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A B S T R A C T   

In many rural East African areas, anti-malarial plants are commonly used as first-line treatment against malaria. 
However, spatially explicit information about the future availability of anti-malarial plant species and its relation 
to future suitable habitat for malaria vectors is limited. In this study we (1) model the distribution of anti- 
malarial plant and malaria vector species and assess the drivers of their distributions taking the example of 
the Samburu dryland in Kenya, (2) map the modeled overlap in this area, (3) assess the impact of future climate 
change on anti-malarial plant and malaria vector species and (4) report their future overlaps. Our results show 
that mean temperature of warmest quarter, precipitation of wettest quarter and mean temperature of coldest 
quarter were the most important environmental variables that affected the distribution of anti-malarial species. 
The effects of climate change will vary, with some areas characterized by huge losses in anti-malarial species 
habitat while others gained or remained stable under both SSP2-4.5 and SSP5-8.5 climate change scenarios by 
2050s and 2070s. According to most of our scenarios, more than half of the anti-malarial species will become 
vulnerable or threatened by 2050s and 2070s. A comparison between distribution patterns of future anti-malarial 
species richness and malaria vector species suitable habitat suggests that the former will decrease considerably 
while the later will increase. Because the availability of anti-malarial species will decrease in the areas affected 
by malaria vectors, geographically targeted conservation strategies and further control measures against malaria 
vectors are all the more important.   

1. Introduction 

A world free of malaria is a common vision for the health community 
worldwide [1]. In 2015, the World Health Organization developed the 
Global Technical Strategy for malaria, which announced the target of 
lowering global malaria incidences by at least 90% by 2030 [2]. Earlier 
initiatives such as the Roll Back Malaria program [3] and Bill and 
Melinda Gates Malaria Foundation [4] also seek to eradicate the disease. 
Backed by these initiatives, many countries developed their own malaria 
control programs which resulted in only a slight decrease in malaria 
infections [5], due in part to the spread of drug-resistant malaria strains 
and declining efficacy of the cheapest and most widely used 
anti-malarial drugs [3]. Therefore, innovative strategies to fight the 
disease need to be urgently formulated [6]. With the growing unavail-
ability of conventional anti-malarial drugs and the discovery that 
combining anti-malarial drugs with anti-malarial plant species lowers 
the treatment failure risk [7], many traditional healers; even medical 

practitioners prescribe the use of anti-malarial species to treat malaria 
[8]. Apart from the direct use of the wild anti-malarial species, they also 
provide a broad reservoir upon which potential conventional 
anti-malarial drugs can be developed [9]. Consequently, their conser-
vation could benefit populations that rely on them and guide the dis-
covery of new generation conventional anti-malarial drugs [8]. 

In Kenya, around 80% of the population (especially rural commu-
nities) still rely on anti-malarial plant species to fight malaria [10]. This 
has been attributed to cultural acceptability of traditional anti-malarial 
herbs, inaccessibility of modern healthcare centers and high cost of 
conventional anti-malarial drugs [8,11]. Plant species in Kenya used for 
malaria control are either orally consumed [11] or used as mosquito 
repellents [12]. Communities in the country use different plant parts 
from Ajuga remota, Harrisonia abyssinica, Carissa edulis and Azadirachta 
indica to treat malaria [10,11]. Screening of the pharmacological action 
of some of the plant parts of these species found that the root back ex-
tracts of Harrisonia abyssinica [13], Carissa edulis [14], and whole herb of 
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Ajuga remota [15] are highly effective in malaria treatment because they 
have high in vitro antiplasmodial activity. However, leaves of Azadir-
achta indica are less effective due to their low in vitro antiplasmodial 
property based on studies carried out by Kirira et al. [13]. Consequently, 
different anti-malarial species are prescribed for malaria treatment 
depending on the severity of the illness, with the dosage varying 
depending on the age of the patient [11]. Some anti-malarial species 
such as Azadirachta indica and Caesalpinia volkensii are singly consumed 
to treat malaria [15]. However, others like Ajuga remota [15] and Cassia 
didymobotrya [16] are used in combination with other anti-malarial 
species; probably to mask their bitter taste [15] or due to the synergis-
tic effect of many compounds that make them only fully active when 
administered in combinations [17]. Whereas most anti-malarial species 
are consumed, a few are used as mosquito repellents [11]. For instance, 
smoke from burnt leaves of Corymbia citriodora is highly effective in 
keeping away mosquitoes [12]. Apart from their use in malaria control, 
most anti-malarial species are also used in the management of other 
diseases [11]. In spite of these promising prospects for anti-malarial 
species in Kenya, overexploitation for medicinal use, trade, and defor-
estation continue to pose a threat to their population [8]. 

Because of the importance of anti-malarial species, knowledge on 
their spatial distribution is crucial. For most anti-malarial plant species, 
however, there is insufficient information on their distribution [9]. A 
crucial starting point for the future monitoring and conservation of these 
species would be to improve knowledge about their ecological re-
quirements and future distribution. This may help conservationists to 
identify conservation priority areas [18] or suitable areas for cultivation 
[19]. Consensus has been reached among conservationists that pro-
tected areas enhance in situ conservation of plant biodiversity [20]. 
Therefore, one approach to in situ conservation of the anti-malarial plant 
species could be based on planning of the “best” locations of protected 
areas, depending on a regions distribution of the species, shifts in the 
species distribution under changing climate and other disturbance fac-
tors [18]. However, anti-malarial species distribution maps considering 
the location of protected areas or their effectiveness in conserving 
anti-malarial species are still unavailable [18], even in resource limited 
African countries where malaria is among the leading causes of death. 

With limited resources to combat this disease, policy makers must 
target and time preventive interventions appropriately to maximize 
their effectiveness [1]. This requires accurate identification of regions 
that are most vulnerable to malaria and timely delivery of interventions 
to mitigate and prevent the disease in these regions [21], but most 
models lack accurate identification of malaria vulnerability areas. Ma-
laria is caused by the spread of the Plasmodium parasite to people 
through bites of infected Anopheles mosquitoes. The potential threat of 
malaria distribution can be assessed by predicting the distribution of 
malaria vectors [6]. Earlier studies modelled malaria vectors distribu-
tion at regional scale (e.g., West Africa; [22]) or national level (e.g. 
Kenya; [5]). Worrisomely, recent malaria vectors distribution maps 
depict their spatial expansion [23]. This fact presents an evolving and 
fresh threat for malaria control initiatives. Despite this threat, health 
organizations continue to rely merely on national and regional malaria 
distribution maps to target anti-malarial resources [6]. Such malaria risk 
maps are of limited practical use for guiding intervention efforts since 
they do not consider the local overlap between malaria vectors and 
anti-malarial plant species distributions, which is critical in directing the 
malaria control and anti-malarial species conservation measures 
appropriately. 

To design future malarial control and anti-malarial species conser-
vation measures, knowledge on the impact of climate change is crucial. 
With unprecedented rate of climate warming due to human activities, 
climate change has already reshaped species distributions, including 
malaria vectors and their associated parasites [5]. This has raised great 
concern about the potential availability of anti-malarial plant species 
[8] and the ramifications of changing climate on future malaria risk 
[24]. Drylands as water-limited environments are considered to be most 

prone to the effects of climate change [25]. Global drylands have 
experienced warming at the rate of 0.06 ◦C/year, as compared to the 
global warming rate of 0.03 ◦C/year in the past two decades [25]. 
Consequently, dryland species have shifted their geographical ranges or 
become extinct [26]. Previous studies documented possible shifts and 
extinction of medicinal plants [26], and re-distribution of malaria vec-
tors [5] due to climate warming in African drylands. However, spatially 
explicit information about the future availability of anti-malarial species 
and its relation to future suitable habitat for malaria vectors is needed 
for targeted conservation and management actions. Because this infor-
mation is largely missing [9], this paper aims at providing it. 

In this study, to improve the knowledge base for planning of anti- 
malarial plants recovery programs and malaria control actions, we 
address the following key questions: (1) What is the geographic distri-
bution of anti-malarial plant species and malaria vector species and 
what are the main drivers of their distributions? (2) What is the modeled 
overlap? (3) What is the impact of climate change on anti-malarial plant 
species and on malaria vector species? (4) What is their future overlap in 
the Samburu dryland, Kenya? We selected Samburu dryland in Kenya as 
our study area as it has a high malaria burden [5]. Although the region is 
a stronghold for anti-malarial plants [27] and has been the focus of 
medicinal plants research in the past few decades [28], there is still an 
apparent lack of information regarding the distribution of both 
anti-malarial species and malaria vectors. This has hindered malaria 
control initiatives and efforts to conserve anti-malarial species. 

2. Materials and methods 

2.1. Study area 

Samburu County extends over a 20,183 km2 area of the Rift Valley 
from approximately 0.5 ◦N to 3 ◦N and 36.3 ◦E to 38.1 ◦W (Fig. 1). In 
2019, the region was home to 310,327 people, with a density of 11 
people/km2 [29]. It has an arid and semi-arid climate and receives an 
annual rainfall of 694 mm which is clearly delineated bimodally from 
October to November (short rain) and March to April (long rain) (Fig. 2). 
The dry season extends from December to March and June to September. 
The region experiences a mean annual temperature of 22.6 ◦C which 
varies spatiotemporally depending on elevation. Elevation of the area 
ranges from 339 to 2795 m a.s.l. The county’s vegetation is character-
ized by shrubs, forests, wooded grassland and savanna [27]. The dis-
tribution of these vegetation types follows variations in altitude, 
geological and climatic conditions. The area has two protected areas: 
Maralal Sanctuary and Samburu National Reserve. 

2.2. Occurrence data 

Distribution records for all anti-malarial plant species used by the 
locals in Samburu County were collected from Global Biodiversity In-
formation Facility [32], and supplemented with records from the East 
Africa Herbarium (EA) and our field survey data. During our field sur-
vey, we visited 90 sites selected by random stratified sampling based on 
soil type [33], protected area status [34] and land cover type [35], and 
recorded all anti-malarial plant species in 80 × 80 m plots (Appendix I). 
Stratification was based on land cover and soil type because they are 
thought to affect plant distribution in Samburu [36], which would help 
to cover the full environmental space that can be occupied by the 
anti-malarial species [37]. In addition, protected area status was used 
for stratification so as to capture sites inside and outside the protected 
areas [38]. 

The malaria vector species data were obtained from the MARA/ 
AMRA database [39], Global Biodiversity Information Facility [32], 
contacts with local malariologists and recent scientific publications [5]. 
These data consisted of geographically referenced locations of the three 
main malaria vector species in Africa: Anopheles arabiensis, Anopheles 
gambiae and Anopheles funestus [24] surveyed from 1996 to 2017. 
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We removed duplicated or poorly georeferenced observations (i.e. 
those found in areas where plant species are not normally found such 
water bodies) before the analysis. To reduce spatial-autocorrelation in 
our occurrence records, we used the spThin package in the R language 
environment [40] to spatially thin each species’ records to a distance of 
3 km, which is a value bigger than the grid cell size of our variables [19]. 
Thereafter, only species with more than 30 occurrence records were 
considered to ensure accurate predictions [41]. We therefore ended up 
with 21 anti-malarial plant species and three malaria vector species. 

2.3. Environmental variables 

We used 19 bioclim variables from the WorldClim database version 
2.1 (in 30 arc-second resolution) as candidate predictors (Table 1) ([42]; 
http://www.worldclim.org, accessed on 10th August 2022). This data 
layers are derived from monthly rainfall and temperature recordings 
from weather stations worldwide (1950–2000) and have proven to 
support informative models of plant and invertebrate distributions due 
to close association with growth and development [5,43]. In addition to 
the bioclim variables, we used Digital Elevation Model (DEM) down-
loaded from Shuttle Radar Topography Mission (SRTM) [44], sand, clay 
and soil pH data downloaded from the Google Earth Engine (GEE; [45]) 
platform for modeling the anti-malarial species. We also supplemented 
the bioclim variables with gridded human density population data [46], 
Digital Elevation Model (DEM) [44] and NDVI calculated from sentinel 2 

image acquired from Google Earth Engine (GEE; [45]) for modeling 
malaria vector species. All predictors with coarse resolution were 
resampled to bioclim variables to harmonize them with the bioclimatic 
variables. 

We downloaded the climate change data from worldclim version 2.1 
(http://www.worldclim.org) at 30 arc-second resolution [42]. The 
future climate data were based on the Coupled Model Intercomparison 
Project Phase 6 (CMIP6; [47]), which has models that tend to be highly 
sensitive to climate [47]. We selected two Shared Socioeconomic 
Pathways (SSPs): SSP5–8.5 and SSP2–4.5 for 2050s (2050 averaged over 
a 20 year period) and 2070s (2070 averaged over a 20 year period). 
SSP2–4.5 represents an optimistic climate scenario of mitigation and 
adaptation, characterized by moderate population growth and insig-
nificant changes of socioeconomic and technological trends from the 
historical patterns. On the other hand, SSP5–8.5 represents a pessimistic 
scenario of many challenges for mitigation and few challenges for 
adaptation, characterized by high exploitation of fossil fuels and emis-
sion of GHGs (see [48] for detailed explanation). These two scenarios 
were adopted to assess the impacts of climate change on species under 
both extreme and optimistic climate change scenarios. To reduce the 
uncertainty of reliance on a single Global Climate Model (GCM), we used 
an ensemble of various GCMs. For the two SSP scenarios, we used a 
mean ensemble of five CMIP6 models: ACCESS-CM2, BCC-CSM2-MR, 
HadGEM3-GC31-LL, CNRM-CM6–1 and MIROC6. The models have been 
widely used to examine the impact of climate change on African species 

Fig. 1. Map of Kenya showing the location of our study area. Map of Samburu County showing the 15 administrative wards, elevation, protected areas and dis-
tribution records of all anti-malarial plants recorded during the field survey. 

D.J. Gafna et al.                                                                                                                                                                                                                                

http://www.worldclim.org
http://www.worldclim.org


Climate Change Ecology 5 (2023) 100070

4

[49], and have indicated better performance. 

2.4. Statistical analysis 

SDMs are well-established tools in predicting species’ spatial occur-
rence, habitat suitability and geographical distribution [49]. To date, 
SDM have been widely applied in ecology including: predicting areas for 
re-introduction of threatened species [43] and identification of suitable 
habitats [9]. They correlate occurrence data (presence or pre-
sence/absence data) to the prevailing environmental conditions to es-
timate the relative suitability of a given habitat, thereby providing a 
prediction of the species’ potential distribution. However, occurrence 
records of many species are often few and spatially clustered, which 
makes it difficult to model their suitable habitat since such data give 
limited information for determining the association between the species 
and their environment. In such cases, MaxEnt models are an interesting 
option because they have been demonstrated to work well with few 
presence records [9], tend to have high predictive power and relies on 
background points to contrast observed occurrences [50]. MaxEnt esti-
mates a species probability distribution (interpreted as a relative index 
of habitat suitability) by finding probability distribution of maximum 
entropy, subject to a set of environmental constraints [50]. MaxEnt 
modeling has been extensively used in the field of conservation i.e. to 
predict the distribution of medicinal plants [18]. 

2.4.1. Variable reduction 
For each species, bioclim variables 8,9,18 and 19 were excluded 

because they have spatial artifacts which generate abrupt differences 
between neighboring pixels [51]. Next, from the remaining candidate 
variables, we calculated the Pearson correlation coefficient and removed 
variables with correlation r ≥ ±0.7 to avoid redundancy within the 
variables which may affect prediction accuracy [43]. The variable with 
the greatest ecological relevance (based on our knowledge and literature 
analysis) was retained among the correlated variables. 

2.4.2. MaxEnt model optimization, calibration and validation 
The potential distribution of each species was predicted using the 

MaxEnt algorithm [50] available within the dismo R package version 
1.3–8 [52]. MaxEnt model has two fundamental modifiable parameters: 
(1) Regularization Multiplier (RM) and (2) FC (Feature Class). Besides, 
the model has five FC, namely, hinge (H), linear (L), quadratic (Q), 
product (P) and threshold (T) [50]. MaxEnt’s default parameters are FC 
= LQHPT and RM=1 [50]. In our case, the two parameters of RM and FC 
were adjusted by the ENMeval R package of Muscarella et al. [53]. To 
optimize the model, we increased the RM from the default value of 1, 
with selected range from 0.5 to 4, by 0.5 each time, resulting in 8 RM 
parameters [19] and used six feature combinations, namely, L, H, LQ, 
LQH, LQHP and LQHPT [53]. The occurrence record of each species (in 
Africa) was sub-divided into 4 equal groups by the ENMeval package 
using the block technique, of which three groups were used for training 
and the remaining one was used for testing [53]. We then used the 
ENMeval package to assess the 48 (6 FC × 8 RM) aforementioned 
parameter combinations. Here, we assessed two performance statistics 
to select the optimal model parameters. First, we selected the parameter 
combinations of models which had the lowest average omission rate 
based on the 10% training presence omission rate (OR10) [54]. In cases 
where multiple models had the same OR10, we chose the model with the 
highest average validation AUC [54]. 

We imported the distribution records of our species into MaxEnt. 
Each species model was trained using occurrence records all over Africa 
to take account of conditions that are currently not encountered in our 
study area. 80% of the occurrence data was used to calibrate models 
while 20% was used for validation. The selected parameter combination 
of FC and RM was used in model fitting. To ensure that both the back-
ground points and occurrence records had the same geographical bias, 
we created a bias file for use in MaxEnt modeling [55]. For each species, 
we stacked the selected variables and used the raster stack to rasterize 
the occurrence records to estimate a two-dimensional kernel density 
[56]. In the MaxEnt model, 10,000 background points (across Africa) 
which also captures the full extent of accessible environmental condi-
tions were used. During modeling, we used the cross-validation method 

Fig. 2. Climate diagram of Samburu County according to Walter and Lieth [30], based on Climatic Research Unit Gridded Time Series data [31]. The blue 
shaded-area that overcuts the red line indicates the rainy season while the blue-shaded area that undercuts the red line indicates the dry season. 
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with 5 repeats and averaged the results. The MaxEnt output format was 
set as logistic and the number of iterations was increased to 3000 to 
enable the model to have enough time to converge, thereby preventing 
over-prediction or under-prediction [57]. We also used the “fade-by--
clamping option” to avoid extrapolations that are outside the environ-
mental range of the species [50]. Additionally, the Jackknife importance 
and the response curves of the model variables were developed. Moran’s 
I was used to test for spatial auto-correlation in models residuals with 
the ’spatstat’ package [58] in program R. The models were later trans-
ferred to Samburu County under present and future scenarios. 

We evaluated the model performance using three different ap-
proaches, based on the testing dataset. First, we used the adapted Area 
Under the Receiving Operator Curve (ROC) according to Phillips et al. 
[50]. Second, we calculated the True Skill Statistics (TSS), as a threshold 
dependent measure. TSS compares the difference between the number of 
correct predictions and those that are attributed to random guesswork, 
to that of the hypothetical perfect predictions [59]. We used TSS because 
it considers both commission and omission, is independent of occur-
rence prevalence and is not affected by the validation dataset size [59]. 
Third, we used the Kappa statistic with binary maps since it considers 
both commission and omission errors, resulting in a less biased pre-
dictability measure [60]. TSS and Kappa values range from − 1 to +1, 
where values of zero or less are considered as performance no better 
than random while values close to 1 (TSS>0.3) indicate a good predic-
tive power [59]. 

2.4.4. Variables contribution, current and future distribution areas for anti- 
malarial plant and malaria vector species 

We determined the factors affecting the distribution of the under-
study species using the scores of the jackknife of test gain [50]. This test 
excludes one environmental variable each time when running the model 
and subsequently shows the variables which reduced model test AUC 
most when omitted and how much unique information each variable 
provides [60]. Those environmental variables are presumed to be the 
most important in explaining the distribution of the species [60]. We 
then ranked the environmental variables for each species in terms of 
their order of importance and identified the most dominant environ-
mental variables across all the species considering their ranking [61]. 
The response curve of each species was further examined to explain the 
effect of each environmental variable on species suitable habitat. For 
generating binary range maps for each species under current and future 
climate scenarios, we used the maximum sensitivity plus specificity 
threshold. This threshold maximizes sensitivity (true positive rate) and 
specificity (true negative rate) [62] and proved to outperform other 
thresholds because it is sensitive to the selection of pseudo-absences and 
optimizes discrimination within the presence-absence records [63]. The 
final anti-malarial species richness maps for current and future scenarios 
were generated by combining the binary maps of the 21 species and 
counting the total number of species in each pixel [18]. To generate the 
final malaria vector species distribution map under current and future 
scenarios, we selected the pixels which had species presences in any of 
the three malaria vector species binary maps [21]. 

For present and future climate scenarios, we created a 9-km buffer 
zone around each protected area and assessed the pixels that lay within 
each buffer zone and inside the protected areas [18]. The 9 km distance 
was a trade-off between a large value (to ensure that as many pixels lay 
within each protected area) and a small value (to ensure that the area 
outside the protected area is as similar as possible to that inside it) [20]. 
Thereafter, we calculated the mean species richness based on 
anti-malarial species count in each pixel within the buffer area (outside 
protected area) and within the protected areas (inside). Using the t-test, 
we compared the mean species richness values outside and inside the 
protected areas. Here, we sought to test whether Samburu’s protected 
areas are effective in conserving the region’s anti-malarial species [18]. 

2.4.6. Current overlap between malaria vector species and anti-malarial 
species richness 

The current anti-malarial species richness and binary malaria vector 
maps were overlaid. We then identified the regions that had an overlap 
between malaria vectors and high (15–21), moderate (8–14) and low 
(1–7) anti-malarial species richness respectively. 

2.4.7. Impact of climate change on anti-malarial species 
The potential impact of climate change on anti-malarial species in 

Samburu was analysed applying species richness, gain and loss of spe-
cies, turnover rate and threat level based on the IUCN Red List [64]. We 
calculated the loss of climatically suitable habitat, gain in suitable 
habitat and turnover rate using methods by Thuiller et al. [65]. Gain was 
measured when the species was present in future binary prediction but 
absent in the current binary prediction. Loss was calculated based on the 
species being absent in future binary prediction but present in the cur-
rent binary prediction. Loss has a negative value, gain has a positive 
value, while stable has a value of 0. 

Species turnover rate (change in species composition between the 
current and future) was calculated for each climate change scenario. 
Here, we used the formular T = 100 x (SL+SG)/(SR+SG), where SL is the 
number of species lost in each grid cell, SG is the number of species 
gained in each grid cell and SR is the current species richness [65]. The 
formular usually shows turnover as a percentage of species richness in 
each grid cell, but it was unsuitable in the study of anti-malarial plant 
species in some areas of Samburu since extremely high richness in some 
regions resulted in unreasonably large proportional turnover values 

Table 1 
Table of variables with those used in modeling highlighted in gray.  

Variable Description Resolution Unit 

Bio1 Annual Mean Temperature 30 arc s Degrees 
Celsius 

Bio2 Mean Diurnal Range (Mean of 
monthly (max temp- min temp)) 

30 arc s Degrees 
Celsius 

Bio3 Isothermality (BIO2/BIO7) (* 
100) 

30 arc s Percentage 

Bio4 Temperature Seasonality 
(standard deviation *100) 

30 arc s Degrees 
Celsius 

Bio5 Max Temperature of Warmest 
Month 

30 arc s Degrees 
Celsius 

Bio6 Min Temperature of Coldest 
Month 

30 arc s Degrees 
Celsius 

Bio7 Temperature Annual Range 
(BIO5-BIO6) 

30 arc s Degrees 
Celsius 

Bio8 Mean Temperature of Wettest 
Quarter 

30 arc s Degrees 
Celsius 

Bio9 Mean Temperature of Driest 
Quarter 

30 arc s Degrees 
Celsius 

Bio10 Mean Temperature of Warmest 
Quarter 

30 arc s Degrees 
Celsius 

Bio11 Mean Temperature of Coldest 
Quarter 

30 arc s Degrees 
Celsius 

Bio12 Annual Precipitation 30 arc s Millimeters 
Bio13 Precipitation of Wettest Month 30 arc s Millimeters 
Bio14 Precipitation of Driest Month 30 arc s Millimeters 
Bio15 Precipitation Seasonality 

(Coefficient of Variation) 
30 arc s Percentage 

Bio16 Precipitation of Wettest Quarter 30 arc s Millimeters 
Bio17 Precipitation of Driest Quarter 30 arc s Millimeters 
Bio18 Precipitation of Warmest Quarter 30 arc s Millimeters 
Bio19 Precipitation of Coldest Quarter 30 arc s Millimeters 
Sand Proportion of sand in the soil 250m Kilogram/ 

Kilogram 
Clay Proportion of clay in the soil 250m Kilogram/ 

Kilogram 
Soil pH Proportion of pH in the soil water 250m Kilogram/ 

Kilogram 
NDVI Normalized Difference 

Vegetation Index 
10 m Nil 

Human 
Population 

Human population as pixel 
density 

30 arc s ~ 1km 

DEM Digital Elevation Model 30 arc s Meters  
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[20]. The turnover rate normally ranges from 0 to 100, where a value of 
100 indicates complete change in species composition at a site, whereas 
a turnover value of 0 indicates that the composition would remain the 
same. Turnover rate was classified as follows: low (0–34), moderate 
(35–64) and high (>65). 

For each anti-malarial species, we assessed the threat level under 
future scenarios by determining the proportional change in distribution 
under climate change scenarios. During this assessment, we used the 
IUCN Red List criterion A3 which considers a time frame of 50 years(c) 
[64]. The criterion uses projected species’ geographic range loss as a 
proxy for population reduction to allocate a given threat category based 
on the following classes: Extinct (E) when species projected loss is 100%, 
Critically Endangered (CR) when projected loss is 80–100%, Endan-
gered (EN) when projected loss is 50–80%, Vulnerable (VU) when pro-
jected loss is 30–50%, Near threatened (NT) when projected loss is <30 
and Least Concern (LC) species has no predicted loss. The anti-malarial 
species considered as critically endangered or endangered (ie CR or EN) 
under the four climate change scenarios were classified as of highest 
conservation priority in future [61]. 

2.4.8. Future overlap between malaria vector species and anti-malarial 
species richness 

We overlaid the future binary malaria vectors maps and future spe-
cies richness maps and identified regions featuring overlaps between 
malaria vectors and high, moderate and low anti-malarial species rich-
ness, respectively. 

3. Results 

3.1. Model performance 

The mean of AUC, TSS and Kappa for all models are given in ap-
pendix I and II. The worst model had an average AUC of 0.74, while the 
best model had an average AUC of 0.96. Maps resulting from the models 
are provided in appendix III, while the ROC curves are given in appendix 
IV and V. No significant spatial auto-correlation was found in the model 
residuals. 

Fig. 3. Predicted malaria vectors suitable habitat and anti-malarial plant species richness under the current scenario and future climate scenarios. Results show that 
north western and south eastern regions currently have suitable malaria vectors habitat but the anti-malarial species richness in these regions is low. The overlap 
between malaria vectors suitable habitat and areas of low anti-malarial species richness will increase under future climate scenarios. 
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3.2. Environmental drivers of anti-malarial plant species distributions 

Each anti-malarial species was influenced by a different combination 
of environmental variables (Appendix VI and VIII). Accordingly, the 
main variables shaping the distribution of anti-malarial species included 
bio10 (mean temperature of warmest quarter), bio16 (precipitation of 
wettest quarter), bio11 (mean temperature of coldest quarter) and 
elevation (Appendix VI and VIII). In contrast, sand and clay content were 
least influential variables. Highest anti-malarial species richness was 
predicted in areas with low mean temperature of warmest quarter, 
precipitation of wettest quarter, mean temperature during the coldest 
quarter and high elevation (see response curves; Appendix X). Anti- 
malarial species richness is predicted to range from a low of 2 species 
per 1 km2 cell to a high of 20 species per cell (Fig. 3). The highest 
richness was predicted in the south-western region, pockets of north- 
eastern and central regions i.e. Loosuk and Nyiro wards, while the 
lowest was found in north west and south east. Besides, paired t-test 
showed that the mean species richness was significantly higher inside 
the protected areas than outside (Appendix XIV and XV). 

3.3. Variables contribution and distribution areas of malaria vector 
species 

Each malaria vector species was influenced by a different combina-
tion of variables (Appendix VII and IX). The key environmental variables 
affecting the distribution of malaria vectors were bio4 (temperature 
seasonality), elevation, population density and Bio13 (precipitation of 
wettest month, Appendix VII and IX). NDVI did not add any information 

for increasing the performance of the models. Highest malaria vectors 
distribution is predicted in areas with moderate temperature season-
ality, low elevation, high population and moderate precipitation of 
wettest month (Appendix XIII). Currently, 37% of Samburu is prone to 
malaria due to high habitat suitability for malaria vectors (Fig. 3). 
However, most of the southern region and a few scattered pockets of the 
south eastern are predicted to have no suitable habitat for malaria 
vectors. 

3.4. Current anti-malarial plant species richness and malaria vector 
species habitat 

The predicted coincidence of malaria vectors suitable habitat and 
high anti-malarial species richness is located in the south-western, 
pockets of north-eastern and central regions i.e. Porro and Ndoto 
wards (Fig. 3). These regions were classified as ‘low vulnerability’ ma-
laria areas. However, parts of the north western and south eastern re-
gions are currently predicted to have suitable habitat for malaria vectors 
while anti-malarial species richness is low. These areas were classified as 
‘high vulnerability’ malaria areas (e.g. Nyiro and Waso wards). Most of 
the southern region (i.e. Wamba west) is predicted to have moderate 
species richness and unsuitable habitat for malaria vectors, and were 
classified as ‘monitored’. The current scenario shows decreased malaria 
vulnerability in low anti-malarial species richness areas and an increase 
in high richness areas (Fig. 4). 

Fig. 4. Malaria vulnerability plot under the current and future climate change scenarios.  

D.J. Gafna et al.                                                                                                                                                                                                                                



Climate Change Ecology 5 (2023) 100070

8

3.5. Impact of climate change on anti-malarial plants 

The overall patterns of loss, gain and stable areas are similar in 
Samburu. For all climate change scenarios, two regions of high anti- 
malarial species loss were noticeable (Figs. 5, 6). The first is situated 
in the anti-malarial species-poor area in the north west (Nyiro ward), 
which showed very high anti-malarial species losses (4–7 species for 
SSP2–4.5 for 2050s and 2070s and 7–10 species for SSP5–8.5 for 2070s). 
The second was the south eastern region. The absolute numbers of anti- 
malarial species loss in this region were lower than for the north western 
region. Species loss is predicted to be greater in areas with high current 
mean temperature of warmest quarter and low precipitation of wettest 
quarter (Figs. 5, 6, appendix XII). 

On the contrary, gains in anti-malarial species is predicted, with the 
south western region exhibiting the highest gain. The highest gain is 
predicted to occur in areas which may have more suitable habitat for the 
species in future. For all future scenarios, climate change would lead to 
stable numbers in parts of the south western, central and south eastern 
regions (Figs. 5, 6). 

Under climate change scenarios, the turnover rate is expected to 
range from 14% to 76%, with all areas undergoing some changes in anti- 
malarial species composition (see Figs. 7 and 8). The highest change is 
expected in the south western and southern regions (i.e.Porro and 
Wamba east wards), which have low current temperature. Besides, high 
turnover rate in anti-malarial species-poor area will occur in the north 
west, including Nyiro ward. 

Compared to the current scenario, mean anti-malarial species rich-
ness will decrease for future scenarios (appendix XVI). The richness is 
expected to range from a low of 1 species per 1 km2 cell to a high of 15 
species per cell (Fig. 3). Specifically, the southern western and north 
eastern regions will still have the highest anti-malarial species richness, 
although it would be fewer compared to the current. Parts of the south 
western region which currently have high anti-malarial species richness 
areas will have low richness in future (Fig. 3). These parts have high 
current temperature and low precipitation. The mean species richness 
was predicted to be significantly higher outside the protected area than 
inside, regardless of the climate change scenarios (Appendix XIV and 
XV). 

Our application of the IUCN Red List criterion revealed that under all 

future scenarios, 14–24% of the species will be CR (Fig. 9). Species that 
will be CR under all scenarios include Salvadora persica and Acacia 
xanthophloea (Appendix XVIII). Besides, up to 29% of the species 
appeared EN by future climate change under SSP2–4.5 by 2050s. Be-
tween 33% and 43% of the species will suffer a loss of <30% and were 
classified as NT for SSP5–8.5 by 2050s and 2070s. Very few species were 
classified as VU under all climate change scenarios, while 14–19% of the 
species will be of LC under all scenarios i.e. Harrisonia abyssinica and 
Euclea divinorum. 

3.6. Impact of climate change on malaria vector species distribution 

Suitable habitat for malaria vectors is predicted to expand to most 
areas that are currently unsuitable and cover between 58 and 65% of 
Samburu (Fig. 3), as compared to the current 37%. These areas are 
mostly situated in the south eastern and southern regions, featuring low 
current temperature seasonality and high precipitation. Most areas in 
Samburu which currently have suitable habitat for malaria vectors are 
expected to remain habitable, while a few pockets of the southern 
eastern region are predicted to be converted from suitable habitat to 
unsuitable habitat. 

3.7. Relating future anti-malarial species richness to malaria vector 
species distribution 

Worrisomely, the overlap between suitable habitat for malaria vec-
tors and areas with low anti-malarial species richness (high vulnerability 
malaria areas) will increase especially in areas with low current pre-
cipitation and temperature seasonality e.g. south east (Fig. 3). For the 
southern region, which currently has no suitable habitat for malaria 
vectors and moderate anti-malarial species richness, our predictions 
show that the area will have suitable habitat for malaria vectors and low 
anti-malarial species richness. Besides, the overlap between suitable 
habitat for malaria vectors and high anti-malarial species richness (low 
vulnerability malaria areas) is expected to shrink especially in areas with 
low current temperature i.e. south west. Generally, the future scenarios 
will witness increased malaria vulnerability in both areas of low and 
high richness (Fig. 4). 

Fig. 5. Predicted distributional change of 21 anti-malarial species in Samburu under SSP2-4.5 2050s and SSP2-4.5 2070s.  
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4. Discussion 

In the current study, the impact of climate change on anti-malarial 
plant and malaria vector species is explored. To our knowledge, this is 
the first study to have predicted the future distribution of both anti- 
malarial plant species and suitable habitat for malaria vector species, 
and their future overlap. 

4.1. Numbers of anti-malarial plant species and their environmental 
drivers 

The most important variables shaping the distribution of anti- 
malarial species were mean temperature of warmest quarter, precipi-
tation of wettest quarter, mean temperature of coldest quarter and 
elevation. This makes ecological sense because precipitation and tem-
perature influence many ecological processes like seedling growth, 

flowering and fruiting, and consequently change the composition of 
species in a community [66], thereby shaping anti-malarial species 
distribution. Importantly, [18] in Egypt and [67] in Brazil showed that 
mean temperature of the coldest month and elevation are the major 
drivers of medicinal plant species distribution in drylands. Therefore, it 
is not surprising that the two were also the driving forces behind the 
distribution of the anti-malarial species in Samburu dryland. However, 
some variables like sand and clay content were the least important for 
anti-malarial species distribution, even though [27] found otherwise. 

Regions with high anti-malarial species richness are currently the 
high elevation and low temperature regions of Samburu i.e. southwest. 
Low temperatures ensure availability of soil water which leads to high 
anti-malarial species richness [67]. The elevation gradient influences 
temperature, radiation, precipitation and soil characteristics [7], which, 
in concert, drive anti-malarial species numbers. A positive effect of 
elevation on medicinal plant species in water-limited areas has been 

Fig. 6. Predicted distributional change of 21 anti-malarial species in Samburu under SSP5-8.5 2050s and SSP5-8.5 2070s.  

Fig. 7. Predicted anti-malarial species turnover rate in percentage under SSP2-4.5 2050s and SSP2-4.5 2070s.  
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previously found for Samburu by Gafna et al. [27] and this follows a 
general pattern in plant species richness in Kenya [66]. 

Protected areas are considered as beneficial for in situ conservation of 
medicinal plants by limiting ecosystem degradation [18]. It is apparent 
that the predicted anti-malarial species richness is currently signifi-
cantly higher inside the protected areas than outside, as Kaky and 
Gilbert [18] found for medicinal plants in Egypt. Consequently, Sam-
buru’s protected areas are currently effective in conserving anti-malarial 

species and may be considered as possible areas for high priority 
anti-malarial species conservation. Many protected areas in the world 
are located in land of little value; which are not necessarily suited for 
biodiversity conservation [20]. Samburu’s protected areas are rather 
new and seem to have been well chosen to support the area’s biodi-
versity. Much could still be done because considerable human pressure 
presence was observed during fieldwork despite the laws regulating 
resource extraction, and the north eastern region which has many 

Fig. 8. Predicted anti-malarial species turnover rate in percentage under SSP5-8.5 2050s and SSP5-8.5 2070s.  

Fig. 9. Proportion of anti-malarial species threat level under different future climate scenarios.  
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anti-malarial species is not covered by the protected areas. The region 
should be prioritized when extending existing protected areas. 

4.2. Environmental drivers of malaria vectors and their distribution 

The distribution of malaria vectors was influenced by temperature 
seasonality [68], elevation [21], population density [6] and precipita-
tion of wettest month [69]. Mordecai et al. [70] demonstrated that 
temperature seasonality affects the life cycle of malaria vectors from egg 
to adult; and the rate of malaria vectors development increases at 
moderate temperature seasonality because it is ideal for them. It is likely 
that elevation shapes malaria vector species distribution due to its in-
fluence on temperature. Low temperature at high elevations reduces the 
development or occurrence of the species at high altitudes [21]. Our 
results showed that malaria vectors habitat suitability peaked in densely 
populated areas. This is justifiable because high human population en-
sures availability of blood feed for the vectors [1]. Consequently, suit-
able habitat for malaria vectors was found in south west and north west 
[5], characterized by current high population, moderate temperature 
seasonality and low elevation. NDVI did not add any information for the 
performance of malaria vectors models (in agreement with [6]), though 
it is thought to be a critical predictor of malaria vectors distribution 
[71]. NDVI is related to vegetation greenness, moisture availability and 
vegetation productivity, which are strongly associated with malaria 
vectors reproduction [6]. However, it is likely that NDVI was a poor 
predictor because most parts of Africa are arid with low values of NDVI 
[18]. Furthermore, healthy vegetation (i.e. with high NDVI) are found in 
high elevation areas that are very cold to permit malaria vectors oc-
currences, eroding NDVI’s capacity to differentiate between unsuitable 
and suitable malaria vectors habitat [6]. 

Suitable habitat for malaria vectors is currently predicted in 37% of 
Samburu. However, care should be taken when interpreting these re-
sults, since the sheer suitability of a habitat for malaria vectors does not 
automatically translate into malaria incidences [24]. This is because 
human population and mosquitoes, which act as reservoirs for the 
Plasmodium parasites must be found in areas with suitable malaria 
vectors habitat for malaria incidences to be reported [24]. Additionally, 
other factors such as greater access to medical services, better water 
management and improved housing may limit malaria cases in an area 
[6], despite its habitat suitability. 

Our malaria vectors models had some limitations. First, we did not 
incorporate other parameters which determine malaria vectors distri-
bution i.e. land use, humidity, cattle hoof prints and floods. In our case, 
we used climatic variables, population density and elevation. Our use of 
these variables does not mean that we were unaware that they are just 
among the several variables that influence malaria vectors distribution 
[24]. Rather, we argue that, whereas the other unused variables are 
likely to influence malaria vectors distribution at a fine scale [6], cli-
matic variables, population density and elevation are likely to determine 
their distribution at a large spatial scale [6]. Second, our models did not 
incorporate biotic interactions between malaria vector species and other 
species i.e. Fish [72]. Competition and predation between species may 
influence malaria vectors distribution [24]. Previous studies showed 
that malaria vectors avoid habitats which have competitors [73]. 

4.3. Assessing current malaria vulnerability 

The overlap between suitable habitat for malaria vectors and areas of 
high anti-malarial species richness is found in south western, north 
eastern and central regions. The current malaria control actions are low 
in the southwest, and high in the northeast and central regions [23], 
while medicinal plant species conservation efforts are currently low in 
south west and central regions [27]. However, we recommend high 
prioritization of anti-malarial species conservation and malaria control 
measures in southwest and central regions, as this would ensure utili-
zation of the limited malaria control and anti-malarial species 

conservation resources (i.e. ex situ and in situ conservation actions, in-
secticides spraying, distribution of mosquito nets/anti-malarial drugs). 
Worrisomely, the north west and south east have suitable habitat for 
malaria vectors and low anti-malarial species richness (high vulnera-
bility malaria areas). Currently, these regions are under both low ma-
laria control [23] and medicinal species conservation efforts [28]. We 
propose prioritization of malaria control in these regions, whereas 
anti-malarial species conservation efforts should remain low since the 
anti-malarial species richness is low either way. The southern region was 
predicted to have no suitable habitat for malaria vectors and moderate 
anti-malarial species richness. The region currently has high malaria 
control activities [23], while anti-malarial species conservation efforts 
are moderate [28]. We suggest that malaria control measures need to be 
revisited to low, whereas anti-malarial species conservation should 
remain moderate. 

4.4. Distributional change in anti-malarial species 

Increased temperatures and decreased precipitation due to climate 
change in Samburu will lead to loss, gain or no change in suitable anti- 
malarial species habitat. The loss will be greater in anti-malarial species- 
poor areas, currently featuring low precipitation and high temperature, 
as future condition in the areas will be unsuitable for anti-malarial 
species due to shifts in bioclimatic zones. Another plausible reason for 
the loss of anti-malarial species is that climate change will probably 
replace the cold adapted anti-malarial species with the warm adapted 
species [74]. Many studies reported the loss of medicinal plant species 
due to changing climate [20,67], which concurs with our projections. 
The anti-malarial species loss will have ramifications on the pharma-
ceutical industries and livelihoods of several vulnerable populations that 
rely on them [67]. Therefore, regions that will lose should be given 
priority for ex situ conservation measures such as collection and storage 
of anti-malarial species germplasm in seed banks [49]. 

Anti-malarial species that will be able to track their suitable habitats 
are expected to gain suitable habitat [20]. The gains were predicted to 
occur in areas with more future anti-malarial species suitable habitat or 
where warmer climate will favor them [61] i.e. south-western region. 
Notably, the region is well endowed with anti-malarial species which are 
pre-adapted to water stress [28] and can thrive in climate warming. 
Continuous monitoring of the anti-malarial species is advisable in areas 
that will gain since an influx of new anti-malarial species could alter the 
competitive interactions in such areas [20], and because factors other 
than climate change may threaten the existence of anti-malarial species 
[65]. Further, we propose in situ conservation of anti-malarial species 
alongside sustainable utilization, assisted migration, assisted seedling 
growth, removal of invasive species in areas that gain and overlap with 
protected areas [61,16]. 

Mean anti-malarial species richness for future scenarios was low, 
compared to the current scenario; similar findings have been reported in 
other parts of the world (i.e. studies on medicinal plants; [61,67]). Most 
areas of high richness (i.e. south west) are predicted to decrease due to 
increased warming [67], while only a small region in the north west will 
witness a slight increase in richness. Consequently, climate change will 
pose a challenge to availability of anti-malarial species. However, re-
gions of future high anti-malarial species richness should be considered 
as conservation areas for restoration and rewilding under climate 
change. Contrary to our results, a study in Egypt [20] reported increased 
medicinal plant species richness due to climate change. These differ-
ences may be due to use of other bioclimatic variables, and climate 
scenarios. Besides, plants in Egypt may not share the same ecological 
niche location as those in Samburu. Under future scenarios, the mean 
anti-malarial species richness outside the protected areas is predicted to 
be higher than inside, contrary to the findings of Kaky and Gilbert [20] 
in a study on medicinal plants. This suggests that due to their placement 
in unsuitable future climates, the current protected areas may not 
adequately conserve anti-malarial species in future. They should be 
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complemented through effective management and extension to cover 
future suitable habitats. Conservationists should also adopt 
anti-malarial species conservation measures beyond the current pro-
tected area network to conserve anti-malarial plants in future. 

Assessing the impact of climate change on plant species may be 
overestimated since it is usually difficult to consider the interactions 
between the population character or species and their habitat [65]. A 
species may gain suitable habitat, but may be unable to move to the 
habitat due to limiting factors like altitude and human activities in the 
surrounding area [20]. Besides, plant population size may not 
adequately predict long-term population viability because of the time 
lag associated with its response to habitat deterioration [61]. However, 
the patterns of loss and gain in species suitable habitat may remain [65]. 
Regarding the choice of future variables, our study considered soil fac-
tors and elevation as static variables and climatic factors as dynamic. 
However, future climate scenarios will also witness changes in soil 
factors and elevation [75]. Therefore, future research should consider 
this for more accurate results. 

4.5. Turnover 

The overall average turnover rates for anti-malarial species was 
positive, meaning gain in distribution area will be higher than loss. 
Consequently, high turnover in anti-malarial species-poor areas may 
improve the health of locals therein as they will gain some anti-malarial 
species [61]. High turnover was predicted in areas with high current 
precipitation and low temperature, associated with high soil water 
which enhances anti-malarial species development [20]. For areas with 
high turnover, systematic monitoring of the species may help to 
formulate scientific conservation measures to adapt to climate change 
[61]. Low anti-malarial species turnover will occur in the south eastern 
region (has low current precipitation and high temperature) probably 
because of little change in future environmental conditions [65]. The 
region should nonetheless be continuously monitored, since we suspect 
that the safety or even quality of anti-malarial species therein may be 
affected by climate change, as increase in CO2 concentration and tem-
perature affects plant chemical metabolites [16]. 

4.6. Identifying priority species for conservation 

Under all future scenarios, 14–24% of the species will be CR while 
14–29% will be EN, which may strongly affect the locals’ healthcare. 
However, only 15–29% of the species will be of least concern. These 
results are in line with those by Gafna et al. [27] suggesting that most 
anti-malarial species in Samburu dryland are threatened by climate 
change. Drylands such as Samburu are sensitive to climatic changes 
because they have already reached the threshold of water availability 
and temperature [27]. In agreement with Thuiller et al. [65], two spe-
cies with narrow climatic tolerances and limited population size (i.e. 
Salvadora persica and Acacia xanthophloea) were listed as CR under all 
scenarios, since they would have to fully shift their distribution range to 
keep pace with the changing climate. Both species grow in environments 
with low temperatures [16], which might make them less likely to adapt 
to the future climatic conditions. These species should be given the 
highest conservation priority. Compared to CR non-medicinal plants, CR 
anti-malarial species are more vulnerable to extinction because they face 
over-harvesting [76]. Therefore, we suggest the establishment of plant 
micro-reserves in concentration areas of the CR anti-malarial species, 
especially in areas with low future temperatures. Likewise, the popula-
tion size of CR anti-malarial species with a weak ability to regenerate in 
the wild could be improved using appropriate artificial intervention 
[76]. Such actions aimed at conserving CR anti-malarial species could 
also benefit other VU species that are inadequately conserved [77]. As 
expected Harrisonia abyssinica and Euclea divinorum were classified as of 
LC, since they were projected not to lose any suitable habitat. They grow 
in different environmental conditions, which makes them highly 

adaptable to environmental stress [7], and are likely to survive the 
future changing climate. 

4.7. Impact of climate change on malaria vector species distribution 

Suitable habitat for malaria vectors will expand to most areas that 
are currently unsuitable, thereby exposing new populations to malaria. 
This shows the potential challenge to Samburu’s ambitious goal of 
eliminating malaria. Increased temperatures will increase the rate of 
malaria vectors development and the frequency of blood feeding by 
mosquitoes, while droughts due to climate change may convert rivers 
into water pools which provide optimal mosquito breeding sites [24]. In 
Kenya, [5] mapped malaria vectors distribution under climate change. 
Our findings agree with their study; however, our work displayed a 
much broader expansion, which may reflect the fact that our occurrence 
records were drawn from a large area. Pockets in the south east will be 
converted from suitable malaria vectors habitat to unsuitable, thereby 
reducing the malaria burden on some populations. Very high tempera-
ture and low precipitation in these areas may make it unbearable for 
malaria vectors to survive in future [5]. Worrisomely, most areas pre-
dicted to have suitable malaria vectors habitat in future are also 
currently predicted as suitable habitats. This repeated and prolonged 
exposure to malaria may lead to immunity and development of resis-
tance to anti-malarial species or drugs among populations in these areas 
[23]. 

When transferring the malaria vector species models to future con-
ditions, we assumed that the current association between malaria vec-
tors presences and predictor variables based on present day data will still 
hold true under future climate scenarios [24], which may not be the 
case. This is likely because the potential evolution of malaria vectors in 
response to climate change (i.e. temperature tolerance) may affect their 
shifts in geographical range [78]. Whereas the impact of climate change 
on malaria vector species distribution may be altered by the evolu-
tionary changes [79], many species evolve much slower than the 
changing climate [80], or may not even evolve at all. Besides, the lack of 
future human population data may limit the scope of our models [24]. 

4.8. Assessing the impacts of climate change on future malaria 
vulnerability 

The overlap between suitable habitat for malaria vectors and low 
anti-malarial species richness will increase, especially in the eastern and 
southern regions, potentially exposing locals to increased malaria 
vulnerability burden [1]. In future, malaria control interventions in the 
south should be revisited from the currently low malaria control mea-
sures [23] to high, while the anti-malarial species conservation efforts 
should be low, as this will take into account how climate change will 
alter malaria vulnerability. We suggest that future malaria vector con-
trol measures should be devoid of insecticides since their effectiveness 
will likely decrease with increased temperatures due to climate change 
[21]. Instead, biological control should be adopted i.e. predatory fish 
[72]. There is need to create awareness in the current low vulnerability 
malaria areas that are likely to become high vulnerability malaria areas, 
to enhance preparedness. Besides, concerted efforts to increase resil-
ience among locals in these areas should be scaled up in order to 
strengthen adaptive capacity and reduce vulnerability. We propose re-
view of resource allocation in the high vulnerability malaria areas that 
will be converted to low vulnerability areas i.e. north west. 

5. Implications for management 

Since our results suggest a possible loss of anti-malarial plant species, 
decrease in future anti-malarial species richness, expansion of malaria 
vectors suitable habitat and thus spread of high vulnerability malaria 
areas, there is need to urgently initiate more effective anti-malarial 
species conservation and malaria control interventions. Sustainable 
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harvesting practices, effective enlargement of protected areas and sup-
porting in-situ and ex-situ conservation (with focus on anti-malarial 
species of highest conservation priority) can ameliorate the processes. 
For effective anti-malarial plant species conservation and malaria con-
trol actions, interventions should take into account the climatic patterns, 
for a greater impact. Land managers should monitor the changing trends 
in precipitation and temperature as they determine the region’s ability 
to hold anti-malarial species and malaria vector species. There is also 
need to revisit current and future anti-malarial species conservation 
actions and malaria control interventions as outlined by the current 
study. 
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