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Abstract—Printed Electronics (PE) exhibits on-demand, extremely low-
cost hardware due to its additive manufacturing process, enabling ma-
chine learning (ML) applications for domains that feature ultra-low cost,
conformity, and non-toxicity requirements that silicon-based systems
cannot deliver. Nevertheless, large feature sizes in PE prohibit the
realization of complex printed ML circuits. In this work, we present, for
the first time, an automated printed-aware software/hardware co-design
framework that exploits approximate computing principles to enable
ultra-resource constrained printed multilayer perceptrons (MLPs). Our
evaluation demonstrates that, compared to the state-of-the-art baseline,
our circuits feature on average 6x (5.7x) lower area (power) and less
than 1% accuracy loss.

Index Terms—Approximate Computing, Co-design, Multilayer Percep-
tron, Printed Electronics
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1 INTRODUCTION

A trillion-dollar market of fast moving consumer goods
(FMCG), disposables such as beverages, packaged foods,
and toiletries, low-end healthcare products (e.g., smart
bandages), etc., have seen limited impact from embedded
computing [1]. Although for several of these domains, a
typically required computational task is classification [2],
such applications pose requirements for sub-cent costs, non-
toxicity, porosity, stretchability, and conformity that silicon-
based computing systems cannot satisfy. Printed Electronics
establish as a key solution to enable such applications.

Printed electronics indicates a set of printing techniques
that can realize ultra low-cost [3], large scale [4] and
flexible hardware [5]. Printed electronics cannot compete
with silicon-based electronics in integration density, area,
or speed, mainly due to large feature sizes arising from
low-cost and low-resolution printing. The typical operating
frequency of printed circuits is from a few Hz to a few
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kHz [6]. Similarly, the feature size tends to be several
microns [7]. Nevertheless, due to its form-factor, confor-
mity, and most importantly ultra-low fabrication costs of
the additive manufacturing processes, that enable hardware
on-demand even at very low quantities, printed electron-
ics can target application domains untouchable by silicon
VLSI. However, their large feature sizes and high intrinsic
transistor gate capacitances result in elevated power and
area compared to nanometer technologies. Additionally, the
integration density of printed circuits is orders of magnitude
lower compared to silicon systems, prohibiting thus the
realization of complex circuits. For example, a printed MAC
(multiply–accumulate) unit –core of most machine learning
(ML) circuits– is six orders of magnitude larger than the
CMOS one, while its power consumption is 8x higher [2].

Since low-cost embedded ML systems are usually task-
specific and in order to address the aforementioned limita-
tions, there is the opportunity of generating model-specific
ML circuits that are more efficient compared to general-
purpose ones. Leveraging the potential for high customiza-
tion, offered by the low-fabrication costs of printed cir-
cuits, [2] designed bespoke ML circuits. The term bespoke
refers to fully-customized, even per ML model and dataset,
circuit implementations. Still, [2] examined only simple ML
models (e.g., Decision Tree) rather than complex Multilayer
Perceptrons (MLPs) that they pose infeasible hardware over-
heads for the ultra-resource constrained printed circuits.
Thereby, works on printed ML designs are limited.

Fortunately, approximate computing (AC) can be em-
ployed to reduce the associated hardware overheads at the
cost of some accuracy loss. Exploiting the inherent error re-
silience of a large number of application domains, e.g., ML,
AC relaxes the accuracy of some computations and achieves
improvements in hardware metrics such as area and power.
The authors in [8], designed for the first time approximate
printed ML classifiers. Through post-training algorithmic
weight-approximation and hardware-level gate-pruning, [8]
generates printed ML circuits with high area and power
gains. However, as in [2], authors in [8] deduced that the
hardware overheads of MLPs are prohibitive for printed
circuits and additional optimizations are still required.

In this work, we embrace the bespoke design paradigm,
enhance it with AC, and propose an automated co-design
framework for approximate printed MLP circuits. Leverag-
ing the observation that the area of bespoke MLP circuits
is intrinsically correlated to the MLP’s coefficients, we pro-
pose a printing-friendly MLP retraining that selects area-
efficient coefficients and achieves 3.3x lower area, on aver-
age, over 10 MLPs. By printing-friendly retraining we refer
to a bespoke hardware-aware retrain technique, suitable for
ultra-resource constrained ML circuits such as our targeted
printed ones. Our approach can be seamlessly extended to
any printed ML circuit with trainable coefficients. Though,
we focus on MLPs since they constitute the most complex
ML classifier for printed applications [2]. Finally, in order to
further optimize the resource efficiency of our circuits, we
also approximate the summation of the neuron’s products
by systematically keeping the most relevant bits and dis-
carding the rest. Overall, compared to the exact bespoke baseline,
we achieve, on average, 6x (5.7x) area (power) reduction with less
than 1% accuracy loss.
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Our novel contributions within this work are as follows:
1) This is the first work that proposes, implements, and

evaluates a software/hardware co-design for printed
MLPs while approximating both multiplication and ad-
dition operations.

2) We propose a printing-friendly ML retraining technique.
3) Our evaluation shows that our framework paves the

way, for the first time, towards highly accurate battery
powered MLPs, suitable for ultra-resource constrained
printed applications1.

2 RELATED WORK

In the past years we have experienced a significant ex-
plosion in the printed electronics research at a variety of
application domains. Targeting applications such as radio-
frequency identification (RFID) tags, a pseudo-CMOS logic
design for high performance thin-film circuits was pre-
sented in [9], while in [10] a 2-input neuron that can be used
to support also a MAC operation was fabricated.

Recently, a flexible 32-bit microprocessor with over
18, 000 gates was fabricated by ARM [11]. Exploring effi-
cient architectures for printed microprocessors, [1] pruned
the ISA (Instruction Set Architecture) and the respective
microarchitecture accordingly and generated tiny printed
microprocessors. However, research on printed ML appli-
cations is still at its infancy [2], since they are limited only to
few neurons implementations rather than more complex ML
circuits. Acknowledging the need for printed ML inference
engines, the authors in [2] exploited the area-efficiency
of bespoke architectures [12] and implemented fully cus-
tomized ML circuits for printed technologies. Nevertheless,
[2] considered only simple ML models such as Decision
Trees and Support Vector Machine Regression due to the
high hardware overheads of more complex models such as
MLPs. Moreover, [13] described an automated methodology
to generate also bespoke classifiers, but no quantification
was performed, while further system integration with hard-
wired machine learning processor for an odour recognition
application was fabricated in [14]. Targeting printed MLPs,
[15] employed Stochastic Computing (SC) to reduce their
area and power at the cost, however, of a prohibitive ac-
curacy loss in most cases. On the other hand, [8] designed
approximate MLPs and achieved low accuracy loss but the
power reduction was insufficient.

An active research field (also known as TinyML) in-
vestigates vigorously resource-efficient ML models which
can run on constrained hardware such as IoT-sized devices.
Recently, Google’s collaborated CFU Playground [16] pro-
posed a full-stack framework in which bespoke and co-
optimized architectures for embedded ML with TinyML
focus can be explored. Although significant speedups can
be attained by exploring different custom function units,
optimization space for power efficiency has not been com-
prehensively studied yet. Furthermore, Kumar et. al. [17],
targeting low-power devices, developed a tree-based clas-
sification algorithm trying to fit in the available mem-
ory of such tiny IoT devices. Similarly, aiming to min-
imize the required working memory, ProtoNN [18] pro-

1. Our implementations are available at https://github.com/
garmeniakos/Ax-Printed-ML-Classifiers

TABLE 1: Qualitative comparison of related works.

Domains Reference Bespoke1 AC/2

SC
HW/SW3

Co-Design
Battery4

Operation

Printed
Electronics

[1], [2], [14] 3 7 3 �

[8], [15] 3 3 3 �

CMOS [12] 3 7 3 7

FPGAs [16] 3 7 3 7

TinyML (IoT) [17], [18] 7 7 3 7

AC DNN [20] – [24] 7 3 3 7

PE Ours 3 3 3 �
1Customized implementations. 2AC: Approximate Computing, SC: Stochas-
tic Computing. 3HW/SW: Hardware/Software. 4Printed batteries ≤ 30mW

posed a k-Nearest Neighbour based algorithm for resource-
constrained devices. However, memory requirements and
transfers of both [17] and [18] consume significant power
that acts prohibitively for printed devices.

Designing approximate arithmetic units such as adders
and multipliers has attracted significant research inter-
est [19]. Though, they target non-bespoke arithmetic circuits,
unsuitable for ultra resource constrained printed electron-
ics [2]. Finally, vast research focuses on approximate neural
network accelerators [20], [21], [22], [23], [24]. However,
such deep networks are unrealistic to be considered for
printed applications [9].

Table 1 summarizes the above discussion and provides
a qualitative comparison of the related works in the field of
severe resource-constrainted ML inference. Although sev-
eral co-design frameworks have been proposed (e.g., for
IoT, FPGAs, TinyML) printed circuits have a much tighter
resource constraint and the existing frameworks have not
been evaluated on such extreme cases. Hence, it is highly
unclear if existing frameworks will need extremely long
time or even fail to find a valid solution. Finally, we propose
a fine-grained design methodology that is bespoke-specific
and could also be applied to other technologies that would
support such high customizations. Our work distinguishes
from most state-of-the-art works and can be only classified
along with [8], [15] since they all: i) exploit the efficiency
of bespoke implementations, ii) employ a systematic co-
design methodology to boost the efficiency of the generated
circuits, iii) apply non-conventional computing (Stochastic
or Approximate Computing) to maximize the hardware
savings, and iv) target the unmatched domain in ultra-
limited resources of printed ML applications. In Section 4,
we thoroughly evaluate our framework against [2], [8], [15].
In other words, to the best of our knowledge, we compare
our work against the only available printed MLP works
today.

3 APPROXIMATE PRINTED MLPS

In this section, we present our automated co-design frame-
work for approximate printed MLP circuits. Briefly, our
framework receives as input a trained model (e.g., dumped
from scikit-learn) and performs a printing-friendly retrain-
ing in which the MLP coefficients are replaced with more
area-efficient ones. Next, our framework generates the Ver-
ilog RTL description of the respective bespoke MLP circuit
and approximates the summation operation of each neuron
by systematically dropping the less significant bits of the

https://github.com/garmeniakos/Ax-Printed-ML-Classifiers
https://github.com/garmeniakos/Ax-Printed-ML-Classifiers
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TABLE 2: Evaluation of Bespoke Printed MLPs. Most MLPs
feature unsustainable hardware overheads.

Dataset Topology #MACs
Cpd

[ms]
Acc

Area

[cm2]

Power

[mW]

WhiteWine (WW) (11,4,7) 72 198 0.54 31 98


N
o

A
de

qu
at

e
Po

w
er

Su
pp

ly

Cardio (CA) (21,3,3) 72 199 0.88 33 97

RedWine (RW) (11,2,6) 34 199 0.56 18 53

Pendigits (PD) (16,5,10) 130 201 0.94 67 213

Vertebral Col. 3C (V3) (6,3,3) 27 200 0.83 8.9 36

Balance Scale (BS) (4,3,3) 21 199 0.91 9.3 36

Seeds (SE) (7,3,3) 30 200 0.94 9.9 41

Breast Cancer (BC) (9,3,2) 33 188 0.98 12 40

Vertebral Col. 2C (V2) (6,3,2) 24 114 0.90 3.5 13
 Pr

in
te

d
Ba

tt
er

y
O

pe
ra

ti
on

Mammographic (MA) (5,3,2) 21 197 0.86 6.8 27

summands (i.e., products inputs by coefficients). Finally,
our framework, runs a full search design space exploration
(DSE), in which all the approximate circuits are synthesized
using EDA tools and the printed Process Design Kit (PDK),
to obtain the Pareto-optimal approximate MLPs.

3.1 Bespoke MLPs

The ultra low-cost and on-demand in-situ fabrication in
printed electronics enables bespoke implementations, tai-
lored to specific dataset or usecase, that enable circuits
with phenomenal area reduction compared to the respec-
tive conventional general purpose ones [2]. Leveraging the
ultra low-cost and on-demand in-situ fabrication, bespoke
implementations prevail as the most prominent solution to
realize ultra-resource constrained printed circuits [1], [2].
Driven by this potential, we also embrace the bespoke de-
sign paradigm for printed MLPs. In such highly customized
circuits, the coefficients of the ML model (MLPs in our case)
are hardwired in the circuit implementation itself [2].

For our analysis, we consider 10 MLP classifiers (see
Table 2) trained on varying datasets of the UCI ML repos-
itory [25]. These datasets are selected similarly to [2] and
[15]. To train the MLPs, scikit-learn and the randomized
parameter optimization with 5-fold cross validation are
used. Inputs are normalized to [0, 1] and we use a random
70%/30% train/test set split. The topology of the MLPs
is #input×L×#output with L ≤ 5 and the ReLU is
used for activation function. L is selected so that each
MLP achieves close to maximum accuracy while L (i.e., the
number of its hidden nodes) is minimized. At the final stage
an argmax function is used to translate and map numerical
predictions (i.e., values of output neurons) to a class, from
which classification accuracy can be obtained.

Table 2 presents the evaluation of the examined MLP
circuits. All circuits in Table 2 are implemented following
the bespoke fully-parallel (i.e., 1 inference/cycle) state-of-
the-art design methodology of [2]. In the remainder, these
circuits will be referred to as baseline circuits. Fixed-point
arithmetic is used with 4 bits for the inputs and 8 bits
for coefficients, achieving close to floating-point accuracy.
Nevertheless, since coefficients are hardwired in the circuit,
we use the bare-minimum precision for each coefficient

Trained MLP

Full Search
DSE

Approximate Printed
MLP

Printing-Friendly
Retraining

Approximate
Summation

C
on

st
ra

in
ts

Retrained MLP Input Distribution

HW-aware
coefficient clusters

Approximate MLP
RTL

Fig. 1: Abstract overview of our framework.

(e.g., “3” uses only 2 bits). Circuit synthesis is performed
with Synopsys Design Compiler and targeting the Elec-
trolyte Gated Transistor (EGT) library [1], which is a low-
voltage inkjet-printed technology that allows battery pow-
ered printed circuits. Since our objective in our optimization
problem is to further improve the area efficiency rather than
the performance, all MLPs are synthesized and simulated
at relaxed timing constraints, i.e., 250ms per inference for
Pendigits and 200ms for the rest ones. These performance
values comply with typical operating frequencies in printed
electronics [6], while delay gains due to our approximations
are presented in Section 4.1. Power estimation is performed
using Synopsys PrimeTime and switching activity obtained
from circuit simulations with Questasim.

Due to the nature of printed applications, they all pose
tight area requirements. As a rule of thumb and similar
to [12], we consider the 10cm2 and 30mW (i.e., maximum
power of a single printed battery) as a hard constraint for
most printed applications. As shown in Table 2 the average
area of the MLP circuits is prohibitive for such applica-
tions [12]. Moreover, only the Vertebral Column 2C and
the Mammographic MLPs can be powered by an existing
printed battery (e.g., Molex 30mW battery) while for the
rest MLPs it doesn’t exist any adequate power supply [2].

3.2 Printing-Friendly MLP Retraining
Our framework (Fig. 1) enhances bespoke circuits with
approximate computing to further improve the hardware
efficiency of the former. Although bespoke circuits form the
most promising solution for printed ML applications, be-
spoke implementations open new rooms for optimizations
in printed circuits that are barely explored up to now. For
example, in Fig. 2a we perform a 1000-point Monte Carlo
analysis of the area of bespoke neurons w.r.t. the values of
the coefficients. Neurons are the building block of MLPs. As
shown, irrespectively of the size of the neuron (#inputs),
the area of the neuron features very high variation. For
example, in Fig. 2a the average standard deviation is 63mm2

or else 175 gates. Therefore, there is a high potential, with a
proper coefficient selection, to keep the bespoke neuron’s
area minimal. We further investigate this and present in
Fig. 2b the area of bespoke multipliers a · w. Multipliers
constitute the core components of a neuron. The value w is
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Fig. 2: a) 1000-point Monte Carlo analysis of the area of
bespoke neurons w.r.t. the values of the coefficients. b)
Area of bespoke printed multipliers with 4-bit inputs and
coefficients in [−128,127].

hardwired in each bespoke multiplier, the input a is 4 bits
and the coefficient w is up to 8 bits, i.e., w ∈ [−128, 127].
It is noteworthy that the area of the bespoke multipliers is
more than 5x lower than the area of the respective 4 × 8
conventional multiplier. From Fig. 2b, it is evident that there
is an intrinsic correlation between the value of the coefficient
w and the area of the bespoke multiplier and consequently,
the area of the neuron. Importantly, in the cases that the
coefficient is a power of two, the multiplier’s area is nullified
(i.e., multiplier is replaced by only simple wiring).

Motivated by the above observations we leverage our
bespoke hardware analysis to implement a printing-friendly
retraining. Our main goal is to replace the coefficients of the
MLP with more area-efficient ones and as a result, minimize
the area of the required multipliers while maintaining high
accuracy in the meantime.

As a step towards enabling printing-friendly retraining,
we need to distinguish the coefficients based on their area-
efficiency. To achieve this, we use K-means and cluster the
coefficients with respect to the area of the respective bespoke
multiplier. Without loss of generality, we consider up to
8 bits for the coefficients and we cluster the coefficients
into four groups C0-C3. Group C0 comprises only powers
of two, resulting thus to zero-area multipliers, while the
multipliers generated by the coefficients of Ci feature larger
area than the multipliers generated by the coefficients of
Cj if i > j. For example, we clustered the coefficients w,
∀w ∈ [0, 127], considering bespoke multipliers with 4 bits
input. Fig. 3 presents the area of the bespoke multipliers of
each cluster. As shown in Fig. 2b, the negative coefficients
produce multipliers with larger area than the respective
positive ones. Nevertheless, as we will explain later, during
retraining we assume that the positive and negative coef-
ficient multipliers feature the same area. For this reason,
we perform the clustering only for the positive coefficients.
Moreover, we clustered the coefficients using several input

C0 C1 C2 C3

0.0

4.0

8.0

12.0

16.0

20.0

coefficient clusters

A
re

a 
[m

m
²]

       
    

Fig. 3: Area analysis of the clustered coefficients for 4-bit
inputs and coefficients in [0,127].

sizes from 4 up to 16 bits and obtained identical results. The
latter is explained by the fact that increasing the input size
impacts all the bespoke multipliers similarly, irrespectively
of the coefficient value. Therefore, although the neurons of
the hidden and output layers might feature different input
sizes, the same clustering can be used. Finally, to cluster the
coefficients, we need to synthesize (once for all MLPs) all the
positive bespoke multipliers. In our case, for 128 bespoke
multipliers, it required less than a minute using 10 threads
in a Xeon E5-2650 server with 64-GB RAM.

Algorithm 1 presents an abstract overview of our
printing-friendly MLP retraining. Our framework receives
as inputs a trained model, the training dataset, and a
user-defined accuracy loss threshold that remains constant
throughout the retraining process and could be relaxed for
higher potential gains. Note that accuracy loss is defined as:
Accuracyexact −Accuracyapprox.. Given an already trained
MLP with fixed topology (namely MLP0), our algorithm
initiates our MLP′ to MLP0 and retrains MLP′ trying to
assign all its coefficients to C0 (V C ← {w,−w : w ∈ C0}). If
after m epochs the accuracy is below a given threshold then
i) we reset the training (MLP′ ← MLP0), ii) we increase the
number of available values for the coefficients by gradually
considering more clusters, and iii) we repeat the training
for another m epochs each time. A solution always exists
since at the worst case all the coefficient clusters will be
consumed. During the m epochs retraining, if the accuracy
is unacceptable and no coefficients are updated, we increase
the learning rate to allow jumps [22]. The latter is crucial
since if the distance of the available values in V C is large,
then with a small learning rate the coefficients might always
be mapped to the same value in V C . Finally, to enable area-
awareness during training we add a small penalty at the
obtained accuracy based on the area of the required bespoke
multipliers. This is crucial, when using more than one
clusters, in order to guide retraining towards selecting more
coefficients from the lower (more area efficient) clusters. To
achieve this, we calculate the following score function:

S =α · accuracy(MLP′)
accuracy(MLP0)

+ (1− a)× AR(MLP0)−AR(MLP′)
AR(MLP0)

,

(1)

where AR is the sum of the area of the bespoke multipliers
instantiated by each MLP. These area values are calculated
based on the input sizes of each neuron and are stored in a
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Algorithm 1: Printing-Friendly Retraining Pseu-
docode

Input: 1) Trained Model: MLP0, 2) Accuracy Loss
Threshold: T ,

3) Train Dataset
Output: 1) Printing-Friendly Model: MLP′

1: Ci,∀i← Cluster Coefficients
2: V C ← {}
3: for 0 ≤ i <#Clusters
4: V C ← V C ∪ {w,−w : w ∈ Ci}
5: MLP′ ←MLP0
6: retrain MLP′ for m epochs

• feedforward: evaluate score function Eq. (1)
• coefficient update: convert coefficients to fixed point &
map each coefficient to its closest value in V C
• adjust learning: if no coefficient updated→ increase
learning rate

7: if (accuracy(MLP′) ≥ accuracy(MLP0) −T ) break
8: return MLP′

look-up table to be used during retraining. Again the time
required is negligible (5min at the worst case examined)
and for the negative coefficients we use the area of the
respective positive ones. When MLP′ and MLP0 feature the
same accuracy and MLP′ uses only C0 (only power of two),
AR(MLP′) becomes zero and (1) takes its maximum value,
i.e., S = 1. When MLP′ and MLP0 are the same (e.g., initial
assignment), S in (1) equals α. In our work, targeting high
accuracy printed MLPs, we set α = 0.8. Nevertheless, the
area-accuracy tradeoff w.r.t. α needs to be explored more
comprehensively in the future. Finally, we set the retraining
epochs m = 10 to constraint the execution time spend in
retraining (i.e., 40 epochs at most). On average, 4min were
required by our printing-friendly retraining.

Overall, our coefficient cluster-based retraining ap-
proach constraints the search space of printing-friendly coef-
ficients and helps exploring early and with high confidence
area-efficient solutions. As more clusters are gradually used
in retraining, the penalty imposed by our score function
guides the training algorithm to limit the number of coef-
ficients selected from the higher clusters and instead select
more area-efficient coefficients from the lower clusters.

3.3 Approximate Bespoke Neuron

Each neuron calculates a weighted sum:

S =
∑
∀i
ai · wi, (2)

where wi are the neuron’s coefficients (or weights) and
ai are its inputs. After retraining, the coefficients of the
MLP are replaced with more printing-friendly ones, leading
to reduced hardware requirements w.r.t. the neuron’s
bespoke multipliers. Still, the summation of the products
of the bespoke multipliers results in considerable hardware
overhead. Fig. 4 depicts the implementation of our
approximate neuron. Overall, we calculate the following:

S′ =
∑

∀i:wi>=0

ai · wi︸ ︷︷ ︸
Sp

+
(
∼

∑
∀i:wi<0

ai · |wi|︸ ︷︷ ︸
Sn

)
, (3)

Positive Coefficients: w1,...,wm

ReLu

output

 Negative Coefficients: wm+1,...,wn

1's complement

×w1×w1 ×w2 ×wm

𝑎1 𝑎2 𝑎m
×w1×|wm+1| ×|wm+2| ×|wn|

𝑎m+1 𝑎m+2 𝑎n
AxSum AxSum

1 0 0 0
0 1 0 1

1 1 1 0
1 1 1 0

x1
x2
x8
x2

x
x
x

x x

Least Significant,
1 0 0 0

1 1 0 1
1 1 1 0

0 1 1 0

x1
x2
x8
x2

x
x
x

x x

k=2 1 0 0 0
0 1 0 1

1 1 1 0
1 1 1 0

x1
x2
x8
x2

x
x
x

x x

x x

x x

Fig. 4: Overview of our approximate bespoke neuron.

where ∼ refers to logical NOT (i.e., 1’s complement). Ex-
ploiting that the inputs of each neuron are positive (see
Section 3.1), we know apriori the sign of each product (i.e.,
same with the sign of the corresponding coefficient). Hence,
we split the coefficients into positives and negatives and for
the negative ones we use their absolute value to generate
their bespoke multipliers. A different adder tree is used to
sum each set of products and 1’s complement (instead of
2’s complement) is used to negate the sum of the negative
coefficients (Sn). Finally, Sp and ∼ Sn are added together.
Calculating (3) requires only positive bespoke multipliers
that feature significantly lower area than the negative ones.
Moreover, with (3) we eliminate many full adders that
would be required just for sign extension. If the neuron
doesn’t have any negative coefficients, the right parts of (3)
and of Fig. 4 are omitted. Again, such high customization is
feasible only in bespoke circuits.

To further reduce the area complexity, we approximate
the adders that produce the sums Sp and Sn. To achieve this,
we keep only some MSBs of the least significant summands
(products ai · wi) and we discard the rest. Hence, the more
summands are approximated, the higher area reduction
is achieved. An illustrative example is depicted in Fig. 4.
Motivated by our cluster-based retraining, many coefficients
are assigned to a power of two. Intuitively, inputs multiplied
by high powers of two will generate considerably more
significant products for the final result compared to inputs
multiplied by small powers of two. However, despite this
intuitive observation the significance of the product ai · wi

depends also on of ai. Thus, we define the significance of
each product as follows:

Gi = |wi
E[ai]∑

∀i
(
E[ai] · wi

) |. (4)

In other words, (4) calculates the ratio of the average value
of each product ai · wi over the average sum of the neuron.
For each neuron,Gi,∀i, is easily calculated by just capturing
the inputs distribution during training. Exploiting this high-
level information, we approximate accordingly, at design
time, the summation operations (Sp and Sn). For each
product ai · wi, if Gi is less or equal to a given threshold
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Fig. 5: Accuracy-Area Pareto space of the PD MLP.

G, we keep only the k MSBs with k ∈ [1, 3]. Hence, for each
neuron, the approximate sum (AxSum) is given by:

S′ = Sp + (∼ Sn)

Sp =
∑

∀i:wi>=0,
Gi>G

pi +
∑

∀i:wi>=0,
Gi≤G

pi[ni − 1 : ni − k]2ni−k,

Sn =
∑

∀i:wi<0,
Gi>G

pi +
∑

∀i:wi<0,
Gi≤G

pi[ni − 1 : ni − k]2ni−k,

pi = ai · |wi|, ni = $size(|wi|) + $size(ai),∀i

(5)

where ni,∀i, is the size of each product, e.g., for wi=±7
and 4-bit inputs, ni is 7 bits. Note that, (5) refers to each
neuron, i.e., different neurons might feature different k and
G values. To reduce the size of the design space, we consider
the same k value for all neurons and one G value per layer.
The latter is based on the fact that different layers feature
different sensitivity to approximation [24].

Finally, we perform an exhaustive DSE w.r.t. the value
k ∈ [1, 3] and all the possible values of G for each layer.
Each design point is synthesized and simulated and a
Pareto analysis is performed to obtain the Area-Accuracy
Pareto Front. Unlike conventional silicon VLSI, in printed
electronics the examined ML models are rather small in size.
Hence, synthesis and simulation of each design requires a
couple of minutes at most. Thus, we can obtain fast enough
the Pareto optimal designs through an exhaustive DSE. On
average, DSE required only 7 min using 10 threads (i.e.,
limit of our available EDA licenses). At the worst case,
the DSE required 1h for the PD MLP, which is however
very large to be considered for a printed application. For
example, Fig. 5 presents the Accuracy-Area Pareto space
for the PD MLP and up to 20% accuracy loss. The green
square is the design that applies only our printing-friendly
retraining, while gray circles are approximate derivatives of
the green square and are derived from different approximate
configurations of k and G. Overall, the designs generated
using “Retrain+AxSum” constitute the Pareto front and
achieve 2x area reduction for only 2% accuracy loss.

Note that in (2)-(5) we didn’t consider a neuron bias term
to simplify the presented analysis. If a neuron has a bias,
then similarly to the coefficients, the bias is hardwired in
the circuit itself. Moreover, if the bias is positive, then it is
added in Sp among with the positive products. Similarly, if
it is negative its absolute value is added in Sn.

4 RESULTS

In this section, we investigate the effectiveness of our pro-
posed co-design framework in enabling printed MLPs with
minimal accuracy loss. We evaluate the area, power, and
accuracy of our approximate MLPs against the state-of-the-
art exact bespoke circuits [2] (see Table 2) and we also
compare our framework against the stochastic MLPs [8],
[15] that also trade accuracy for area and power gains. To
the best of our knowledge, [2], [8], [15] are the only available
works on printed ML circuits. Overall, in our AxSum DSEs,
we evaluated more than 600 circuits in order to extract the
optimal approximate printed MLPs. Note that the accuracy
reported in this section is on the test dataset while all our
optimizations are performed on the train dataset.

4.1 Comparison With Exact Baseline
Fig. 6 presents the area and power gains of our framework
(“Retrain+AxSum”) w.r.t. the exact bespoke circuit [2]. Both
our MLPs and [2] are synthesized with the same timing
constraints. In Fig. 6, we consider three accuracy loss thresh-
olds: 1%, 2% and 5%. For each threshold, we selected
the Pareto-optimal MLP from our DSE that satisfies it. In
addition, we also report the gains obtained when applying
only our printing-friendly retraining (“Only Retrain”). The
examined thresholds refer to the overall accuracy loss, i.e.,
due to printing-friendly retrain and AxSum. However, since
multipliers consume the most area and power in MLPs [20],
we assign all the available accuracy loss budget to our
retraining algorithm. Then, if there is still room for further
approximation, we apply our AxSum. Though, as Fig. 6
shows, AxSum is always used. Compared to [2], our frame-
work delivers very significant area and power gains. Specif-
ically, we achieve 6.0x (5.7x), 9.3x (8.4x), and 19.2x (17.4x)
lower area (power), for up to 1%, 2% and 5% accuracy loss,
respectively. The corresponding values when using only our
printing friendly retraining are 3.30x (2.72x), 3.78x (3.03x),
and 3.80x (3.04x). Therefore, both our retrain as well as
our AxSum methods contribute significantly towards the
final area and power gains. Nevertheless, the area and
power savings of retraining saturate after 2% accuracy loss.
Hence, above 2%, further gains are subject only to our Ax-
Sum. For 1% accuracy loss, after retraining, WhiteWine and
BreastCancer MLPs used the first two coefficient clusters,
Pendigits used all the clusters, while the rest MLPs used
only C0 (i.e., maximum area reduction w.r.t. multipliers).
Apart from PD, all MLPs used only C0 for 2% and 5%
accuracy loss. For 2%, PD used the first three clusters, while
for 5% PD used the first two. Since for 2% and 5% almost
all MLPs were retrained only with coefficients from C0, our
printing-friendly retraining achieved the maximum possible
savings and thus, this explains why its average area/power
gains saturate after 2%. Overall, the PD MLP elucidates the
different aspects of our retraining methodology. For tight
accuracy constraints, all the coefficient clusters are used and
our score function still ensures hardware gains, while for
relaxed constraints less clusters are needed. It is noteworthy,
that the baseline PD MLP uses only 21 coefficients from C0,
while for 1% accuracy loss, the score function (1) forced our
retraining to select 64 coefficients from C0. This explains
why our “Only Retrain” PD MLP achieves 1.75x lower area
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Fig. 7: Critical path delay gains for our approximate MLPs
compared to the exact bespoke baseline [2] and for 1%
accuracy loss threshold.

than [2], although both of them use coefficients from all the
clusters (i.e., impact of our score function). Finally, applying
both our retraining and AxSum approximation opens the
road also for higher performance. Fig. 7 illustrates the delay
reduction for each model, when applying our proposed
approximations, compared to their exact (baseline) designs.
On average, 44% CPD reduction is achieved for less than 1%
accuracy loss.

Fig. 8 quantifies in an illustrative manner the tangible
impact of our work. In Fig. 8, up to 5% accuracy loss
is considered. As shown, the current state-of-the-art can-
not support printed MLPs. For example, for 8/10 MLPs
there is no existing adequate power supply. On the other
hand, our framework enables 9/10 battery powered printed
MLPs. Most of the MLPs can now be powered by only a
Zinergy 15mW battery, while 3/10 can use a Blue Spark
3mW battery. Similarly, significant gains in area can now
enable the practical and realistic printed applications(see
unattainable area of the exact designs in Table 2). This huge
shift on supported printed MLPs may open new horizons for the
realization of smart printed applications.

4.2 Comparison With AC- and SC- based Printed MLPs

In Fig. 9 we compare our framework against the state-of-
the-art stochastic printed MLPs [15] and approximate MLPs

of [8]. In Fig. 9, we included only the common MLPs exam-
ined in our work and [15]. Since in [8] only a few datasets
are considered, we followed the respective methodology to
generate the approximate MLPs of the additional (i.e., not
included in [8]) datasets. Since the stochastic MLPs mainly
feature high accuracy degradation, for our MLPs we used
the 5% accuracy loss threshold (see Fig. 6c). Similarly, for [8],
we selected the approximate designs that feature the lowest
area (and power) and up to 5% accuracy loss. As shown,
our approximate bespoke MLPs outperform [15] and [8] at
all the metrics examined (i.e., power, area, accuracy). Specifi-
cally, we achieve 3.4x lower area, 3.7x lower power, and 7.7x
lower accuracy loss than stochastic circuits [15], on average.
Similarly, compared to [8], our gains increase to 8.8x lower
area, 7.8x lower power, and 1.2x lower accuracy loss. All
the aforementioned gains refer to similar performance since
[15] required a stochastic bitstream of length 1024. In Fig. 9,
our MLPs require 200ms per inference, while [15] requires
220ms to 230ms. As in our case, the approximate designs
of [8] operate at 200ms per inference. Finally, we should
mention that our co-design framework and [15] require
some extra training epochs while [8] proposed a post-
training approximation procedure. Though, since printed
electronics allow only relatively small MLPs with a limited
number of parameters, the time overhead required for re-
training is still negligible.

5 CONCLUSION

Printed electronics offers a promising solutions to address
limitations of silicon-based systems w.r.t. applications that
require low cost, conformity, nontoxicity, etc. However, the
ultra-resource constraint nature of printed circuits prohibits
the realization of complex circuits, such as machine learning
classifiers. In this work, we propose, for the first time, a
software-hardware co-design framework for approximate
printed MLPs. Through our printed-friendly MLP retraining
and approximate summation, we design for the first time
high accuracy battery powered printed MLPs, paving the
way towards smart complex printed applications.
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