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In survey data analysis, there are two main approaches -design-based and model-

based- for making inferences for different characteristics of the population. A design-

based approach tends to produce unreliable estimates for small geographical regions or

cross classified demographic regions due to the small sample sizes. Moreover, when

there are no samples available in those areas, a design-based method cannot be used. In

the case of estimating population characteristics for a small area, model-based methods

are used. They provide a flexible modeling method that can incorporate relevant informa-

tion from similar areas and external databases. To provide suitable estimates, many model

building techniques, both frequentist and Bayesian, have been developed, and when the

model-based method makes an explicit use of prior distributions on the hyperparameters,

inference can be carried out in the Bayesian paradigm. For estimating small area propor-

tions, mixed models are often used because of the flexibility in combining information

from different sources and of the tractability of error sources. Mixed models are catego-

rized into two broad classes, area-level and unit-level models, and the use of either model



depends on the availability of information.

Generally, estimation of small area proportions with the hierarchical Bayes(HB)

method involves transformation of the direct survey-weighted estimates that stabilizes

the sampling variance. Additionally, it is commonly assumed that the survey-weighted

proportion has a normal distribution with a known sampling variance. We find that these

assumptions and application methods may introduce some complications. First, the trans-

formation of direct estimates can introduce bias when they are back transformed for ob-

taining the original parameter of interest. Second, transformation of direct estimates can

cause additional measures of uncertainty. Third, certain commonly used functions for

transformation cannot be used, such as log transformation on a zero survey count. Fourth,

applying fixed values for sampling variances may fail to capture the additional variability.

Last, assumption of the normality of the model distribution might be inappropriate when

the true parameter of interest lies near the extremities (near 0 or 1).

To address these complications, we first expand the Fay-Herriot area-level model

for estimating proportions that can directly model the survey-weighted proportions with-

out using any transformation functions. Second, we introduce a logit function for the

linking model, which is more appropriate for estimating proportions. Third, we model

the sampling variance to capture the additional variability. Additionally, we develop a

model that can be used for modeling the survey weighted counts directly.

We also explore a new benchmarking approach for the estimates. Estimates are

benchmarked when the aggregate of the estimates from the smaller regions matches that

of the corresponding larger region. The benchmarking techniques involve a number of

constraints. Our approach introduces a simple method that can be applied to compli-



cated constraints when applying a traditional method may fail. Finally, we investigate

the “triple-goal” estimation method that can concurrently achieve the three specific goals

relatively well as an ensemble.
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Chapter 1

Introduction

1.1 Uses of small area statistics

In many instances, various institutions, such as government agencies, use sample surveys

to obtain information on a wide range of population characteristics, and these sample sur-

veys are used to provide estimates of population as well as sub-population (domains) char-

acteristics. Examples of domains include a geographical region (a state, county, munici-

pality, etc.), a demographic group (specific age× gender× race), or a cross-classification

of geographical regions and socio-demographic groups. Domains (or areas) are classi-

fied as large if the samples within the domain produce direct estimates with an adequate

precision under the sample design. On the other hand, small domains have inadequate

sample sizes to produce reliable direct estimates. Some of the terms for denoting small

areas include “sub-domains”, ”sub-state”, or ”counties.”

The estimators obtained from sample surveys are called “direct” estimates, where

they are typically design-based, and the inferences of the design-based estimates are

based on the probability distribution of the survey design (hence they are design-based

estimates) with the population values, y, being fixed. The calculation of design-based es-

timators involves survey weights; that is, an inverse of the inclusion probability of a unit.

For large domains, direct estimators produce reliable estimates under the sampling de-

sign; however, the same mode of inference produces unreliable estimates for small areas,
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and thus it is necessary to use “indirect” estimators that “borrow strength” from related

areas to increase the information to produce estimates with better precision. Obtaining

the indirect estimators is carried out through a model (implicit/explicit) that utilizes a link

between supplementary information and direct estimates in small areas.

More recently, there has been a larger demand, especially at the federal agency

level, for small area estimators in many different applications. This is due to the growing

use in formulating policies and programs to allocate government funds among different

geographical areas. Federal agencies make policy decisions, like social and economic

programs, by using the surveys, which are designed for large areas, to allocate pro-

grams for smaller local levels. For example, the National Agricultural Statistical Services

(NASS) publishes model-based county estimates of crop acreage using satellite data. The

county estimates assist the local and federal agricultural authorities in decision making,

such as allocation of different subsidy programs, Rao (2003).

In the early 1990s, the U.S. Census Bureau established the Small Area Income

and Poverty Estimates (SAIPE) program to provide estimates of income and poverty for

administrating federal programs and allocating federal funds to local government. The

SAIPE program has been especially focused on the poverty rate and count estimates of

school-aged (ages 5-17) children for school districts since 1995. The state and county

estimates have been produced using a variance of the model, originally suggested by Fay

and Herriot (1979), and for a while the Census have used the Annual Social and Economic

Supplement (ASEC) of the Current Population Survey (CPS) to produce estimates. How-

ever, the CPS ASEC contains only about 100,000 nationwide addresses, which is not

enough sample size to provide accurate estimates for all school districts in the U.S., the
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Ceusus Bureau made a decision in 2006 to use the American Community Survey (ACS)

to build a model that relates state and county estimates of income and poverty to other

indicators. The ACS has a much large sample size (about 3 million addresses nationwide)

than the CPS ASEC. Some of the estimates that the SAIPE produces at county and state

levels are: total number of people in poverty, number of children under age 18 in poverty,

and median household income. For more information about the history of the SAIPE

program, see Bell et al. (2007). Citro and Kalton (2000) provided a review for a variety

of uses of these estimates from the SAIPE program.

1.2 Direct Estimation

As mentioned before, sample survey data are used to provide reliable direct estimates

of totals or means of the population of interest for large domains. There has been an

extensive literature on theories on the direct domain estimation under the design-based

mode, see Lohr (1999), Cochran (1977), and Sarndal et al. (1992). In this dissertation,

we focus on estimates for small domains (areas).

Let U be a population consisting of N distinct units and yj be a characteristic of

interest for a unit j, (j = 1, . . . , N). The parameter of interest could be the population

total, Y =
∑N

j=1 yj , or the population mean, Ȳ = Y/N , and the corresponding estimators

are denoted as Ŷ and ˆ̄Y . The sampling design used to select a sample, s, with a proba-

bility, p(s), depends on the design scheme of the survey. The examples of design scheme

includes simple random sampling (SRS), stratified simple random sampling, or stratified

multistage complex sampling methods.
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The inference on Y is made from the yj value associated with each unit j ∈ s. In the

design-based approach, the estimator, Ŷ , is design-unbiased if Ep(Ŷ ) =
∑

s p(s)Ŷ = Y,

where the summation is over all possible samples under the specified design. The true

design variance of Ŷ is denoted as Vp(Ŷ ) = Ep(Ŷ − Ep(Ŷ ))2, and its corresponding

unbiased estimator is denoted as v(Ŷ ), which is equivalent to the sample variance of Ŷ .

The bias of the estimator is defined asBiasp(Ŷ ) = Ep(Ŷ )−Y . The design consistency of

Ŷ is defined if Ŷ is approximately design-unbiased and Vp(Ŷ ) tends to zero, Rao (2003).

For more rigorous definition of design-consistency, see section 1.3 of Fuller (2009).

We also construct the estimator of the population size by using the survey weights,

wj(s), j ∈ s. The unit survey weight, wj , is interpreted as a number of units represented

by unit j in the population U . The basic weight is the inverse of the inclusion probability

πj, where πj =
∑

s:j∈s p(s). In other words, πj is a probability that a unit j is included in

a selected sample s.

In practice, there are usually two additional steps, after considering the inclusion

probabilities, in order to obtain the final survey weights . First, weights are usually ad-

justed for the nonresponse of a unit since not all sampled units respond. Let Ij be the

indicator variable for the unit j ∈ s, then we can denote P (Ij = 1) = πj , and let

Rj be an indicator variable for whether the unit j responds or not, with P (Rj = 1) =

φj . If we assume non-informative sampling design; that is the probability of selection

is independent of the response. Then the adjusted inclusion probability is defined as:

P (unitj is selected and responds) = πjφj, and the corresponding nonresponse adjusted

weight becomes, wj = 1/πjφj.

The second step for adjustment involves poststratification. Generally, a population
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can be stratified into groups based on different demographics, such as a race or a gender.

Let H denote the total number of different groups and Nh be a known population count

in a subgroup h. The sum of the weights for each unit j ∈ h,
∑

j∈hwj , should estimate

Nh, but usually their values do not match. The poststratification method uses the ratio

estimator within each group that adjusts the weights to the true population count. Let whj

be a weight for a jth respondent in a subgroup h, then the poststratified adjusted weight,

w∗hj , is defined as:

w∗hj = whj ·
Nh∑
j∈hwhj

.

Depending on the specific survey, the weight can be poststratified by using several demo-

graphic groups.

Suppose we are interested in estimating area-level means ,Ȳi =
∑Ni

j=1 yij/Ni, i =

1, . . . ,m for m small areas, and let Ni and ni be the population count and the sample

count for the ith area. Let yij be the response variable of a characteristic of interest for a

unit j in the area i. Let wij be the corresponding weight for the unit j in the area i. Then

the usual survey weighted area-level estimator, ˆ̄Yi, is denoted as:

ˆ̄Yi =

∑ni

j=1 wijyij∑ni

j=1wij
, i = 1, . . . ,m, (1.1)

The corresponding estimate of the variance v( ˆ̄Yi) can be obtained through linearization

or resampling methods, such as jackknife and balanced repeated replication (BRR).

There are several advantages for design-based estimates. First, they provide reliable

and design-consistent inferences in large samples. Second, they incorporate survey design

features, such as strata or clusters, to calculate estimators. Third, because the inference
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does not involve a model assumption and the design-based estimates are distribution free,

so model failures need not be considered.

On the other hand, there are a lot of weaknesses. First, if the randomization dis-

tribution or the sampling mechanism, is corrupted by nonsampling errors, such as mea-

surement or systematic errors, the method is not applicable, Kalton (2002). In practice,

measurement errors can arise if respondents provides an inaccurate answer, the inter-

viewer records the answer incorrectly, or there are additional types of processing error. A

seminal paper on survey measurement errors can be found in Hansen et al. (1961).

Second, when the sample sizes are small or non-existent, design-based methods

provide limited guidance and produce imprecise estimators due to the sampling design

that aims to provide reliable data for large areas and pays little or no attention to the

smaller areas. For example, before the change in the SAIPE program, the CPS ASEC

typically sampled only about 1,100 counties out of possible 3,141 counties in the U.S.,

Bell et al. (2007), and for those counties with no samples, estimates were obtained as pure

regression predictions. Additionally, sampling variances for the direct estimates were not

available due to the small sample sizes. The design-based method would not be applicable

to produce either point estimates nor the variance estimates, and alternative approaches

have to be considered.

1.3 Model-based estimation method for small areas

Because of the inadequate direct information, a method for an improved estimation calls

for implicit or explicit models. In general, they provide a link between small areas to their
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related information sources, such as various administrative/census records. Once relevant

sources of information are identified, a decision is needed for a method of choosing an

appropriate method. Rao (2003) provided various indirect methods with implicit models;

however, many of them have shortfalls. For example, the synthetic estimation method,

see Gonzales (1973), is based on a very restrictive model even though it produces model-

unbiased estimators. The method of composite estimators expands the synthetic estima-

tion method by using a weighted average between the direct estimator and the synthetic

estimator. The composite estimators aim to balance the potential bias of the synthetic

estimators under model failure against the instability of the direct estimators. However,

application of the method is challenging because implementing a proper method for de-

termining weights between the two estimators is difficult, see Rao (2003). In general, the

formal evaluation of the implicit model can be problematic because its composition is not

clearly laid out.

On the other hand, the use of explicit models have several advantages. First, model

diagnostics can be used for model fits and comparisons. Second, explicit models, such as

linear mixed models or nonlinear mixed models, can be applied to accommodate complex

data structures; and third, well-developed methodologies can be used to obtain accurate

inferences on parameter estimates. In particular, mixed effects models are suitable for

small area estimation because of their flexibility in combining different sources of in-

formation and the tractability of different error sources. Furthermore, mixed models are

categorized into two broad classes, area-level and unit-level models, and the use of either

model depends on the availability of the information.

When estimates from small areas are aggregated, the overall estimates for a larger

7



geographical area may be quite different from the corresponding direct estimate, with

the latter considered reliable. This could especially be true if the survey is designed

to achieve specified inferential accuracy at the larger geographical regions, and it can

be more severe in the event of model failure since applying model validation can be

challenging. One method to avoid this problem of discrepancy at the higher level is to

use the “benchmarking” approach: it modifies the model-based estimates, such that their

aggregate always matches with the corresponding design-based estimate at a higher level,

Pfeffermann and Tiller (2006).

1.3.1 Area-level model

A general structure of the area-level model is composed of two models: sampling and

linking. The sampling model accounts for the sampling error of the survey weighted direct

estimates and possible errors from the survey design. The linking model interconnects

between the population characteristic and the known area-specific auxiliary variables.

Since the survey-weighted estimates are used in the area-level model, the estimates are

design-consistent. The main difficulty in applying the area-level model is that it requires

precise estimates of sampling variances of the survey weighted design-based estimates. It

is a challenging problem because the sampling variance estimates become unstable due

to the small sample sizes in the areas of interest.

A typical example of a basic area-level model is the Fay-Herriot model, Fay and

Herriot (1979). Assume that θ̂i = g( ˆ̄Yi) is an observation with a transformation function

g with related auxiliary data x′i = (1, xi1, . . . , xip)
′, and the corresponding transformed
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parameter of interest becomes θi = g(Ȳi). Fay and Herriot used g(·) = log on the ob-

served values and applied the following model to estimate the per capita income (PCI)for

small areas in which the area-level population is less than 1000.

Level1(sampling model) : θ̂i|θi, ψi
ind∼ (θi, ψi),

Level2(prior model) : θi|x′i,β, A
ind∼ (x′iβ, A),

where level 1 is used to account for the sampling variability of the direct observed esti-

mate, θ̂i = log( ˆ̄Yi) of the true small area means θi = log(µi), where µi = true per capita

income. Level 2 links the true parameter θi with auxiliary variables x′i. This model is also

called a matched model because both level 1 and level 2 can be combined into a single

linear mixed model:

θ̂i = x′iβ + νi + εi, θi = x′iβ + νi

where νi
iid∼ N(0, A), εi

ind∼ N(0, ψi). Parameters β and A are called hyperparameters

and are generally unknown values, but the sampling variance parameter, ψi is assumed

known.

Numerous methods have been suggested in order to improve the stability of the sam-

pling variances, Fay and Herriot (1979), Otto and Bell (1995), Wolter (1985), and Ger-

shunskaya and Lahiri (2005). The generalized variance function (GVF), Wolter (1985),

is a commonly used method; it uses a mathematical function that describes a relationship

between the direct estimate and its corresponding variance. The choice of the function is

based on the premise that the relative variance is a decreasing function of the magnitude
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to the expectation of the estimate. For certain groups of items with similar intra-class

correlation or design effects, the parameters of the model are estimated through using

both direct design-based point estimates and corresponding variance estimates. The fitted

value of the variance estimate can be then interpreted as a smoothed estimate of the true

sampling variance, see Wolter (1985).

For their model, Fay and Herriot used the log-transformation, log( ˆ̄Yi) = θ̂i, and ob-

tained an empirical relationship: CVi = CV ( ˆ̄Yi) ≈ 3/
√
Ni, where CVi is the estimated

coefficient of variation of ˆ̄Yi with its variance estimated using standard design-based

methods, such as linearlization, jackknife, or balanced repeated replicates (BRR). Fur-

thermore, they made a synthetic assumption that the estimated slope of the model remains

the same for all areas and concluded that the true sampling variance of V ar( ˆ̄Yi) = ψiµ
2
i

Well known early area-level models with transformation includes: the Fay and Her-

riot (1979) (FH) model, the Efron and Morris (1975) (EM) model, and the Carter and

Rolph (1974) (CR) model. Both the CR and the EM models can be regarded as particular

extensions of the FH model. One potential problem with their methods is the possible

bias induced from the back-transformation. The validity of the back-transformation relies

on the Taylor expansion that relies on the asymptotic of the sample size. Also, the mod-

els fail to incorporate variability from using the estimated sampling variance in place of

the true sampling variance. There have been some attempts to incorporate uncertainty in

sampling variance estimation through alternate modeling: Arora and Lahiri (1997), and

Liu et al. (2007). Chen (2001) used properties of a log-normal distribution for obtaining

the Bayes and empirical Bayes estimator of µi directly.
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1.3.2 Unit-level models

In the unit-level model, it is assumed that some unit-specific and area-specific auxiliary

data are available, Moura and Holt (1999). The area-specific random effects term in the

model captures the presence of possible correlation between different units in a small area.

Typically, it does not incorporate sampling weights nor is it able to incorporate all of the

survey design information, such as stratification or clusters. Generally, specific survey

design information is not available to the public due to privacy issues and complexity of

the design. Thus, the unit-level model estimates are not design-consistent. However, there

have been efforts to integrate survey weights to produce design-consistent estimators,

Prasad and Rao (1999), You and Rao (2002), Jiang and Lahiri (2006a). The general idea

is to define a normalized survey-weighted area-level model from the unit-level model.

You and Rao (2002) have developed a model that makes a use of the survey weights

that preserves the design consistency and self-benchmarking property. Their approach,

however, is only applicable for the unit-level linear mixed model. Jiang and Lahiri (2006a)

proposed a general model assisted approach for both continuous and binary response

variables, and Lahiri and Mukherjee (2007) have proposed models with the use of survey

weights in a hierarchical Bayesian frame work.

A simple example of a unit-level mixed model is the nested error regression model

in Battese et al. (1988). They used the model to estimate mean area crop (soybean and

corn) production for twelve counties in northern central Iowa, and in the model, they have

incorporated random county level effect to include the correlation structure. Their model
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(BHF model) is defined as:

yik = x′ikβ + νi + εik, k = 1, . . . , ni; i = 1, . . . ,m, (1.2)

where yik is the size of soybean/corn production in the kth segment of the ith county,

and νi
iid∼ N(0, σ2

ν), and εik
iid∼ N(0, ψ). The parameter of interest can be defined as

θi = x′iβ + νi, where x′i =
∑Ni

k=1 xik/Ni.

Moura and Holt (1999) have extended the BHF model in a random coefficient re-

gression setting, in which both the slope and the intercept are random.

1.3.3 Generalized linear mixed models in small area estimation

When modeling discrete response variables, like binary or count, using linear mixed mod-

els can be problematic because they are designed for handling continuous variables, so,

the method of generalized linear models (GLM) has been developed to manage discrete

variables, McCullagh and Nelder (1983). The GLM model inferences are based on the

assumption that the responses are independent; however, this could be disputable in real

situations because the observations can be correlated. For example, in multi-stage cluster

sampling, the responses of the individuals within the same cluster could be correlated due

to the similarity in location. This shortfall in the GLM method led to the development of

the generalized linear mixed models (GLMM), McCullagh and Nelder (1983), Jiang and

Lahiri (2006a).

The GLMM expands from the GLM by incorporating random effects into the linear

predictor. This change allows for the correlation between different units into the context of
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a broad class of non-normally distributed data. In many cases, survey responses are binary

or categorical in nature, so the use of the GLMM method has gained more recognition.

For example, Malec et al. (1997) considered a logistic regression model with random

regression coefficients to estimate the true area-level proportion using the National Health

Interview Survey (NHIS). Other applications of the GLMM for estimating small area

proportions can be found in Stroud (1991), Malec et al. (1999), Jiang and Lahiri (2001),

and Jiang (2007).

1.3.4 Inference Using Mixed Models

There are two primary approaches for making inferences for small area estimates: the

empirical Bayes(EB) approach and the hierarchical Bayes(HB) approach. The goal for

both approaches is to approximate the posterior distribution of the parameter of interest.

The main difference between the two methods is that, in the EB method, the hyperpa-

rameters are estimated by using the traditional method, whereas in the HB method, those

hyperparameters are given prior distributions with careful considerations.

Efron and Morris (1975) showed how the Bayes estimators arise in the context of

Bayes decision theory. Let yi|θi
ind∼ N(θi, 1), i = 1, · · · ,m. Under the sum of squared

error loss (SSEL), the frequentist’s risk of y = (y1, · · · , ym)′, the maximum likelihood

estimator of θ = (θ1, · · · , θm)′, is given by

R(θ, y) =
m∑
i=1

E[(yi − θi)2|θi] = m.
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It is well-known that for m ≥ 3, y is inadmissible for θ under SSEL and is uniformly

(i.e., for all θ ∈ Rm, the m-dimensional Euclidian space) inferior to the well-celebrated

James-Stein estimator θ̂JS = (θ̂1,JS, · · · , θ̂m,JS)′, where

θ̂i,JS =

(
1− m− 2

||y||2

)
yi,

where ||y|| =
√∑m

i=1 y
2
i is the norm of y. The above surprising admissibility result was

first discovered by Stein (1955), and the James-Stein estimator first appeared in James

and Stein (1961).

Efron (1975) proved the following interesting inequality:

R(θ, θ̂JS) ≤ m− (m− 2)2

m− 2 + ||θ||2
.

This inequality provides not only an alternative proof of superiority of the James-Stein

estimator over y but also an idea about the amount of gain in using the James-Stein esti-

mator over the maximum likelihood estimator. For example, if θi = 0 (i = 1, · · · ,m),

then

R(θ̂JS, θ) ≤ [m− (m− 2)] = 2

so that the largest reduction is obtained when θi = 0 (i = 1, · · · ,m) and m large. In

practice, the gain will be smaller because some variation in the θi’s is expected around

zero. Efron and Morris (1973) allowed for variation of θi by assuming the following prior

distribution:

θi
ind∼ N(0, A), i = 1, · · · ,m.
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Under this prior, they provided a parametric empirical Bayes justification of the James-

Stein estimator.

This concept of the Bayesian decision theory provides the background for the con-

strained Bayes and triple-goal estimators, which will be discussed more thoroughly in

later chapters. In discussing those estimators, they are obtained not just through maxi-

mizing the Bayes risk but through different constraints.

1.3.5 Discussion and Overview of the Dissertation

In this chapter, we have presented a broad overview of the estimation methods in small

areas, their advantages and disadvantages and applications in a variety of settings. We

have discussed both design-based and model-based approaches for inferences in small

areas. We have covered several methods for the variance component estimation and its

importance for inference in obtaining reliable estimates and their measure of uncertainty.

In particular, we have discussed small area estimation techniques to produce reliable esti-

mates for area-level proportions. In many instances, normality in modeling is commonly

assumed and is applied to survey-weighted proportions with known variance components

at the sampling level. In addition, normality is again commonly assumed for the random

effects of the area-level or unit-level mixed models. However, these assumptions may not

be valid in many cases.

In this dissertation, we develop statistical methodologies for estimating small area

means by expanding both basic area-level and unit-level models using complex survey

data. For inferences, we specifically focus on the hierarchical Bayesian approach and
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primarily use the Markov Chain Monte Carlo (MCMC) technique for inferences.

This dissertation is organized as follows. In Chapter 2, we consider three area-level

hierarchical Bayesian models to estimate small area proportions using complex survey

data. We will provide a description about how the Census Bureau handles the SAIPE pro-

gram by using a log transformation, and then we will illustrate how our model applies the

survey-weighted design estimates directly. We use the MCMC techniques for inferences

of our parameter estimates. To evaluate the performance of these models, we have used

various model fit and model diagnostic techniques.

In Chapter 3, we expand the area-level model by using the non-Gaussian distribu-

tion for discrete count data. The difficulty lies in how to model a weighted survey count

in a small area because a weighed count is not always integer-valued. We have made an

adjustment to the survey weights and the effective sample size to account for the survey

design. We have developed the full Bayesian model to a complex survey and obtained pa-

rameter estimates through the MCMC. We also compare our results to estimates derived

from other well-studied method, such as the EB method.

In Chapters 4 and 5, our interest expands from obtaining point estimates to evaluat-

ing an ensemble of estimates that would satisfy multiple criteria. In Chapter 4, we show

that, although posterior estimates reduce variances individually, they show over-shrinkage

as an ensemble. We consider a method of finding a new set of Bayes estimators with spe-

cific and known benchmarking constraints, with minimizing a specified distance function

with a given set of estimators.

In Chapter 5, we explore an ensemble of estimates that satisfy three criteria: rank,

empirical histogram, and point estimate. This ensemble of estimates is called triple-goal
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estimates, Shen and Louis (1998). We expand the triple-goal estimates procedure by first

applying a transformation to the observed data. We then apply additional constraints from

Chapter 4 such that our new estimators satisfy the benchmarking property.

In Chapter 6, we provide a summary of this dissertation and give directions for

future research.
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Chapter 2

Hierarchical Bayes Estimation of Small Area Proportions

2.1 Introduction

Let θi be the true proportion for the ith small area (i = 1, · · · ,m). As noted in Chapter

1, the survey-weighted direct estimate, θ̂i, is highly unreliable for small areas. In order to

improve on the survey-weighted small area proportions, different model-based methods,

which combine survey data with related administrative and census records, have been

proposed in the literature. In many applications, a transformation function on survey-

weighted proportions or counts is used. For example, the U.S. Census Bureau uses

logarithmic transformation on the survey-weighted counts or proportions in estimating

poverty rates for the U.S. counties, Bell et al. (2007). The log scale of regression vari-

ables are used at the prior model level, and they come from many different administrative

sources, such as Internal Revenue Service (IRS) tax information, food stamp programs by

the USDA Food and Nutrition Service, and Population Estimates Program (PEP) by the

Census Bureau. The method for obtaining estimates of small area proportions is straight-

forward. First, an empirical Bayes estimator of transformed true small area proportion

is found and then a simple back-transformation is taken to obtain an estimate of the true

small area proportion θi.

In many instances, there are still some counties with zero estimate school-age chil-

dren in poverty even with using the ACS. For example, in the 2005 ACS, 169 (about 5
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percent of the 3,141 total counties) had zero counts, Bell et al. (2007), and those counties

are excluded from the regression prediction because of the log of zero cannot be taken;

instead, the pure regression predictions are used for their area-level estimates.

There are several shortcomings of the Census Bureau’s methodology for producing

county poverty rate estimates. First, inconsistencies may come from excluding coun-

ties with zero survey-weighted counts from the model prediction. Second, although

the survey-weighted count is unbiased or approximately unbiased, the logarithmic trans-

formed survey-weighted count is likely to be biased. Third, the optimality property of

the empirical Bayesian method is lost when taking the back-transformation. Fourth, the

usual method of finding the mean squared error of the back-transformed empirical Bayes

estimator is not second-order unbiased.

This chapter is purely application-oriented. In section 2.2, we discuss model-

ing and different related inferential issues in obtaining improved estimates of smoking

prevalances for the U.S. states. In sections 2.3-2.5, we discuss the databases used for

estimation, model selection, and estimation, respectively.

2.2 Extensions of the Fay-Herriot Model and the Related Inferences

To estimate the smoking prevalences for the U.S. states, we explore the following two

models:

The Normal-Logistic Model:(NL)

For i = 1, . . . ,m,
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Level 1 (Sampling model) : θ̂i|θi
ind∼ N (θi, ψi),

Level 2 (Linking model) : logit(θi)|β, A
ind∼ N (x′iβ, A). (2.1)

The Normal-Logistic Random Sampling Variance Model:(NLrs)

For i = 1, . . . ,m,

Level 1 (Sampling model) : θ̂i|θi
ind∼ N

(
θi, ψi =

θi(1− θi)
ni

DEFFi
)
,

Level 2 (Linking model) : logit(θi)|β, A
ind∼ N (x′iβ, A), (2.2)

where DEFFi, the true design effect, is the ratio of the true sampling variance of the

survey-weighted proportion under the complex design to the true sampling variance of

the un-weighted sample proportion under simple random sampling of size ni.

Note that the sampling variances ψi are not estimable from the area-level data

{(θ̂i,xi), i = 1, · · · ,m}. For standard implementation of the FH and NL models, the

sampling variances ψi are estimated using additional design information (within small

areas), but errors due to estimation of sampling variances are generally ignored in the

subsequent inferences. This is a well-known deficiency of the area-level model compared

to a unit-level model. In spite of this deficiency, area-level models are widely used in

practice since it is usually easier to model aggregate statistics than individual observa-

tions, and area level modeling offers a natural way to incorporate survey weights and

other survey design properties into the hierarchical model.

The proposed NLrs model in order to partially rectify the problem associated with

FH and NL models mentioned in the last paragraph. Although NLrs captures a part of

uncertainty due to the estimation of small area sampling variances, the design effects,
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DEFFi, still need to be estimated using the design information. Note that inferences

from this model would not incorporate the error due to the estimation of DEFFi. The

idea of separating various design features from the sampling variances of survey statistics

can be traced back to Arora and Lahiri (1997) who used a hierarchical random sampling

variance model to estimate average expenditure on certain items for small geographical

areas using the Consumer Expenditure survey.

2.2.1 Estimation of ψi and DEFFi

To use the NLrs model, we need reliable estimates of DEFFi. In survey data, some low

population areas have few sampled clusters, thus their design-based estimates of DEFFi

are subject to both biases and instabilities. In this paper, we estimate DEFFi by d̂eff
rgn

j , a

design-based estimator of the design effect for the jth larger geographical region, DEFFj ,

in which the ith small area is located. These estimators are expected to be less variable

than the corresponding direct estimators of DEFFi, being based on larger number of sam-

pled clusters. In proposing d̂eff
rgn

j , we are implicitly assuming that the true design effects

for all the states in a given region are similar.

To implement NL model, we need reliable estimates of the sampling variances ψi.

The design-based estimates of ψi, being based on a few sampled clusters, are generally

unreliable and so we do not recommend the use of design-based estimates of ψi in the NL

model. In an effort to reduce the variability of the sampling variance estimators, we first

note

ψi =
θi(1− θi)

ni
DEFFi,
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and then use synthetic estimates of θi and DEFFi. As before, we estimate DEFFi by

d̂eff
rgn

j , and θi by θ̂rgnj , i.e. the direct survey-weighted proportion estimates for the larger

region j in which the small area i lies. We denote

ψ̂i =
θ̂rgnj (1− θ̂rgnj )

ni
· d̂eff

rgn

j , (2.3)

to estimate ψi in the NL1 model and call the model NL1. For DEFFi = 1, Carter and

Rolph (1974) and Morris (1983) used models similar to NL1. On the other hand, if we

use

ψ̂i =
θ̂synthi · (1− θ̂synthi )

ni
· d̂eff

rgn

j , (2.4)

to estimate ψi in the NL model, we call the model NL2. Mohadjer et al. (2007) used a

similar model to estimate proportions at the lowest level of literacy for states and coun-

ties. Unlike the model NL, the model NLrs is capable of accounting for uncertainty in

estimating the sampling variances. As a result, NLrs is expected to reflect more control

over the variability than the former model.

2.2.2 Inference on smoking prevalences for small areas

We consider a hierarchical Bayesian (HB) approach to make inferences about the smok-

ing prevalence for the states. We choose weakly informative prior distributions for
√
A

(uniform in a finite interval with large length) and β (normal distributions with wide

variances), Gelman (2006). All of our data analysis is carried out by the Markov Chain
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Monte Carlo (MCMC) method using the well-known WinBUGS package (http://

www.mrc-bsu.cam.ac.uk/bugs/winbugs/contents.shtml). The readers

are referred to Gelman et al. (2004) and Robert and Casella (2004) for details about

stochastic sampling methods, such as Metropolis Hastings and Gibbs sampling methods.

2.2.3 The review of the MCMC method

Let η = (θ,λ) be a vector with parameters of interest θ and hyperparameters λ. When

obtaining an explicit form for f(η|data), the distribution of η, the Markov chain (η`, ` =

0, 1, 2, . . . , ) is used. With a starting point η(0), the distribution of η` converges to a unique

stationary distribution π(η) that is equivalent to f(η|data) after discarding a sufficiently

large “burn-in” initial Markov chain samples. To reduce the autocorrelation between the

samples, a thinning method is involved, that is to keep every kth draw from each sequence.

After the d “burn-in” samples, we treat ηd+1, . . . , ηd+T as “independent” samples from

the target distribution f(η|data). By applying ergodic theory, see Robert and Casella

(2004), the average and the variance of the the sample, (ηd+1, . . . , ηd+T ), can be used to

approximate the posterior mean, E(η|data), and posterior variance, V (η|data).

2.2.4 Full conditional distributions for the HB models

Assume that the prior distributions for the model parameters β and A are f(β) ∝ 1, A ∼

Unif(0, L). Let θ̂ = (θ̂1, . . . , θ̂m)′ and Bi = ψi

ψi+A
.

The full conditional distribution for NL1 is given as:
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θi|β, A,θ ∝
1

θi(1− θi)
√
A
√
ψi

exp

(
−(θ̂i − θi)2

2ψi
− (logit(θi)− x′iβ)

2A

)
, for θi ∈ (0, 1)

β|θi, A, θ̂ ∼ N

(
m∑
i=1

(xix
′
i)
−1

(
m∑
i=1

xilogit(θi)

)
, A (xix

′
i)
−1

)
, for β ∈ Rp

A|β, θi, θ̂ ∼


ING

(
1
2
m− 1, 1

2

∑m
i=1(logit(θi)− x′iβ)2

)
A ∈ (0, L)

0 A ≥ L,

The full conditional distributions for NLrs are the same as those of NL except that ψi is

replaced by θi(1−θi)
ni

d̂eff
rgn

j for the distribution of θi given other parameters.

Since the full conditional distribution f(θi|β, A,θ) is not in explicit form, we need

to use the Metropolis-Hastings algorithm for that step. First, we let θ̃i = θi
1−θi , then the

density of (θi|β, A,θ) can be written as:

π(θ̃i|β, A,θ) ∝ h(θ̃i)f(θ̃i|β, A),

where f(θ̃i|β, A) is a log-normal density function given as:

f(θ̃i|β, A) ∝ 1

θ̃i
exp

(
(log(θ̃i)− x′iβ)2

2A

)
,

and h(θ̃i) is a function given by

h(θ̃i) = (1 + θ̃)2exp

 θ̂i − θ̃i
1+θ̃i

2ψi


We use f(θ̃i|β, A) as the “candidate” generating density function in the Metropolis-
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Hastings updating step.

To update θ̃i, we draw a candidate θ̃(k+1)
i from the log-normal density f(θ̃i|β, A)

with accepting probability α, where α is defined as

α(θ̃
(k)
i , θ̃

(k+1)
i ) = min

(
h(θ̃

(k+1)
i )/h(θ̃

(k)
i ), 1

)
.

Drawing samples from β|θ̃, A, θ̂ and A|β, θ̃, θ̂ are straightforward since full-conditional

distributions have explicit forms.

For implementing the MCMC, we have followed the guidelines given in Gelman

et al. (2004) and Cowles and Carlin (1996). We carefully examine the auto-correlation

function (ACF), Albert (2007), and trace plots within each chain for all parameters of a

given model. We use the Gelman-Rubin potential scale reduction factor and the Geweke

diagnostic criterion to determine the number of iterations and burn-in for each chain. In

the MCMC, we consider three parallel chains, each with 2.0 × 106 iterations, a burn-in

of 7.5 × 105, and thinning at 500 iterations. The maximum of potential scale reduction

factor values are displayed in Table 2.1 for all the models they are very close to 1, and so

there is no indication that the chains have not converged according to this criterion. The

Geweke diagnostic criterion essentially compares means of the first 10 percent against the

last 50 percent of the MCMC samples for each chain. The z-scores for hyperparameters

from all three chains of each model are given in Table 2.2.

NL1 NL2 NLrs
R̂ 1.011 1.013 1.006

Table 2.1: Max value of Gelman-Rubin statistic
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NL1 β0 β1 β2 β3 β4 A
chain 1 -0.55396 1.09104 0.08498 -0.38427 0.75539 0.91984
chain 2 0.5024 1.2851 0.8709 -1.0219 -0.7413 -1.0701
chain 3 -0.55396 1.09104 0.08498 -0.38427 0.75539 0.91984

NL2 β0 β1 β2 β3 β4 A
chain 1 0.1602 -1.6886 -0.9258 1.2218 -0.1350 2.0000
chain 2 -1.2510 0.5931 0.8681 -0.5818 1.0890 0.4111
chain 3 -0.0770 -0.0049 0.3157 -0.5080 0.1697 -0.5393

NLrs β0 β1 β2 β3 β4 A
chain 1 0.9492 -1.0812 -0.7199 0.3203 -0.6934 -0.4429
chain 2 -1.0532 0.1153 0.0478 0.7524 0.7808 0.0295
chain 3 -0.7625 0.6837 -0.6708 1.0699 0.5077 -0.4421

Table 2.2: Geweke diagnostic: z scores from each chain for all models

2.3 Data Source Description

2.3.1 The National Health and Interview Survey

The National Health Interview Survey, conducted by the U.S. Census Bureau for the

National Center for Health Statistics (NCHS), is an annual survey with a state-stratified

multi-stage complex design. It includes geographical identifiers, demographic and health

related variables. The survey is designed to produce reliable survey-weighted direct es-

timates and associated design-based standard errors for the nation and four major census

regions: (Region 1: Northeast; Region 2: Midwest; Region 3: South; and Region 4:

West).

The survey provides data for our study variable, a binary current smoking status for
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survey respondents. We have analyzed the current smoking status of persons and divided

them into two groups: smoking and not smoking. Current smokers were defined as those

who had smoked at least 100 cigarettes in their life time, and at the time of interview,

reported smoking everyday or some days.

The survey design includes primary sampling units (PSUs) which are individual

counties or contiguous groups of counties, and they are sampled without replacement

with a probability proportional to their estimated sizes. Within each PSU, the sampling

frame is further divides into sub-strata and clusters. We have used in-house data, and

so we are able to include survey design features unavailable to the public. In particular,

clusters of blocks of housing units are available for variance estimation.

In addition to detailed survey design variables, the data include various geog For

more details about the survey, see (http://www.cdc.gov/nchs/nhis/quest_

data_related_1997_forward.htm#2008_NHIS).

2.3.2 The American Community Survey

For the area-specific auxiliary variables used in the hierarchical models, we have used

data from the 2008 American Community Survey (ACS). The ACS essentially replaces

the long form of the decennial census and is the largest household sample survey that

the Census Bureau administers. Each year the ACS collects data on various geographic

and demographic, socio-economic variables with about 3 million addresses. The ACS

contains information similar to that of the Census long form, and it also enables the

data users to find various quantities in different geographical groupings. For more infor-
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mation about the ACS, see (http://www.census.gov/acs/www/about_the_

survey/american_community_survey/).

Since the auxiliary variables are derived from the ACS, they are subject to sam-

pling errors, an aspect we have not addressed in the paper. But, since the state-wide

sample sizes are large, one could ignore sampling variances for such estimates as a good

approximation.

2.4 Model Selection

In section 2.3, we have noted that the NLrs model, unlike NL1 or NL2, offers a partial

remedy to account for uncertainty in estimating sampling variances and thus should pro-

vide more accurate credible intervals for smoking prevalence for the states. However, it is

instructive to compare these three models using different statistical tools, given the same

set of auxiliary variables. In subsection 2.4.1, we discussed selection of a reasonable set

of auxiliary variables needed to implement the three models. In subsection 2.4.2, we will

compare standard model fit and model selection statistics for the three hierarchical mod-

els. Readers are referred to Lahiri (2001) for various model selection methods available

for hierarchical models. In subsection 2.4.3, we compare estimates from the three models

with the corresponding design-based estimates.

2.4.1 Selection of auxiliary variables for Level 2

There are several state specific auxiliary variables available from the ACS. In order to

select a common set of reasonable auxiliary variables for Level 2, we apply standard
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regression model selection techniques with logit(θ̂) as the dependent variable using data

from the 15 largest states. In this preliminary data analysis, we implicitly assume that for

these 15 largest states, the sampling variances of survey-weighted estimates are small, so

we use standard regression model selection tools. See Jiang et al. (2001) for a similar data

analysis.

We select the following state specific auxiliary variables: percent of minority pop-

ulation, poverty rate, percent of population without high school diploma, percent of pop-

ulation age 65 and above. The auxiliary variable poverty percentage was marginally non-

significant at 0.1 with a p-value of 0.103. However, including this auxiliary variable

results in an increase of the adjusted-R squared value from 0.65 to 0.71 and thus this

auxiliary variable is included in the subsequent data analysis.

2.4.2 Comparison of different model fit and model selection statistics for

the three models

We first check the Bayesian p−values for the three models. Gelman et al. (2004), Datta

et al. (1999) and Rao (2003)) discuss the Bayesian p−value for checking the adequacy of

hierarchical models. The main idea is that if the model fits, then replicated data generated

under the model should be similar to observed data. That is, the observed data should look

plausible under the posterior predictive distribution. Thus, the technique for checking

the model fit is to draw simulated samples from the posterior predictive distribution and

compare these to the observed data.

Let yobs denote observed data and ynew be predicted data from a distribution, f(y|θ).
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Let functions f(d(yobs, θ)|yobs) and f(d(ynew, θ)|yobs) be the posterior (predictive) dis-

tributions of d(yobs, θ), and d(ynew, θ), where d(y, θ) is a χ2-type discrepancy measure

defined as:

d(y, θ) =
50∑
i=1

(σ2
i )
−1(yi − θi)2.

The parameter σ2
i is the true sampling variance for area i. For models NL1 and

NL2, we replace σ2
i by ψ̂i as given in subsection 2.2.1 For model NLrs, we use σ2

i =

θi(1−θi)
ni

d̂eff
rgn

i .

We generate parameters, θ(`), from the posterior distribution, f(θ|yobs), and new

data y(`) from f(y|θ(`)), ` = 1, . . . , B, whereB(= 7, 500) is the total number of iterations.

Then, we generate two sets of samples, d(yobs, θ
(`)) and d(y(`), θ(`)). These are used to

approximate the Bayesian p-value P{d(ynew, θ) ≥ d(yobs, θ)|yobs} by

pB ≈ B−1

B∑
`=1

I{d(y(`), θ(`)) ≥ d(yobs, θ
(`))}, (2.5)

where I(·) is an indicator function.

An extreme value (near 0 or 1) of the Bayesian p-value approximated in (2.5) indi-

cates lack of fit of a given model; whereas for an adequate model, this measure will be

close to 0.5. According to this criterion (Bayesian p-values are reported in Table 2.4 ),

none of the three models shows a clear lack-of-fit.

Next we compare three models using the deviance information criterion (DIC) crite-

rion suggested by Spiegelhalter et al. (1998) The DIC is based on the posterior distribution

of the deviance statistic,
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D(θ) = −2 log f(y|θ) + 2 log h(y),

where f(y|θ) is the likelihood function for the observed data, yobs, given the parameter

θ, and h(y) is a standardized function of the data alone. The fit of the model is then

expressed by the posterior expectation of the deviance, D̄ = Eθ|y(D), and the complexity

the model is captured by the effective number of parameters pD,

pD = Eθ|y(D)−D(Eθ|y(θ)) = D̄ −D(θ̄).

Then, the deviance information criterion (DIC) is defined as:

DIC = D̄ + pD = 2D̄ −D(θ̄).

The smaller the values of DIC, the better the model. Table 2.3 displays the DICs

values for the three models. The models NL1 and NLrs are very similar and only marginally

better than NL2, according to this criterion.

Next we compare the three models using the posterior predictive divergence ap-

proach given in Laud and Ibrahim Laud et al. (1995). We approximate the Laud-Ibrahim

divergence measure d(ynew, yobs) = E(n−1‖ynew − yobs‖2|yobs) by (nB)−1
∑B

` |y(`) −

yobs|2, where n is the dimension of yobs. The smaller the divergence measure, the bet-

ter the model. Table 2.3 displays the Laud-Ibrahim divergence measures for the three

models. The models NLrs and NL1 are very similar and only marginally better than NL2

according to this criterion.
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models Bayes p-value DIC L-I disc measure
NL1 0.4305 -172.69 0.0042
NL2 0.382 -170.81 0.0048
NLrs 0.4058 -172.134 0.0043

Table 2.3: Bayesian p-values and Laud-Ibrahim discrepancy measures for different
models.

Thus, by using the standard techniques of model fitting and comparison, it is hard to

discern the difference between the three models. However, one major advantage of using

NLrs over NL1 or NL2 is that it provides an idea of variability of the sampling variance

estimates. To illustrate this point we plot the sampling variance estimates in Figure 2.1

for models NL1 and NLrs along with the credible intervals associated with model NLrs.

On the x-axis, states are ordered by the number of PSUs within each state. These PSUs

are clusters defined explicitly for in-house variance estimation. For confidentiality rea-

sons, actual state names are omitted. This rule will be applied for all Figures that show

state level information. The graph shows that variability in estimating sampling variances

could be substantial for the smaller states. Thus, the model NLrs will provide a better

measure of interval estimates of the small area proportions θi compared to the other two

models.
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Figure 2.1: Coverage for model NLrs

2.4.3 Comparison of different model based estimates with the correspond-

ing design-based estimates

In Figure 2.2, we plot the direct and the hierarchical Bayes estimates of smoking preva-

lence against states ordered by the number of PSUs. The national smoking average in

2008 is represented by the solid line at 20.6%.
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Figure 2.2: Estimates by states

The HB estimates, like the direct estimates, randomly fluctuate around the national

estimates and do not show any systematic pattern to indicate possible bias from the mod-

eling. The direct estimates appear to be more variable around the national estimates than

the corresponding HB estimates, especially for the group of states with smaller sample

size.

The variability among the direct estimates reduces as we move from the left to

right side of the graph. For the largest states, direct estimates are very similar to the two

hierarchical Bayes estimates. As shown in Figure 2.2, we see the pattern that among

smaller states, model-based estimates of both methods are pulled towards the national

average.

Since direct design-based estimates at higher levels of aggregations with large sam-

ple sizes can be considered accurate, relative differences between design-based and differ-
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ent model-based estimates at higher level can provide a way to compare different models.

Since the NHIS was designed to produce reliable estimates at the census regional level,

we compare direct estimates with those derived from three models at the census regional

level. To be specific, in Table 2.4, we examine the following relative errors (RE) for the

four census regions :

REj =

∣∣∣∣∣
∑

i∈j ŵiθ̂
ps
i − θ̂j,region

θ̂j,region

∣∣∣∣∣ , j = 1, . . . , 4,

where θ̂j,region is the census regional design-based direct estimate, ŵi is the survey weighted

population estimate for state i, and θ̂psi is the posterior mean from the area-level HB model

at state i. The smaller the value of RB, the better the model is under this assessment cri-

teria. We note that, in Census Region 4, all methods performed well. Overall, the model

NLrs performs the best. The models NL1 and NL2 perform equally well; NL1 was slightly

better in regions 3 and 4 whereas NL2 was better in regions 1 and 2.

Cen. Rgn. NL1 NL2 NLrs
Rgn 1: NE 0.0329 0.0307 0.0268
Rgn 2: MW 0.0372 0.0352 0.0335
Rgn 3: S 0.0542 0.0554 0.0524
Rgn 4: W 0.0019 0.0024 0.0010

Table 2.4: Relative errors for three models

2.5 Estimation

From the discussion of subsection 2.4.2, it is clear the model NLrs should provide the

most sensible analysis among all the three models considered because it includes the
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variability at the sampling level in the model, so in this section we compare HB estimates

from model NLrs with direct estimates. In Figure 4, we plot the direct and HB estimates

along with the credible intervals for states arranged by the number of PSUs. In all but five

small states, direct estimates are within the posterior credible intervals, indicating a lack

of evidence of possible bias in model NLrs.
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Figure 2.3: Coverage for model NLrs

In Figure 2.3, we plot posterior standard errors and the sampling standard errors

against states ordered by the number of PSUs. The HB and direct estimates perform very

well for the large states. However, the HB estimates display improvement over the direct

estimates for the small states by having narrower standard errors.

2.6 Summary

This study provides evidence that hierarchical Bayesian methodology can show improve-

ment over direct design-based estimates; this was illustrated by estimating the smoking
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prevalence for the U.S. states. We carefully examined different area level hierarchical

models and found that the normal-logistic random sampling model has more success in

providing better sensible data analysis among the models that were considered. In the

future, we would like to extend the hierarchical Bayesian methodology proposed in this

paper to estimate smoking prevalence for sub-state areas.
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Chapter 3

Hierarchical Bayes Estimation of Poverty Rate

3.1 Introduction

In Chapter 2, we assumed normality for the sampling distribution of the survey-weighted

small area proportions and argued that such a model has a number of advantages over a

similar model-based on transformed survey-weighted proportions. However, the normal-

ity assumption can still be problematic when the true proportions of interest lies near the

boundaries (0 or 1). Thus, for cases where the normality assumption is not tenable, it calls

for more flexible models.

Dempster and Toberlin (1980) proposed an empirical Bayes method to estimate the

Census undercount for local areas using the a logistic regression model. MacGibbon and

Tomberlin (1989) considered the following hierarchical logistic regression model:

yij|πij
ind∼ Bernoulli(πij),

logit(πij) = log

(
πij

1− πij

)
= x′ijβ + νi,

νi
ind∼ N(0, σ2

ν), (3.1)

where yij is a binary response variable; πij = P (yij = 1|πij); x′ij is a vector of covariates

for unit j in area i, j = 1, . . . Ni, i = 1, . . .m.

The parameter of interest is the true area proportion Pi =
∑Ni

j=1 yij/Ni. An esti-

38



mator of Pi is given by P̂i =
∑Ni

j=1 π̂ij/Ni, where π̂ij is obtained from (3.1) using either

an empirical Bayes (EB) or a hierarchical Bayes (HB) method. Applications of similar

models can be found in Wong and Mason (1985) and Tomberlin (1988).

Malec et al. (1997) considered the following random regression coefficient model

for binary data. Their model is defined as

yij|πij
ind∼ Binomial(πij, nij)

logit(πij) = log

(
πij

1− πij

)
= x′jβ;

βi = Ziα + vi;

vi
iid∼ N(0,Σv), (3.2)

where yij is the total number of individuals with the characteristic in class j in the area

i with a common probability πij; xj is a class-specific covariate vector; Zi is a p × q

area level covariate matrix, j = 1, . . . Ni, i = 1, . . .m. By applying a hierarchical

Bayes (HB) method, they obtained an estimator for the finite population proportion P =∑m
i=1

∑Ni

j yij/
∑

i∈I Ni by aggregating up the model-based estimate, π̂ij . However, this

method does not incorporate survey specific features, such as survey weights.

For simple random sampling, unweighted counts are typically modeled by a bi-

nomial distribution, but binomial distribution may not fit well for weighted counts, for

complex sampling. In section 3.2, we explore a few adjustments on the survey-weighted

counts before applying a binomial sampling distribution for the survey weighted counts.

In section 3.3, we describe a Bayesian model for survey-weighted counts and the related
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hierarchical Bayes methodology. In section 3.4, we discuss elements of poverty mapping.

In section 3.5, we apply our proposed method in estimating poverty rates for Chilean

municipalities. We add discussions in section 3.6.

3.2 Notations and Data Preparation Steps

Consider a population U partitioned into m small areas Ui, where
⋃
i Ui = U . Let yij

denote the binary characteristic of interest (e.g., poverty status) associated with the jth

observational unit (e.g., person) in the ith small area (i = 1, · · · ,m; j ∈ Ui). Our goal is

to estimate the small area proportions

Pi =

Ni∑
j=1

yij/Ni,

where Ni is the number of observational units in the ith small area (i = 1, · · · ,m).

We define ultimate sampled units as the smallest units of the finite population se-

lected by a sampling mechanism. We consider a situation where observational units are

nested within ultimate sampled units. Thus, in our case sampled units can be viewed as a

cluster of observational units. In some cases, values of the binary variable for the observa-

tional units could be the same within a given sampled unit. In other words, observations

within a given sampled unit are perfectly correlated. In such cases, we define sij as the

set of observational units in the jth sampled unit in the ith small area and s̃i be the set of

sampled units in the ith small area ( j ∈ s̃i, i = 1, · · · ,m). Thus si =
⋃
h∈s̃i sih denotes

a set of observational units in small area i. Let ñi denote the total number of observational

units in si.
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3.2.1 Adjusted survey-weighted counts

We first define the effective sample size as di = ñi

deff , where deff is an estimate of the

design effect for a large geographical area in which the ith small area is located (i =

1, · · · ,m). One could also use an approximation formula by Kish (1965) to obtain deff;

however, this approximation is very unstable when the sample size within the cell is very

small. In the next subsection, we will further describe a method for obtaining deff. We

define ni = bdic, where bdic denotes the largest integer less than di. Next, we make

a simple ratio adjustment to the final survey weights, say wfinal
ij , by the factor ni∑

j∈si
wfinal

ij
.

Thus, our adjusted weights, wij , are calibrated such that
∑

j∈si wij = ni.

Instead of modeling the original survey-weighted counts
∑

j∈si w
final
ij yij , we consider

a model for the adjusted survey-weighted counts ỹi =
∑

j∈si wijyij . Note that the adjusted

survey-weighted counts ỹi are generally not integers and so we model yi = bỹic or bỹic+

1.

3.2.2 Estimation of design effect for a large area

The true design effect, denoted by DEFF, is defined as:

DEFF =
V (pw)

Vsrs(p)
,

where pw is a survey-weighted proportion; V (pw) is the true design-based variance of pw

under complex sampling; p is unweighted proportion; Vsrs(p) is the variance of p under

simple random sampling.

To estimate V (pw) for a large area, we can simply use a standard design-based
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variance estimation technique. Note that we cannot use standard formula for estimating

Vsrs(p) because the sample is obtained using a complex sample survey design. We now

describe a procedure to estimate Vsrs(p) using complex survey data.

Let s denote a sample of ultimate sampled units in the large area and sj denote the

set of observational units in the jth sampled unit (j ∈ s). Note that we can write the

unweighted sample proportion p as

p =

∑
j∈s ñjyj

ñ
,

where ñj is the number of observational units in the jth sampled unit (j ∈ s) and ñ =∑
j∈s ñj .

To approximate Vsrs(p), we use the following working model often used for simple

random sampling:

Em(yj) = P, Vm(yj) = P (1− P ), and Covm(yj, yj′) = 0, for j 6= j′.

We use the subscript m in expectation, variance and covariance to indicate that they are

with respect to the above model.
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Under the above SRS model,

Vm(p) = Vm

(∑
j∈s ñjyj

ñ

)
=

1

ñ2

∑
j∈s

ñ2
jVm(yj)

=
1

ñ2

∑
j∈s

ñ2
jP (1− P )

=
P (1− P )

ñ2

∑
j∈s

ñ2
j .

We can obtain a lower bound of the Vm(p) using the Cauchy-Swartz inequality:

Vm(p) ≥ P (1− P ) · (
∑
nj)

2

hñ2
=
P (1− P )

h
,

where h denotes the number of ultimate sampled units in s.

Thus, a conservative estimate of DEFF, deff, is given by:

v(pw)

pw(1− pw)/h
,

where v(pw) is a standard design-based variance estimate.

3.3 The Binomial-Beta model for survey-weighted counts

We assume the following Binomial-Beta model for the survey-weighted counts:

Model L:
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For i = 1, . . . ,m,

Level 1 : yi|πi
ind∼Binomial(ni, πi),

Level 2 : πi|β, ξ
ind∼Beta(µiξ, (1− µi)ξ),

ξ > 0, logit(µi) = x′iβ (3.3)

where xi is a vector of p known predictors; β is a p × 1 vector of unknown regression

coefficients (intercept included). We also assume that β has an improper uniform in Rp

and is independent of 1/ξ ∼ (0,∞). From an unpublished work of Tak and Morris

(2012), it can be shown that the posterior distribution of πi is proper under this prior

distribution.

In the above model, Beta(a, b) is the Beta distribution with the following probability

density function:

1

Beta(a, b)
xa−1(1− x)b−1, 0 < x < 1; a, b > 0.

Note that the posterior distribution of πi is given by

πi|y, β, ξ
ind∼ Beta(yi + µiξ, ni − yi + (1− µi)ξ).

Then, we have
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E(πi|y, β, ξ) = (1−Bi;L)pi;L +Bi;Lµi = πBi;L(β, ξ) ≡ πBi;L,

V (πi|y, β, ξ) =
1

ni + ξ + 1
πBi;L(1− πBi;L) = V B

i;L(β, ξ),

where

pi;L =
yi
ni
,

Bi;L =
ξ

ξ + ni
= Bi;L(β, ξ).

From Model L (3.4), we can see that Bayesian inference can be made using the following

posterior distribution:

f(π1, . . . , πm|y) ∝
∫
β

∫
ξ

f(π1, . . . , πm,β, ξ)dβdξ.

Since the joint distribution f(π1, . . . , πm,β, ξ) cannot be expressed in a simple closed

form, an approximation is needed. Tak and Morris (2012) used an approximation method

to obtain the posterior distribution in which the integration is approximated by Laplace’s

method.

The posterior distribution of πi (i = 1, · · · ,m) can be generated by:

Step 1: Generate β and ξ using MCMC;

Step 2: Generate πi;L (i = 1, · · · ,m) from Beta(yi + µiξ, ni − yi + (1− µi)ξ) using β

and ξ from Step 1;

Note that there is another possible model, say Model U, with ni and yi replaced by ni + 1

and yi+1, respectively in Model L. We suggest that the final model is a weighted average

model between Model L and Model U.

45



We define the Model avg as:

Model avg:

πavgi = φiπi;L + (1− φ)πi;U , (3.4)

where φi = 1 − (di − ni). We can generate πavgi from each MCMC run of πi;L and πi;U

from Model L and Model U, respectively. The posterior mean, E(πi|y), is approximated

by the sample mean of the posterior samples and the posterior variance ,V (πi|y), is used

as a measure of variability.

3.4 Review on Poverty

Poverty is regarded as one of the most serious social problems around the world. Interna-

tional organizations, such as the World Bank and the United Nations, (UN), have devel-

oped many programs to confront this challenge. For example, the UN established a pro-

gram, called the Millennium Development Goal, for developing countries to reduce their

extreme poverty rates by 50 % by 2015, (http://www.un.org/millenniumgoals).

To compare the severity of poverty problems among different countries, the World Bank

defines the common international poverty line in absolute terms in dollars. It defines ex-

treme poverty as a person living on less than US$1.25 per day and moderate poverty as a

person living with less than $2.00 a day. Despite progress, it’s estimated that more than

1.4 billion people, or one quarter of the population of the developing countries, still lived

below the extreme poverty line in 2005, Chen and Ravallion (2008).

There are two methods of measuring poverty: absolute and relative. Absolute

poverty is defined in terms of the minimal necessary requirements to afford sets of stan-
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dards, such as food, clothing, health care, and shelter. An example of absolute measure-

ment would be the percentage of the population living with less than an adequate nutri-

tional diet, (approximately 2000-2500 daily calories recommended by the World Health

Organization (WHO) and the Food and Agriculture Organization (FAO), Tontisirin and

Haen (2001)). One of the advantages of this method is its consistency over time and

between different countries. However, it is often criticized that the amount of minimal

survival resources may not be the same in all places and across different time periods. For

example, a person living in a colder climate requires heat during colder months while a

person living in the tropical area does not.

On the other hand, relative poverty is a measure for a person living below a level

of relative poverty threshold based on “economic distance.” The economic distance is a

level of household income that is usually set at a fixed percentage of the national median

household income, Ravallion (2010). This means that there will always be a family living

in relative poverty by its nature, and this attribute can sometimes lead to some strange

results. For example, if the median household income in a wealthy neighborhood earns

US$1 million dollars/year, then a family with US$100,000 in that neighborhood would

be considered living in poverty. At the other end of the spectrum in a poor neighborhood

where the median household income is below the national poverty level, a person with

the median income would not be considered poor in this neighborhood.

Each country adopts one method or another to assess its poverty rates by conduct-

ing large population household surveys. For example, the U.S. Census Bureau uses the

absolute poverty measure to analyze the poverty rates with the American Community

Surveys (ACS). It categorizes each person or family into one of 48 possible poverty
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thresholds to determine the poverty status, (https://www.census.gov/hhes/

www/poverty/methods/measure.html). In the United Kingdom, the Office for

National Statistics uses the relative poverty rate. In 2006, 60% of the yearly median

income was estimated at £12,000 for a 35-hour working week before tax, Cooke and

Lawton (2008).

3.4.1 Poverty indicators

In the literature, there are many different indicators intended to summarize poverty of in-

come inequality in one measure. Each of them illustrates one particular aspect of poverty

measures. Foster et al. (1984) have given a brief description of the class of poverty in-

dicators. Consider a finite population of size N partitioned into D small areas of sizes

N1, . . . , ND. Let Edj be a suitable quantitative measure of welfare, such as income or

expenditure, for an individual j in a small area d. Let z be a fixed poverty level; that is,

the threshold for Edj under which a person is considered as living “under poverty.” Then,

the family of FGT poverty measures for each small area d is defined as

Fαd =
1

Nd

Nd∑
j=1

Fαdj, d = 1, . . . , D, (3.5)

where

Fαdj =

(
z − Edj

z

)α
I(Edj < z), j = 1, . . . , Nd, α = 0, 1, 2,

and I(Edj < z) = 1 means person under poverty (Edj < z) and I(Edj < z) = 0 means

otherwise.
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For α = 0, we get the proportion of individuals under poverty in area d that is

equivalent to the simple head count ratio at the area-level. When α = 1, the measure F1d

is called the poverty gap, and it counts only the fraction
(
z−Edj

z

)1

in the small area d. In

other words, F1d only measures the area mean of the relative distance to the poverty level

of each individual. When α = 2, the measure F2d is called the poverty severity and large

values of F2d can point out areas with severe levels of poverty.

3.4.2 Estimation of the FGT measure

In a survey setting, a direct estimator of Fαd for an area d can be defined as:

F̂αd =
1

N̂d

∑
j∈sd

wdjFαdj, α = 0, 1, 2, d = 1, . . . , D, (3.6)

where wdj is the sampling weight of an individual j from the area d, and N̂d =
∑

j∈sd wdj

is the design-unbiased estimator of Nd. This estimator, F̂αd, becomes unreliable when

there are limited sample sizes, nd, for area d.

Molina and Rao (2010) suggested the following method for such cases. Suppose

that there is a one-to-one transformation Ydj = T (Edj) of the welfare variable, Edj , where

Ydj follows a nested error linear regression model, as in the BHF model. Then, equation

(3.5) can be written as:

Fαdj =

(
z − T−1(Ydj)

z

)α
I(T−1(Ydj < z)) := hα(Ydj), j = 1, . . . , Nd (3.7)

Molina and Rao’s model does not use survey weights; rather, it predicts for the
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nonsampled units in the population and combines them with the observed values to esti-

mate the poverty measure. Molina et al. (2012) have used similar modeling method by

incorporating the intra-class correlation into their model.

In comparison, our model, Model avg (3.4), has incorporated survey weights and

some features of the survey design to estimate the area-level poverty, and since we are

using the survey weights, our estimates will be approximately design-unbiased.

3.5 Data Analysis

3.5.1 Description of Chilean Poverty Data: CASEN 2009

Our model, Model avg 3.4, will be applied to measure the poverty rate in Chile to esti-

mate the area-level poverty rates for the Chilean municipalities (comunas). In Chile, the

Ministry of Planning and Cooperation uses the absolute poverty rate and administers a

survey called the Encuesta Nacial de Caracterización Socioeconómica, (CASEN) to as-

sess poverty for non-institutionalized civilians in the country,

(http://www.ministeriodesarrollosocial.gob.cl/casen/en/index.

html).

CASEN is a multipurpose survey with two major objectives:

• To characterize the situation of households and the population on issues related to

poverty, income distribution and access to welfare programs.

• To estimate coverage, focalization and distribution of the government budget on the

main social programs of national coverage.
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The Chilean government establishes two poverty boundaries and two baskets of

goods associated with the poverty levels. The first level, called the extreme poverty level,

is based on the cost of buying a basket of food goods which contains the minimum amount

of nutrition required for an average person to sustain health. The second poverty level is

based on the consumption values for other non-food related and yet essential goods. The

values are calculated by multiplying the cost of basic needs times the Engel coefficient,

which is defined as a ratio of food consumption in total consumption. If a person can

afford only the first basket of goods, he/ she is poor and if the person cannot afford either

basket, he/she is extremely poor, Glasinovic (2010).

The poverty line is further defined for different geographical regions: urban and

rural. From 2009 CASEN, the poverty level for an urban zone was drawn at $64.134 and

for a rural zone, it was at $43.24. For extreme poverty level, the amount at the urban area

was $32.06 and $24.71 in rural area, (http://www.hogardecristousa.org/

v4/?pobreza).

3.5.2 The mode of data collection

CASEN is a survey with a complex design. It samples approximately 75,000 housing

units from around 4000 geographic areas called “secciones” which are regarded as the

PSUs. Every PSU falls within the boundary called ‘comuna’(municipality), and comunas

are categorized into two classifications: urban or rural. The PSUs are then grouped into

strata on the basis of two geographical classifications: comuna and urban/rural classifica-

tion. Within each stratum, the selection of PSUs is carried out by using the probability
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proportion to size (PPS) method, where the size variable is the number of housing units.

Once the housing units within a selected PSU are updated, the second stage of sam-

pling is carried out by selecting a sample of housing units, an average of 16-22 housing

units, through a systematic sampling method. That is a procedure that uses a random

start and a systematic interval to select the units into the sample. It is assumed that those

housing units share the same selection probability. The diagram of the CASEN survey

design is given in the Figure 3.1.

Figure 3.1: CASEN survey design diagram

Within each sampled housing unit, all households within the housing unit are identified

and all household members are interviewed. More information about the CASEN can be

found at (http://www.ministeriodesarrollosocial.gob.cl/casen/en/

index.html).
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3.5.3 Selection of auxiliary variables

For the Model avg, we have used the covariates that are selected from the Chilean gov-

ernment’s analysis of the CASEN survey. They have fitted a theoretical regression model

and used the backward selection method to choose from many candidate variables. Our

choice of covariates are

• historical poverty based on the last three years

• percent of population living in the rural area

• percent of school attendance.

Like in Chapter 2, it should take into account that the sampling errors of covariates are not

completely eliminated. However, this aspect will not be discussed further in this section.

3.5.4 Estimation Results

We plot the posterior mean from the Model avg (3.4) against the direct design estimates

on the 30 smallest comunas and the 30 largest comunas by the sample size.
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Figure 3.2

We can see from Figure 3.2 that the posterior estimates and the direct estimates are very

similar in larger areas. On the other hand, the difference between the two estimates are

larger in smaller comunas. As expected, the credible intervals for larger comunas are

significantly narrower than those of smaller comunas.

In Figure 3.3, we plot the posterior sampling standard errors and the sampling stan-

dard error for the 30 smallest and the 30 largest comunas. It is seen that the standard errors

for model-based estimates show an improvement over the sampling standard estimates.
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Figure 3.3

3.5.5 Model Diagnostic

To evaluate the possible bias introduced by the model, we use the simple ordinary least

squares (OLS) regression method suggested by Brown et al. (2001). We plot the model-

based estimates against the direct design estimators. We would expect points randomly

scattered around the 45◦ line. If a pattern is shown in the scatter plot, then it may indicate

that there is bias due to model mis-specification. We plot the design estimates as X and

the model-based estimates as Y , and see how close the regression line, Y = αX , is to

Y = X . We obtain the estimated α value as 0.993 with standard error 0.003. Figure 3.4

shows a scatter plot with the fitted regression line.
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Figure 3.4: Scatter plot with regression line

The regression result shows no significant difference from Y = X , and this result may

indicate no evidence of bias due to possible model mis-specification.

3.5.6 Model comparison

We will compare our model with the EB estimates, using the Prasad and Rao (1990)

method. In the Prasad Rao (PR) method, they have used the hierarchical model in equa-

tion (2.3), where hyperparameters are estimated by using the MLE and weighted least

squares (WLS) methods. Once estimates are obtained, we calculate their aggregated

weighted proportion at the larger regional level and compare them to the corresponding

aggregated proportion of the design-based estimates.

Table 3.1 shows the relative errors between two estimators at the regional level.

Even though both methods provide good estimates at the regional level, our model-based

estimates clearly out-perform those of the EB method in almost all the regions.
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region Model avg.rgn EB.rgn
1 0.0038 0.0063
2 0.0112 0.0162
3 0.0171 0.0314
4 0.0109 0.0175
5 0.0126 0.0100
6 0.0117 0.0266
7 0.0063 0.0323
8 0.0115 0.0177
9 0.0296 0.0026

10 0.0176 0.0331
11 0.0172 0.0033
12 0.0077 0.0221
13 0.0217 0.0052
14 0.0093 0.0548
15 0.0125 0.0008

Table 3.1: Relative Error at the region between Model-avg estimates and EB estimates

3.6 Summary

In this section, we have expanded the area-level model for discrete count data. Generally,

modeling the survey weighted counts is a challenging problem because of they are non-

integer values. This section provides a guideline for making appropriate adjustments

for survey weighted counts, and we also obtained estimates for area-level proportions

without using the normality assumption. Unlike some other previous work on poverty,

we incorporated the survey weights and survey design features into the model, so that

our estimates are design consistent. We also have shown that estimates from our model

performed better than the EB based estimates, but further analysis could be explored.

Also, additional analysis for the model fit can be examined.
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Chapter 4

Constrained Bayes Estimates

4.1 Introduction

Louis (1984) proposed a constrained empirical Bayes method for a special case of the Fay-

Herriot model with xTi β = µ, Di = D (i = 1, · · · ,m). Louis showed that even though

posterior means are optimal under the sum of the square error loss function (SSEL), they

overshrink in the following sense:

E

(
m∑
i=1

(θi − θ̄)2|y

)
≥

m∑
i=1

(
θ̂Bi −

¯̂
θB
)2

,

where θ̂Bi = E[θi|y; (µ,A)] and ¯̂
θB = m−1

∑m
k=1 θ̂

B
i with equality holding if and only

if all ((θi − θ̄), . . . , (θm − θ̄)) have degenerate posteriors. Ghosh (1992) has provided a

proof, and its corresponding weighted version is presented by Frey and Cressie (2003).

In order to address this overshrinking problem, Louis (1984) developed the concept

of constrained Bayes (CB) estimation. The CB estimators are obtained by minimizing the

posterior risk:

E

[
m∑
k=1

(θk − θ̄)2|y; (µ,A)

]
,
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under the sum of square error loss function, subject to the following two constraints:

∑
k=1

θ̂k = E[
∑
k=1

θk|y; (µ,A)] (4.1)

m∑
k=1

(θ̂k − ¯̂
θ)2 = E

[
m∑
k=1

(θk − θ̄)2|y; (µ,A)

]
, (4.2)

where θ̄ =
∑m

k=1 θk/m, and ¯̂
θ = 1/m

∑m
k=1 θ̂k. The Bayes estimator satisfies the first

constraint but not the second one. Louis (1984) used Langrange’s method of undeter-

mined multipliers to arrive at the following constrained Bayes estimator of θi:

θ̂CBi = wθ̂pmi + (1− w)ˆ̄θpm, (4.3)

where θ̂pmi = E(θi|y), and ˆ̄θpm = 1/m
∑m

i=1 θ̂
pm
i . The weight w is defined as

w =

(
1 +

m−1
∑m

i=1 V (θi|y)

m−1
∑m

i=1(θ̂pmi − ˆ̄θpm)2

)1/2

,

where V (θi|y) is the posterior variance of the ith parameter in the ensemble. The con-

strained Bayes estimator, θ̂CBi , involves unknown hyperparameters µ and A. Replac-

ing these unknown hyperparameters by their estimates one obtains constrained empirical

Bayes estimator of θi. Lahiri (1990) extended the constrained empirical estimation to es-

timate finite population means under a robust Bayesian model that does not require full

specification of the sampling and prior distribution. He showed that under certain regu-

larity conditions, constrained empirical Bayes estimators approach to the corresponding

constrained Bayes estimator when m is large. In a constrained hierarchical Bayes ap-

proach, we put priors, usually flat priors, on the hyperparameters and obtain the desired
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estimator by a similar constrained optimization process. Posterior risks, means, variances,

etc. are to be interpreted with respect to the posterior distribution of θ given data y, inte-

grating out µ and A. The formula is exactly the same as the constrained Bayes formula

given above. For constrained hierarchical Bayes estimation for a fairly general model, see

Ghosh (1992)

4.2 Constrained Bayes estimate: Benchmarked extension

Now we are concerned with the extension where the estimators satisfy certain constraints,

such as the aggregate mean. Let θ̃ = (θ̃1, · · · , θ̃m)′ be an estimator of θ = (θ1, · · · , θm)′,

where θi denotes true total of area i (i = 1, · · · ,m). There are different choices for θ̃

(e.g., direct, synthetic, composite, empirical Bayes, hierarchical Bayes, triple goal etc.).

Let θ̄w =
∑m

k=1wkθk denote the true average for a large area level covering all of the

m small areas, where
∑

k=1wk = 1. An example of wk is the population proportion,

wk = Nk/
∑
Nk = Nk/N, where Nk = kth area population, and N = total population.

Our task is to find a new set of estimates, θ̂ = (θ̂1, . . . , θ̂m)′, such that they satisfy

the following set of benchmarking constraints:

G′θ̂ =c

θ̂H`θ̂ =d`; (` = 1, · · · , L), (4.4)

where G and H`’s are known matrices and c and d = (d1, . . . dL)′ are known vectors of

constants. Note that the first constraint is concerned with the first moment and the second
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constraint is for the second moment of the estimator.

4.2.1 Discussion about the constraints

In this subsection, we will further discuss about the choice of the first constraint, c. The

constraint for the first moment of the estimators can be interpreted as a typical bench-

marking problem. Generally, benchmarking problems can be categorized into two types:

external and internal benchmarking, Bell et al. (2013). External benchmarking involves

calibrating the estimates to agree with estimates from external data sources that are drawn

independently of the survey. On the other hand, internal benchmarking involves calibrat-

ing small area estimates to a higher level aggregates obtained from the same survey.

External benchmarking has been commonly used in economic time series estima-

tion setting where a monthly or a quarterly economic survey estimates are calibrated to

the corresponding annual survey estimates, Dagum and Cholette (2006). External bench-

mark can be defined as either a constant or random, which is independent of the direct

estimator, Bell et al. (2013) and Rendall et al. (2009).

Internal benchmarking has been explored in many literatures, Pfeffermann and

Barnard (1991), Wang et al. (2008), and Pfeffermann and Tiller (2006). In most of them,

it usually begins with best linear unbiased estimators for the small areas, and then they

are modified to the higher level estimates to produce the benchmarked estimators. Pfef-

fermann and Barnard (1991) and Wang et al. (2008) have considered a single constraint

type problem, and Bell et al. (2013) have expanded a solution to the problem by using

general quadratic loss function with multiple constraints. See Pfeffermann et al. (2013)
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for reviews of different methods of internal benchmarking.

4.2.2 Illustrative examples

We now consider a few examples.

Example 1:

Suppose we have the following single constraint:

m∑
k=1

wkθ̂k = c, (4.5)

where c is a reliable estimate from an external source or from the same survey. There is

no constraint for the second moment; thus, we can express constraint (4.5) as:

m∑
k=1

wkθ̂k = (w1, . . . , wm)′


θ̂1

...

θ̂m

 = c (4.6)

= w′θ̂ = G′θ̂, (4.7)

where w = (w1, . . . , wm)′,G = w.

Example 2:

If we add another constraint for the spread between estimates, then our constraints

become:
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m∑
k=1

wkθ̂k =c

m∑
k=1

wk(θ̂k − ¯̂
θw)2 =d,

where ¯̂
θw =

∑m
k=1wkθ̂k, and the first constraint is equivalent to that of Example 1. The

second constraint can be rewritten as:

m∑
k=1

wk(θ̂k − ¯̂
θw)2

=
m∑
k=1

wkθ̂
2
k − (

m∑
k=1

wkθ̂k)
2

=θ̂′diag(w1, . . . , wm)θ̂ − (θ̂′w)2

=θ̂′{diag(w1, . . . , wm)−ww′}θ̂

=θ̂′Hθ̂,

whereH = diag(w1, . . . , wm)−ww′, and diag(w1, . . . , wm) represents a m×m matrix

in which its ith element is wi.

Example 3:

Suppose we are interested in estimating means for m = IJ cells in a two-way con-

tingency table (e.g., by age-group by race). We assume reliable estimates of the margins
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are available. A natural set of constraints is given by:

(i)
I∑
i=1

J∑
j=1

wij θ̂ij = c

(ii)
J∑
j=1

wij θ̂ij = ci+, ∀i

(iii)
I∑
i=1

wij θ̂ij = c+j, ∀j,

The first constraint is the same as in Example 1.

The second constraint can be rewritten as:

J∑
j=1

wij θ̂ij = (wi1, . . . , wiJ)


θ̂i1

...

θ̂iJ


= w′i.θ̂i. = ci+; ∀i, (4.8)

where wi. = (wi1, . . . , wiJ) and θ̂i. = (θ̂i1, . . . , θ̂iJ)′. Constraint (iii) can be written in an

equivalent way as in constraint (ii).

Example 4

Let θij be a small area parameter of interest for the jth state within the ith census

division (i = 1, · · · ,m; j = 1, · · · , n). We assume that sample sizes in the divisions

are small as well, so we need to consider the indirect method for both division and states

within division. Suppose θ̂ij denote an indirect estimator (e.g., HB, triple-goal, EB, etc.)

of θij . We need to adjust θ̃ij so that they add up to the national level direct (or some other
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reliable estimate), but at the same time capture both within division and between division

variabilities.

Then, the following constraints can illustrate our problem of interest:

(i)
m∑
i=1

n∑
j=1

wij θ̂ij = c

(ii)
n∑
j=1

wij(θ̂ij − ¯̂
θiw)2 = d1i ∀i

(iii)
m∑
i=1

wi+(
¯̂
θiw − ¯̂

θw)2 = d2,

where c, d1i, d2 are pre-specified, and

¯̂
θiw =

∑n
j=1 wij θ̂ij

wi+
,

wi+ =
n∑
j=1

wij

¯̂
θ =

m∑
i=1

wi+
¯̂
θiw

m∑
i=1

J∑
j=n

wij = 1

Constraint (i) can be written as:

m∑
i=1

n∑
j=1

wij θ̂ij = (w11, . . . wmn)


θ̂11

...

θ̂mn

 , (4.9)

= w′θ̂ = c (4.10)
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Constraint (ii) becomes:

n∑
j=1

wij(θ̂ij − ¯̂
θiw)2 =

n∑
j=1

wij θ̂
2
ij +

n∑
j=1

wij
¯̂
θ2
iw − 2

n∑
j=1

wij θ̂ij
¯̂
θiw

=
∑
j

wij θ̂
2
ij −

(
∑

j wij θ̂ij)
2

wi+

=θ̂′idiag(wi1, . . . , win)θ̂i −
θ̂′iwiw

′
iθ̂i

wi+

=θ̂′iH1iθ̂i,

where

H1i = diag(wi1, . . . , win)− wiw
′
i

wi+

wi = (wi1, . . . , win)′

θ̂i = (θ̂i1, . . . , θ̂in)′

Finally, constraint (iii) becomes:

∑
i

wi+(
¯̂
θiw − ¯̂

θw)2 =
∑
i

wi+
¯̂
θ2
iw −

¯̂
θ2
w

=¯̂θ
′
w{diag(w1+, . . . , wi+)− (w.+w

′
.+)}¯̂θw,

where w.+ = (w1+, . . . wm+)′, and ¯̂
θw = (

¯̂
θ1w, . . . ,

¯̂
θmw)′

4.3 A new approach for complex benchmarking constraints

In this section, we propose a general method that can produce a solution to the problem

in equation (4.3). Under our proposed approach, we determine our target estimate, θ̂,
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by making it closer to the starting estimator, θ̃, by using a model: θ̂ = XΦ, where

X = X(θ̃), such that Φ satisfies the following system of equations:

AΦ = b, (4.11)

We now illustrate how our method works for the examples in Section (4.2).

Example 1:

We begin with the starting estimator: θ̃k = posterior mean, and we are interested

in finding a a new estimator θ̂k, such that
∑m

k=1wkθ̂k = c. We let c as a flexible but a

known value. For example, it can be defined as: c =
∑m

k=1wkȳk, wk = Nk/
∑m

k=1Nk.

Note that c can be regarded as a reliable internal benchmarking constraint. Our goal is to

express θ̂i as a function of a starting estimate, θ̃i. By using equation (4.4) for constraints,

our problem is to find β such that

θ̂k = βθ̃k, (4.12)

Using the constraint, we can easily solve for β:
m∑
k=1

wkθ̂k = c

⇔
m∑
k=1

wkβθ̃k = c

⇔ β =
c∑m

k=1wkθ̃k

Thus, the estimator with the benchmarking property is given as:

θ̂i =
c∑m

k=1wkθ̃k
θ̃i
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Example 2:

Instead of assuming that θ̂i = βθ̃i, we can expand it by adding an intercept; that is:

θ̂i = α + β(θ̃i − ¯̃θw), (4.13)

where ¯̃θw =
∑m

k=1wkθ̃k

With the first constraint, we see that

∑
wiθ̂

m
k=1 =α + β

m∑
i=1

wi(θ̃i − ¯̃θw) = c

⇔ α =c

With the second constraint, one can choose d = E{
∑m

k=1wk(θk − θ̄w)2|data} or any

other appropriate choice of d. Then we have

m∑
k=1

wk(θ̂k − ¯̂
θw)2 = d

⇔
m∑
k=1

wk{α + β(θ̃k − ¯̃θw)− α}2 = d

⇔ β2

m∑
k=1

wk(θ̃k − ¯̃θw)2 = d

⇔ β2 =
d∑m

k=1wk(θ̃k −
¯̃θw)2

.

Then equation (4.13) becomes:

θ̂i = c+

√
d∑m

k=1wk(θ̃k −
¯̃θw)2

(θ̃i − θ̄w) (4.14)
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Example 3:

Assume θ̂ij = µ+ αi(
¯̃θi. − ¯̃θ..) + βj(

¯̃θ.j − ¯̃θ..), for i = 1, . . . I, j = 1, . . . , J

We define:

θ̃i. =

∑
j wij θ̃ij

wi+
θ̃.j =

∑
iwij θ̃ij
w+j

¯̃θ.. =
∑
i

∑
j

wij θ̃ij

eij = wij(
¯̃θi. − ¯̃θ..) ei+ = wi+(¯̃θi. − ¯̃θ..)

fij = wij(
¯̃θ.j − ¯̃θ..) f+j = w+j(

¯̃θ.j − ¯̃θ..)

Then constraints (i), (ii), and (iii) can be rewritten as:

µ+
∑
i

ei+αi +
∑
j

f+jβj = c,

wi+µ+ ei+αi +
∑
j

fijβj = ci+, i = 1, . . . I

w+jµ+
∑
i

eijαi + f+jβj = c+j, j = 1, . . . J (4.15)
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Equation 4.15 can be rewritten in the following matrix form:



1 e1+ . . . eI+ f+1 . . . f+J

w1+ e1+ 0 0 f11 . . . f1J

... 0
. . . 0

... . . . ...

wI+ 0 0 eI+ fI1 . . . fIJ

w+1 e11 . . . eI1 f+1 . . . 0

...
... . . . ... 0

. . . ...

w+J e1J . . . eIJ 0 . . . f+J





µ

α1

...

αI

β1

...

βJ



=



c

c1+

...

cI+

c+1

...

c+J



, (4.16)

This becomes in a partitioned matrix form,

⇔


1 e′+ f ′+

w.+ diag(e1+, . . . , eI+) f

w+. E diag(f+1, . . . , f+J)




µ

α

β

 =


c

c.+

c+.

 , (4.17)

where

e′+ = (e1+, . . . , eI+) c.+ = (c1+, . . . cI+)′

f ′+ = (f+1, . . . , f+J) c+. = (c+1, . . . c+J)′

E = ((eij)) w.+ = (w1+, . . . wI+)′

f = ((fij)) w+. = (w+1, . . . w+J)′

We can see that equation (4.17) is in the form of equation (4.11),AΦ = b. We can
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solve for Φ = A−1b to find θ̂ = X(θ̃)Φ.

Example 4:

Let θ̂ij = α + β(¯̃θi − ¯̃θw) + γi(θ̃ij − ¯̃θiw). The first constraint becomes:

∑
i

∑
j

wij

(
α + β(¯̃θi − ¯̃θw) + γi(θ̃ij − ¯̃θiw)

)
= c

⇐ α
∑
i

∑
j

wij + β
∑
i

∑
j

(¯̃θi − ¯̃θw) +
∑
i

γi
∑
j

wij(θ̃ij − ¯̃θiw) = c, (4.18)

The second term of the equation (4.18) becomes:

∑
i

∑
j

wij
¯̃θi − (

∑
i

∑
j

wij)
¯̃θw

=
∑
i

¯̃θi
∑
j

wij − ¯̃θw

=
∑
i

∑
j

wij θ̃ij∑
j wij

∑
j

wij − ¯̃θw

= ¯̃θw − ¯̃θw

= 0,

The third term becomes:

∑
j

wij(θ̃ij − ¯̃θiw)

=
∑
j

wij θ̃ij − ¯̃θiw
∑
j

wij

= 0,
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Thus, from the first constraint, we obtain:

α
∑
i

∑
j

wij = c

.

⇔ α = c

In the second constraint, we have:

∑
j

wij(θ̂ij − ¯̂
θiw)2 = d1i,

and ¯̂
θiw can be expressed as:

¯̂
θiw =

∑
j wij θ̂ij∑
j wij

=

∑
j wij(α + β(¯̃θiw − ¯̃θw) + γi(θ̃ij − ¯̃θiw))∑

j wij

= α + β(¯̃θiw − ¯̃θw) + γi

∑
j wij(θ̃ij −

¯̃θiw)∑
j wij

= α + β(¯̃θiw − ¯̃θw) + γi

(∑
j wij θ̃ij∑
j wij

− ¯̃θiw

)

= α + β(¯̃θiw − ¯̃θw) + γi(
¯̃θiw − ¯̃θiw)

= α + β(¯̃θiw − ¯̃θw)
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Then, the second constraint reduces to:

∑
j

wij(α + β(¯̃θiw − ¯̃θw) + γi(θ̃ij − ¯̃θiw)− α− β(¯̃θiw − ¯̃θw)) = d1i

⇔ γ2
i

∑
j

wij(θ̃ij − ¯̃θiw)2 = d1i

⇔ γ2
i =

d1i∑
j wij(θ̃ij −

¯̃θw)2

In the third constraint, we have

∑
i

wi+(
¯̂
θiw − ¯̂

θw)2 = d2,

where ¯̂
θw = α by the first constraint. Then, we have:

∑
i

wi+(α + β(¯̃θiw − ¯̃θw)− α)2 = d2

⇔ β2
∑
i

wi+(¯̃θiw − ¯̃θw)2 = d2

⇔ β2 =
d2∑

iwi+(¯̃θiw − ¯̃θw)2
,

Then θ̂ij becomes,

θ̂ij = c+

√
d2∑

iwi+(¯̃θiw − ¯̃θw)2
(¯̃θi − ¯̃θw) +

√
d1i∑

j wij(θ̃ij −
¯̃θw)2

(θ̃ij − ¯̃θiw) (4.19)
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4.4 Some optimality properties

Solutions obtained in Section 4.3 have the following optimality properties in certain

benchmarking conditions.

Result 1: Suppose we want to find θ̂ such that
∑m

j=1(θ̂j− θ̃j)2 is minimized subject

to the following single constraint:

θ̂· ≡
m∑
j=1

θ̂j = c1,

where c1 is a known constants and ¯̂
θ = m−1

∑m
j=1 θ̂j. In practice, we can choose c1 =∑m

j=1 yj, the design-based estimator, or c1 =
∑m

j=1 θ̂
B
j , the Bayes estimator of θ· =∑m

j=1 θj .

Result 2: Suppose we want to find θ̂ such that
∑m

j=1(θ̂j− θ̃j)2 is minimized subject

to the following two constraints:

θ̂· ≡
m∑
j=1

θ̂j = c1, (4.20)

σ2
θ̂
≡

m∑
j=1

(θ̂j − ¯̂
θ)2 = c2

2, (4.21)

where c2 is known constants.For c2
2 we can choose E

[∑m
j=1(θj − θ̄)2|y

]
, the Bayes esti-

mator or some design-based estimator of σ2
θ =

∑m
j=1(θj − θ̄)2.

The solution to both the results can be obtained by Lagrange’s method of undeter-

74



mined multipliers. Consider the following objective function:

Q(θ̂;λ1, λ2) =
m∑
j=1

(θ̂j − θ̃j)2 + 2λ1(θ̂· − c1) + λ2(σ2
θ̂
− c2

2).

The equation

∂Q

∂λ1

= 0

yields

θ̂i =
θ̃i − λ1 +m−1λ2c1

1 + λ2

, ∀i (4.22)

From 4.20, we get

λ1 = m−1(θ̃· − c1),

and hence

θ̂i = (1 + λ2)−1(θ̃i − ¯̃θ) +m−1c1.

Thus, using 4.21, we have

(1 + λ2)2 =
σ2
θ̃

c2
2

.

Thus the new constrained estimator is given by:

θ̂i =
c2

σθ̃
(θ̃i − ¯̃θ) +

c1

m
.

Interestingly, this estimator yields the same estimators considered in Ghosh (1992) and

Datta et al. (2009) if the starting estimator is the posterior mean.

However, applying Lagrange’s method is challenging for certain benchmarking
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problems, such as constraint conditions in example 3 and example 4 in section 4.2.

4.5 Data Application

In this section, we apply our methods to two data sets. The first data set is the baseball data

described in Efron and Morris (1975) where the true value is known. The second data set

is the monthly U.S. unemployment rate from the Current Population Survey (CPS) from

January, 2009 to December, 2012. After we apply models on each data set and obtain

posterior means, we use them as our starting estimator to produce other estimates.

For our estimators, we use the following notations:

• π̂pmi : posterior estimates,

• π̂cbi : constrained Bayes, Ghosh (1992)

• π̂bm1
i : benchmarking estimator with one constraint Datta et al. (2009)

• π̂bmr
i : benchmarking estimator with one constraint, equation (4.12)

• π̂bm2
i : benchmarking estimator with two constraints, Datta et al. (2009).

For benchmarking estimators, we need to define the constraints: For the baseball

example, the sample average or the average of the posterior means will be used. For the

second constraint, the following identity will be used.
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Let H denote the second constraint, then

H =E{
∑

wi(πi − π̄w)2|ȳ}

=E{
∑

wi(π
2
i − 2πiπ̄w + π̄2

w)|ȳ}

=E{
∑

wi(π
2
i − π̄2

w)}

=
∑

wi

(
E(π2

i |ȳ)− E((
∑

wiπi)
2|ȳ)

)
=
∑

wi

(
(V ar(πi|ȳ) + (E(πi|ȳ))2)− (V ar(

∑
wiπi|ȳ) + (E(πi|ȳ))2)

)
. (4.23)

Note that

V ar(
∑

wiπi|ȳ) =
∑

w2
i V ar(πi|ȳ) +

∑
i 6=j

wiwjCov(πi, πj|ȳ),

and if we assume that Cov(πi, πj|ȳ) is negligible, then equation (4.23) can be written as

H =
∑

wiV ar(πi|ȳ)+
∑

wi(π̂
pm
i )2−

∑
wi(
∑

w2
i V ar(πi|ȳ))−

∑
wi(
∑

wiπ̂
pm
i )2

(4.24)

4.5.1 Baseball analysis

In this subsection, we are using the batting average data described in Efron and Morris

(1975) in Table 4.1. They have selected the batting averages of 18 major league baseball

players in the 1970 season. Each player had batted 45 times and their batting averages

are recorded up to that point. By using only this data, Efron and Morris wanted to predict
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each player’s batting average for the remainder of the 1970 season.

player π̂ prev.avg prev.at.bats avg.1970
A 0.27 0.12 51 0.22
B 0.16 0.25 3514 0.18
C 0.31 0.25 2244 0.28
D 0.20 0.26 3210 0.28
E 0.40 0.31 8142 0.35
F 0.36 0.28 4826 0.28
G 0.33 0.26 1139 0.24
H 0.29 0.25 2753 0.27
I 0.18 0.26 86 0.30
J 0.22 0.26 2281 0.26
K 0.38 0.30 7542 0.31
L 0.22 0.23 291 0.22
M 0.24 0.28 5658 0.27
N 0.22 0.25 2065 0.30
O 0.31 0.24 454 0.27
P 0.24 0.24 1967 0.23
Q 0.22 0.26 1216 0.26
R 0.22 0.27 888 0.25

Table 4.1: Batting average data: The second column is the batting average with 45 at-bats
and the last column is the actual batting average for the entire 1970 season.

Let yi denote the number of hits in n = 45 at-bats, and π̂i = yi/n be the batting

average of ith player. To predict the season batting average, Efron and Morris (1975)

considered the following variance stabilizing transformation :

• θ̂i =
√
n arcsin(2π̂i − 1),

• θi =
√
n arcsin(2πi − 1),

• πi : True season bating average.

Note that using the Taylor series expansion, V (θ̂i|θi) ≈ 1 for large m. Efron and Morris

(1975) considered the following two-level Bayesian model:
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The Efron-Morris Model

level1,(sampling distribution) :θ̂i|θi
ind∼ N(θi, 1),i = 1, . . . ,m,

level2,(prior distribution) :θi|β,A
iid∼ N(x′iβ, A), (4.25)

where xi is a previous season batting average, β and τ 2 are unknown and independent hy-

perparameters with non-informative prior distribution; f(β) ∝ 1, and , f(τ 2) = (0,∞).

Once we have obtained the MCMC samples, we use back transformation to get the

inference about f(πi|ȳ). We compare our result with the true value; that is the season end

batting average of each player illustrated in column (4) of Table 4.1.

players π̂pmi π̂cbi π̂bm1
i π̂bmr

i π̂bm2
i

A -0.004 -0.046 0.023 -0.003 -0.045
B 0.056 0.033 0.083 0.057 0.033
C -0.005 0.001 0.022 -0.003 0.004
D -0.025 -0.035 0.002 -0.024 -0.033
E -0.042 -0.002 -0.015 -0.040 0.005
F 0.006 0.027 0.033 0.008 0.032
G 0.040 0.052 0.067 0.042 0.056
H 0.002 0.004 0.029 0.003 0.007
I -0.056 -0.072 -0.029 -0.054 -0.071
J -0.005 -0.013 0.022 -0.004 -0.012
K -0.003 0.029 0.023 -0.002 0.036
L 0.024 0.010 0.051 0.025 0.011
M 0.001 0.005 0.028 0.003 0.007
N -0.042 -0.051 -0.015 -0.040 -0.050
O -0.004 0.002 0.023 -0.002 0.004
P 0.024 0.017 0.051 0.025 0.019
Q -0.002 -0.009 0.025 -0.000 -0.008
R 0.010 0.007 0.037 0.011 0.008

Table 4.2: The deviation of estimators from the true value for different estimators.

The Table 4.2 and Figure 4.1 show the deviation, which is calculated by (θi − θ̂i|data),
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for different estimates from the true value for each player. In Figure 4.1, the reference

line is drawn at zero horizontal line, and we can see that θ̂bmr
i is near the zero reference

line more often than other estimators, and θ̂bm1
i is furthest from the reference line.
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Figure 4.1: Deviation from the true average

π̂pmi π̂cbi π̂bm1
i π̂bmr

i π̂bm2
i

0.013 0.017 0.025 0.013 0.018

Table 4.3: Sum of the square deviations

We also calculated the sum of the square deviations,
∑

i(π̂i−πi)2, for all estimators.

As expected, π̂pmi performs well since it is obtained by minimizing the squared error loss

given the data. The benchmarked estimators are not as optimal as in terms of Datta et al.

(2009) when the estimators are benchmarked, but adding the second constraint makes

some improvements.

We would also like to compare different estimators as an ensemble. Let R1 =
∑

i π̂i∑
i πi
,

and R2 =
1/m

∑
i(π̂i−¯̂π)2

1/m
∑

i(πi−π̄)2
, where π̂i denotes different types of estimator, ¯̂π be the mean of
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the estimator, πi be the true average, and π̄ be the mean of the true average. We can see

that R1 is the ratio of the aggregated sum between estimators and the true value and R2 is

the corresponding ratio of the sample variances. For both ratios, we prefer values near 1.

R1 R2
π̂pm 0.995 0.333
π̂cb 0.992 1.179

π̂bm1 1.097 0.333
π̂bmr 1.001 0.337
π̂bm2 1.001 1.300

Table 4.4: Ratio of different estimators

In Table 4.4, we can see that all estimators perform very well for R1; however,

when we look at R2 only π̂bm2 and π̂cb perform reasonably well because they include

the constraint for the second moment of the estimator. Additionally, it’s shown clearly

that posterior estimate and benchmarked estimates with just one constraint display over-

shrinkage problem.

4.5.2 Unemployment rate data analysis

In the second data analysis, we use the monthly CPS to estimate the unemployment rate

for each state from January, 2009 to December 2012. The CPS is conducted by the

Census Bureau and its monthly sample comprises of about 72,000 housing units and is

collected for about 729 areas consisting of more than 1,000 counties covering every state

and the District of Columbia. More information about the CPS can be found (http:

//www.bls.gov/cps/).

The unemployment rate is one of the five key economic indicators published by

the Bureau of Labor Statistics (BLS) and represents the number of unemployed as a

81

(http://www.bls.gov/cps/)
(http://www.bls.gov/cps/)


percent of the labor force. The BLS publishes monthly unemployment rate estimates

for the entire U.S. and its different demographic and geographic subdomains using so-

phisticated time-series model, Pfeffermann et al. (2013). The unemployment estimates

are made for all 50 states and the District of Columbia, all metropolitan statistical ar-

eas (MSA), all counties (cities and towns of New England), and all cities with popu-

lation 25,000 or greater. The local unemployment rates are used in regional planning

and fund allocation under various federal assistance programs. The BLS administers ex-

tensive research for estimating unemployment, and information about their methodology

can be found in Bell and Hillmer (1990) and Pfeffermann and Tiller (2002). For more

information about the BLS’s current ongoing research for benchmarking estimators, see

(http://www.bls.gov/lau/).

For our data analysis, let π̂i be the direct survey weighted estimate of the unemploy-

ment rate for area i (i = 1, · · · ,m). Let θ̂i = arcsin(
√
π̂i) be the transformation for the

direct estimate π̂i and neffi = ni/deff be the effective sample size for area i, and deff

is the design effect estimate at the national level. Then we apply the Carter-Rolph model

for θ̂i:

The Carter-Rolph Model:

Level 1: θ̂i | θi
ind∼ (θi, 1/(4n

eff
i )),

Level 2: θi
ind∼ [µ,A],

where the hyperparameters, µ,A, are given vague prior distributions. Like before, we

will use back-transformation to produce posterior estimates for πi and then obtain other

estimators.
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For our analysis, we first look at the aggregate sum of estimates at the national level

for each month from January 2009 to December 2012.
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Figure 4.2: Ratio between the national estimate and other estimates

Figure 4.2 shows the ratio between the national estimates and the aggregated esti-

mates for 48 months. The ratios are defined as:

posterior ratio =

∑51
i=1 Niπ

pm
i

total number of unemployed

CB ratio =

∑51
i=1Niπ̂

cb
i

total number of unemployed
,

where Ni, π̂
pm
i and π̂cbi are the number of persons in the labor force, posterior means

and constrained Bayes estimates of unemployment rate for the ith state (i = 1, · · · , 51),

and the reference line is drawn at 1. It’s clear from the picture that monthly aggregated

estimates both posterior means and the CB estimates generally differ from the national
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level estimates.

There are two perspectives to explain reasons for the discrepancy between ratios to

the reference line: methodology and model. In general, we expect that the aggregated

model-based estimates would not be perfectly equivalent of the national estimates. Addi-

tionally, our model is very crude that we did not use any covariates into the model. With

a more sophisticated model, we would expect the difference between the ratio from the

reference line to be smaller.

We also observe that the CB ratio for each month is always slightly higher than

the corresponding posterior means, and both estimates are within 5% of the national es-

timates. We did not consider other estimates since they are already benchmarked at the

national level.
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Figure 4.3: states are arranged in the order of effective sample size

Figure 4.3 shows the unemployment rates for each state for April, 2012. The na-

tional average, at 8%, is drawn as the reference line. Since the model uses no covariates,

84



the predicted estimates for smaller states are near the unweighted sample average. Also,

we can attain the same conclusion as in Chapter 2 that the model-based estimates are

closer to the design-based estimates for larger states than for smaller states.

Apr.2009 Apr.2010 Apr.2011 Apr.2012
π̂ 0.96 1.05 0.96 0.97

π̂pm 0.95 1.05 0.96 0.96
π̂cb 0.96 1.05 0.96 0.97

π̂bm1 1.00 1.00 1.00 1.00
π̂bmr 1.00 1.00 1.00 1.00
π̂bm2 1.00 1.00 1.00 1.00

Table 4.5: average ratio, π̂ = direct estimates

Table 4.5 shows the ratio between the national rates and the national aggregate of

different estimators. We can see that both π̂cb and π̂pm behave very similarly.

Apr.2009 Apr.2010 Apr.2011 Apr.2012
π̂ 1.09 1.07 1.05 1.08

π̂pm 0.89 0.86 0.86 0.84
π̂cb 1.02 1.00 1.03 1.04

π̂bm1 1.01 0.75 1.06 1.02
π̂bmr 0.99 0.78 0.94 0.91

Table 4.6: ratio of the sample variance

Table 4.6 shows a ratio between sample variance of different estimators and that of

π̂bm2. We can see that π̂cb preserves its variance over different months; whereas, other

estimators show over-shrinkage problems in some months.

4.6 Discussion

In this chapter, we have explored the constrained Bayes estimates with multidimensional

conditions. We have shown that we can obtain a new set of estimators from an existing
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set by minimizing the distance given a set of conditions, where the condition are defined

by the user or known values. In general, the solution is produced by using the Lagrange’s

method. However, applications of the Lagrange’s method appears to be complicated as the

constraints become more elaborate. With the assumption of a linear relationship between

two sets of estimators, we have shown that the new set of estimators are relatively easy

to obtain. We have applied the new methods to a data set with known true values and a

data set with unknown values, and our results illustrate that some of the new estimates

improve the over-shrinkage problem.
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Chapter 5

Triple-goal Estimation With Benchmarking Constraints

5.1 Introduction

In many data analysis applications, we are not only interested in estimating individual

area-level parameters but also in reporting an ensemble of ranked estimates or finding a

set of estimates whose values that exceed a pre-specified threshold. For example, the goal

can be estimating the performance evaluation, like the rank, among different companies,

Landrum et al. (2000). Reporting an ensemble of estimates can also provide useful in-

terpretations in disease mapping to ascertain the variation in disease rates for different

geographical regions, Conlon and Louis (1999), Devine and Louis (1994).

There are a number of papers on the estimation of parameters for individual small

area, Rao (2003) and Jiang and Lahiri (2006b), a histogram of small area parameters,

Lahiri (1990), Louis (1984), or ranking small area parameters, Laird and Louis (1989),

Morris and Christiansen (1996). However, there is little research about finding a set of

estimates that would optimally satisfy multiple criteria all at once because finding an

optimal estimators depends on the definition of the loss function. If individual specific

parameters are of interest, posterior means are the optimal choice. If the ranks of param-

eters are the target, the conditional expected ranks are the optimal, but ranking posterior

means can perform poorly, Goldstein and Spiegelhalter (1996). If the feature of interest

is the histogram or the empirical distribution function (EDF) of the parameters, then the
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conditional expected EDF is optimal, but the histogram is overdispersed and that of the

posterior means of the parameters is underdispersed, Ghosh (1992). From administrative

point of view, reporting several ensembles for all different situations would be inefficient

and may cause inconsistencies.

While there does not exist a set of point estimates that simultaneously optimize

all of these criteria (Gelman and Price (1999)), Shen and Louis (1998) developed an

interesting method, called ”triple-goal” estimation method, which produces estimates that

perform reasonably well with respect to all three criteria.

The triple-goal estimation method involves the following three goals:

Goal 1: Produce element-specific point estimates with “optimality” qualities for the

region of interest;

Goal 2: Obtain an ensemble of point estimates that best approximate the histogram of

the true parameter ensemble, Louis (1984);

Goal 3: Rank within a selected ensemble.

In Section 5.2, we extend the triple-goal estimation for complex surveys and apply

the methodology developed in Chapter 4 to benchmark triple-goal estimates. We analyze

the baseball and unemployment rate data in Sections 5.3. and 5.4, respectively.

5.2 A Benchmarked Triple-Goal Estimation Procedure for Survey Data

Let π̂i be the survey-weighted direct estimate of the true proportion πi for the ith small

area (i = 1, · · · ,m).We are interested in producing an ensemble of triple-goal estimators

of π = (π1, · · · , πm). Let θ̂i = arcsin(
√
π̂i). We consider the following Bayesian model:
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Model:

For i = 1, · · · ,m,

(i) θ̂i|θi
ind∼ N(θi, ψi),

(ii) θi|β,A
ind∼ N(xTi β,A), i = 1, · · · ,m;

(iii) f(β,A) ∝ 1.

In the above, ψi = 1
4ni
, where ni is the effective sample size for the ith small area. In this

chapter, we use ni = ñi

deff , where ñi is the sample size for area i and deff is an estimate

of design effect for a large area that covers the small area i.

The procedure for obtaining triple-goal estimators follows along the line of (Shen

and Louis (1998)), which is described below:

First, we need to obtain an estimate of the empirical distribution function (EDF) of

π. The EDF of πi is defined as:

Fm(t) =
1

m

m∑
i=1

I{πi ≤ t}, (5.1)

where t ∈ R and I is the indicator function. Under the following integrated squared error

loss function:

ISEL(Fm, F̃m) =

∫ [
Fm(t)− F̃m(t)

]2

dt, (5.2)

the Bayes estimator of EDF is given by
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F̂m(t) = E
[
Fm(t)|θ̂

]
=

1

m

m∑
i=1

P (πi ≤ t|θ̂). (5.3)

Second, we need to obtain rank of the parameter ensemble P . The rank is defined

as

Ri = rank(πi) =
m∑
j=1

I{πi ≥ πj}. (5.4)

Under the rank squared error loss(RSEL), defined as

RSEL(R, R̃) =
1

m

m∑
i=1

(Ri − R̃i)
2, (5.5)

the Bayes estimator of Ri is given by

R̄i = E(Ri|θ̂) =
m∑
j=1

P (πi ≥ πj|θ̂) (5.6)

The R̄i’s are not integers in general; however, it is easy to transform them in order and

denote it as:

R̂i = rank(R̄i|R), i = . . . ,m. (5.7)

Finally, we generate an ensemble of point estimates, conditional on the optimal es-

timate of the ensemble EDF, F̂m, and the optimal estimate of the ranks, R̂i. Furthermore,

the added constraint that F̂m is a discrete distribution with at most m mass points, then

the estimator is defined as:
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ˆ̂πTGi = F̂−1
m

(
2R̂i − 1

2m

)
, i = 1, . . . ,m. (5.8)

We propose obtaining the estimators by using the Gibbs sampler, Gelfand and Smith

(1990). To implement the Gibbs sampler, we obtain the full conditional under the hierar-

chical model as:

(a) θi|β,A, θ̂
ind∼ N

[
(1−Bi)θ̂i +Bix

′
iβ,

ψiA
A+ψi

]
, i = 1, · · · ,m

(b) β|θ, A, θ̂ ∼ N
[
(XTX)−1XT θ, A(XTX)−1

]
(c) A|β, θ, θ̂ ∼ IG

[
1
2

∑
(θi − xTi β)2, m−2

2

]
,

where Bi = ψi

A+ψi
, (i = 1, · · · ,m) and IG represents an inverted Gamma distribution.

Then we apply the following algorithm.

Gibbs Sampling Algorithm:

(i) Draw θ
(1)
i , i = 1, · · · ,m, from (a), using β(0) & A2(0) as starting values. Obtain

π
(1)
i = sin2

(
θ

(1)
i

)
, i = 1, · · · ,m.

(ii) Draw β(1) from (b) using θ(1) & A2(0).

(iii) Draw A2(1) from (c), using θ(1) & β(1).

The steps (i)-(iii) complete one cycle. Perform a large number of cycles. The

simulated samples after deleting the first t “burn-in” samples, i.e.

{
β(t+r), A2(t+r), π(t+r), r = 1, · · · , R

}

are considered as R simulated samples from the posterior distribution of β,A, P .
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The posterior density of π is approximated by

{
π(t+r), r = 1, · · · , R

}
.

In particular, we need the following approximations:

F̂m(t) ≈ 1

m

m∑
i=1

{
1

R

R∑
r=1

I
[
π

(r)
i ≤ t|θ̂

]}
(5.9)

R̄i =≈
m∑
j=1

{
1

R

R∑
r=1

I
[
π

(r)
i ≤ π

(r)
j |θ̂

]}
(5.10)

Finally, we apply the methodology developed in Chapter 4 to obtain benchmarked triple-

goal estimates of πi (i = 1, · · · ,m), π̂TGb
i .

5.3 Baseball Data Analysis

In this section, we use the baseball data described in Chapter 4 to evaluate different esti-

mators of ranks, EDFs , and point estimates of individual parameters.

For our estimators we use the following notations:

• π̂pm : posterior estimate

• π̂TG : triple-goal estimate

• π̂TGr : triple-goal estimate with the ratio benchmarking constraint

• π̂cb : constrained Bayes, Ghosh (1992)

• π̂bm2 : constrained Bayes, Datta et al. (2009)
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We compare different estimators by the following four different summary statistics:

• Sum of Squared Error Loss (SSEL): 1
m

∑m
i=1(π̂i − πi)2

• Integrated Squared Error Loss (ISEL):
∫ [

Fm(t)− F̃m(t)
]2

dt

• Ratio between Posterior Sample Variance (RPSV):
∑m

i=1(π̂i−¯̂π)2∑m
i=1(πi−π̄)2

• Rank Squared Error Loss (RSEL): 1
m

∑m
i=1(R̂i −Ri)

2,

where π̄i is the average of true πi’s.

The SSEL produces a summary statistic from each estimate, π̂i, against the corre-

sponding true value, πi. As an aggregate sum, there is little difference among all estima-

tors. This result coincides with the result in Chapter 4 that the posterior mean performs

better than other estimators. However, when we consider the ISEL, which measures the

squared error loss between ECDF of two parameters, it shows that the both triple-goal es-

timators outperform other estimators. The advantage of the triple-goal estimators is more

clear in Figure 5.1 that the histogram from the triple-goal estimates is closer in shape to

the true histogram than any other estimators. Even after we benchmark our estimators,

the histogram of our final benchmarked triple-goal estimates still retain the shape of the

triple-goal estimates.

It’s clear from RPSV that compared to other estimators, the hierarchical Bayes

estimator,π̂pm, has an over-shrinkage problem. In other words, each estimate π̂i does not

deviate too much from its average value.

The RSEL, rank squared error loss, shows the summary static between the estimated

rank against the true rank. The TG estimators perform better than other estimators since

the estimators are obtained by optimizing under the RSEL function. Note that the RSEL
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value for π̂pm is the same as that of π̂cb. It’s always true that the ranks based on the

cb estimates are always identical with the ranks based on the posterior means, Shen and

Louis (1998).

π̂pm π̂TG π̂TGr π̂cb π̂bm2

SEL 0.01335 0.01581 0.01590 0.01724 0.01820
ISEL 0.00137 0.00023 0.00024 0.00074 0.00066

RPSV 0.33311 1.18150 1.19587 1.17878 1.29976
RSEL 26.66667 23.44444 23.44444 26.66667 26.66667

Table 5.1: Summary statistics for different estimators
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Figure 5.1: Histogram of different estimators
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5.4 Estimation of unemployment rates for US states

In this section, we analyze the same CPS unemployment rate data we used in Chapter 4.

We first begin with investigating benchmarking properties of the hierarchical Bayes (i.e.,

the posterior mean) and triple-goal estimates for 48 months of data. That is, we investigate

how close the hierarchical Bayes and the triple-goal estimates are to the survey-weighted

national estimates for a given month, when aggregated over all the 50 states and the

District of Columbia.
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Figure 5.2: Ratio between national estimates and other estimates

Figure 5.2 displays the following ratios:

posterior ratio =

∑51
i=1 Niπ̂

pm
i

total number of unemployed

Tri ratio =

∑51
i=1Niπ̂

TG
i

total number of unemployed
,

where Ni, π̂
pm
i and π̂TGi denote the number of persons in the labor force, hierarchical
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Bayes and triple-goal estimates of unemployment rate for the ith state (i = 1, · · · , 51). If

a ratio lies on the reference line at 1, the corresponding state estimates are perfectly bench-

marked. With respect to the benchmarking criteria, both estimates are behaving similarly

and they do not show any systematic pattern over different months. From the figure, we

observe that triple-goal estimates are always slightly higher than the corresponding hi-

erarchical Bayes estimates. Generally, they are both hierarchical Bayes and triple-goal

estimates are within 5% of the national estimates. Needless to say by construction our

benchmarked triple-goal estimates are perfectly benchmarked.

In Figure 5.3, we plot different estimates of unemployment rates for 50 states and

the District of Columbia for the month of April over four consecutive years. In each

graph, the reference line corresponds to the national estimate. The states are arranged in

increasing order of the effective sample sizes. For the larger states, different estimates are

closer than the small states.
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Figure 5.3: Unemployment rate for each state
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Figure 5.4: Monthly Std. Err. of estimates

When we compare the variability of the estimates across states, we find the hi-

erarchical Bayes estimates vary the least among all the other estimates, supporting our

theory. It is shown in Figure 5.4, in which we plotted standard errors of the 51 states

each month for posterior means, triple goal estimators and benchmarked triple goal es-

timators. The picture clearly supports our claim that the posterior mean has the lowest

standard errors. It’s interesting to note that the benchmarked triple goal has standard er-

rors between the other two estimates in most cases, and the difference between triple-goal

and benchmarked triple-goal estimators is closer than that between posterior and bench-

marked triple-goal estimators.
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5.5 Discussion

In this chapter, we have explored the triple goal estimates developed by Shen and Louis

(1998) and expanded it by putting benchmarking conditions as constraints. Previously

in Chapter 4, our starting estimator was the posterior mean, but in this chapter, we have

used the triple-goal estimators as our starting estimator. From our result, we can see that

the benchmarked triple goal estimators are still successful at preserving the triple-goal

properties while maintaining the benchmarked property.
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Chapter 6

Future Research

We would like to conduct our future research in two different directions. In Chapter 4

and 5 of this dissertation, we have explored different benchmarking estimation methods.

However, like other articles in this area of research, we have not explored any method

for measuring their uncertainty. Since proposed benchmarked methods are not fully

Bayesian, it does not seem reasonable to use posterior variance as an uncertainty mea-

sure. One possibility is to estimate the mean squared error (MSE) of the benchmarked

estimator. Even though there are many different methods for estimating the MSE, the

parametric bootstrap appears to be most promising. Chatterjee et al. (2008) described

such method in the context of constructing confidence intervals based on empirical best

predictors (EBLUP). While it seems straightforward to apply their method to estimate

MSE of the benchmarked estimator, the theoretical properties of parametric bootstrap

for benchmarked estimators are unknown. This could be an interesting research area to

pursue.

Second, throughout this dissertation, we have used different area-level models for

generating our estimates. We would like to explore benchmarking for unit-level models,

similar to the BHF model. The challenge would be to find an appropriate model that

captures different salient features of the complex survey design. Datta and Ghosh (1991)

proposed a general Bayesian framework for linear mixed models with particular emphasis
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on small area estimation. For the future research, we would like to expand their method

for non-linear unit level models with bench-marking properties.
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