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Abstract

Knowledge about the specific affinity of whole cells toward a substrate, commonly

referred to as kS, is a crucial parameter for characterizing growth within bioreactors.

State‐of‐the‐art methodologies measure either uptake or consumption rates at

different initial substrate concentrations. Alternatively, cell dry weight or respiratory

data like online oxygen and carbon dioxide transfer rates can be used to estimate kS.

In this work, a recently developed substrate‐limited microfluidic single‐cell

cultivation (sl‐MSCC) method is applied for the estimation of kS values under

defined environmental conditions. This method is benchmarked with two alternative

microtiter plate methods, namely high‐frequency biomass measurement (HFB) and

substrate‐limited respiratory activity monitoring (sl‐RA). As a model system, the

substrate affinity kS of Corynebacterium glutamicum ATCC 13032 regarding glucose

was investigated assuming a Monod‐type growth response. A kS of <70.7 mg/L

(with 95% probability) with HFB, 8.55 ± 1.38mg/L with sl‐RA, and 2.66 ± 0.99mg/L

with sl‐MSCC was obtained. Whereas HFB and sl‐RA are suitable for a fast initial kS

estimation, sl‐MSCC allows an affinity estimation by determining tD at concentra-

tions less or equal to the kS value. Thus, sl‐MSCC lays the foundation for strain‐

specific kS estimations under defined environmental conditions with additional

insights into cell‐to‐cell heterogeneity.

K E YWORD S

affinity constant, cell‐to‐cell heterogeneity, Corynebacterium glutamicum, microfluidic single‐cell
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1 | INTRODUCTION

The growth rate µ is one central parameter for the characterization,

comparison, and classification of cellular processes. To predict

microbial growth behavior, Monod (1949) established the first

growth kinetic model in 1949 while considering the bioavailability

of the substrate (Equation 1). Within this empirical relationship, kS

denotes the affinity of a bacterium toward a corresponding substrate

S with the concentration cs and marks the concentration, where half

of the specific maximum growth rate µmax is reached (Ferenci, 1999).
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The growth of cells in bioprocesses is affected by biological,

chemical, and physical factors (Takors, 2012). In large‐scale

bioreactors, gradients of the substrate, dissolved gases, and pH occur

through limiting capacities of engines, resulting in reduced input of power

per volume, increased mixing times, and reduced kLa values (Bylund et al.,

1998; Enfors et al., 2001; Junker, 2004; Mandenius, 2016). Hence, if the

consumption rates of components required by the cells are higher

than their supply, limiting conditions are present. This can lead to

stress responses, which have a substantial impact on the yield and

quality of the target product (Enfors et al., 2001). Therefore,

access to precise kS values is urgently required to model complex

substrate gradients occurring within bioreactors by computational

fluid dynamics. Additionally, kS values are necessary to adjust the

steady‐state concentration of a carbon source, especially in

bioprocesses operated in chemostat mode, to secure an efficient

conversion of substrate into biomass (Harrison, 1973).

State‐of‐the‐art estimation of kS is based on measuring specific

substrate uptake rates qS within the exponential growth phase (Kell &

Sonnleitner, 1995). Uptake rates qS are determined as a function of

substrate concentration cS and correspond to the ratio of growth rate µ

to the biomass yield YX/S in accordance with Equation (2). This lays the

foundation to estimate kS by incorporating the Monod expression

(Equation 1) and rearranging for kS (Equation 3) (Schmideder et al., 2015).

The approach can be extended for chemostat cultivations under the

condition that no residual concentration is present in the effluent by

replacing the substrate concentration cS with the feed concentration

cS,feed, as well as the growth rate with the set dilution rate D (Equation 4)

(Graf et al., 2020).
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Mainly three methods are reported in the literature to determine

uptake rates qS, including high‐performance liquid chromatography

(HPLC) (Senn et al., 1994), enzymatic assays (Graf et al., 2020), or

liquid scintillation counting (Lindner et al., 2011). However, liquid

scintillation counting is only applicable if a labeled substrate such as
14C glucose is used. Alternative approaches to estimate the kS value

are to measure the oxygen uptake rate (OUR) or the oxygen transfer

rate (OTR) of aerobic growing cells, which correlates to growth

(Stöckmann et al., 2003; Wechselberger et al., 2013). With the

biomass concentration cX and the biomass yield on oxygen YX/O2, the

kS can be estimated according to the following equation:



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Respirometry methods for the estimation of kinetic parameters

have been used more frequently and can deliver similarly precise kS

estimations in comparison to established chemostat methods (Legan &

Owens, 1987; Oliveira et al., 2009). These methods often rely on

experiments in a respirometer but can also be conducted in situ through

pulse respirometry (Goudar & Strevett, 1998; Ordaz et al., 2008).

Reported kS values are scarce even for prominently used organisms.

Corynebacterium glutamicum is recognized as a model organism in

bioprocess engineering and industrial microbiology for its broad

capabilities as a producer of value‐added goods like amino acids

(Hermann, 2003), organic acids (Wendisch et al., 2006), polymer

precursors (Becker et al., 2018), aromatic chemicals (Wendisch

et al., 2016), and proteins (Freudl, 2017). Moreover, C. glutamicum

stands out for its robustness in large‐scale applications (Graf et al.,

2020; Vertès et al., 2012). However, even for this industrial‐

relevant organism, only a few published kS values are available

regarding glucose (Graf et al., 2020; Lindner et al., 2011; Uhde

et al., 2013). As stated by Kovárová‐Kovar and Egli, this is due to

the fact, of analytical difficulty in monitoring substrates at growth‐

controlling concentrations (Kovárová‐Kovar & Egli, 1998). The

applied state‐of‐the‐art methods for a high precision kS estimation

are technically very complex, and even though they primarily

provide merely extrapolated values, if liquid scintillation counting

was not used.

This study demonstrates a microfluidic method and compares this

method to two microtiter plate methods for estimating kS values using C.

glutamicum ATCC 13032 as a model organism to expand the biochemical

engineering toolbox. For all methods, a Monod‐type response of the

specific growth rate is assumed to estimate kS. The first microtiter plate

method is based on a computational approach for uncertainty

quantification and relies on high‐frequency biomass observations (HFB).

This is accomplished with an end‐to‐end Bayesian modeling approach,

according to Helleckes et al. (2022). The second method utilizes the

newly developed micro(µ)‐scale Transfer rate Online Measurement

(µTOM) (Dinger et al., 2022) device for high‐throughput respiratory

activity measurements. Substrate‐limited respiratory activity (sl‐RA)

monitoring determines the change in the OTR after spiking a defined

glucose concentration, which correlates for aerobic growing cells with the

growth rate. These microtiter plate methods are compared with the

substrate‐limited microfluidic single‐cell cultivation (sl‐MSCC) method.

Novel microfluidic single‐cell cultivations (MSCC) allow the cultivation of

cells in defined environments (Wang et al., 2010), which can be

maintained even for substrate‐limiting conditions (Lindemann et al.,

2019). This technology was applied to estimate the kS value of

C. glutamicum ATCC 13032 regarding protocatechuate acid (PCA) as a

carbon source (Lindemann et al., 2019). Burmeister et al. (2021) used the

same approach and estimated the lysine affinity for the lysine auxotrophic

C. glutamicum ΔlysA pEKEx2‐eYFP strain. However, MSCC as a

technology has not yet been systematically established as a tool for kS

estimation. It is unclear how comparable results are to conventionally

established methods since studies on main carbon sources like glucose

have not been performed to date. Finally, presented technologies (HFB,

2 | STEINHOFF ET AL.
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sl‐RA, and sl‐MSCC) are compared with literature values and future

application fields of each individual method are pointed out.

2 | MATERIALS AND METHODS

2.1 | Bacterial strain growth media

The bacterial strain C. glutamicum ATCC 13032 was used in this study.

Cultivations were performed with modified CGXII medium (Unthan et al.,

2014), containing per liter of distilled water 20 g (NH4)2SO4, 1 g K2HPO4,

1 g KH2PO4, 5 g urea, 13.25mg CaCl2·2H2O, 0.25 g MgSO4·7H2O,

10mg FeSO4·7H2O, 10mg MnSO4·H2O, 0.02mg NiCl2·6H2O, 0.313mg

CuSO4·5H2O, 1mg ZnSO4·7H2O, 0.2mg biotin, 37.5mg citrate, 42 g

MOPS, and 40 g D‐glucose, unless stated otherwise. Similar to previous

studies, PCA was replaced by citrate as iron chelator (Ho et al., 2022).

Citrate as a potential available carbon source can only be metabolized by

C. glutamicum if the saline concentration of NaCl is at least 1 g/L

(Liebl et al., 1989; von der Osten et al., 1989).

2.2 | High‐frequency biomass observations and
Bayesian Monod modeling

Microtiter plate batch cultivation experiments were carried out in a

48‐well FlowerPlate (m2p‐labs GmbH) incubated in a BioLector Pro

(m2p‐labs GmbH) (Figure 1a). Culture well A01 was inoculated to an

initial biomass concentration of 0.25 g/L from a glycerol stock. The

cultivation parameters were set to 1400 rpm, 85% humidity, and

30 °C. The online signals for biomass (backscatter; gain 3), dissolved

oxygen pO2 and pH were measured with a cycle time set to 1min

(Figure 1b). Detailed information on reference gain and filterset can

be found in the raw data file online (Osthege & Schito, 2022). The

FlowerPlate was covered with a gas‐permeable sealing foil (m2p‐labs

GmbH) to prevent contamination and allow uniform gas exchange.

Medium preparation and inoculation were performed manually under

a laminar flow hood.

Raw data was parsed with bletl version 1.1.0 (Osthege, Tenhaef,

Helleckes, et al., 2022; Osthege, Tenhaef, Zyla, et al., 2022).

Backscatter observations between 2 and 9.5 h were removed from

F IGURE 1 Experimental setup and workflow for estimating the kS of microbial cells with high‐frequency biomass observations.
(a) Microbioreactor batch cultivations with (b) high‐frequency measurements of biomass‐related backscatter. The kS parameter in the (c) Monod
model causes curvature (arrow) of the biomass trajectory. A computational model Φ predicts the likelihood ℒ of observations. (d) Probabilistic
parameter estimation obtained by Markov‐chain Monte Carlo (MCMC) using the probabilistic programming library PyMC.

STEINHOFF ET AL. | 3
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the data set to account for inaccuracies of the Monod assumption of

approximately constant growth rate (Equation 1 with c kS S≫ ) for

most of the exponential phase (Helleckes et al., 2022; Osthege,

Tenhaef, Zyla, et al., 2022; Unthan et al., 2014). A biomass/

backscatter calibration was established from reference backscatter

measurements of a robotically prepared biomass dilution series of 48

biomass concentrations ranging from 23.1 ± 0.4 g/L to a 1000x

dilution. The calibration model built with calibr8 version 6.5.2

(Osthege & Helleckes, 2022a) and the parameter estimates as well

as a visualization of the fit, can be found in the supporting

information.

A Monod differential equation model was set up to describe the

time series of biomass concentrations in the batch cultivation

(Figure 1c). The respective equations and explanations are given in

Chapter 3.1. The calibration model was used to relate predicted

biomass concentrations with observed backscatter values, creating a

likelihood for parameter estimation (Figure 1d). The model was

implemented as a probabilistic model using Python packages PyMC

version 4.0.0b6 (Wiecki et al., 2022) and murefi version 5.1.0

(Osthege & Helleckes, 2022b). Bayesian parameter estimation was

performed by sampling the joint posterior probability distribution of

model parameters using PyMC. In this iterative procedure, thousands

of parameter sets are used to predict biomass trajectories with the

ODE model and accepted or rejected based on the prior probability

of the parameter values and how likely it would have been to observe

the given data from such a trajectory. The result is a collection of

thousands of parameter sets for the Monod model, each of which

could plausibly explain the observed data. A detailed description of

the method is given by Helleckes et al. (2022).

Here, the PyMC implementation of the DE‐MCMC‐Z algorithm

(ter Braak & Vrugt, 2008) was used with 20,000 tuning and 50,000

draw iterations in four independent Markov chains. Convergence of

the Markov‐chain Monte Carlo (MCMC)‐sampling was checked by

validating that all R̂ < 1.01 using ArviZ version 0.12.0 (O. Martin et al.,

2021). For detailed explanations of calibration modeling and the

Bayesian modeling of batch cultivations using the Monod model, it

can be referred to Helleckes et al. (2022). The full data set and code

to reproduce the kS analysis using the high‐resolution biomass and

Bayesian ODE modeling approach are provided online (Osthege &

Schito, 2022).

2.3 | Substrate‐limited respiratory activity
monitoring

For the respiratory determination of kS, deep‐well microtiter plates

Riplate RW (Ritter GmbH) with 96 wells were used. The OTR of every

well was online monitored with the µTOM (Figure 2a) (Dinger et al.,

2022). All wells were filled with 1mL of inoculated culture. Cultivations

were performed at a temperature of 30°C, a shaking speed of

800 rpm, and a shaking diameter of 3mm. Precultures for inoculation

were performed in 250mL shake flasks with CGXII medium with

10 g/L glucose as the sole carbon source. The main culture was

inoculated with 5 (v/v)% from a stationary phase preculture and was

also conducted in CGXII medium but with 1 g/L glucose.

After the initial batch cultivations, 100 µL glucose solutions with

different concentrations were spiked into each well of the microtiter

plate (Figure 2b). This resulted in a theoretical filling volume of 1.1 mL

per well with final glucose concentrations of 0.0, 2.5, 5.0, 7.5, 10.0,

12.5, 15.0, 17.5, 20.0, 30.0, 40.0, 50.0, 60.0, 70.0, 80.0 100.0 mg/L.

A multichannel multistepper pipette Eppendorf Research pro

(Eppendorf) was used to spike all wells 2 min before the next

OTR measurement phase started. The first 30 s of the measure-

ment phase of the µTOM device were cutoff, and OTRs were

determined by the oxygen partial pressure decrease within the

next 2 min. The end of the initial batch and glucose depletion was

indicated by a rapid decrease in the OTRs (Figure 2c), whereas the

glucose spike resulted in a concentration‐dependent fast increase

of the OTR. The resulting OTRs after the spike with 0.0 mg/L

of glucose were subtracted from all other resulting OTRs.

A regression of these values to the Monod equation was

performed with OriginPro (OriginPro 2020 9.7.0.188; OriginLab

Corporation) to estimate the kS value (Figure 2d).

2.4 | Substrate‐limited microfluidic single‐cell
cultivation

2.4.1 | Design and microfluidic chip fabrication

The design of the microfluidic chip is based on a recently developed

MSCC method from Lindemann et al. (2019). The MSCC systems

consist of 12 arrays of “quasi” one‐dimensional growth channels to

restrict cell proliferation of a few cells (<15) along one axis

(Figure 3a). These growth channels are open on both ends and

connected to adjacent supply channels. There, the fresh medium

flows with a high velocity to ensure a constant and defined medium

supply to the growth channels. In total, one cultivation unit consists

of 1440 growth channels.

A silicon wafer mold was fabricated with a two‐layer photo-

lithography process and served as a mold for PDMS (poly(dimethyl-

siloxane)) soft lithography (Grünberger et al., 2013). The construction

and development of a siliconwafer was carried out according to

the protocol of Täuber et al. (2020). During soft lithography, the

siliconwafer was covered with PDMS in a ratio 10:1 between the

base and curing agent (Sylgard 184 Silicone Elastomer, Dow Corning

Corporation). Afterward, the wafer was degassed in a desiccator for

30min and backed at 80 °C for 2 h (universal cupboard; Memmert

GmbH). After this step, the PDMS chips were cut out from the wafer,

cleaned three times with isopropanol, and blown dry with pressurized

air. The cover glasses (D 263 T eco, 39.5 × 34.5 × 0.175mm, Schott)

for the microfluidic chip were also cleaned after the same protocol.

Afterward, the PDMS chip and the cover glass were activated with

O2 plasma (Femto Plasma Cleaner; Diener Electronics) for 24 s with a

power of 45% and assembled. Before the use, PDMS‐glass bonding

was strengthened by a 2min bake at 80 °C.

4 | STEINHOFF ET AL.
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2.4.2 | Single‐cell cultivation

Overnight precultures of C. glutamicum were inoculated from glycerol

stock in 10mL CGXII medium in 100mL flasks on a rotary shaker at

120 rpm. Cells from the overnight culture were transferred to

inoculate a second shake flask culture with a starting OD600 of 0.1

for harvesting of cells in the exponential growth phase. The cells

were used to inoculate the microfluidic device manually through a

syringe containing a cell suspension with an OD of approximately 0.6.

Seeding of the growth channels was obtained by random trapping of

cells. After successfully seeding, the microfluidic chip was connected

to pressure‐driven pumps (Flow EZ Pressure Controller; Fluigent) and

controlled by software (All in One; Fluigent). An inlet pressure of

150mbar was applied for a constant medium supply (Figure 3b)

(Li et al., 2017). Afterward, growth kinetic studies in CGXII were

performed containing concentrations from 0 up to 150 g/L

glucose. The possibility of interactions between hydrophilic

molecules such as glucose and PDMS as a hydrophobic polymer

can be excluded (Toepke & Beebe, 2006). Each cultivation medium

was additionally sterile filtered to prevent channel clogging during

microfluidic experiments.

2.4.3 | Live cell imaging, data analysis, and growth
rate modeling

Time‐lapse microscopy was performed using an inverted automated

microscope from Nikon (Nikon Eclipse Ti2; Nikon). The microscope

stage was surrounded with a cage incubator for optimal temperature

control (Cage incubator; OKO Touch; Okolab S.R.L.). The microfluidic

device was placed inside the cage incubator in an in‐house fabricated

chip holder. Additionally, the setup was equipped with a 100x oil

objective (CFI P‐Apo DM Lambda 100x Oil; Nikon GmbH), DS‐Qi2

camera (Nikon camera DS‐Qi2; Nikon GmbH), and an automated

focus system (Nikon PFS; Nikon GmbH) to compensate the thermal

drift during long term microscopy (Figure 3a). For each experiment,

80 positions containing several cultivation channels were selected

manually and were managed with NIS‐Elements Imaging Software

F IGURE 2 Experimental setup and workflow for estimating the kS of microbial cells with substrate‐limited respiratory activity monitoring.
(a) Micro(µ)‐scale Transfer rate Online Measurement device (µTOM) for 96‐deepwell microtiter plates. The figure for the µTOM device was
adapted from Dinger et al. (2022). (b) Spike of varying substrate concentrations after the termination of the batch cultivations with 96 replicates.
(c) Observation of the substrate‐dependent oxygen transfer rates. (d) kS determination based on Monod‐type respiratory response.

STEINHOFF ET AL. | 5
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(Nikon NIS Elements AR software package; Nikon GmbH). Time‐lapse

images were recorded every 5min.

Data analysis of the live‐cell image sequences was performed

using the open‐source software Fiji 1.52 (Schindelin et al., 2012). For

determining single‐cell division events, one offspring cell was

selected whose descendants were present until the end of the

measurement. Based on the growth of this cell line, it can usually be

guaranteed that at least 50 single‐cell division events occurred. Two

categories were differentiated for the case that a selected glucose

concentration resulted in reduced growth. The first category

describes cell growth for less than four generations, defined as no

growth. The second category describes cases where less than 50

single‐cell division events were observed. In this case, offspring of

further descendants were considered for quantification to reach the

minimum of at least 50 single‐cell division events.

The doubling time of each offspring of the selected cell lineage

was determined after the first division event through selection of the

cell by using the integrated multipoint function of Fiji (Figure 3c).

This ensured a frame‐independent tracking of temporally asymmetric

divisions of daughter cells depending on the generation time. The

respective mean values for tD and growth rates were determined

using the geometric mean (Phoenix, 1997). Here, extreme outliers

with tD > 1000min or tD < 30min were not considered, because the

formula for the determination of the standard deviation uses

summation of squared errors. Therefore, the impact of extreme

outliers is espicalliy high for low sample sizes. We observed that

doubling times of 1000min or below 30min generate a standard

deviation equal to the mean. To avoid this, we neglected these

extreme rare outliers when considiering our kinetics due to the loq

frequency to determine an affinity reflecting more than 95% of the

population. The first step in determining kS is calculating the growth

rate with each determined doubling time. The equation and

explanation are stated in Chapter 3.1. Then, the corresponding

geometric mean, including the standard deviation, is plotted as a

function of the respective glucose concentration. A Monod kinetic fit

is then established using OriginPro (OriginPro 2020 9.7.0.188;

F IGURE 3 Experimental setup and workflow for estimating the kS of microbial cells with substrate‐limited microfluidic single‐cell cultivation
(sl‐MSCC). (a) Live cell imaging setup consisting of an inverted phase‐contrast microscope and a microfluidic single‐cell cultivation chip, allowing
high‐spatiotemporal resolution. (b) Single‐cell cultivation performed under varying substrate concentrations. (c) Determination of tD of the
online‐monitored time‐lapse data. (d) Establishing a kinetic model based on a Monod‐type response by the conversion of tD into growth rates µ
to display growth as a function of glucose concentration to estimate kS,sl‐MSCC.

6 | STEINHOFF ET AL.
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OriginLab Corporation) (Figure 3d). The regression slope obtained

from the logarithmic plot corresponds to kS.

3 | RESULTS AND DISCUSSION

3.1 | Comparison of methodologies

In this work, three unique methods for kS estimation are presented:

HFB, sl‐RA, and sl‐MSCC. All methods assume a Monod‐type growth

response (Equation 1). Thereby, the kS value is always estimated by

observing the growth under substrate limiting conditions. For the

understanding of the different methodologies and their potentials as

well as limits, a comparison is given regarding (1) cultivation

workflows, (2) computational approaches for kS estimation, and (3)

analytical procedures.

3.1.1 | Cultivation workflows

HFB and sl‐RA are based on microtiter cultivation systems (Figures 1

and 2). In contrast, sl‐MSCC is based on MSCC devices (Figure 3). In

the HFB workflow, the biomass is observed during a batch cultivation

over time. The glucose is steadily consumed by the cells until

complete glucose consumption, which is indicated by a sharp rise in

the DO (Figure 1b). The rise in DO can be attributed to the fact that

the glucose uptake rate is linked via growth to the OUR. The link of

growth and OUR is utilized for kS estimation with sl‐RA. For the

sl‐RA, depletion of glucose after an initial batch cultivation is

indicated by a drop in OTR (Figure 2c). In comparison to the HFB

workflow, after the termination of the batch cultivation, different

glucose solutions are spiked into the microtiter plate wells to adjust

defined substrate levels. For the third alternative, sl‐MSCC, defined

and contrasting to the other methods, constant conditions are

reached by perfusion with a medium containing a defined glucose

concentration. Thereof, HFB and sl‐RA are faster and easier to

perform. Nonetheless, sl‐MSCC provides a more defined environ-

ment due to perfusion and thereby, constant substrate concentra-

tions even at limiting conditions. In contrast to sl‐MSCC and sl‐RA,

where glucose concentrations are set by perfusion or spiking, the

glucose concentration is only measured once at the onset of the

stationary phase with a hexokinase assay for the HFB.

3.1.2 | Computational approaches for kS estimation

In HFB, a batch cultivation is monitored by backscatter measure-

ments. For parameter inference, the parameter sets proposed by the

MCMC algorithm are used to simulate biomass concentration

trajectories using the differential model (Equation 6) based on the

Monod equation (Equations 1 and 2). These concentration values

are fed into an asymmetric logistic calibration model to predict the

distribution of backscatter observations. This enables the model to

relate model parameters with observations, learning about how well a

chosen parameter set describes the data. For a detailed explanation

of this modeling procedure, see Helleckes & Osthege et al. (2022).

dc

dt
μ c

c

k c

dc

dt Y

dc

dt

=
+

,

=
−1

.

X
X

S

S S

S

X S

X

max

/

⋅ ⋅

⋅
(6)

Instead of the biomass concentration cX, the OTR is observed in

sl‐RA. The change in dissolved oxygen dOL/dt is assumed to be

negligible compared with the OUR, similar to Mühlmann et al. (2018)

and Ihling et al. (2021). Hence, the OTR is used equivalently to the

OUR (Equation 7). Data by Graf et al. (2020) indicate a linear

correlation of growth rates (0.2–0.4 h−1) and OURs and therefore, a

constant YX/O2. However, this assumption is not necessarily true at

very low growth rates. Only due to this simplified linearity

assumption of the growth rate and the OTR, the sl‐RA model is

interchangeable with the models of the other methods. Thereby, the

kS value can be estimated directly with the glucose concentration‐

dependent OTR and using a regression of the Monod equation.

OTR OUR=

OUR
dO

dt
s. t. ,

L
≫ (7)

μ
OTR·Y

c
= .

X O

X

/ 2
(8)

For sl‐MSCC, single‐cell doubling times tD are determined. Under

the assumption that both cells have the same size after splitting, the

growth rate µ can be calculated (Equation 9). Similar to sl‐RA, a

mathematical fit under the assumption of Monod‐type response of

growth is used to estimate the kS value based on the glucose

concentration‐dependent growth rates.

μ
t

=
ln2

.
D

(9)

3.1.3 | Analytical procedures

As a Mond‐type growth response is assumed for all methods, the

following analytical procedures are chosen to measure parame-

ters correlating to the growth of C. glutamicum. For HFB,

backscatter measurements are performed in a BioLector. In

contrast, sl‐MSCC allows single‐cell tracking by inverted phase

contrast microscopy. The sl‐RA depends on the indirect growth

tracking by monitoring the OTR. To this end, high‐throughput

OTR measurements are conducted in a µTOM device. The

equipment for the presented methods is not available in every

laboratory. However, the proposed approaches can be adapted

for other devices and provide insight into the theoretical

backgrounds behind kS estimation.
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3.2 | Substrate affinity kS estimations

The HFB method for kS estimation takes the data from the

microbioreactor batch cultivation, comprised of 464 backscatter

observations after preprocessing and one simulated glucose mea-

surement. Parametrization of the probabilistic Monod model

was obtained with uninformative prior beliefs of the model

parameters: ( )S LogNormal μ σ~ ( = log 20 , = 0.1)
g

L0 , X LogNormal~0

( )μ σ( = log 0.25 , = 0.1)
g

L
, μ Beta μ σ~ ( = 0.4, = 0.1)max , Y Beta~X/S

μ σ( = 0.6, = 0.05), k Uniform~ (0, ∞)S . Note that the prior information

for kS constrains it to positive numbers but does not bias the model

beyond that.

The MCMC sampling of the joint posterior probability distribu-

tion (Figure 4b) for these five parameters given the 119 + 1

observations and corresponding calibration models yielded a total

of 200,000 parameter vectors, each corresponding to one possible

trajectory of Monod kinetics. In Figure 4c,d, individual examples of

such trajectories are drawn alongside a density band representing the

posterior probability distribution of trajectories. Vertical violin plots

show the 90% highest‐density intervals of the posterior probability

distributions of biomass (green) and substrate (blue) concentrations

obtained from single measurements with the calibration model.

These are the narrowest intervals containing the inferred parameter

(here: biomass concentration) with a probability of 90%. Note that

inferences from single backscatter observations resulted in much

F IGURE 4 Monod modeling results for high‐frequency biomass observations (HFB). In (a) the raw backscatter and DO observations of the
transition from exponential to stationary phase show a deviation from the declining DO trend for three cycles (approx. 3 min) before a sharp rise
in DO. (b) Data up to the first cycle after the rise was considered to infer posterior probabilities of the Monod model parameters. The YX/S and S0
as well as µmax and X0 parameters are strongly correlated. The highest probability density for the kS parameter is near 0mg/L. (c and d) Show the
resulting distribution of biomass and substrate trajectories predicted from sampled parameter sets. Violins indicate the probabilities inferred
from individual data points without the use of the Monod model. Thin lines indicate trajectories resulting from exemplary parameter sets.
The dashed line indicates the highest density interval, around 90% of the probability mass.

8 | STEINHOFF ET AL.
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larger uncertainty about biomass concentration than those obtained

from ODE model trajectories (green bands, dashed lines). This is

because ODE trajectories are constrained by the relatively rigid

assumption of Monod‐like growth and the combined information

from 119 observations. Nevertheless, the curvature of trajectories is

visible at timescales of approximately less than 1min (Figure 4c,d).

This asymmetric observation of “less than” corresponds to the

marginal posterior distribution of kS exhibiting no lower tail toward

0 g/L, but a clear tail toward higher concentrations. In this case, 95%

of the kS posterior probability distribution is <70.7mg/L, correspond-

ing to the interpretation that kS < 70.7mg/L with a 95% probability

according to this analysis. Since the 95% probability threshold is

arbitrary, equally valid statements with slightly different interpreta-

tions can be provided: kS < 21.5 mg/L with a 50% chance (the median)

or kS < 10.0 mg/L with a 26.4% chance.

In Figure 4b, two‐dimensional marginals of the five‐dimensional

joint probability distribution are shown as kernel density estimates.

These visualizations show that with this data set, kS is not correlated

to other parameters of the Monod model, whereas µmax is strongly

correlated with X0, and YX/S is strongly correlated with S0. These

correlations are structural and well expected (Helleckes et al., 2022).

If a lower S0 is estimated, YXS has to be higher to fit the biomass

observations. Due to the strong Monod assumptions and the 464

backscatter observations, our posterior estimate for the µmax of this

batch is rather narrow with 90% of the probability mass in the

interval [0.395, 0.416] h−1.

For respiratory estimation of the kS with the sl‐RA, 96 batch

cultivations were performed simultaneously in a 96‐deepwell plate.

The online monitored OTR of these cultivations show an increase

and, therefore, the initial growth of C. glutamicum for the first 3 h

(Figure 5a). The rapid decrease of the OTR afterwards points to the

depletion of the main carbon source glucose, which was only supplied

with 1 g/L. The utilization of alternative carbon sources leads to a low

OTR of around 1mmol/L/h, which is also progressively decreasing

after 3.5 h (Figure 5a). As soon as glucose is spiked into the wells,

growth, according to Monod (Equation 1), sets in. Only for the

glucose spike concentration of 0mg/L a lower OTR after spiking was

measured with 0.9 ± 0.1 mmol/L/h. The glucose‐dependent OTRs are

also depicted in Supporting Information: S14–16. The differences

between the OTR reference value at 0 mg/L and all other OTRs were

calculated (Figure 5b). For spiked glucose concentrations of at least

20mg/L, a constant ΔOTR of 2mmol/L/h is noticeable. The

decreased ΔOTR value for the condition with a glucose concentration

of 100mg/L could be subject to measurement variance or caused by

a physiological explanation due to overflow metabolism. However, as

this work focuses on the kS value, this trend was not further

investigated here. For glucose concentrations of 20 to 0mg/L, the

ΔOTR is decreasing. With the regression to the Monod equation, a kS

of 8.55 ± 1.38mg/L was obtained with a coefficient of determination

of R2 = 0.95. A logarithmic plot of Figure 5b is given in Supporting

Information: S17.

Growth experiments in CGXII with varying glucose concentra-

tions were performed with C. glutamicum at 30 °C using sl‐MSCC for

72 h. For the assurance that the distribution of the doubling time

follows a Gaussian distribution, distributions of selected concentra-

tions are shown as examples. At glucose concentrations of

500mg/L (Figure 6a), the average doubling time is about

75 ± 15min with low variance. Furthermore, the single‐cell tD are

normal distributed with a coefficient of determination of R2 = 0.97. At

glucose limiting concentrations, the dispersion and variance increase

drastically, leading to tD at 5 mg/L of 188 ± 204min (Figure 6b) and at

2.5mg/L of 122 ± 69min (Figure 6c) with a coefficient of determina-

tion of R2 = 0.76 and R2 = 0.89, respectively. We exclude technical

bias at the concentration of 5mg/L due to limitations or gradients in

nutrition. Thus, we are convinced that the nongaussian distribution is

due to the limiting carbon‐conditions itself. We speculate that the

F IGURE 5 Substrate limited respiratory activity estimation (sl‐RA) of the kS for Corynebacterium glutamicum with glucose spiked batch
cultivations. (a) Oxygen transfer rates of C. glutamicum cultivations (N = 96) spiked with 16 different glucose concentrations (N = 6) after glucose
depletion of the main culture. (b) Correlation of the resulting oxygen transfer rate difference after the spike to the respective glucose
concentrations with N = 6. Culture conditions: 96‐deepwell microtiter plate, VL = 1mL, n = 800 rpm, d0 = 3mm, T = 30 °C, CGXII medium without
protocatechuate acid, spike with 100 µL of 16 different glucose concentrations.
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limiting growth condition leads to a reduced energy availability for a

subpopulation of cells which are struggling to maintain growth. It is

reported that under limiting carbon‐source conditions, cells have

difficulties to maintain optimal growth and cell‐to‐cell heterogeneity

increases (Bettenworth et al., 2019; Lindemann et al., 2019;

Martins & Locke, 2015).

Therefore, single‐cell tD of at least three lineages of a mother cell

were analyzed to determine µ. Within the observed glucose

concentration range from 0 to 150 g/L, a Monod‐type response

was observed (Figure 6d). At concentrations higher than 500mg/L,

growth of C. glutamicum peaked and remained constant with an

observed maximum specific growth rate of µmax = 0.41 ± 0.02 h−1. At

glucose concentrations between 1mg/L and 100mg/L an increase of

doubling time was observed, resulting in reduced cell growth

(µ = 0.13 ± 0.10 h−1, µ = 0.39 ± 0.16 h−1). Glucose concentrations

smaller than 1mg/L resulted in a growth arrest. The regression of

the obtained growth data to the Monod equation yielded an average

kS,mean = 2.66 ± 0.99mg/L with a coefficient of determination of

R2 = 0.87.

3.3 | Comparison of kS estimations

The presented methods within this work yielded comparable kS

values. Moreover, the obtained data are in good agreement with

literature values (Table 1). The already published kS values for glucose

range from 0.52 to 7.68mg/L, including given standard deviations.

Lindner et al. (2011) obtained a value of 2.52mg/L and Uhde et al.

(2013) 2.17–2.70mg/L by applying liquid scintillation counting. Both

values match very well. However, the used protocol of both was

highly similar. In these studies, different concentrations of 14C

labeled glucose was supplied to previously washed C. glutamicum

cells. After defined time intervals, cell samples are collected and

analyzed with a scintillation counter. The data indicate a high

reproducibility and a very precise monitoring of glucose uptake rates.

Nonetheless, the required equipment and components impede a

broad and fast application of this method. In contrast, Graf et al.

(2020) utilized enzymatic assays to determine glucose concentrations

and deduct glucose consumption rates in batch and chemostat

cultivations. Based on a mathematical fit, a kS with 4.39 ± 3.20mg/L

F IGURE 6 Cumulative distribution of tD for at least three biological replicas containing at least 50 single‐cell tD of Corynebacterium
glutamicum ATCC 13032 at (a) 500mg/L, (b) 5 mg/L, (c) 2.5 mg/L glucose in CGXII. (d) Glucose‐dependent maximum specific growth rates of
individual C. glutamicum cells grown in microfluidic perfusion. The black line denotes the fit of the Monod equation to the data set.

10 | STEINHOFF ET AL.
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in batch and 0.97 ± 0.45mg/L in chemostat cultivation has

been estimated.

While an enzymatic assay for glucose has a detection limit of

400 µg/L, it provides an accurate and fast estimation of residual

glucose concentration. However, if the expected affinity toward

glucose is higher and consequently below the detection limit, liquid

scintillation counting or HPLC are necessary. Interestingly, the

authors note different kS values for batch and chemostat cultivations

but do not elaborate on the reason because the work had a different

focus. This differentiation of batch and continuous cultivation for kS

value estimation is often neglected. However, the kS value is subject

to the cell state, duration of cultivation as well as environmental

conditions and therefore, can vary between batch and chemostat

cultivations. Reasons for the deviations could include the washout of

slower growing cells due to the set dilution rate or the continuous

supply of PCA as a secondary carbon source during chemostat

cultivation (Bäumchen et al., 2007).

In addition to the aforementioned established methods, three

alternative methods for kS estimation are presented in this work. HFB

and sl‐RA are advantageous with their fast and, in the case of the sl‐

RA, simple estimation approach. Even though, the estimated kS values

suggest that sl‐RA (8.55 ± 1.38mg/L) and HFB (<70.7mg/L with 95%

probability) are not advisable for investigations below concentrations

of 10mg/L. For HFB, the temporal resolution of the BioLector‐based

biomass observations is limiting, at least for the presented application

example with C. glutamicum and glucose as carbon source, resulting in

a sharp switch from exponential to stationary phase growth. The

increased kS value for the sl‐RA compared with the sl‐MSCC method

is partially explained by an inherent overestimation due to the

measurement principle. Oxygen partial pressure values are averaged

within the required measurement time frame for OTR determination.

However, for the kS estimation, the initial glucose concentrations are

assumed. This effect becomes more prominent with further increased

lengths of the measurement phase (Supporting Information: S18).

Similar to HFB, this overestimation depends on the sharpness of the

switch from exponential to stationary phase and, therefore, on the kS

value. In contrast, a kS value under defined environmental conditions

was obtained by the sl‐MSCC approach (2.66 ± 0.99mg/L). This

method is applicable in concentration ranges below 1mg/L. The

image acquisition frequency for determining tD plays an essential

role. A division event may be documented one frequency interval

later than it occurred, leading to increased deviations of the

determined tD. This aspect is compensated by the number of

individual cells tracked and counted. Therefore, the experimental

and evaluation throughput of this method must be further increased.

For initial estimations or situations where the kS value is expected to

be rather in the higher mg/L range, HFB and sl‐RA can be taken into

consideration due to the reduced labor intensity. The sl‐MSCC

method can yield similar results as lab‐scale fermentations in

combination with liquid scintillation counting or enzymatic assays.

Moreover, sl‐MSCC data contains additional information about cell‐

to‐cell heterogeneities, which will be discussed in the following

section.

3.4 | Potential of sl‐MSCC

In contrast to the presented microtiter plate methods, sl‐MSCC

allows, in addition to kS determination, insights into cell‐to‐cell

heterogeneity regarding growth and tD at different cultivation

concentrations. For the assurance of a steady state during cultivation,

the cumulative distribution of the tD was plotted as a function of cell

generation for each glucose concentration. Here, a constant

distribution of the doubling time of approximately 80min within

the first 10 generations was observed for an applied concentration of

500mg/L glucose (Figure 7a). Similar trends have been obtained for

F IGURE 7 (a) Distribution of single‐cell tD of individual Corynebacterium glutamicum cells as a function of cell generations at a glucose
concentration of 500mg/L. (b) Glucose‐dependent maximum specific growth rates of individual C. glutamicum cells grown in microfluidic
perfusion. The black line denotes the fit of the Monod equation to the data set, while the red and blue lines give the upper and lower boundaries
of the mathematical fit, respectively.
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other glucose concentrations, where steady‐state growth lays the

foundation for precise determination of tD (Supporting Informa-

tion: S1–S12). The first observation is that a steady state in

cell growth and division at constant glucose concentrations of

>1mg/L can be maintained for at least 10 generations (up to the end

of the experiment), which corresponds to <2 h/generation. At glucose

concentration of ≤1mg/L steady‐state growth cannot be maintained

for more than ~4.25 h/generation (Supporting Information: S13).

Here, cell growth declines over the time course of cultivation,

resulting even in a stop of growth after eight generations. A possible

interpretation can be attributed to the declining storage of carbon

sources (Farwick et al., 1995; Koch, 1983; Wolf et al., 2003). The

obtained standard deviation, represented by the error bars in

Figure 6d represents the cell‐to‐cell heterogeneity in tD of the

analyzed cells rather than a statistical error. Thus, 60% of the cells

behave within the observed distribution of the average doubling

time. This behavior can be used to determine upper and lower

boundary values for kS because these boundaries can be seen as an

approximation of 95% of the cell behavior. Therefore, two additional

mathematical fits were made to derive a kS from the upper boundary

(mean growth rate + standard deviation) and the lower boundary

(mean growth rate − standard deviation). The mathematical fit of the

estimated data yielded an upper boundary of kS,upper boundary =

1.97 ± 0.56mg/L and a lower boundary of kS,lower boundary = 4.94 ±

3.03mg/L with a statistical certainty of the applied regression to the

Monod equation of R2 > 0.92 for the upper boundary and R2 > 0.73

for the lower boundary (Figure 7b).

In future, further sl‐MSCC experiments need to show if and how

cells adapt regarding growth and tD at different concentrations. The

emergence of potential subpopulations has to be analyzed (Arnoldini

et al., 2014). These insights help to understand the cellular behavior

at limiting conditions and, thus, the dynamics within kS values.

The sl‐MSCC method needs to be further parallelized, especially

to collect statistically relevant numbers of cell division at limiting

nutrient concentration (cS < kS). A critical step is progress in data

analysis, which must be automated. In future, by an extension to an

oscillation setup, kS values under dynamic environmental conditions

will be accessible, which cannot be measured with any other system

(Ho et al., 2022).

4 | CONCLUSION

In this work, the recently introduced method of sl‐MSCC, which

enables the estimation of kS by microfluidic perfusion experiments,

was revisited and validated for the model organism C. glutamicum

ATCC 13032 with glucose as limiting substrate and compared to HFB

and sl‐RA. Model‐based Bayesian inference based on HFB is a rapid

and extendible method to estimate the upper limits of kS, where the

possibility of estimating lower limits is directly dependent on

the temporal resolution of the measurements. The sl‐RA is an

innovative and fast method that provides more precise values than

HFB, because of the higher temporal resolution provided through

online OTR measurement. However, for estimations of the kS under

defined environmental conditions, sl‐MSCC in combination with live‐

cell imaging seems to be a superior technology because it provides

insights into growth behavior at and below the substrate affinity,

provides access to cell‐lineage information and to single‐cell

heterogeneity. This enables to model a growth kinetic based on

actual observed single‐cell growth data without extrapolation.

Additionally, sl‐MSCC can be used to investigate the influence of

cell‐to‐cell heterogeneity on bulk kS values. The sl‐MSCC gives

insights into growth deviation and adaptation compared to HFB

and sl‐RA. In future, sl‐MSCC may provide strain‐specific kS values

to tackle the lack of availability. Furthermore, with the extension

to an oscillation setup, affinities under fluctuating environmental

conditions can be analyzed for the first time in future.
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