
Techno-economic evaluation of battery storage
systems in industry

Zur Erlangung des akademischen Grades eines

Doktors der Ingenieurwissenschaften
(Dr.-Ing.)

von der KIT-Fakultät für
Wirtschaftswissenschaften

des Karlsruher Instituts für Technologie (KIT)

genehmigte

DISSERTATION

von

Dipl.-Ing. Fritz Braeuer

Tag der mündlichen Prüfung: 25. Oktober 2022
Hauptreferent: Prof. Dr. Wolf Fichtner
Korreferent: Prof. Dr. Orestis Terzidis





Abstract

In the context of a changing energy system towards one dominated by renewable energy sources,
the demand for flexible energy generation and consumptionwill increase. Battery storage systems
can provide a significant share of this energy flexibility, especially when combined with an
industrial manufacturing plant to shift the industrial electricity demand over time. This paper
contributes to a better understanding of the business decision when investing in a battery storage
system and when marketing energy flexibility. For this purpose, the work considers the techno-
economic and regulatory framework for flexibilitymeasures and examines the optimal investment
and dispatch planning for a battery storage system in an industrial company.

The studies in this thesis focus on three central aspects. As a first aspect, the various revenue
streams for the stored electricity are analysed and how these influence the profitability of a
battery storage system. In particular, the provision of frequency containment reserve power,
peak load shifting or peak shaving, arbitrage trading on the energy markets and the increase
in self-consumption through photovoltaic self-generation are addressed. For this purpose, an
optimisation model is formulated as a discrete, linear programme that maps the economic
framework of the flexibility markets and integrates the technological constraints of the battery
storage system. As a second aspect, uncertainties about market prices, load and generation
behaviour are integrated into the optimisationmodel and the influence on the investment decision
is investigated. This is done on the one hand by a two-stage robust optimisation model, which
represents the uncertainty about the market success on the intraday market. On the other hand,
the significance of the sequence of uncertain market decisions is illuminated through a multi-
stage stochastic optimisation model. As a third aspect, the trade-off between the economic and
ecological use of a battery storage system is analysed. For this purpose, an ecological, CO2-
minimal dispatch is calculated by deriving national CO2-emission factors and compared with an
economically optimal dispatch.

The case studies are analysed based on real industrial load data from small, medium and large
enterprises. The thesis discusses the technical and economic framework conditions, with the
main focus on Germany. However, a comparison between the countries Germany, Denmark, and
Croatia is also presented.

The results show that peak shaving and the provision of frequency containment reserve are
complementary and make the investment in a battery storage system economically viable. Self-
generation through a photovoltaic system can reduce the risk arising from uncertain energy
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market prices. However, the sequence of uncertain decisions has a significant impact on the
design of the battery storage system. Economically feasible operation through arbitrage trading,
on the other hand, is not possible due to the small price differences in the markets and limitations
due to battery ageing and efficiency. These battery characteristics also influence the use of a
battery storage system for CO2-reduction. Due to the limited number of cycles and relatively
high charging losses, battery technology is currently unsuitable for CO2-minimal storage use.
Nevertheless, the economic and ecological potential of battery storage systems strongly depends
on individual factors such as local grid charges, the selected battery technology and the individual
industrial load profile. Advances in battery technology, such as increased lifetime, and possible
new flexibility markets, such as dynamic grid charges, offer new application and marketing
opportunities that could increase the economic viability of a battery storage system.
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1 Introduction

1.1 Motivation and research question

The Paris Agreement of 2015, which aims to limit global warming to 1.5 degrees, has set am-
bitious emissions targets. At the national level, these targets are driving the transformation of
the conventional energy system to one dominated by renewable energy sources (RES). Here,
largely weather-dependent RES plants are replacing dispatchable energy supply from conven-
tional power plants. The removal of these dispatchable, conventional generation units means that
the role of flexibility measures in the power system becomes more significant (Lund et al. 2015).
Flexibility measures can shift and match electrical load and generation in a power system over
time. This is achieved by either temporarily storing electricity in various forms (e.g. a battery
storage system) or by reducing or avoiding electricity generation or consumption. In this way,
congestions in the power grid can be avoided (Ruppert et al. 2020), the share of RES in the
system can be increased (Gils 2014), and CO2-emissions can be reduced (Jochem et al. 2015).
Various approaches in Germany and the European Union (EU) aim to promote the provision
of flexibility. Among other things, flexibility can be offered as balancing reserve power or for
arbitrage trading1 on energy markets. The extent to which incentives are sufficient to provide the
appropriate level of flexibility for the power system depends on technical and economic factors.

This thesis analyses the use of a battery storage system (BSS) as a key flexibility measure in
the transformation process of the energy system. A BSS stores electricity in chemical form and
can provide flexibility on both the load and generation sides. Especially in the case of BSS
based on lithium-ion technology (Li-ion technology), their flexibility potential is determined
by their technological attribute of being able to provide relatively high amounts of electrical
power and energy in a relatively short time compared to other battery technologies (Stadler
et al. 2014, p. 605). This attribute makes the BSS suitable for various flexibility marketing
options at the same time. This flexibility potential can be additionally increased if the BSS
is combined with an electrical consumer such as a household or an industrial plant. Through

1 In this paper, the term arbitrage trading describes the exploitation of temporal price differences and price
differences between different energymarkets. The term is guided by the definition and application inWalawalkar
et al. (2007, p. 2599), Sioshansi et al. (2009, p. 270), Bradbury et al. (2014, p. 513), Sakti et al. (2017, p. 284),
and Campana et al. (2021, p. 2). Brealey et al. (2011, p. 327) points out, however, that in the textbook definition
arbitrage trading takes place without risk, but in practice they usually involve risk. This is also true for the time
arbitrage of this paper, which is also described by Next Kraftwerke GmbH (2022) as “quasi-arbitrage trades”
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1 Introduction

this combination, additional flexibility can be offered by shifting the load (peak shaving) or
optimising the consumption of self-generated electricity.

Especially in industry, there is a “significant potential” (Stede et al. 2020, p. 2) to introduce
flexibility into the energy system through load shifting. Paulus and Borggrefe (2011, p. 440)
estimate that flexibility measures of industrial processes in Germany could “provide approxi-
mately 50% of capacity reserves for the positive tertiary balancing reserve market in 2020” and
Stede et al. (2020, p. 111893) calculate an industrial load reduction potential between 3.8% and
5.5% of the peak load in Germany. The fact, that most industrial companies have an active en-
ergy management system favours the implementation of flexibility measures. However, process
flexibility goes along with high activation cost (Müller and Möst 2018, p. 191) and flexibility
measures must not result in loss of production (Gruber 2017, p. 133). Installing a BSS at an
industrial company allows the company to offer energy flexibility to the system without affecting
the production process (Materi et al. 2021, p. 677).

From a business perspective, a BSS can contribute to reducing the energy costs and simulta-
neously lowering CO2-emissions of an industrial operation (Figgener et al. 2020). However,
three attributes complicate the economical evaluation of a BSS operation2, despite falling BSS
prices3: firstly, the various marketing opportunities for the energy stored in the BSS; secondly,
the heterogeneous load behaviour of many industrial operations; and thirdly, the technical char-
acteristics of a BSS. In addition, for an economic investment in a BSS, it is important to consider
the uncertainties about the future behaviour of market prices and electrical load.

In this context, this thesis investigates the techno-economically optimal investment and dispatch
of battery storage systems (BSS) in industrial plants, addressing the following research questions:

1. What influence does the consideration of different revenue streams, offering frequency
containment reserve, peak shaving, arbitrage trading and optimised self-consumption,
have on the economic performance of a BSS in an industrial plant?

2. What influence do uncertainties regardingmarket prices, electrical load and self-generation
have on the economic performance of a BSS in an industrial plant?

3. What is the influence of optimised dispatch of a BSS in an industrial plant on the plant’s
CO2-emissions?

To answer these questions, a discrete linear optimization model is developed to minimize the
overall energy costs of an industrial manufacturing site with the option to invest in a BSS. The
capacity and dispatch of the BSS is a model endogenous decision variable. For the model cal-
culations, mainly German market prices for the day-ahead, intraday and frequency containment

2 Sandia National Laboratories (2022) shows a relative stagnation of the worldwide installed capacity of Li-ion
BSS compared to other electrochemical storage technologies in terms of large-scale battery storage systems.

3 For example, according to Eble (2021), prices for large BSS fell by a third between 2015 and 2021.
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1.2 Structure of the thesis

reserve markets as well as German grid charges are considered. As exogenous load parameters,
the studies are applied to 50 real industrial load profiles. The load profiles are the recorded
power demand of manufacturing plants of small- and medium-sized enterprises in 15-minute
time steps, continuous for one year. To consider uncertainties, the discrete model is extended to
a two-stage robust optimisation model, a two-stage stochastic and a multi-stage stochastic opti-
misation model. The value of the uncertainty consideration is shown by comparing the results
of the respective optimisation models.

1.2 Structure of the thesis

This thesis is written as a cumulative dissertation and includes the publications listed below.
The thesis is structured in such a way that Part I sets the thematic framework and explains the
basics to discuss the publications. In Part I, Chapter 2 highlights the technological and economic
framework for the use of a BSS in industry. Chapter 3 gives an overview of the methodologies
used in the publications. Chapter 4 summarises the results of the publications. Chapter 5 provides
a critical review of the results, and chapter 6 concludes Part I with an overall summary of the
thesis. Finally, Part II recites the publications that are considered in this thesis, which are the
following:

Publication A (Braeuer et al. 2019b)
F. Braeuer, J. Rominger, R. McKenna, W. Fichtner. Battery storage systems: An economic
model-based analysis of parallel revenue streams and general implications for industry.
Applied Energy, 239:1424–1440, 2019. doi:10.1016/j.apenergy.2019.01.050 .

Publication B (Covic et al. 2021)
N. Čović, F. Braeuer, R. McKenna, H. Pandžič. Optimal PV and battery investment of
market-participating industry facilities. IEEE Transactions on Power Systems, 36:
3441–3452, 2021. doi:10.1109/TPWRS.2020.3047260 .

Publication C
F. Braeuer, M. Ruppert, W. Fichtner. Stochastic optimization of battery storage investment
in industry – Comparing a two-stage and multi-stage approach. Submitted to Annals of
Operations Research on 05/05/2022.

Publication D (Braeuer et al. 2020)
F. Braeuer, R. Finck, R. McKenna. Comparing empirical and model-based approaches
for calculating dynamic grid emission factors: An application to CO2-minimizing storage
dispatch in Germany. Journal of Cleaner Production, 266:121588, 2020. doi:10.1016/
j.jclepro.2020.12 .

Figure 1.1 shows the relationship between the publications considered and the research questions.
In addition, the figure depicts the relationship between the models used in the publications.
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1 Introduction

Publication A addresses the first research question. The consideration of the different revenue
streams requires a systematic techno-economic approach. For this purpose, a deterministic, linear
optimisation model is developed for the design of a BSS in an industrial manufacturing plant.
The BSS has the option of offering frequency containment reserve (FCR), arbitrage trading on
the day-ahead or intraday market, or reducing the charges for the annual peak load by peak
shaving. The optimisation model developed in Publication A, which optimises a BSS in industry
(BSS-Opt model), is the basis for all further publications used in this thesis.

Publication B extends the BSS-Opt model and includes a further technology and marketing
option with self-generation from a photovoltaic system (PV system). In addition, Publication
B illuminates the second research question and maps uncertainties in the optimal decision by
adding a stochastic and a robust component to the BSS-Opt model. For this purpose, a two-stage
stochastic optimisation approach is developed to design a BSS together with a photovoltaic (PV)
system in an industrial plant. A robust optimisation formulation is integrated into this approach.
This evaluates the stochastic market and load behaviour as well as the uncertainty about the
market success on the intraday market.

Publication C builds on this and develops the BSS-Opt model into a multi-stage stochastic linear
problem. Publication C compares the multi-stage with a two-stage approach in the analysis.
Through the comparison, the influence of a sequence of uncertain prices and decisions on the
design and economic efficiency of a BSS can be examined in more detail. This allows the
inaccuracies in the comparison of the approaches to be highlighted, as well as the importance of
the sequence of uncertain market decisions.

Publication D answers the third research question and explores the possible trade-off between an
ecological and economic charging strategy. For this purpose, Publication D compares different
CO2-emission factors of German electricity generation. Based on the BSS-Opt model, the paper
investigates the differences between profit-maximising and CO2-emission-minimising battery
operation.
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1.2 Structure of the thesis

1. RESEARCH QUESTION:
Different revenue streams

Publication A
Braeuer et al.

2019b

Base model: 
BSS-Opt-Model

FCR, peak-shaving,
arbitrage

Publication D
Braeuer et al.

2020

Model extension: 
CO2-minimal

dispatch

Dynamic
emission factors

3. RESEARCH QUESTION: 
CO2-emissions

Publication B
Čović et al.

2021

Model extension: 
Two-stage robust

optimisation

BSS-PV-system

Publication C
Braeuer et al.

2022

Model extension: 
Multi-stage
optimisation

Comparing two- 
and multi-stage

2. RESEARCH QUESTION:
Uncertainty of market price and load behaviour

Figure 1.1: Graphic representation of the relationship between the considered publications, the research questions
and the model extensions

.
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2 Background

This chapter explains the basics for understanding investment and dispatch planning1 for a BSS
in an industrial company. The first Section 2.1 shows the thematic framework, in which this
thesis is located. The subsequent Section 2.2 summarises the technical characteristics of a BSS,
which enable the BSS to offer flexibility for the energy system. Section 2.3 explains how the
transformation of the German energy system will increase the need for flexibility, and which
flexibility markets and products already exist to address this need. Section 2.4 concludes the
chapter by highlighting the regulatory framework and market structures in Germany to provide
flexibility from the perspective of an industrial customer.

2.1 Thematic framework

This section highlights the thematic framework of investment and dispatch planning of energy
flexibility measures. The research focus in this framework includes both a technical and an
economic component. In addition, since investment periods in most cases last several years, this
framework includes a long-term perspective. In contrast, research that focuses primarily within a
short-term time frame on storage or battery management, system controls, energy management,
or bidding strategies is not included. The following explanation of the framework does not claim
to be exhaustive.

To give the reader a notion of the manifold possibilities to view this topic, this section introduces
three relevant dimensions to describe the thematic framework. The first dimension to consider,
Section 2.1.1, is the different flexibility measures that could be used to store energy or allow
for flexible energy generation or consumption. The second dimension, Section 2.1.2, is the
locationwhere the flexibilitymeasures are installed. The third dimension, Section 2.1.3, describes
possible applications, use cases and revenue streams for flexibility measures.

1 Other terms used in the scientific literature are capacity and dispatch planning, as well as design and dispatch
planning.
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2.1.1 Flexibility measures

The first dimension of the thematic framework describes the flexibility measures. In the con-
text of this thesis, flexibility measures include technological installation as well as structural
or organisational changes from a micro-economic perspective. They allow for a temporal or
spatial shift of electricity consumption. The selected flexibility measure sets the technological
constraints for operation and the price of the investment, which both need to be considered to as-
sess the economic potential. This thesis distinguishes five different types of flexibility measures
explained in the following:

• Lithium-ion BSS,

• other BSS,

• other storage technologies,

• sector coupling technologies, and

• organisational flexibility.

Lithium-ion (Li-ion) BSS are the main focus of this thesis and are discussed in detail in Sec-
tion 2.2. However, the market for Li-ion BSS presents multiple types of battery cells, which
mostly vary in their chemical composition. Nevertheless, these types differ in their technologi-
cal attributes such as calendar or cycle life2, charging curve, thermal operation conditions and
hazardous assessment of operation. For stationary applications, the size or the power density of
the different battery cells plays a minor role. As the different Li-ion BSS present varying states
of maturity, the markets offer a large range of prices.

The category of other BSS includes systems, such as the sodium sulphur (NaS) battery or the
redox flow battery, as described in IRENA (2017, p.36). The main characteristics where these
systems differ are their reaction time, power density and energy density. NaS BSS and redox flow
BSS are suitable for long-term storage applications of more than one day (Al-Humaid et al. 2021,
p. 162963) as they present longer reaction times than Li-ion batteries. Both systems are installed
in relatively large sizes compared to Li-ion batteries. In particular, the NaS battery offers very
low discharge rates but coincides with high operational costs as sodium and sulphur are stored
in liquid form at high temperatures. For redox flow systems, the cycle life is no concern (Tohidi
and Gibescu 2019, p. 556) and the energy capacity can be expanded by increasing the tank size
storing the electrolyte. This is an economic advantage (IRENA 2017, p. 87). The disadvantages
are the relatively low efficiency and high system cost compared to the Li-ion BSS.

2 For an explanation of battery parameter, please refer to Section 2.2.2. The parameter definitions for BSS can be
adapted to explain other flexibility measures as well. Briefly, calendar life describes the number of years until
the end-of-life condition of the flexibility measure is reached. Cycle life describes the number of full charging
cycles until the end-of-life condition is reached.
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2.1 Thematic framework

The category of other storage technologies utilises an electro-mechanical storage principle, such
as flywheels, pumped water storage or compressed air storage. The flywheel storage system has
a very short reaction time and high power density. Compared to a Li-ion BSS, it has a long
lifetime, almost no cycle life limitations or degradation effects (Choudhury 2021). However,
IRENA (2017, p.61) name its low energy density and high self-discharge rate as a disadvantage.
Pumped hydro storage or the compressed air storage system, the latter is “less proven at a
commercial scale” (Jones et al. 2021, p. 1), are considered large-scale storage systems. They
function as power storage as well as energy storage with a long life and “long storage periods”
(IRENA 2017, p. 51). Nevertheless, pumped hydro storage requires a high initial investment
and long construction time. Both systems depend on geographic conditions. These conditions
are restrictive, as pumped hydro systems need space for a reservoir and a height gradient, and
compressed air systems require a cavern or a large body of water3.

The category of sector coupling technologies or power-to-x technologies summarises another
set of flexibility measures, where electricity is converted into a second energy carrier such as
heat, cold, or hydrogen or used for other means such as mobility in electric vehicles. In most
cases, this limits some revenue streams, as electricity is not fed back into the grid. At the same
time, sector coupling offers additional revenue streams, as hydrogen can be used as process gas
in industry, heat can be used for process heating in industry or space heating in residential and
commercial buildings.

Finally, the category of organisational flexibility or “functional energy storage” (Gruber 2017,
p. 1) describes a flexible operational mode of electricity consumers. In industry, this could be
executed through variation of the process schedule, flexible stock planning or a behavioural
change of the machine operators (Behrens et al. 2022, p. 633). In the commercial and residential
sector, the process flexibility is limited compared to the industry sector but could be achieved
through temperature variation in heating and cooling systems or a temporally delayed operation
of devices. Nevertheless, these measures differ in terms of activation time, activation cost and
the individual must-run conditions of the processes. For most of the organisational flexibility
measures, cycle life is an issue, as interrupted processes or a reduced operation influence the
durability of the process materials.

2.1.2 Flexibility location

The second dimension describes the location of the flexibility measure, as the optimal investment
and dispatch decision depends on the chosen location. Therefore, the flexibility measure can
either be installed:

3 Underwater compressed air storage systems store compressed air in capsules underwater at the ground of a lake
or an ocean. The air pressure is the same as the underwater pressure storing air at an isobaric state. Nevertheless,
this technology should be considered relatively immature (Budt et al. 2016, 265).
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• at an industrial manufacturing plant,

• in a commercial building,

• in a residential home or area,

• at a power plant, or

• directly at grid level.

This thesis studies the industrial sector as the flexibility location. However, industrial manufac-
turing plants are heterogeneous in terms of size, peak electricity demand, load behaviour and
predictability of load changes. Even within the same industrial branch, the load behaviour of
different companies can differ significantly (Nystrup et al. 2021, p. 2). The individual energy
demand depends, for example, on the organisational structure, the production design, order
situation and capacity utilisation of the business. Comparing single companies, the economic
potential may also depend on individual energy contracts, tariffs, grid access, or choice of energy
carrier.

With a lower energy demand, the commercial sector offers various use cases for flexibility
measures (Campana et al. 2021). Commercial buildings such as supermarkets usually have a
high demand for cooling energy in their food storage, while hotels require space heating and
cooling as well as process heat for hotel laundry. Moreover, delivery services may employ a fleet
of electric vehicles. Additionally, many commercial buildings offer idle space for the installation
of PV on rooftops. However, in many commercial businesses, energy cost plays a significant
role and energy cost reduction affects the overall business performance. This is to the economic
advantage of flexibility measures.

The residential sector shares some characteristics with the commercial sector. A sector cou-
pling potential exists as well because residents require electricity, heating, cooling and mobility.
Furthermore, a self-generation potential exists through PV or solar panels on rooftops. Neverthe-
less, available electricity tariffs or grid charges may differ compared to the industry sector and
commercial sector. Additionally, the ownership structure, especially in multifamily residential
buildings, may diminish the flexibility potential (Braeuer et al. 2019a).

The sight of a power plant as a location for flexibility measures represents a different case to the
former three locations, as only electricity generation and no consumption plays a role. In this
regard, the flexibility measure can either be part of a virtual power plant4 or be integrated into
the operation of a conventional power plant. Integrating a storage system into a virtual power
plant allows the operator to not just sell electricity on the electricity markets, but also provide
ancillary services. Integrated into a conventional power plant, the storage system allows for a

4 Virtual power plants describe the centralised, aggregated management of decentralised generators and con-
sumers (Naval and Yusta 2021)
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more steady operational mode, most relevant for fluctuating peak load power plant operations
such as open cycle gas turbines. The steady operation mode increases the duration of the turbine
and decreases the CO2-emissions while expanding electricity marketing options.

Finally, among the considered flexibilitymeasures, installation at grid levelmainly aims at storage
systems and sector coupling technologies. The systems may be operated by the grid operator, a
power plant operator or an independent third party. Such systems may defer or even avoid grid
expansion at the distribution or transmission level. In this case, the storage system locally offers
generation or consumption capacities in times of high grid utilisation, thus, relieving possible grid
congestions. Additionally, such systems improve resource adequacy through long-term energy
storage for more than a day, week, or month. The systems are also well suited for the provision
of ancillary services.

2.1.3 Flexibility application

The final dimension describes possible applications, revenue streams and use cases for flexibility
measures and storage operations. Its applicability and economic performance depend on the
chosen flexibility measure as well as the location of said measure. The nine categories of this
dimension cannot be clearly separated from each other, as there are various intersections between
individual categories. For this thesis, the flexibility applications are categorised as follows:

• Balancing ancillary services,

• energy spot market trading,

• grid charge reduction,

• optimised self-consumption,

• non-frequency ancillary services,

• power quality and reliability,

• resource adequacy,

• optimised plant operation, and

• optimised grid operation.

The first four categories are extensively studied in this thesis and, therefore, addressed in detail
in Section 2.4. First, balancing ancillary services categorise activities on the balancing reserve
markets such as frequency containment reserve (FCR), automated frequency restoration reserve
(aFRR), or manual frequency restoration reserve (mFRR). Multiple flexibility measures can
provide balancing ancillary services at all considered locations. The category of energy markets
describes first of all activities on all the electricity markets, a revenue stream applicable to all
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flexibility measures and locations, but furthermore addresses markets for other energy carriers
relevant for sector coupling technologies (Zare Oskouei et al. 2021). The category of grid charge
reduction aims at all activities that reduce grid charges, such as peak shaving or peak shifting. It
applies only to the industrial, residential or commercial location. Such is the category of optimised
self-consumption. Here, the flexibility measure optimises or increases the consumption of self-
generated electricity through PV or combined heat and power (CHP) plants.

Compared to the first categories, the following categories are less standardised and the business
models behind these applications are more heterogeneous and less mature. The markets for
these applications are less transparent, and the economic evaluation of the delivered services is
challenging, i.e. some applications are not directly linked to earnings or revenue streams.

Non-frequency ancillary services are described in Subsection 2.4.4. Among these services,
at least for the reactive power provision and black start capability, a transparent and non-
discriminatory market is to be created. BSS or flywheels are particularly suitable for these cases
regardless of location, especially, due to their self-sufficient operation. Furthermore, such non-
frequency ancillary services play an important role in isolated, decentralised power grids as they
lack the physical attributes of large conventional energy systems.

The category of power quality and reliability is a special use case for the industrial sector, but
may also inflict on the residential and commercial areas. This use case is also addressed by
uninterruptible power supply (UPS) systems, which are usually combined with a storage unit
(Zhao et al. 2021).Mainly, it addresses the issue of manufacturing processes, facilities, or devices
that react highly sensitive to frequency or voltage deviations (Tang et al. 2022, p. 208). In these
cases, a BSS is well suited to guarantee a stable power supply with few frequency and voltage
deviations. Power reliability includes risk mitigation measures against power outages, mostly
through backup generators, BSS, or hydrogen CHP.

Resource adequacy as a categorymainly describes the perspective of a regional or national energy
system planner to guarantee sufficient energy supply during all times of a year5. Fitzgerald et al.
(2015, p. 16) describe resource adequacy as the means “to incrementally defer or reduce the need
for new generation capacity and minimise the risk of overinvestment in that area”. By installing
flexibility measures in different locations, investments in generation capacities such as open cycle
gas turbines to match inelastic peak electricity demand might be avoided. Thereby, the cost of
the energy system could be reduced. Nevertheless, in absence of capacity mechanisms for other
technologies but conventional power plants (Bublitz et al. 2019), resource adequacy should be
viewed as a secondary benefit of electric market activities of flexibility measures, since it is not
directly remunerated.

5 Article 23, Paragraph 1, regulation 2019/943 of the European Parliament and of the council of 5 June 2019
on the internal market for electricity defines the adequacy assessment to assess “the overall adequacy of the
electricity system to supply current and projected demands for electricity”.

14



2.1 Thematic framework

Integration of flexibility measures, mostly storage systems, into a power plant fosters operation
flexibility, which improves economic, emission and technological aspects of the plant operation,
as indicated by Bulut and Özcan (2021). The authors show that combing a natural gas power
plant with a BSS prolongs the health of the equipment, generates higher revenues and lowers
CO2 emissions. In a thermal-driven CHP, a BSS allows for a more flexible electricity marketing
strategy (Rouzbahani et al. 2021). Nevertheless, a larger number of system components requires
higher coordination efforts among these components. In this regard, Rouzbahani et al. (2021)
review virtual power plant concepts, where storage systems are an integral part, and discuss
different scheduling methods.

Finally, the category of optimised grid operation defines measures that relieve strain on the
grid and defer grid investments. As studied by Richter and Porst (2022), in Germany grid
operators usually own such flexibility measures6. Because of the European unbundling of the
electricity market, a grid operator-owned storage system would not be allowed to offer its service
on any other market. The profitability of such a system can only be estimated considering the
grid operation as a whole, as the storage operation defers otherwise needed grid investments
(He et al. 2021). Other marketing concepts are possible, where grid operators offer monetary
incentives for owners of flexibility measures to support an optimised grid operation. However, a
“well-functioning remuneration system is crucial for successful implementation” (Brinkel et al.
2022, p. 8).

2.1.4 Further considerations

The previous subsections show how the selected flexibility measure and its technological con-
straints define for what application such measures might be feasible. An economically successful
operation depends on the location, which influences the flexibility potential, and what revenue
streams are associated with the respective application. Nevertheless, this highlights only a section
of the overall thematic framework. The following elaborates on further considerations in this
field.

Potential revenues additionally depend on geographical attributes. Different regions or countries
may apply other legal regulations and incentive schemes, or present other market conditions,
concerning competitors, prices, or entry barriers. The climatic conditions may also differ, which
results in varying self-generation potential through PV and may also affect the sector coupling
potential as heating demand changes. Geographical features define the sector coupling poten-
tial, as pumped hydro and compressed air storage systems require certain geo-conditions and

6 In line with directive 2019/944 of the European Parliament and of the Council of 5 June 2019 on common rules
for the internal market for electricity, the German parliament changed legislation to allow grid operators to own
and operate storage systems for congestion relief, so called “Netzbooster” (Bathke 2021). The transmission
grid operator plans to run such a sight in the South of Germany by the year 2026 (TransnetBW 2021).
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conversion to hydrogen or e-mobility depends on the connectivity to other energy and transport
infrastructure. Sector coupling and organisational flexibility consideration also include local
societal characteristics as a variation of heating, driving, or working patterns that coincide with
behavioural changes and require a high level of social acceptance.

From a business perspective, multiple approaches exist to evaluate the economic efficiency of
an investment. Most commonly used among company decision makers are the usage of the net
present value (NPV) and the internal rate of return (IRR) (Brealey et al. 2011, p. 104). Both
approaches consider the time value of money, the projected future cash flow and the opportunity
cost of capital. The NPV subtracts the discounted cash flow over the investment period from the
initial investment. The IRR describes the discount rate when the NPV would be equals zero.
Both approaches yield similar results, but the IRR method “can also be a misleading measure”
(Brealey et al. 2011, p. 108). The calculation of the equivalent annual cash flow is a variation
of the NPV method, most appropriate if the annual cash flow is constant. A way to consider
the financing situation of companies in the decision process is by using the weighted average
cost of capital (WACC) instead of the estimated opportunity cost of capital. Additionally, some
decision makers calculate the payback period without discounting future cash flows, ignoring
the time value of money or the discounted payback period with the discounted cash flow. The
payback period defines the time until the cumulated cash flows surpass the initial investment.
However, both payback period approaches ignore cash flows occurring after the payback period
and should not be used isolated without other investment measures.

Finally, for the identification of the optimum BSS investment and dispatch, various methods can
be applied. These methods also consider uncertain market and load behaviour in multiple ways.
Section 3 summarizes the different methodological approaches.

2.1.5 Categorisation of this thesis

With its quick reaction time and relatively long storage periods, the Li-ion BSS is well suited
to serve multiple short- and medium-term applications simultaneously. Installed at an industrial
site, the BSS is asserted with a high flexibility potential. It is the focus of this thesis to better
understand the techno-economic evaluation of such flexibility measures and to answer the in
Section 1 raised research questions. Therefore, within the thematic framework, this thesis focus
lies on Li-ion BSS as a flexibility measure located at an industrial manufacturing plant. The
BSS’s applications are balancing ancillary services, energy markets, grid charges and optimised
self-consumption.

The Li-ion technology has reached a high level of maturity, and multiple large-scale stationary
BSS already exist globally. Therefore, broad knowledge of its technical attributes and its system
prices exists. Themarket for Li-ionBSS indicates fewer price variations thanmarkets of immature
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storage technologies. Additionally, the BSS technology is independent of geographic conditions
and can be installed in a variety of sights in the same manner.

By itself, a BSS system, connected at grid level, can serve the balancing reserve market as well
as trading electricity on the energy markets. The combination with an industrial manufacturing
plant allows the inclusion of two additional applications, reduction of grid charges and the
optimised self-consumption of self-generated electricity. For this thesis, the options for the BSS
operator are to offer FCR, do arbitrage trading on the day-ahead and intraday electricity market,
reduce the peak load to avoid grid charges, and optimise the consumption of self-generated PV
electricity.

This thesis’ focus is on the German national level. It partly neglects specific legal, regulatory, and
economic conditions, such as market entry conditions, metering operation conditions, specific
fees and taxes, as well as ownership and financing conditions. The objective of the thesis’
optimisation model is to minimise the equivalent annual cash flow. The optimisation approach
simplifies energy management system constraints as well as the control system constraints of a
real-life BSS operation.

2.2 Battery storage systems

This section highlights the technological characteristics and specific attributes of BSS, with the
main focus on Li-ion BSS. First, the basic principle of a Li-ion battery cell is explained. Second,
for this thesis, the most relevant battery parameters are introduced. The final subsection lists the
main Li-ion battery types and gives an overview of the Li-ion battery market.

According to the Sandia National Laboratories (2022) database, Li-ion storage systems currently
account for around 26% of the world’s installed large-scale electrochemical storage capacity. Li-
ion technology is characterised by “large specific energy, large specific power, high charging and
discharging efficiency and low self-discharge” (Korthauer 2013, p. 15). A comprehensive insight
into Li-ion technology is provided for example by Jossen andWeydanz (2006), Korthauer (2013),
Julien et al. (2016), Kaschub (2017) and Maiyalagan and Elumalai (2021). For information on
other battery technologies, please refer to Jossen and Weydanz (2006), Wietschel et al. (2015)
and Kularatna and Gunawardane (2021), among others.

2.2.1 Basic principle

BSSs are composed of individual battery cells. In battery cells, chemical energy is converted
into electricity through an electrochemical process. Secondary batteries, also called rechargeable
batteries or accumulators, have the important property that they can reverse this electrochemical
process and thus absorb and release electricity through charging and discharging. One of these
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secondary batteries is the Li-ion battery, whose significance, driven by its use in electric vehicles,
has also increased in the energy industry.

The functional principle of the Li-ion battery cell as for all electrochemical processes is based on
the reduction and oxidisation of two electrodes, also named redox reaction. During oxidisation,
one electrode emits an electron, which in the reduction process is attached to the other electrode.
In the Li-ion battery, the electrodes are comprised of Lithium compounds. Since Lithium has
an “extremely low electrode potential (−3.04 V vs. standard hydrogen electrode)” (Xie and Lu
2020, p. 1), Li-ion battery cells can reach a rated voltage of up to 4 V , dependent on the other
compound elements. Compared to Lead-acid battery cells with a rated voltage of around 2 V ,
the Li-ion battery cells exhibit relatively high energy densities.

According to Choi et al. (2021, p. 7), Kurzweil (2020, pp. 143-145) and Kaschub (2017, pp.
48-49), in the Li-ion battery cell, lithium atoms are embedded in the active materials of the
two electrodes. The two electrodes are separated by a porous separator, which is surrounded
by a liquid electrolyte7. During the charging and discharging process, one lithium atom at a
time is ionised through oxidisation by releasing an electron. These Li-ions are carried from one
electrode to the other by the ion-conducting electrolyte, while the released electron travels across
the conductors applied to the electrodes. Arriving at the other electrode, the Li-ions are reduced,
taking up the electron again, and are neutralised. When discharging, the Li-ions are released
from the negative electrode, also called the anode, and flow to the positive electrode, the cathode.
When charging, the process is reversed.

To make use of the energy and power of the individual battery cells, they are connected in series
or parallel and assembled in a BSP. The correct composition of these battery cells in a BSS should
ensure “efficient, reliable and safe operation of the energy storage system over a very long period
of time” (Korthauer 2013, p. 95). Here, it is necessary to regulate the mechanical, electronic
and thermal characteristics of battery operation, as well as to establish communication between
cells within a BSS and to the outside. For stationary use, the battery cells are usually combined
into modules 8, which in turn are assembled as racks. These are assembled in containers or
even buildings, depending on the desired performance and capacity. For safe, efficient and gentle
operation, a coordinated thermal and electrical control is required at the level of the individual
cells, the module, the rack and the overall system, as also described in Hesse et al. (2017) and
Lawder et al. (2014). Here, the battery management system (BMS) constantly monitors the
voltage, current, and temperature at the cell level and ensures charge equalisation between the
individual cells. The thermal management system at all levels stabilises the temperature of the
battery cells to ensure safe and long-lasting operation. Moreover, the thermal and electronic

7 In the case of the solid-state battery, the electrolyte does not occur in a liquid state, but in a solid state, so that
the use of a separator is not necessary.

8 “In the case of large stationary lithium storage systems, current concepts pursue a modular design of individual
cells connected in parallel and series to be able to meet the necessary energy and performance requirements”
(Korthauer 2013, p. 424).
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control is controlled by the higher-level energy management system, which also includes the
power electronics for connecting the BSS to the power grid. For the case studies of this thesis,
the BMS is not further investigated, but an efficient BMS is assumed.

2.2.2 Battery parameters and battery ageing

To make the decisive battery properties comprehensible, it is necessary to define the most
important battery parameters. Here, we refer to the definitions according to Fischhaber et al.
(2016, p. 29) or Petrovic (2021, pp. 21-22) and assume the energy units for energy in kWh

and power in kW . The capacity of a BSS is given in kWh. Some manufacturers and scientific
publications distinguish between nominal capacity and usable capacity. The useful capacity is
smaller than or equal to the nominal capacity. The difference between these two values describes
the part of the nominal capacity that is not used for safety and ageing reasons. In this work,
it is assumed that the useful capacity is equal to the nominal capacity. The state of charge or
SOC of a BSS describes the relationship between the charged amount of energy and the useful
capacity. The SOC usually quantifies the charge ratio as a percentage, but can also be specified
as an absolute state of charge in kWh, if applicable. The Depth of Discharge or DoD indicates
what proportion of the available energy in the BSS is discharged during a discharge process and
ranks between 0%, no discharge, and 100%, complete discharge.

The charging rate or C-rate indicates how fast a BSS is completely discharged. Roughly, the
parameter can be calculated as the ratio between discharge power and useful capacity, but it is
dimensionless. With a C-rate of 1, the BSS is completely discharged within one hour, with a
C-rate of 2, only 30 minutes are needed and with a C-rate of 0.5, again 2 hours. The life of a
battery cell is distinguished between a cycle life and a calendar life. The cycle life is described
in this context as the achievable number of equivalent full cycles until the end of life of the
battery cell. An equivalent full cycle is “generally understood to be a charge throughput twice
the nominal capacity” (Fischhaber et al. 2016, p. 32). The calendar life describes the duration in
months or years until the end of life is reached. The end of life in turn is described by the End-
of-Life-criterion (EoL). The EoL indicates in percent what proportion of the nominal capacity
is still available as useful capacity at the end of the service life. If the EoL criterion is reached,
it can be assumed that the BSS deviates from the original operating behaviour and that the
intended application can no longer be adequately served (Kaschub 2017, p. 51). Often, a residual
capacity of 80% is assumed9, but lower values may be possible, especially in the stationary
sector (Kaschub 2017, p. 52). Overall, the real EoL depends strongly on the “subjective” mode
of operation (Fischhaber et al. 2016, p. 35).

9 “In the “Electric Vehicle Battery Test Procedures Manual” of the USABC, an EoL = 80%, which is to be
understood merely as a rough guideline value, was first stated in 1996. This value is still adopted or only
slightly varied in almost all publications today” (Fischhaber et al. 2016, p. 35). Moreover, Petrovic (2021, p.
22) and Choi et al. (2021, p. 13) name 80% as the EoL criterium for many batteries.

19



2 Background

2.2.3 Charging and discharging behaviour

The charging and discharging process of common secondary battery cell types depends on
various parameters, such as current or C-rate, voltage, or temperature. For a better understanding
of the operational behaviour of battery cells, Figure 2.1 illustrates the discharging current and
voltage curve of a hypothetical battery cell. According to Petrovic (2021, pp. 30-31), Figure 2.1
depicts three operational modes, the constant power, constant current and constant resistance
mode. The solid line in Graph (a) shows a constant current for the full discharge of the battery.
Corresponding in (b), the solid line indicates the voltage behaviour during discharge in constant
current mode. The voltage curve can be divided into three phases, a steep decline at the beginning
of the discharging process, a linear decline during the majority of the process and another steep
decline at the end. Overall, the voltage decreases because the amount of active material in the
anode is reduced through oxidisation. This leads to a lower potential difference between the two
electrodes, as charges move from anode to cathode. Finally, lower electrode potential results in
lower voltage. The steep decline at the beginning is attributed to the activation overpotential that
starts the reaction process and that is needed to overcome kinetic limitations (Kasnatscheew
et al. 2016). The steep decline at the end indicates, that no further active material exists for the
reaction.

For the other two operational modes, the curves can be deducted from the electro-technical
relationship of voltage, current, resistance, and power. For constant power, the product of voltage
and current, a decreasing voltage requires an increase in current for the product to be constant.
For the constant resistance, the quotient of voltage and current requires a decreasing current to
compensate for lower voltage levels.
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Figure 2.1: (a) Discharging current curve of a battery cell with different charging modes, (b) corresponding dis-
charging voltage curve according to (Petrovic 2021, pp. 30-31). The curves do not represent real data,
they illustrate the concept.

A crucial battery cell attribute is the voltage limitation. Battery cells should not be discharged
under the voltage limit. Similarly, for the charging process, the upper voltage limit should not
be exceeded. Although Wang et al. (2021) show advantages in performance for overcharging
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a battery cell for SOC < 108%, exceeding the limit and repeatedly overcharging leads to
significant capacity losses of the cell. Additionally, exceeding the limit may “result in physical
damage to the battery and immediate as well as long-term negative effects [...] even thermal
runaway and explosion” (Petrovic 2021, p. 23). One of the tasks of the BMS is to stay within
these voltage limitations (Lawder et al. 2014, p. 1016).
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Figure 2.2: (a) Discharging voltage curve of a battery cell with different constant current according to Petrovic
(2021, pp. 30-31). The curves do not represent real data, they illustrate the concept. (b) Discharging
voltage curve for constant current at different temperature levels according to Buchmann (2021).

Figure 2.2 Graph (a) elaborates on the current-voltage relationship further. The illustration
according to Petrovic (2021, pp. 33) indicates that higher currents or C-rates coincide with lower
voltage levels. Vice versa, lower currents or C-rates coincide with higher voltage levels. Higher
currents translate to a faster transport of electrons from anode to cathode. Thus, also the potential
and subsequently the voltage decreases faster. Therefore, the manufacturer usually declares a
nominal current as well as a nominal voltage for the battery to operate. If the charging process
deviates from the nominal current, so does the voltage curve. Considering the hypothetical case
in Figure 2.2, it is obvious that higher C-rates also diminish the usable battery capacity. So, a
deviation from the nominal current also varies the nominal capacity. Petrovic (2021, p. 35) state
that “an increase in C-rate from 1 to 8 C can typically lower the usable capacity by 20%-30%”.
Consequently, the nominal current and nominal capacity should be considered according to the
selected battery use case, or the battery behaviour for higher C-rate needs to be properly included
as suggested by (Li et al. 2019).

Finally, the temperature at which the battery is operated or stored has a strong influence on cell
behaviour according toMa et al. (2018, p. 654). Figure 2.2 (b) shows the voltage curve at constant
currentmode for different temperature levels. It indicates, that the voltage level decreases for lower
temperatures. Accordingly, the usable capacity is also reduced at low temperature levels. This is a
phenomenon known from electric vehicles (EVs) during winter. This is because the temperature
influences the chemical reactivity. Chemical systems are less reactive at low temperature andmore
reactive at high temperature (Petrovic 2021, p. 34). Thus, the redox reaction can ionise fewer
Li-atoms than at nominal temperature. At higher than nominal temperature, higher reactivity
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results in higher usable capacity. Therefore, higher temperatures may appear advantageous for
battery operations. However, increased reactivity influences not only the main redox reaction
but also side reactions that have negative effects on battery characteristics. Effects on ageing and
degradation are discussed in the following section.

2.2.4 Battery ageing and degradation

The mode of operation has a significant influence on the ageing of the battery cells. In particular,
the DoD, SOC, C-rate and the temperature, at which the battery cell is operated, can influence
the capacity reduction and impedance increase of the cell (Paarmann 2021, p. 17). In general,
both “cycling and storage of the cells lead to a loss of active lithium and, therefore, to a loss
of cell capacity” (Lang 2018, p. XV). The ageing or degradation due to cycling and storage of
the battery cell is also referred to as cycle or calendar ageing. In addition to the loss of active
lithium, there is also a loss of active material in the electrodes and an increase in the internal
resistance of the cells (Barré et al. 2013, p. 682). Korthauer (2013, p. 17) cites three ageing
effects for this, the increase in the “solid electrolyte interface” (SEI), cracking in the active
material due to mechanical stress and the volume change due to the intercalation of Li-atoms
in the active material. The SEI affect the anode and is a “durable layer [...] built up on the
active material of the negative electrode during production” (Korthauer 2013, p. 17). The SEI is
immanent for battery operation, as it protects the anode from direct contact with the electrolyte,
which would result in the decomposition of material. Nevertheless, an increased SEI binds Li-
atoms, which decreases the capacity. Furthermore, it reduces ionic conductivity, which increases
the impedance. Cracking of the electrodes leads to a reduced surface area through oxidisation.
Volumetric changes result in loss of contact within the electrode, which decreases the capacity
through loss of active material and increases impedance through reduced conductivity (Weiss
2019, pp. 19-21).

As mentioned above in Section 2.2.3, the temperature during rest and operation of the cell
increases the chemical reactivity of cell material. It also fosters side reactions, such as growth
of SEI layer, oxidisation or electrolyte decomposition. Liu et al. (2021) give an overview of
the temperature effects on battery degradation. Additionally, the operational attributes influence
each other, as high C-rates increase the internal cell temperature. Therefore, Xu et al. (2021)
attribute the cell degradation to the effect of a C-rate induced temperature rise and to an isolated
effect of high temperatures and high C-rates. Therefore, high C-rates could result in cracking
of the cathode diminishing the battery capacity. Furthermore, higher temperatures reduce the
thermal resistance within the cell, which allows for higher DoDs. At the same time, high DoDs
negatively affect battery capacity (Ecker et al. 2014). Finally, circular dependencies exist as
higher ohmic resistance, because of capacity losses, results in higher cell temperature during
operation, which in turn fosters higher capacity losses (Xu et al. 2021). Moreover, Choi et al.
(2021, pp. 11-12) name additional reversible and irreversible heat generating processes during
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battery operation. Therefore, efficient thermal management to control the ambient temperature
and the cell temperature is a decisive factor for battery degradation. However, a quantification of
the ageing effects is difficult as it depends on the battery cell materials, its chemical composition,
the production process, and the operational mode (Barré et al. 2013).

2.2.5 Li-ion battery types and market overview

The battery properties are particularly dependent on the chemical composition of the cathode
and anode. Therefore, this chemical composition is often used in the naming of different battery
types. The battery types currently used in electric mobility usually have a nickel-manganese-
cobalt (NMC) compound as the cathode material, with graphite as the anode material10. These
battery types are characterised by a “good compromise between energy density, cost and safety”
(Doppelbauer 2020, p. 155). However, the availability of the rawmaterials manganese and cobalt
is relatively scarce, resulting in relatively high prices on the world market. Therefore, lithium
iron phosphate (LFP) is a possible alternative cathode material for stationary use. Even though
the energy density is lower, LFP cathodes have a price advantage over NMC cathodes and are at
the same time very safe regarding the fire hazard (Korthauer 2013, p. 41). When selecting the
anode material, it is possible to deviate from graphite and replace it with lithium titanate (LTO).
11. LTO battery cells are safer and more durable in use.

Looking at the market for stationary BSS, NMC, LFP and LTO are the most common battery
types. Figure 2.3 shows the shares of the individual battery types in relation to the total installed
capacity of BSS active worldwide. The figures come from the Sandia National Laboratories
(2022) database and show that the majority of the world’s BSS use lithium iron phosphate as the
cathode material, followed by nickel manganese cobalt. 17.6% still go back to lithium titanate
as anode material, although here the cathode material is not known. These three types also
determine the German market according to the figures of C.A.R.M.E.N. e.V., who has compiled
an overview of suppliers of stationary BSSs in writing (C.A.R.M.E.N. e.V. 2021b) and online
(C.A.R.M.E.N. e.V. 2021a). The online version lists 32 manufacturers and 449 BSS products
online. 77% of the systems can be assigned to the three types NMC, LFP and LTO. The system
sizes listed in the database range from 1.41 kWh to 4, 220 kWh. Table 2.1 summarises the most
important findings. Most suppliers offer LFP systems, followed by NMC suppliers. LTO cell
types are only listed by one supplier in the database. The stated characteristics for the cycle life of
the BSS vary greatly for the NMC and LFP battery types, from a minimum of 1,500 equivalent
full cycles to 10,000 full cycles. The service life of the LTO systems is particularly striking, with
20,000 equivalent full cycles. The database also shows an average price for large-scale storage
of 854e/kWh for the year 2021 (Eble 2021).

10 NMC “is currently the standard material for the batteries in many electric cars” (Doppelbauer 2020, p. 155)
11 “The Li4Ti5O12 (LTO) spinel is considered as the most appropriate titanium-based oxide for use as anode in

Li-ion batteries, and is actually considered as a viable anode for Li-ion batteries” (Julien et al. 2016, p. 354)
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Other Lithium-ion battery types
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Figure 2.3: Pie chart of globally active BSS in terms of installed capacity according to Sandia National Laboratories
(2022) with a total capacity of around 503MW in 2020.

Battery type Number of suppliers Cycle Life
NMC 7 1,500-10,000
LFP 14 3,650-10,000
LTO 1 20,000

Table 2.1: List of Li-ion BSS suppliers in Germany and the provided battery types according to C.A.R.M.E.N. e.V.
(2021a).

2.3 Flexibility in the energy system

The national and global CO2-emission targets require a change in the generation portfolio in
the energy system, through which a growing share of RES replaces conventional fossil energy
sources. However, conventionally operated power plants such as gas or coal-fired power plants
are regarded as dispatchable generation capacities in the sense that they, to a certain extent, can
adapt their generation to the load. They, therefore, provide the flexibility to keep generation and
load in balance. A loss of these generation capacities also results in a loss of flexibility, which
can only be replaced to a limited extent by RES plants. This section describes how the future
demand for flexibility will increase and which measures have already been installed to stimulate
the supply of flexibility.

2.3.1 Flexibility demand

As mentioned above, some conventional fossil-fuelled power plants are dispatchable in the sense
that electricity generation is determined by the fuel supply and the fuel is a largely controllable
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production factor. Conventional power plants can therefore adapt their electricity generation
to a certain extent to load changes in the power grid by varying the fuel supply. In contrast,
wind and solar energy sources are volatile and intermittent and, above all, not dispatchable12.
Consequently, wind and solar power plants are rather limited in their adaptability to changing
load conditions. Modern wind and solar power plants can throttle their generator output to
counteract load reduction in the grid, but an increase in power supply depends on the availability
of renewable energies. This is most evident at night when no sunlight is available. Therefore,
a higher share of renewables in the system is associated with a higher degree of volatility and
intermittency on the supply side.

Among the conventional power plants, some plants are better suited to adapt their generation
than others, depending on their techno-economic constraints. Base load power plants such as
nuclear, lignite, or run-river power plants are usually “not designed to respond to major shifts
in output” (Shivakumar et al. 2017, p. 152). This is due to relatively low fuel costs and long
start-up times. Intermediate load power plants such as hard coal and combined cycle gas power
plants are designed to operate at partial-load with fewer full-load hours (Strauß 2009, p. 32).
Therefore, these plants are equipped to address load variations during the day. The fastest
reacting conventional power plants are the peak-load power plants, such as open-cycle gas
turbines or pumped hydro storage plants. Open-cycle power plants coincide with low investment
and relatively high fuel costs. These plants are designed to operate only a few hours a day and to
adapt their generation to sudden load changes within minutes (Shivakumar et al. 2017, p. 153).

A reduction in dispatchable generation capacity in the systems also affects the ability to bal-
ance short-term fluctuations in load and generation in the power grid, observable as frequency
deviations. The mechanical shaft in rotating synchronous machines such as a power generator
in a conventional power plant provides the inertia needed to spontaneously balance supply and
demand in the power grid. Therefore, many conventional power plants are particularly good
at responding to momentary imbalances. Even though it is technologically possible to enable
instantaneous response time of RES power plants (Agricola et al. 2014, p.54), these systems are
not yet commercially available (Kraiczy 2021, p. 11). “Generally, the more rotating synchronous
machines, the higher the inertia and the slower the rate of change of the frequency deviation”
(Ela et al. 2011, p. 24).

In addition to the temporal uncertainty and variability of generation from RES plants, there is
also a site-specific component according to Kondziella and Bruckner (2016, p. 11). Conventional
power plants are built where a high load must be satisfied. RES plants, on the other hand, are
built in locations where the RES potential is high, i.e. in places with high solar irradiation and
a high number of strong wind hours. This allows these plants to operate with high economic
efficiency. As a result, the need for flexibility has to be assessed site-specifically and also

12 Some RES, on the other hand, can be considered dispatchable, e.g. hydropower, pumped storage, biomass, and
geothermal energy
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depending on the utilisation of the power grid. In addition, Brunner et al. (2020) point out
that the flexibility demand of a power system varies under different system configurations. For
example, the flexibility demand depends on the share of RES, the grid expansion, the import
and export capacities as well as the operating mode of the RES plants.

Various scientific studies have assessed the flexibility needs of an energy system (Kondziella and
Bruckner 2016). Studies assume that the increasing share of renewable energies in the energy
system will require a higher degree of flexibility than the traditional energy system (Ma et al.
2013, Sterner and Stadler 2014, Beucker et al. 2020).

Several definitions and characterisations of flexibility exist (Fraunhofer IFF 2020, Michaelis
et al. 2017, Alizadeh et al. 2016). This thesis refers to Beucker et al. (2021, p. 11), who define
flexibility in terms of the following attributes:

1. Direction of power demand, positive or negative

2. Duration of power demand

3. Activation time of the power demand.

The direction refers to whether there is a positive or negative residual load. In this thesis, the
residual load can be described as the difference between the load and the non-dispatchable RES
generation. As no uniform definition exist, residual load may also include must-run thermal
generators and other generators “assumed to be inflexible” (Schill 2014, p. 67). Positive residual
load applies to the case, where conventional generation is smaller than the residual load. Vice
versa, for negative residual load, the residual load is smaller than the conventional generation.
Positive residual load is balanced by downward flexibility and is achieved in the conventional
energy systemby increasing the generation of power plants.Negative residual load is compensated
by upward flexibility, which can be achieved by throttling and curtailment of generators. In
addition, there is shifting flexibility, where power is shifted spatially or temporally. A spatial
shift occurs through the utilisation of power grid capacities, and a temporal shift occurs primarily
through the intermediate storage of energy (Michaelis et al. 2017, p. 1). The duration of the power
demand results in requirements for the flexibility measure, as the duration provides information
on the amount of energy required, and energy is defined as the integral of power over time. For
example, a storage system’s ability to provide energy is restricted by its storage capacity. Thus,
in the case of negative flexibility, as soon as a storage facility is fully charged, another storage
system must be activated (Michaelis et al. 2017, p. 3).

The activation time is decisive for the reaction time of the flexibility measure, and the activation
time depends on the source of the system imbalance. As Hirth and Ziegenhagen (2015, p. 1039)
state, negative or positive residual load arises from stochastic forecast errors or deterministic
“schedule leaps”. Schedule leaps are linked to the step-wise electricity market schedules, where
market products are offered in quarter-hourly or hourly time frames. For example, a PV power
plant operator offers a 15-minute energy packet signalling a constant power generation for these
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15 minutes. However, this constant 15-minute schedule value will differ from the real-time
continuous physical generation values. “Deterministic sources of system imbalances can be
forecast quite easily” (Hirth and Ziegenhagen 2015, p. 1040). The stochastic errors occur from
load and forecast errors of load and generation, as well as unplanned outages of generators
or transmission lines. Therefore, the less time is between the detection of the forecast error
and the imbalance realisation, the shorter the activation time. Depending on individual ramp
rates and start-up time, conventional power plants can adjust their schedules accordingly. The
shorter the activation time, the fewer power plants can adjust their schedules due to individual
reaction time. Most conventional power plants are able through a “combination of electrical,
mechanical, and hydraulic means to adjust the input to the turbine (e.g., opening steam valves in
a steam turbine generator)” (Ela et al. 2011, p. 25). Nevertheless, it becomes clear that, based on
the attributes described, different types of power plants can address the demand for flexibility.
Among conventional power plants, gas-fired power plants have the highest operational flexibility
(Agora Energiewende 2017, 47). The phase-out of conventional power plants, therefore, leads to
increasing demand for temporal and spatial flexibility through other technologies (Heffron et al.
2020, p. 5).

2.3.2 Flexibility markets

The previous section described the transition of the energy system and the resulting need for
other flexibility measures. To stimulate the provision of flexibility, different markets and products
have been introduced. These can be distinguished according to the division of the German energy
market design into the energy market and the grid sector (Fraunhofer IFF 2020, p. 46). Thus,
electricity producers, traders, and distributors can offer their flexibilities on the energy markets.
In the grid sector, it is possible to offer flexibilities as ancillary services or in the context of
avoiding grid congestions (Beucker et al. 2021, p. 11).

These markets address both the generation and the supply side of the energy system and use
different signals to activate flexibility options. The following section briefly explains the different
markets and products. In Section 2.4 the market framework is explained in more detail.

The electricity market balances the medium to long-term generation and load of the power
system. The need for flexibility results from short-term divergences, between 15 minutes and
a few days, between electricity supply and demand. This need for flexibility is considered by
the energy exchanges, namely the day-ahead market, the intraday day-ahead market and the
continuous intraday market. On these markets, the fluctuation of market prices signals the need
for flexibility. In Europe, on the day-ahead market, electricity quantities are traded for every hour
of the next day. On the intraday day-ahead markets, electricity is traded for every 15 minutes
of the next day, and it allows for systemic deviations between the hourly and quarter-hourly
schedules to be balanced. In the continuous intraday market, 15-minute power quantities are
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traded up to five minutes before physical delivery13. The continuous market offers the possibility
to balance divergences between market activities and updated forecasts for load and generation.
The short-term characteristic of the continuous market technically limits flexibility measures
and increases the market price spread compared to the day-ahead market.

The ancillary services consider the instantaneous to short-term flexibility, from seconds up
to one hour, required for stable operation of the power grid and grid restoration. Ancillary
services include frequency and voltage stability measures, namely balancing reserve power,
interruptible loads or reactive power compensation. Restoration measures include, above all,
black start capabilities and isolated operation capabilities. The activation of ancillary services is
usually not signalled by market prices, but either directly by the grid operator or automatically
by frequency measurements. The provision of such services is either offered and remunerated
on special marketplaces such as the control reserve market or through bilateral agreements
between the grid operator and the service provider. All ancillary services differ in terms of
their activation time, duration, and energy or power demand. They, therefore, address different
flexibility measures or technologies. The system services are described in more detail in Section
2.4.4.

Finally, the measures to avoid grid congestion target local flexibility needs in the power grid. In
Germany, these activities mainly target the supply side and include redispatch and curtailment
measures. On the demand side and especially on the lower grid levels, interruptible loads can be
used to avoid grid congestion. Activation is signalled directly by the grid operator. In Germany,
there are also various regulations that create incentives for electricity consumers to reduce, adjust
or shift their peak load through demand flexibility (Lange 2021). This demand flexibility is also
referred to as peak shaving. While these schemes were introduced with the intention of reducing
the load on the grid, Fritz et al. (2021) argue that these schemes are outdated and may achieve
the opposite effect as they do not reflect the flexibility needs of today’s volatile energy system.
This is explained in more detail in Section 2.4.3.2.

In the following Section 2.4, the market and regulatory frame are described in more detail. This
thesis particularly addresses the perspective of an industrial company, as the industrial flexibility
potential enables a good adaptation to an increasing intermittent RES supply (Heffron et al.
2020, p. 2).

2.4 Market structure for flexibility measures

This section takes a closer look at the regulatory framework and themarket structure of flexibility
products. In particular, the perspectives of an industrial company in Germany are considered.
This includes the electricity price composition for industrial customers with a special focus on

13 For a detailed presentation of the sequential timing of market products, please refer to Kraft (2022, p. 14).
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electricity marketing and grid charges, as well as the provision of ancillary services through
participation in balancing reserve markets.

2.4.1 Electricity prices for industrial customers

Industrial customers differ greatly from household customers due to their demand profile for
electricity. Especially because of the larger quantities of electricity, industrial customers usually
have to pay lower electricity prices than household customers. The German Association of
Energy and Water Industries e.V. (BDEW 2022) publishes the electricity prices of different
sectors in Germany and their components every year. Figure 2.4 shows the development of the
annual average electricity prices for industrial customers in Germany. The different components
of the electricity price are highlighted in colour. This shows that the largest share of the electricity
price is attributable to procurement, grid charges and operation. The composition of this price
component can be seen as heterogeneous, as it depends strongly on the quantity purchased, the
geographical location, as well as the willingness to take risks and the procurement strategy. To
shed more light on this, the following section takes a closer look at electricity procurement. The
attached Section 2.4.3 provides explanations on the grid charges.
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Figure 2.4: Industrial electricity prices in Germany for the medium voltage level and a consumption between
160, 000 kWh and 20, 000MWh , as of 01.2022 according to BDEW (2022).

29



2 Background

2.4.2 Electricity procurement for industrial customers

Zimmermann and Breuer (2019) present a detailed overview of the electricity procurement
options of an industrial company in Germany. According to this, an industrial company can
either obtain electricity directly from an energy utility company, purchase electricity quantities
in an over-the-counter transaction (OTC transaction) or trade on the power exchange. In the latter
two cases, it is possible either to conclude longer-term forward transactions or to become active
on the spotmarket for short-term purchases. Direct supply by a utility company enables a risk-free
electricity supply for the industrial company, as a fixed electricity tariff is usually agreed upon.
The risk of fluctuating prices lies with the utility. OTC transactions can be concluded either via a
broker or bilaterally. However, in both cases, there is a contractual risk of non-performance. OTC
transactions can generally be described as rather non-transparent and inconsistent. The majority
of German electricity volumes are traded in an OTC transaction (European Commission 2021,
p. 20) and mostly concern long-term supply contracts. However, long-term forward transactions
can also be settled on the power exchange. Here, uniform, transparent and mostly anonymous
electricity quantities are traded.

According to Fraunhofer IFF (2020, p. 53), it is most advantageous for industrial companies to
combine the possibilities of forward transactions with those of the spot market when procuring
electricity. In this way, the quantities of electricity that can be predicted in the long term are
purchased via the futures market and uncertainties in the load forecast can be compensated
flexibly and at short notice via the spot market (Zimmermann and Breuer 2019, p. 18).

Therefore, the spot market on the power exchange is a natural area of application for flexibility
measures. Here, uniform, transparent and, in particular, short-term electricity products are traded.
These are short-term in the sense that there can be a maximum of 36 hours and a minimum of
five minutes between the conclusion of the trading transaction and the physical delivery of the
electricity. Furthermore, the electricity quantities can be traded as a block, for every hour or
every 15 minutes of a day. In relation to the German market area, EPEX SPOT in Paris is the
spot market exchange with the largest traded energy volume. Here, a distinction is made between
different markets according to the time interval between the conclusion of the trade and the
realised electricity delivery, the electricity as quarter-hourly or hourly quantities and the type of
pricing. In the latter case, either a market clearing price or a bid price can be determined. In the
case of market clearing price, the bids are sorted in ascending order by price at the end of the
auction and the last bid accepted is identified. The price of this bid then applies to all accepted
bids on the respective product. Thus, the market-clearing price follows the merit-order, where
the generation types are ranked by their marginal cost. In contrast, the bid price according to the
so-called pay-as-bid procedure refers to the fact that a sell offer is matched with a buy offer at
the same bid price. The transaction is then carried out at this price. This results in several pairs
of transactions with different bid prices for the same product.
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The following is a summary of the spot markets for the German market area and their character-
istics (EPEX SPOT 2021):

• Day-ahead market: auction for each hour of the following day; auction closes at 12 noon;
market clearing price.

• Intraday auction market: auction for each quarter-hour of the following day; auction closes
at 3 p.m.; market clearing price.

• Continuous intraday market: continuous trading of electricity up to five minutes before
delivery; hourly or quarter-hourly products; from 3 p.m. or 4 p.m. of the previous day; bid
price.

In Europe, Germany is the largest andmost liquid market area for electricity trading. Even though
the largest amount of electricity is traded via OTC transactions, about two-thirds, the remaining
share is traded in exchange transactions. This share increased by 3% in Germany from 2020 to
2021 (European Commission 2021, p. 19). As can be seen in Figure 2.5, at EPEX-SPOT the
traded volume of electricity on the intraday market has continuously increased in recent years
and doubled between 2014 and 2019. The volume on the day-ahead market, on the other hand,
has fallen by 14% in the period (Bundesnetzagentur and Bundeskartellamt 2020, p. 236).
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Figure 2.5: EPEX SPOT trading volume for the German market area, based on Bundesnetzagentur and Bun-
deskartellamt (2022, p. 249).

31



2 Background

Participation in the power exchange can be either direct or indirect. To trade directly on the
exchange, an exchange admission is required. The admission is linked to requirements such as
a balancing group responsibility. Indirect participation in the exchange, on the other hand, can
take place via an intermediary, such as a direct marketer or an aggregator. The intermediary
charges a fee for this service. For an industrial company, it depends on its energy needs whether
direct or indirect participation in the exchange is worthwhile. Here it is important to compare
the costs for a stock exchange admission as well as the trading fees of a direct marketer.

2.4.3 Grid charges for industrial customers

Industrial customers that have power metering pay grid charges that are divided into both a
capacity price14 and an energy price15. This is one of the ways in which the grid charges for
industrial customers differ from those for residential customers, which usually only refer to
an energy price in e/kWh. The current grid charge regulation for industrial customers was
introduced to ensure a balanced and fair participation of all end consumers in the grid costs
(keyword “the-user-pays”). The determination of the amount of the grid charge is regulated in
the Electricity Grid Charges Ordinance (StromNEV), in particular in §§ 16 and 17 as well as in
Annex 4. For a clear explanation of the current grid charge regulations, please refer to Fritz et al.
(2021) and (Jeddi and Sitzmann 2019).

The grid charges for industrial customers in Germany have the following main features:

• differentiation into capacity and energy prices,

• “inflection point” at 2,500 annual full load hours16,

• distinction between grid operators, and

• distinction between voltage levels.

These features are explained in more detail below. Section 2.4.3.1 thereby shows the legal
framework for determining the level of grid charges and addresses the specifics of the “inflection
point” as well as the price differences between voltage levels, grid areas and over the years.
Furthermore, in Section 2.4.3.2 the possibilities of grid charge reduction are discussed and,
finally, in Section 2.4.3.3 the problem of the lack of conformity of the German grid charge
regulation with the European legal framework is addressed.

14 The capacity price refers to the maximum electrical power, measured in kW , with which electricity is drawn
from the power grid in a certain period, usually a year.

15 The energy price refers to the total amount of electricity, measured in kWh , which is drawn from the power
grid in a certain period of time, usually one year.

16 The annual full load hours, annual full load hours or also annual usage period is the quotient between annual
energy demand and annual peak load. The value describes how many hours a company would theoretically
draw electricity if it constantly drew electricity at the level of the annual peak load.
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2.4.3.1 Determination of grid charges

For their industrial customers, the grid operators specify their grid charges for each voltage
level17 with a specific capacity price and a specific energy price. As Annex 4 StromNEV shows,
the prices differ for consumption with less than 2,500 annual full load hours and consumption
with at least 2,500 full load usage hours. For an exemplary clarification of this process, table 2.2
presents the grid charges of the Pforzheim municipal utility for three exemplary voltage levels
in 2016.

Annual full load hours Annual full load hours
< 2.500h/a >= 2.500h/a

Capacity price Energy price Capacity price Energy price
in e/kW in ct/kWh in e/kW in ct/kWh

High voltage (HV) 6.77 2.46 67.28 0.04
Medium voltage (MV) 8.39 2.79 64.68 0.54
Low voltage (NV) 9.74 4.18 71.58 1.71

Table 2.2: Grid charges of Stadtwerke Pforzheim GmbH & Co. KG for three exemplary voltage levels in 2016.

The prices are determined using a commonality function and commonality degree in Annex
4 StromNEV and consider the consumption behaviour and peak load in a grid area. The table
shows that the ratio of the price components changes drastically at a threshold value of 2,500
annual full load hours (indicated with the unit h). This threshold value is so specified in Annex
4 StromNEV and is also referred to in the standard as “inflection point”.

For the range of less than 2,500 annual full load hours, the level of the grid charge is primarily
determined by the energy price. This turns around for the range of at least 2,500 annual full
load hours. In this range, the influence of the capacity price on the grid charges is greatest. In
addition, table 2.2 indicates that prices decrease with each higher voltage level.

As Fritz et al. (2021) note, the “inflection point” not only changes the price ratio but also sets other
incentives to adjust the load profile of consumption to the grid charge level. To elaborate on this
point, figure 2.6 serves as an explanation. This figure shows the specific grid charge in ct/kWh

as a function of the annual full load hours for the medium voltage level of Stadtwerke Pforzheim
from 201618. The share of the capacity or energy price in the grid charge is highlighted in colour.

17 Voltage levels describe the seven grid levels into which the German power grid is divided, with the voltage
levels low voltage, medium voltage, high voltage and extra high voltage, as well as the respective transformer
levels between these voltage levels

18 The possibilities of reduced grid charges according to § 19 (2) StromNEV are not considered here. As explained
in Section 2.4.3.2, this includes atypical grid usage according to § 19 (2)(1) StromNEV and uniform electricity
consumption according to § 19 (2)(2) StromNEV
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Figure 2.6: Grid charges in reference to the annual full load hours using the example of Stadtwerke Pforzheim,
medium voltage level in 2016.

At the “inflection point” of 2,500 annual full load hours, the ratio of the price components
changes visibly and the trend of the grid charge also changes.

In general, Figure 2.6 makes it clear that the grid charge regulation stimulates high annual full
load hours. This leads to consumers being encouraged to reduce the annual peak load. However,
the incentives to reduce electricity consumption through the level of the energy price component
of the grid charges are much lower for consumers with more than 2,500 annual full load hours
than for consumers with less than 2,500 annual full load hours.

From the consumer’s perspective, the grid charge regulation, therefore, has the effect that en-
courages the use of flexibility measures for peak load reduction or peak shaving for consumption
with at least 2,500 annual full load hours and encourages energy-saving measures for the range
smaller than 2,500 annual full load hours. However, Fritz et al. (2021) point out that this individ-
ual flexibility incentive runs counter to the systemic need for flexibility and is even retroactive.
Thus, peak shaving is carried out independently of the actual dynamic grid load and the strain
on the grid (Perez-Arriaga et al. 2017, p. 76). Even if a continuous demand, analogous to a high
number of annual full load hours, results in a demand that can be planned in the long term, the
grid charges in their structure do not include an incentive to provide flexibility for short-term
grid bottlenecks.
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2.4 Market structure for flexibility measures

In addition, the high energy prices, especially in the range of less than 2,500 annual full
load hours, can reduce the flexibility incentive. This can be explained using the example of
a production-related flexibility measure, which involves shifting production steps over time19.
In the case that price differences on the electricity market serve as a signal for a need for
flexibility, low electricity pricesmay even indicate a surplus of electricity. In this case, production-
related flexibility measures in a plant with a high energy price component are economically
disadvantaged compared to a plant with a lower energy price component, as the production
costs would be higher in the former. According to Fritz et al. (2021, p. 17), this leads to an
“economically suboptimal” use of flexibility capacities. Richstein and Hosseinioun (2020, p. 9)
also describe that this results in “significant economic distortions”. In this context, Jeddi and
Sitzmann (2019) discuss possible alternative grid charging systems with a view to Europe, which
are more responsive to the changing challenges for the energy system.
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Figure 2.7: Grid charges for 100 grid operators in Baden-Württemberg for the medium voltage level in 2016; left
graph refers to 2,000 annual full load hours; right graph refers to 3,000 annual full load hours.

Asmentioned above, it is also important to consider the dependency on location and voltage level,
which are explained graphically in Figure 2.7 and Figure 2.8 respectively. Figure 2.7 shows the
grid fees together with the two price components for 100 grid operators in Baden-Württemberg
sorted by size. Shown are the grid charges for the medium voltage level. The left graph shows

19 The possibility of shifting consumption is described, for example, in Friedrichsen (2015).
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the specific grid charges for 2,000 annual full load hours and the right graph those for 3,000
annual full load hours. The coloured distribution shows the drastic change in the relationship of
the price components to each other, which, as described above, begins at the “inflection point”.
In the comparison of the grid areas, the difference between the lowest and highest grid charge is
the factor of almost four for 2,000 annual full load hours and just under three for 3,000 annual
full load hours, respectively. The level of the grid fee depends on the layout of a grid area as well
as “the typical settlement structure of the area, the consumer structure, the degree of utilisation
and the age structure of the equipment” (Fritz et al. 2021, p. 18) in this network area. In this
context, high grid charges can arise especially from the integration of RES plants and less from
local consumers. In addition, grid charges are usually higher in rural areas than in cities, just as
they are usually higher in the north of Germany than in the south.
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Figure 2.8: Comparison of grid charges for different voltage levels; left bar of the bar pairs refers to 2,000 annual
full load hours in each case; right bar refers to 3,000 annual full load hours.

Figure 2.8 compares the grid fees for different voltage levels for three exemplary network opera-
tors from Baden-Württemberg, the municipal utilities of Überlingen, Pforzheim and Heidelberg.
The specific grid charges for the low-voltage (LV), medium-voltage (MV) and high-voltage (HV)
levels are shown. The grid charges are each shown as a pair; the left bar of such a pair represents
the grid charge for 2,000 annual full load hours and the right bar for 3,000 annual full load
hours. The price components are highlighted in colour and again indicate a strong change in
the grid charge composition at the “inflection point”. Furthermore, it can be seen that the grid
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2.4 Market structure for flexibility measures

charges decrease with each higher voltage level. However, the differences between the voltage
levels vary regionally. For example, the grid charges decrease from low voltage to high voltage
by a maximum of 44% (Pforzheim, 3,000 annual full load hours) and a minimum of 22%
(Heidelberg, 2,000 annual full load hours). However, it can be observed that especially for 3,000
annual full load hours, the capacity price only changes insignificantly depending on the voltage
level compared to the energy price.

The development of the nationwide grid fees shows a constantly increasing trend over the last
ten years (Bundesnetzagentur and Bundeskartellamt 2020, p. 162). For example, commercial
grid charges increased by approximately 12% from 2015 to 2020; for industrial customers, grid
charges increased by approximately 27% in the same period. However, the figures only reflect
an average value for Germany. The development of grid charges at the distribution grid level can
indeed show significant regional differences (Bundesnetzagentur 2021-01-14). As an example,
figure 2.9 shows the development of grid charges for three voltage levels of Stadtwerke Pforzheim
between 2015 and 2021. The increase in grid charges fluctuates between around 61% and 72%
over the seven years. The development is thus in stark contrast to the national average.
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Figure 2.9: Development of grid charges for Stadtwerke Pforzheim; left bar of the pair of bars refers to 2,000 annual
full load hours; right bar refers to 3,000 annual full load hours.
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2.4.3.2 Reduction of grid charges

To reduce grid charges, industrial companies have the option of reducing their peak load, thus
reducing the capacity price component of grid charges. This is described by the term peak
shaving. In Germany, peak shaving is currently incentivised via the annual capacity price. In
addition, the German legal framework currently stipulates that consumers whose individual load
peaks deviate from the load peaks of a grid area are to be offered an individual grid charge
in accordance with § 19 (2) StromNEV. This includes atypical grid usage according to § 19
(2)(1) StromNEV and uniform electricity consumption according to § 19 (2)(2) StromNEV. The
respective individual grid charge must be approved by the competent regulatory authority.

Peak shaving describes the shifting of the peak load of an industrial company. The definition
period for peak load can refer to a year, a month, as in the Croatian case in Publication B, or
variable high-load time windows, as in the case of atypical grid usage. A general overview of the
concept of peak shaving is given in Uddin et al. (2018). In this context, peak shaving is applied in
different areas through different load shifting technologies. For example, Campana et al. (2021)
investigate the use of Li-ion storage in a commercial building for peak shaving and Cossutta
et al. (2022) investigate the use of neighbourhood storage with PV self-generation. Lee et al.
(2021) look at the possibilities of second-life battery storage, Chen et al. (2021) consider sector
coupling at the building level and Golmohamadi (2022) analyses load shifting possibilities on the
process-side in heavy industry. Thus, peak shaving can hold economic benefits for the end-user,
but peak shaving also represents an opportunity to avoid costs at the grid level. He et al. (2022)
show, for example, the economic benefits in the operation of a distribution network. However,
this paragraph is only intended as a brief mention of the concept of peak shaving. Please refer to
Publication A for a more detailed explanation.

Atypical grid usage describes the possibility that a consumer only pays grid charges for
the energy and power drawn within a high-load time window. This encourages the consumer to
draw most of his load outside these high-load time windows, which makes the use of flexibility
measures economically interesting (Weinand et al. 2021). A consumer can only apply for such
an individual grid charge of atypical grid usage for a subsequent year. Whether an actual claim
exists can in turn only be determined ex-post following the subsequent year. The high-load time
windows are decisive for this.

These high-load time windows are determined by the distribution system operator by 31 October
of each year for the following year. They are adapted to the grid load in the grid area and
determined for each of five seasons (winter, spring, summer, autumn, and winter). A high-load
timewindow describes a continuous period of a day to the nearest quarter of an hour, for example,
between 2:15 pm and 4:00 pm of a day. Several time windows per day can be named, which in
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2.4 Market structure for flexibility measures

turn can differ according to season. It is also possible to specify no high-load time windows for
certain times of the year.

The individual grid charge then refers to the annual peak load within the high-load time win-
dow, which is multiplied by the corresponding capacity price of the grid operator. The energy
component of the grid charges is not affected. However, the grid charge may not be less than
20% of the original grid charge without individual reduction. As a further economic incentive,
consumers with less than 2,500 annual full load hours can also choose prices for at least 2,500
annual full load hours.

For atypical grid usage, the criteria of relevance threshold and relevance gap must also be met.
The relevance threshold describes the percentage deviation between the peak load within the
high-load time window and the load outside the time window. Depending on the voltage level, an
amount of at least 5% (extra-high voltage level) and 30% (low voltage level) must be reached. The
relevance gap describes the difference between the peak load within a high-load time window
and that outside, which must be at least 100 kW . The introduction of the two relevance criteria
is to promote active load shifting and to exclude possible “random finds”.

However, the design of the individual grid charges pursuant to § 19 (2)(1) StromNEV shows
large regional differences, as is already the case with the level of the regular grid charges. In
addition, there is a strong annual variation. This variation relates less to the level of the capacity
and energy prices than to the determination of the high-load time windows. These high-load
time windows can vary considerably from year to year. This makes long-term planning more
difficult.

Friedrichsen et al. (2016) and Weinand et al. (2021) have shown that the concept of atypical
grid usage can support investment in flexibility measures. However, atypical grid usage can also
promote energy inefficiencies if, for example, to complywith the relevance criteria, the load peaks
outside the high-load time windows are increased without any production-related necessity. In
addition, it remains questionable whether the rigid structure of annual high-load time windows
is sufficient to cope with the dynamic grid load caused by an increasingly decentralised and
intermittent energy system (Fraunhofer IFF 2020, p. 66). However, the basic principle of atypical
grid usage can be understood as a first stage of time-variable grid charges, as called for by Fritz
et al. (2021, p. 22). All the more, further designs of the regulatory principle (Seidl et al. 2018)
as well as a more dynamic formation of high-load time windows (Connect Energy Economics
GmbH et al. 2015) have already been discussed.

Uniform electricity consumption according to § 19 (2)(2) StromNEV as another type
of individual grid charges enables energy-intensive industry, in particular, to reduce their grid
charges, see Fraunhofer IFF (2020) for a more detailed explanation. It is aimed at companies
that have an electricity consumption from the grid of more than 10GWh per year at one location
with more than 7,000 annual full load hours. At present, these are mostly companies from the
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aluminium, paper and chemical industries. Depending on the annual full load hours, a minimum
share of the otherwise applicable grid fees must be paid. For at least

• 7,000 annual full load hours at least 20%,

• 7,500 annual full load hours at least 15%, and

• 8,000 annual full load hours at least 10%

shall be paid.

The assessment of the level of grid charges also considers the “physical path”. This assumes a
theoretical direct line to the nearest real generator capable of meeting the consumer’s electricity
demand. Such generation plants are usually conventional power plants. Particularly, due to the
coal phase-out and the reduction of conventional power plant capacities, the physical paths and
the associated individual grid charges may increase.

The regulation on uniform electricity consumption may well stimulate individual flexibility
measures to achieve the minimum number of annual full load hours (Fraunhofer IFF 2020).
However, this also encourages inefficiencies, as in the case of atypical grid usage, in that an
increase in full load hours that is not necessary from a production perspective to reach the
threshold could be economically advantageous. Uniform electricity consumption also precludes
the provision of ancillary services, as these are either not allowed in combination or can negatively
influence the level of grid charges. A detailed explanation of the obstacles of this regulation for
the provision of system-beneficial flexibility is given by Seidl et al. (2018) and Fritz et al. (2021).

2.4.3.3 Compliance with the European legal framework

However, the legality of the German grid charge regulation and in particular the regulation on
the grid charge reduction for uniform electricity consumption is increasingly being questioned.
In this context, the European court has assessed the grid charge exemption from 2012 and 2013
pursuant to § 19 (2)(2) StromNEV as unlawful aid within the meaning of European law. This
ruling is currently still being appealed (Die BBH-Gruppe 2021). Nevertheless, this creates legal
uncertainty that could result in repayments in the millions. These explicit uncertainties affect
energy-intensive businesses in particular.

The ruling of the Court of Justice of the European Union (CJEU) (Der Gerichtshof der eu-
ropäischen Union 2021) also contains much broader uncertainties for the entire electricity sector
and calls into question the fundamental grid charge regulation. In this case, the CJEU upheld
the European Commission’s action against the Federal Republic of Germany. According to the
court, Germany has not properly implemented the requirements of the EU Electricity and Gas
Directives and has not properly considered the independence of the federal regulation authority
(BNetzA) in setting grid charges (dpa 2021). What concrete effects this will have on the energy
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sector cannot be estimated at this point. However, it cannot be assumed that the ruling will
result in radical changes in German energy law in the short to medium term, which is also
confirmed by the BNetzA in a press release (Bundesnetzagentur 2021-09-02). Anything else
would be incompatible with the objective of “predictable and reliable framework conditions”
(Bundesnetzagentur 2021-09-02, p. 2) and would also negatively affect the necessary investment
security and thus system stability.

2.4.4 Ancillary services

Another possibility for marketing flexibility measures is to offer ancillary services. Ancillary
services enable secure and stable grid operation, which is the core task of the grid operators
according to § 11 EnWG. The ancillary services, which are the main responsibility of the
transmission system operators (TSOs) according to § 13 EnWG, can be divided into the areas of
frequency and voltage control, operational management and supply reconstruction (BDEWBun-
desverband der Energie- und Wasserwirtschaft e.V. 2018, p. 6). Specifically, ancillary services
for frequency control, balancing power, interruptible loads and balancing group settlement are
explained in more detail below. Other services such as the provision of reactive power for voltage
control, congestion management for optimised operation management or black start capabilities
for supply reconstruction are only mentioned in passing. The latter services are less standardised
and less transparent and are not the focus of this thesis.

2.4.4.1 Balancing reserve

The European power grid oscillates across countries at a frequency of 50 Hz. In order for this
frequency to remain constant at 50 Hz at all times, it is necessary that the generation and the
load in the power grid are always balanced. If the ratio between generation and load deviates
from this state of equilibrium, the frequency changes. If, from one moment to the next, the
generation increases while the load remains constant, the power grid “overtorques” and the
frequency increases; if the generation decreases while the load remains constant, the power
grid “overloads” and the frequency decreases. The same applies in the opposite direction for an
increasing or decreasing load with constant generation.

At least in the quarter-hourly or hourly range, a balance between generation and load is generally
given via the electricity market. However, there can always be a mismatch between electricity
supply and demand in the period up to a quarter-hour. For example, this is due to inaccurate
forecast data, sudden weather changes or unforeseen power plant outages (Next Kraftwerke
GmbH 2021b). This imbalance leads to frequency fluctuations that are easily measurable. In this
context, figure 2.10 shows an example of the frequency curve as measured in the German power
grid in May 2016.
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Figure 2.10: Frequency curve in second-by-second values in May 2016 in the European power grid, available on
the homepage of 50Hertz Transmission GmbH (2022).

Figure 2.10 clearly shows that the measured frequency values fluctuate around the normal
frequency of 50 Hz during the month. To balance these fluctuations, balancing reserves, in the
form of energy or power, is needed. In this thesis, the power component is referred to as balancing
reserve and the energy component as balancing energy. A distinction is made between positive
and negative balancing reserve. Positive balancing reserve is required when the system is in a
range smaller than 50 Hz and either additional power must be supplied to the system or load
must be reduced. In the opposite case of negative balancing reserve, the frequency exceeds 50
Hz and power supplied to the system must be reduced or load increased.

The current system knows four20 types of balancing reserve or energy, which can be distinguished
primarily based on reaction time. First, the instantaneous reserve reacts to a frequency deviation.
As the name suggests, the instantaneous reserve reacts at the exact moment of the frequency
deviation. In the conventional power system, the instantaneous reserve is provided by the inertia
of the rotating mass in conventional power plants, the rotating drive shaft. However, it can
theoretically also be provided by electronic circuits in inverters or by the rotors in wind turbines.

20 There is debate whether the instantaneous reserve should be counted as balancing reserve (Next Kraftwerke
GmbH 2021a). In this thesis, it is included because in a future power system it may no longer be an intrinsic
physical property of the power system due to the elimination of conventional rotating mass, but may have to be
activated separately.
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Since physical inertia is currently used, the instantaneous reserve does not have to be activated
by a separate signal. However, it is not remunerated separately.

Following the instantaneous reserve, the primary, secondary and minute reserve power are
activated, which are also named Frequency Containment Reserve (FCR), automatic Frequency
Restoration Reserve (aFRR) and manual Frequency Restoration Reserve (mFRR) respectively.
These three types are offered by energy plant operators and purchased by the transmission
system operators (TSOs). Trading takes place on a separate control reserve market. Table 2.3
summarises the most important characteristics of the three types of control reserve.

In the first 30 seconds of the frequency deviation, the FCR is activated. FCR is automatically
activated via the frequency measurement at the provider’s location and activation occurs in both
positive and negative directions. FCR is activated at a deviation from the normal frequency of 50
Hz plus/minus 0.01 Hz. Providers must have the assured FCR fully activated within 30 seconds
and be able to maintain it for 15 minutes. FCR is offered for six time slices per day of four
hours each and must be available at any time during a time slice. Until July 2019, FCR had to
be provided in weekly time slices and until July 2020 in daily time slices. Market procurement
takes place the day before each day, and the price is determined as a market clearing price per
time slice. A balancing reserve quantity with an associated capacity price is offered.

FCR aFRR mFRR
Activation time 30 seconds 5 minutes 15 minutes

Activation
Frequency controlled:
Independent measurement/intervention
on site by FCR provider

By control zone-
responsible TSO
- automatically replaces FCR.

By control area-
responsible TSO
-manual request by TSO

Minimum bid size ±1MW
(pos. and neg.)

1MW*
(pos. or neg.)

1MW*
(pos. or neg.)

Tender period Daily
(for the next day)

Power: Daily
(for the next day)
Work: Up to 1 hour
before activation

Power: Daily
(for the next day)
Work: Up to 1 hour
before activation

Daily time division 6 time slices with a duration
of 4 hours each.

6 time slices with a duration
of 4 hours each.

6 time slices with a duration
of 4 hours each

Remuneration Capacity price
(market-clearing)

Capacity price and
energy price
(pay-as-bid)

Capacity price and
energy price
(pay-as-bid)

*For suppliers submitting only one bid per time slice and product.

Table 2.3: Balancing reserve market criteria according to Beucker et al. (2021, p. 14).

The FCR is replaced by the aFRR. This must be available after 30 seconds at the latest, be fully
operational after five minutes at the latest and be maintained for 15 minutes. Similar to FCR,
the auction takes place the day before for six time slices of 4 hours each per day. However,
aFRR is offered either as positive or negative control reserve. aFRR is activated automatically
by the responsible TSO. aFRR is followed by the mFRR, which is activated after 15 minutes.
mFRR is activated either automatically or manually by the TSO. If the frequency deviation lasts
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longer than one hour, the balancing group manager in whose balancing group the cause of the
imbalance occurred takes over by adjusting the power plant schedules or by trading electricity
on the electricity markets.

In the case of aFRR and mFRR, a balancing reserve quantity was offered until November 2020
together with a capacity price and an energy price. Since then, a balancing energy market (BEM)
(SMARD 2020) has been introduced. Now, the balancing reserve auction continues to take place
the day before. Here, a balancing reserve quantity is bid together with a capacity price. The
accepted bid is remunerated according to the pay-as-bid procedure for the provision of balancing
reserves. The actual activation of the balancing reserve or balancing energy is only organised
via the BEM. Here, suppliers without an accepted balancing reserve bid may also submit bids in
the form of balancing energy quantity and price. The bids are drawn up according to the merit
order and awarded according to demand. Bids may also be submitted at short notice up to one
hour before activation.

Suppliers of balancing reserves must be prequalified by the TSO. This includes, among other
things, the fulfilment of the technical requirements for communication and control as well as
a test run. The associated investments and expenses represent a non-negligible barrier to entry,
which is, however, lower for the provision of aFRR and mFRR than for the provision of FCR
power (Fraunhofer IFF 2020, p. 55). Another barrier is the minimum supply size. For plants that
do not reach the threshold of 1MW , it is necessary to pool the balancing reserve supply via an
aggregator, which usually involves additional costs.

Since the end of 2006 and 2007 respectively, the mFRR, the aFRR and FCR have been jointly
tendered by the four TSOs in Germany. The tendering is carried out via the internet platform
regelleistung.net. In addition, the four TSOs have gathered in a grid control group to avoid,
among other things, “balancing against each other” (EnBW Energie Baden-Württemberg AG
2010). Through the grid control group, the providers of aFRR and mFRR offer their ancillary
services in the entire German grid area. The concept of the national grid control group is also to
be extended to an international grid control group (Regelleistung.net 2021a). Since 2019, there
is a cooperation between Austria and Germany for aFRR. FCR auctioned via regelleistung.net
already includes several market participants outside Germany as well 21.

Figure 2.11 shows the tender volume for the different balancing reserve products as annual
averages. It can be seen that the tendered balancing reserve quantity varies greatly between 2009
and 2020. This variation is due to a continuous change in the market structures, such as the
reduction of the time slices, reduction of the minimum bid size, change in pricing, introduction
of a balancing energy market or the expansion of the market area. This had an influence on both
the tender quantity and the market participants and prices. The annual average values shown are

21 Currently, FCR demand from the Netherlands (since 2014), Austria and Switzerland (since 2015), Belgium
(since 2016), France (since 2017) and Denmark and Slovenia (since 2021) is also partly covered via regelleis-
tung.net
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taken from Bundesnetzagentur and Bundeskartellamt (2020) and show the tendered demand of
the four German TSOs. Looking at the FCR demand for Germany only, it is striking that the
demand has not changed. However, due to the integration of international grid operators, the
FCR quantity offered via regelleistung.net has more than doubled since 2009, see red bars for
“FCR, regelleistung.net”. These formerly mentioned changes in market structure are one of the
reasons why FCR prices are subject to high fluctuations (Kern 2021). Concerning the unchanged
FCR demand, Hirth and Ziegenhagen (2015, p. 1041) name possible explanations, such as
improvement in load and weather forecasting, reduced plant outages, and improved liquidity on
the continuous intraday market.
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Figure 2.11: Tendered balancing reserve demand from the perspective of a German provider (Bundesnetzagentur
and Bundeskartellamt 2020, Regelleistung.net 2021b).

2.4.4.2 Interruptible loads

Another ancillary service to bementioned is the interruptible loads according to the ordinance on
interruptible load loads (AbLaV). These are used for system balancing, mostly in connectionwith
mFRR, as well as for redispatch (Bundesnetzagentur and Bundeskartellamt 2022, p. 224). The
interruptible loads are divided into immediately interruptible loads (SOL) and quickly interrupt-
ible loads (SNL). Both are traded weekly by the TSOs via the internet platform regelleistung.net.
The capacity held in reserve is remunerated via a capacity price and the activated energy via an
energy price. The activation period for which SOL or SNL are provided varies quarter-hourly
between a quarter of an hour and eight hours. The minimum bid size is 5MW but can also be
provided by forming a consortium. Here, all consortium members must be located at the same
extra-high voltage node. In addition, the SOL and SNL providers must be connected at least at
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the extra-high voltage level. The AbLaV, which regulates the procurement of interruptible loads,
came into force in 2013, was amended in 2016 and was valid in this form until 01.07.2022.

The interruptible loads are intended to provide an “incentive for the voluntary disconnection of
industrial processes” (Next Kraftwerke GmbH 2021c). However, the market situation, especially
in the SOL market, can be described as oligopolistic (Fraunhofer IFF 2020, p. 60). According
to Regelleistung.net (2020), there are four framework contracts between suppliers and TSOs for
SOL, and at least 15 contracts for SNL. According to Bundesnetzagentur and Bundeskartellamt
(2022, p. 223), there are a total of nine pre-qualified SOL facilities with a total interruptible
capacity of 802MW and 41 SNL facilities with 1559MW respectively. However, the weekly
demand is fixed in § 8 (1) AbLaV at 750MW each for SOL and SNL.

In 2020, interruptible loads were used on “nine days to maintain the system balance, i.e. com-
parable to balancing reserves” (Bundesnetzagentur and Bundeskartellamt 2022, S. 224). By
reporting unavailability in due time, the offered services can be marketed on the day-ahead or
balancing reserve markets. This makes interruptible loads attractive as a business model for
those providers who are already active on other markets. Here, however, the revenues are offset
by investments in control and communication technology, as well as high wear and tear costs
due to the rapid start-up and shutdown of industrial processes (Fraunhofer IFF 2020, p. 60-61).

The counterpart to interruptible loads at transmission grid level are the “controllable consumption
facilities”, formerly “interruptible consumption units”, at distribution grid level. These are
regulated in § 14a EnWG. This regulation addresses, for example, night storage heaters, heat
pumps, cooling systems and explicitly electric mobility (Fraunhofer IFF 2020, p. 62). According
to this, suppliers in the low-voltage sector can negotiate a reduced grid charge with their DSO,
provided they enable the grid-beneficial control of a part of their facilities. Bundesnetzagentur and
Bundeskartellamt (2022, p. 199) counts about 1.8 million controllable consumption facilities at
more than 80% of the DSOs; significantly more than half are offered in North Rhine-Westphalia,
Baden-Württemberg and Bavaria. According to Bundesnetzagentur and Bundeskartellamt (2022,
p. 200), an “average reduction of the grid charge of approximately 57%, which corresponds to
an average absolute reduction of 3.76 ct/kWh”, with a maximum value of 84% and a minimum
value of 5%.

Around 94% of the controllable facilities are either night storage (64%) or heat pumps (33%)
(Bundesnetzagentur and Bundeskartellamt 2022, p. 200)22. Only 1% is attributable to electric
mobility. “In future, all installations [...] must be mandatorily equipped with an intelligent
metering system.” (Bundesnetzagentur and Bundeskartellamt 2022, S. 201). However, to date,
“intelligent control” is only possible for a small proportion of facilities, asmany are still controlled
by timers. This represents an obstacle to grid-beneficial control (Fraunhofer IFF 2020, p. 63). §
14a (1)(3) EnWG empowers the Federal Government to specify the requirements by ordinance.

22 As of July 2021.
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However, up to now, there is neither a preliminary regulation on this nor an amendment to
§ 14a. Possible redesigns have already been discussed, among others, in an expert opinion
commissioned by the Federal Ministry for Economic Affairs and Energy (BMWi) (Zander et al.
2018) or by Dreisbusch et al. (2020).

2.4.4.3 Other ancillary services

In addition to frequency regulation, the other ancillary services, voltage control, operational
management and supply restoration, are summarised in the non-frequency ancillary services. For
these non-frequency ancillary services, the EuropeanElectricityMarketDirective (2019/944/EU,
Article 40(5)) requires member states to procure them on a market basis or at least to evaluate
the efficiency of such a market. Germany implemented this directive on 27 November 2020 with
the “Act amending the EnWG on market-based procurement of ancillary services” and in this
context newly introduced § 12h EnWG. § 12h names the following ancillary services:

1. “services for voltage regulation”, primarily the provision of reactive power,

2. “inertia of local grid stability”, primarily instantaneous reserve,

3. “short-circuit current”, primarily the initial short-circuit current through synchronous
machines,

4. “dynamic reactive current support”, primarily the voltage maintenance in case of fault,

5. “black start capability”, the ability of a plant to resume operation without external support,
and

6. “island operation capability”, the ability to regulate voltage and frequency in an isolated
network operation.

According to § 12hEnWG, it is the task of theBNetzA to evaluate the possibilities of “transparent,
non-discriminatory and market-based” procurement. If this type of procurement is deemed to
be economically inefficient, the BNetzA must define an exception for the corresponding service
and specify an alternative procurement. If market-based procurement is assessed as efficient,
the BNetzA must specify the rules of such a market (Halbig 2021, p. 10). The efficiency
question was examined in an expert report by Schlecht et al. (2020). The Ruling Chamber 6 of
the BNetzA followed this assessment and ruled out economic efficiency for all non-frequency
ancillary services except for the “voltage regulation service” and the “black start capability”, see
Beschlusskammer 6 (2020).

The implementation possibilities of a market for the procurement of reactive power (voltage
regulation) and for the contracting of black-start capable plants have already been discussed
in detail in the expert reports by Blumberg et al. (2021) and Wagner et al. (2020). Currently,
however, no market specifications are in force. However, on 20.12.2021 BNetzA opened two
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specification procedures for “black start capability”. In one, the distribution system operators are
to be exempted from market procurement (Beschlusskammer 6 2021a), in the other, the market
structures are to be specified for procurement by the TSOs (Beschlusskammer 6 2021b).
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To support the investment and dispatch decision for a BSS, energy modelling techniques can
be used (Gargiulo and Gallachóir 2013). In this field, Ringkjøb et al. (2018, p. 444) distinguish
between three methodological approaches: simulation models, optimisation models and equilib-
rium models. To narrow down the broad field of energy modelling and to focus on the core of
this thesis, the following section explicitly addresses the methodology of optimisation models.

The optimisation model or problem can be differentiated according to certain criteria. First and
foremost, the

• the differentiation according to problem classes and

• the differentiation according to the way uncertainties are considered.

These criteria are explained in more detail in the following two sections, Section 3.1 and
Section 3.2. The explanations serve to facilitate the understanding of the basic structure of the
optimisation models used in this thesis. These optimisation models are described in Section 3.3
briefly to clarify how the models are built on top of each other. A detailed description can be
found in the publications in Part II.

3.1 Problem classes

The optimisation problem classes can be divided into linear and non-linear classes. These
subclasses can be further distinguished between problems with only continuous variables, linear
problems (LP) and nonlinear problems (NLP), or with additional integer variables, mixed-
integer linear problems (MILP) and mixed-integer nonlinear problems (MINLP). With reference
to mathematical programming, the problems are also called programmes. Before the program
classes are explained, the optimisation model and its standard form is briefly recapitulated.

In a decision-making process, an optimisation model calculates the optimal path to achieve a
goal (Dantzig 2002, p. 42). In an economic sense, this often means finding the minimum-cost
use of resources. The general formulation of an optimisation problem is as follows:
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min
x∈Rn

z = f(xxx) (3.1)

s.t. gi(xxx) = 0,∀i ∈ {1, 2, ..., p} (3.2)
hj(xxx) ≤ 0,∀j ∈ {1, 2, ..., q} (3.3)

Accordingly, Equation 3.1 represents the objective function or cost function of the vector xxx. xxx
is an n-dimensional vector that contains all decision variables. The optimal size of the decision
variables in xxx is determined via the objective function. In addition, the optimal solution must
satisfy the constraints given as the equality constraint (Equation 3.2) and the inequality constraint
(Equation 3.3) (Graichen 2016, p. 2). The solution of the optimisation problem thus describes a
decision vector xxx which yields a minimum value for the objective function z without violating
any of the constraints.

Linear problems have the property that all equations in the objective function and constraints
are linear and the decision variables are continuous. “Linear programming is the best developed
part” (Zimmermann 2008, p. 68) of optimisation and can “still be solved relatively easily”
(Kallrath 2013, p. 16). However, the development of an LP is usually accompanied by the need
to abstract reality, which leads to inaccuracies in the model results. Thus, often actually non-
linear correlations are only represented in a linearised way or continuous quantities are assumed,
although, in reality, only whole numbered quantities are possible. The “best known method”
(Kallrath 2013, p. 72) for solving LP is the simplex method. As other solution approaches, the
solution of the dual problem, the interior point method or the ellipsoid method can also be
mentioned (Rominger 2020, p. 36). All LP are convex and thus an exact solution with a local
optimum as a simultaneous global optimum is possible (Schwarz et al. 2018, p. 46).

Mixed integer linear problems (MILP) consider the decision variables to be partially
discrete. This means that they are either binary or integer. Solving such problems can be much
more computationally complex than solving LP, which is also indicated by the exponential
increase in the computational runtime to solve the MILP depending on the number of discrete
variables (Kallrath 2013, p. 16). However, real processes can be represented more accurately in
this way, such as the must-run condition of power plants or the minimum output of combined
heat and power (CHP) plants (Braeuer et al. 2022). Furthermore, a piecewise linearisation of
non-linear processes is possible through the formulation, such as decreasing marginal costs for
large investments (Merkel 2016). In the same way, whole numbered supply or demand quantities
can also be represented, as in the electricity markets.

Heuristics can be used to solve MILP, but also exact methods such as the Branch&Bound-
or Branch&Cut-method. In the last two cases, the MILP is relaxed and represented as several
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sub-problems in the form of an LP. By solving the sub-problems, the solution space in which
the global optimum is located can be narrowed down step-by-step. The optimal solutions of the
relaxed sub-problems represent the boundary values of the MILP solution space. This makes it
possible to approach the global optimum. Finding a sufficiently exact solution is not possible for
many MILP even with current computational technology (Schwarz et al. 2018, p. 47).

Nonlinear problems have a non-linear equation in either the objective function, one of the
constraints, or both. The problems can contain either only continuous decision variables (NLP)
or also integer ones (MINLP). In contrast to linear problems, the solution space is not necessarily
convex, whichmeans that several local and global optima can occur (Zimmermann 2008, p. 188).
This creates the dilemma of some solution approaches that the optimality of a point cannot be
guaranteed. This can cause a solution algorithm to get “stuck” at a local minimum (Rominger
2020, p. 37). Stein (2021) presents possible solution methods for an NLP, such as the convex
relaxation approach that extends the feasibility space.

NLP or MINLP offer the possibility to represent reality with relatively high accuracy compared
to linear models. However, this is accompanied by a relatively high degree of computational
complexity and runtime for the solution of such a problem.

3.2 Consideration of uncertainties

Optimisation models can also be distinguished according to the way they account for uncer-
tainties. Following Schwarz (2019, p. 49), Svetlova and van Elst (2013, p. 1), Stirling (2003, p.
124) and Oehmen et al. (2020, p.331), this thesis divides uncertainty into three subgroups: risk,
uncertainty as ambiguity and uncertainty as ignorance. Risk is to be understood without value
judgement as the possibility of a future realisation of a known event or state, where also the
probability of this realisation is known. In the case of ambiguity, the event or state is known, but
the probability of realisation is not. Finally, ignorance describes the state in which neither the
event nor state nor the probability of realisation is known.

One way to distinguish models regarding uncertainty is to use the following four subgroups:

• deterministic optimisation,

• sensitivity and scenario analysis,

• robust optimisation and regret minimisation, and

• stochastic programming.
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Deterministic optimisation explicitly does not consider uncertainties. It is assumed that
all future states are known and will occur in this way. Compared to stochastic programming,
the computational complexity is relatively low. This offers the possibility to better address
system details than with stochastic models (Rebennack 2010, p. 45). Among other things, this
allows insights into techno-economic relationships that are not intuitively apparent. In addition,
the results of deterministic investigations are well suited as a benchmark for other possible
investigations of uncertainties.

Sensitivity and scenario analysis represents a “very common and classical form” (Schwarz
et al. 2018, p. 52) to investigate the influence of uncertainties on deterministic model results.
A good overview of sensitivity and scenario analyses is provided by Borgonovo and Plischke
(2016), Saltelli et al. (2000), Ward and Wendell (1990), Mietzner (2010). In sensitivity analysis,
either the objective function or the input parameters are varied. This makes it possible to gain
insight into how the model behaves when the assumed structure changes or input parameters
deviate from the assumed values. In this sense, sensitivity analysis can be distinguished between
a local (for example one factor at a time) and a global (for example monte carlo) analysis
(Borgonovo and Plischke 2016, p. 869).

Scenario analysis is less concerned with model behaviour; rather, it serves to determine an
action plan for future events by analysing “the results of the more extreme outcomes (with
high probability and/or more severe impacts)” (Balaman 2018, p. 139). Possible developments
and future states of individual model parameters are combined into scenarios. This creates a
scenario funnel that expands further with each time step into the future. Thereby, it ensures
that the difference among the scenarios increases the further one looks into the future. This
wide-ranging scenario space ultimately offers the possibility of identifying a best-case or desired
scenario, as well as a trend scenario and a worst-case scenario.

Stochastic programming or stochastic optimisation is considered a very popular method,
especially for decision support in investment and operational planning (Lara et al. 2019, p. 2). A
detailed basic treatment can be found inKall andWallace (1997) andBirge and Louveaux (2011).
It deals with the risk part of the uncertainty definition, where the outcome of a future event and its
associated probability distribution is known. In stochastic programming, the problem is divided
into decision stages, which are lined up in chronological order. The first stage is called the
here-and-now stage. In this initial stage, the decision is made deterministically without knowing
the realisation of uncertain states in the future. In the investment and dispatch planning stage
of an asset, the investment is decided without knowing exactly how it will be dispatched in the
future. The second and all subsequent stages are calledWait-and-See stages which means that a
decision at this stage has to be made only when it is known how the future will develop, i.e. the
realisation of an uncertain future state is known. It is immanent at each stage that, at the time of
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the decision, all previous decisions and realisations are known, but all decisions and realisations
of the following stages are uncertain. If the stochastic programme consists of only two stages,
it is called a two-stage stochastic programme; if there are more than two stages, it is called a
multi-stage stochastic programme.

Stochastic programming has the advantage of determining less conservative decisions than robust
programming (Lara et al. 2019, p. 2), explained in the final segment of this section. The decision
considers a finite number of possible states, of which the probability distribution is known.
However, this distribution is also a disadvantage of stochastic programming, since the result of
the optimisation can strongly depend on the assumed probability distribution (Lara et al. 2019,
p. 2).

In solving stochastic programmes, Rebennack (2010, p. 44) distinguishes between a scenario-
based approach and a sample-based approach. The scenario-based approach is sometimes also
understood as the LP approach. Here, possible scenarios with an associated probability of
realisation are derived from the random space under consideration. Using these scenarios, a
scenario tree can be built and the deterministic equivalent to the stochastic programme can be
derived. This can be solved with known deterministic optimisation methods. Especially, two-
stage optimisationmodels can be solved with a large number of scenarios. In themulti-stage case,
however, the number of scenarios is relatively limited because the computational complexity of
the model increases exponentially with each stage.

The sample-based solutions usually refer to dynamic programming approaches.Here, the stochas-
tic programme is subdivided into recursive, single-stage programmes using decomposition meth-
ods (Rebennack 2010, p. 49). In this way, especially the exponentially growing complexity of
multi-stage stochastic optimisation models can be mastered. The decomposition approaches
have been researched in detail and can in turn be divided into scenario-based and stage-based
approaches, which usually use the Lagrange method and the Benders method respectively (Lara
et al. 2019, p. 3).

The robust optimisation considers the worst-case scenario, in the sense that the optimi-
sation model is only calculated for the worst possible case (Birge and Louveaux 2011, p. 86).
This “guarantees feasibility” (Lara et al. 2019, p. 2) of the decision and, at the same time,
other future scenarios do not have to be considered. This is achieved through a relatively low
computational effort compared to stochastic programming. Due to the focus on the worst-case,
the decision must be regarded as “more conservative” (Lara et al. 2019, p. 2) or even “extremely
pessimistic” (Schwarz et al. 2018, p. 59). However, an advantage of robust optimisation, apart
from the relatively low computational complexity, is that no knowledge about the probability of
realisation of the scenarios is required, which makes robust optimisation particularly suitable for
mapping uncertainties as ambiguities. A further discussion of robust optimisation is provided
by Ben-Tal (2009).
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Regret minimisation can be seen as an extension of robust optimisation, as applied by Schwarz
et al. (2018). Regret is the deviation from the best possible decision (Birge and Louveaux 2011,
p. 90). Here, the worst- and best-case scenarios are combined. The optimal solution indicates
at which point in the worst-case the regret is minimal. From the conceptual structure of robust
optimisation and regretminimisation, it is evident that the result depends on the selected scenarios
and that such models can react sensitively to extreme scenarios.

Another variation of robust optimisation is stochastic p-robust optimisation, as described in
Snyder and Daskin (2006). It combines stochastic programming, where the optimum does not
hold in every scenario, with robust optimisation, where the optimum is determined only for a
worst-case scenario with very low probability of realisation. The result achieves “the highest
level of profit and the lowest level of regret. (Najafi-Ghalelou et al. 2022, p. 7). The level of regret
is determined by the robustness level p. This approach combines the advantages of stochastic
programming and robust optimisation. Cai et al. (2022, p. 456) show, in the case of a virtual power
plant, that a “robust operation of the system under the worst-case scenario” can be achieved,
with only a small increase in operational costs compared to a stochastic programming approach.
Similar observations are made by Sriyakul and Jermsittiparsert (2020) for the charging schedule
of an electric vehicle fleet. For the scheduling of a microgrid, Mazidi et al. (2019, p. 253)
show that the approach is “adjustably robust and computationally tractable and also financially
effective at the same time”.

Li et al. (2022) lists two other variations of robust optimisation, distributionally robust optimi-
sation (DRO) and hybrid stochastic robust optimisation (HSRO). DRO addresses the drawback
of stochastic programming that the probability distribution of the random variables under con-
sideration must be known, and that stochastic programming is not applicable if “ambiguity in
the choice of a distribution for the random parameters” (Delage and Ye 2010, p. 595) exists.
Accordingly, “DRO minimises the worst-case expected cost over an ambiguity set” (Li et al.
2022, p. 670). The ambiguity set describes the set of possible distributions of the random vari-
ables. The creation of different ambiguity sets for the operation of energy hubs is presented at
Zhao et al. (2020), Ding and McCulloch (2021), Xu et al. (2020) and Parvar and Nazaripouya
(2022). DRO offers computational advantages over stochastic programming and “clear statistical
interpretations, and the conservatism of solutions can be significantly ameliorated” (Shang and
You 2018, p. 920).

HSRO combines stochastic programming with robust optimization in such a way that they “deal
with different uncertainty sources” (Li et al. 2022, p. 671). Thus, Zare Oskouei et al. (2021)
optimise the dispatch plan of a multi-energy-retailer, where the uncertain energy demand is
mapped via scenarios in a stochastic programme. The uncertainty in market prices is integrated
into the stochastic programme as a sub-problem via a robust optimisation approach. For a multi-
energy system, Nasiri et al. (2021) combines the stochastic dispatch problem with a robust wind
generation problem. In Liu et al. (2016), a stochastic program defines the day-ahead micro-grid
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schedule, while a robust formulation balances real-time energy demand. As a result, the proposed
hybridmodel is “robust against uncertain real-timemarket prices” (Liu et al. 2016, 235).With the
HSRO, the decision is less conservative than in a pure robust optimisation and random variables
without knowledge of their distribution can be integrated. Additionally, random variables where
the worst-case should be considered can be integrated into a stochastic program. Finally, through
a robust control parameter or uncertainty budget Γ the risk acceptance level of the decision
makers can be considered.

3.3 The BSS-opt-model

The previous section showed the manifold ways to deal with uncertainty in optimisation models.
In this thesis, an optimisation model is developed for the investment and dispatch planning of
a BSS in an industrial manufacturing plant. The base model referred to as the BSS-opt-model
is described as a deterministic LP. It allows the initial investigation of technical and economic
dependencies. Furthermore, the BSS-opt-model is adapted and extended with reference to the
respective research question and consideration of various uncertainties. The BSS-opt-model and
its extensions are described in detail in the publications associated with this thesis, in Part II.
In this section, the methodological approach will only be summarised to generate a coherent
understanding.

3.3.1 Base model

The base model is described in detail in Publication A and provides the methodological basis
for the further publications B, C and D.

Figure 3.1 represents the base model graphically and illustrates the most important power and
energy flows as well as the underlying economic application possibilities of a BSS in an industrial
enterprise. The underlying concept of the model is that an industrial company has to meet its
energy demand, which comes mostly from production. This demand is given as an exogenous
load profile and cannot be changed by the model. The demand is met by purchasing electricity
from the power grid. Now there is the possibility for the industrial company to install a BSS and
use it in different business models, especially the provision of frequency containment reserve,
peak shaving and arbitrage on the day-ahead and intraday market.

Figure 3.1 shows the electricity flow with blue arrows and an x, whereas the power flows are
shown with red arrows and a P. Thus, the production load on the left-hand side can be covered
either by direct purchase from the power grid or via intermediate storage in the BSS. For the use
of the BSS, it must be decided how much reserve power is to be offered on the FCR market. A
corresponding amount of BSS capacity must be blocked for these FCR activities (capFCR). The
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remaining idle capacity of the BSS can now be used for peak shaving or arbitrage trading on the
energy markets. For a more detailed explanation of the business models, see Section 2.4.

Production - Exogenous load profile

Battery storage system
G

rid
G

rid

FCR
(weekly/
daily)

Peak shaving
(annual)

Day-ahead
(hourly)

Intraday
(15 min.)

PFCR

Pgrid,BSS Pgrid

xgrid,BSS xgrid

PBSS,prod

capFCR

Pgrid,prod

xgrid,prod

xBSS,prod

Figure 3.1: Graphical representation of the BSS-opt-model according to Braeuer et al. (2019b, p. 1428).

The optimisation model identifies the optimal size or capacity of the BSS in which the industrial
company should invest, as well as the optimal dispatch of the BSS, at what time it is charged
and discharged and how much capacity is kept available for the reserve power market. Here, the
optimum is defined by the economic objective function thatminimises the total costs, see equation
3.4. For the total cost calculation, the annuity payment for the investment in the BSS (AnnBSS) is
considered, as well as the costs for buying and selling electricity on the energy markets, Intraday
(xID · cID) and Day-Ahead (xDA · cDA), the revenue from offering FCR (P FCR · cFCR) and the
annual cost of grid charges (P peak · cpeak). The additional expenses incurred due to the ageing of
the BSS are also considered (AnnBSSaged).

min cost =AnnBSS + AnnBSSaged+

52∑

w=1

(
168∑

h=1

( 4∑

q=1

(xID
q,h,w · cIDq,h,w) + xDA

h,w · cDA
h,w

)
−

P FCR
w · cFCR

w

)
+

+ P peak · cpeak

(3.4)

The base model is calculated in 15-minute steps for a whole year. To get a better impression
of the model, four more essential constraints are listed below. Thus, in the model, in every
time step (every quarter-hour q out of every hour h in every week w), the energy demand from
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the production of the industrial enterprise (dq,h,w) must be satisfied, see equation 3.5. This is
done either by discharging the BSS (xBSS,prod

q,h,w ) or by drawing electricity from the power grid
(xgrid,prod

q,h,w ). Equation 3.6 indicates that when the BSS is discharged, the electricity either flows
into the production (xBSS,prod

q,h,w ) or is fed into the grid (xBSS,grid
q,h,w ). This amount of electricity

must not be greater than the installed BSS capacity (capBSS) minus the weekly capacity blocked
for FCR provision (capFCR

w ). As described in equation 3.7, this FCR capacity is calculated
via the weekly reserve power offered on the FCR market (P FCR

w ) multiplied by a buffer factor
(rFCR,puff ). Finally, equation 3.8 describes peak shaving, in which the model is required to keep
the annual peak load (P peak) as low as possible. Accordingly, the electricity drawn from the grid
(xgrid

q,h,w) must not be greater at any time step than the peak load1.

dq,h,w = xBSS,prod
q,h,w + xgrid,prod

q,h,w ∀q, h, w (3.5)

xBSS,grid
q,h,w + xBSS,prod

q,h,w ≤ capBSS − capFCR
w ∀q, h, w (3.6)

capFCR
w = rFCR,puff · P FCR

w ∀w (3.7)

P peak ≥ xgrid
q,h,w · 4

1000
∀q, h, w (3.8)

The decision variables of the base model are the installed BSS capacity, and the energy quantities
for charging and discharging the BSS, such as the energy purchase and the feed-in from and into
the general power grid. Additional decision variables are the amount of energy traded on the
energy markets as well as offered FCR quantities and the BSS capacity blocked by FCR trading.

The basic assumptions of the base model are the following:

• In the energy and reserve power markets, the respective buy and sell bids of the industrial
enterprise under consideration are always awarded. The enterprise only acts as a price-taker
on the respective markets.

• The calculated year is considered representative for the entire investment period.

• Perfect foresight prevails. This means that demand and prices are known for each time
step at the time of the investment.

1 The factor 4
1000 is used to convert the unit energy into the unit power

57



3 Methodology

3.3.2 Stochastic programming and robust optimisation

One of the assumptions of the base model is perfect foresight, which, as described in Section
3.2, comes with large uncertainties related to the informativeness of the result. To address
these uncertainties, Publication B and Publication C present an extension of the base model
that considers uncertain future load behaviour as well as uncertain future price patterns using
stochastic programming and robust optimisation.

In reality, the economic decisions for the different revenue streams are strongly dependent on
each other but are made at different points in time. Taking this temporal sequence into account is
a challenge, as this is accompanied by a considerable increase in model complexity. Therefore,
when extending the model, it must be considered which uncertainties are included and in what
way. Publication B and Publication C present different approaches in this context, which focus
on different revenue streams. Thus, the model in Publication B integrates as a two-stage robust
optimisation the uncertain intraday activities as well as possible load deviations. These represent
the short-term decisions and offer the possibility to react to previously made decisions. The
model from Publication C, as a multi-stage model, focuses on the temporal sequence of different
decisions. The following subsection, first, presents the two-stage robust optimisation model and,
second, the two-stage and multi-stage stochastic optimisation approach.

3.3.2.1 Two-stage robust optimisation

Publication B considers the uncertainty of market prices and load demand. In addition, the base
model is extended to include the possibility of installing a PV module and benefiting from self-
consumption of the generated PV electricity. At the same time, the uncertainty of solar radiation
is considered. Finally, additional demand flexibility is integrated into the extended model as part
of the load demand can also be unnerved.

Themodel, referred to asBSS-robust-model for this thesis, is formulated as a two-stage stochastic
problem in the form of an MILP. Equation 3.9 shows the objective function for this. In the first
stage, the investment and market decisions are made on the day-ahead and FCR markets. The
stochastic uncertainty of the day-ahead and FCR prices enters the model via the weighted average
price so that the decision on these twomarkets is made with perfect foresight. In the second stage,
with knowledge of the realisation of the first stage, the decision is made on the BSS dispatch
and the quantities of electricity purchased on the intraday market. The intraday behaviour is
formulated as a robust optimisation problem to account for the pay-as-bid market structure and
the continuous bidding process.

In equation 3.9, the first four rows indicate the first stage. The fifth and last row define the second
stage and consider possible price realisations via the average intraday price (cIDq,h,w,s) from the
scenarios S. Matching this, an optimal decision is made for the amount of electricity purchased
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on the intraday market (xID
q,h,w,s) and for the unserved load demand (uq,h,w,s), which is priced

with a penalty term (cV oLL).

min
Ψ
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q,h,w,s, P

FCR
w , uq,h,w,s, P

peak, capBSS, P capBSS, capPV }

(3.9)

H∑

h=1

Q∑

q=1

binq,h,w,s ≤ Γ, ∀w, s (3.10)

0 ≤ binq,h,w,s ≤ 1, ∀q, h, w, s (3.11)

The last line represents the robust decision-making and maximises as a sub-problem the damage
that can occur in intraday trading. The damage is caused by adding the maximum price deviation
on the intraday market (∆cIDq,h,w,s) for the corresponding time step. Whether the maximum
intraday price is thereby paid in a time step depends on the relaxed binary decision variable
binq,h,w,s. This binary variable depends on the uncertainty budgetΓ in equation 3.10.Γ represents
in how many time steps the maximum price should be considered. With a value of 0, only the
average price is assumed and no further uncertainty due to price deviations is considered. At
most, Γ can assume the value of the product ofH andQ, so that the maximum price is assumed
in every time step. To solve the optimisation problem with two opposite objectives (minimisation
and maximisation), the sub-problem of maximising the damage in Publication B is reformulated
as a dual problem2.

2 For further explanation of the dual problem, see, among others, Kallrath (2013, p. 324 ff.).
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3.3.2.2 Two-stage and multi-stage stochastic optimisation

The model extension in Publication C considers the sequence of different uncertain market
decisions. For this purpose, the base model is developed into a two-stage stochastic optimisation
problem (BSS-two-stg-model) as well as a multi-stage stochastic optimisation problem. Both
models are formulated as deterministic equivalents in the form of an LP.

Equation 3.12 represents the objective function of the BSS-two-stg-model. Analogous to the
BSS-robust model, the investment decision is made at the first stage and the annual peak load
is determined for peak shaving. In contrast to the BSS-robust-model, however, the costs due to
battery ageing are considered (AnnBSSaged). These depend on the dispatch decision of the BSS
at the second stage and are included as a weighted average value over all time steps for each
possible realisation of the second stage. An additional distinction is that all market decisions
are made at the second stage after the investment decision, see lines 3 and 4 in equation 3.12.
The market and BSS dispatch decisions take place simultaneously. Thus, there is knowledge of
which price or demand scenario has been realised and which decision has been made on the
FCRmarket, the day-ahead market as well as the intraday market. The consecutive order of these
decisions, in reality, is therefore neglected.

To better represent this consecutive order, in Publication C the base model is also formulated as
a multi-stage optimisation problem (BSS-mult-stg-model). The multi-stage stochastic problem
is solved via a scenario tree. The objective function of the deterministic equivalent derived from
this is captured in equation 3.13. In the model, as in the two-stage case, the investment decision,
as well as the decision on the peak load, is made at the first stage. The first stage is followed
by an FCR stage from the set γfcr, where the FCR decision for the first time frame is made,
see line 4 in equation 3.13. The FCR stage is followed by an arbitrage stage from the set γarb.
Here, in relation to the first time frame, both the decisions on the day-ahead and intraday market
are made as well as the dispatch decision of the BSS, see line 3 in equation 3.13. This stage is
followed by the second time frame starting with an FCR stage, followed by an arbitrage stage.
This order continues depending on how many time frames are considered. The BSS ageing costs
are considered as a weighted average cost over all considered multi-stage scenarios, see line 2 in
equation 3.13.

60



3.3 The BSS-opt-model
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(3.13)

3.3.3 CO2-minimal dispatch

The base model is used in Publication D and extended to investigate an ecologically optimal
use of the BSS (BSS-CO2-model). The ecological optimum was formulated as the objective
to minimise the CO2-emissions associated with the electricity purchased from the grid. The
methodology is described in detail in Publication D; here the approach will be explained using
the modified objective function, see equation 3.14.

minmCO2 =
52∑

w=1

(
168∑

h=1

( 4∑

q=1

(xgrid,in
q,h,w · EFq,h,w)

))
(3.14)

Equation 3.14minimises theCO2emissions (mCO2) at each time step of the year. TheCO2emissions
are defined in each time step as the product of the electricity purchase from the power grid
(xgrid,in

q,h,w ) and the corresponding emission factor (EFq,h,w). For a detailed analysis, Publication
D presents four emission factors based on different methodological approaches, denoted as:
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1. average emission factor (AEF),

2. marginal system response (MSR),

3. marginal power mix according to Hawkes (2010) (MPM) and

4. marginal power plant (MPP).

The first three emission factors are based on empirical data generated by a novel combination
of two databases. These two public databases, which document power plant dispatch and power
plant emissions, are combined for the first time in Publication D and the allocation key is
published in the additional information. The final emission factor is the result of a European
energy system model.
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4 Summary of results

This chapter summarises the results of the publications of this thesis. The summary builds on the
methodological approaches introduced in Section 3.3 and serves to answer the research questions
of this thesis.

4.1 Publication A – Battery storage systems: An economic
model-based analysis of parallel revenue streams and general
implications for industry

As shown in Section 2.3, energy demand and supply flexibilities are an important component of
upcoming energy systems that rely to a large extent on generation from intermittent RES plants.
Publication A argues that due to high energy demand, industrial plants can take on a special role.
Various markets and incentives already exist that economically stimulate demand-side flexibility.
However, various flexibility measures can have a direct influence on production processes. At
this point, however, the economic risk of failure in production is disproportionate to the current
returns from providing energy flexibility.

To counteract this economic imbalance, PublicationAproposes the notion of “pseudo-flexibility”.
By integrating an energy storage system, explicitly a BSS, it is possible to temporarily shift the
energy purchase from the power grid without influencing the load of the production process.
It is precisely this possibility of demand flexibility without changing the production load that
is referred to as “pseudo-flexibility”. For further investigations, the base model of a BSS in
industry, BSS-Opt-Model, described in Section 3.3.1, is developed in Publication A. The model
is used to techno-economically optimise the investment and dispatch of a BSS. Three revenue
streams, which are introduced in Section 2.4, are considered: Offering frequency containment
reserve, arbitrage trading on the day-ahead and intraday market and peak shaving.

The model is applied to 50 German small and medium-sized enterprises, each of which is
included in the calculation with their annual load profiles in 15-minute increments. The results
are used to examine the profitability of the individual revenue streams and to what extent
the simultaneous pursuit of several revenue streams increases the profitability of the BSS.
Furthermore, the influence of newly introduced load indicators on profitability is examined via
stepwise regression.
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The most important result is that the highest profitability is achieved when a BSS is installed
and all three revenue streams are pursued simultaneously. Only a single revenue stream, on the
other hand, does not achieve a positive net present value for the investment in a BSS. Rather, the
combination of FCR marketing and peak shaving achieves a complementary effect and drives
profitability upwards. Accordingly, a profitable operation in terms of revenue is on average 75%
attributable to the marketing of FCR and 24% to peak shaving.

Due to the contribution of peak shaving, profitability is strongly dependent on the individual
load profiles of the companies1. Thus, among the 50 companies, there is a trend that the optimal
BSS capacity increases with the size of the company’s annual peak load. Here, the results
show that the greater the peak shaving capacity of the company, the greater the profitability.
Furthermore, a significant influence of two load indicators can be observed. The interpretation of
these load indicators suggests that companies with daily balancing load peaks and valleys as well
as companies with only single load peaks during the day can achieve higher BSS profitability.

Arbitrage trading has a negligible share in the revenues of BSS operations for all 50 companies.
This is mainly because in most cases of the year under consideration, the price difference in the
energy markets is too small to compensate for the costs incurred by battery ageing and charging
and discharging losses of the BSS. However, the results of the study are sensitive to the change
in the BSS price and the capital interest rate.

4.2 Publication B – Optimal PV and battery investment of
market-participating industry facilities

The results from Publication A have already provided a deep insight into the economical dis-
patch and capacity of BSS. However, the discussion part of the study has also highlighted the
uncertainties of the results, especially due to the deterministic formulation of the model. To
address part of these uncertainties, Publication B develops the two-stage optimisation model
BSS-robust-model, see 3.3.2.1, integrating intraday market behaviour as a sub-problem using
robust optimisation. The results from Publication B shed light on the influence of uncertainty
considerations on the investment and dispatch of the BSS. In addition, the paper uses 20 indus-
trial load profiles to investigate the impact of aggregating industrial loads. The model is applied
to the three market areas Germany, Denmark and Croatia, and investigates the possibility of
installing a BSS together with a PV system in an industrial manufacturing plant.

The results show that the investment in a BSS is particularly refinanced by the returns on the
FCR market. Furthermore, the results indicate that the PV system is especially used to reduce
the amount of energy purchased on the energy markets through self-generation and to reduce the
peak load. The dispatch of the BSS can be seen as complementary to the PV operation at many

1 The provision of FCR power can also take place without the connection to an industrial company
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time steps, as it supports the increase in self-consumption and the reduction of the peak load. In
addition, BSS capacity is used to provide FCR. Without an FCRmarket, as in Croatia, the model
results indicate the installation of only a PV system and no BSS. In a further comparison of the
three countries, fees are the largest cost component in both Germany and Denmark, at around
70%. In Croatia, this component amounts to only just under 50%.

The consideration of uncertainties leads to the adjustment of the FCR offer to the uncertain load
behaviour. Thus, the FCR offer is reduced in order not to jeopardise possible peak shaving targets.
Furthermore, the risk of the bidding procedures on the intraday market is mapped via robust
optimisation. The results represent different levels of risk affinity or market skill by varying
an uncertainty budget between a minimum (high risk or skill) and a maximum value (low risk
or skill). The consequence of the maximum uncertainty budget is a relative increase in energy
market prices. In these cases, the model sizes the PV system and the BSS larger to increase
self-consumption and reduce energy purchase costs.

However, this is only the case if the industrial companies are considered individually. If ag-
gregation of the industrial loads is assumed, the size of the PV plant and the BSS remains
constant despite an increasing uncertainty budget. Through aggregation, demand can be made
more flexible. The combination of different load profiles already leads to a maximisation of
the self-consumption rate of the self-generated PV electricity. Through aggregation, part of the
economic success is therefore already secured against uncertainties on the intraday market.

All results of this publication can be considered robust after a sensitivity analysis and Monte
Carlo simulation. The sensitivity analysis has shown that the results do not deviate strongly from
each other for consideration of at least four typical weeks. The observations should include at
least four scenarios per week. The Monte Carlo simulation proved the robustness of the results
regarding the derived scenarios.

4.3 Publication C – Stochastic optimization of battery storage
investment in industry – Comparing a two-stage and
multi-stage approach

The investigations in Publication A and Publication B have already shown that the economic
feasibility of a BSS particularly depends on the FCR market and peak shaving activities. In this
context, the importance of the uncertain price and load behaviour for the investment decision
was also highlighted. However, since the time sequence of decisions can only be represented to a
limited extent in the two-stage approach fromPublication B, amulti-stage stochastic optimisation
programme is developed in Publication C. Using this BSS-mult-stg-model described in Section
3.3.2.2, the consecutive sequence of market decisions is examined in more detail. Stochastic
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realisations of market prices and load patterns are considered, and operational constraints due
to battery ageing and cycle life are also integrated.

The study applies the BSS-mult-stg-model to the annual load profile of a German company from
the steel industry and investigates the investment and dispatch of a BSS in the context of the
revenue streams peak shaving, FCR and energy arbitrage. The results are compared with the
results from the BSS-two-stg-model and calculated for up to three typical days and two typical
weeks. Different modes of operation are analysed by varying capacity prices and price spreads
in the energy markets.

The results show that the two-stage formulation neglects the operational risk because, from
its basic principle, it only replicates the consecutive sequence of decisions to a limited extent.
However, this limitation already leads to significant differences in the optimal size of the BSS.
These differences are primarily due to the dependency of FCR and peak shaving activities, as
well as the methodologically different considerations of ageing and cyclical lifetime.

The economic FCR potential is lower in the multi-stage case than in the two-stage case because at
the time of the FCR decision it is not known which load behaviour will be realised. Accordingly,
in the multi-stage case, an FCR decision must be made that takes all possible load patterns into
account and keeps enough BSS capacity free to meet the peak shaving targets. This means that if
the realisation of high peak loads is possible in the associated subsequent stage, the FCR amount
offered is kept as low as possible to shift this peak load. This happens regardless of whether low
loads are indicated in the other realisation scenarios. This connection has already been indicated
in the results from Publication B. If, on the other hand, the FCR and the BSS dispatch decision
are made deterministically at the same level, as in the BSS-two-stg-model, an FCR decision is
only associated with one realisation scenario for the load profile, which means that the FCR
amount offered is larger on average.

Furthermore, the results show that the consideration of BSS ageing and cycle life of the two
models also has an influence on the optimal investment and dispatch of the BSS. Thus, in the
two-stage approach, the ageing and the charging cycles are included in the optimisation problem
as a weighted average value over all time periods. This can lead to dispatch scenarios that are at
odds with reality and overestimate the economic dispatch potential. In the multi-stage case, the
problem formulation considers the charging behaviour of complete multi-stage scenarios. These
scenarios include the consecutive sequence of events of each stage and thus each time step.

However, the degree of accuracy gained for themulti-stage problem is accompanied by a relatively
high degree of model complexity and computational intensity. This degree, as known from the
theory in Section 3.2, increases exponentially with the number of stages considered. This leads
to the fact that the problem can only be solved for a relatively small number of typical time
periods and realisation scenarios. A variation of the number of typical time periods that are
computationally tractable reveals a considerable deviation of results. Thus, the results lack
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robustness regarding the derived scenarios. Also, in contrast to the sensitivity analysis from
Publication B, the number of time periods can be regarded as too small. Although this weakens
the practical statement of the case study, theoretical consecutive dependencies of FCR and load
activities, or BSS charging cycles on profitability, are highlighted that are important for future
scenarios and model design.

4.4 Publication D – Comparing empirical and model-based
approaches for calculating dynamic grid emission factors: An
application to CO2-minimizing storage dispatch in Germany

Building on the findings from Publication A, Publication D investigates how the optimised use
of a BSS in an industrial plant can reduce the CO2-emissions associated with the electricity
drawn from the grid. Especially in the transition phase from a conventional energy system to
a predominantly “renewable” energy system, the CO2-emissions of grid electricity can change
significantly from hour to hour. By shifting demand over time, a BSS can make a significant
contribution here, charging at a favourable time for low CO2-emissions and discharging at an
unfavourable time. However, determining a signal for such a favourable time is a complex
task in a pan-European energy system. Therefore, Publication D investigates different emission
factors that can serve as a signal and the influence that a BSS could have on the mitigation of a
manufacturing plant’s CO2-emissions.

For this investigation, two optimisation models are applied. First, following the BSS-Opt model
described in Section 3.3.1, the investment and dispatch of a BSS are economically optimised,
considering only peak shaving as a revenue stream. In the second step, the ecological dispatch
is optimised using the BSS-CO2-model from Section 3.3.3. The avoided amount of CO2 is
determined from the comparison between the economic and CO2-minimal dispatch.

To determine the CO2-minimal dispatch, it is first important to define the CO2 load of the grid
electricity. For this purpose, four dynamic emission factors (EF) are determined, as described
in Section 3.3.3. The three empirical EFs and one model-based EF differ both in terms of
magnitude and volatility, and also show opposite signals at some points in time. All four EFs
have advantages and disadvantages to serve as a reliable signal for a CO2-minimal dispatch
of a BSS. For example, the marginal system response EF has the largest spread between the
maximum and minimum values and thus also stimulates the highest CO2-reduction in a storage
operation. However, the negative values of this EF cannot be interpreted intuitively. The EF taken
from the literature marginal power mix by Hawkes (2010), on the other hand, no longer seems
appropriate for the current energy system and the high share of RES because of the periodic
behaviour.
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The average emission factor shows the smallest deviations over the course of the year, which
in turn makes the CO2-minimisation incentive low. For the study, the largest share of RES in
the energy system is not directly included in the EF, as these energy sources are considered
as currently not dispatchable and thus would not respond to a change in demand. This puts
the average emission factor in stark contrast to existing average EFs from other scientific
publications. However, for most time steps, the signal direction (relatively high or low EF values)
coincides with that of the model-based marginal power plant EF. Especially in magnitude,
however, the two values differ, since the average emission factor considers the entire system
and the marginal power plant EF addresses the individual marginal power plant. Even though
the average emission factor and the marginal power plant EF seem to be the most suitable to
serve as CO2-emission signals, the quality of the publicly available databases should be greatly
improved to obtain reliable EFs.

First, the study investigates the CO2-reduction potential of a generic storage system to obtain a
general statement on flexibility measures for CO2-reduction and then applies the optimisation
model to the specific characteristics of a BSS. Here, it becomes clear that the EF in the case
of a generic storage can indeed stimulate a CO2-reduction, but a clear trade-off between the
economic goal of peak-shaving and the ecological goal of CO2-minimisation can be seen. Thus,
the CO2-reduction potential strongly depends on the individual load profile. This potential can
be estimated as relatively high if the load profile and the EF profile correlate with each other.

Second, the specific characteristics of a BSS are studied, which diminish the reduced CO2-
emission amounts significantly. The observations of the storage dispatch for CO2-minimisation
are very similar to the observations on energy arbitrage from Publication A. For example, the
BSS cycle life severely limits the number of daily charging cycles and only accounts for the
largest differences in emissions. At the same time, the charging and discharging losses ensure
that there must be a minimum difference in the EF value between periods of high and low
CO2-emissions to stimulate load shifting by the BSS. Although ageing effects are not considered
in this study, a high load on the BSS due to high C-rates and depths of discharge can be observed,
as in arbitrage operation. This would have negative effects on battery life.
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The results of this thesis shed light on the optimal operation of a BSS in an industrial manu-
facturing plant and how the optimal size of such a BSS can be determined from different points
of view. Furthermore, the results provide a good answer to the research questions posed in this
thesis, which focus on the influence of different revenue streams, uncertainties and CO2-minimal
charging on the profitability of the BSS. Nevertheless, the answers to these research questions
need to be critically examined and the limitations of this thesis need to be highlighted, which
will be done in the following.

5.1 Different revenue streams

This thesis shows that for the economic evaluation of a BSS, different revenue streams should
be considered simultaneously. Furthermore, it shows that the BSS operation with the objective
of FCR marketing and peak shaving together achieves the highest economic efficiency. These
two revenue streams are to be considered complementary. However, the economic performance
depends strongly on the individual load profiles of the industrial companies.

Furthermore, the results show that operation according to an FCR and peak shaving business
model is associated with a relatively low burden on the lifetime of the BSS. This means that
these two revenue streams allow for a profitable operation within the technological boundary
conditions of the BSS. Profitable operation is possible without exceeding the limited number
of charging cycles defined by the BSS life and also results in relatively low C-rates and DoD.
This advantage becomes particularly clear in comparison to arbitrage trading. In an economic
comparison, the arbitrage trading revenue stream can only generate relatively low revenues on the
energy markets. This is due, on the one hand, to the low price differences on the markets and, on
the other hand, to the energy losses during charging and discharging as well as the ageing effects
and limiting charging cycles considered in this thesis. In addition, the operation is associated
with high C-rates and high DoD, which additionally burden BSS life. However, C-rate and DoD
are not considered in the optimisation models used.

The economic analysis presents a different picture if additional “flexibility” is considered through
the installation of a PV system and the associated self-generation or through the aggregation of
industrial loads. In these cases, these flexibility measures can hedge against the uncertainties in
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the energy markets by increasing the self-consumption rate. The higher self-consumption avoids
fees, taxes, and high prices for energy purchases.

However, the results are subject to some uncertainty as they have been found to be sensitive to
price changes. The prices assumed for a BSS in the studies of this thesis are still current for
2021, see Eble (2021), but advances and further developments are expected in the coming years,
which might result in decreasing prices conducive to economic performance. Sections 2.4.3
show that the grid charges relevant for peak shaving are subject to large fluctuations regionally
and depending on the voltage level, which has a direct influence on the operation and economic
efficiency of the BSS. Even though the past has shown an increasing trend in grid charges, due
to the difference between regional grid charges, a more reliable economic assessment should
always be carried out for a specific business location.

In this study, only a capacity price and not an energy price is assumed for the grid charges
to be paid. However, this only partially reflects the reality for Germany, as explained in 2.4.3,
and is approximately only valid for a company operating with high annual full load hours and
connected at higher voltage levels. Furthermore, 2.6 shows that in German regulation there is
an “inflection point” in the quantitative relation between energy and capacity price, which has
a great influence on the economic performance of a BSS. Thus, depending on the load profile,
it might be economically more appropriate to optimise the annual full load hours so that the
area above the “inflection point” of 2,500 annual full load hours is reached, see Weinand et al.
(2021), or to give more weight to the energy price in the objective function than to the capacity
price.

From a business perspective, the current regulatory framework is well suited to stimulate load
flexibility. As mentioned in Section 2.4.3, however, it is questionable whether this “flexibility”
can also be interpreted as such “flexibility” from an energy system perspective. For the energy
system, a storage operation that relieves the stress on the grid could rather be given dynamic,
regional, or even node-specific price signals instead of a fixed annual price stimulated load
shifting. Additionally, after the CJEU’s ruling, the future regulations of network charges in
Germany hold many uncertainties.

Uncertainties also affect the FCRmarket. For example, Section 2.4.4 has shown how the German
FCRmarket has been subject to continuous changes recently, affecting both the FCR product and
themarket structure. This has resulted in considerable price differenceswithin and between years.
In addition, the demand for balancing reserves is limited, so that every new market participant,
such as BSS operators, can have a direct influence on prices. It is also difficult to compare market
prices from previous years. Thus, a statement about long-term price behaviour is risky.

This thesis considers a medium- to long-term investment period of 11 years and assumes for
the economic analysis that the load behaviour and prices from the year under consideration
can be extrapolated for the entire investment period of 11 years. As mentioned in the previous
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paragraph, the results must therefore be viewed from the perspective that there is a high degree
of ignorance about future developments. This of course also includes the assumption about
the load behaviour of an industrial plant. In the long term, this is dependent on the economic
situation as well as the sector-specific economic utilisation, and in the short term, it is exposed
to company-specific shocks, which can affect, among other things, the personnel, the operational
process or the supply chain.

Under the impression of constantly changing market conditions, it is essential for the operator
of a BSS to continuously evaluate the operating model. It is helpful to note that a special feature
of the BSS is its diverse range of applications. Thus, future markets for system services such
as reactive power provision or flexibility at the distribution grid level should be investigated
with a view to economic deployment. Site-specific services such as support for power quality or
utilisation as a backup power generator also offer added value. However, the economic evaluation
of these services is not trivial as they reduce equipment damages and production outages but
are not unambiguously linked to a revenue stream such as energy trading. Regarding Li-ion
technology, the focus in these cases is particularly on products that emphasise the properties of
the Li-ion technology as power storage rather than as energy storage.

Finally, it should be noted that an implementability of the resulting optimal dispatch is assumed.
For the implementation, a management system is necessary that ensures optimal operation and
short-term scheduling. The costs incurred for this are not considered in the model. Furthermore,
the meteorological control system must permit such operation. Moreover, the model neglects
other fees that are incurred in energy trading and the provision of FCR power (see Section 2.4.1).
These fees would increase more if the discrete minimum bid size in the markets is considered. In
this thesis, a continuous bid size is assumed. It would be possible to move away from continuous
bid sizes on the model side and integrate them as integer discrete bid size steps. However, this
would be accompanied by a considerable increase in model complexity and computing time.
However, one could also insert additional costs through fees for an aggregator, since the offer of
a continuous bid size of energy or power is only possible if one participates in the markets via
just such an aggregator. These additional costs would reduce the FCR revenue.

Additional costs for energy trading, on the other hand, are not so significant, since without
self-generation the arbitrage business contributes only a small part to the profitability. At the
same time, the price differences on the markets are particularly decisive for the revenue stream
because of the storage losses. Accordingly, as long as only the time of power purchase shifts and
not the amount of energy, the profit remains unaffected by additional costs. However, this is not
the case when storage losses are considered, as shown in Publication B, and when energy is fed
into the grid and then sold on the markets.
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5.2 Uncertainties

This thesis has shown that a large part of the uncertainties affecting the medium- to long-term in-
vestment in aBSS can be addressed through stochastic and robust programming. Even if ignorance
of future market changes cannot be covered, risk and uncertainty in price and load behaviour
can be incorporated into the investment decision. The various methodological approaches of
stochastic programming and robust optimisation have revealed fundamental relationships in the
investment and dispatch planning of a BSS.

In two-stage stochastic optimisation, the integration of the bidding behaviour on the intraday
market via robust optimisation has covered the risk in energy trading particularly well. This risk
can be mitigated by investing in self-generation. However, the results also illustrate the problem
that when considering several revenue streams in parallel, abstractions of reality are necessary
and these usually lead to a higher economic valuation of a few individual revenue streams.

The results provide information that especially if the marketing opportunities of FCR and peak
shaving are of high economic importance, these important decisions should be made at separate
stochastic stages. Hence, this mainly concerns the FCR decision and the charging and discharg-
ing decision with the aim of reducing the peak load. The representation of these consecutive
decision interdependencies can only be realised inadequately in a two-stage approach; in a multi-
stage approach, however, it can. Nevertheless, the multi-stage formulation is accompanied by
considerable computational expenses.

The multi-stage problem could also be solved for a larger number of time steps using approaches
such as stochastic dynamic programming. However, the constraint of the cyclic lifetime would
have to be relaxed, as this increases the model complexity due to the scenario path dependency.
Therefore, scenario generation is of great importance. In particular, by reducing type weeks
to four-hour time periods, which would correspond to the current FCR market conditions, an
adequate scenario design is necessary to increase the accuracy of the stochastic programme but
reduce the model complexity.

5.3 CO2-minimal dispatch

The investigations have shown that the data basis for the preparation of emission factors is
currently still insufficient. Nevertheless, insights can be drawn that are particularly relevant in a
transition phase from a conventional energy system to an energy system largely determined by
RES. Regarding ecological dispatch planning, it can be stated that storage technologies could
certainly be suitable for reducing the CO2-emissions of the energy system. A BSS, on the other
hand, is not suitable for this because of technological constraints.
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5.3 CO2-minimal dispatch

In the development of the emission factor, the average emission factor AEF and the emission
factor MPP describing the marginal power plant have particularly stood out as plausible indi-
cators. Here, the signalling effect of the AEF contrasts with the average emission factor used
elsewhere in the literature. This illustrates that there should be agreement on the definition
of system boundaries and system responses in the discussion on the determination of systemic
emissions. In this thesis, it is assumed that the largest number of RES plants has a feed-in priority
over conventional power plants and is thus assumed to be non-dispatchable. However, this also
presumes that the marginal consumer can be clearly identified so that the marginal emissions
can also be precisely assigned to one consumer.

The results show that the AEF and the MPP coincide in their signal direction at many points in
time. However, the MPP has a larger deflection, as it represents explicit power plants. A model-
based emission factor appears to be themost accurate instrument, but many of the existingmodel-
based emission factors can be described with high model complexity and as non-transparent with
numerous assumptions. Furthermore, many inaccuracies due to model assumptions on import
power, CHP operation and must-run conditions are included in the calculation of the emission
factor. This problem will increase if the number of dispatchable RES plants and the installed
capacity of storage plants increase in the future.

The study has raised the question of the extent to which CO2-minimal dispatch is compatible
with other objective formulations. On the one hand, CO2-minimal dispatch conflicts with the
economic objective of minimum costs, as the dispatch bears great similarity to the dispatch in
energy arbitrage trading. Thus, large C-rates and DoD can be observed, which would put a heavy
strain on the lifetime of the BSS and thus also on the economic efficiency. On the other hand, the
rigid peak shaving boundary conditions only allow a dynamic and “system-stabilising” storage
use to a limited extent, since the flexibility incentive is set as an annual peak threshold. At the
same time, the term “system-stabilising” depends on the perspective. Thus, it can be assumed
that its signal for national CO2-emissions differs from a signal that serves the grid. A coherent
behaviour of these two objectives, grid-stabilizing and CO2-minimal, can rather be assumed if
the local level is considered, which better reflects grid nodes and decentralised RES plants.
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6 Summary and conclusion

In the context of a changing energy system towards a system dominated by RES, this paper
contributes to a better understanding of the business decision spectrum in the marketing of
energy flexibility. In particular, it deals with the techno-economic investment decision in a
battery storage system (BSS) from the perspective of an industrial company. The framework
chapter shows that the need for flexible energy demand and supply will increase. In this context,
the use of a BSS, especially to make industrial energy demand more flexible, can play an
important role in the future. However, the scientific literature does not adequately answer how to
make an economically optimal investment decision on the installation of a BSS in an industrial
manufacturing plant. This thesis complements the scientific literature and shows under which
circumstances an investment can be considered profitable and which risks and uncertainties have
to be considered. In addition, this thesis discusses what contribution such a BSS can make to the
transformation of the national energy system.

For this purpose, the technological and economic context for the use of a BSS in the industry is
examined in the framework chapter. The studies published as part of this thesis analyse in detail
the optimal investment and dispatch planning for a BSS. Publication A examines the economic
profitability considering simultaneous revenue streams for electric flexibility, FCR provision,
peak shaving and arbitrage trading on energy spot markets. Publication B extends the revenue
streams by the possibility of PV self-generation and incorporates the uncertainties about market
prices and load behaviour into the investment decision. Publication C further elaborates on this
consideration of stochastic uncertainties and analyses in particular the effects of consecutive
uncertain market decisions. Finally, Publication D compares the economically optimal storage
use with an ecological CO2-minimal storage use. In all decision models, not only the economic
but also the technological constraints resulting from the operation of a BSS are taken into
account, which particularly concerns the efficiency and the ageing behaviour of the systems.

A further addition to the scientific literature lies in the methodological extensions of the in-
vestment and dispatch planning problem. The problem considers different revenue streams
simultaneously and is formulated both as a deterministic and a stochastic LP. The stochastic
approach is implemented as both a two-stage and a multi-stage stochastic optimisation problem.
In addition, the stochastic market behaviour is abstracted by a robust optimisation approach. For
the overall system assessment, emission factors are generated, which are derived from a new data
basis.
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6 Summary and conclusion

The results of this thesis show that especially the possibility of grid charge reduction, peak
shaving, enables an economically feasible investment in a BSS. Peak shaving can be comple-
mented by the marketing of FCR. In addition, self-generation through a PV system can act as a
risk mitigant against uncertain market behaviour. It should be noted, however, that the economic
viability must be assessed individually, as the grid charges differ depending on the region and
voltage level, and the industrial load profiles can vary greatly. Furthermore, FCR shows strong
price fluctuations due to changing market structures. At the same time, the FCR market volume
is limited, which means that future valuation is associated with high uncertainties. Nevertheless,
when making investment decisions, it is important to consider the consecutive order of uncertain
market decisions to reduce economic risk. The decision sequence is also important to integrate
the BSS ageing as accurately as possible into the economic evaluation. The BSS ageing, as well as
its efficiency in charging and discharging, severely limits profitability, making arbitrage trading
in particular unprofitable for a BSS. The same ageing constraints also restrict the use of a BSS
for CO2-emission reduction. Here, other flexibility technologies promise greater success.

The results show that the installation of a BSS in an industrial plant can be assessed as profitable.
However, there is uncertainty regarding the assumed parameters, especially FCR and electricity
market prices as well as the assumed battery price. Revenues from flexibility marketing need to
compensate the price for a BSS. However, market studies show that longer lifetimes than assumed
in this thesis can be expected, especially in the stationary sector, which would have a positive
impact on profitability. In addition, a BSS as a technology can serve different flexibility products
at the same time. Therefore, depending on future market developments, the profitability of a
BSS should be re-evaluated. In particular, the regulation of grid charges might undergo severe
changes, as the current regulation does not sufficiently consider the future demands of dynamic
grid relief. This could result in new economic marketing opportunities for the operation of a
BSS.

For future research, it is therefore important to evaluate the technological progress in battery
technology and storage technology in general and to investigate it in new case studies. Other
technologies, such as LTO battery cells or power-to-x solutions, coincide with different prices
and technological constraints, which yield different revenue opportunities. The same applies
to regulatory developments, which could enable new marketing concepts for BSSs. A broader
database on industrial load profiles would allow more general conclusions to be drawn, which
are interesting for both new business models and the political framework. Furthermore, this work
highlights the importance of uncertainties for an optimal design of a BSS. Further research should
aim at reducing the computational complexity of the multi-stage stochastic optimisation model
through appropriate abstraction to produce more robust results. Advances in the decomposition
of the problem and scenario generation of the input parameters can be used to improve the
solution techniques. This work has outlined initial approaches for this.
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H I G H L I G H T S

• Battery provides pseudo-flexibility by not affecting production processes.• Optimize battery size for peak shaving, arbitrage trading, primary balancing power.• Application to load profiles of 50 German SMEs.• Profitably of revenue streams: not in isolation, but combined for some companies.• Developed load indicators provide general profitability insights.

A R T I C L E I N F O

Keywords:
Battery storage system
Industry
Primary control reserve
Energy market
Peak shaving
Load Indicator

A B S T R A C T

This paper evaluates the economic potential of energy flexibility in 50 different German small and medium sized
enterprises (SMEs) through the installation of a battery storage system (BSS). The central innovation lies in the
possibility of pursuing multiple revenue streams simultaneously: peak shaving, provision of primary control
reserve (PCR) and energy-arbitrage-trading through intraday and day-ahead markets. The energy system of an
industrial manufacturing plant is modelled as a linear program (LP) with a 15-min resolution. The model offers
the option to invest in BSSs with different capacities, with the objective of minimizing the overall cost and
identifying the optimal size of the BSS. The results show that none of these three revenue streams individually is
economically attractive, but when combined, all three together can achieve profitability for some companies,
whereby the majority of the cash flow comes from peak shaving and PCR. With a fixed BSS capacity of 500 kWh,
the Net Present Value (NPV) varies from a minimum of −350,000 € for just arbitrage up to about 200,000 € for
all three use cases in parallel. In the case of a variable BSS capacity, the capacity varies up to 1200 kWh and the
Profitability Index (the ratio of investment to NPV) varies from 0.06 to 0.31. Under current German market
conditions, arbitrage trading contributes only marginally to the profitability, as the price spreads are too small to
justify stronger battery degradation. The paper also identifies various load indicators from the analysis of the
demand profile that support the evaluation of a BSS in industry. A stepwise linear regression reveals a moderate
dependency of the BSS profitability on two newly developed load indicators. Future work should focus on a more
detailed depiction of the battery’s technical behaviour and increasing the sample size to improve the statistical
significance of the results.

1. Introduction

The growing share of volatile renewable electricity is increasing the
stress on the German electricity grid: electricity producers are asked to
balance sudden power shortfalls on the supply side and distribution
grid operators need to overcome an increasing number of congestions.
To counter these challenges and generate higher flexibilities on the

demand side, different market measures have been implemented. The
market for ancillary services has been opened to a growing number of
prequalified suppliers of balancing power. The feed–in tariffs for re-
newable energy have also been drastically reduced, which alongside the
achievement of grid parity for some technologies such as photovoltaics
(PV) encourages a higher rate of energy self-sufficiency. Furthermore,
through grid service charges or bilateral agreements, industrial
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electricity consumers are motivated to shift their peak load [1,2].
Because of their high energy demand, industrial companies can

profit from these novel flexibility measures. To provide these flex-
ibilities, industrial energy consumers can choose to adapt their pro-
duction processes to electricity or capacity prices with demand response
measures. Especially individual energy intensive processes can be
linked to energy prices [3]. In other cases electricity can be integrated
as a time-dependent production factor into the production planning
process [4,5]. On the other hand, for many producing companies these
options offer no economic value, as their production systems are laid
out to achieve the highest utilization of their machine capacities. Ad-
ditionally, there are further regulatory and knowledge based hurdles for
such demand response schemes [6].

An alternative to demand response is the installation of a battery
storage system (BSS). A BSS provides a pseudo-flexibility: a flexible
electricity demand can be offered to grid operators and electricity
markets via different revenue streams while the production remains
unaffected. Like self-sufficiency-optimization, peak shaving or the
provision of ancillary services, various marketing schemes for the
flexibility from BSSs in industries have been individually examined
[7,8]. However, one unique attribute of BSSs is the ability to follow

different business models simultaneously [9]. Many publications men-
tion this possibility [10,11] but the potential has not yet been thor-
oughly studied.

Only a few authors focus their studies on the potential of BSS fol-
lowing different revenue streams in parallel. Stephan et al. [12] run an
hourly dispatch algorithm in a two phase simulation and divide the
dispatch into a primary and secondary application (hierarchical order),
focus on peak shaving, self-consumption, investment deferral and
control reserve. This hierarchical order of revenue streams might un-
derestimate the economic success of a BSS because of the time varia-
bility and interdependency of these different revenue streams. Lom-
bardi and Schwabe [13] apply a similar hierarchical prioritization of
the peak shaving revenue stream. They simulate the BSS dispatch under
a sharing economy principle for different customers but focus on PV-
self-consumption and restrict BSS charging from the grid. Cho and Kleit
[14] and Moreno et al. [15] apply similarly strict charging constraints.
Cho and Kleit [14] analyse the BSS’s operation with a three stage ho-
telling rent approach considering energy markets and ancillary services.
Their model constrains battery charging and discharging to once a day.
Moreno et al. [15] apply an MILP to study the battery dispatch from the
energy utilities’ point of view, whereby the peak shaving potential is

Nomenclature

Acronyms

BSS battery storage system
PCR primary control reserve
SME small and medium sized enterprises
LP linear program
NPV net present value
PI profitability index
PP payback period
U1–U6 use case, combination of revenue streams
DSM demand side management

Sets and indices

q quarter hour
h hour
w week
grid electricity grid
BSS battery storage system
prod production process
arb arbitrage trading
peak peak shaving
PCR primary control reserve
old before installation of BSS
new after installation of BSS
i 15-min time step in a day
j day per year

Load indicators

PMD mean daily peak load
PToU most frequent peak load interval
PLF daily peakyness
PPoU yearly period of use
Pi j, mean production load
Epeak i j, , peak energy
Eabove energy above peak threshold
Pinterval j, number of peak intervals per day
Peakintegral peak integral
Peakabove peak above

Peakinterval peak interval
Peakdensity peak density
peakabil peak ability

Variables

xgrid electrical energy flow from and to grid [kWh]
xx y, electrical energy flow from x to y [kWh]
xBSS tot, energy in-flow in BSS per year [kWh]
PPCR

w amount of provided for PCR per week [MW]
Px y, electrical power flow from x to y [MW]
Ppeak peak power from grid per year [MW]
lBSS
q,h,w storage level of BSS [kWh]

Cel
h w, cost and revenue for electricity trading [€]

RPCR
w revenue from PCR [€]

Cpeak cost for power capacity [€]
ABSS annuity payment for BSS [€]
capPCR

w capacity of BSS reserved for PCR [kWh]
capBSS installed capacity of BSS [kWh]
capBSS aged, invested capacity of BSS with battery degradation [kWh]
capadd l, additional capacity invest due to storage level degradation

[kWh]
capred cycl, reduced capacity invest due to unexploited cycle life

[kWh]
CFtot total cash flow per year [€]
CFx cash flow from revenue stream x [€]

Parameters

Dx prod, electrical energy demand of production [kWh]
DP prod, electrical power demand of production [MW]
LTcal calendar lifetime [years]
LTcycl cycle lifetime [cycles]
pahead

h w, electricity price on day-ahead market [€/kWh]
pintra

q h w, , electricity price on intraday market [€/kWh]
ppeak grid charges [€/MW]
pBSS price for BSS capacity [€/KWh]
puffPCR puffer factor for PCR [–]
TPCR crit, critical time threshold for PCR [h]
T number of annuities [a]
i discount rate [%]
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restricted through a fixed power limit. This reduced degree of freedom
might severely diminish the economic potential of a peak shaving ap-
plication. Instead the power limit should rather be a decision variable of
the optimization model. Dowling et al. [16] optimize the battery dis-
patch for energy utilities in the U.S. They integrate different time layers
in their model to expand their scope on intraday and day-ahead mar-
kets, ancillary services as well as virtual bidding products. Atabay [17]
develop an open-source MILP model to optimize capacity planning and
unit commitment of the multi-commodity system of an industrial
company with time-sensitive commodity prices and peak demand
charges.

The general conclusion is that combining different revenue streams
increases the profitability of the BSS but there is “still an idle potential
for even more applications” [13]. The following deficiencies in studies
about multiple revenue streams for BSS can be identified in the litera-
ture:

• No combination of all three revenue streams of arbitrage trading,
peak shaving and PCR.
• No actual parallelization of all revenue streams. In contrast, a
hierarchical approach is used.
• No investigation of the influence of different industrial load profiles.
• No combination of battery dispatch and battery investment for
parallel revenue streams.

Against this background, this paper evaluates the economic poten-
tial of energy flexibility in industrial companies through the installation
of a BSS. The contribution of this paper is the modelling of three rev-
enue streams, energy arbitrage trading, peak shaving and PCR, applied
in parallel. Furthermore, through the study of 50 different German
small and medium–sized enterprises (SMEs) the effect that the different
revenue streams and different load profiles have on the profitability of a
BSS-investment is shown. In addition, the paper identifies specific load
indicators that explain the variation in profitability for different BSSs in
industry. This paper focusses on the German energy and power markets
applying current regulations and prices of the mentioned revenue
streams. The two main research hypotheses are:

H1. Applying different use cases in parallel increases the profit-
ability of a BSS in industry.
H2. Specific load indicators explain the variation in profitability of a
BSS in industry.

To test these statements, we perform three analytical steps:

A1. Optimizing with fixed BSS capacity
A2. Optimizing with variable BSS capacity
A3. Stepwise linear regression of load indicators.

To optimize the operation and size of a BSS, we model the industrial
manufacturing plant as a linear program (LP). The optimization model
offers the option to invest in BSSs with different capacities, with the
objective of minimizing the overall cost. In A1, the installed capacity of
the BSS is an exogenous parameter and all 50 companies install iden-
tical BSSs. The model identifies the optimal operation of the BSS for
different use cases. We study six different use cases, which represent
different combinations of the different revenue streams providing pri-
mary control reserve, peak shaving and arbitrage trading respectively.
Thereby we are able to answer H1. To test H2 we perform A2 and A3.
For A2, the model identifies the optimal capacity endogenously. As the
BSS’s capacity differs for all the 50 companies, we derive a profitability
index (PI) for the individual systems. In A3, we incorporate the PI as the
dependent variable in a stepwise multi-linear regression model. The
independent variables are the different load indicators that describe the
load profile characteristics of the 50 industrial companies. The resulting
linear regression model identifies the key load indicators that have a

significant influence on explaining the variation of the profitability of
BSSs.

The paper is structured as follows. In Section 2, we describe the
different revenue streams and review related work. In Section 3, we
present the methodology for our analysis, the optimization model, the
economic evaluation, the load indicators and the stepwise multi-linear
regression. Section 4 gives an overview of employed data. Next, the
results of our analysis are presented in Section 5. The paper concludes
in Section 6.

2. Revenue streams

This section describes the three revenue streams that we consider in
our analysis and summarizes the state of the art in scientific publica-
tions. From this overview, we derive assumptions for our research hy-
pothesis H1 and H2. The three revenue streams are the following:

1. Arbitrage trading (arb): trading electricity on the day-ahead and
intraday markets. Using the BSS to store electricity in times of low
prices and using electricity in times of high prices or selling it on the
market.

2. Providing power control reserve (PCR): providing frequency con-
tainment or restoration reserve.

3. Peak shaving (peak): considering capacity prices from grid operators
as a fixed price on the maximum power consumption per year.

2.1. Arbitrage trading

Multiple publications discuss arbitrage trading as a revenue stream
for BSSs. In arbitrage trading, the operator of a BSS can capitalize the
time-dependent price differences on the electricity market. These price
differences arise because of a deviation of the projected demand and
supply of electricity. In such a case, the BSS-operator buys energy to
charge its battery in times of low prices. Vice versa, he sells energy to
discharge the BSS in times of high prices. In our study, we consider two
German energy markets, the day-ahead auction and the intraday con-
tinuous market part of the EPEX-Spot market.

At the day-ahead auction at 12.00 pm, energy is mainly traded for
hourly intervals of the next day. Energy is bought and sold at a
market-clearing price. For the year 2017, this market-clearing price ranged
between −83.06 €/MWh and 163.52 €/MWh. The day-ahead market is
the biggest market on the EPEX with 233 TWh traded in 2017 [18] and
covers roughly 39 percent of the total energy consumed in Germany.1

In December 2011, the intraday continuous market was introduced in
Germany to mitigate the growing influence of intermittent renewable
energy sources. On this market, energy is continuously traded up to five
minutes before delivery for each 15-min interval. No uniform market-
clearing price exists but instead a buy order is immediately executed if
matched with a sell order and vice versa. This results in very volatile and
dynamically changing prices, for 2017 ranging from −193.02 €/MWh
and 329.8 €/MWh.2 With 54 TWh in 2017 [19], the volume on this
market is relatively small compared to the day-ahead market.

Many studies look at arbitrage trading as an applicable revenue
stream for electrical storage systems. As arbitrage trading capitalizes on
price differences, many authors emphasize the importance of large
price spreads for a profitable use case [20–22]. Under current market
conditions, the results of most studies show, that profitable arbitrage
trading cannot be achieved yet [11]. Nonetheless, sinking battery cost
and more volatile energy prices might drive the use of BSSs that follow

1 The electricity consumption of Germany for the year 2017 accounted for
599 TWh [64].
2 The maximum price occurred on the 23.01.2017 between 11.45 and

12.00 h. The minimum price occurred on the 30.04.2017 between 17.00 and
17.15 h.
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an arbitrage trading scheme [23].
Heymans et al. [24] and Dowling et al. [16] concluded that the

volatility of energy prices increases if energy is traded close to real-
time. The price is less elastic in longer time intervals, which under-
estimates the real-time demand imbalances and therefore under-
estimates the revenue potential of the arbitrage trading. Additionally,
Zheng et al. [25] and Sandoval and Leibundgut [22] conclude that the
profitability depends strongly on the stochastic behaviour of load and
price profiles.

Next to the strategic decision making, other authors focus on the
real-time operation of BSS [14,26] and optimal bidding strategies on
real-time energy markets [27] to evaluate the implementation of
profitable arbitrage trading. Nevertheless, the large number of un-
certainties makes the profitability of the revenue stream questionable.

In conclusion, arbitrage trading is an intensively discussed revenue
stream for BSSs. Because of the increasing amounts of renewable en-
ergies, authors predict growing price spreads on electricity markets.
Together with sinking battery cost, this will strengthen the profitability
of an arbitrage use case.

2.2. Power control reserve (PCR)

In order to maintain the grid operation frequency at its nominal
value and therefore guarantee safe operation of connected devices,
transmission system operators (TSOs) generally procure power control
reserve - the flexibility of power devices to adjust their operation point.
In Central Europe, the European Network of Transmission System
Operators for Electricity (ENTSO-E) is in charge of dimensioning and
operating said reserve, while national TSOs are in charge of its allo-
cation, supervision and deployment. Three different control reserve
products exist: Frequency containment reserve (FCR) is activated first
and is technically most difficult to provide, after which automatic fre-
quency restoration reserve (aFRR) and manual frequency restoration
reserve (mFRR) are deployed [28]. This paper focusses on the provision
of FCR, as a regulatory framework for BSSs exist and it is the most
profitable power control reserve. Currently, TSOs of six European
country including Germany jointly procure FCR in a weekly auction.
Remuneration is pay-as-bid, thus remuneration of bidders can vary for
each auction.

FCR is provided proportional to the deviation of the current grid
frequency from the nominal grid frequency. Traditionally, conventional
power plants have provided FCR; however, generally only a small
fraction of the rated power can be provided as fast response char-
acteristics and symmetric provision of FCR is required. BSS inhibit
transient response characteristics well suitable for the provision of FCR:
the process of converting chemical into electrical energy and vice versa
entails fast response times and high accuracy towards power signal
resulting in little overshoot. While intermittent renewable energy
sources already supply a great share of electricity supply, they hardly
contribute to the provision of FCR [29]. Here, BSSs are a good alter-
native to reduce must-run capacities of fossil fuel power plants [30].

First ideas for BSSs to provide control reserve were published by
[31] for the insular power system of West Berlin. The successful op-
eration of a test facility including a battery with a rated power of
14.4 kW by the local utility and transmission operator resulted in the
operation of a lead-acid BSS with rated power of 17MW between 1987
and 1995 [32–34]. Due to high battery costs and short cycle lifetime
only a limited number of mainly lead-acid BSS were built for the pro-
vision of FCR in the 1990s. Falling costs for lithium-ion BSS [35,36],
high remuneration for the provision of FCR within Germany and spe-
cified operation criteria by the German TSOs [37,38] have resulted in a
strong increase in the number of battery projects providing FCR
[39,40]. This also led to an increase in publications concerning model-
based approaches of BSS providing FCR. The majority of these models
intend to decrease necessary schedule-based (dis-)charge events of
battery systems providing FCR, which would result in higher operation

costs [41–45].
From a technical standpoint, BSSs are well suited to provide FCR

due to their power response characteristics.
To sum up, decreasing costs for batteries and a regulatory frame-

work have led to a large number of realized projects within Germany in
recent years. For simplicity reasons, this paper henceforth refers to the
provision of power control reserve (PCR) specifically referring to the
provision of FCR.

2.3. Peak shaving

Peak shaving describes the use case where the peak load from the
grid is reduced by the provision of energy from the BSS. Thereby, the
maximum power drawn from the grid decreases and additional charges
and fees by grid operators can be avoided. In Germany, distribution grid
operators generally bill yearly capacity demand charges in € per kW
which account for the maximum power drawn from the grid over the
course of one year in a 15-min interval. Additionally, they consider the
individual voltage level and the specific consumption characteristics: In
the south of Germany, demand charges on the medium-voltage level
range from 10.02 €/kW for consumers with fewer full load hours
(< 2500 h) until 78.89 €/kW for consumers with a high number of full
load hours (> 2500 h).3

As peak shaving is a common use case for various real life appli-
cations [43,46,47] several studies have investigated the techno-eco-
nomic feasibility of a BSS employing peak shaving. In most cases, peak
shaving creates additional revenue for commercial and residential end-
users [6,48,49]. Nonetheless, many researchers conclude that current
battery prices are too high for BSSs to be cost effective when employing
only peak shaving. Atabay [17] evaluated a multi–energy system of
different energy intensive industries considering variable energy prices
and demand charges. They concluded that “for all scenarios with reg-
ular investment costs for electrical storage, batteries were not eco-
nomically efficient [17]”. Telaretti et al. [47] investigated how an
electrochemical storage could help an Italian super market to profit
from low price and high price periods and to lower its demand charges.
They considered different electrochemical storage technologies but
concluded that none of them is cost effective under current prices. In
contrast, Zheng et al. [50] and Nottrott et al. [51] showed that for the
specific application in a U.S. household, several BSSs can profitably
provide peak shaving. Chua et al. [52] concluded through their simu-
lation that integrating energy storage systems to avoid high peak de-
mand can be beneficial for utility companies as well as industrial energy
consumers. This is in line with the findings of Park and Lappas [53] for
the Australian setting.

Atabay [17] identified the magnitude of demand charges to be the
most influential factor on the capacity choice of the storage unit. On the
other hand, Sandoval and Leibundgut [22] analyzed the energy system of
a low-exergy building with stochastic PV-Profiles and stated as a result
that the volatility of the profiles has the highest influence on the sizing of
the BSS. Adding to the optimal sizing problem, Gitizadeh and Fakharza-
degan [54] point out that the aging behavior of a BSS is an essential factor.

3. Methodology

In this section, we describe the methodology for our analytical steps
A1–A3. The first subsection describes the optimization model needed
for A1 and A2 that models a BSS in an industrial production. The de-
scription focuses on the essential mathematical expressions for the
reader to understand the conclusions of the paper. The model is fully

3 Mean demand charges for 2016 in Baden-Würtemberg, Germany, according
the Landesregierungsbehörde Baden-Württemberg, https://www.versorger-bw.
de/landesregulierungsbehoerde/stromnetze/netzentgelte.html, checked
08.08.18
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explained in the Appendix A. The subsequent subsection further ela-
borates the economic evaluation techniques that we apply on the re-
sults, the load indicators and the stepwise multi-linear regression model
we need for A3.

3.1. The linear optimization model

For the analytical steps A1 and A2, we implemented a linear pro-
blem (LP) in GAMS. Fig. 1 shows graphically the structure of the energy
model. In the schematic, x indicates electrical energy flows and P in-
dicates electrical power flows. To investigate the economic benefits of a
BSS, we consider the electrical energy and power demand (Dx prod, and
DP prod, ) of an industrial production as an exogenous input parameter
that needs to be satisfied at all times. The demand can be covered by
electricity either directly from the grid (xgrid prod, ) or electricity pre-
viously stored in a BSS (xBSS prod, ). The BSS can either draw electricity
from the grid (xgrid BSS, ) or provide it to the grid (xBSS grid, ). The electricity
from and to the grid (xgrid) can be traded on the hourly day-ahead
market and the 15-min intraday market. In analogy to the electricity
flows, P P,BSS prod grid BSS, , and Pgrid describe the power flows affecting the
peak shaving potential. Furthermore, every week a portion of the BSS’s
capacity can be blocked to provide only PCR (capPCR). The energy
system is evaluated over the course of one year (52 weeks) in 15-min
time intervals. The economic evaluation of the system is based on the
year 2017. This year is considered as representative for all operating
years. Furthermore, the authors assume perfect foresight for load pro-
files and price development on the day-ahead and control reserve
markets, omitting the possibility of a bid rejection.

The model is divided into three time intervals that result from the
market design of the different flexibility markets. q describes the
quarter hourly time level on the intraday market, h describes the hourly
time level on the day-ahead market and w describes the weekly time
level, as PCR has to be reserved continuously for a whole week. These
time levels are added up to one year as the peak shaving potential
considers the peak load of one year. The decision variables of the model
are the electrical energy flows in every time step, the power offered for
PCR every week and the installed capacity of the BSS.

Formulating the constraints of the optimization model, the authors’
aim is to reduce the complexity of the energy model while maintaining
the actual depiction of energy and power flows. Therefore, this paper

employs an LP-approach consisting of 349,441 equations, 262,133
variables and 1,118,261 non-zeros using the CPLEX-solver. With an
average run time of around 9min and 40 s, 350 model runs4 sum up to a
total computation time of 2 days and 16 h.5

Table 1 presents additional model assumptions. The charging effi-
ciency, in, and discharging efficiency, out , is assumed to be 90% where
the self-discharge is set to 2%/month. Additional technical assumptions,
further discussed in Section 3.1.3, are the end-of-life factor, =EoL 80%,
as well as a calendar lifetime, LTcal, of 11 years and a cycle lifetime,
LTcycl, of 4000 cycles. Concerning PCR conditions, treated in Section
3.1.2, the critical time that PCR, TPCR crit, , must be provided for is a half
hour, the PCR puffer factor, puffPCR, is 1.5 and mean weekly charge due
to PCR provision, EPCR mean, , is 4889.7 kWh/week. The discount rate is
2% and the number of years T considered for the annuities is 11 years.

3.1.1. Objective functions
The objective of the optimization problem is to minimize the overall

system costs. This objective function is slightly modified for A1 and A2
as later described in Table 2. The nomenclature in the following section
describes electricity flow with an x in kWh, power with a P in MW and
the price with a small p. The expenditure as described in Eq. (1) is
comprised of the cost and revenue from electricity trading,Cel

h w, , the
revenue from the provision of PCR, RPCR

w , the charges for the yearly
power capacity, Cpeak, and the annuity payment of the BSS, ABSS.

= + +
= =( )min f f C R C A, ( )

w h el
h w

PCR
w

peak BSS1

52

1

168 ,
(1)

Electricity is traded on the day-ahead market in hourly intervals and
on the intraday market in 15-min intervals. The first term in (2) mul-
tiplies the amount of electricity, xahead

h w, , traded on the day-ahead market
with the price, pahead

h w, , on the day-ahead market for every hour in one
year. xahead

h w, can take positive values, implying electricity bought, or
negative values, implying electricity sold. Accordingly, the second term
in (2) describes the cost and revenue generated on the intraday market
in one hour of the year. xintra

q h w, , represents the amount of electricity and

Fig. 1. Graphical model schematic (parts of the schematic are creative commons designed by Freepik).

4 For A1, 50 companies with 6 use cases add up to 300 model runs. Together
with 50 model runs for A2, this sums up to 350 model runs in total.
5 The machine used for the computations utilizes 2.66 GHz on 4 cores and 24

GB of RAM.
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pintra
q h w, , the price on the intraday market for every 15-min time interval.

The general assumption for the use case arbitrage is that only one trade
for each 15-min product is executed on the intraday market.

= +
=

C x p x p h w· ( · ), ,el
h w

ahead
h w

ahead
h w

q intra
q h w

intra
q h w, , ,

1

4 , , , ,
(2)

The revenue from PCR is calculated by the amount of provided
power PPCR

w , multiplied by the weekly price for PCR pPCR
w , in Eq. (3).

=R P p w· ,PCR
w

PCR
w

PCR
w (3)

The capacity charges for the yearly peak power, Cpeak, is result of
maximal power drawn from the grid over the course of one year, Ppeak,
times the capacity price, ppeak. This is shown by Eq. (4). Eq. (5) de-
termines Ppeak that is at least equal to any electricity flow from the grid,
xgrid

q h w, , , during all 15-min time intervals of the year. As capacity charges
are priced in €/MWa, we multiply xgrid

q h w, , with the term 4
1000.

=C P p·peak peak peak (4)

P x q h w· 4
1000

, , ,peak grid
q h w, ,

(5)

Eq. (6) calculates the annuity payment for the investment of the
BSS, ABSS. It is the product of the capBSS aged, , the battery capacity to
account for battery degradation, and the battery price, pBSS. For this
study, we only consider the energy capacity in kWh. Finally, this term is
multiplied by the annuity factor AF6,

+i i i
1 1

·(1 )T
.

=
+

A cap p
i i i

· · 1 1
·(1 )BSS BSS aged BSS T, (6)

3.1.2. PCR specifics
The model accounts for the provision of PCR as one revenue stream

but does not depict the actual electricity flow due to generally balanced
reserve calls [55]. When the model chooses to provide PCR, one part of
the BSS’s capacity is blocked for any other BSS-application. Eqs. (7) and
(8) describe this blocking. The model can only utilize residual parts of the
BSS, the difference between the actual capacity of the BSS, capBSS, and
the part of the capacity that is blocked for PCR, capPCR

w . capPCR
w can be

adapted weekly according to market prices for PCR. capPCR
w is always

smaller than capBSS, Eq. (9). Eq. (10)
7 defines capPCR

w as it multiplies the
offered amount of PCR, PPCR

w , by a puffer factor, puffPCR. The value of this
puffer factor is determined by the regulatory standards to meet the cri-
teria for qualification to offer PCR. The value is usually greater than one.

x cap cap q h w, , ,BSS in
q h w

BSS PCR
w

,
, , (7)

x cap cap q h w, , ,BSS out
q h w

BSS PCR
w

,
, , (8)

cap cap w,PCR
w

BSS (9)

=cap puff P w· ·1000,PCR PCR PCR
w (10)

Additionally, in order to qualify to provide PCR, the storage level,
lBSS

q h w, , , in the first period of the week must not be smaller than a critical
lower bound, Eq. (11), and not be greater than a critical upper bound,
Eq. (12). lBSS

q h w, , describes the storage level of the BSS for every time step
in kWh. The critical threshold is defined by the amount of time mea-
sured in hours,TPCR crit, , one needs to be able to continuously provide the
maximum amount of PCR in one direction, positive or negative PCR
[56]. We assume that an aggregator operates the BSS. Therefore, PPCR

w is
modelled as a continuous variable.

l cap P T q h w( · ), , ,BSS
q h w

BSS PCR
w

PCR crit
, ,

, (11)

l P T q h w· , , ,BSS
q h w

PCR
w

PCR crit
, ,

, (12)

3.1.3. Battery degradation
To incorporate battery degradation into the model, we follow the

approach of Kaschub et al. [57]. They consider the end of life condition
of the BSS as well the influence of the calendar and cycle life restric-
tions. In order to properly assess the economic performance of a BSS,
Kaschub et al. [57] account for these different aging effects by over-
sizing the initial BSS capacity the model invests in. Thereby, they
guarantee that the BSS dispatch plan can be fulfilled until the end of life
of the BSS. In this current study, we refer to the aged and oversized
capacity as capBSS aged, .

The basis of the degradation formulations is the assumption that the
end of life is reached at the end of calendar life and that the cycle life is
fully exploited. At the end of life, the BSS can only utilize a portion of its
initial capacity. This portion is described by the end of life factor, EoL.
We assume the risk of operating the BSS beyond this point in time is
economically unacceptable. The full calendar life can be reached as
long as the average storage level is low. Higher storage levels reduce the
calendar life. In contrast, if the cycle life is not fully exploited, this
prolongs the BSS’s calendar life. Thus, to guarantee that the installed
capacity capBSS is fully accessible until the last day of operation, the
invested BSS capacity capBSS aged, needs to compensate the degradation
effects. Eq. (13) describes capBSS aged, and splits it into three terms. The
first term considers the end of life condition of the BSS and the installed
capacity, capBSS, needs to be oversized by EoL

1 .

= +cap
cap

EoL
cap capBSS aged

BSS
add l red cycl, , , (13)

The second term of Eq. (13) considers an additional capacity,
capadd l, , to compensate the BSS degradation due to high storage levels of
the BSS. Eq. (14) states that capadd l, is 1

3
of the average storage level,

lBSS
q h w, , , over the number of time intervals Nintervall.8 The third term of Eq.
(13), considers the fact that a not fully exploited cycle life results in a
prolonged calendar life and capred cycl, reduces capBSS aged, . capred cycl, is
calculated in Eq. (15). Here, xBSS tot, refers to the total amount of elec-
tricity that flows into the BSS over the course of one year. xBSS tot, is
multiplied by LTcal, the calendar lifetime, and divided by LTcycl, the cycle
lifetime, to show the average electricity in-flow per cycle. Finally, the
difference between capBSS and this average electricity in-flow per cycle
is multiplied by the factor 1

3
9. xBSS tot, is calculated in Eq. (16) and is the

sum of the electricity in-flow for every time interval, xBSS in
q h w

,
, , , plus a

weekly share of electricity in-flow due to PCR provision. As we do not
model the actual electricity flow for PCR, we include a mean value
EPCR mean, multiplied by the amount of power offered for PCR PPCR

w .10

Table 1
Model assumptions.

Parameter Unit Parameter Unit Parameter

in % 90 TPCR crit, Hours 0.5

out % 90 puffPCR – 1.5
disBSS %/month 2 EPCR mean, kWh/week 4889.7
EoL % 80 Discount rate i % 2
LTcal years 11 Number of annuities T years 11
LTcycl Cycles 4000

6 AF refers to the annuity factor [7], considering a constant discount rate i and
number of annuities T: =

+
AF i i i T

1 1
·(1 )

7 The term is multiplied by the factor 1000 to convert from MW to kW

8 “It is a linear function derived from Lunz et al. [68], which states that an
always fully charged SBS reduces its whole lifetime by about one third.” [57].
9 The factor 1

3
refers to Bloom et al. [65] and the result that the cycle life

influences one third of the BSS’s life time.
10 EPCR mean, is the mean amount of energy that a BSS providing 1MW of PCR

had to charge per week in the year 2016. We concluded this mean value from
the frequency data of the year 2016. The unit is kWh MW/ .
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Finally, we consider Eq. (17) to guarantee that the amount of electricity
over the calendar life, x TL·BSS tot cal, , does not exceed the product of cycle
life times BSS capacity.

=
= = =

cap l
N

1
3

· · 1
add l w h q BSS

q h w

intervall
, 1

52

1

168

1

4 , ,

(14)

=cap cap x LT
LT

1
3

· ·red cycl BSS BSS tot
cal

cycl
, ,

(15)

= +
= = =( )x x P E·BSS tot w h q BSS in

q h w
PCR
w

PCR mean, 1

52

1

168

1

4
,

, ,
, (16)

x TL TL cap· ·BSS tot cal cycl BS, (17)

With exemplary numbers, we illustrate the effect that the battery
degradation constraints have on the annuity payment of the invest-
ment. For this example, the average storage level is assumed to be
100 kWh. This results in a capadd l, of 33 kWh. Furthermore, under the
assumption that the installed BSS capacity is 500 kWh, the example
case utilizes roughly half the available charging cycles. This would add
up to xBSS tot, of around 90,000 kWh and in a capred cycl, of 84 kWh.
Consequently together with an EoL of 80%, capBSS aged, would amount to
574 kWh. Thus, the installed capacity is oversized to compensate for the
degradation effects. This increases the annuity payment, which is
considered in the objective function, Eq. (1). It should be noted that a
small number of utilized cycles leads to a capred cycl, , which over-
compensates the other degradation effects resulting in a capBSS aged,
smaller than the installed capBSS. This translates into a fictive case
where, because of the prolonged calendar life, the BSS is still usable
after its end of life and the residual value of the BSS reduces the in-
vestment.

3.1.4. Modifications for A1 and A2 and the different use cases
In the analytical step A1 and A2, we investigate the economic po-

tential of a BSS following different revenue streams in parallel. For this
paper, we constructed six use cases, which represent either an in-
dividual revenue stream or a combination of different revenue streams
in parallel. Considering the literature overview in this section and the
current price level on the different markets, we assume that PCR will
have the biggest effect on the profitability of the BSSs. Thus, for the
parallel revenue stream cases PCR is the common option to generate
revenue. Table 2 gives a detailed overview of the different use cases and
their respective objective function. Eq. (18) refers to U1, where arbit-
rage trading generates the only revenue and expenses. U2 utilizes the
battery to profit from peak shaving, Eq. (19). Eq. (20) refers to U3
where the model only provides PCR and therefore only considers the
RPCR

h w, . U4 combines PCR and arbitrage trading and U5 combines PCR and
peak shaving. Finally, U6 considers all three revenue streams, PCR,
arbitrage trading and peak shaving.

As part of the overall cost, ABSS is considered for every objective
function. For analytical step A1, we compare the same BSS for the
different industrial companies. Here, the BSS’s capacity is an exogenous
parameter. Therefore, ABSS depends only on the battery degradation.

The essential difference for the analytical step A2 is that capBSS is an
endogenous variable. For A2 we analyse only U6.

3.2. Economic evaluation

To evaluate the profitability of the BSS we calculate the net present
value NPV, Eq. (24). From the total cash flow of the system CFtot of one
year multiplied with the capital recovery factor 11, +

+
i i

i
(1 ) ·

(1 ) 1

T
T , the in-

vestment for the BSS, capBSS aged, multiplied with the battery price pBSS is
substracted.

= +
+

NPV CF i i
i

cap p· (1 ) ·
(1 ) 1

·tot
T

T BSS aged BSS, (24)

CFtot refers to the cash flow of the considered revenue stream. The cash
flow for arbitrage trading, CFarb, is the difference between the total cost
for electricity without a BSS, Cel,old, and with a newly installed BSS,
Cel,new.

=CF C Carb h w el old
h w

h w el new
h w

, ,
,

, ,
,

(25)

The cash flow for peak shaving, CFpeak, describes the savings in
capacity spending between the old peak, Ppeak,old without a BSS, and the
new peak, Ppeak,new, multiplied with the capacity price, ppeak.

=CF P P p( )·peak peak peakpeak,old ,new (26)

The cash flow for PCR provision, CFPCR, is the total revenue of PCR,
RPCR, over one year.

=
=

CF RPCR w PCR
w

1

52
(27)

For the comparison of different investments, we calculate the
profitability index PI, Eq. (18). The PI represents the NPV per invested
Euro ([66], p. 115).

=PI NPV
cap p·BSS aged BSS, (28)

3.3. Load indicators

In A3, we want to identify the significant independent variables, the
load indicators that influence the profitability of a BSS. These indicators
illustrate the characteristics of the individual load profiles. McLoughlin
et al. [58] introduced three electrical parameters to characterize the
domestic electricity demand. They describe PMD as the mean daily peak
load, PToU as the maximum time of use and PLF as the “daily peakyness”.
We expand on these parameters to compare the peak shaving potential
of the different industrial load profiles.

Table 2
Name of the different use cases, the referred number and the modified objective function.

Use case Name of the use case Objective function

U1 Arbitrage = += =f f C Amin , ( ( ))w h el
h w

BSS1
52

1
168 , (18)

U2 Peak shaving = +f f C Amin , peak BSS (19)
U3 PCR = +=f f R Amin , ( )w PCR

w
BSS1

52 (20)

U4 PCR and arbitrage = += =f f C R Amin , ( ( ) )w h el
h w

PCR
h w

BSS1
52

1
168 , , (21)

U5 PCR and peak = + +=f f R C Amin , w PCR
w

peak BSS1
52 (22)

U6 All of the above = + += =f f C R C Amin , ( ( ) )w h el
h w

PCR
h w

peak BSS1
52

1
168 , , (23)

11 The capital recovery factor refers to the capital recovery factor, the in-
version of the present value calculation method with constant annuities [66],
considering a constant discount rate i and number of annuities T:

= +
+

CRF i T i
i T

(1 ) ·
(1 ) 1

.
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PMD describes the mean daily peak load in MW over the period of
one year, see Eq. (29). Pi j, is the mean production load over 15min in
MW and n is the number of 15-min time periods in one day. m is the
number of days per year.

=
=

P
m

P i n1 max{ , 1 }MD j

m
i j1 , (29)

PToU identifies the time interval of one day, jmax, during which the peak
load occurs. Eq. (30) builds the mode over all days of one year.
Thereby, PToU shows the time interval where the peak load occurs most
of the time.

= = +P mode j P P n j i n j m{ | max{ , 1 ( 1) , 1 }}ToU j i jmax ,max

(30)

The third indicator of McLoughlin et al. [58] is PLF, which they refer
to as the “daily peakyness”, see Eq. (31). First, the equation compares
the mean to the peak load of one day. Then, the mean of the sum of this
daily ratio results in PLF. This is a measure to describe the continuity of
a load profile.

=
=

=P
m

P
P i n

1
max{ , 1 }LF j

m n i
n

i j

i j1

1
1 ,

, (31)

To describe the continuity, we use an additional load indicator that
is already established in the field of energy economics: the yearly
period of use, PPoU, or full load hours, Eq. (32). It compares the yearly
energy demand to the yearly peak power demand and illustrates how
many hours one would continuously draw energy from the grid if the
power were held constant at its maximum. To make it more tangible,
we divide this ratio by the number of hours per year resulting in a
percentage of a year.

= =P
P i n m

a
hmax{ , 1 · }

· 1
8760PoU

i
n m P

i

0
·

4
i

(32)

To display the peak shaving potential, we developed four indicators,
Peakintegral, Peakabove, Peakinterval and Peakdensity. Fig. 2 gives a graphic
explanation of these indicators. Peakintegral describes the ratio of the
energy amount that is consumed during a peak period to the total
amount of energy consumed in one day as an average over the course of
one year. Eq. (33) gives the definition of a peak energy, Epeak i j, , . It ac-
counts for all intervals where the load is greater than a fixed peak
threshold in our case PMD. Epeak i j, , takes the value of Pi j, , if P Pi j MD, , or
else the value 0 for all intervals of the day n and all days of the year m.
Furthermore, Pi j, is multiplied by the term n

24 to derive energy and de-
vided by the total amount of energy consumed in one day. Epeaki j, shows
the percentage of the daily energy that is consumed during a peak in-
terval.

=
<

E ifP P

ifP P
i n j m,

0,
, 1 , 1peak i j

P

P i j MD

i j MD

, ,

·
,

,

i j n

i
n i j

,
24

,

(33)

Eq. (34) builds the mean of. Epeak i j, , over one year to get the in-
dicators Peakintegral, Fig. 2a.

=Peak
m

E1
integral j

m

i

n
peak i j, , (34)

Accordingly, we get the indicator Peakabove, Fig. 2b. The only differ-
ence is that we consider the amount of energy that is above our threshold
PMD, see Eq. (35). In Eq. (36), Peakabove resembles the mean percentage of
the daily-consumed energy that is above the peak threshold.

= >

=
E if P

if P
i n j m, 0

0, 0
, 1 , 1above i j

P P

P i
n

i j

i
n

i j

, ,

( )·
,

,

peak i j MD n

i
n i j

, ,
24

,

(35)

=Peak
m

E1
above j

m

i

n
above i j, , (36)

Peakinterval, Fig. 2c, accounts for the mean number of peak intervals
per day. Eq. (37) builds the cardinal number of intervals i, where the
load is above the peak threshold for every day, Pinterval,j. Eq. (38) cal-
culates the mean of the percentage of Pinterval,j in one day (n is number of
time intervals per day) over the course of one year.

=P card i P P i n({ | , 1 })interval j i j MD, , (37)

=Peak
m

P
n

1
interval j

m interval j,
(38)

Lastly, Peakdensity, Fig. 2d, describes how daily peak energy,
Ei

n
peaki j, , is spread over the daily peak intervals, Pintertval j, , see Eq. (39).

It is shown as the mean over one year.

=Peak
m

E
P

1
density j

m i
n

peak i j

interval j

, ,

, (39)

3.4. Stepwise multi-linear regression

A stepwise multi-linear regression method is employed, to identify the
significant independent variables that influence the profitability of a BSS.
For the implementation, Matlab R2016a and the function stepwiselm12 us

t

lo
ad

 in
 k

W
h

PMD

Peakdensity

t tt

d)c)b)a)

PMD

Peakinterval

PMD

Peakabove

PMD

Peakintegral

Fig. 2. Graphic explanation of load indicators. (a) displays Peakintegral, the energy consumed during a peak period, (b) displays Peakabove, the energy above a peak
threshold, (c) with the brackets displays Peakinterval, the number of 15-min intervals in a peak period and (d) displays Peakdensity, the amount of energy per Peakinterval.
All the indicators are normalized to the daily energy consumption.

12 A more detailed explanation of the function can be found the Mathworks-
homepage: https://de.mathworks.com/help/stats/stepwisefit.html#bq9x28h-1
(4th May 2018)
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used. This function applies a bidirectional elimination algorithm. The se-
lection criterion is the default p-value ( <p value 0.05 to enter,

<p value 0.1 to remove). The result of this method is a linear model,
which includes all the significant independent variables xi to describe the
dependent variable y. βo describes the y-intercept and βi the coefficient or
the slope of the independent variable, see Eq. (40).

= +y x·
j

n
j j0 (40)

4. Data

4.1. Load data

We evaluated the load profiles of 50 different companies. The focus
of this study is on small-medium-sized companies (SMEs) in Germany.
The data cover a variety of different sectors, such as hotels, metals
refining or production of drop forgings, as indicated by the more de-
tailed meta-data for 20 companies. The data cover the whole year of
2017 at 15min resolution. We refer to the Appendix A for a detailed
overview of the companies and their load indicators. The sample
companies show a variety of different load behaviours. The annual peak
load ranges from 34 kW to 4718 kW. From the mean of 570 kW, a
standard deviation of 996 kW and a mode of 326 kW, we can observe
that the distribution of the annual peak load of the 50 companies is
skewed to the left. The same holds true for the annual energy con-
sumption, Etotal, and PMD. Using the above introduced load indicators,
we are able to compare the load profiles of the different companies.
Fig. 3 illustrates the box plot of the load indicators. It shows that for the
sample of 50 companies the distributions of the load indicators are
slightly skewed.

4.2. Market data

We considered the market prices of the year 2017. For the con-
tinuous intraday market and the day-ahead market, we used the prices
accessible over the EPEX-Database. The intraday price represents the
mean average price and the day-ahead price the market-clearing price.
For the PCR-prices, we used the maximum price bid that was accepted.
We extract the prices from the homepage of regelleistung.net, a co-
operation of the German transmission service operators. The capacity
price ppeak is the mean price on the medium-voltage level in the German
federal state of Baden-Württemberg. The capacity prices are separated
by the yearly period of use of 2500 h/a. Because of modelling restric-
tions we consider the average price of 44.46 €/kWha, but mention that
the price range is significant.13 The BSS price is assumed to be
800 €/kWh. In order to analyse the potential from a macroeconomic
point of view and in the context of ongoing discussions about costs and
potentials of flexibility, the applied discount rate is 2%.

5. Results and discussion

5.1. A1: optimizing with fixed capacity

For A1, we analysed the net present value (NPV) of the different use
cases with a fixed BSS capacity of 500 kWh and a maximum power
capability of 500 kW.14 Fig. 4 depicts the NPVs of all 50 companies for
the different use cases. The use cases are sorted from lowest to highest
NPV. The graph shows that the BSS can only generate a positive NPV for
the latter two use cases, U5 and U6. Nonetheless, this is not the case for

roughly half of the companies. The different load profiles influence the
NPV of the use cases with peak shaving. In the other use cases, U1, U3
and U4, the NPV is independent of the load profile. Table 4 gives on
overview of the results for the different use cases with a fixed battery
capacity. It shows the mean and standard deviation for the NPV, capaged,
number of full cycle equivalents and the c-rate15 for all charging ac-
tivities.

The use case with the lowest NPV is arbitrage trading and is the
same for all 50 companies. This implies that the BSS only profits from
price spreads on the energy markets by buying and selling on these
markets and is not used to cover any part of the production load. The
annual cash flow that the BSS generates through arbitrage trading sums
up to 2019 €. The BSS is charged during 144 time intervals and dis-
charged during 181 intervals. This indicates that the BSS is utilized
roughly 0.5% of the time. In contrast, the number of full cycle
equivalents is 375 cycles, 9.3% of the cycle life of 4000 cycles, as the
BSS charges and discharges with the maximum power capability to
exploit the price spread on the market. The mean c-rate for all charging
activities is 0.7542. The constraints for battery degradation encourage
the optimization model to keep the number of cycles to a minimum as
well as the number of intervals with a high storage level. Avoiding a
high number of cycles prolongs calendar life and reduces the invest-
ment. For the U1, arbitrage trading, the low level of activity decreases
the invested battery capacity, =cap 476 kWhaged . The reduced battery
capacity is a result of the battery degradation constraint in Eq. (13) in
Section 3.1.3. For a profitable use case, the profit that can be generated
on the energy market needs to be greater than the additional invest-
ment required to compensate battery degradation. For a battery price of
800 €/kWh, the price spread on the energy markets needs to be greater
than 0.0759 €/kWh.16 This threshold would rise by 0.0069 €/kWh for
every time interval the storage level is not reduced. Additionally, the
selling price needs to be at least 1.23 of the buying price to cover the
electricity losses of the BSS.

The studies on the use cases with peak shaving, U2, show better
NPVs, but a 500 kWh battery is not profitable even for the largest
company. However, it is striking that the profitability of this use case

Fig. 3. Box plot of load indicators.

13 <yearly period of use 2500h
a , =p 10.02peak kWha and

yearly period of use 2500h
a , =p 78, 89peak kWha

14 500 kWh and 500 kW represent the rounded mean value of the peak load of
all 50 companies.

15 The c-rate describes the rate at which a BSS charges or discharges (in kW)
in relation to its capacity (in kWh), so for example a c-rate of 1 will deliver
100% of the BSS’ capacity in one hour, and a c-rate of 2 in 0.5 h etc.
16 The derived price spreads are a result of the partial derivative of Eq. (13)
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strongly depends on the individual load profile of the companies.
Conclusively, companies with a high peak load usually also have higher
NPVs. The economic potential of peak shaving increases with the ab-
solute peak load. For most of the companies on the other hand, a bat-
tery capacity of 500 kWh is disproportionately large and the cash flow
through peak shaving never exceeds the investment in the BSS. In all
cases, however, the battery is also used so little that capaged drops and
has an average value of 468 kWh. The number of cycles and the c-rate
can explain the great influence of the different load profiles on the
profitability of the peak shaving use case. For example, the average
number of cycles is 222 over the 11 years under consideration, but there

is a large difference between the individual companies. Thus, Co50 has
only 13 cycles, which is hardly more than 1 cycle per year, and a re-
latively high c-rate. Nevertheless, Co50 achieves the highest reduction
in capacity prices. In contrast, the BSS of Co36 goes through 992 cycles
over 11 years.

The values for the U3 and U4 are the same for all companies. This is
because in both use cases the entire battery capacity is blocked for the
provision of PCR. For all weeks in 2017, it is economically more at-
tractive to offer PCR than to trade energy. Therefore, there is no pos-
sibility to use the battery for arbitrage trading. Of all revenue streams
individually, PCR is the most profitable. However, on the PCR market, a
500 kWh battery at a price of 800 €/kWh will not produce a positive
NPV. Even following two revenue streams in parallel, PCR and arbit-
rage, does not change the NPV. Overall, the battery is charged and
discharged very lightly with regard to the number of cycles. Only nine
additional full cycles are achieved in eleven years. Nevertheless, the
battery capacity to be invested in has increased to 586 kWh, see
Table 3, due to battery degradation, as the average charge level over
the entire time is 50%.

Only for the last two use cases, U5 and U6, can a positive NPV be
observed, but not for all companies. Again, companies with relatively
high peak load have higher NPVs than companies with a lower peak
load. PCR is offered in all cases every week, but the amount of PCR
offered varies weekly. This frees up battery capacity for either peak
shaving, U5, or peak shaving and arbitrage trading, U6. Fig. 4 shows

Fig. 4. Bar chart of NPV of the different use cases for the 50 companies. The companies are arranged in ascending order referring to the yearly peak load.

Table 3
Statistical overview of the load data.

Peak load Etotal PMD PToU PLF PPoU Peakintegral Peakabove Peakinterval Peakdensity
kW inMWh in kW – – – – – – –

min 33.8 52 12.4 14 27.4% 6.4% 1.08% 0.04% 0.71% 0.50%
max 4717.6 22,375 2654.0 96 97.4% 87.8% 50.10% 14.43% 41.65% 2.82%
mean 570.1 2059 361.4 45 57.4% 33.4% 25.24% 4.15% 15.42% 1.13%
std 996.1 4462 658.9 18 14.9% 16.5% 12.88% 2.92% 9.28% 0.42%
mode 325.6 1252 215.4 35 71.1% 44.0% 34.07% 5.17% 23.37% 0.99%

Table 4
Results for the different use cases with a fixed BSS capacity.

NPV capaged cycles c-rate

mean mean mean std mean std mean std
in € in € in kWh in kWh – – – –

U1 −361,225 0 476 0 375 0 0.7542 0.0000
U2 −331,361 44,662 468 11 222 250 0.0722 0.0960
U3 −11,674 0 586 0 9 0 0.0002 0.0000
U4 −11,674 0 586 0 9 0 0.0002 0.0000
U5 13,378 35,532 588 2 100 98 0.0011 0.0011
U6 14,486 36,069 590 4 156 141 0.0067 0.0061
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that the combination of PCR and peak shaving has the greatest influ-
ence on the profitability of BSS. The addition of arbitrage trading can
only positively influence the NPV in individual cases and only by a
relatively small amount.

Considering the cap aged_ , cycle number and c-rate, the observations
for the single revenue stream use cases hold true for the parallel rev-
enue streams as well. Combining peak shaving with PCR increases the
average cycle number and average c-rate. Including arbitrage trading
into the use cases increases these numbers even further. This in return
leads to a higher degradation of the BSS and therefore in a higher
capaged.

5.2. A2: optimizing with variable capacity

For A2, we run the model one more time for use case U6. This time
we include the option to determine BSScap endogenously. This allows us
to consider the different production sizes of the 50 companies. Fig. 5
shows the results of the model run for U6 as a bar chart. The different
colours in the bars indicate the proportion of the total cash flow that
can be attributed to one of the three revenue streams, PCR, peak
shaving and arbitrage trading. Furthermore, the red diamonds show the
installed capacity of the BSS and is orientated to the right y-axis.

One can observe that the installed capBSS differs quite substantially,
the lowest being around 8 kWh and the highest reaching close to
1200 kWh. For a better comparison, we show the profitability index, PI,
of the installed BSS of the different companies. For illustration, for
company 49 and company 50 the model installs two large BSSs of
1096 kWh and 1189 kWh respectively. Simultaneously, company 49
could reach with its BSS a PI of 0.1023 €/€, whereas company 50
reaches a PI of 0.2373 €/€. Applying this to the rest of the sample
companies, we detect that the PI seems independent from capBSS. In
general, with a mean value of 0.1717 the overall level of PI seems very
low. This is even more evident, once we consider the payback period
(PP). The mean PP is reached after 8.4 years with a standard deviation
of 0.45 years. This translates into a breakeven point after more than
75% of the BSS lifetime.

When we take a close look at the share of the single revenue streams
of the total cash flow, we observe that arbitrage trading plays a minor
role determining the PI of the BSS. The highest share is on the PCR
revenue stream, mean of roughly 75%, and then the peak shaving
revenue stream, mean of roughly 24%. Furthermore, we observe that
the PI is increasing with a growing peak-share.17 Fig. 6 shows the
scatter of PCR-share and peak-share to the PI. The least square fit lines
indicate the trend of the relation between the revenue share and the PI.
Both of the independent variable are highly correlated with the de-
pendent variable PI. For the PCR-share the R is 0.782 and for peak-
share the R is 0.832 . Additionally, we detect that the trend is almost
complementary to 1, which can be explained as arbitrage trading plays
a minor role.

To explain the economic potential for peak shaving in the different
companies, we calculate the peak ability of the BSS, peakabil, shown in
Eq. (41). This describes by how many kW every kWh of battery capacity
installed reduces the original peak load. Fig. 7 shows the scatter plot of
PI over peakabil with a least square fit curve and a R of 0.882 .

=peak
Peak Peak

capabil
max old max new

BSS

, ,

(41)

This leads us to the conclusion that the profitability of a BSS mostly
depends on the two revenue streams PCR and peak shaving. The higher
the share of the total cash flow is due to peak shaving, the higher the
overall profitability of the BSS investment. Therefore, the BSS that can
utilize its capacity more efficiently than others to reduce the peak load
is more likely to achieve a higher profitability. Still, the PCR and peak
shaving revenue stream function complementarily. By itself under our
assumed prices, one revenue stream cannot generate enough cash flow
for the investment to break even. Our model finds for each company the
optimal combination of how much capacity of the BSS to block for the

Fig. 5. Results of U6 with variable BSScap, PI for 50 companies ascending by peak load, divided into the share of the single revenue streams of the total cash flow.

17 The term peak-share refers to the share the peak shaving revenue stream
provides to the cash flow. Respectively, PCR-share describes the share of the
PCR revenue stream.

F. Braeuer, et al. Applied Energy 239 (2019) 1424–1440

1434



PCR operation as to still generate enough revenue by peak shaving.

5.3. A3: stepwise linear regression of load characteristics

In the analysis A3, we develop a linear regression model to describe
the relationship between load indicators and the model result, PI, for all
50 companies. The load indicators are described in Section 3.3.

Table 5 shows the steps of the stepwise linear regression analysis.
The first variable that is added to describe the variance of PI is the load
indicator Peakdensity. In the second step, the variable Peakabove is added
to the linear model to further increase the R2. The stepwise analyses
identifies no other variables to be significant, hence no further steps are
needed to further add or remove variables from the linear model.

Eq. (42) shows the derived linear regression model to describe the
variation of PI. The ordinary R2 of the model is 0.291 and the adjusted
R2 is 0.260. This shows that the linear model has a moderate ability to

describe the variance of PI. Both variables have a p-Value below 0.01
and therefore correlate significantly with PI. For a better illustration,
we multiplied the load indicators by 100 as to represent a percentage of
the total daily energy consumption. The estimated coefficient for
Peakdensity is 0.0809. If the other variable is held constant PI would in-
crease by 0.0809 €/€ once Peakdensity is increased by 1 percentage point.
Peakdensity is positively correlated with the dependent variable PI. On
the contrary, if the other independent variable Peakabove is increased by
1 percent PI decreases by 0.0156 €/€ as they are negatively correlated.
Therefore, the contribution to the variance of PI is higher for Peakdensity
but for Peakabove it is more significant. The collinearity statistics in
Table 6 show that the case of multi-collinearity does not need to be
considered ( > <tolerance VIF0.25 and 5.0).

The results are in line with the expectations. A higher value for
Peakdensity would imply that a greater amount of the daily energy con-
sumption occurs during a peak period. Therefore, this could be an
implication for a greater peak shifting potential where greater amounts
of energy can be easily shifted to non-peak periods. On the other hand,
a lower value for Peakabove implies that the amount of energy above the
peak threshold, PMD, is smaller compared to the daily energy con-
sumption. For example, this could occur in cases of single high peaks or
regular smaller peaks. In either case, the amount of peak shaving en-
ergy would decrease and the peak shaving potential of a small BSS
would rise.

= +PI Peak Peak0.1451 0.0809 ·100 0.0156 ·100Density above (42)

< < <p p p0.1, 0.05, 0.01

5.4. Sensitivities

The model results are considerably sensitive to variations in battery
price, lifetime of the BSS and assumed discount rate. With decreasing
battery prices the model choses to install larger BSS capacities. Below a
certain battery price, around 780 €/kWh, the installed capacity
abruptly increases from values smaller than 2MWh to the maximum
value possible of 10MWh. This sudden increase also appears with de-
creasing discount rate, at about 1.5%, which can be seen in Fig. 8, and
an increasing battery life, at around 5000 cycles.18 Furthermore, the
sudden increase indicates a state where the installation of a BSS for PCR
by itself is already profitable. As the PCR revenue stream is independent
of individual load profiles the model chooses for every company the
maximum capacity. Simultaneously, Fig. 8 shows that the installed
battery capacity drops exponentially with an increasing discount rate
and approaches zero. Fig. 8 depicts model results for the installed
battery capacity, capBSS, as a mean value over all companies with
varying discount rate.

Considering the results, for many companies a BSS is barely prof-
itable. Therefore, changes in the PCR-prices and the capacity prices
have a strong effect on the installed BSS-capacity. Current price trends
on the PCR-market imply a lower price level than in 2017 while ca-
pacity prices have been increasing over the past years. Additionally,
capacity prices vary significantly among the different regions in
Germany. On average, the northern parts of Germany have capacity

Fig. 6. Scatter plot of PCR-share and peak-share to Pi including a least square fit
line.

Fig. 7. Scatter plot of Pi over peak ability with least square fit.

Table 5
The steps of the stepwise linear regression.

Step Adding/removing Variable FStat pValue

1 Adding Peakdensity 7.14 0.0103
2 Adding Peakabove 10.68 0.0020

18 The influence of varying calendar life cannot be assessed as the constraints
in Eqs. (13) and (15) underestimate and overestimates the battery degradation
respectively, in case the assumed technology life differs from the calendar life.
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prices three times as high as southern Germany. The local differences
are even more extreme, as the highest price amounts to six times the
lowest price [59]. For most companies, rising PCR-prices would lead to
greater amounts of the capacity blocked for PCR-provision. Accord-
ingly, rising capacity prices would lead to a higher peak-share and vice
versa. Furthermore, with rising capacity prices one could observe a
greater divergence between the PI of the different companies due to the
load profile dependency. Eventually, how these price changes would
vary the profitability of the BSS, still depends on the peak potential of
the individual company, the correlation of the PCR-price-profile and the
individual load-profile and the relationship of the PCR-price level and
the capacity price-level.

5.5. Critical reflection

This section provides a brief critical reflection on the developed
approach and assumptions. Attention is firstly turned to the developed
model, which is a deterministic optimization under perfect foresight for
a representative year. This approach furthermore assumes a predictable
load and 100% acceptance of price bids on all three markets, and the
year 2017 is assumed a representative year for the lifetime of the BSS.
Hence, there is a significant level of uncertainty associated with future
developments in load profiles and market prices, neither of which are
well captured in the model. The load profiles are based on a sample
with a limited amount of metadata, which makes it difficult to infer the
importance of sample bias. In addition, the system boundary for the
analysis is at the company level. Implicitly, we assume that an ag-
gregator is able to pool the required BSS capacities to trade on the re-
spective markets. The associated costs of which are neglected.
Furthermore, the assumed discount rate of 2% depicts a macro-
economic social discount rate. The discount rate employed by the

individual company might be much higher, which would further de-
crease the profitability of investment. Whilst the reported sensitivity
analysis indeed goes some way to exploring the impacts of different
assumptions on the profitability of different business cases, this un-
certainty cannot be eliminated and the results should therefore be in-
terpreted in this context.

The intraday market might hold higher potential for arbitrage
trading than displayed in this paper as prices change dynamically. In
this paper, only the weighted average and no order book price data
have been applied. The model therefore limits the number of trades on
the intraday market to one per product disregarding for reasons of long
runtimes the potential that lies in dynamic asset-backed trading.
Furthermore, the analysis neglects any feedback effects of the BSS op-
timisation: the PCR market has a total volume of 1378MW,19 so if the
50 SMEs were to install the maximum capacity of 10MWh combined
they would be able to offer around 333MW of PCR. The ensuing market
saturation would probably result in much lower prices and therefore
less favourable economic conditions. Additionally, future market
changes will have an influence on the potential of parallel revenue
streams for the BESS. For example, the product duration of PCR will
decrease from 7 days to 1 day in November 2018 and 4 h products in
July 2020 [60], which will increase the flexibility for companies to
switch between possible revenue streams.

Other weaknesses relate the technology of the BSS itself, especially
the model constraints to depict battery degradation. Current studies
from battery testing of electric vehicles indicate at least double the life
duration than we considered [61]. Additionally, the influence of the c-
rate, depth of discharge and the temperature on the degradation process
[49,62,63] is not included in the model. On the other hand, the ob-
served c-rates are low. Thus, the influence might be negligible. For our
model, we assume a battery control system that is capable of im-
plementing the advised dispatch plan. Additional cost for such a man-
agement system is not included. Finally, the reliability of the battery is
not considered, which would have important implications for the pro-
duction process. We have assumed that the BSS is a pseudo-flexibility,
in that it does not interfere with the production process directly. But
cost savings through peak shaving need to outweigh production un-
certainties. Especially in SMEs, the production is more volatile and
order-dependent than in energy-intensive industries. So analysing the
implications of lower BSS reliabilities should be covered by future
work.

Finally, future research needs to extend the linear regression model
to make it more robust. Results from sensitivity analyses, like the var-
iation of the ratio between the PCR and capacity price level, should be
included. The choice of PMD as the threshold for peak definition is useful
as it allows for comparability between different load profiles. For a
better understanding of the peak shaving potential, the definition of a
peak needs to be explored further and the scope of the load profile data
extended.

6. Summary and conclusion

Increasing fractions of renewable electricity generation require
more flexibility within the energy system, especially on the demand
side. Against this background, this paper has developed and applied an
optimization model to assess the profitability of different parallel rev-
enue streams for a battery storage system (BSS) in industrial companies.
By not interfering with the production process, the BSS provides a
pseudo-flexibility with significant advantages compared to other in-
trusive DSM measures. The linear program (LP) with 15-min resolution
optimizes the capacity of a BSS by maximising the Net Present Value
(NPV) across the operational lifetime. In contrast to existing

Table 6
Linear model statistics.

Colinearity statistics

Estimate SE tStat pValue tolerance VIF

Intercept( ) 0.1451 0.0226 6.4281 <0.001
Peakdensity 0.0809 0.0248 3.2680 0.0020 0.8185 1.22
Peakabove −0.0156 0.0036 −4.3585 <0.001 0.8185 1.22

Fig. 8. Sensitivity analysis for varying discount rate. Shown are the results for
the mean installed battery capacity, capBSS. (The line between the points is for
graphical understanding only and does not refer to model results.)

19 The mean value per week of the required primary control reserve in 2017
[67]
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contributions, the BSS is employed for one or more revenue streams in
parallel, including arbitrage trading, power control reserve (PCR) and
peak shaving. The novelty of the approach lies in this combination of
revenue streams, which especially due to the quite different market
requirements and timeframes is challenging to model. A final step in-
volves a stepwise linear regression of the profitability in relation to
newly-defined load indicators.

The model is applied to a set of 50 German small and medium en-
terprises (SMEs), based on empirical data for these companies. The
results show that, under the default assumptions, neither of these three
business cases is economically attractive (i.e. negative NPVs) in-
dividually. When combined, the most profitable business model is
achieved with all revenue streams (positive NPVs). Hence, with a fixed
BSS capacity of 500 kWh, the Net Present Value (NPV) varies from a
minimum of −350,000 € for just arbitrage up to about 200,000 € for all
three use cases in parallel. In the case of a variable BSS capacity, this
varies up to 1200 kWh and the Profitability Index (the ratio of invest-
ment to NPV) varies from 0.06 to 0.31. The profitability can be at-
tributed mostly to the cash flow from peak shaving and PCR. Under
current market conditions, arbitrage trading contributes marginally to
the profitability as the price spreads on the energy markets are too
small to justify stronger battery degradation. There is a large variation
in profitability between the companies in terms of the profitability and
the size of the battery installed, both of which are closely related to the
characteristics of the electrical load profile. The stepwise linear re-
gression reveals a moderate dependency of the BSS profitability on the
two newly developed indicators Peakdensity and Peakabove. The profit-
ability of the BSS is strongly affected by the techno-economic as-
sumptions, for example the BSS capacity suddenly increases from below
2MWh up to the maximum possible value of 10MWh with battery

prices below 780 €/kWh, interest rates below 1.5% and more than 5000
remaining cycles.

The developed approach is subject to considerable uncertainties
relating to the future development of load profiles, market frameworks
and technology costs, which should all be borne in mind when inter-
preting the results. Furthermore, the microeconomic perspective
adopted in this work does not consider the feedback effects that in-
dividual SMEs investing in BSSs would have on the PCR markets. In the
extreme case, these markets could become completely saturated,
thereby negating any apparent economic potential shown here. Future
work should therefore especially focus on a more detailed depiction of
the BSS’s technical behaviour, including degradation and reliability, as
well on developing more robust statistical relationships between load
indicators, based on larger samples, and profitability.
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Appendix A

A.1. Model description

In this section, we present the model equations. The essential equations are shown in section Methodology on page 8.

A.1.1. Electricity flow balance constraints
The production demand D( )prod

q h w, , can be either satisfied through electricity directly from the grid x( )grid prod
q h w

,
, , or electricity stored in the BSS x( )BSS prod

q h w
,

, , ,
Eq. (43). As shown in Eq. (44), the electricity from the grid, xgrid

q h w, , , flows either to the BSS, xgrid BSS
q h w

,
, , , directly to the production, xgrid prod

q h w
,

, , or is fed into
the grid from the BSS, xBSS grid

q h w
,

, , . Furthermore, one part of xgrid
q h w, , is traded on the dayhead market, xahead

h w, , the other on the intraday market, xintra
q h w, , . Eq.

(45) shows the electricity balance for one hour.

= +D x x x x, , 0prod
q h w

BSS prod
q h w

grid prod
q h w

BSS prod
q h w

grid prod
q h w, ,

,
, ,

,
, ,

,
, ,

,
, ,

(43)

= +x x x x x x x, , , 0grid
q h w

grid BSS
q h w

grid prod
q h w

BSS grid
q h w

grid prod
q h w

grid BSS
q h w

BSS grid
q h w, ,

,
, ,

,
, ,

,
, ,

,
, ,

,
, ,

,
, ,

(44)

= +
= =

x x x
q grid

q h w
ahead
h w

q intra
q h w

1

4 , , ,
1

4 , ,
(45)

=x x·BSS in
q h w

in grid BSS
q h w

,
, ,

,
, ,

(46)

= +x x x1 ·( )BSS out
q h w

out
BSS grid
q h w

BSS prod
q h w

,
, ,

,
, ,

,
, ,

(47)

Eqs. (46) and (47) describe the electricity flow in, xBSS in
q h w

,
, , , and out, xBSS out

q h w
,

, , , of the BSS. xBSS in
q h w

,
, , multiplies xgrid BSS

q h w
,

, , with an efficiency factor, in, which
considers the electricity losses of the charging process of the BSS. xBSS out

q h w
,

, , flows either back into the grid or to the production. In this case, an inverse
efficiency factor, out , is considered. Eq. (48) states that the maximum power capability of the BSS, PcapBSS

20, restricts the maximal electricity flow in
and out of the BSS. The ratio between the power capability and the energy capacity of the BSS is set to 1.

+x x
Pcap

4BSS out
q h w

BSS in
q h w BSS

,
, ,

,
, ,

(48)

20 The term PcapBSS
4

converts power in kW into energy in kWh.
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A.1.2. Battery constraints
Eqs. (49)–(52) describe the storage level of the BSS, lBSS

q h w, , , for every time interval. The level of the next period, +lBSS
q h w1, , , equals the storage level of

the current period, lBSS
q h w, , , adjusted for self-discharge losses, dis(1 )BSS , combined with the electricity flowing in and out of the BSS until the next

period. Eqs. (50)–(52) initialize the storage level for the beginning of every time level. Eq. (50) shows that lBSS
h w1, , , the storage level of the first period of

the time level h and w, refers to the storage level of the last period ( =q 4) of the previous hourly time level (h 1) for every h and w1 1.
Accordingly (Eq. (51)), the first period of every week w refers to the last period of the previous week w( 1). Finally, Eq. (52) defines the circular
definition of the time levels. To define the storage level of the first time period of the year, lBSS

1,1,1, we refer to the last period of the year, l .BSS
4,168,52

= ++ + +l dis l x x if q h and w(1 )· , 1, 1 1BSS
q h w

BSS BSS
q h w

BSS in
q h w

BSS out
q h w1, , , ,

,
1, ,

,
1, , (49)

= +l dis l x x if h and w(1 )· , 1 1BSS
h w

BSS BSS
h w

BSS in
h w

BSS out
h w1, , 4, 1,

,
1, ,

,
1, , (50)

= +l dis l x x if w(1 )· , 1BSS
w

BSS BSS
w

BSS in
w

BSS out
w1,1, 4,168, 1

,
1,1,

,
1,1, (51)

= +l dis l x x(1 )·BSS BSS BSS BSS in BSS out
1,1,1 4,168,52

,
1,1,1

,
1,1,1 (52)

A.2. Detailed load data

Company Peak load Energy consumption PMD PToU PLF PPoU Peakintegral Peakabove Peakinterval Peakdensity
kW in MWh in kW – – – – – – –

1 33.8 153.88 25.5 37 69.5% 52.2% 1.08% 0.05% 0.71% 0.71%
2 33.8 152.71 25.5 14 68.5% 51.7% 4.01% 0.23% 3.03% 0.63%
3 35.8 51.76 12.4 34 54.0% 16.6% 12.13% 2.21% 7.08% 0.81%
4 37.6 163.44 26.1 91 71.7% 49.8% 4.47% 0.47% 3.67% 0.59%
5 39.3 70.29 23.8 31 32.1% 20.5% 25.18% 3.26% 10.69% 1.60%
6 41.2 236.98 35.7 80 76.1% 65.9% 1.53% 0.04% 1.18% 0.65%
7 43.7 104.88 22.5 35 53.3% 27.5% 9.49% 1.34% 6.49% 0.82%
8 46.2 225.74 36.6 77 70.6% 55.9% 11.09% 0.71% 8.59% 0.58%
9 54.4 154.15 29.0 37 63.1% 32.4% 35.37% 5.59% 25.26% 1.03%
10 60.1 208.42 39.2 57 62.5% 39.7% 26.29% 3.22% 18.19% 0.99%
11 73.3 59.50 26.2 31 28.8% 9.3% 22.10% 6.37% 7.84% 1.40%
12 75.6 305.86 47.0 26 74.7% 46.3% 6.48% 0.60% 5.19% 0.50%
13 82.0 201.75 44.0 38 57.4% 28.2% 26.87% 5.02% 15.80% 1.09%
14 83.5 157.53 44.0 36 39.7% 21.6% 23.41% 3.96% 12.43% 1.32%
15 88.7 167.85 42.8 39 51.8% 21.7% 27.58% 4.31% 14.11% 1.41%
16 102.8 293.79 52.6 36 65.6% 32.7% 45.75% 7.70% 34.95% 1.13%
17 104.7 205.78 54.1 46 42.1% 22.5% 23.97% 4.46% 13.06% 0.98%
18 106.0 239.84 55.5 44 44.0% 25.9% 23.17% 2.63% 13.97% 1.42%
19 107.1 107.54 44.0 45 32.4% 11.5% 21.76% 6.66% 7.26% 1.56%
20 114.1 378.70 66.9 65 69.2% 38.0% 33.54% 3.66% 23.06% 1.05%
21 115.1 229.95 62.9 35 47.7% 22.9% 15.87% 2.00% 7.62% 1.53%
22 117.2 131.41 55.5 32 32.6% 12.8% 22.68% 3.95% 7.78% 2.19%
23 120.3 382.24 78.3 50 59.6% 36.4% 39.31% 5.65% 24.12% 1.14%
24 124.0 261.86 54.6 20 63.0% 24.2% 26.96% 4.07% 16.75% 1.02%
25 164.5 380.79 71.7 35 61.1% 26.5% 13.45% 2.30% 10.33% 0.65%

Company Peak load Energy consumption PMD PToU PLF PPoU Peakintegral Peakabove Peakinterval Peakdensity
kW in MWh in kW – – – – – – –

26 175.0 555.24 118.4 71 53.8% 36.3% 3.94% 0.14% 2.14% 1.23%
27 181.0 582.75 116.6 34 58.6% 36.9% 30.25% 3.89% 20.17% 1.13%
28 206.8 754.17 128.0 24 68.1% 41.7% 9.13% 0.52% 6.68% 0.95%
29 208.4 178.30 70.3 47 30.3% 9.8% 18.97% 6.08% 7.43% 1.37%
30 239.6 432.74 134.6 49 47.2% 20.7% 33.69% 7.26% 13.37% 1.65%
31 252.0 811.47 152.2 44 61.5% 36.9% 33.98% 4.47% 24.01% 0.97%
32 259.3 302.70 105.9 37 46.3% 13.4% 32.26% 6.66% 13.54% 1.68%
33 291.0 620.54 149.8 33 55.2% 24.4% 34.84% 7.41% 18.15% 1.26%
34 325.6 1251.54 215.4 47 71.1% 44.0% 34.07% 5.17% 23.37% 0.99%
35 325.6 1251.54 215.4 47 71.1% 44.0% 34.07% 5.17% 23.37% 0.99%
36 362.9 201.85 64.8 46 45.2% 6.4% 16.46% 7.44% 6.71% 0.85%
37 369.0 1501.01 257.9 32 67.2% 46.6% 30.52% 2.77% 23.21% 0.90%
38 391.0 584.33 172.8 35 52.4% 17.1% 25.32% 4.99% 11.94% 1.45%
39 460.0 1552.15 319.5 36 61.6% 38.6% 46.00% 8.04% 26.68% 1.23%
40 522.6 1494.29 313.0 35 52.4% 32.7% 30.73% 4.71% 20.75% 1.02%
41 674.0 2106.19 414.1 39 58.8% 35.8% 20.50% 2.30% 15.16% 1.11%
42 1136.0 2720.36 665.7 54 52.8% 27.4% 43.64% 8.88% 22.49% 1.36%
43 1252.0 4516.04 834.6 96 59.8% 41.3% 11.80% 1.01% 8.70% 1.10%
44 1422.0 6342.18 961.5 96 74.1% 51.1% 27.25% 2.34% 24.46% 0.77%
45 1524.0 1686.27 911.4 41 27.4% 12.7% 50.04% 14.43% 11.91% 2.82%
46 1793.5 6309.87 1206.8 41 63.2% 40.3% 32.81% 4.25% 21.40% 1.10%
47 2797.6 16819.08 2156.4 61 88.8% 68.8% 43.36% 2.87% 41.65% 0.74%
48 2916.8 22375.17 2630.4 64 97.4% 87.8% 30.03% 0.81% 29.81% 0.54%
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49 3698.4 9171.24 2024.7 27 52.9% 28.4% 50.10% 9.24% 30.12% 1.25%
50 4717.6 13797.35 2654.0 37 62.1% 33.5% 34.75% 6.07% 24.73% 1.03%

Appendix B. Supplementary material

Supplementary data to this article can be found online at https://doi.org/10.1016/j.apenergy.2019.01.050.
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N. Čović , F. Braeuer , R. McKenna, and H. Pandžić , Senior Member, IEEE

Abstract—Introducing flexible consumers to electricity markets
is beneficial to the power system and offers them potential eco-
nomic savings. Industrial consumers are pioneer candidates due to
their high energy demand and interest in reducing energy costs.
This paper addresses the battery storage and photovoltaics invest-
ment problem, which includes five revenue streams for industrial
consumers, such as participation in the day-ahead and intraday
energy markets as well as the primary control reserve market
peak shaving and optimized self-consumption. The uncertainty is
considered using correlated scenarios of the local load, primary
reserve market and day-ahead market prices, as well as generation
from photovoltaics. The uncertainty of the pay-as-bid intraday
market with continuous trading is modeled using robust optimiza-
tion. Credibility and applicability of the model is achieved by
using market settings and prices from three European countries
(Germany, Denmark and Croatia) and comparing their suitabil-
ity for encompassing the end-user flexibility. Results shed light
on national energy-political and climatic differences, highlighting
opportunities for active market participation through individual
or aggregated industrial plants.

Index Terms—Battery storage, clustering, industrial facilities,
optimal investment, photovoltaics, robust optimization, stochastic
optimization.

NOMENCLATURE

Sets and Indices
ΩH Set of hours in a week, running from 1 to 168
ΩJ Set of breakpoints in linearized BSS charging

curve, running from 1 to N j
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ΩQ Set of quarter-hour periods, running from 1
to 4

ΩW Set of representative weeks, running from 1
to Nw

Parameters
Cfees Fees and taxes for supplying electricity

(€/kWh)
Cpeak Peak power charges to end consumers (€/kW)
Dq,h,w,s Local electricity demand (kW)
Fj Maximum amount of energy that can be

charged at specific battery state of energy
breakpoint Rj as a portion of installed BSS
capacity

i Discount rate (%)
Ipv PV installation cost per kW (€/kW)
IBSSe BSS installation cost per kWh (€/kWh)
IBSSp BSS installation cost per kW (€/kW)
ksh,w,s Full load hours of PV plants (kWh/kW)
kϑ Percentage of energy capacity for providing

PCR lost due to battery cycling inefficiency
(%)

M Big number
n Battery energy-to-power ratio in PCR market
Rj Capacity of each state of energy battery seg-

ment j as a portion of the installed battery
capacity

TBSS, TPV Number of BSS and PV annuities
V oLL Price for demand reduction (€/kW)
Γ Uncertainty budget
ϑ Number of days
λPCR
w,s PCR price (€/kW)

λDA
h,w,s Day-ahead market price (€/kWh)

λID
q,h,w,s Average intraday market price (€/kWh)

ΔλID
q,h,w,s Difference between minimum/maximum and

average price in the intraday market (€/kWh)
πw,s Probability of each scenario s in week w
ρw Number of weeks that week w represents per

year

Variables
Positive continuous variables
bq,h,w,s Share of maximum price deviation for every

time period in each week and scenario
cBSS Annual cost of BSS installation (€)
celh,w Cost of purchased electricity (€)
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cpeak Cost for peak power (€)
cPV Annual cost of PV installation (€)
dq,h,w,s Served demand (kW)
eDA
h,w Electricity purchased in the day-ahead market

(kWh)
ePCR
q,h,w,s Electricity required to cover for battery

cycling inefficiency when providing PCR
(kWh)

pBSS Installed BSS power (kW)
pPCR
w Power provided for PCR per week (kW)

ppeak Annual peak power (kW)
pchq,h,w,s BSS charging power (kW)
pdisq,h,w,s BSS discharging power (kW)
ppvh,w,s Utilized PV generation (kW)
ppv,cap Installed capacity of PV generation (kW)
rPCR
w Weekly revenue from PCR (€)
soePCR

w Capacity of BSS reserved for PCR auction
(kWh)

soemax Installed BSS capacity (kWh)
soeq,h,w,s BSS state of energy (kWh)
soeq,h,w,s,j State of energy of battery segment j (kWh)
uq,h,w,s Unserved demand (kW)
zw,s, ωq,h,w,s Dual variables associated with the constraints

of the robust subproblem
Binary variables
xq,h,w,s 1 if BSS is charging and 0 otherwise

I. INTRODUCTION

IN MANY countries, the transition process of the traditional
towards highly-renewable energy systems results in an in-

creasing volatility of energy supply. To account for this volatility,
a more flexible demand side is needed. Due to high electricity
needs and costs, industrial electricity consumers might play an
important role in providing this flexibility. One way to increase
flexibility of an industrial consumer is the installation of a battery
storage system (BSS) [1], which provides multiple streams of
revenue or savings, finally resulting in lower electricity costs [2].
Despite multiple BSS revenue streams, the initial investment is
high, so accurate and robust investment models are required
for favorable return on investment. To define the optimal BSS
investment decision for an industrial plant (IP), one needs to
carefully consider the country’s specific market conditions. Fur-
thermore, it is important to include the uncertainties of future
cash flows that amortize the investment. These uncertainties
cover energy market prices, volatility in the plant’s operation
as well as uncertainties affecting the generation from renewable
energy sources (RES). In this paper, we consider photovoltaics
(PV) as a potential local generation investment alongside BSS.
The benefits of combining PV and BSS have been proven in the
literature, e.g. [3].

A. Literature Review

The majority of scientific literature on BSS and PV focuses on
operation problems, while investment studies are more scarce.

In the field of BSS investment in an industrial context, paper [4]
proposes a two-stage optimization problem to identify the opti-
mal size of a BSS in an industrial microgrid in Australia. The
first stage describes the BSS investment decision and the second
stage optimizes the BSS operation. The paper is focused on
energy arbitrage and optimized self-consumption considering
charging-power dependent efficiencies of the BSS. With more
detail on the production process, [5] optimizes the size of a
PV–BSS system incorporated into a semi-autogenous grinding
mill plant. Their two-stage stochastic optimization model con-
siders the uncertainty of the grindability of the rock and thus
the energy demand of the plant as well as the uncertain RES
production. While the first stage optimizes the investment along
with the annual energy contracts, the second stage optimizes
the operating cost that includes maintenance, replacement and
the penalty paid for not matching the contracted energy supply.
Paper [6] investigates the optimal BSS investment for an IP to
lower its electricity costs. Decision theory is applied to identify
optimal battery capacity from a predetermined set and schedule
optimal dispatch for a variety of future scenarios. Finally, [7]
includes an optimized production process of an industrial com-
plex in the design of an industrial micro-grid. While uncer-
tainty is not directly part of the optimization model, the results
are tested for a variety of uncertain weather and production
conditions.

Another interesting field of application is the residential and
commercial sector. Here, [8] analyses the effects of uncertainty
in electricity demand and prices for a commercial hotel building
in Croatia. The study provides a comparison of the stochastic
and robust optimization approaches to a deterministic optimiza-
tion model. In contrast, [9] proposes a multi-stage stochastic
optimization model to define the optimal size of a residential
microgrid. The model formulates daily microgrid operation
iteratively to determine the optimal size of the micro-grid. For
a similar use case in a Dutch residential context, [10] analyzes
revenue streams for a PV–BSS system. The system generates
revenue in the day-ahead market, the imbalance market and
through self-consumption. The proposed two-stage stochastic
approach includes uncertainty on market prices, irradiation and
demand profiles. Finally, [11] applies a (robust) data-driven
dynamic programming approach to homes in Austin, Texas.
They report that their approach outperforms the existing methods
and significantly raises the break-even cost that incentivizes
homeowners to invest in BSS.

Nonetheless, in an industrial context no study considers mul-
tiple revenue streams for a BSS–PV investment problem under
uncertainty. Furthermore, no study compares market conditions
in different countries.

B. Research Questions and Contribution

In this paper, we study the BSS–PV investment decision in
an IP under uncertainty. To find the optimal investment capaci-
ties, we formulate a two-stage stochastic optimization problem
implemented as a mixed integer linear program (MILP). The
BSS–PV system can be used to minimize the electricity costs
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by altering the net load curve as seen from the grid side as well
as by lowering the fees and peak power charges. In case an IP
invests in a BSS, it can be used to provide primary control reserve
(PCR).1

The considered uncertainties in the model are the load, PV
production as well as market prices in the day-ahead, intraday
and PCR markets. To represent the pay-as-bid nature of the
continuous intraday market, the intraday trading is modeled
using robust optimization. This is a suitable tool for considering
the skillfulness (and luck) of the bidder. While robust optimiza-
tion has been used for bidding in day-ahead markets, e.g. [13]
and [14], its application to pay-as-bid continuous markets re-
mains unexplored. Pay-as-bid means there is no single market
clearing price, but multiple prices depending on the selling
and purchasing bids. Furthermore, the term continuous means
there is no gate closure time, instead the trading is performed
continuously until the cut-off time, usually 15 or 30 minutes
before the full hour. Therefore, it is not possible to derive any
specific hour-by-hour scenario as there is no correlation between
the prices in the consecutive hours (except for the highest and
the lowest one). Robust formulation is a tool that enables us to
model uncertain process (such as the one related to the success
in trading in the intraday market) without knowing or assuming
the distribution of uncertainty and only knowing the upper and
lower bounds.

The model is applied to 20 IPs and a time horizon of one
year is portrayed through representative weeks, each having its
frequency of appearing in a year. We evaluate the profitability of
a BSS–PV investment for each IP individually and together as
one group and compare the results. Finally, an important value
of this paper is its applicability as we compare the investment
decisions under three diverse European market conditions in
Germany, Denmark and Croatia, respectively. The following
points summarize the contribution of the paper:

1) Formulation of the stochastic two-stage IP investment
problem in a BSS and PV considering active participation
in day-ahead, intraday and PCR markets.

2) Introduction of robust optimization to pay-as-bid intraday
market allowing to control the expected success in bidding
in such market.

3) A comprehensive comparison of optimal investments in
different European countries, i.e. Germany, Denmark and
Croatia, allowing us to assess the attractiveness of different
market designs.

The rest of the paper is organized as follows. Section II.
formulates the proposed mathematical model and provides its
extensions for different market types. Section III. presents case
studies for Germany, Denmark and Croatia and discusses the
results. Verification of the results obtained in the case studies
is demonstrated in Section IV. Finally, the relevant conclusions
are provided in Section V.

1This setting is in line with Clean Energy for All Europeans Package [12]
which supports activation of end consumers and instructs opening of the energy
and reserve markets to flexible end consumers.

Fig. 1. In the first stage, the battery capacity and power for providing PCR
are reserved and quantities in the day-ahead market for each day of the week
are purchased. In the second stage, the intraday market volume is purchased for
each scenario with knowledge of the day-ahead and PCR prices, along with the
load and PV production.

II. MATHEMATICAL MODEL

A. Description

The operational model is a two-stage model, as shown in
Fig. 1. In the first stage, two decisions are made (blue circle in
Fig. 1): i) the battery power and capacity reserved for providing
PCR, and ii) the quantities purchased in the day-ahead market for
each day of the week. The uncertainties of the PCR prices, along
with the day-ahead prices, are thus modelled as expected values.
The stochastic model in this case degrades to a deterministic one
with expected values of prices as input parameters, but differs
from the deterministic problem posed for any particular scenario.

After these here-and-now decisions are made, the stochastic
processes are realised depending on the scenario s. The day-
ahead and PCR prices become known, along with the values
of the load and the PV production (yellow “rectangles” in
Fig. 1). Since the scenario generation process was performed
considering the correlation of the above mentioned parameters,
scenarios of the day-ahead and PCR prices match the scenarios
of the load and PV output. Given these, we move to the second
stage, which is closer to the realization of uncertainty.

The volume purchased in the intraday market is the decision
made in the second stage (green circles in Fig. 1). Uncertainty
of the intraday prices is not treated as a stochastic process, but
using the robust framework with the associated price interval for
each scenario.

B. Assumptions

The described mathematical model is relevant for markets
with the following rules:� IPs with their assets (PV and BSS) can take part in the day-

ahead and intraday energy markets. The day-ahead market
is an hourly market with a uniform market clearing price,
while the intraday market is pay-as-bid with 15-minute
resolution.
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� When consuming electricity, the IPs need to pay a fee,
Cfees, for using the network, supporting renewables, and
other levies.� IPs can only purchase but not sell energy in the day-ahead
and intraday markets. The first reason for disallowing
energy selling is that any facility that injects energy into the
grid (even very sporadically) needs to register as a power
producer, thus incurring additional costs that depend on
the prequalification procedure that includes an analysis of
the surrounding network to determine if any upgrades are
needed. The second reason is purely economical. Since the
network fees constitute a huge portion of the consumers’
energy cost, it is not viable to sell energy and increase the
overall amount of energy later extracted from the grid, as
that energy comes at high collateral cost in the form of grid
fees and renewable support fees. The final reason is related
to the modelling issues. Allowing eDA and eID to become
negative would enable arbitrage between the day-ahead
and intraday markets without any actual energy flow. The
result would be an indefinitely large BSS allowing the IP
to obtain indefinite profit.� Beside energy markets, IPs can take part in the PCR market
with weekly resolution. Taking part in this market reserves
a portion of the BSS power and energy capacity.� Peak power charges of an IP are based on maximum 15-
minute-average load throughout the year.� Due to their relatively low capacity, IPs are price takers in
all markets.� Sources of uncertainty in the model are day-ahead market
prices, PCR prices, PV output, IP load and intraday prices.
The first four are defined byΩS scenarios per representative
week at an appropriate resolution. Uncertainty of intraday
prices is modeled using upper and lower price bounds,
without considering the distribution of uncertainty.

C. Base Formulation

1) Objective Function:

min
Ψ

∑

w∈ΩW

ρw ·
(

168∑

h=1

celh,w − rPCR
w

)
+ cpeak + cBSS + cPV

+
168∑

h=1

4∑

q=1

∑

s∈ΩS

πw,s · uq,h,w,s · V oLL

+ max
bq,h,w,s

∑

w∈ΩW

ρw ·

⎛
⎝

168∑

h=1

4∑

q=1

∑

s∈ΩS

πw,s ·ΔλID
q,h,w,s · ·eIDq,h,w,s

·bq,h,w,s

)
(1)

celh,w = eDA
h,w ·

⎛
⎝Cfees +

∑

s∈ΩS

πw,s · λDA
h,w,s

⎞
⎠

+
4∑

q=1

∑

s∈ΩS

πw,s · eIDq,h,w,s · (λID
q,h,w,s + Cfees), ∀h,w (2)

168∑

h=1

4∑

q=1

bq,h,w,s ≤ Γ, ∀w, s (3)

0 ≤ bq,h,w,s ≤ 1, ∀q, h, w, s (4)

rPCR
w = pPCR

w ·
∑

s∈ΩS

πw,s · λPCR
w,s , ∀w (5)

cpeak = ppeak · Cpeak (6)

ppeak ≥ eDA
h,w + eIDq,h,w,s · 4, ∀q, h, w, s (7)

cBSS = (soemax · IBSSe + pBSS · IBSSp) · i · (i+ 1)T
BSS

(1 + i)TBSS − 1
(8)

cPV = ppv,cap · Ipv · i · (i+ 1)T
pv

(1 + i)Tpv − 1
(9)

Objective function (1) minimizes the IP operating cost
over the set of variables Ψ = {eDA

h,w, eIDq,h,w,s, pPCR
w , ppeak,

soemax, pBSS, ppv,cap}, consisting of the cost of purchased
energy, celh,w, weekly revenue from providing PCR, rPCR

w , annual
peak power payment, cpeak, and annuity payment for BSS and
PV installations, cBSS and cPV. Since we observe the IP’s annual
operating costs, parameter ρw is introduced to represent the
“weight” of each representative week, which is explained in
more detail in Section III-B. Eq. (2) breaks down the energy costs
into electricity trading in the day-ahead market, eDA

h,w · λDA
h,w,s,

and the intraday market, eIDq,h,w,s · λID
q,h,w,s. An additional fee,

Cfees, is imposed to aggregate the fees and taxes to be payed by
any end consumer. Price uncertainty in the day-ahead market
is considered using price scenarios s, each expanding to a
specific range of intraday prices whose uncertainty is modeled
using robust optimization. Since the intraday market does not
have a unique price for each time period, there is an uncertain
range limited by the minimum and maximum price, [λID

q,h,w,s −
ΔλID

q,h,w,s, λ
ID
q,h,w,s +ΔλID

q,h,w,s]. As a result, the third part of
objective function (1) maximizes the damage suffered when pur-
chasing energy in the intraday market. The damage is inflicted
by reaching the maximum price in a specific time period, which
is achieved by adding ΔλID

q,h,w,s to the average intraday price,
λID
q,h,w,s. Relaxed binary variable bq,h,w,s defines in which time

periods the prices take their maximum values. Constraints (3)
and (4) define the behaviour of bq,h,w,s. The number of periods
in which the price can be altered to inflict the most damage to
the objective function is controlled with parameter Γ. It can take
values from the interval [0, ΩQ · ΩH ] and presents the budget
of uncertainty. For Γ = 0, the average prices in intraday market,
λID
q,h,w,s, are considered. As Γ increases, the number of time

periods affected by the price alteration increases as well and
the model is protecting against those deviations. Consequently,
when Γ is maximum, i.e. equal to ΩQ · ΩH , the maximum
prices are considered as they cause the most damage to the
objective function when the IP is purchasing energy. Since the
objective function consists of two parts that need to be optimized
in different directions (minimizing vs. maximizing), the robust
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subproblem is modeled in its dual form, whose formulation and
transformation are provided in Appendix A.

Eq. (5) defines weekly PCR revenue based on the weekly
BSS power capacity reserved for PCR and scenario-based PCR
price, pPCR

w · λPCR
w,s . Eq. (6) calculates the annual peak power

payments, ppeak · Cpeak. Constraint (7) defines annual peak
power as the maximum power purchased from the markets.
Intraday energy is multiplied by 4 because of its 15-minute
resolution. Finally, eqs. (8) and (9) define the annual cost of BSS
and PV installations taking into account the value of money in
the future and lifetime of the assets.

2) Constraints:

soePCR
w = n · pPCR

w , ∀w (10)

soePCR
w ≤ soemax, ∀w (11)

pPCR
w ≤ pBSS, ∀w (12)

soeq,h,w,s ≤ soemax − soePCR
w , ∀q, h, w, s (13)

pchq,h,w,s ≤ pBSS − pPCR
w , ∀q, h, w, s (14)

pdisq,h,w,s ≤ pBSS − pPCR
w , ∀q, h, w, s (15)

24+24·(ϑ−1)∑

h=1+24·(ϑ−1)

4∑

q=1

ePCR
q,h,w,s ≥ kϑ · soePCR

w , ∀w, s, ϑ ∈ [1, 7]

(16)

soeq,h,w,s + soePCR
w =

Nj−1∑

j=1

soeq,h,w,s,j , ∀q, h, w, s (17)

soeq,h,w,s,j ≤ (Rj+1 −Rj) · soemax, ∀q, h, w, s, j (18)

Δsoeq,h,w,s = F1 · soemax

+

Nj−1∑

j=1

Fj+1 − Fj

Rj+1 −Rj

· soeq−1,h,w,s,j , ∀q, h, w, s \ q1 (19)

Δsoeq1,h,w,s = F1 · soemax+

+
J−1∑

j=1

Fj+1 − Fj

Rj+1 −Rj

· soeq4,h−1,w,s,j , ∀h,w, s \ h1 (20)

pchq,h,w,s ≤
Δsoeq,h,w,s

ηch
· 4, ∀q, h, w, s (21)

soeq,h,w,s = soeq−1,h,w,s + pchq,h,w,s · ηch − pdisq,h,w,s ·
1

ηdis
,

∀q, h, w, s \ q1 (22)

soeq1,h,w,s = soeq4,h−1,w,s + pchq1,h,w,s · ηch − pdisq1,h,w,s ·
1

ηdis
,

∀h,w, s (23)

4∑

s=1

soeq4,h168,w,s · πw,s ≥ soe0, ∀w, s (24)

pchq,h,w,s ≤ xq,h,w,s ·M, ∀q, h, w, s (25)

pdisq,h,w,s ≤ (1− xq,h,w,s) ·M, ∀q, h, w, s (26)

eDA
h,w · 1 + eIDq,h,w,s · 4 = pchq,h,w,s + dq,h,w,s − pdisq,h,w,s

−ppvh,w,s − ePCR
q,h,w,s · 4, ∀q, h, w, s (27)

dq,h,w,s + uq,h,w,s = Dq,h,w,s, ∀q, h, w, s (28)

ppvh,w,s ≤ ksh,w,s · ppv,cap ∀h,w, s (29)

Eq. (10) relates battery energy capacity reserved for providing
PCR and weekly amounts of PCR provided to the system oper-
ator using factor n. Constraints (11) and (12) restrict the battery
energy and power capacity occupied for PCR, while (13)–(15)
define the remaining BSS energy, charging and discharging
capacities for other purposes.

When performing PCR, the BSS performs shallow charg-
ing/discharging cycles. Due to inefficiencies, it needs to be
charged to sustain such operation and does not slowly deplete
the accumulated energy (symmetrical provision is assumed).
Therefore, a portion of the state of energy devoted to PCR, kϑ,
needs to be charged on a daily basis, as defined in eq. (16).

Constraints (17)–(21) describe the accurate battery charging
model where the battery charging power reduces with its state of
energy. Eq. (17) divides the used state of energy range at all time
periods into N j − 1 segments. Each segment’s energy capacity
is determined in (18), which is used in (19) and (20) to derive
the maximum energy charging ability of the battery at each time
period. The maximum energy charging ability is translated into
the power charging limit in constraint (21). A more detailed
explanation of this accurate battery charging model can be found
in [15].

Eq. (22) calculates the battery state of energy in 15-minute
intervals, considering the charging and discharging efficiencies,
while eq. (23) calculates the state of energy on the transition
between the hours considering the last 15-minute period of
the previous hour. Constraint (24) is the state of energy level
preservation constraint, while constraints (25) and (26) disable
simultaneous charging and discharging of the battery that would
otherwise occur at negative market prices.

Eq. (27) is a power balance constraint on a 15-minute basis,
where the local demand, battery charging and discharging power,
power purchased to support the PCR provision, and PV output
power are balanced with the power purchased in the day-ahead
and intraday markets. Variables eDA

h,w and eIDq,h,w,s represent
energy, not power, so they are multiplied with a corresponding
time constant, i.e. variable eDA

h,w is multiplied by 1 and variable
eIDq,h,w,s is multiplied by 4. To enable demand flexibility, not all
demand needs to be satisfied at all time periods. The unserved
demand uq,h,w,s is penalized at price V oLL, which is added to
the objective function. Constraint (28) ensures that the sum of
the served and unserved energy is equal to the expected demand.
Finally, constraint (29) limits the PV generation to the available
power.

D. Formulation Extensions for Different Market Settings

Model (1)–(29) defined above is valid under the assump-
tions from Section II-A. However, different countries may have
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different market rules and resolution of services and products.
The required changes to formulation (1)–(29) in case of different
market rules are described below.

1) Peak Power Charges: Peak power charges are not neces-
sarily on an annual basis. For example, in Croatia consumers
above 20 kW are charged peak power prices on a monthly
basis [16]. Since model (1)–(29) is based on representative
weeks, it is necessary to keep track of which representative
weeks constitute each month of the year. After that, the peak
power for each month is calculated as the highest power over all
representative weeks appearing in a specific month. Constraint
(7) is thus replaced by the following one:

ppeakm ≥ eDA
h,w + eIDh,w,s, ∀h,w,m;w ∈ m (30)

On the other hand, if there are no peak power charges,
constraints (6) and (7) and variable cpeak from (1) need to be
removed.

2) Intraday Market Resolution: In case of intraday market
operation on an hourly basis, eq. (27) is replaced by eq. (31),
while the summation of the intraday cost over all quarters in eq.
(2) is eliminated.

eDA
h,w + eIDh,w,s = 0.25 ·

4∑

q=1

(pchq,h,w,s + dq,h,w,s − pdisq,h,w,s)

− ksh,w,s · ppv,cap − ePCR
h,w,s, ∀h,w, s (31)

As opposed to eq. (27), which balances power on a 15-minute
resolution, eq. (31) balances power on a 1-hour resolution. For
this reason, eIDh,w,s on the left-hand side is no longer multiplied
by 4 and the 15-minute power values on the right-hand side, i.e.
pchq,h,w,s, dq,h,w,s and pdisq,h,w,s, are averaged over one hour.

3) PCR Market Resolution: PCR capacity can be decided on
a higher resolution than a week. For example, if PCR bids are
at a 4-hour resolution, as in Denmark [17], the variables in eq.
(5) need to be expanded to hourly dimension and eqs. (32), (33)
and (34) need to be added to the model.

soePCR
h,w = soePCR

h+l,w, ∀h,w, l; if(h%4 = 1 ∧ l ∈ {1, 2, 3})

(32)

pPCR
h,w = pPCR

h+l,w, ∀h,w, l; if (h%4 = 1 ∧ l ∈ {1, 2, 3})
(33)

24+24·(ϑ−1)∑

h=1+24·(ϑ−1)

ePCR
h,w,s ≥ kϑ ·

168∑

h′=1

soePCR
h,′w ,

∀w, s, ϑ ∈ [1, 7], if (h′%4 = 1) (34)

If no PCR market is available in a country, variables rPCR
w , pPCR

w

and soePCR
w are eliminated from the objective function (1) and

constraints (14), (15) and (17), and constraints (10)–(12) are
completely eliminated.

TABLE I
KEY SETTINGS AND CONSTRAINTS FOR THE THREE COUNTRIES

III. CASE STUDY

A. Description

The case study is performed for three European countries,
Germany, Denmark and Croatia. These countries differ in the
organization of the intraday market, PCR market, peak power
payments for the consumers, market prices, energy delivery fees,
as well as the number of annual full load hours (PV production).
An overview of specific rules and prices for each country is
presented in Table I. Germany generally has the highest energy
costs for end consumers, foremost due to high energy delivery
fees, 0.15 €/kWh [18], [19]. Annual peak power price used in
this paper is calculated as a mean price of all German distribution
grid operators. Energy delivery fees for industrial consumers are
much lower in Denmark [20] and the lowest in Croatia [21]. Peak
power prices are the highest in Croatia, where they are paid on a
monthly basis, while in Germany the peak power payments are
annual. In both countries they are based on the highest average
consumed power over all 15-minute periods. On the other hand,
in Denmark there are no peak power charges.

Energy market prices are taken from the local wholesale
markets. Day-ahead markets operate in the same way in all
three countries. However, the intraday market in Germany is
on a 15-minute basis (hence Γmax in Table I is 672), while in
Denmark and Croatia it is operated on an hourly basis resulting
in 168 bidding periods in a week. PCR market rules for Germany
are based on the German market rules from [22],2 which is
based on weekly tenders [23]. On the other hand, PCR market
resolution in Denmark DK1 zone is four hours [24], while
in Croatia the PCR provision is mandatory for hydro power
plants with capacity over 10 MW and thermal power plants
with capacity over 30 MW without remuneration [25]. The
energy-to-power ratio for BSS when providing PCR is n = 2,
which should allow the BSS to enter the PCR provision service
with SOE in between the 25% and 75% [26] and preserve the
low battery cycling rate [27]. Due to their specifics, Table I
contains a list of constraints used in the problem formulation for
all three countries. It also shows the amount of PV generation
in each country based on data obtained from [28]. Croatia, as

2Since July 2019, the German PCR market moved from weekly to daily
resolution [23] However, due to insufficient historical data, our model is based
on the weekly tendering.
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the south-most country, provides the most full load hours, while
Denmark is the least generous in PV production.

Battery and PV prices are the same for all three countries.
The lifetime of the batteries and the PV panels is estimated at
15 and 20 years, respectively. Battery investment is IBSSp =
400 €/kW and IBSSe= 400 €/kWh [29]. Both charging and
discharging efficiencies are set to 93%. The battery starts each
week at 50% of its energy capacity, which needs to be fulfilled
at the end of the week. This choice is primarily related to the
PCR requirements. As indicated in [26], the centerfold value of
state of energy maximizes the PCR provision. Since the model
assumes high energy-to-power ratio of 2, and considering the
current European regulation that dictates full PCR activation
only after the frequency deviation has reached 200 mHz [30],
the expected degradation due to cycling when providing PCR
should be quite low [27]. Thus, no additional BSS degradation
penalty is assigned to PCR provision. However, we acknowledge
that the battery cycling occurs when providing PCR and assign
PCR energy losses to k = 10.32% based on frequency deviation
data analysis obtained from the Croatian Transmission System
Operator and rules on PCR activation in Europe [30]. The PV
investment is 1750 €/kW [31] and interest rate is set to 3%.

The case study considers IPs [32] looking to invest in PV
and BSS to reduce their operating costs. One of the goals of the
study is to compare the benefits of aggregating the IPs, which
is performed by running the optimization model for each of the
20 IPs individually and comparing their summed investments
and overall operating costs to a setting where all IPs act as a
single entity, both as investors and market participants, virtually
forming a balancing group of their own.

Using robust optimization to model the intraday market prices
enables us to observe how the factor Γ impacts the overall
expected cost, as well as the amount of energy purchased in
the intraday versus the day-ahead market.

B. Input Data Preparation

The presented planning model is subject to uncertainty of
input parameters, which include load, day-ahead prices, in-
traday prices, PCR prices and PV generation. The available
data for 52 weeks during year 2016 were clustered into five
representative ones to reduce the complexity of the model as
shown in Fig. 2. Each week has its corresponding weight that
denotes how many times it appears in a year. This technique is
commonly used in investment studies, e.g. [33], however, instead
of using a well-adopted time span of characteristic days, we
expand it to a week for two reasons. First, the PCR market in
Germany is organized on a weekly basis and, furthermore, peak
power payments in Croatia are on a monthly basis. Therefore,
representative weeks can be considered as a golden middle
between the day-ahead market, weekly PCR market and monthly
peak power payments. Second, the purpose of this setting is
to assess the market interaction throughout each representative
week, considering the related uncertainties, in order to derive
the optimal investment plan. This setting is not applicable to the
operation models, where the day-ahead bidding is performed for
each day individually, considering the historic data (including

Fig. 2. Preparation of input data using k-means clustering.

the previous day), the most recent load forecast and the most
recent PV output forecast. However, we do not develop an
operating model of the industrial facilities, we merely replicate
its operation in order to derive the optimal investment in battery
and PV. In other words, the entire day-by-day bidding process is
replaced by a weekly scenario. The clusterization was conducted
using the k-means method that groups the most similar data from
a dataset [34]. It was performed measuring the similarities in the
load, the PV production, the day-ahead prices and the PCR prices
data between the weeks (listed data were concatenated in order
to obtain a single data series and to consider correlation between
them). After clustering the data into five clusters (representative
weeks), the clusters contained a different number of members, as
shown in Fig. 2 (green circles). The cluster members represent
scenarios in each representative week and, in reality, those are the
weeks of the year that are the most similar in terms of the load,
the PV production, the day-ahead prices and the PCR prices.
In order to reduce the complexity of the model by reducing the
number of weeks (that represent scenarios), each representative
week was clustered once again using the k-means algorithm
(second step in Fig. 2, first row of yellow circles) into 4 clusters.
That number was chosen as a minimum number of scenarios
over all representative weeks (green circles). To obtain only
one representative of the four clusters in each representative
week, the scenario with the lowest distance from the mean
of a specific cluster was chosen (or the mean in the case of
two scenarios), which is shown as the final step in Fig. 2. The
procedure resulted in five representative weeks, each containing
four scenarios. A uniform distribution of weeks is assumed
to calculate probabilities of each representative week and sce-
nario. For example, in the second representative week (repre-
senting 19 actual weeks): πw=2,s=1 = 1/19, πw=2,s=2 = 7/19,
πw=2,s=3 = 4/19, πw=2,s=4 = 7/19, while this representative
week occurs 19 times per year. For the three analyzed countries,
the calculation was performed for each IP individually (I) and
for all of them aggregated and acting as a single subject (A).
Furthermore, we compare two cases: Business as Usual (BaU),
where no investments are made, and Flexible Investment (FlexI),
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TABLE II
ANNUAL COST PER OBJECTIVE FUNCTION SEGMENT FOR ALL THREE COUNTRIES FOR BUSINESS-AS-USUAL (BAU) AND FLEXIBLE INVESTMENT (FLEXI) CASES

(I: INDIVIDUAL IPS, A: AGGREGATED IPS)

where investments in the flexible assets (PV and BSS) are
available. The models are run for various values of Γ to assess
the effects of the intraday trading uncertainty on the objective
function.

C. Results

1) Germany: The first case study was run using the German
market rules. Table II shows the results. For Γ = 0 in the BaU
case, the sum of individual IPs’ electricity costs is € 18,361,
which is 1.1% higher than € 18,158 (the overall electricity cost
when the IPs act as a single entity). Over 70% of these costs
are various fees, while energy purchases and peak power costs
are much lower. In the FlexI case with individual IPs, the traded
quantities are significantly reduced, by 11.0% in the day-ahead
market and 9.0% in the intraday market for Γ = 0, and fees and
peak power costs are reduced by 7.5% and 5.8%, respectively.
All the reductions are a direct consequence of the BSS and
PV investments, where the PV investment directly reduces the
purchased energy quantities and, consequently, fees and peak
power charges. The BSS, on top of its role in peak shaving
and energy purchases during the high-price periods, accumulates
revenue from the PCR market. The PCR market revenue makes
up for roughly half of the BSS annual investment cost. As the
intraday market trading becomes less favorable for higher values
of Γ, the traded energy moves to the day-ahead market. In case
of individual investments (I), the BSS investments increase with

TABLE III
BSS AND PV INVESTMENTS AS WELL AS ANNUAL PEAK POWER BEFORE AND

AFTER THE INVESTMENTS FOR GERMANY

Γ to counteract the unfavorable intraday prices, while the PV
installations only slightly increase. On the other hand, when
acting as an aggregation (A), the BSS and PV investment costs do
not significantly change with Γ due to the possibility of internal
redispatch among the IPs. This means the aggregation provides
the IPs additional protection against uncertainty.

Another insight in the results is provided in Table III, which
shows the installed BSS and PV capacity as well as peak power
in the BaU and FlexI cases for Germany. The installed BSS and
PV capacities increase for higher values of Γ when considering
IPs as individual investors (I). The increasing self-consumption
is directly related to higher expected intraday costs. On the
other hand, when IPs act jointly (A), the installed BSS and
PV capacities are constant regardless of the Γ (however, a drop
is observed for Γ = 10). This is because the flexibility arises
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Fig. 3. Expected load profile for representative weeks (upper graph) and
battery capacity reserved for arbitrage and peak shaving and PCR services in
Germany for Γ = 0 (lower graph) for the aggregated case.

from the heterogeneous IP load curves, which enable a steady
self-consumption level. The drop in installed capacities for
Γ = 10 occurs because the model finds it difficult to use BSS and
PV to counteract such sporadic but time-period-wise uncertain
increase in intraday prices. Instead of fighting uncertainty, it
relies on reduced investment costs. The reduction through peak
shaving is much higher for the aggregated IPs than individual
ones. When acting as a group, the IPs manage to reduce the
peak power by over 13%, while when acting individually this
reduction is only 5.8–6.8%.

Fig. 3 shows the BSS capacity used for PCR for aggregated
IPs’ investments in all representative weeks forΓ = 0. Weeks 1–
4 are attractive to provide PCR service. The BSS energy capacity
devoted to PCR is at most 50% due to the selected energy-to-
power factor n = 2. However, week 5 has higher expected PCR
price than most of the weeks, but the battery is used only for
the optimized self-consumption. This is because week 5 has the
highest expected load (upper graph in Fig. 3) and BSS is thus
used for peak shaving.

2) Denmark: Similar to Germany, in Denmark around 70%
of expenses are dedicated to fees (€ 7,249 in all BaU cases,
both (I) and (A)). The remaining costs are divided among the
day-ahead and intraday energy markets as there are no peak-load
payments. AsΓ increases, again the energy purchases move from
the intraday to the day-ahead market. The FlexI case results in
the BSS and PV investments of the same order of magnitude
as in Germany. The BSS investment is entirely retrieved in
the PCR market (PCR revenue is higher than the BSS cost),
while the optimized self-consumption merely brings an added
value. This indicates that the PCR prices in Denmark DK1 zone
are highly favorable for the assumed battery costs. However,
the required level of PCR in Denmark DK1 area in 2020 is
only ±21 MW [35], thus such overinvestment in BSS capacity
would greatly reduce the market prices rendering the investment
infeasible. A much deeper analysis is required to understand if
such high prices were a result of a large player exercising market
power or not. On the other hand, BSSs’ impact on the day-ahead
and intraday energy quantities and fees is negligible.

3) Croatia: Results of the Croatian case study are shown in
the last section of Table II. In the BaU case, all the fees are €
5,437, which is less than 50% of overall electricity cost. The
model does not invest in BSS as there is no PCR market to spur

Fig. 4. Comparison of investment and revenue for the three countries for Γ=
0 (I).

the investment on top of optimized self-consumption and peak
shaving. On the other hand, favorable PV production makes this
investment attractive. Individual IPs invest in 5161 kW of PV at
€ 607 regardless ofΓ, while the aggregated IPs install even more
PV, 5787 kW at € 680, also regardless ofΓ. The peak power cost
is reduced by 2.0% for (I) and by 7.3% for (A), regardless of
Γ. The overall cost reduction is 1.4% for the individual IPs and
2.1% for aggregated IPs.

D. Discussion

The results in all three countries show that, with the employed
assumptions, BSS, PV or a combination of both can reduce over-
all electricity costs for IPs, see Fig. 4. Generally, the highest cost
reductions are achieved for Germany, due to high electricity fees
for end consumers and an operational PCR market. In Denmark
in absence of peak power charges and low solar production, BSSs
are primarily installed to provide PCR. In contrast, Croatia does
not have a PCR market, so BSS investments will probably not be
profitable there until the PCR market is introduced. Thus, the IPs
only invest in PV to profit from the high solar production. This
indicates that developed PCR markets make the BSS investment
attractive. Nonetheless, the PCR markets are quite small in terms
of the power quantities and overinvestment in PCR-providing
assets could drastically reduce the price, which is deemed to
occur in Denmark and Germany.

In general and as expected, the aggregation of industrial loads
leads to higher relative cost savings, due to a smoothing of the
profile and economies of scale.

In Germany and Denmark the bidding behavior in the intraday
market influences the investment decision. Higher values for Γ
lead to lower profits in the intraday market, thus higher cost of
recourse for the investment and initial market decisions. The
model answers the higher cost with an increased BSS and PV
investment. This results in a higher self-consumption rate and,
consequently, a higher security of supply of fix-priced solar
electricity.

Nonetheless, with this study we compare national energy
markets. To investigate the profitability of the proposed systems
in more detail, one needs to take regional and even local market
conditions into account. For example in Germany, local peak
power charges vary from 17.22 €/kW [36] to 189.77 €/kW [37].
Additionally, PV output highly depends on the local climate.



3450 IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 36, NO. 4, JULY 2021

TABLE IV
OBJECTIVE FUNCTION VALUE AND COMPUTATIONAL TIME FOR GERMANY (A)

The overall situation is likely to change in the near future as
the cost of stationary BSS continues to decline. The regulatory
frameworks are also likely to change, as flexibility becomes
more incentivized for industrial consumers [12]. Finally, the
development of electricity prices, grid charges and fees play an
important role. Drivers exist in both directions; for example in
Germany the levies and fees for RES should reduce in the coming
years, but the carbon-related fees should increase. On a European
level, there should be increased harmonization and integration
of electricity markets, which will probably also alleviate some
of the differences in profitability between the three settings
analyzed here.

IV. SOLUTION VERIFICATION

In this section we perform two studies to verify the quality
of the obtained solutions. The first one is a sensitivity analysis
on the number of representative days and scenarios used in the
case studies, while the second one is an out-of-sample analysis
of the obtained solutions. Both are conducted for the Germany
case study and the aggregated market participation of the IPs.

A. Sensitivity Analysis on the Number of Representative Days
and Scenarios

In order to analyze the sufficiency of the number of repre-
sentative days and scenarios for each representative day, we
performed an appropriate sensitivity analysis on the overall cost
and computational time for the German case study, whose results
are available in Table IV. The aim of this analysis is to assess
if the number of representative days and scenarios is sufficient
to accurately capture the characteristics of the entire year. The
analysis is performed for four different values ofΓ, ranging from
zero to 672. When only three representative weeks are used, but
still preserving four scenarios per week (w3s4), the difference in
the objective function value, i.e. the overall annual cost, toward
the w5s4 case used throughout the study ranges from -2.86% for
Γ = 0 to −0.69% for Γ = 672, which is a significant difference.

Fig. 5. CDF of the overall system cost for the German case (A) for Γ= 0, 10,
100 and 672.

Increasing the number of representative weeks to four shows
much lower oscillations toward the w4s4 case as the difference
in objective function values are at most 0.82% forΓ = 672. Thus
the objective function value saturates when moving from four
to five representative weeks (four scenarios in both cases).

Next we observe the objective function behavior for five
representative weeks and variable number of scenarios. When
the number of scenarios is only two (w5s2), the objective
function value differs up to 4.85% as compared to the w5s4
case for Γ = 672. The maximum difference greatly reduces
when the number of scenarios is increased to three (maximum
difference is 0.5%), so we conclude that no significant loss on
the solution quality is achieved for using four scenarios with five
representative weeks.

Finally, we compare the computation times. Generally, it
increases with the value of Γ and the number of representative
weeks. On the other hand, the number of scenarios per repre-
sentative weeks does not have a straightforward effect on the
computational time.

B. Out-of-Sample Analysis

To verify the quality of the obtained solutions, an out-of-
sample analysis was conducted for Germany on 1000 different
scenarios of the day-ahead prices, the intraday prices, the PCR
prices, the load and the PV generation. Average intraday prices
were considered to analyse the robustness of the solutions ob-
tained using different Γ values. Instead of using representative
weeks and corresponding weights, in this analysis we used all
52 unique weeks. First we calculated the mean and standard
deviation for each uncertain dataset (e.g. day-ahead prices).
Then, we sampled the error (ε) out of the normal distribution
with calculated parameters ( ε ∼ N (μ, σ2) ) and added it to
the original dataset. This procedure resulted in 1000 scenarios
of possible uncertainty realizations used in the Monte Carlo
simulation.

Fig. 5 shows the cumulative probability distribution functions
(CDF) of the expected operating cost as calculated using Monte
Carlo simulations for Γ = 0, 10, 100 and 672. The best perfor-
mance is achieved for Γ values 0 and 672. These CDFs both
have a mean € 1,761 thousands, while the standard deviation
is € 19,828 for Γ = 0 and € 20,177 for Γ = 672 (both slightly
above 0.1%). The worst results are achieved for Γ = 10, which
has mean value € 1,763 thousands with standard deviation €
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19,986. All the CDFs have quite low standard deviation, which
indicates that the solution is robust to the actual realization of
uncertainty. Also, the extreme values of the uncertainty budget
Γ perform better than the ones in between, emphasizing the
importance of its proper selection based on the prior bidding
experience.

V. CONCLUSION

This contribution presents a stochastic two-stage optimiza-
tion model for IP participation in parallel revenue streams,
namely day-ahead, intraday, PCR market participation as well
as peak shaving and optimized self-consumption. The model is
applied in a case study to three countries, Denmark, Germany
and Croatia, allowing the implications of differences in market
frameworks and climates to be evaluated.

The results show that investment in BSS and/or PV systems
can lead to relatively small economic savings for the considered
IPs, with equally small advantages through aggregated market
participation. The presented case studies for each country indi-
cate that the developed PCR markets make the BSS investment
attractive at 400€/kW and 400€/kWh cost, while the absence
of such markets (and low end-consumer fees) will deter the
BSS investment. On the other hand, the PCR markets are quite
small in terms of the power quantities and over-investment in
PCR-providing assets could drastically reduce the price, which
is deemed to occur in Denmark. BSS is a powerful ally for PV to
increase the level of self-consumption. However, the cost of BSS
needs to be further reduced to make the BSS-PV joint investment
profitable under the current low electricity consumption fees.
At this point, the high PV output in Croatia makes only the
PV investment attractive. Generally, the highest cost reductions
are achieved in Germany, due to high electricity fees for end
consumers and operational PCR market.

This overall situation is expected to change in the near future,
as both BSS costs and energy-political frameworks develop. On
the one hand, industrial flexibility should benefit from additional
incentives, on the other hand future electricity prices are highly
uncertain.

APPENDIX

Objective function (1) consists of two parts – the first two
lines minimize the system’s cost, while the third line maximizes
the damage caused by the volatile intraday prices and acts as a
robust subproblem with the following objective function:

max
bq,h,w,s

∑

w∈ΩW

ρw

·

⎛
⎝

168∑

h=1

4∑

q=1

∑

s∈ΩS

πw,s ·ΔλID
q,h,w,s · eIDq,h,w,s · bq,h,w,s

⎞
⎠ (A-1)

The robust subproblem takes average values of the intraday
prices and has a possibility to add ΔλID

q,h,w,s value in order
to deteriorate the objective function value. In equation (A-1),
variable bq,h,w,s decides in which time periods the price is going
to take its highest value to inflict the most damage to the objective

function. bq,h,w,s is a relaxed binary variable and behaves under
the following constraints:

168∑

h=1

4∑

q=1

bq,h,w,s ≤ Γ, ∀w, s (A-2)

0 ≤ bq,h,w,s ≤ 1, ∀q, h, w, s (A-3)

Thus, the relaxed binary variable can take value above 0 in any
time period, but the sum of those values can be at most equal
to Γ, which is a user-controlled parameter that represents the
uncertainty budget.

Since the objective function consists of two parts that have dif-
ferent optimization directions (the first part aims at minimizing
the objective value, while the second parts wants to maximize it),
the robust subproblem (A-1)–(A-3) is converted to its dual form
to change the direction of its objective function. Minimizing the
dual will achieve the same optimal solution as when maximizing
the primal and can then be directly integrated in objective func-
tion (1). Based on the rules for converting a primal problem to
its dual form [38], the part of objective function that maximizes
the inflicted damage is formulated as its dual subproblem mini-
mizing over the set Υ = {zw,s, ωq,h,w,s, yq,h,w,s} as follows:

min
Υ

∑

w∈ΩW

ρw ·
(

168∑

h=1

4∑

q=1

∑

s∈ΩS

πw,s · ωq,h,w,s+

+
∑

s∈ΩS

πw,s · zw,s · Γ
)

(A-4)

zw,s + ωq,h,w,s ≥ ΔλID
q,h,w,s · eIDq,h,w,s, ∀q, h, w, s (A-5)

Since each constraint of the primal problem has a corresponding
dual variable, the robust subproblem has two dual variables.
Variable zw,s represents the sensitivity of the model to changing
the parameter Γ. This parameter can take values from 0 to the
number of considered time periods and it represents the number
of time periods in which the price may be altered from its average
value to inflict damage to the objective function. The worst case
is when Γ takes the maximum value allowing the prices in all
time periods to take their highest value.

In the primal problem there is variable bq,h,w,s, which indi-
cates if the price in specific time period was altered. Dual variable
ωq,h,w,s takes value greater than 0 when bq,h,w,s is greater than 0.

To conclude, both zw,s and ωq,h,w,s represent sensitivity of
the model to the number of intervals in which the price was
altered to inflict the most damage to the objective function.
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Abstract

The provision of electric flexibility through the integration of battery storage systems plays a vi-
tal role in the stability of the future energy system. Significantly, the integration into an industrial
context offers multiple electricity marketing opportunities. Nevertheless, the investment decision
for a battery storage system is challenging due to uncertainties such as future energy prices and
load behavior. In this paper, we develop a multi-stage stochastic optimization model for battery
storage investment planning in industry to consider these uncertainties. We include uncertainty
from frequency containment market prices, electricity spot market prices, as well as load be-
havior and apply it to a case study representing a German manufacturing company. Finally, we
compare the multi-stage model to a conventional two-stage model and show that the two-stage
formulation overestimates the profitability as it neglects the consecutive order of market and
dispatch decisions. The two-stage model yields larger battery capacities for two typical weeks
than the multi-stage model. Simultaneously, the multi-stage model requires a significantly larger
amount of computational resources due to the large number of scenarios and state variables and
the resulting model complexity.

Keywords: battery energy storage, demand flexibility, multi-stage investment model, stochastic
optimization, industrial demand response
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1. Introduction

The transition of the electricity generation towards a decarbonized system based on renew-
able fuels poses both challenges and opportunities for industrial electricity consumers. The sub-
sequently increasing dependency of the power generation on volatile power sources such as wind
and solar leads to increasing volatility in wholesale electricity prices and rising relevance of load
shifting abilities of large consumers from both a microeconomic and macroeconomic point of
view. For industrial consumers, these changes in their environment make the investment into
additional flexibility provided by an on-site battery storage system (BSS) a potentially attractive
option. While the improvement in the environmental balance and increased security of supply
might already be a strong positive driver for the investment, cost-effectiveness of the measure
remains the most important factor in the microeconomic decision-making process. Evaluating
the economic feasibility of such an investment is challenging due to the various uncertainties
involved in the process. Especially for the case of adding a BSS to the energy system of an
Preprint submitted to Annals of Operations Research May 4, 2022



Nomenclature

Parameters and Symbols Indices
π Probability BSS Battery storage system
c Specific cost peak Peak load
ρ Weighting factor BSaged Battery aging component
d Electricity demand in kWh in Electricity flow into system
puff Puffer factor for FCR bidding out Electricity flow out of system
η Efficiency sell Sold on market
Pcap Power capacity buy Bought on market
CRF Capital recovery factor ID Intraday market
Eol End of life factor DA Day-ahead market
LTcal Battery calendar lifetime in years FCR Primary control reserve
LTcycl Battery cycle lifetime in number of cy-

cles
grid Electricity grid

rPcap Power capacity ratio prod Production
rFCRmin Minimum FCR capacity ratio ch Charging
EFCR,mean Mean energy demand due to FCR pro-

vision in kWh
dis Discharging

timetot Number of time steps per year sdis Self-discharging
Tinv Investment period in years max Maximum allowed
rcal Calendar aging factor tot Total amount per year
NoT Number of typical time frames cal Calendar life

cycl Cycle life

industrial site, different revenue streams with uncertain economic viabilities over the course of
the operation period are required to offset a significant up-front investment. Thus, a high level
of accuracy when modelling the uncertainties is a key factor for evaluating the feasibility of an
industrial BSS investment decision.

1.1. Literature review

The methodological approaches to consider uncertainty in capacity planning of energy sys-
tems with a BSS are manifold [1]. Among others, a prominent solution is stochastic program-
ming, where the field differentiates between two-stage and multi-stage approaches. Within this
field, the majority of studies optimize the operation and dispatch decision under uncertainty, e.g.
Vahid-Pakdel et al. [2]. Studies that investigate the optimal investment and planning decision
implement a two-stage model in most of the cases, e.g. Go et al. [3].

Another branch of research utilizing a two-stage stochastic optimization approach inves-
tigates the optimal residential energy system. Tohidi and Gibescu [4] optimize the PV-BSS
revenue stream considering day-ahead markets, imbalance markets and self-consumption for a
Dutch residential complex. For a redox flow BSS, the BSS’s capacity is exogenous while the
optimal grid connection category, in terms of power capacity, is a decision variable. Pandžić [5]
compare a two-stage and a robust modelling approach to solve the investment problem for the
energy system with a PV-BSS of a Croatian hotel. They consider uncertain electricity demand
and prices. Schwarz et al. [6] and Schwarz et al. [7] evaluate the optimal energy system invest-
ment for a residential quarter with a multitude of yearly scenarios coinciding with a high model
complexity. The model of Chatterji and Bazilian [8] optimizes the investment in a residential
energy system with PV, a BSS and EV charging under time-of-use prices. Nevertheless, battery
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Nomenclature continued

Indices and ordered sets Variables
q ∈ Q Quarter hour C Cost in e
h ∈ H Hour R Revenue in e
w ∈ W Week x Electricity flow in kWh
n ∈ N Node P Power in MW
γ ∈ Γ Stage Ann Annuity payment in e
P(n) ⊆ N Parent node of node n cap Capacity in kWh
γarb ⊆ γ Set of arbitrage stages or odd stages soc State of charge in kWh
γfcr ⊆ γ Set of arbitrage stages or odd stages f Primary objective function in e
Qend Final element of ordered set Q capFCR,lim Limiting available capacity due to

FCR bidding in kWh
Hend Final element of ordered set H
Γend Final element of ordered set Γ
|X| Cardinality of set X Acronyms
Indices and sets BSS Battery storage system
l ∈ L Technology FCR Frequency containment reserve
n ∈ N Node NPV Net present value
S x ⊆ N Set of nodes of stage x or scenario x PV Photovoltaic
s ∈ S Scenario of two-stage model RES Renewable energy sources
ξ ∈ Ξ Scenario per stage in multi-stage

model
TF Time frame

sc ∈ S C Scenario of multi-stage model VPP Virtual power plant

Sample nomenclature of electricity flows
xgrid,BSS Electricity flow from grid to BSS
xBSS,grid Electricity flow from BSS to grid

degradation is not considered. For a residential PV-BSS, Zheng et al. [9] assume an exogenous
yearly battery degradation factor without any additional cycle life restrictions.

Next to the residential sector, other applications are energy hubs or energy communities as
well the industrial context. Shen et al. [10] present a planning model for a hybrid energy storage
system for an energy community without the consideration of battery degradation or cycle limits.
In contrast, Chen et al. [11] incorporate a battery degradation model into their two-stage robust
planning and operation model for an energy hub with a BSS and thermal storage. A little dif-
ferently, Alharbi and Bhattacharya [12] include a battery degradation matrix in their investment
planning model for a BSS in an isolated micro grid. In the industrial context, Ortiz et al. [13] opti-
mize the investment for a PV-BSS in a grinding mill. They consider the influence of uncertainties
in the production process on the energy demand and energy system size. Mohy-ud din et al. [14]
propose a two-stage optimization model to identify the optimal BSS size for an industrial micro-
grid, considering energy arbitrage and self-consumption. Here, peak shaving is achieved through
an exogenous peak limit. Finally, Covic et al. [15] optimize the investment of a PV-BSS-system
in an industrial complex considering multiple revenue streams. On the second stage, they com-
bine stochastic optimization for the day-ahead market with a robust optimization approach for
the intraday market.

Scientific publications in the field of multi-stage optimization are scarcer than those dealing
with two-stage optimization models. Rebennack [16], Kaut et al. [17] and Lara et al. [18] develop
a multi-stage stochastic optimization model to derive optimal decisions for national infrastruc-
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ture investment planning. Next to their research, they present a well drafted overview of the
theoretical background of multi-stage optimization and its scenario trees and present a variety of
solutions techniques. Additionally, concerning infrastructure planning, Agrali et al. [19] present
a three-stage investment planning model. The model includes the initial investment decision on
the first stage, a second stage after five years and a final investment decision stage after 10 years.
Bhattacharya et al. [20] solve the investment problem for a micro grid where distributed storage
investment decision on the initial stage and the storage operation on the following stages is the
main concern.

Other studies focus not on the investment, but on the operation of residential energy systems
or virtual power plants (VPP). [21] develop a residential demand response model with various
appliances. With PV-generation, they minimize the electricity cost for 24 hours under uncertain
weather conditions. Hafiz et al. [22] optimize the energy management of residential PV-BSS.
The model depicts the operation of 24 hours, with a stage for every consecutive hour. For VPP
applications, Keles and Dehler-Holland [23] analyse the operation of a large-scale PV-BSS with
uncertain spot and reserve market prices as well as uncertain PV-generation. They translate the
operation into a Markov decision process. Wu et al. [24] present a multi-stage offering strategy.
They consider the operation of a hydrogen fuelling station with uncertain electricity and reserve
markets, as well as uncertain hydrogen demand. Badanjak and Pandzic [25] draft a three-stage
problem for BSS market participation. They optimize the operation on existing markets and
new flexibility markets. Abbasi et al. [26] formulate a three-stage risk constrained approach for
the optimal operation of a VPP with wind power and EV charging active on different markets.
With the same number of stages, Khaloie et al. [27] publish an optimization model for a wind-
thermal-energy-storage system, where the storage decision is followed by the markets bids and,
eventually, by the imbalance cost optimization. Finally, Heredia et al. [28] present a bidding and
dispatch model for a virtual power plant (VPP) with wind power and a BSS. The model considers
the uncertainty on the day-ahead, intraday and secondary reserve market with a detailed BSS
operation constraints and a simplified cycle life constraint. The cycle life limits the expected
value of full cycles over all scenarios.

In conclusion, the literature review shows the following deficiencies in the field of multi-stage
stochastic programming:

• No study evaluates the BSS investment planning

• No study focuses on the industry sector

• No study considers revenue streams from peak shaving and reserve markets simultaneously

• Studies reveal insufficient cycle life constraints and BSS aging constraints.

1.2. Hypothesis and key contribution
This paper makes the following hypothesis: The simplification of a two-stage model formu-

lation compared to a multi-stage approach neglects operational risks of a BSS in industry. Thus,
the two-stage approach overestimates the operational profitability of a BSS, which leads to higher
investments. When optimizing the battery dispatch for different markets and consecutive, time-
dependent market activities, the two-stage approach naturally limits a thorough consideration
of stochastic processes. Similarly, the battery aging process depends on the consecutive order
of dispatch decisions and is more realistically reflected by a multi-stage formulation. These
stochastic risks need to be considered.
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In this paper, to prove this hypothesis, we develop a multi-stage stochastic optimization ap-
proach to determine the optimal BSS investment considering the uncertainty of the on-site elec-
tricity load, wholesale electricity prices, and reserve market prices. We further present the results
of our approach for a case study based on real-world industrial load profiles and compare the
findings to a two-stage formulation to highlight the improvement of accuracy in the investment
decision due to the increased consideration of uncertainty.

The considered wholesale markets for electricity trading are the day-ahead market with
hourly electricity packages and the continuous intraday market with quarter-hourly electricity
packages. The depicted reserve market is the frequency containment reserve (FCR) market.
Here, market participants offer a certain amount of FCR power in a given timeframe. This re-
serve power is automatically activated as it reacts to frequency deviation of the electricity grid.
FCR bids must provide positive and negative reserve power symmetrically. For a BSS, positive
FCR means discharging and feeding power into the electricity grid and negative FCR means
charging and drawing power from the grid.

The following points describe the key contributions of this paper:

• Development of a multi-stage stochastic optimization model for the BSS investment in
industry

• Inclusion of BSS aging and cycle life constraints

• Consideration of a multi-use case with peak shaving, FCR market bids and energy arbi-
trage

• Comparing a two-stage and multi-stage stochastic optimization approach.

The paper is structured as follows. Section 2 describes the problem statement, outlines the
two optimization approaches and presents the mathematical formulation of objective function
and constraints for both methods. Section 3 depicts the case study and shows the results of the
model comparison. Section 4 critically reviews these results, and Section 5 concludes this paper
and gives an outlook on future research.

2. Methodology

This section describes the overall investment and dispatch problem for a BSS in an industrial
application. The investment and dispatch problem can be optimized in a deterministic [29] or
stochastic manner [15]. This paper further studies the stochastic optimization by proposing a
novel multi-stage approach addressing the need to consider uncertainty in a more realistic manner
and comparing the approach to a conventional two-stage approach. Both approaches for the
same investment decision in an industrial application are explained in Section 2.2 to Section 2.4,
including the necessary set of mathematical formulations.

2.1. Problem statement

In this section, we describe the overall investment problem and the general assumptions.
The setting is derived from Braeuer et al. [29]. The presented optimization models solve the
investment and dispatch problem for a BSS installed at an industrial complex. The industrial
complex has a given electricity load of the production. The industrial company has the option

5



to invest in a battery storage system and to profit from different revenue streams, energy market
participation, FCR market participation and peak shaving.

We assume typical days or weeks to represent the behavior for one year over the course of the
BSS’s lifetime. This study refers to typical days or typical weeks as the considered time frame.

The considered revenue streams or business cases are peak shaving, FCR biding and arbitrage
trading. Peak shaving is remunerated by the savings in peak load charges between grid load with
and without a BSS. The peak load charges are paid on the maximum load for the whole year. On
the FCR market, the industrial company has the option to offer a continuous amount of FCR in
MW. In order to offer FCR, the company must reserve a certain amount of the BSS’s capacity,
which cannot be used for other revenue streams. For a weekly time frame, we assume weekly
prices and weekly FCR offers. For the daily consideration, the weekly FCR prices are divided by
the number of weekdays and, thus, the FCR offer counts for one day. We assume that FCR market
always accepts the company’s FCR offer. Finally, we assume energy arbitrage to take place on
the day-ahead hourly market and the intraday quarter-hourly market. The industrial company
can profit from price differences on these markets. Electricity is charged into the battery in times
of low prices and discharged in times of high prices. The discharged energy either satisfies the
electricity load of the production or is fed into the grid and sold on the respective electricity
market. The time steps are quarter hours. In every time step, the electricity demand of the
production must be satisfied either by electricity from the grid or additional electricity from the
BSS.

2.2. The two-stage and multi-stage approach

Both approaches, the two-stage model and the multi-stage model, consider the stochastic
behavior of prices and electricity demand. In both cases, the model has to make a decision about
the BSS investment without knowing the realization ξ of the stochastic processes. The stochastic
processes are the market prices on the FCR market, the day-ahead market as well as the intraday
market as well as the electricity demand of the industrial production process. Together with the
investment decision, the yearly peak load limit is set before knowing the actual load behavior.

Results from Braeuer et al. [29] indicate the most influential factor of the BSS investment
decision is the FCR and peak shaving business case. Arbitrage trading yields relatively small
profits. Furthermore, the consideration of multiple markets’ stochastic separately would result in
relatively high complexity of the multi-stage formulation. Therefore, this study groups the possi-
ble realizations ξ of electricity market prices and load behavior together. For example, assuming
|Ξ| = 4, this would result in four possible realizations of FCR prices and four realizations of a set
of electricity market prices and load profiles.

Figure 1 illustrates the decision stages of the two-stage-model. The model makes a decision
on the first stage without knowing the realization on the second stage. The second stage decision
is made with the knowledge of the first stage’s decision and the knowledge about the realization ξ
of the stochastic process on the second stage. The stochastic process is described by the scenario
s for every time frame w. The set of scenarios per time frame S describes the combination of
all FCR realization (ξFCR) and arbitrage realizations (ξarb), electricity market and load behavior.
This means |S | = |ΞFCR| · |Ξarb|.
• On stage 1, the decision about the BSS investment and sizing is made as well as the deci-

sion on the peak limit.
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Figure 1: Two-stage model structure

• On stage 2, the decision about the FCR bid, the energy arbitrage activities as well as the
BSS dispatch is made simultaneously. This has a recursive effect on the first stage decision
as the market activities are bound by the BSS capacity and peak load limit.

Figure 2 shows the scenario tree of the multi-stage model. Similar to the two-stage model,
the first stage decision is made without knowing the realization of the stochastic processes. Every
consecutive stage knows about the realization on its current stage and the decision on its previous
stage but does not to the realization of the stochastic processes of the following stages. The final
stage has knowledge about the decisions on all previous stages. Additionally, the model considers
the consecutive order of decisions such that every decision knows only of a single decision of it
previous stage (path dependency).

• On stage 1, the decision about the BSS investment and sizing is made as well as the deci-
sion on the peak limit.
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• On stage 2 and every even numbered stage (FCR stage), FCR prices are known and the
decision about the FCR bid is made. This has a recursive effect on the first stage as the
BSS capacity limits the FCR potential.

• On stage 3 and every odd numbered stage except stage 1 (arbitrage stage), electricity prices
are known and the decision about the energy arbitrage and BSS dispatch is made. This has
a recursive effect on the first stage decision as the market activities are bound by the BSS
capacity and peak load limit. The previous FCR decisions limits the idle BSS capacity.
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Figure 2: Scenario tree of multi-stage model

Figure 2 describes the decisions of the multi-stage model as nodes and the arrows describe
the consecutive order of decision nodes. For a clearer understanding, we introduce the following
list of sets and subsets to illustrate the scenario tree. These definitions are oriented on Lara et al.
[18].
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• n ∈ N and n =
∑
γ |Ξ|γ−1– set of decision nodes

• ξ ∈ Ξ – set of uncertainty realizations of every stochastic process

• γ ∈ Γ – set of stages

• γ f cr ⊆ γ, γ f cr < γarb, γ f cr ∈ {2, 4, ...,Γend − 1} – set of FCR stages or even stages

• γarb ⊆ γ, γarb ∈ {3, 5, ...,Γend} – set of arbitrage stages or odd stages

• sc ∈ SC and |SC| = |Ξ|Γend−1 – set of multi-stage scenarios

• S x – Set of nodes of stage x or multi-stage scenario x

• Ssc := Path(n), ∀n ∈ S Γend – Set of nodes of scenario sc, which is defined as the unique
scenario path that connects all nodes from the first stage node to node n on the final stage
γ|Γ| on the scenario tree

• P(n) – Parent node to node n for γ > 1, such that for every n ∈ S γ there exist a node m
with m ∈ P(n) and m ∈ S γ−1

2.3. Objective function

In the following subsections, we describe the two stochastic model approaches. All equations
are written as the deterministic equivalent to the extensive form. All variables are defined as
positive continuous variables except for the variables named in Table 1.

Continuous variable ∈ R
Two-stage xgrid

q,h,w,s, xID
q,h,w,s, xDA

h,w,s, CID
q,h,w,s, CDA

h,w,s

Multi-stage xgrid
q,h,n, xID

q,h,n, xDA
h,n , CID

q,h,n, CDA
h,n

Table 1: List of continuous variables.

Equation 1 describes the objective function of the two-stage model. The first stage decision
includes the battery annuity payment (AnnBS S ), the yearly peak load charges as the product of
the yearly peak load (Ppeak) and the specific peak price (cpeak) as well as the additional annuity
payment due to battery aging (AnnBS aged). The recourse decisions are made in every time frame
w that coincides with a weighting factor ρ and a probability factor π for every scenario s. The
objective function considers the expected value of the cost and revenue of electricity trading and
the FCR revenue for every time frame. Cost and revenue of electricity trading are defined as the
probability-weighted average of the sum of intraday electricity cost (CID) for every quarter-hour
q in hour h of time frame w, the sum of day-ahead electricity cost (CDA) for every hour of the
time frame as well as the FCR revenue. The latter is defined as the product of offered FCR power
(PFCR) and the FCR price (cFCR) per time frame. The average is weighted by the probability
factor π defined for every scenario and time frame. π is introduced under the condition that the
sum of the probability factor over all scenarios in one time frame equals 1. Finally, the sum of
the weighting factor over all time frames equals to the number of time frames per year.
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min f =AnnBS S + Ppeak · cpeak + AnnBS aged+

∑

w

(
ρw

∑

s

πw,s ·
(∑

h

(∑

q

(
xID

q,h,w,s · cID
q,h,w,s

)
+ xDA

h,w,s · cDA
h,w,s

)
− PFCR

w,s · cFCR
w,s

)) (1)

Equation 2 describes the objective function of the multi-stage model. Like the two-stage
model, the first stage decision is on the battery annuity payment and yearly peak charges. In
contrast, the BSS aging cost is considered for every multi-stage scenario sc and included as the
expected value, the product of the probability factor (π), and the annuity payment due to battery
aging (AnnBS S ,aged). Except for the first stage, the decisions on the other stages depend on a
stochastic process. Therefore, the objective function considers the expected value of electricity
cost and FCR revenue on its respective stage. Every arbitrage stage γarb includes the sum of
electricity cost on the intraday and day-ahead market multiplied by the probability factor π and
the weighting factor ρ defined for every node on the respective arbitrage stage. In parallel, on
every FCR stage γ f cr, the expected value is derived from the product of the FCR bid, the FCR
price and the probability and weighting factor. Finally, the sum of all probabilities on one stage
equals 1. The weighting factor is equal for all nodes in one stage. The sum of the weighting
factor for all arbitrage or FCR stages on one scenario path equals the number of time frames per
year.

min f =AnnBS S + Ppeak · cpeak+
∑

sc

(
πsc · AnnBS aged

sc

)
+

∑

n∈S γarb

(
πn · ρn ·

∑

h

(∑

q

(
xID

q,h,n · cID
q,h,n

)
+ xDA

h,n · cDA
h,n

))
+

∑

n∈S γ f cr

(
πn · ρn · (−PFCR

n ) · cFCR
n

)

(2)

2.4. Model constraints

In this subsection, we describe the constraints of the two model approaches. Table 2, Table
3 and Table 4 list and compare the model constraints, the two-stage model on the left and the
multi-stage model on the right of the table. Table 2 shows the electricity balance and market
balance constraints. Table 3 lists constraints describing the battery operation. Finally, Table 4
defines battery capacity, battery annuity and battery aging.

First, Equation 3 until Equation 6 show the electricity balance of the industrial complex. The
electricity balance constraints are similar for both models. In the two-stage model, they are de-
fined for all time steps and scenarios and, in the multi-stage model, they are defined for all time
steps on the arbitrage stage. Equation 3 states that the grid electricity flow (xgrid), which can take
both positive and negative values, is the difference between the electricity flow from the grid into
the industrial complex (xgrid,in) and the electricity flow into the grid (xgrid,out). Electricity that
flows into the industrial complex is either directed to the BSS (xgrid,BS S ) or to the production pro-
cess (xgrid,prod), see Equation 4. Equation 5 states that the only electricity grid feed-in (xgrid,out)
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Two-stage model Multi-stage model Ref

Electricity balance constraints

xgrid
q,h,w,s = xgrid,in

q,h,w,s − xgrid,out
q,h,w,s ∀q, h,w, s xgrid

q,h,n = xgrid,in
q,h,n − xgrid,out

q,h,n ∀q, h, n ∈ S γarb (3)

xgrid,in
q,h,w,s = xgrid,BS S

q,h,w,s + xgrid,prod
q,h,w,s ∀q, h,w, s xgrid,in

q,h,n = xgrid,BS S
q,h,n + xgrid,prod

q,h,n ∀q, h, n ∈ S γarb (4)

xgrid,out
q,h,w,s = xBS S ,grid

q,h,w,s ∀q, h,w, s xgrid,out
q,h,n = xBS S ,grid

q,h,n ∀q, h, n ∈ S γarb (5)

dq,h,w,s = xBS S ,prod
q,h,w,s + xgrid,prod

q,h,w,s ∀q, h,w, s dq,h,n = xBS S ,prod
q,h,n + xgrid,prod

q,h,n ∀q, h, n ∈ S γarb (6)

Electricity market constraints

xDA
h,w,s = xDA,buy

h,w,s − xDA,sell
h,w,s ∀h,w, s xDA

h,n = xDA,in
h,n − xDA,sell

h,n ∀h, n ∈ S γarb (7)

xID
q,h,w,s = xID,buy

q,h,w,s − xID,sell
q,h,w,s ∀q, h,w, s xID

q,h,n = xID,buy
q,h,n − xID,sell

q,h,n ∀q, h, n ∈ S γarb (8)

xDA,buy
h,w,s +

∑

q

xID,buy
q,h,w,s =

∑

q

xgrid,in
q,h,w,s ∀h,w, s xDA,buy

h,n +
∑

q

xID,buy
q,h,n =

∑

q

xgrid,in
q,h,n ∀h, n ∈ S γarb (9)

xID,buy
q,h,w,s ≤ xgrid,in

q,h,w,s ∀q, h,w, s xID,buy
q,h,n ≤ xgrid,in

q,h,n ∀q, h, n ∈ S γarb (10)

xDA,sell
h,w,s +

∑

q

xID,sell
q,h,w,s =

∑

q

xgrid,out
q,h,w,s ∀h,w, s xDA,sell

h,n +
∑

q

xID,sell
q,h,n =

∑

q

xgrid,out
q,h,n ∀h, n ∈ S γarb (11)

xID,sell
q,h,w,s ≤ xgrid,out

q,h,w,s ∀q, h,w, s xID,sell
q,h,n ≤ xgrid,out

q,h,n ∀q, h, n ∈ S γarb (12)

FCR constraints

capFCR
w,s = pu f f FCR · PFCR

w,s ∀w, s capFCR
n = pu f f FCR · PFCR

n ∀n ∈ S γ f cr (13)

capFCR
w,s ≤ capBS S ∀w, s capFCR

n ≤ capBS S ∀n ∈ S γ f cr (14)

−− capFCR,lim
n = capFCR

P(n) ∀n ∈ S γarb (15)

Peak shaving constraint

Ppeak ≥ xgrid
q,h,w,s · 4/1000 ∀q, h,w, s Ppeak ≥ xgrid

q,h,n · 4/1000 ∀q, h, n ∈ S γarb (16)

Table 2: Electricity balance and market constraints
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Two-stage model Multi-stage model Ref

Battery operation constraints

xBS S ,in
q,h,w,s = η

ch · xgrid,BS S
q,h,w,s ∀q, h,w, s xBS S ,in

q,h,n = ηch · xgrid,BS S
q,h,n ∀q, h, n ∈ S γarb (17)

xBS S ,out
q,h,w,s = 1/ηdis · (xBS S ,prod

q,h,w,s + xBS S ,grid
q,h,w,s ) ∀q, h,w, s xBS S ,out

q,h,n = 1/ηdis · (xBS S ,prod
q,h,n + xBS S ,grid

q,h,n ) ∀q, h, n ∈ S γarb (18)

socq,h,w,s =
socq+1,h,w,s − xBS S ,in

q+1,h,w,s + xBS S ,out
q+,h,w,s

1 − ηsdis socq,h,n =
socq+1,h,n − xBS S ,in

q+1,h,n + xBS S ,out
q+1,h,n

1 − ηsdis (19)

∀q < Qend, h,w, s ∀q < Qend, h, n ∈ S γarb

socQend,h,w,s =
soc1,h+1,w,s + xBS S ,in

1,h+1,w,s + xBS S ,out
1,h+1,w,s

1 − ηsdis socQend,h,n =
soc1,h+1,n + xBS S ,in

1,h+1,n + xBS S ,out
1,h+1,n

1 − ηsdis (20)

∀h < Hend,w, s ∀h < Hend, n ∈ S γarb

socQend,Hend,w,s =
soc1,1,w,s − xBS S ,in

1,1,w,s + xBS S ,out
1,1,w,s

1 − ηsdis socQend,Hend,P(P(n)) =
soc1,1,n − xBS S ,in

1,1,n + xBS S ,out
1,1,n

1 − ηsdis (21)

∀w, s ∀n ∈ S γarb \ S Γend ∧ S γarb \ S γ=3

– socQend,Hend,n =
soc1,1,m − xBS S ,in

1,1,m + xBS S ,out
1,1,m

1 − ηsdis (22)

∀n ∈ S Γend,∀m ∈ S γ=3

Charge and discharge limit

socq,h,w,s ≤ capBS S − rFCRmin · capFCR
w,s ∀q, h,w, s socq,h,n ≤ capBS S − rFCRmin · capFCR,lim

n ∀q, h, n ∈ S γarb (23)

socq,h,w,s ≥ rFCRmin · capFCR
w,s ∀q, h,w, s socq,h,n ≥ rFCRmin · capFCR,lim

n ∀q, h, n ∈ S γarb (24)

xBS S ,in
q,h,w,s ≤ capBS S − capFCR

w,s ∀q, h,w, s xBS S ,in
q,h,n ≤ capBS S − capFCR,lim

n ∀q, h, n ∈ S γarb (25)

xBS S ,out
q,h,w,s ≤ capBS S − capFCR

w,s ∀q, h,w, s xBS S ,out
q,h,n ≤ capBS S − capFCR,lim

n ∀q, h, n ∈ S γarb (26)

xBS S ,out
q,h,w,s + xBS S ,in

q,h,w,s ≤ PcapBS S · 1
4

∀q, h,w, s xBS S ,out
q,h,n + xBS S ,in

q,h,n ≤ PcapBS S · 1
4

∀q, h, n ∈ S γarb (27)

Table 3: Battery operation constraints
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Two-stage model Multi-stage model Ref

Battery capacity and annuity constraints

PcapBS S = capBS S · rPcap PcapBS S = capBS S · rPcap (28)

capBS S ≤ capBS S ,max capBS S ≤ capBS S ,max (29)

AnnBS S = capBS S · cBS S ·CRF AnnBS S = capBS S · cBS S ·CRF (30)

AnnBS S ,aged = capBS S ,aged · cBS S ·CRF AnnBS S ,aged
sc = capBS S ,aged

sc · cBS S ·CRF ∀sc (31)

Battery aging constraints

xBS S ,ch,tot =
∑

w

ρw ·
∑

s

πw,s ·
(∑

q,h

(xBS S ,in
q,h,w,s ) + xBS S ,ch,FCR,tot

w,s

)
xBS S ,ch,tot

sc =
∑

n∈S sc

(
ρn ·

(∑

q,h

xBS S ,in
q,h,n + xBS S ,ch,FCR,tot

sc

))
∀sc (32)

xBS S ,ch,FCR,tot
w,s = PFCR

w,s · EFCR,mean ∀w, s xBS S ,ch,FCR,tot
n = PFCR

n · EFCR,mean ∀n ∈ S γ f cr (33)

xBS S ,ch,tot · LT cal

capBS S ≤ LT cycl xBS S ,ch,tot
sc · LT cal

capBS S ≤ LT cycl ∀sc (34)

capBS S ,aged,cal =
∑

w

(
ρw ·

∑

q,h,s

πw,s ·
(
socBS S

q,h,s

))
· 1

timetot · rcal capBS S ,aged,cal
sc =

∑

n∈S sc

(
ρn ·

∑

q,h

(
socBS S

q,h,n

))
· 1

timetot · rcal ∀sc (35)

capBS S ,aged = capBS S · 1
EoL

+ capBS S ,aged,cal capBS S ,aged
sc = capBS S · 1

EoL
+ capBS S ,aged,cal

sc ∀sc (36)

Table 4: Battery capacity, annuity and aging constraints

comes from the BSS (xBS S ,grid). Finally, Equation 6 defines that the exogenous electricity de-
mand of the production process (d) must always be satisfied. The electricity for the production
process comes either from the BSS (xBS S ,prod) or the grid (xgrid,prod).

In Table 2, Equation 8 until Equation 12 constrain the arbitrage trading activities of the model.
In the two-stage model, the equations are defined for all time frames and scenarios and, in the
multi-stage model, for all nodes on the arbitrage stages. Equation 7 defines the electricity traded
on the day-ahead market (xDA) for every hour h. It takes positive values if the amount of elec-
tricity bought on the day-ahead market(xDA,buy) is greater than the amounts sold (xDA,sell) and
vice-versa. In analogy, Equation 8 defines the electricity traded on the intraday market for every
quarter-hour q and hour h. In either case, the electricity amount bought on the markets must
not surpass the amounts drawn from the grid (xgrid,in). This shows Equation 9, which is defined
for every hour and therefore considers the sum of all quarter-hourly electricity flows per hour.
Additionally, Equation 10 states that, in every quarter-hour, the electricity bought on the intraday
market (xID,buy) must not exceed the electricity drawn from the grid. Similarly, Equation 11 and
Equation 12 restrict the electricity amounts sold on the electricity markets. Finally, Equations 9
until 12 allow only for physical arbitrage trading utilizing the BSS.

Equations 13 until 15 describe the FCR constraints. In the two-stage model, the FCR con-
straints are defined for every time frame and every scenario and, in the two-stage model, they
are defined for every node on the FCR stage (S γ f cr). Equation 13 states that the FCR bid (PFCR)
multiplied by a puffer factor (pu f f FCR) equals to the BSS’s capacity that is reserved for FCR
activities (capFCR). capFCR limits the BSS’s capacity for other uses, explained in Equation 23
and following. Equation 14 bounds capFCR not to exceed the BSS capacity (capBS S ). Equation
15 is defined only for the multi-stage model. It introduces the state variable capFCR,lim that links
the FCR stage and its consecutive arbitrage stage. For the set of nodes on the arbitrage stage,
Equation 15 defines an FCR capacity limit (capFCR,lim) that is equal to the FCR capacity of the
parent node P(n) on the FCR stage. capFCR,lim is later used in Equation 23 and following.

Table 3 shows the constraints of the BSS operation. Equation 17 and Equation 18 show the
13



charge and discharge electricity flow of the battery for every time step of the two-stage scenarios
and the arbitrage stage nodes of the multi-stage model. Equation 17 defines the charge electricity
flow of the BSS (xBS S ,in) as the electricity flow from the grid to the BSS (xgrid,BS S ) multiplied
by the charging efficiency (ηch). In Equation 18, the discharge electricity flow (xBS S ,out) is the
inverse discharge efficiency (ηdis) times the sum of electricity flowing to the production process
(xBS S ,prod) and electricity fed into the grid (xBS S ,grid).

Equations 19 until 22 define the state of charge (SOC) of every time step and connects the
consecutive time steps. Equation 19 shows the principle that the SOC of a time step q is equal to
the SOC of the following time step q+1 minus the electricity charged in q+1 plus the electricity
discharged in q + 1. The sum of the three terms is divided by (1 − ηsdis), the self-discharge rate.
Equation 19 is defined for every time step except for the final time step of the set of Q. In the
two-stage model, the equation accounts for every time frame w and every scenario; in the multi-
stage model, it accounts for every node on the arbitrage stage. Equation 20 and Equation 21 and
Equation 22 define the SOC in analogy to Equation 19. Hereby, Equation 20 defines the SOC
of the final quarter-hour q = Q for every full hour h. In this case, the consecutive time step is
defined as the first quarter-hour of the next full hour h + 1. In the two-stage model, Equation 21
defines circular behavior of the SOC such that for the last quarter-hour of the last full hour in
time frame w the consecutive time step is the first quarter-hour of the first full hour of the same
time frame w. In this case, the multi-stage formulation differs due to the consecutive order of
stages and the use of state variables. Thus, for every arbitrage stage except the final stage(γ|Γ|)
and the first stage (γ = 3), the first time step on an arbitrage stage is preceded by the last time
step of its Parent’s Parent node P(P(n)). The parent node would be on the proceeding FCR stage
and its parent node would again be on its proceeding arbitrage stage. Equation 22 defines the
circular behavior of the SOC for the multi-stage model. It states that the final time step of node
n on the final stage is succeeded by the first time step of node m on the first arbitrage stage that
is belongs to the same scenario path as n (m ∈ Path(m)).

Finally, in Table 3, Equation 23 until Equation 27 define the charge and discharge limits
for every time step of every time frame and every scenario or every arbitrage node respectively.
Equation 23 sets the maximum SOC to be always smaller or equal to the difference of the in-
stalled BSS capacity and FCR capacity reserved for that time frame (capFCR) multiplied by a
minimum FCR capacity ratio (rFCRmin). For the multi-stage formulation, the variable capFCR,lim

resembles the reserved FCR capacity decision of the proceeding FCR stage, defined in Equation
15. Similarly to the upper bound, Equation 24 sets the SOC’s lower bound to be greater or equal
to the reserved FCR capacity multiplied by rFCRmin. Additionally, Equation 25 and 26 limit the
charge and discharge electricity to be less or equal to the difference between the installed capacity
and the for FCR reserved capacity (capBS S or capFCR respectively). Finally, Equation 27 defines
the sum of charge and discharge electricity to always be less or equal to the power capacity of
the BSS (PcapBS S ). To convert from the unit power to energy, PcapBS S is divided by four.

The final table of constraints, Table 4, defines the capacity and annuity constraints, Equations
28 until 31, as well as the battery aging consideration, Equations 32 until 34. In both models,
battery investment and capacity decisions are made on first stage. Thus, Equations 28, 29 and 30
are formulated equally for both models. In Equation 28, the power capacity is equal to the product
of the BSS capacity and the power capacity ratio (rPcap). In Equation 29, the model formulation
defines an upper bound (capBS S ,max) for the battery capacity and Equation 30 derives the Annuity
payment for the BSS investment (AnnBS S ). AnnBS S is the product of the battery capacity, the
specific battery price (cBS S ) and the capital recovery factor (CRF). Next to the BSS annuity,
both model formulations consider the annuity payment due to battery aging effects (AnnBS S ,aged)
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defined in Equation 31. AnnBS S ,aged considers the additional battery capacity that needs to be
installed to compensate for the battery aging (capBS S ,aged) further explained in Equation 35 and
following. In the two stage model, AnnBS S ,aged is defined singularly; in the multi-stage model,
AnnBS S ,aged is defined for every multi-stage scenario sc.

Equation 33 until Equation 36 represents the battery aging constraints. In both model formu-
lations, battery aging is divided into two components, the cycle lifetime and the calendar lifetime
of the battery. In case of the cycle lifetime, the number of full charging cycles must not surpass
the cycle life of the battery. The key variable is the total amount of electricity charged (xBS ,ch,tot),
in Equation 32. In the two-stage model, xBS ,ch,tot is defined as the probability-weighted average of
the sum of electricity charged (xBS S ,in) and the total amount of electricity charged for FCR activi-
ties (xBS S ,ch,FCR,tot) for every scenario per time frame with probability π. The expected values per
time frame are summed up and multiplied with the respective weighting factor (ρ). In contrast,
the multi-stage formulation defines xBS ,ch,tot not as a single expected value but as multiple total
amounts of electricity charged for every multi-stage scenario sc. In the multi-stage model, Equa-
tion 32 defines xBS ,ch,tot as a state variable and considers the sum of electricity charged for every
node in the same set of scenario nodes S sc multiplied by the respective weighting factor. Added
to this is the total amount of electricity charged for FCR activities for the respective multi-stage
scenario (xBS S ,ch,FCR,tot

sc ).
In both formulations, xBS S ,ch,FCR,tot is derived from the FCR bid multiplied by the mean

amount of electricity needed for every MW of FCR offered (EFCR,mean), see Equation 33. To
complete the cycle life component, Equation 34 converts the total amount of electricity charged
into full load cycles by multiplying it with the ratio of calendar lifetime (LT cal) and installed
battery capacity. The number of full load cycles must always be smaller than the cycle lifetime
(LT cycl). In the two-stage model, Equation 34 refers to the expected value of full load cycles and,
in the multi-stage model, it states that the full load cycle of every multi-stage scenario must not
exceed the cycle life. The multi-stage formulation differs from Heredia et al. [28] who use the
expected value of the full load cycle over all multi-stage scenarios.

In order to complete the assumed calendar lifetime of the battery, the model is able to com-
pensate the calendar capacity loss by over-sizing the BSS. The additional installed capacity
(capBS S ,aged,cal) is defined in Equation 35 and refers to calendar aging due to high storage levels.
In the two-stage model, capBS S ,aged,cal is declared as the expected value of the sum of the SOC
for all time steps per time frame, summed up over all time frames considering the weighting
factor. This summation is divided by the total number of time steps per year (timetot) to derive
the weighted average SOC per time step. To account for the calendar aging effect, the last term
is multiplied by the calendar aging factor rcal concluded from Lunz et al. [30] and Kaschub et al.
[31]. rcal describes the capacity loss if the SOC is at its maximum level over the whole lifetime.
In the multi-stage model, the additional calendar capacity is defined as a state variable for every
multi-stage scenario sc. Thus, Equation 35 calculates the average SOC for every time step of
every node in the set of nodes of the respective scenario S sc. Finally, Equation 36 considers
the end-of-life condition and defines the additionally installed capacity to compensate battery
aging (capBS S ,aged) as the sum of the BSS capacity divided by the end-of-life-factor (EoL) and
capBS S ,aged,cal.

3. Case study results

In order to investigate the utility of the developed approach on a realistic industrial applica-
tion, we develop a case study using data of a manufacturing company. This section splits into
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three subsections. The first subsection 3.1 describes the case study. The subsections 3.2 and 3.3
present results of the case study. Additionally, it evaluates the plausibility of the two models as it
identifies the most influential differences between the two model-formulations. Finally, subsec-
tion 3.4 quantifies the difference in profitably of the BSS for the two models and for a variation
of the number of time frames, two or three, or the type, days or weeks.

3.1. Case study description

The case study applies the method from section 2 to the load profile of a German manufactur-
ing company for the production of die forgings from steel. The load profile data were recorded
in 2016 and published inter alia in [32]. The other stochastic processes, next to the load profile,
for this case study are the FCR market prices as well as the intraday and day-ahead market prices
from the year 2017. For the FCR price, the case study considers the maximum price, for the
intraday market the weighted-average price and for the day-ahead market the market clearing
price. The assumed peak charges are in line with the listed charges in Baden-Württemberg, Ger-
many, for the year 2016 on the medium voltage level. The minimum and maximum charges1 are
35, 470e/kW until 184, 530e/kW. The mean value among 100 grid operators is 44, 460e/kW2.

NoT
2 3

Γ {1, 2, . . . , 5} {1, 2, . . . , 7}
S C {1, 2, . . . , 256} {1, 2, . . . , 4096}
N {1, 2, . . . , 341} {1, 2, . . . , 5461}

Table 5: Multi-stage input parameters

The case study considers different time frames (T F), either days or weeks, and a varying
number of typical time frames (NoT ), two days/weeks or three days/weeks. Table 5 presents the
multi-stage sets that coincide with varying NoT . Additionally, Table 6 lists the input parameters
and sets. Finally, the case study is evaluated for different set-ups, shown in the first three columns
of Table 7. For nine different set-ups, either the input parameter peak charges or price factor are
altered. The price factor describes the multiplicative factor for the intraday and day-ahead prices.

A k-means clustering approach derived from Covic et al. [15] attains the uncertainty real-
izations ξ for the different stochastic processes. The case study considers different time frames
(T F), either days or weeks, and a varying number of typical time frames (NoT ), two days/weeks
or three days/weeks. Therefore, the price and load profiles are divided into time frames for one
year, either 365 or 52 profiles3. From the total number of time frames per year (#T Fyear) a k-
means clustering algorithm concludes separate clusters for every time frame w. Every cluster
is assorted a weighting factor ρw, which coincides with the number of time frames per cluster.
From the first cluster, the k-means algorithm derives a second set of clusters for every realization
ξ ∈ Ξ. Every realization is assorted a probability πw,ξ, such that

∑
ξ πw,ξ = 1. The chosen load

profile for the case study is the median load profile of a realization cluster.

1These charges apply to consumers with more than 2, 500 full load hours.
2These mean value is derived from charges of consumers with more and less than 2, 500 full load hours.
3The FCR price clusters are constructed from weekly prices. Thus, for FCR, the considered time frame is weekly.

For the daily consideration, the FCR price is divided by the number of weekdays.
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Parameter and sets Unit Value
Ξ {1, 2, 3, 4}
S {1, 2, . . . , 16}
cBS S e/kWh 650
ηch 0.9
ηdis 0.9
ηsdis 0.02
EoL 0.8
capBS S , f ix kWh 1500
capBS S ,max kWh 10000
rPcap 1
rFCRmin 0.5
rcal 1/3
LT cal a 11
LT cycl #cycles 4000
pu f f FCR 1.5
EFCR,mea kWh 4889.7
i 0.04
T inv a 11

Table 6: Input parameter and sets

3.2. Model plausibility – FCR and arbitrage stage interdependencies

This section discusses the results for the two-stage and multi-stage model runs and its plau-
sibility for two typical days. The set-up of performing the optimization with only two typical
days allows for low computational times. Additionally, it grants tractable overview of the results
revealing the most important conclusions of the model comparison. This subsection elaborates
on the effect of the interdependencies between the FCR stage and the arbitrage stage, while
subsection 3.3 focuses on the effect of the cycle limitations.

Table 7 shows the results for model runs where the battery capacity is fixed at 1500 kWh
endogenously. Thus, the model is forced to install a BSS and the endogenous decision is only
about peak load, FCR bidding, arbitrage trading and quarter-hourly dispatch. This allows for an
easier understanding of the difference between the models’ behavior. Table 7 column 6 shows
the difference in the net present value (NPV) between the two-stage and multi-stage model in
column 4 and 5. Furthermore, it shows the mean amount of FCR offered for all scenarios and
typical days, column 7 and 8. For a fixed capacity of 1500 kWh, the maximum FCR bid is
1000 MW. Finally, the last two columns present the peak load the model chooses in the first
stage.

For all set-ups, the NPV of the two-stage model is always greater than the NPV of the multi-
stage model. For most of the set-ups, the mean FCR amount that is offered on the market is
lower for the two-stage model than for the multi-stage model. Simultaneously, in most cases,
the two-stage model achieves a greater peak load reduction than the multi-stage model. For one
part, this can be explained by model-specific dependencies of the FCR bidding decision and the
peak shaving decision. Both models choose the peak demand on the first stage. Nonetheless, the
peak demand decision depends on the quarter hourly dispatch decision, which strongly depends
on the load demand of the industrial process. In the two-stage model, this dispatch decision
is made on the same stage as the FCR bidding decision. On this stage, the model can make a
deterministic decision for both FCR, arbitrage trading and battery dispatch. In the multi-stage
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model, the FCR decision is made on a stage prior to the arbitrage and dispatch decision. Thus,
it is still stochastic in nature, as the model on the FCR stage only knows of the expected value
resulting of the following stages.

Considering set-up 1 until 5 in Table 7, the parameter for the peak charges is increased from
10, 000e/kW until 100, 000e/kW. Subsequently, the profitability of peak shaving increases as
well. This results in higher values for ∆peak for both models. Furthermore, the resulting values
of FCRmean for set-ups 1 until 4 indicate a decreasing trend. Nonetheless, from set-up 4 to set-up
5 with the highest peak charges, the trend changes and the multi-stage value decreases rapidly.
In this set-up, the two-stage model bids a mean value of 0.83 MW and the multi-stage model a
mean value of 0.65 MW, which indicates a reduction of 3% and almost 23% respectively. In case
of the multi-stage model, one might assume a greater availability of idle resources of the BSS
to reduce the peak demand. Nevertheless, the ∆peak value for the two-stage model is still more
than 40% larger than the multi-stage model value. The interdependence of the FCR decision and
the uncertain arbitrage and dispatch decision lowers the profitability of the multi-stage model
compared with two-stage approach.

Figure 3 illustrates this interdependence further. Figure 3 depicts the grid load profile of the
energy system for one day and three different realizations. The grid load includes electricity
drawn from the grid and fed into the grid. The dotted, horizontal lines indicate the FCR amount
offered on that day corresponding to the respective color of the grid load profile. Furthermore,
the upper graph shows the two-stage model results and the lower graph the multi-stage model
results. Both results refer to the same FCR price realization as well as the same four load and
arbitrage price realizations.

In the two-stage model, realizations 1 represent the load with the highest load shift. To
achieve this high amount of shiftable load, the FCR bid in this scenario is minimal around
250 kW. Thus, a greater amount of idle capacity is available for peak shaving. Considering
the load of realization 2, less load needs to be shifted to reach the same peak limit as in scenario
s1. This results in a greater amount of capacity available for FCR activities, leading to a higher
FCR bid around 800 kW. Finally, the load in realization 3 is below the peak limit. Thus, the
maximum FCR bid, 1000 kW, is chosen in this scenario.

In the multi-stage model, the FCR decision is made on a stage prior to the arbitrage and dis-
patch stage. Therefore, the model chooses one single FCR bid indicated by one single horizontal
FCR line in the multi-stage graph in Figure 3. The model chooses the FCR amount in such a way
to leave enough of the BSS’s capacity idle to allow for a successful peak shaving for either of
the possible load demand profiles on the following stage. The multi-stage graph shows that the
FCR level is chosen at roughly 700 kW. Compared to the two-stage results, the relatively high
FCR bid reduces the peak shaving potential for grid load 1. In turn, this sets the overall peak
limit. Therefore, for grid load 2, the peak reduction is smaller than in the two-stage scenario
although the respective FCR-bid in the two-stage scenario is greater than the multi-stage bid and
potentially greater amounts of idle BSS capacity in the multi-stage case is available. Because of
the uncertainty consideration in the multi-stage model, the market potential is not fully exploited.

3.3. Model plausibility – Cycle limitations
In Table 7, the results for set-up 6 until 9 reveal a second influential effect that results in

a diverging profitability and dispatch decision for the two considered model approaches. This
effects results from the way the two models consider the BSS’s cycle limitations.

Set-ups 6 until 9 vary the price factor of the intraday and day-ahead prices. Thus, the price
gap between low and high prices increases with an increasing price factor raising the profitability
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Set-up cpeak Price NPV NPV ∆NPV FCRmean FCRmean ∆peak ∆peak
factor two-stg mult-stg two-stg mult-stg two-stg mult-stg

# e/kW - ke ke ke MW MW kW kW
1 10000 1 -13 -80 67 0.95 0.92 107.1 170.24
2 20000 1 -2 -65 63 0.95 0.92 141.34 170.24
3 44460 1 47 -25 72 0.9 0.88 344.0 195.08
4 70000 1 143 20 123 0.86 0.84 479.34 223.47
5 100000 1 278 94 184 0.83 0.65 546.97 347.97
6 44460 1 47 -25 72 0.9 0.88 344.0 195.08
7 44460 2 315 174 141 0.85 0.83 262.0 233.0
8 44460 4 1082 619 463 0.72 0.66 107.12 325.0
9 44460 6 1899 1264 635 0.66 0.01 0.0 -1.47

Table 7: Results for a fixed capacity of 1500 kWh and 2 typical days.

of the arbitrage business case. The effect of a more attractive arbitrage business case can be
observed by considering the mean value of FCR bids. FCRmean decreases with an increasing
price factor for both models. In the extreme case in set-up 9 with a price factor of 6, the multi-
stage model does barely participate in the FCR market with a value of 0.01 MW, while the two-
stage model still offers 0.66 MW. Additionally, the reduced peak load changes drastically with
a rising price factor. Here, the two-stage model indicates different behavior than the multi-stage
model. For the two-stage model, ∆peak reduces with an increasing price factor. With a rising
price factor, the arbitrage business case appears more attractive than peak shaving. With a price
factor of 6 no peak shaving is achieved, for the two-stage model, and, for the multi-stage model,
∆peak is slightly negative, with −1.47 kW. Thus, for the latter, the model exploits the price
peaks and valleys, which results in a slight load increase. For the multi-stage model, the results
indicate a rise in ∆peak at first. The model chooses to reduce the FCR bid as it is more profitable
to pursue higher arbitrage peak shaving activities. Nonetheless, similar to the two-stage model,
with a price factor of 6, ∆peak drops to near negative near zero and the FCR bid is close to zero.

Scenario
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Day1 1 4000 649 1 1 4000 548 1 1 4000 548 1 1 4000 548 1
Day2 1 4000 1258 1954 1 4000 1258 1887 1 4000 1258 1887 1 4000 1258 1887

Table 8: Rounded number of daily cycles in two-stage model for a fixed capacity of 1500 kWh, 2 typical days and set-up
9 with a price factor of 6.

As shown in Section 2 and more precisely in Equation 32 and Equation 34, the two-stage
model uses the expected value of full cycles for all considered scenarios. Additionally, by defi-
nition, the two-stage model does not consider a consecutive order of the typical days. Thus, the
two-stage formulation tents to overestimate the number of full cycles. As an example, Table 8
shows the results of full cycles per typical day and scenario of the two-stage model and set-up
12 with a price factor 6. Along with the probability of the scenario, the weighting factor of the
typical day and the considered calendar life of 11 years, the total amount of full cycles is 4000,
which is the maximum number of possible cycles 4. Nonetheless, considering Table 8 and sce-
nario 2, the number of cycles for both day 1 and day 2 is 4000. This effect overestimates the

4In both models and in every set-up, the maximum number of possible full cycles is always fully exploited.
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Figure 3: Results of grid load and FCR bid for one day with a fixed BSS capacity of 1500 kWh for three exemplary
realizations.

potential of the BSS as this specific dispatch for scenario 2 for both days would not hold up to
reality. Nevertheless, these extreme values even out over all scenarios.

The multi-stage approach considers the consecutive order of scenarios and days and, set by
Equation 34, the number of cycles for one scenario path cannot be greater than the maximum
number of possible cycles. Figure 4 gives a visual illustration of this effect. It shows the SOC,
shaded area, and the BSS charge and discharge as number of cycles over the lifetime, bar graph.
Figure 4 shows the results for set-up 12 with a price factor of 6 where the highest dispatch
activities are observable. The two-stage model fully exploits the maximum number of possible
cycles in both days, which leads to 8000 cycles in this specific scenario. The multi-stage model
exploits the maximum number of possible cycles over the whole time span of the 2 typical days.
Figure 4 indicate a similar dispatch for both models on day 2. Nonetheless, the first day reveals
less activity for the multi-stage model than for the two-stage model. This overestimation of the
BSS’s potential caused by the two-stage formulation is another explanation why the two-stage
model calculates a higher NPV than the multi-stage model.

3.4. Quantifying the benefit of the multi-stage formulation

This section investigates the influence of varying the number of typical days. The previous
section used two typical days to allow for an easily accessible interpretation of model formulation
differences. Nonetheless, the focus on only two typical days goes along with a high degree of
uncertainties. Thus, this section expands the observations to three typical days and seven stages
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Figure 4: Results of SOC and full load cycles with a fixed BSS capacity of 1500 kWh and set-up 9 with the maximum
price factor 6 for the same FCR price and load realizations.

respective stages as well as two typical days with five stages. The varying considerations coincide
with different load and price scenarios, for intraday, day-ahead and FCR market prices.

Figure A.6 shows the load profiles for the two-day, three-day and two-week observations and
the respective four realizations in every time frame. Similarly, Figure A.7 presents the intraday
price profiles. In Figure A.6 graphs 6 and 7, the considered industrial load profile represents, for
most of the days, a weekday daylight production with high electricity demand during the day and
low demand during nighttime and on the weekend. Additionally, it shows high demand volatility
during the day and between the different weekdays. The weekly load behavior shows a high
number of possible daily demand profiles that creates an under-representation of certain daily
profiles when trying to fit the behavior into two typical days. This under-representation creates
uncertainties, which are reduced when considering three typical days. Nevertheless, expanding
to three days expands the complexity of the multi-stage model as it introduces two additional
stages. From two days to three days, the number of multi-scenarios increases from 256 to 4096
and the number of nodes from 341 to 5461.

Figure 5 shows the results for varying time frames, two days and five stages, three days and
seven stages as well as two weeks and five stages. It shows the NPV of the first seven case
study set-ups where set-up 1-5 varies the peak charges and set-up 6-7 varies the price factor
of arbitrage prices. The results indicate that the two-stage model always estimates a higher
profit than the multi-stage model. Nonetheless, the NPV difference between the two model
formulations appears smaller for the two-week consideration than for the daily consideration.
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Overall, the results of the two-week time frame yield the lowest profitability compared to the
other daily perspective. Comparing the two-day and three-day results, the considered three-day
load realizations offer a higher peak shaving potential than the two-day profiles. Simultaneously,
the combination of assumed price and load realization in the two-day framework offer higher
revenues for arbitrage trading than the three-day perspective.

The above described observations are confirmed in Table 9 where, instead of an exogenous
parameter, the BSS capacity is an endogenous decision variable for both models. Table 9 shows
the results for installed BSS capacity and the NPV. For all time frames, the two-stage model
yields higher profits than the multi-stage model while installing a larger BSS. The depicted set-
up 3 considers mean peak charges and a price factor of 1. The greater peak shaving potential
of the assumed three-day realization profiles results in the largest BSS capacity for the time
frame. The smallest BSS is installed in the two-day framework for the multi-stage model. The
difference between the two-stage and the multi-stage results varies for the capacity and the NPV.
For the two-day perspective, the two-stage model installs a BSS that is more than three times
as large as the multi-stage model’s BSS. For the two-week case, the BSS is only 1.7 times as
large. Nevertheless, it is the other way around for the NPV. Considering the two-day values, the
two-stage model’s NPV is roughly 1.9 times a large as the multi-stage NPV. For the two-week
consideration, this factor is greater than 4.8.

Two-stg

Two-stg

Figure 5: Comparing results for 2 days, 3 days and 2 weeks.
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2days 3days 2weeks
two-stg mult-stg two-stg mult-stg two-stg mult-stg

Capacity in kWh 525 157 5209 628 317 183
NPV in k€ 58 31 287 112 53 11

Table 9: Comparing results with variable BSS capacity for 2 days, 3 days and 2 weeks for set-up 3.

3.5. Computational expenses
The case study was calculated on a Windows 64-bit machine with an Intel Xeon Gold CPU

with 3.00GHz, 48 Kernels, 96 logical processors and 256GB of RAM. The optimization models
were implemented in Julia with the Julia specific optimization language JuMP and solved with
the Gurobi solver.

Table 10 describes the computational expenses of the two model approaches. It shows the
matrix dimensions of the respective optimization problem after the pre-solve operations of the
Gurobi solver, which eliminates redundant equations and variables. Additionally, Table 10 shows
the results for case studies of two days, three days and two weeks each with endogenous model
decision on the BSS capacity and for set-up 3 as described in section 3.1.

Table 10 shows that the solving time of the two-stage model is much faster than the respective
multi-stage solving time, which can be explained when looking at the respective problem size,
which appears relatively small. The smallest two-stage problem is derived from the two-day use
case, where 16 scenarios (see S in Table 6) for every day and its 96 time steps leads to 28 321
equations with a solving time of 1.6 seconds. The second-largest two-stage problem is for the
3 days use case; here the model is expanded by an additional day with 16 scenarios. Although
the two-week case study considers fewer scenarios than the three-day use case, the number of
time steps per scenario increases by factor seven compared to the weekly consideration. Thus,
the largest two-stage problem appears for the two-week use case with 197 921 equations and a
solving time of 35.06 seconds.

The results for the multi-stage model formulation in Table 10 are ordered differently due to
the exponential behavior of multi-stage scenario trees also known as the curse of dimensionality
[33]. Here, the 2 days use case yields the smallest problem with 240 756 equations and a solving
time of 18.55 seconds. Nevertheless, the number of equations is almost five times as large as
the number of equations for the respective two-stage problem. This is due to the fact, that the
multi-stage model considers the two days on five stages resulting in 256 scenarios (see Table 5)
compared to 16 scenarios for 2 days of the two-stage model. The 2 weeks use case considers the
same amount of stages extended by the number of weekly time steps. Considering the multi-stage
formulation of the 3 days use case, Table 10 reveals an exponential jump in solving time from
443.04 seconds for 2 weeks to approximately 10.48 hours. This is a result of the basic multi-stage
scenario tree characteristic that the number of scenarios grows with every stage exponentially5.

4. Critical review

This study divides the industrial load behavior into typical days or weeks. While the division
into typical days allows for an approachable illustration of the interdependencies of consecutive

5Considering a 3 weeks use case would expand the multi-stage problem further, leading to a solving time of around
65 hours
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2 days 2 weeks 3 days

Two-stage

Equations 28 321 197 921 42 481
Variables 17 538 122 610 26 306
Non-zeros 135 393 946 049 203 089
Solving time 1.6 sec 35.06 sec 3.55 sec

Multi-stage

Stages 5 stages 5 stages 7 stages
Equations 240 756 1 681 700 3 866 228
Variables 148 870 1 041 590 2 390 406
Non-zeros 1 147 144 8 018 536 18 818 568
Solving time 18.55 sec 443.04 sec ≈ 10.48 h

Table 10: Computational expenses of the two-stage and multi-stage model with variable BSS capacity for set-up 3.

market decisions, a daily depiction might not be suitable for most industrial processes to account
for the load profile’s heterogeneity. Here, a weekly representation or a consideration of a large
variety of typical days might be more accurate. In this context, the analysis of the computational
expenses reveals the multi-stage formulation’s downside to incorporate large number of possible
realizations per stage. If the heterogeneity of random realizations is important, the two-stage-
approach might be more feasible; if the effect of consecutive decisions needs to be studied, the
multi-stage formulation might be more appropriate.

The consideration of the BSS degradation and the BSS cycle limitations in a multi-stage
problem is the key contribution of this study. Nevertheless, the BSS degradation model is still a
simplification of reality. A more accurate model such as the consideration of the c-rate’s effect6

on BSS aging usually coincides with a higher model complexity due to non-linear constraints.
Additionally, the scenario path dependency of the dispatch decisions due to the cycle limitations
already introduces additional complexity to the model. Therefore, a quantification of such degra-
dation effects is needed to better approximate the aging effect in order to reduce the solving time
of the multi-stage model. Such an approximation might allow for an efficient decomposition of
the scenario tree.

The case study results indicate that the economic performance of the two models depends
on the chosen stochastic price and load scenarios. The interaction of peak prices, peak load and
general load behavior, has a strong influence on the profitability of the BSS. These observations
emphasize the importance of scenario generation. Especially for long term investment deci-
sions with high yearly fluctuations of load profiles as in industry and volatile prices and market
schemes, the scenarios need to be carefully considered.

Considering the real life application to a German manufacturing company, this study focuses
on the economically most relevant uncertainties, FCR bidding and peak shaving with FCR prices
and load behavior considered uncertain. Previous studies showed that these two business models
yield the highest potential revenues and allow for a profitable BSS operation that is less de-
manding on the BSS degradation. Nevertheless, other uncertainties and inaccuracies exist that
were not part of the model formulations but need to be kept in mind when evaluating the results.
Inter alia, the case study’s typical time frames are considered as representative over the whole
life span. Furthermore, the random realizations of the load profile and spot market prices are
sampled together, although being independent in reality. Finally, the sizes of FCR market bids

6The c-rate describes the charging rate of a battery cell and the higher the c-rate the faster a BSS charges. High c-rates
reduce the BSS lifetime.
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are modelled as continuous variables assuming an aggregator pooling bids of different suppliers,
although the current market regulation only allow for discrete bid sizes.

5. Conclusion

This study develops a multi-stage stochastic optimization model to investigate the optimal
investment decision for a BSS in industry and compares it to a two-stage model approach. We
consider the stochastic behavior of FCR, day-ahead and intraday market prices, as well as the
electrical load of an industrial manufacturing process in Germany. The chosen objective function
results in a maximization of the revenue through peak shaving, FCR market participation and
energy arbitrage through the BSS and is applied to time periods of either two or three typical
days or two typical weeks.

The results of the developed multi-stage formulation show, that investment in a BSS is an
economically feasible option for the manufacturing company investigated in this paper’s case
study. While the results vary with the choice of the number of representative days or weeks, the
longest investigated period of two weeks shows a positive NPV for the default set-up 7, resulting
in an optimal BSS investment of 183 kWh.

The results of the comparison with the two-stage formulation prove the hypothesis for a
stochastic BSS investment problem in industry that the two-stage stochastic optimization ap-
proach neglects operational risks. Compared to the multi-stage model, the two-stage formulation
overestimates the profitability of the BSS. The two-stage model needs to abstract from the con-
secutive order of operational decisions, thus, neglects the outcome of subsequent uncertainty
realizations. In the considered case study, this is true for the interaction between the FCR bid
and the consequent BSS dispatch decisions for peak shaving or arbitrage trading. Additionally,
the two-stage formulation reduces the limiting effects of battery degradation and cycle life con-
straints.

Future research should focus on applying this study’s observations to different industrial load
profiles to assess the effect of different input parameters on the model results. Additional, studies
should incorporate more advanced scenario generation techniques to derive real life implications.
Finally, it is an exciting field to investigate various solving methods for this study’s multi-stage
problem. The large number of state variables creates a relatively complex problem. Appropriate
solving techniques would allow for the consideration of additional scenarios and market decision
stages.
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a b s t r a c t

As one possibility to increase flexibility, battery storage systems (BSS) will play a key role in the
decarbonization of the energy system. The emissions-intensity of grid electricity becomes more
important as these BSSs are more widely employed. In this paper, we introduce a novel data basis for the
determination of the energy system’s CO2 emissions, which is a match between the ENTSO-E database
and the EUTL databases. We further postulate four different dynamic emission factors (EF) to determine
the hourly CO2 emissions caused through a change in electricity demand: the average emission factor
(AEF), the marginal power mix (MPM), the marginal system response (MSR) and an energy-model-
derived marginal power plant (MPP). For generic and battery storage systems, a linear optimization on
two levels optimizes the economic and environmental storage dispatch for a set of 50 small and medium
enterprises in Germany. The four different emission factors have different signaling effects. The AEF leads
to the lowest CO2 reduction and allows for roughly two daily cycles. The other EFs show a higher
volatility, which leads to a higher utilization of the storage system from 3.4 to 5.4 daily cycles. The
minimum mean value for CO2 abatement costs over all 50 companies is 14.13 V/tCO2.

© 2020 Elsevier Ltd. All rights reserved.

1. Introduction

In light of global decarbonization efforts, flexibility becomes
increasingly important in energy systems (Ruppert et al., 2020).
Energy storage systems (ESSs) in industry can contribute to the
needed flexibility in two ways: First, they allow for a time variable
consumption of electricity in good adaptation to volatile supply of
renewable energies (Guney, 2017; Rashid et al., 2020). Thus, they
ensure both security of supply and price stability for consumers.
Second, they enable consumers to reduce their carbon footprint
with respect to electricity drawn from the grid, if the carbon in-
tensity is sufficiently signalled. The high and volatile load profile in
industry is a key premise for a profitable utilization of flexible
storage systems (Lund et al., 2015). Simultaneously, in energy sys-
tems where the power plant fleet comprises a variety of technol-
ogies, the CO2 emissions change considerably over the course of
one day (Rashid et al., 2019; Alsema, 2012). This holds true for

average system emissions in one hour as well as for the marginal
power plant, which responds to an incremental increase in elec-
tricity demand. ESSs offer a great potential to reduce the CO2
footprint of energy intensive industry and CO2 emissions of the
energy system as they can charge/discharge in hours of low/high
emissions.

Identifying these hours and incentivizing storage providers to
utilize their flexibility potential to reduce greenhouse gas (GHG)
emissions is no trivial task. Due to the missing internalization of
cost, which are related to GHG emissions, market prices in most
power markets do not reflect GHG intensity of the respective
marginal technology. Hence a clear price signal is missing to
incentivize CO2-reducing charging or discharging behaviour. This
problem can be solved by hourly emission factors (EFs), which
signal CO2 intensity to storage operators.

A number of researchers study dynamic CO2 EFs. Most re-
searchers apply dynamic EFs to evaluate charging strategies of
electric vehicles (EVs). Axsen et al. (2011) consider the owner’s
behavior on CO2 emissions in California. Jansen et al. (2010) extend
their study on EV-emissions onto the western grid of the U.S.
Kintner-Meyer et al. (2007) assess the technological load shifting
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potential of EVs in the U.S. while Stephan and Sullivan (2008) study
the impact of night time charging and Tamayao et al. (2015) analyse
the life cycle emissions for EVs on the U.S. market. In contrast,
Jochem et al. (2015) focus on the impact of EVs on the German
energy system. One important result of these studies is that
considering times of low emissions for the charging strategies re-
duces the overall CO2-emissions substantially. The applied average
and marginal EFs are results of different energy system models,
which study the reaction of the energy system to different sce-
narios. Few studies consider the dynamic influence of emissions on
the operation of stationary storage technologies. Hittinger and
Azevedo (2015) studied the impact of bulk central energy storage
systems on the emissions of the U.S. energy system; Arciniegas and
Hittinger (2018) build up on this research and implement a multi-
objective optimization of the storage operation considering eco-
nomic and ecologic factors. Section 2 presents an extensive dis-
cussion on existing literature and identifies the following
deficiencies in the literature on dynamic EFs and energy storage
systems:

� No study derives dynamic EFs for the German energy system
based on empirical data.

� No study investigates the environmental dispatch of ESS in
industry.

In this study, we develop four different EFs, three based on
empirical data and one model-based, to understand the average
and marginal emissions of an energy system. The application to
the German energy system is a novelty in the literature. We use
these EFs to analyse the CO2 emission abatement potential for 50
small to medium sized companies. An additional novel

contribution is the development of a two-step approach based on
Braeuer et al. (2019a), in which we first identify the optimal in-
vestment and dispatch of an EES from an economic perspective
(economic dispatch) followed by the second step, in which the
storage system is utilized to minimize the CO2 intensity of the
electricity drawn from the grid (environmental dispatch). This
energy storage model (ESM) is formulated as a linear optimiza-
tion model with perfect foresight. Thus, CO2 abatement costs for
the different companies can be formalized and used by decision-
makers to compare the ESS to other reduction measures at their
disposal.

This paper formulates four different EFs in hourly resolution.
The main focus is on CO2 emissions. The empirical CO2 EFs are
derived by joining the transparency platform of the European
Network of Transmission System Operators for Electricity (ENTSO-
E) with the European Union Transaction Log (EUTL) database,
linking power output to reported emissions. This is the final novel
contribution to the literature. Additionally, EFs for other emissions,
SO2, NOx and Dust, are derived from combining the ENTSO-E-
database and the large combustion plants directive (LCPD) and
shown in the Supplementary Information SI E. The empirical EFs
are the average EF (AEF), the marginal system response (MSR) and
the EF based on Hawkes (2010) (MPM). These EFs are compared to a
model-based marginal power plant (MPP). It is result of a European
electricity market model (EEMM).

The key objectives of this paper are the following:

1. Derive dynamic EFs for the German energy system from
empirical and model data

2. Investigate the effect of four different EFs on the environmental
dispatch of the ESS

Nomenclature

Acronyms
AEF average emission factor
BSS battery storage systems
CHP combined heat and power
EEMM European electricity market model
EF emission factor
ESM energy storage model
ESS energy storage system
ETS emission trading system
EUTL European Union Transaction Log
GHG greenhouse gas
LCPD Large Combustion Plants Directive
MEF marginal emission factor
MPM marginal power mix
MPP marginal power plant
MSR marginal system response
RES renewable energy sources
SME small and medium sized enterprises

Variables and parameters
AESS annuity for ESS [V]
capESS;econ capacity of ESS of economic dispatch [kWh]
capESS;envir capacity of ESS of environmental dispatch
Ppeak peak power from grid per year [MW]
ppeak peak price [ V=kWa]

xel;t electrical energy flow [kWh]

Symbols
DCO2 avoided CO2 emissions
Cabat CO2 abatement cost
Cel cost for electricity
capstg capacity of storage
chargstg energy charged in storage per year
cycleday full daily cycles
E energy
EF emission factor
L load
LT life time
mCO2

mass of CO2

ucap utilization factor

Indices
exp export
h hour of a day
i company
imp import
j power Plant
k emission factor
Res residual
RES renewable energy sources
t hour of the year
tot total amount per year
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3. Evaluate the CO2 reduction potential of ESSs for different in-
dustrial load profiles.

2. Literature review

No standardized method to assess the EF of a country’s or re-
gion’s power mix has been presented in the scientific literature.
Yang (2013) and Ryan et al. (2018) give an overview of the different
dimensions to consider when calculating EFs. Yang (2013) divides
these dimensions into scenario based (prospective) vs. system
based (retrospective), aggregated vs. temporally explicit and
average vs. marginal. Ryan et al. (2018) present an algorithm to
guide the practitioner’s selection of the appropriate EF fitting to
their specific use case. For this study, we only consider dynamic EFs.
Static and aggregated EFs are not further investigated. To assess
dynamic EFS, we identify three approaches mentioned in recent
scientific publications:

1. Marginal power mix (MPM)
2. Marginal power plant (MPP)
3. Average power mix (AEF).

For MPM, a linear regression model and historical data are used
to compare the change in the generation to the change in CO2

emissions of the electricity mix. The base definition of the MPM
was first presented by Hawkes (2010) and Holland and Mansur
(2008). The MPP approach determines the marginal power plant,
which reacts to a marginal change in demand. Usually, it is a
simulation or optimization model based approach. Tamayao et al.
(2015) differentiates between these two approaches as top-down
respectively bottom-up methods. The AEF relates the total CO2
emissions to the total energy generated. Spork et al. (2015) present
the method for a dynamic AEF applied to the Spanish electricity
system. All three EFs can be disaggregated in different temporal
resolutions. Furthermore, these approaches can be differentiated
by their system boundaries. Tamayao et al. (2015) divides them into
consumption based EFs, which consider exchange over the system
boundaries and production based EFs, which take only the inner
system production units into account. Table A4 summarizes the
reviewed literature and SI A further reviews literature on MPM and
MPP.

The MPM is based on empirical data. It depends strongly on the
quality and accessibility of the data. The advantage of the MPM is
that it does not need further assumptions regarding the pricing
strategy of the power plants. A disadvantage is the lack of infor-
mative value for future scenarios. For the MPP, a variety of as-
sumptions regarding inputs enable the incorporation of future
developments into the model. At the same time, this makes the
comparability of different model results difficult. For both ap-
proaches, the system boundaries need to be considered and it
should be distinguished between a consumption based and a pro-
duction based approach. Furthermore, many studies compare
either EF to the AEF.While the AEF is seen as the intuitive approach,
commonly applied to formulate political implications, Axsen et al.
(2011) raise the question if a marginal emission factor (MEF) or
an AEF is the appropriate measure. They conclude, the appropri-
ateness depends on how “new and existing electricity demand” is
valued (Axsen et al., 2011, p.1621). Yang (2013) consider the AEF
suitable to “assign the emissions to all electricity load” while MEF
help “understand the change in total electricity emissions”with the
increase in demand (Yang, 2013, p.724). Tamayao et al. (2015)
explicitly deem the AEF as “conceptually inappropriate for assess-
ing” additional demand technologies. Ryan et al. (2018) propose
that the appropriate method to evaluate additional, dynamic

electricity demand is the MPP. For all studies considered, the MPP
or MPM always surpasses the AEF. Regett et al. (2018) find “even
hours for which the two methods show significantly opposing re-
sults.” They advice that the appropriateness of the different
methods depends strongly on the applications and research
question.

3. Methodology

The methodological approach consists of three sections, as
shown in Fig. 1. Section 3.1, data preparation, matches two different
databases to derive individual EFs per power plant for the CO2
emissions. Section 3.2 calculates the four dynamic EFs to describe
the hourly behaviour of the German electricity system. In section
3.3, the final step is the ESM-model to determine an economic and
environmental dispatch for an ESS in industry. Section 3.4 defines
the performance indicators used for the analysis.

3.1. Data preparation

To derive hourly emission profiles of the German energy system,
we combined information of two databases: The ENTSO-E trans-
parency platform (ENTSO-E, 2019) and the EU Transaction Log
(EUTL) (European Comission, 2019). The first offers data on hourly
generation profiles“per generation unit” in MWh. EUTL contains
data from the European Emissions Trading System (ETS). It lists the
verified emissions per year for every installation in the ETS in
tonnes of CO2.

The data preparation is threefold. First step, we match the
ENTSO-E-generation units to the EUTL-installation IDs. The
matching table is shown in Braeuer et al. (2019). Second step, the
total generation per year per power plant j is derived from the
ENTSO-E-data and divided by the respective emissions per year per
power plant derived from the EUTL-data. This results in the yearly
average EF per power plant (EFj), shown in equation (1). Last step,
the EFj is used to calculate the hourly emissions per power plant
and eventually the hourly emissions of the German conventional
energy mix (mCO2,t,j).

EFj ¼
mCO2;j

Etot;j
(1)

LRes;t ¼ Lt � ERES;t � Eimp;t þ Eexp;t (2)

Hourly load data is provided by ENTSO-E (ENTSO-E, 2019), as
well as the generation of renewable energy sources (RES) and
import/export balance. Equation (2) describes the resulting resid-
ual load without import and export (LRes,t). Import and export is
excluded due to a lack of data availability.

The matching of the two databases produce certain data inac-
curacies. These are explained in the following paragraphs. First, it is
not possible to match all generation units from ENTSO-E to an
installation listed in EUTL. 6 out of 207 (2:9 %) of the generation
units are not matched, which represents roughly 3 % of the total
conventional energy generation in 2017. Furthermore, multiple
generation units in ENTSO-E are listed under one single installation
name in EUTL. In these cases, we estimate the theoretical share one
generation unit has of the total CO2 emissions of the entire power
plant listed in EUTL. SI B further illustrates this approach. It con-
cerns almost half of the generation units representing up to 60 % of
the total conventional energy generation.

Additionally, there is a divergence between the hourly profiles
listed in ENTSO-E (2019) and the monthly domestic values for the
generation per fuel type (ENTSO-E, 2019). For fuel types with a high
number of smaller generation units like waste and run-of-river
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plants, it can be explained by the fact that the hourly profiles list
only large generation units. Nonetheless, the values for electricity
generation from lignite and nuclear power plants differ in average
over the year between 2 % and 4 % and for fossil hard coal with 13 %.
Finally, missing values for verified emissions as well as unreason-
able high EFs per power plant greater than 2 t/MWh diminish the
data quality further.1 For compensation, these values are manually
adapted, see SI B.

3.2. Calculation of EFs

For the analysis in this study, we apply four different emissions
factors.

1. Average EF (AEF)
2. Marginal system response (MSR)
3. Marginal power mix after (Hawkes, 2010) (MPM)
4. Marginal power plant (MPP)

The AEF is described in equation (3) (Spork et al., 2015, equation
(2)) as the sum of the CO2 emissions of all power plants j over the
total energy production of all power plants in period t. Therefore,
AEFt represents the average emissions in period t.

AEFt ¼
P

jmCO2;t;jP
jEt;j

;cj2J; t2T (3)

MSRt ¼
P

jmCO2;tþ1;j �
P

jmCO2;t;j

LRes;tþ1 � LRes;t
;cj2J; t2T (4)

The second factor is the MSR. It describes the reaction of the
energy system in CO2 emissions as the sum of emissions of all
power plants (mCO2,j,t) to a change in the residual load (LRes) from hour t to
hour tþ1, see equation (4). The MPM is derived from the work of
Hawkes (2010). Over the course of one year, he assumes that the
energy system reacts similar in every hour of the day. Analogous to
Hawkes (2010) for every hour of the day h, we build a linear
regressionmodel consisting of 365 samples. The slope of the hourly

regression line is defined as theMPM.2 Finally, theMPP results from
a European electricity market model (Ardone et al., 2002) and re-
sembles the EF of the last accepted power plant on the wholesale
market. To replicate the historic dispatch, generation availability
and load levels have been scaled to match the values reported by
ENTSO-E monthly domestic values. Additionally, outages for gen-
eration units and transmission elements have been implemented as
reported by the e-transparency platform. Efficiencies are derived by
age and technology of the power plants and for EF calculation we
distinguish between full-load and part load operation. For part-
load operation, efficiencies are reduced according to the regres-
sion formula reported in Brouwer et al. (2015). Thus, we obtain an
effective EF depending on the ratio of power output and installed
capacity for each marginal power plant in every hour.

For this study and the case of Germany, we only consider dis-
patchable production units as part of the power mix that actively
react to changes in energy demand. Based on Graf and
Marcantonini (2017) as well as Spork et al. (2015), we describe
these units in Table 1. Thus, we exclude the output of themajority of
RES. The German energy system prioritizes the dispatch of
renewable energy sources. The only reason to curtail renewable
energies is due to grid congestion. Therefore, RES are (in the given
system) rarely the marginal production unit.

3.3. Energy storage model

The ESM is based on Braeuer et al. (2019a). The model identifies
the optimal investment in an ESS for an industrial company to
minimize cost for electricity. In linewith the key findings of Braeuer
et al. (2019a), this study only considers peak shaving as the most
profitable business case for industry. Additionally, this study ex-
tends the model to minimize the CO2 emissions.

The optimization is divided into two steps. The first step iden-
tifies the economic optimum for the ESS capacity and dispatch. The
objective function f in equation (5) (Braeuer et al., 2019a)minimizes
the grid charges, the product of the yearly peak load (Ppeak) and the
price for the peak power (ppeak), along with annuity payment for
the ESS (AES). For further explanation see SI C.

The second step of the optimization identifies the optimal
environmental dispatch. A few equations from the economic opti-
mization in Braeuer et al. (2019a) need to be altered. The objective g

Fig. 1. Illustration of the methodological approach.

1 The issue might partly result from the fact that, for combined heat and power
(CHP) units, all emissions for heat and power generation are accounted to the
electricity sector as well as possible start-up procedures, where the power plant is
not yet connected to the grid. 2 For further elaboration see SI F.
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in equation (6) minimizes the total CO2 emissions for one year in
hourly resolution due to the resolution of the emissions data basis.
The total CO2 emissions are the sum of the product of the electricity
from the grid (xel,t) and the respective EF (EFt). We fix the capacity of
the ESS to the size in the economic optimization, equation (7) to
allow for a direct comparison of the ESS’s utilization between the
economic and environmental dispatch. Moreover, the yearly peak
load in the environmental dispatch cannot be greater than in the
economic dispatch, equation (8). This constraint is needed to
answer the question if idle capacity of the ESS could be utilized to
lower the CO2 emissions without infringing the economic goals of
the peak shaving business case.

min f ; f ¼ Ppeak,ppeak þ AESS (5)

min g; g ¼
X8760

t¼1

�
xel;t,EFt

�
(6)

capESS;econ ¼ capESS;envir (7)

Ppeak;econ � Ppeak;envir � xel;t (8)

3.4. Performance indicators for the environmental dispatch

For the evaluation of the environmental dispatch, we consider a
variety of indicators. Equation (9) defines the amount of avoided
CO2 emissions between the economic and environmental dispatch
(DCO2,i,k). It is the sum of the consumed electricity (xel) for an
economic dispatch (econ) minus the electricity for an environ-
mental dispatch (envir) multiplied by the respective EFk over all
time steps t. It is calculated for all companies i and all EFs k.
Equation (10) describes the utilization factor ucap, which is a mea-
sure for how much CO2 emissions can be avoided by a storage
system with a capacity of 1 kWh. Equation (11) describes the CO2
abatement cost as the fraction of additional costs for electricity
consumption compared to the economic dispatch and the avoided
CO2 emissions. Finally, equation (12) describes the number of full
cycles per day.

DCO2;i;k ¼
XT

t¼1

��
xel;i;t;econ � xel;i;t;envir

�
, EFt;k

�
;ci2 I; k2K; t2T

(9)

ucap;i;k ¼
DCO2;i;k

capstg;i;k
(10)

Cabat;i;k ¼
Cel;i;envir � Cel;i;econ

DCO2;i;k
(11)

cycleday;i;k¼
chargstg;i;k
capstg;i;k

,
1

LT,365
(12)

4. Application of the method

The evaluation is divided into 3 analytical steps. First in section
4.1, we compare the four different EFs. Second in section 4.2, we
evaluate the dispatch of a generic storage system (GSS). The GSS is
used to investigate the CO2 reduction potential of a storage system
without restricting cycle life conditions and a high efficiency of
98 %. Third in section 4.3, we analyse the optimal dispatch of a
battery storage system (BSS) with constraining cycling conditions,
4000 cycles and 90 % efficiency.

4.1. Emission factors

As discussed in previous works, the four EFs differ significantly
in both magnitude and volatility and thus produce different at
times contrasting signals about the CO2 intensity of the energy mix.
Fig. 2 shows the EFs for theweek from July 10 to July 16, 2017, in the
German electricity mix. Also shown is the electricity generated per
timestep and fuel type. AEF, MSR and MPM are derived using
empirical data from ENTSO-E (ENTSO-E, 2019), while theMPP is the
result of the EEMM.

The depicted week is a good example to illustrate the qualitative
differences between the considered factors. The AEF ranges be-
tween 0.46 kgCO2/kWh and 0.86 kgCO2/kWh, being the lowest when
the share of technologies with low emissions is the highest. For the
German power system, this is the case when a large amount of
generators are dispatched and the cheap lignite power plants are
complemented by relatively low emission technologies like hard
coal and gas. The AEF gets larger when the share of technologies
with high emissions increases. This is the case when either the
amount of lignite increases in almost-all-renewable hours or when
the residual load decreases and gas and hard coal fired power
plants cease operation. It can be observed in Fig. 2 that the AEF is
the lowest when total generation reaches its peak illustrating the
described connection. With respect to a signaling effect for CO2
reduction, the AEF provides a clear signal for hours of a high EF and
hours of a low EF. However, as discussed in the literature review, it
is questionable if the AEF is suited to indicate the additional
emissions caused by an incremental increase in the electricity de-
mand. Naturally, such an increase will not be answered by the
power plant mixture but by an individual plant or a small group of
plants.

The MPM shows by definition a periodical behaviour. It is
notably lower than the AEF at all times. The MPM is based on a
linear regression of the system response to shifts in generation and
load and thus it represents a typical response. Therefore, this factor
is most appropriate in hours which are least impacted by volatile
renewable in-feed. This becomes more clear when looking at the
value of themeasure of determination (R2) for the different hours of
the day. Here, the MPM performs best in the night hours, when
generation is at minimum load of many power plants and each shift
in load is matched by a classic reaction of the power system.
Nonetheless in hours where more flexible power plants are uti-
lized, only the residual load has to bematched. Thus, the reaction of
the power system is highly dependant on renewable in-feed. This

Table 1
Dispatchable production units by fuel type.

Fuel type

Nuclear
Fossil Brown coal/Lignite
Biomass
Other
Waste
Fossil Hard coal
Fossil Oil
Fossil Coal-derived gas
Fossil Gas
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results in very low R2-values in the middle of the day (see Figure F3
in SI F). Moreover, the MPM reaches a local minimumwhen the AEF
is at a local maximum. This can be observed regularly at the change
of day. Due to its periodic behaviour it offers a well foreseeable
potential for the use of flexibility, because the CO2 EF for each time
step is known in advance.

Similarly, the profile of the MPP implies a periodical behaviour.
The MPP is not derived from empirical data since the data are
insufficient to determine which power plant is marginal in each
time step. Therefore, the EEMM determines the MPP, which rep-
resents the CO2 EF of the marginal generation unit. The individual
CO2 EF of the marginal generation unit depends on the commis-
sioning year and the technology. In many hours of high loads, the
MPP is low as the marginal generation units are gas-fired power
plants. In these hours, power plants with higher CO2 emissions like
lignite and coal are fully dispatched. These hours of lowMPP-values
coincide in many cases with low AEF-values. Simultaneously, hours
of high MPP-values indicate low load in the system or a high share
of renewable generators. The incremental energy demand increase
is answered by a lignite-driven or coal-driven power plant. Again in
many cases, hours of a high MPP coincide with hours of a high AEF.
Exemptions can be observed in hours of relatively high renewable
in-feed and relatively low loads. In these hours, most generators
reduce their electricity output to their minimum must-run condi-
tion. In these cases, theMPP jumps between very high values, when
lignite is the marginal fuel type, and values equals to zero when
nuclear power plants or run-of-river plants answer the incremental
increase in energy demand.

The MSR on the other hand is the most extreme factor by all
means. With a standard deviation of 304.1 kgCO2/kWh it is by far
the most volatile EF also reaching the global maximum and global
minimumof all factors. Most striking are the negative values, which
are not trivial to explain. Taking a closer look at the formulation,
this can only occur when either the residual load is reduced but
system emissions increase or vice versa, which seems not intuitive.

We attribute this to the effect of ramping constraints, when slower
power plants power up or down for the next/last hour without
necessarily being directly connected to the change in residual load.
However, the MSR offers the largest potential for CO2 reduction due
to the number and magnitude of peaks and valleys, which allow
many adjustments within on day. Table 2 shows the mean, mini-
mum, maximum and standard deviation of the four EFs considered
for the whole year.

4.2. Generic storage system

Table 3 shows the statistical values of the performance in-
dicators. These are the statistical results of the optimization runs
for the 50 companies. One can observe significant differences be-
tween the possible CO2 reductions (DDCOCO2) of the four EFs.
Hence, the mean values for DDCOCO2 range between 6:81 t for the
AEF and 86:25 t for the MSR, which is 12 times as much. One
explanation for different mean values, is the number of daily cycles.
The number of daily cycles is very different for the considered EF
and the respective company. In average, the AEF allows for 2 full
cycles per day with only minor variation between the companies,
the coefficient of variation is 7 %. The values for MSR,MPM andMPP
are considerably higher with a mean value for the number of daily
cycles of up to 5.41 and the coefficient of variation ranging between
roughly 19 % and 21 %. This indicates that the MSR, the MPM and
the MPP have a higher frequency of peaks and valleys compared to
the AEF. Simultaneously, the companies have deviating potentials
to exploit these spreads in the hourly EF. The coefficient of variation
of DDCOCO2 is similar for all applied EFs. Therefore, the deviation in
reduced CO2 emissions for the different companies is similar for all
EFs. To get a better understanding how the different EFs influence
the environmental dispatch of the individual companies, we
consider the utilization factor of the installed storage capacity
(ucap). In line with DDCOCO2, it shows that the level of possible CO2-
reductions per installed capacity vary widely. Nonetheless, the
coefficient of variation presents different values for the respective
EF. The coefficient of variation is the lowest for the AEF and the
highest for the MSR. This shows that the dependency of the utili-
zation factor on the individual load profile is low for the AEF, co-
efficient of variation is 10 %, higher for the MPP, MPM and MSR,
15 % to 22 %.

Considering the CO2-abatement costs (Cabat), the MPP shows
mean values in the range of current ETS prices of around 25 V/tCO2
(September 2019) and the MSR shows considerably lower mean
values. With values around 62 V/tCO2, the AEF and MPM present

Fig. 2. Hourly generation and EFs in week 28, 2017.

Table 2
Characteristics of the EFs.

CO2 in kgCO2
=MWh

AEF MSR MPM MPP

Min 486.5 �679.1 114.2 0.0
Max 915.6 1190.3 390.1 1189.8
Mean 707.5 268.1 224.1 840.2
Std 76.1 304.1 90.4 267.0
Varcoef 0.1 1.1 0.4 0.3
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notably higher results. With fixed electricity prices, the additional
costs for CO2-abatement are a result of efficiency losses during
charging and discharging processes.

Concerning the coefficient of variation with values around 4 %,
Cabat of the sample companies are fairly concentrated for the AEF and
the MSR compared to the other EFs. This implies a weaker de-
pendency of Cabat on individual load profiles. For the AEF, this can be
explained by the low frequency of peaks in the EF and the resulting
low number of cycles. In addition to a comparably small spread
between theminimum andmaximumvalue of the AEF, this does not
allow for a high divergence among the companies. The low coeffi-
cient of variation for the MSR is somehow surprising as one can
observe high variation among the companies considering the other
three indicators. This might be a result of the extreme outliers of the
MSR. The values of the Cabat following the MPP deviate the most,
which implies a stronger dependency on the individual load profiles.

To further illustrate the above mentioned effects, Fig. 3 com-
pares the company 45 and company 46 showing the storage
dispatch for the MSR. The figures show the load profile, the
charging and discharging profile as well as the SoC on the left axis.
The right axis indicates the respective EF. The horizontal dashed-
dot lines indicate the maximum peak load that has to be ach-
ieved through peak shaving. All for two consecutive sample days,
February 15th (Wednesday) till 17th (Friday) 2017.

While the two sample companies have a similar peak load level
(translated into maximum energy per 15-min interval, company 45
with 327 kWh and company 46 with 370 kWh) as well as compa-
rable optimized storage capacities (company 45 with 219 kWh and
company 46 with 319 kWh), the load profiles are fairly different.
Company 45, an iron casting company, shows very high singular
peaks of more than 300 kWh followed by periods of low energy
demand, not more than 20 kWh. Sample company 46, a manufac-
turer of mixed spices, shows five peaks per day of up to 400 kWh.
The lowest load during these sample days is around 80 kWh. Thus,
the load profile of company 46 allows for discharge of the storage
system in low load periods. Compared to company 45, this leads to
CO2-shifting during these periods. Thus, company 46 has a higher
utilization factor than 45. This has no strong effect in case of the
AEF, see Figure D.2 in SI D, where the low frequency of the EF peaks
results in two daily cycles. In Fig. 3, one can observe a high corre-
lation between the MSR and the load profile of company 46, which
allows for a high utilization of the storage system. Still, for example
between 6 a.m. and noon on the 15th, the full CO2-reduction

potential cannot be reached as hours of a low MSR and a high load
overlap. During these hours, charging is restricted due to peak
shaving. ConsideringMSR, MPM andMPP, the GSS of company 46 is
charged two times more than the GSS of company 45.

For further illustration of the environmental dispatch for all four
EFs, we refer to Figures D.1 and D. 2 in SI D.

4.3. Battery storage system

In this subsection, the model constraints were adapted to fit the
real life setting of a BSS. The BSS cycle life is restricted to 4000
cycles over 11 years, which is equivalent to one cycle per day.
Additionally, the charging and discharging efficiency is reduced to
90 %. This affects the environmental dispatch substantially
compared to the GSS. Table 3 shows in the two BSS-columns on the
right the statistical evaluation of the optimization results for an
environmental dispatch following the MSR and the MPP. The table
indicates that the possible DCO2 is much lower for a BSS than for a
GSS. The mean value of all 50 companies for a BSS is around 38 % of
themean value for the GSS following theMSR. Following theMPP, it
is around 48 % of the GSS value. Partly, this great reduction is the
result of the restricted cycle life. For both EFs, all 50 companies fully
exploit the cycle life and reach 1 cycle per day. Next to the reduced
cycle life, the lower efficiency of the charging process lowers the
utilization factor of the BSS. A round-trip efficiency of 81 % results
in a spread in an EF of more than 29 % that is needed for the model
to choose a CO2-shifting dispatch. Fig. 4 further illustrates these
effects. The figure shows the environmental dispatch of a BSS for
the MSR and the MPP for company 46. Compared to the GSS, the
optimal peak load increases by roughly 6 % and the optimal BSS
capacity is with 205 kWh around 21 % smaller than the GSS ca-
pacity. Considering Fig. 4, only the highest spreads are utilized for
CO2-shifting due to the restricted life time. In the MSR-graph, the
BSS is charged during a period of a negative MSR value and dis-
charged during hours of an MSR around 1 tCO2/kWh. During the next
charging phase, noon of February the 16th, the spread between the
low MSR and the high MSR is not large enough for the BSS to be
charged. For the MPP, the BSS is charged while a nuclear power
plant is the marginal generation unit with a MPP-value of 0 tCO2/kWh

and discharged while a lignite driven power plant is marginal. As
such occurrences of spreads larger than 1 tCO2/kWh are fairly rare, the
model chooses to charge the BSS in hours of a coal-driven marginal
power plant, around 0.7 tCO2/kWh.

Table 3
Statistical overview of results.

Unit GSS BSS

AEF MSR MPM MPP MSR MPP

DCO2 Min t 0.29 4.33 0.76 1.43 1.88 0.82
Max t 82.75 1038.37 201.72 371.68 344.98 153.49
Mean t 6.81 86.25 16.58 30.99 32.92 14.78
Varcoef % 187 188 189 186 2 2

ucap Min kg/kWh 45.54 372.58 86.51 182.26 341.91 154.99
Max kg/kWh 74.99 1109.66 194.47 366.27 443.01 194.32
Mean kg/kWh 68.08 861.89 165.39 310.76 411.65 185.61
Varcoef % 10 22 16 15 0 0

Cabat Min V=tCO2
53.33 11.86 46.61 16.73 26.38 58.48

Max V=tCO2
65.05 14.60 72.33 27.23 34.20 75.44

Mean V=tCO2
61.77 14.13 63.55 24.26 28.26 62.63

Varcoef % 4 4 10 11 0 0

cycleday Min # 1.59 2.57 2.32 1.88 1.00 1.00
Max # 2.23 6.80 5.99 4.25 1.00 1.00
Mean # 2.00 5.41 4.73 3.46 1.00 1.00
Varcoef % 7 21 20 19 0 0
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In case of the environmental dispatch no additional degradation
effects are considered. Nonetheless, results show that CO2-shifting

coincideswith veryhigh c-rates. Additionally, to fullyexploit theCO2-
reductionpotential, the results indicate very highdepths of discharge

Fig. 3. Comparing load and charging profile of company 45 and company 46 for 2 days, showing the MSR.

Fig. 4. Load and charging profile of a BSS for company 46 for 2 days.
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for a CO2-reducing dispatch. Both effects have a strong influence on
the premature aging of a BSS resulting in premature capacity losses.

5. Discussion

5.1. General methodology

This contribution employs two energy system models based on
linear programming, one taking amicro-economic perspective for an
individual company (ESM) and one taking a macro-economic
perspective for Germany and surrounding countries (EEMM). Both
of these models suffer from common limitations of linear optimi-
zation models, which for these particular instances are discussed
elsewhere (Braeuer et al., 2019a) and (Ardone et al., 2002). The
remainder of this subsection therefore concentrates on the meth-
odological focus of this paper, namely on the definition and analysis
of different emissions factors for integrated electricity systems.

Data input. As described in the section Data Preparation, this
study introduces a novel data basis to allocate CO2-emissions to the
respective hourly energy generation of power plants. We provide a
solution to overcome the missing matches between EUTL account
holders and generation units in the ENTSO-E database. Yet, the
deduction of hourly CO2-emissions factors from the yearly verified
CO2-emissions remains a source of inaccuracies. To increase the
robustness of the data, a larger number of years could be used.
Additionally, with information about the individual part-load
behavior of the generation units, it would be possible to estimate a
part-load dependent EF. Without detailed knowledge about CHP
units and their respective dispatch logic, how much heat is gener-
ated and sold, the data accuracy remains weakened.

GeneralEF-approach.The results indicate that the fourdifferentEFs
considered have different signaling effects for an environmentally-
oriented dispatch.

In addition toTable 2, based on the annual sorted duration curve
for the four EF approaches in Fig. 5, it is possible to reach some
general insights. Firstly, the overall range of the factors is compa-
rable for all methods, with the exception of the MPM, which is
much lower than the others. This is due to the fact, that the hourly
linear-regression model insufficiently approximates hourly CO2-
emissions changes. In addition, the differences in the extrema of
the different factors are clearly visible.

AEF and MPM show an averaging effect, the AEF due to the large
number of different technologies, theMPMdue to the large number
of hours per time-step. Both duration curves show a smaller range
between the extrema then theMSR andMPP, which aim to describe
the marginal reaction of the system and are more responsive to the
CO2-intensity of single technologies.

Furthermore, the number of hours with high and low CO2-in-
tensity are clearly visible in contrast to the weekly graph in Figs. 3
and 4 where the focus lies on volatility. The MSR and the MPP
present a relative high number of extreme hours compared to the
other two EFs. This high number together with high volatility
strongly impacts storage dispatch decisions. Finally, the “drops”
between marginal technologies are only visible in the MPP as this
EF is technology specific. In contrast, the other EFs resemble the
system’s reaction.

Concerning the four different EF, we follow a production-based
approach. For an energy system the size of Germany’s, we assume a
negligible influence of imported and exported energy flows. This is
in line with the findings of Pareschi et al. (2017), but this simplifi-
cation can still be challenged. An exception is the MPP, where
market coupling is explicitly included in the model and the selec-
tion of the MPP thus also depends on the level of exchange with
neighbouring countries.

Related to the above point, the marginal approach adopted for
all of the EFs is only valid for small samples at the margin. In the
case that a large number of consumers adopt electrical storages and
implement the business models analyzed here, theywill cease to be
marginal. In other words, they will cease to be price takers and will
become price setters, in this context affecting the marginal emis-
sions factors that they are employing. This therefore needs to be
borne in mind when analysing these dynamic emissions factors for
a large number of distributed consumers. If all 50 companies would
apply the optimized environmental dispatch the maximum load
change would range around 5MW .

AEF. This study analyzes the dynamic change in load and the
energy system’s reaction based on four EF approaches, which only
consider the dispatchable generation units. In other words, the
non-dispatchable generation is exogeneously fixed and defined by
historical generation and feed-in profiles for renewables. This leads
to an AEF that deviates from existing studies, whereby the AEF
shows two peaks per day. However, the exclusion of RES as non-
dispatchable units results in high values for the AEF in hours with
a large share of RES in the system and vice versa. This is contrary to
existing studies, which include RES into the AEF and indicate low
values during periods of high RES share.

MSR. To identify the system’s reaction, we postulate the EF MSR,
which is oriented towards Hawkes (2010). This approach has
obvious shortcomings, as it yields negative values in some hours,
which is due to changes of load and emissions in opposite di-
rections. This is counter-intuitive for the energy system in the year
2017 and as long as renewable energy sources are considered as
non-dispatchable. An explanation could be a high share of CHP-
units with uncertain heat production and ramp-up processes in
hard-coal and lignite power plants. Additionally, a reaction of the
generation units too small to be listed in the ENTSO-E data base is
not accounted for by the MSR.

MPM. The evaluation of the MPM, the approach by Hawkes
(2010), might not be fit to describe the German energy system in
2017. Hawkes (2010) focuses on the British energy system until
2009. With a higher share of volatile RESs, it seems no longer
suitable to assume a reoccurring behavior of the electricity mix for
one representative day over one year. In Figure F.3 in SI F, this study
does not show sufficient values for the coefficient of determination
for the hourly resolution. Thus except for three hours in the
morning, the load change during one hour of the day (independent
variable) is not sufficient to approximate the change in CO2-emis-
sions (dependent variable).

MPP. The model-based EF MPP appears to be most suitable to
evaluate the effect of an increase in electricity demand. Nonethe-
less, because of the conformity issues of model results it lacks
comparability to other energy models and possibly to reality. InFig. 5. Annual sorted duration curve of the EFs.
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reality, there might be additional operational constraints not fully
implemented in the EEMM. Moreover, the dispatch of power plants
might be subject to portfolio optimization of the owner’s fleet with
different or even changing objectives. In return, this makes it very
hard to identify an individual power plants, which would react
market-wise to the change in demand implied by the flexibility
provider.

5.2. Comparison with other studies

In this section, we briefly compare our results with the litera-
ture. Near-real time and historic EFs for Germany are available from
Agora Energiewende (2019). The data on power generation is also
based on ENTSO-E publications, while EFs are fuel specific based on
Icha (2019). Emissions are only accounted for the generated power
in Germany ignoring imports but also accounting for exported
energy. This assumption is in line with our presented approach.
However, Agora Energiewende (2019) include renewable energy
sources in the calculation. Nonetheless, our presented approach is
more detailed as we provide a mapping table for actual emissions
reported to EUTL and power generation reported by ENTSO-E.

In contrast to our approach, W€orner et al. (2019) consider the life
cycle emissions of each technology and Tranberg et al. (2019) include
CO2-emissions of the complete fuel chain. The former base the
technology specific emissions on the ProBas database, the later base
the fuel specific emissions on ecoinvent database; calculations
outside the scope of our article, aswe consider generation-based EFs.
However, the results in W€orner et al. (2019) show that the inclusion
of life cycle aspects only produce an offset in the CO2-factor and have
little qualitative impact on the dynamic EFs.

Furthermore, W€orner et al. (2019) present a representative
winter and summer week for which the EFs of our current article
compare as follows: in the characterized winter week our meth-
odology leads to more volatile factors following more closely the
load patterns of the day and also quantitatively higher than
described by W€orner et al. (2019). We find the same effect of the
summer week having significantly lower EFs than the winter
weeks. We attribute this to the lower amount of residual load
because of higher solar intensity. Apart from the two weeks a
comparison is unfortunately not possible.

Tranberg et al. (2019) present a real-time carbon accounting
method for the European electricity markets. The average CO2-in-
tensities are specific for each generation technology, thus neglect-
ing the merit order within fuel types as well as must-run or part-
load operation. The analysis is based on commercial data from
electricitymap (Tomorrow, 2020), so we were not able to compare
the results.

Deetjen and Azevedo (2019) chose a different approach, by
developing a simplified merit order model. The data sources are
specific to some US power markets. They address ramping con-
straints by explicitly modelling constraints in the dispatch model.
While their definition of dynamic emissions is similar to our MEF,
their proposed moving average approach is a deviation to our
methodology. A comparison to our results is not possible due to the
different geographic scope of the articles.

5.3. Outlook

The results of the study implicate that rewarding environmental
dispatch could incentivize industrial companies to exploit their
load flexibility options. At the same time, the utilization of a BSS for
the reduction of CO2-emissions does not seem practicable. How-
ever, there might exist other technologies and measures for in-
dustrial companies that offer flexible electricity demand with
higher efficiencies and longer lifetime than a BSS.

While the time series of the estimated EFs for the current energy
system can be intuitively explained, the results of this study indi-
cate the challenges for future studies. As the AEF presents a more
inert behaviour than the MPP, one can still identify a correlation
between the value of the EF and the share of RES in the system.
However, for a few hours in 2017 the share of RES was so high that
nuclear power plants became the marginal generation unit. While
this does not influence the AEF, it results in a jump of the MPP from
the minimum value in case of a nuclear driven power plant to the
maximumvalue for lignite. In future cases with increasing shares of
RES and dispatchable RES, such situations might occur more
regularly. Operating hours of formally base-load generation units
such as lignite power plants are decreasing. To apply the proposed
methodology in such a case, we need to obtain a more detailed
knowledge about the must-run conditions and other operational
constraints of conventional generators as well as dispatchable RES.
This becomes increasingly important, since they may determine
the plants dispatch. Furthermore, the coal-phase-out potentially
changes the merit order on the energy market and leads to an
almost binary EF (zero for RES and positive for the remaining
conventional power plants, mainly gas). Increasing prices for CO2-
certificates may lead to a fuel switch, which would result in an
alignment of production cost and CO2-intensity in the merit order,
making a signaling function of EFs redundant.

In addition, the regional aggregation level influences the con-
ceptual approach. Considering smaller regions such as autonomous
municipalities or congested electricity grid nodes, introduction of
sophisticated regional electricity prices could help to reduce
regional emissions. Such prices should orient on dynamic EFs. In
these cases, the effect on the noneCO2eemissions, which mostly
have a local effect, should be considered. SI E expands the meth-
odology to estimate the EFs for other emissions SO2, NOx and Dust.

Based on the foregoing discussion, the following recommen-
dations for further work can be given:

� improve method for calculating hourly values based on Euro-
pean Pollutant Release and Transfer Register (E-PRTR)
(European Environment Agency, 2019) and EUTL data

� improve modelling of part load and must-run capacities etc.
� extend the validation of the method based on measured/
empirical data for power generation and CO2 emissions

� further assess the CO2-reduction potential of BSSs, combining
the economic and environmental objectives

� further develop such an approach to a more local/regional
context, which may operate in partially off-grid mode with
regional markets and prices

� extend the consideration of micro-economic and macro-
economic aspects in more integrated framework to overcome
the lavine/snowball effects that might be encountered.

6. Summary and conclusions

As one possibility to increase flexibility, battery storage systems
will play a key role in the transition of the energy system. From an
economic point of view, BSSs have been studied and proven in a
variety of business cases. How storage system can help to reduce
the CO2-emissions of an energy system by flexibly shifting the load
is still an open question. In this paper, we introduce a novel data
basis for the determination of the energy system’s emissions. This is
a match between the ENTSO-E and EUTL databases. Furthermore,
we postulate four different dynamic EFs to determine the hourly
emissions caused through a change in electricity demand. This is
the average EF, the marginal power mix, the marginal system
response and the marginal power plant. The signaling effect of
these EFs are tested for a storage system combined with an
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industrial load. We differentiate between a generic storage system,
which might be applicable to a variety of technologies offering
flexibility, and a specific battery storage system. The linear opti-
mization is divided into two levels. On the first level, the optimi-
zation determines the size and economic dispatch of the storage
system considering peak-shaving. The second level finds the envi-
ronmental optimum by minimizing the emissions of the electricity
drawn from the grid for the respective EF. The results of the four EFs
are statistically evaluated for a set of 50 small and medium sized
companies in Germany.

The four different EFs have different signaling effects for an
environmental storage dispatch. The AEF and the MPP lead to a
similar CO2-reduction and allow for roughly two cycles per day for
the generic storage system. The MSR and MPM show a higher
volatility, which leads to a higher utilization of the storage system.
For the single companies, peak shaving is prioritized over CO2-
shifting. Therefore, if a high portion of the storage system is used
for peak shaving the CO2-reduction potential is low. Furthermore, a
high correlation of the load profile and the profile of the hourly EF
supports high CO2-reduction. Similar to an arbitrage trading
dispatch, the charging behavior of an environmental dispatch re-
sults in high levels of additional degradation of the BSS.

To further assess the CO2-reduction potential of BSSs, future
research needs to focus on combining the economic and environ-
mental objectives as well as assessing local/regional energy sys-
tems. In addition, future research needs to increase the robustness
of the marginal EFs. For this, supplementary information about the
behavior of CHP-plants and ramp-up processes of hard-coal and
lignite plants should be included in the data basis.
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SI A. Literature Review

Table A.1: Methods and Models for Calculating CO2-emissions

Paper MPM MPP AEF Emp. Data Mod. CB PB Region

Arciniegas.2018 x x US
Finenko.2016 x x Asia
Hittinger.2015 x x US
Holland.2008 x x US
Pareschi.2017 x x x x EU
Hawkes.2010 x x x x UK
SilerEvans.2012 x x x x US
Thind.2017 x x x x x US
Regett.2018 x x x x EU
Tamayao.2015 x x x x x US
Ripp.2018 x x x x x -
Bettle.2006 x x x UK
GraffZivin.2014 x x x US
Jansen.2010 x x x US
Jochem.2015 x x x EU
McCarthy.2010 x x x US
McCarthy.2009 x x x US
Zheng.2015 x x UK
Axsen.2011 x x x x x US
Spork.2015 x x x Spain
Abbreviations
AEF: Average Emission Factor, MPM: Marginal Power Mix, MPP: Marginal Power Plant, Mod.
Data: Model based approach, CB: Consumption based, PB: Production based

MPM. Hawkes [1] in analogy to Holland and Mansur [2], developed an MPM based on
historical data from 2002 to 2009 for the U.K. in various temporal disaggregations. A
comparison with an AEF showed that the AEF underestimates the actual emissions by
around 30% [1, p. 5986]. Siler-Evans et al. [3] were able to confirm this, when they
applied the same approach to different regions in the U.S. using data from 2006 to 2011.
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Both studies found substantial deviation for MPM at different time-of-day. Siler-Evans
et al. [3] attribute this to demand ramps which are served by gas-fired power plants with
lower emissions than coal-fired power plants. This statement is supported by Tamayao
et al. [4, p. 8848] and Thind et al. [5]. There have been several more studies applying
MPM. Hittinger and Azevedo [6] and Arciniegas and Hittinger [7] use it to analyze the
impact of energy storage on the emissions of the U.S electricity system. Thind et al. [5]
explore regional differences of the MPM and in contrast to Siler-Evans et al. [3] consider
renewable electricity generation for their observations. Pareschi et al. [8] and Tamayao
et al. [4] study the differences between a consumption based (allowing for exchanges)
and a production based approach (considering only the production inside the system
boundaries). Pareschi et al. [8] concludes that inter-regional trade may have an effect
on the accuracy of the EF depending on the system size and structure. Tamayao et al.
[4] compare the consumption based approach of Graff Zivin et al. [9] and the production
based approach of Siler-Evans et al. [3] to an AEF. They conclude that consumption
based approaches are more appropriate but lack uncertainties in the data on inter-regional
trade.

MPP. Jansen et al. [10] similar to Bettle et al. [11] developed a dispatch algorithm to
identify the MPP based on a dispatch order derived from capacity factors of the respec-
tive fuel type to study the U.S. energy system. McCarthy and Yang [12] developed the
EDGE-CA model based on the merit order approach to evaluate the effect of electric
vehicles on the MPP. McCarthy and Yang [12] cluster the California power plants into
three categories of non-dispatchable, base-load and fossil power plants. In their definition
the “marginal generators are the most expensive plants operating in a given hour, and
likely, the least efficient” [12, p. 2101]. Axsen et al. [13] built up on the same model to
focus on the behavior of owners of plug-in hybrid electric vehicles (PHEV). To consider
long term implications of plant retirement and grid expansion they compare the results
to the LEDGE-CA model [14].Finenko and Cheah [15] develop a dispatch model for the
case of Singapore with a very low share of REs (< 1%) and a high share of natural gas
power plants (95%). Jochem et al. [16] use the PERSEUS-NET-TS model to analyse the
influence of different EV-charging strategies. They use a nodal pricing approach for the
German energy system and consider 440 administrative districts to evaluate the energy
system’s behavior in case of high share of REs in 2030. Regett et al. [17] develop their
own MPP with a merit order approach using the ISAaR model. The model incorporates
an electricity market simulation for Europe. Ripp and Steinke [18] published a method-
ology to properly assess the emissions in a multi-commodity system considering different
forms of energy resulting from combined heat and power plants and energy storage sys-
tems.Zheng et al. [19] calculate the MPP for the UK. Aligning with Tamayao et al. [4],
they emphasize the influence of the accurate constraints of the power plant technologies.
It is often stated that is difficult to identify the MPP due to the numerous technical and
economic constraints in reality [3, 1, 4].

SI B. Data inaccuracies

Multiple generation units in ENTSO-E are listed under one single installation name
in EUTL. In these cases, we estimate the theoretical share one generation unit has of
the total CO2-emissions of the entire power plant listed in EUTL. Table B.2 illustrates
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this approach further. The theoretical efficiency per generation unit depends on age and
technology. A value for the age-dependent efficiency is linearly interpolated between the
values of an old and new installed power generator taken from ENTSO-E [20]. The effi-
ciency factor multiplied with the fuel specific emission factor [21] and the total generation
results in the theoretically estimated emissions per generation unit. Looking at the total
estimated CO2-emissions all generation units of one power plant emit, one can derive
the estimated share of emissions linked to the single generation unit. Finally, adapting
the estimated share of emissions to the verified emissions leads to the specific emission
factor per generation unit, EFj .

Similarly, the theoretically EF per generation unit is used to compensate missing
values for verified emissions as well as unreasonable high EFs per power plant greater
than 2 t/MWh.

Table B.2: Example table to illustrate data preparation to derive emission factors per power plant

ENTSO
Generation
Unit

EUTL
ID

Fuel
Type

Efficiency Fuel
EF

Units
kgCO2

kWh

RDK 4 1457 Gas 0.4924 0.2014
RDK 7 1457 Coal 0.3968 0.3557
RDK 8 1457 Coal 0.4559 0.3557

ENTSO
Generation
Unit

Total
generation
per unit

Estimated
emissions
per year

Estimated
share of
emissions

Verified
emissions

EFj

Units GWh t t
kgCO2

kWh

RDK 4 10.5 4285 0.0011 3841547 0.3970
RDK 7 1536.9 1377487 0.3481 3841547 0.8701
RDK 8 3300.9 2575281 0.6508 3841547 0.7574

For finalizing the AEF and the MSR, the outliers in the time series were identified
through the median method and replaced through linear interpolation.

SI C. ESM details

Equation C.1 [22] defines Ppeak to be at least equal to the amount of electricity (xel,t)
drawn from the grid during one of the 15-minutes time steps per year. 15-minute time
steps are chosen, as the peak price is defined for the peak power demand a 15-minute
time step. Equation C.2 [22] shows the electricity flow balance, where xel,t is equals to
the electricity demand of the industrial production (DProd,t) minus the electricity flowing
from the ESS to the production (x(ESS−Prod),t) and the electricity flow from the grid to
the ESS (x(grid−ESS)).

Ppeak ≤ xel,t ·
4

1000
, ∀t ∈ [1, 2...35040] (C.1)
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xel,t = DProd,t − x(ESS−Prod),t + x(grid−ESS),t,

x(ESS−Prod),t ≥ 0, x(grid−ESS),t ≥ 0,∀t ∈ [1, 2...35040]
(C.2)

SI D. Results GSS

Figure D.1 and Figure D.2 show the results of the environmental dispatch for two
companies for two consecutive sample days, February 15th (Wednesday) till 17th (Friday)
2017. The figures are divided into four graphs, one for each EF. The figures show the
load profile, the charging and discharging profile as well as the SoC on the left axis.
The right axis indicates the respective EF. The horizontal dashed-dot lines indicate the
maximum peak load that has to be achieved through peak shaving. While the two
sample companies have a similar peak load level (translated into maximum energy per
15-minute interval, company 45 with 327 kWh and company 46 with 370 kWh) as well
as comparable optimized storage capacities (company 45 with 219 kWh and company
46 with 319 kWh), the load profiles are fairly different. Company 45, an iron casting
company, shows very high singular peaks of more than 300 kWh followed by periods of
low energy demand, not more than 20 kWh. It has one of the lowest utilization factors.
Similarly, sample company 46, a manufacturer of mixed spices, shows five peaks per day
of up to 400 kWh. The lowest load during these sample days is around 80 kWh. The
utilization factor is one of the highest.

Considering Figure D.1, the four graphs illustrate the signaling effect of the different
EFs to charge the storage system for different time periods. For all four EFs, charging
periods are during hours of low EFs. One can observe roughly four full charging cycles
in case the AEF, eight cycles for the MSR, six and a half for MPM and seven for the
MPP. Discharging occurs mostly during periods of high loads. The unique load profile
of company 45 restricts the storage system to discharge during low load periods as the
loads are near zero. Therefore, discharging the storage systems and feeding electricity to
the production is not possible. Compared to the AEF, one can observe a high correlation
between the load peaks and the peaks of the MSR, MPM and MPP. Thus, shifting the
emissions from one period to the other is not restricted by the peak shaving threshold.
More to the contrary considering in the fourth graph the second peak in the load on
February the 16th, the GSS is utilized for peak shaving during hours of maximum MPP.
This results in a synergistic effect of the two objectives leading to the lowest values
for CO2-abatement cost among the 50 companies. Simultaneously in the AEF graph
during the same time period, the storage dispatch’s focus is on peak shaving rather than
CO2-reduction.

SI E. Other emissions

Table E.3 statistically summarizes the EFs applied to the other emissions, SO2,
NOxand Dust. Looking at the individual emission factors of the generation units, it
is evident that the EF has a weak dependency on the fuel type and generation tech-
nology and a rather strong dependency on the air pollution abatement system. This
leads to highest volatility among the emission factors for the MPP. In alignment with
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Table E.3: Characteristics of the emission factors

CO2 in kgCO2
/MWh SO2 in gSO2

/MWh

AEF MSR MPM MPP AEF MSR MPM MPP
Min 486.5 -679.1 114.2 0.0 79.2 -289.9 23.9 0.0
Max 915.6 1190.3 390.1 1189.8 272.6 456.0 131.9 13768.8
Mean 707.5 268.1 224.1 840.2 165.6 89.5 70.3 225.6
Std 76.1 304.1 90.4 267.0 31.2 125.1 33.3 691.5
Varcoef 0.1 1.1 0.4 0.3 0.2 1.4 0.5 3.1

NOx in gNOx/MWh Dust in gDust/MWh

AEF MSR MPM MPP AEF MSR MPM MPP
Min 98.9 -841.1 -187.8 0.0 3.4 -9.1 0.7 0.0
Max 929.0 1199.2 702.2 19436.7 8.4 14.5 4.2 546.2
Mean 436.7 229.4 170.2 695.9 5.6 2.9 2.3 7.3
Std 161.7 346.9 180.4 2062.3 0.8 4.0 1.0 26.9
Varcoef 0.4 1.5 1.1 3.0 0.2 1.4 0.4 3.7

the CO2-emission factor, the MPP followed by the AEF show the highest mean values
for local emissions.

The influence of the environmental dispatch on the other emissions, namely SO2,
NOx and Dust is shown in Table E.4.
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Table E.4: Statistical overview of results of other emissions

GSS BSS
Unit AEF MSR MPM MPP MSR MPP

∆SO2

in kg

Min kg 0.02 0.10 0.30 -0.34 0.03 -0.42
Max kg 4.62 25.89 78.95 2.66 6.42 0.27
Mean kg 0.38 2.25 6.45 0.36 0.55 -0.02
Std kg 0.70 4.04 12.23 0.66 1.02 0.11
Varcoef % 188 179 190 184 187 NaN

∆NOx

in kg

Min kg -18.51 0.16 1.62 -6.67 0.03 -6.30
Max kg -0.07 49.85 395.41 0.76 7.96 0.06
Mean kg -1.60 4.33 32.56 -0.74 0.75 -0.66
Std kg 2.89 7.66 62.05 1.31 1.34 1.13
Varcoef % NaN 177 191 NaN 180 NaN

∆Dust
in kg

Min kg 0.00 0.00 0.01 -0.02 0.00 -0.01
Max kg 0.19 0.90 2.56 0.18 0.20 0.04
Mean kg 0.02 0.07 0.21 0.02 0.02 0.00
Std kg 0.03 0.13 0.40 0.03 0.03 0.01
Varcoef % 188 199 189 212 198 292
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Figure D.1: Load and charging profile of company 45, iron casting, for 2 exemplary days. Optimized
GSS capacity is 219 kWh

7



Figure D.2: Load and charging profile of company 46, manufacturer of mixed spices, for 2 exemplary
days. Optimized GSS capacity is 319 kWh
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SI F. MPM

The MPM is derived from the work of Hawkes [1]. He postulates a marginal EF, which
is shown in equation F.1 [1] and equation F.2 [1]. Over the course of one year, Hawkes
[1] assumes that the energy system reacts similar in every hour of the day. Therefore for
every hour of the day h, we build a linear regression model consisting of 365 samples, see
equation F.1. Equation F.2 defines the slope of the regression line bh as the MPM.

∆mCO2,(h) = ah + bh ·∆LRes,(h),∀h ∈ 1, 2, ..., 24 (F.1)

MPMh = bh,∀h ∈ 1, 2, ..., 24 (F.2)

To derive the MPM, the sample was adjusted for outliers after the median method.
The hourly change in CO2-emissions of the power mix (∆mCO2,(h)) is the dependent
variable and the hourly change in residual load (∆LRes,(h)) is the the independent vari-
able.

Figure F.3 plots the hourly values of the MPM on the right access. Orientated on the
left access, the bar chart indicates the R2-Value of the linear regression model defining
the MPM.

Figure F.3: MPM for all the hour of the day and the values of R2
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