,hw||H1
κ
,

and the claim follows. �
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Finally, we provide the error bounds for the energy which behaves in the lowest order as the square
of the error in the H1

κ-norm.

Lemma 5.9. Let u and uh be minimizers of (1.1) and (3.2), respectively. The error in the energies
is bounded by

0 ≤ E(uh)− E(u) . ||u− uh||2H1
κ

(
1 + κ1/2||u− uh||H1

κ
+ κ||u− uh||2H1

κ

)
.

We note that the powers of κ can be improved in the case d = 2, but since the leading order term
does not change, we will not give any details here.

Proof of Lemma 5.9. Since Vh ⊂ H1, we have E(u) ≤ E(uh), and thus the lower bound. In the
next step, we derive the representation

(5.6)

E(uh)− E(u) =
1

2
aA(u− uh, u− uh)

+
κ2

4
Re

∫
Ω

(1− |uh|2)2 − (1− |u|2)2 + 4(|u|2 − 1)u(u− uh)∗ dx¸

Let us first note the identity

1

2
aA(u− uh, u− uh) =

1

2
aA(uh, uh)− 1

2
aA(u, u) + aA(u, u− uh),

and rewrite the energies as

E(uh)− E(u) =
1

2
aA(uh, uh)− 1

2
aA(u, u) +

κ2

4
Re

∫
Ω

(1− |uh|2)2 − (1− |u|2)2 dx

=
1

2
aA(u− uh, u− uh) +

κ2

4
Re

∫
Ω

(1− |uh|2)2 − (1− |u|2)2 dx− aA(u, u− uh).

Since u is a minimizer, we have 〈E′(u), u− uh〉 = 0 and thus by (2.5)

− aA(u, u− uh) = κ2 Re

∫
Ω

(|u|2 − 1)u(u− uh)∗ dx,

and hence (5.6) holds. The first term of the representation gives the H1
κ-norm in the estimate,

and it remains to study the nonlinear part. We first investigate the difference of the squares. As
before, we write uh = u− eh and obtain(

1− |u− eh|2
)2

=
(
|u|2 + |eh|2 − 1− 2 Re(ue∗h)

)2
= |u|4 + 1− 2|u|2 + 4 Re(ue∗h)− 4|u|2 Re(ue∗h) +O(|eh|2 + |eh|3 + |eh|4),

which gives

(1− |uh|2)2 − (1− |u|2)2 = 4 Re(ue∗h)− 4|u|2 Re(ue∗h) +O(|eh|2 + |eh|3 + |eh|4).

We now show that the part, which is linear in eh, is canceled by the last term in (5.6). In fact,
since it holds

4 Re(|u|2 − 1)u(u− uh)∗ = 4|u|2 Re(ue∗h)− 4 Re(ue∗h),

we conclude from (5.6), the fact that |u| ≤ 1 and the Hölder inequality the bound

E(uh)− E(u) . ||u− uh||2H1
κ

+ κ2
(
||u− uh||2L2 + ||u− uh||3L3 + ||u− uh||4L4

)
.

To show the final estimate, we use interpolation theory, see e.g., [33, Thm. 2.6], with 1
3 = θ

2 + 1−θ
6

for θ = 1
2 to obtain for w ∈ H1

κ2||w||3L3 . κ1/2
(
κ||w||L2

)3/2||w||3/2L6 . κ
1/2||w||3H1

κ
,

and similarly with 1
4 = θ

2 + 1−θ
6 for θ = 1

4

κ2||w||4L4 . κ
(
κ||w||L2

)
||w||3L6 . κ||w||4H1

κ
,

and the second claim is established. �

We can finally give the proof of our main result.
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Proof of Theorem 3.3. We mainly collect the results shown in Proposition 5.6, Lemma 5.7, together
with the L2-estimate in Lemma 5.8, and Lemma 5.9, and the claims are established. �

5.4. Application to Lagrange finite elements. In this section, we consider the linear Lagrange
finite element space Vh as defined (3.3). In order to derive the corresponding error estimates
through verifying the assumptions of Theorem 3.3, we require the L2-orthogonal projection onto
the ansatz space Vh as an auxiliary projection. We recall the L2-projection for v ∈ L2 as

m(πhv, ϕh) = m(v, ϕh) for all ϕh ∈ Vh.
In the following lemma, we provide corresponding estimates in the H1

κ-norm which are the first
step towards verifying part (b) in Assumption 3.1.

Lemma 5.10. (a) The L2-projection πh is stable in H1
κ, i.e., there hold the bounds

||πhϕ||H1
κ
. ||ϕ||H1

κ
, ϕ ∈ H1,

where the constant is independent of h and κ.

(b) For all z ∈ H2 it holds

||z − πhz||H1
κ
. h||z||H2

κ
,

where the constant is independent of h and κ.

(c) If Ω is convex and z ∈ H1
iu satisfies for f ∈ L2 the equation âκ(z, ϕ) = m(f, ϕ) for all ϕ ∈ H1

iu,
then

||z − πhz||H1
κ
. h||f ||L2 .

Proof. Due to (3.4), standard arguments lead to the bounds on the L2-projection in part (a) and
(b). Part (c) is a direct consequence of part (b) and Lemma 2.4. �

In the next lemma, we relate the orthogonal projection, which takes into account the orthogonality
to iu in m(·, ·), to the L2-projection.

Lemma 5.11. For κh small enough, it holds the bound

||ϕ− R⊥κ,h(ϕ)||H1
κ
. ||ϕ− πhϕ||H1

κ
, ϕ ∈ H1

iu.

Proof. For ϕh ∈ Vh we let P⊥iu : Vh → V ⊥h be the mapping that adjusts the angle to iu via

P⊥iu(ϕh) := ϕh −
m(ϕh, iu)

m(πh(iu), iu)
πh(iu).

We this we obtain for any ϕ ∈ H1
iu

||ϕ− R⊥κ,h(ϕ)||H1
κ
. ||ϕ− (P⊥iu ◦ πh)ϕ||H1

κ
≤ ||ϕ− πhϕ||H1

κ
+
m(πhϕ− ϕ, iu)

m(πh(iu), iu)
||πh(iu)||H1

κ

. ||ϕ− πhϕ||H1
κ

+ ||ϕ− πhϕ||L2

‖u‖L2

m(πh(iu)− iu, iu) + ||u||2L2

||u||H1
κ

. ||ϕ− πhϕ||H1
κ

+
κ

1− cκh
||ϕ− πhϕ||L2 . ||ϕ− πhϕ||H1

κ
,

where we used in the last step that ||πh(iu)− iu||L2 . h||u||H1 . κh holds. �

These preparations lead to the error bounds for our first application.

Proof of Corollary 3.4. From Lemmas 5.10 and 5.11, we obtain that Assumption 3.1 holds, and
thus we can use the bounds in Theorem 3.3. In addition, we recall that Ω is assumed to be convex,
and, hence, the approximation estimates due to Lemmas 5.10 and 5.11 yield

||u− R⊥κ,hu||H1
κ
. h||u||H2

κ
. κ2h,

where we used Theorem 2.2 for the last step. This establishes the claims. �
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6. Relaxed κ-dependencies in LOD spaces

In this final section we present a nonstandard application of the abstract approximation result in
Theorem 3.3. For that we consider spaces based on the so-called Localized Orthogonal Decompo-
sition (LOD). LOD spaces were originally developed in the context of elliptic multiscale problems
with rough coefficients to efficiently handle low regularity and unresolved scales [35]. An introduc-
tion to the methodology is given in the textbook by Målqvist and Peterseim [36] and the review
article by Altmann et al. [4]. Recently, new applications of these spaces emerged in the field of
quantum mechanics where they were used to boost the performance of traditional discretizations
[27, 29, 43]. As we will see see, the Ginzburg-Landau equation could be yet another promising
application of LOD spaces in the context of quantum physics.

To define suitable LOD spaces for the GLE and to characterize its approximation properties in
an abstract way, we start from a linear Lagrange finite element space Vh as defined in (3.3) and
assume that the underlying triangulation Th is shape-regular and quasi-uniform. The LOD space
is now constructed from Vh by applying the inverse of a differential operator to the functions of
Vh. In our case, we use the differential operator associated with the bilinear form âκ(·, ·,). The
construction is made precise in the following definition.

Definition 6.1 (LOD spaces). Let âκ(·, ·) denote the symmetric, continuous and coercive bilinear

form on H1(Ω,C) given by (2.2) and let Â−1
κ denote the corresponding solution operator on L2,

i.e., for f ∈ L2(Ω,C) the image Â−1
κ f ∈ H1 is given by the solution to

âκ( Â−1
κ f , ϕ ) = m(f, ϕ) for all ϕ ∈ H1.

With this definition, the LOD space based on âκ(·, ·) and Vh is given by

V LOD
h := Â−1

κ Vh.

We note that the above definition of LOD spaces formally differs from the construction given in
the classical references [26,28, 35]. However, the characterizations are indeed equivalent as can be
extracted from e.g., [25] and [4].

From a practical perspective it is also important to note that the space V LOD
h admits a quasi-local

basis, i.e., basis functions that are (super-)exponentially decaying in distances of the mesh size
h. Details on the practical computation/approximation of such basis functions are given in [21]
and recent super-localization strategies are presented in [25]. Corresponding numerical errors that
might arise from the approximation of basis functions are well understood [4] and will be for brevity
disregarded in the following error analysis.

The approximation properties of the idealized space V LOD
h are summarized in the following propo-

sition.

Proposition 6.2 (Approximation properties of V LOD
h ). Let V LOD

h be the LOD-space from Defini-
tion 6.1 and let f ∈ L2 be given. If u ∈ H1 denotes the solution to

âκ(u, ϕ) = m(f, ϕ) for all ϕ ∈ H1

and if RLOD
κ,h u ∈ V LOD

h denotes the corresponding âκ(·, ·)-Ritz-projection of u in V LOD
h , then it holds

||u− RLOD
κ,h u||H1

κ
. h ||f − πhf ||L2 ,(6.1)

where we recall πh : L2 → Vh as the L2-projection on Vh. The hidden constant in (6.1) is generic
and depends on the coercivity and continuity constants of âκ(·, ·), as well as the mesh regularity,
but it does not depend on h and κ.

Furthermore, for every φ ∈ H1 there exists a unique decomposition such that

φ = φLOD + φ0, where φLOD ∈ V LOD
h , πhφ0 = 0 and âκ(φLOD, φ0) = 0.(6.2)

The result is standard and can be for instance found in [29] for homogeneous Dirichlet boundary
conditions. For generalizations to higher order FE spaces and to only piecewise smooth source
terms f , we refer to [34].
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Analogously, to standard Lagrange finite elements, it is also possible to quantify the approximation
properties of RLOD

κ,h for general smooth functions. This is done in the following lemma.

Lemma 6.3. Let V LOD
h be the LOD-space from Definition 6.1 and let RLOD

κ,h : H1 → V LOD
h denote

the corresponding Ritz-projection w.r.t. âκ(·, ·). Then, for every w ∈ H2, there is a fw ∈ L2 such
that

âκ(w,ϕ) = m(fw, ϕ) and ||fw||L2 . ||w||H2
κ
.

Consequently, for all w ∈ H2 it holds

||w − RLOD
κ,h w||H1

κ
. h||w||H2

κ
.

Proof. From (2.8), we obtain using integration by parts

âκ(w,ϕ) = Re

∫
Ω

(
−∆w + β2w + 2iκA∇w + κ2|A|2w

)
ϕ∗ dx =: m(fw, ϕ)

and the bound for ||fw||L2 follows. Proposition 6.2 finishes the second part of the lemma. �

From this lemma, we can deduce property (a) in Assumption 3.1. For the second property, we
need a variant of this result given in the next lemma.

Lemma 6.4. Let V LOD
h be the LOD-space from Definition 6.1 and let RLOD

κ,h : H1 → V LOD
h denote

the corresponding Ritz-projection w.r.t. âκ(·, ·). For f ∈ L2 let w ∈ H1
iu be the solution of

âκ(w,ϕ) = m(f, ϕ) for all ϕ ∈ H1
iu.

Then, it holds

||w − RLOD
κ,h w||H1

κ
. h||f ||L2 .

Proof. As in the proof of Lemma 2.4 in (2.7), we know that w solves the variational problem also
tested against all ϕ ∈ H1 for some modification of f which is bounded in L2 by ||f ||L2 . Hence, the
assertion follows from Proposition 6.2. �

To apply the general error estimates in Theorem 3.3, we need to verify Assumption 3.1 for the
LOD space V LOD

h . As H2 is a dense subset of H1, the property (a) follows from the second part
of Lemma 6.3. For property (b), we require the following lemma.

Lemma 6.5. Let again RLOD
κ,h : H1 → V LOD

h denote the Ritz-projection onto the LOD-space V LOD
h

and let

R⊥,LOD

κ,h : H1
iu → V LOD

h ∩ (iu)⊥

denote the corresponding Ritz-projection onto V LOD
h ∩ (iu)⊥. If h is small enough, in particular

h . κ−1, then it holds for all ϕ ∈ H1
iu

||ϕ− R⊥,LOD

κ,h ϕ||H1
κ
. ||ϕ− RLOD

κ,h ϕ||H1
κ
.

Proof. To proceed as in the proof of Lemma 5.11, we note that by the LOD-decomposition (6.2)
we have πh

(
iu− RLOD

κ,h (iu)
)

= 0. Hence, with the approximation properties of πh:

||RLOD
κ,h (iu)− iu||L2 . h ||RLOD

κ,h (iu)− iu||H1
κ
. h ||iu||H1

κ
. hκ.(6.3)

This implies for all ϕ ∈ H1
iu

||ϕ− R⊥,LOD

κ,h ϕ||H1
κ
. ||ϕ−

(
RLOD
κ,h ϕ−

m(RLOD
κ,h ϕ, iu)

m(RLOD
κ,h (iu), iu)

RLOD
κ,h (iu)

)
||H1

κ

≤ ||ϕ− RLOD
κ,h ϕ||H1

κ
+
m(RLOD

κ,h ϕ− ϕ, iu)

m(RLOD
κ,h (iu), iu)

||RLOD
κ,h (iu)||H1

κ

(6.3)

. ||ϕ− RLOD
κ,h ϕ||H1

κ
+ ||ϕ− RLOD

κ,h ϕ||L2

‖u‖L2

m(RLOD
κ,h (iu)− iu, iu) + ||u||2L2

||u||H1
κ

. ||ϕ− RLOD
κ,h ϕ||H1

κ
+

κ

1− cκh
||ϕ− RLOD

κ,h ϕ||L2 . ||ϕ− RLOD
κ,h ϕ||H1

κ
. �
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Lemma 6.5 together with Theorem 3.3 guarantees that the H1
κ-error between an exact solution u

and a corresponding approximation in the LOD-space is bounded by ||u − RLOD
κ,h u||H1

κ
. The next

lemma quantifies this error.

Lemma 6.6. Let u be a minimizer of (1.1) and let RLOD
κ,h : H1 → V LOD

h be the Ritz-projection

onto V LOD
h . Then it holds at least

||u− RLOD
κ,h u||H1

κ
. κ3 h2

and, if Ω is convex, we have u ∈ H2 and the estimate improves to

||u− RLOD
κ,h u||H1

κ
. κ4 h3.

Proof. We want to apply Proposition 6.2. By E′(u) = 0 we have for every φ ∈ H1
κ that

âκ(u, ϕ) = βRe

∫
Ω

uϕ∗ dx− κ2 Re

∫
Ω

(
|u|2 − 1

)
uϕ∗ dx = m(β2u− κ2

(
|u|2 − 1

)
u, ϕ).

Since β2u− κ2
(
|u|2 − 1

)
u is at least in H1 and even in H2 for convex domains, one easily verifies

that for s = 0, 1, 2

||β2u− κ2
(
|u|2 − 1

)
u||Hs . κ2

(
||u||sH1 + ||u||Hs

)
≤ κs+2,

where we used the bounds from Theorem 2.2 and in particular repeatedly |u| ≤ 1. The estimate
now follows with Proposition 6.2 and standard estimates for the L2-projection πh on P1 finite
element spaces. �

By collecting the previous results we obtain our final main result which shows the superapproxi-
mation properties of the LOD space, even on nonconvex domains.

Theorem 6.7. Let Assumption 2.5 hold and let h be sufficiently small in the sense of Theorem
3.3. If V LOD

h denotes the LOD-space from Definition 6.1 and if uLOD
h ∈ V LOD

h is a corresponding
minimizer of the Ginzburg–Landau energy with

E(uLOD
h ) = inf

ϕ∈V LOD
h

E(ϕ),

then, there is neighborhood U ⊂ H1(Ω) of uLOD
h and a unique minimizer u ∈ U of (1.1) with

m(uLOD
h , iu) = 0 and such that

C−1
sol (u, κ) ||u− uLOD

h ||L2(Ω) + h ||u− uLOD
h ||H1

κ
. κ3h3,

and for convex domains Ω (and consequently H2-solutions) it even holds

C−1
sol (u, κ) ||u− uLOD

h ||L2(Ω) + h ||u− uLOD
h ||H1

κ
. κ4h4.

Proof. Proposition 6.2 and Lemmas 6.3, 6.4, and 6.5 guarantee that Assumption 3.1 is fulfilled for
V LOD
h . Hence, we can apply Theorem 3.3 together with Lemmas 6.5 and 6.6 to conclude that for

all sufficiently small h and for u ∈ Hs with s ∈ {1, 2} it holds

||u− uLOD
h ||H1

κ
. ||u− R⊥,LOD

κ,h u||H1
κ
. ||u− RLOD

κ,h u||H1
κ
. κs+2 hs+1,

and

||u− uLOD
h ||L2 . Csol(u, κ)h ||u− uLOD

h ||H1
κ
. Csol(u, κ)κs+2 hs+2.

�

Remark 6.8. It is worth to note that, in LOD-spaces, one can also improve the smallness condition
on κCsol(u, κ)h required for the inf-sup condition in Lemma 5.4. In fact, a precise inspection of the
proof leads to a smallness condition on κ2Csol(u, κ)h2, which is in general weaker if 1 . Csol(u, κ).
However, since the abstract result contains a term of the form 1 + κCsol(u, κ)h, one cannot exploit
this any further in the error analysis, and we thus refrain from giving the proof here.
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