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Structure-preserving integrators for constrained mechanical systems in
the framework of the GGL principle
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Simulating multi-body systems often requires an appropriate treatment of the differential-algebraic equations (DAEs). The
recently proposed GGL principle considers constraints both on configuration and on velocity level and embodies an index-
reduction technique in the spirit of the often-applied GGL stabilization. In sharp contrast to the original formulation, the
Euler-Lagrange equations of the GGL principle, fit into the Hamiltonian framework of mechanics. Therefore, the GGL
principle facilitates the design of structure-preserving integrators. Due to the close relationship of the GGL principle to
optimal control, previously developed direct methods can be used to obtain variational integrators for constrained mechanical
systems. Furthermore, slight modifications can be applied to obtain second-order energy-momentum consistent integrators
emanating from the GGL principle, which represent another important class of structure-preserving time-stepping schemes.
The newly devised schemes circumvent issues of standard methods and provide more realistic results by accounting for
velocity level constraints.

© 2023 The Authors. Proceedings in Applied Mathematics & Mechanics published by Wiley-VCH GmbH.

1 Introduction

A systematic approach for simulating multi-body systems lies in the choice of redundant coordinates q(t) ∈ Rn and corre-
sponding velocities q̇ ∈ Rn. We assume that the system has a seperable Lagrangian L(q, q̇) = T (q̇)−V (q) = 1

2 q̇ ·Mq̇−V (q),
where the kinetic energy T makes use of a constant, symmetric and positive definite mass matrix M and the potential energy
is denoted by V . A corresponding Hamiltonian is given by H(q, p) = T (p)+V (q) with conjugate momenta p ∈ Rn obtained
by a Legendre transformation. The motion of the underlying system is restricted by m independent, scleronomic, holonomic
constraints g : Rn → Rm which have to be fulfilled, viz.

g(q) = 0. (1)

Since these position level constraints (sometimes referred to as primary constraints) have to hold at any time, hidden con-
straints gv : Rn × Rn → Rm are induced on velocity level as

d

dt
g(q) = Dg(q)q̇ = 0 ⇒ gv(q, q̇) = 0. (2)

Consequently, the governing equations of motion are given by a set of differential-algebraic equations (DAEs), which have to
be treated appropriately. By augmenting the Lagrangian, the set of equations can be obtained by Hamilton’s principle

δ

∫ T

0

Lλ(q, q̇) dt = 0, (3)

where the augmented Lagrangian Lλ : Rn × Rn × Rm → R introduces Lagrange multipliers λ ∈ Rm to enforce primary
constraints (1) such that

Lλ(q, q̇) = L(q, q̇)− λ · g(q). (4)

Alternatively, a Hamiltonian approach can be chosen. The corresponding augmented Hamiltonian Hλ : Rn ×Rn ×Rm → R
is given by

Hλ(q, p) = H(q, p) + λ · g(q). (5)

Eventually, the constrained dynamical system is governed by the canonical Hamiltonian DAEs, which read

q̇ = M−1p, (6a)

ṗ = −DV (q), (6b)

0 = g(q) (6c)
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or more briefly in state space representation

ż = JDHλ(z), (7a)

0 = g(q), (7b)

where the state space vector z = (q, p) ∈ R2n is introduced along with the symplectic structure matrix J ∈ R2n×2n.
However, those DAEs are often prone to numerical ill-conditioning, since they have a differentiation index νd = 3. A
straightforward way to circumvent those issues is to replace the positional constraints with the corresponding velocity level
constraints, yielding index-2 DAEs. This, however, leads to drift phenomena in the original primary constraints. Thus, more
commonly used index-reduction techniques, such as the well-known Gear-Gupta-Leimkuhler (GGL) stabilization (cf. Gear et
al. [4]), are employed. By directly coupling the secondary constraints into the equations and modifying the kinematic relation
(6a) an extented set of equations with index νd = 2 is obtained, given by

q̇ = M−1p+Dg(q)Tγ, (8a)

ṗ = −DV (q), (8b)

0 = g(q), (8c)

0 = Dg(q)M−1p. (8d)

However, these equations do not arise from a variational principle. Consequently, the Hamiltonian structure has been lost due
to the direct modification of the equations of motion and one cannot find an underlying augmented Hamiltonian anymore.
This furthermore leads to the problem, that crucial conservation properties are only fulfilled if the newly introduced Lagrange
multiplier γ vanishes identically. This can be shown for the time-continuous set of equations (8) but will not hold in a
time-discrete setting. Thus, the design of structure-preserving integration schemes can be difficult and often times numerical
schemes discretizing the GGL equations (8) are not structure-preserving.

2 GGL principle

In this section, we want to focus on the recently presented GGL variational principle (cf. Kinon & Betsch [1]). It can be
viewed as an extension of the Livens principle (cf. Livens [2] and Pars [3]), which is sometimes also referred to as Hamilton-
Pontryagin principle (cf. Bou-Rabee & Marsden [9]). Livens principle introduces independent velocities v ∈ Rn by enforcing
the kinematic relation by means of Lagrange multipliers p ∈ Rn. Consequently, the mixed action integral reads

S(q, v, p) =

∫ T

0

(L(q, v) + p · (q̇ − v)) dt. (9)

Enforcing stationarity of the action integral yields the corresponding Euler-Lagrange equations as

q̇ = v (10a)

ṗ = D1L(q, v) (10b)

p = D2L(q, v) (10c)

This set of equations can be traced back to both, Lagrangian and Hamiltonian frameworks as it includes also the fibre deriva-
tive of the Legendre transformation (10c). Interestingly, the Lagrange multipliers p can be interpreted as conjugate momenta.
It is worth noting that Hamiltonian and Lagrangian frameworks of mechanics are unified by Livens principle.

The novel GGL variational principle accounts for primary constraints (1) and secondary constraints (2). Similarly to the
classical GGL stabilization (8), the GGL principle represents an index-reduction technique by minimal extension and yields
DAEs with differentiation index νd = 2. In particular, the principle relies on the action integral

SGGL(q, v, p, λ, γ) =

∫ T

0

[
L(q, v)− λ · g(q) + p · (q̇ − v −M−1 Dg(q)T γ)

]
dt, (11)

which generalizes Livens principle (9). Imposing the stationary condition δSGGL = 0, standard procedures of variational
calculus and imposing endpoint conditions yields the Euler-Lagrange equations of the GGL principle as

q̇ = v +M−1Dg(q)Tγ, (12a)

ṗ = D1L(q, v)−Dg(q)Tλ−
m∑

k=1

γkD
2gk(q)M

−1p, (12b)

p = D2L(q, v), (12c)

0 = g(q), (12d)

0 = Dg(q)M−1p. (12e)
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The above equations appear in a similar fashion as the classical GGL stabilization (8) with an additional term in (12b), which
ensures the Hamiltonian structure of the equations. In particular, (12) can be written as

ż = JDHλγ
GGL(z), (13)

together with (12d) and (12e), yielding a similar Hamiltonian structure as in (7). The corresponding augmented Hamiltonian is
given by Hλγ

GGL(z) = H(q, p)+λ ·g(q)+γ ·G(q)M−1p. The above equations can be related to the Euler-Lagrange equations
(12) of the GGL functional after elimination of the velocities by employing the Legendre transformation (12c). Similar to the
classical GGL stabilization, the systems conservation properties (i.e. underlying structures) are not altered. Consequently, the
Hamiltonian H itself, momentum maps Jξ and the symplectic two-form ω are first integrals of solutions of (12). In contrast
to the original GGL formulation, those conservation laws hold true regardless of the value of the Lagrange multipliers γ. The
GGL principle can thus be seen as an ideal basis for the design of structure-preserving integrators.

3 Variational integrators (VI)

The concept of variational integrators relies on the direct approximation of the action integral instead of the corresponding
equations of motion. The time interval [0 T ] is subdivided into N timesteps of time step size h. The subintegrals are
discretized with a discrete Lagrangian Ld, such that

S(q) =

∫ T

0

L(q(t), q̇(t)) dt =

N−1∑

n=0

∫ tn+1

tn
L(q(t), q̇(t)) dt ≈

N−1∑

n=0

Ld(q
n, qn+1) = Sd({qn}N0 ).

The action integral is thus approximated by a discrete action sum Sd. Futhermore, the stationary condition

δSd({qn}N0 ) =
N−1∑

n=0

δLd(q
n, qn+1) = 0

eventually yields the discrete Euler-Lagrange (DEL) equations, which determine the time-stepping scheme for the variational
integrator. In Kinon & Betsch [1] a simple, first approach for discretizing the GGL principle (11) has been introduced. It is first
order accurate, symplectic and conserves the systems momentum maps as well as primary constraints. However, secondary
constraints are only satisfied in intermediate timesteps. We therefore now target the design of second order schemes and
schemes, which also preserve velocity-level constraints exactly, while maintaining the same conservation properties. To this
end, inspired by the one-stage theta method for optimally controlled systems by Betsch & Becker [5], we approximate the
functional of the GGL principle by a discrete action sum given by

Sd
GGL =

N−1∑

n=0

[
Lλ
d(q

n, Qn, vn+1) + pn+1 ·
(
qn+1 − qn − fγ

d (q
n, Qn, vn+1)

)
(14)

+ Pn ·
(
Qn − qn − fγ

d (q
n, Qn, vn+1)

) ]
,

where auxiliary position vectors Qn and momenta Pn are introduced. Moreover, in (14), Lλ
d represents a discrete version of

the augmented Lagrangian for constrained mechanical systems such that

Lλ
d ≈

∫ tn+1

tn
[L(q, v)− λ · g(q)] dt, (15)

whereas fγ
d denotes the discrete version of the right hand side vector of the kinematic equation (12a), such that q̇ = fγ(q, v).

Discrete versions of the constraints, being enforced by Lagrange multiplier λn and γn, are part of the chosen Lλ
d and fγ

d ,
respectively. Eventually, a whole family of variational integrators is generated. All members are symplectic by design
and conserve the momentum maps associated with symmetries of the system. The corresponding DEL equations show that
Qn = qn+1, such that auxiliary positions can be eliminated. Our approach evaluates the positions in an intermediate state,
parameterized with α ∈ [0, 1] such that

qn+α = (1− α) qn + α qn+1. (16)

Moreover, the discrete Lagrangian shall be defined by

Lλ
d = hL(qn+α, vn+1)− λn · gd(qn, qn+1), (17)

where gd is a discretization of the holonomic constraints (1) and fγ
d is chosen as

fγ
d (q

n, qn+1, vn+1) = h vn+1 + hM−1Dg(qn+α)Tγn. (18)
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4 of 6 Section 1: Multi-body dynamics

One possible method generated by this approach is second order accurate but fullfils the constraints only in intermediate times
("VI-A"). It can be obtained by defining

gAd (q
n, qn+1) = h g(qn+α). (19)

Another option yields a first-order accurate scheme but satisfies both constraints exactly ("VI-B"). The corresponding dis-
cretization of the constraints makes use of an additional parameter θ ∈ [0, 1] such that

gBd (q
n, qn+1) = h

[
(1− θ)g(qn) + θg(qn+1)

]
. (20)

Consequently, both drawbacks of the first approach proposed in Kinon & Betsch [1] have been prevented by this novel ansatz
(14), which represents a versatile discretization method for the structure-preserving integration of constrained dynamical
systems. Further details on the resulting integration schemes can be found in [8].

4 Energy-Momentum scheme

Another class of structure-preserving integrators is given by so-called energy-momentum schemes (EMS). Assuming a con-
strained Hamiltonian system with symmetries, the Hamiltonian equations of motion of the GGL functional (13), (12d) and
(12e) can be discretized as

zn+1 − zn = h D̄GHλγ
GGL(z

n, zn+1), (21a)

gq(qn+1) = 0, (21b)

gv(zn+1) = 0, (21c)

for n = 0, ..., N−1. Note that the G-equivariant discrete derivative D̄G by Gonzalez [6] has been used. The Gonzalez discrete
gradient of a function f : Rn × Rn → R is defined as

D̄f(x, y) = Df(z) +
f(y)− f(x)−Df(z) · (y − x)

||y − x|| (y − x) (22)

with z = 1
2 (x+ y). It satisfies the crucial directionality condition

D̄f(x, y) · (y − x) = f(y)− f(x), (23)

which ensures the conservation properties of energy-momentum schemes. The G-equivariant formulation assumes r, at most
quadratic invariants πi ∈ R of f such that

D̄Gf(x, y) =
r∑

i=1

Dπi(z) · D̄f̃(πi(x), πi(y)), (24)

where f(x, y) = f̃({πi}ri=1). Eventually, the time-stepping scheme (21) generalizes the method proposed by Gonzalez
[6] with respect to velocity level constraints gv(z). As the name suggests, this scheme conserves the Hamiltonian and the
momentum maps exactly and is second-order accurate as the discrete gradient enhances the standard gradient evaluated in the
midpoint. We refer to [8] for further details on the resulting EMS.

5 Numerical results

We simulate the four-particle system from Gonzalez [6] with h = 0.05 and a total simulation time of T = 10. The system
consists of four masses mi, which are subject to the initial conditions q01 = (0, 0, 0)T , q02 = (1, 0, 0)T , q03 = (0, 1, 0)T and
q04 = (1, 1, 0)T. The masses are interconnected by two rigid bars, which impose primary constraints

g1(q) =
1

2

[
1

l212
(q2 − q1) · (q2 − q1)− 1

]
, (25a)

g1(q) =
1

2

[
1

l234
(q4 − q3) · (q4 − q3)− 1

]
(25b)

and two spring elements ki, which give rise to the system’s potential function

V =
1

2
k1

(
(q3 − q1) · (q3 − q1)− l213

)2
+

1

2
k2

(
(q4 − q2) · (q4 − q2)− l224

)2
. (26)
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e2

e3

e1

m1 m3

l12 l34

m4m2

k1

k2

p0

Fig. 1: Four-particle system

Table 1: Parameters

mi {1, 3, 2.3, 1.7} kg
ki {1, 10} N/m
lij 1 m
p0 (0, 3, 2)T kgm/s

The bars have lengths l12 and l34 and the springs’ natural lengths are denoted by l13 and l24. At t = 0 an initial momentum p0
is imposed on the fourth mass. We want to compare the abovementioned schemes as well as the classical GGL stabilization
(8) discretised by the midpoint rule ("GGL-MP") with endpoint evaluation of the constraints. The computations have been
performed using metis, which is freely available at [7]. The parameter values are comprised in Table 1.

The VI-B method and the EMS as well as the classical GGL method preserve both primary and secondary constraints
(up to numerical round-off), whereas the VI-A does not (compare Fig. 2). However, when it comes to the preservation of
momentum, we can observe, that all schemes, which have been developed by using the GGL principle outperform the classical
GGL scheme (see Fig. 3). Furthermore, it can be seen that the EMS additionally preserves the system’s Hamiltonian (cf. Fig.
3). The results validate the previous findings and underline the beneficial structure of the GGL principle for the design of
structure-preserving integrators.
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Fig. 2: Conservation of primary (left) and secondary constraints (right)

0 2 4 6 8 10
10−16

10−12

10−8

10−4

t

||L
n
+
1

3
−
L
n 3
||

GGL-MP VI-A VI-B EMS

0 2 4 6 8 10
−2

−1

0

1

2
·10−14

t

H
n
+
1
−

H
n

Fig. 3: Conservation of angular momentum about 3-axis (left) and Hamiltonian (right)
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6 of 6 Section 1: Multi-body dynamics

6 Conclusion

In this work, we have taken up the recently introduced GGL variational principle (cf. Kinon & Betsch [1]). It extends Livens
principle by accounting for both primary and secondary constraints. Due to its mixed nature, it unifies Lagrangian and Hamil-
tonian frameworks. The GGL principle enhances the well-known Gear-Gupta-Leimkuhler stabilization and consequently
achieves and index reduction to νd = 2 to avoid numerical instabilities. Contrary to the original formulation, the equations
of motion have Hamiltonian structure, which facilitates the design of structure-preserving integrators, as crucial conserva-
tion properties do not depend on the value of the Lagrange multipliers. Furthermore, two classes of structure-preserving
time-stepping schemes for constrained mechanical systems have been introduced: a family of variational integrators and an
energy-momentum scheme. Both are capable of conserving the system’s momentum maps and tackle the problem of drift
adequately. For further analyses, details and proofs concerning the presented methods we refer to [8].

In the future, for the search of further structure-preserving integrators based on the GGL functional, one might focus on
the construction of higher order methods. Therefore, two different approaches are promising: Firstly, partioned Runge Kutta
schemes that can be gained as variational integrators from Livens principle could be generalized with respect to constrained
dynamics. The work by Bou-Rabee [9] might serve as a starting point. Secondly, one might aim for Galerkin-based methods
for constrained systems corresponding to an already existing work by Ober-Blöbaum [10]. Another promising idea is the
application of continuous Galerkin schemes for index 2 DAEs to the novel functional for constrained dynamics. Altmann &
Herzog [11] have recently provided a corresponding framework.
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