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Abstract

Software architecture documentation (SAD) is an integral artefact emerging from the
development process of a software project. The SAD contributes to the ongoing success of
a software project by tracking important design decisions, ensuring a shared understanding
of them and forestalling software erosion. In order to improve the quality of SADs and
to support downstream tasks, an automatic classi�cation of these design decisions is
desirable.
In this thesis, we implement and evaluate an approach to automatically identify and

classify design decisions based on a �ne-granular taxonomy by combining a hierarchi-
cal classi�cation strategy with the exploitation of transfer learning through pre-trained
language models. The main contribution of this study is to investigate the bene�t of
the hierarchical classi�cation strategy for the classi�cation of design decisions over a
non-hierarchical approach. Additionally, we examine and compare the e�ectiveness of the
pre-trained language models RoBERTa, XLNet, BERTOver�ow, and GPT-3 for this task.
In our evaluation, the approaches using pre-trained language models generally out-

performed the baseline approaches. However, we could not �nd a clear advantage of the
hierarchical approaches over the non-hierarchical approaches in combination with the
language models. Ultimately, the results of this thesis are limited by the size and imbalance
of our data set and therefore require further research on a larger data set.
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Zusammenfassung

Die Software-Architektur Dokumentation (SAD) ist ein integrales Artefakt eines Software
Projektes. Die SAD trägt zum fortwährenden Erfolg eines Software Projektes bei, indem
sie ein gemeinsames Verständnis der Software Architektur gewährleistet, wichtige Ent-
wurfsentscheidungen dokumentiert und einer Erosion der Software vorbeugt. Um die
Qualität von SADs zu verbessern und nachgelagerte Aufgaben zu unterstützen, ist eine
automatische Klassi�zierung dieser Entwurfsentscheidungen erstrebenswert.
In dieser Arbeit implementieren und evaluieren wir einen Ansatz zur automatischen

Identi�kation und Klassi�zierung von Entwurfsentscheidungen auf der Grundlage einer
feingranularen Taxonomie, bei der wir eine hierarchische Klassi�kationsstrategie mit dem
Einsatz von Transfer-Lernen durch vortrainierter Sprachmodelle kombinieren. Der Beitrag
dieser Arbeit besteht darin, den Vorteil einer hierarchischen Klassi�kationsstrategie für
die automatische Klassi�kation von Entwurfsentscheidungen gegenüber einem nicht-
hierarchischen Ansatz zu untersuchen. Außerdem untersuchen und vergleichen wir die
E�ektivität der vortrainierten Sprachmodelle RoBERTa, XLNet, BERTOver�ow und GPT-3
für diese Aufgabe.
In unserer Evaluation schnitten die Ansätze mit vortrainierten Sprachmodellen im

Allgemeinen besser ab als die Baseline-Ansätze. Wir konnten jedoch keinen klaren Vorteil
der hierarchischen Ansätze gegenüber den nicht-hierarchischen Ansätzen in Kombination
mit den Sprachmodellen feststelle. Letztlich sind die Ergebnisse dieser Arbeit durch die
Größe und das Ungleichgewicht unseres Datensatzes limitiert und erfordern daher weitere
Forschung mit einem größeren Datensatz.
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1 Introduction

Software development is a complex process, with many participants involved and many
resulting information and artefacts. For the success of a software project and the resulting
software, it is important that a shared understanding and clear communication is enabled.
In addition, information must be preserved to ensure adequate software quality and
maintenance throughout the life-cycle of a software system. To meet these requirements,
good documentation is fundamental. [47]
A key role in the software development process is played by design decisions. They

can be understood as a general term for decisions that a�ect di�erent views or aspects
of a software system. Jansen et al. [28] conclude that the software architecture can be
considered as the set of all design decisions. Hence, they are of particular importance
for the resulting software. Since design decisions constitute fundamental aspects of the
software, their documentation is of major in�uence on the software development life cycle.
This documentation typically comes in the form of software architecture documentation
(SAD) written in unstructured natural language.

Since design decisions are a very broad term, it makes sense to categorise them further.
For instance, Kruchten [37] has proposed a taxonomy for design decisions in which
they distinguish at the highest level between existence decisions, property decisions, and
executive decisions.
Classi�cation of design decisions is useful for several reasons. It promotes communi-

cation and understanding of the documentation, helping those involved in the software
development process to better understand design decisions. Beyond that, the classi�cation
of design decisions also supports a variety of downstream tasks, especially with respect to
automated processing.
One of these tasks is automatic consistency checking between software architecture

and informal documents, such as SADs. Keim et al. [32] substantiate the need for an
automated consistency checking and motivate their future goal for automatically checking
the consistency between models and SADs based on natural language understanding.
A SAD with classi�ed design decisions would be one step closer to that goal since the
classi�cation helps signi�cantly in properly interpreting the meaning of a design decision.
For example, if a design decision is assigned to an existence decision or, more precisely, to
a structural decision, it can be speci�cally checked whether this structure is represented
in the model. In practice, SADs are commonly written in natural language and in a form
that tends to be unstructured. Although the bene�t of classifying design decisions within
a SAD is well reasoned, it does not take place during the documentation process. The
reason for that is not least because accurate documentation already su�ers from a lack
of human resources, time, and money. Subsequent manual classi�cation would also be
very costly and require trained personnel. As a consequence, we see the demand for
an automated classi�er. The aim of this thesis is, therefore to develop and evaluate an
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1 Introduction

approach that identi�es design decisions of a SAD and classi�es them according to the
taxonomy proposed by Keim et al. The addressed goal is a text classi�cation task from
the �eld of natural language processing (NLP). For this purpose, conventional methods
exist, in which a preprocessing of the texts with techniques of a conventional NLP pipeline
is performed. In recent years, the increasing availability of computational resources has
spurred the research and popularity of pre-trained language models (LM) that provide
promising results in various NLP tasks. These modern LMs provide the advantage of being
pre-trained on a large text corpus. This pre-knowledge can be exploited for NLP tasks in
addition to the actual training data. This process is also referred to as transfer learning.
We consider this property of LMs to be particularly valuable for our case since we have a
very limited amount of labelled data available for training. We can therefore expect LMs
to have an advantage over conventional approaches. Thus, one goal of this work is to
systematically apply di�erent state-of-the-art LMs and compare them with respect to their
classi�cation performance.
The taxonomy that is used as a basis of the classi�cation has a hierarchical structure.

On the one hand, a classi�cation can be done �at by ignoring the hierarchy and only
considering the leaf node classes. On the other hand, the hierarchy can be incorporated
for classi�cation.

This leads us to the research question of whether a hierarchical approach yields better
classi�cation results than a �at approach. The assumption is that dividing the problem
into smaller sub-problems and thereby incorporating the hierarchical information into
the classi�cation task enables a better classi�cation performance. Therefore, we want to
investigate whether this assumption is con�rmed. Furthermore, we want to analyse the
performance of each parent class to identify over- and under-performing classes.

In summary, the main contribution of the master’s thesis is to investigate the hierarchical
classi�cation of design decisions using pre-trained LMs and to answer the following
research questions:

RQ1: Are there parent classes or hierarchy levels in the taxonomy at which classi�-
cation performance is proportionally high or low?

RQ2": What is the e�ect of a hierarchical classi�cation approach versus a �at
approach on the overall classi�cation result, with conventional methods and with
the transformer approaches?

RQ3: How and to what extend do pre-trained LMs improve classi�cation perfor-
mance over conventional approaches?

RQ4: Which of the applied LMs leads to the best classi�cation results?

1.1 Structure of the Thesis

The thesis is structured as follows:
In Chapter 2, we introduce the foundations of the work. We �rst describe the taxonomy

on which our approach is based. Next, we introduce the natural language processing
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1.1 Structure of the Thesis

techniques and algorithms as well as the transformer-based language models. At the end of
this chapter, we de�ne the performance metrics used for the evaluation. In Chapter 3, we
present an overview of related work that investigates the automatic classi�cation of design
decisions, the use of pre-trained language models in software engineering-speci�c tasks
and hierarchical text classi�cation. This is followed by chapter 4, in which we introduce
our approach in more detail. In this chapter, we describe the hierarchical classi�cation
strategy. Further, we explain the implementation of the language model-based approaches
and the baseline approaches. In Chapter 5, we go into the evaluation by �rst presenting
our evaluation methods, the data set and a GQM plan. Then we present and examine
our evaluation results in detail. Finally, Chapter 6 concludes the thesis. In the conclusion
chapter, we �rst summarise the evaluation results and revisit the research questions,
followed by a discussion of threads to validity and future work.

3





2 Foundations

This chapter introduces the essential techniques and methods of machine learning, espe-
cially natural language processing (NLP), that we apply in this work. In the �rst section,
we introduce the taxonomy based on which we aim to classify the design decisions. Next,
we explain methods that we refer to as classical methods, which we have applied to our
baseline classi�ers. After that, we explain the general functionality of transformer models
and the transformer language models we utilise in our work. Finally, we introduce per-
formance metrics commonly used for classi�er evaluation and that we also use for our
evaluation.

2.1 Taxonomy

Software architecture documentation (SAD) captures a variety of di�erent design decisions.
In order to classify these design decisions adequately, we require a suitable classi�cation
scheme or taxonomy. A study that has been deeply devoted to the development of a
taxonomy for design decisions is "A Taxonomy for Design Decisions in Software Architecture
Documentation" and was published as a preprint by Keim et al. [33]. As their main
contribution, Keim et al. developed and evaluated a comprehensive and �ne-grained
taxonomy, as shown in Figure 2.1 and 2.2.
As the authors state in their preprint, existing classi�cation schemes did not meet

their requirements because they were usually too coarse-grained and thus impractical
for speci�c downstream tasks such as automatic consistency checking between SAD and
other software artefacts. Following this argumentation, we use the taxonomy developed
by Keim et al. in this thesis.
The taxonomy categorises design decisions into several sub-classes, creating a hierar-

chical tree with a maximum depth of 5 and 24 distinct leaf node categories. Our objective
is to classify design decisions into exactly one of these 24 classes. In addition, it is part of
our classi�cation goal to identify design decisions, i.e. to classify if a text line contains
a design decision or not. Consequently, we see no design decision as an additional class
leading to 25 �nal leaf note classes.

2.2 Classical Text Classification

We develop classi�ers that rely on classical NLP or text classi�cation techniques to provide
a baseline for comparing and evaluating transformer-based text classi�cation approaches.
With classical techniques, we refer to those that have a long history of being established
and researched, and do not involve the use of pre-trained language models or neural
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2 Foundations

Figure 2.1: Part one of the taxonomy: sub-classes of Existence Decision (Source: Keim et
al. [33])

Figure 2.2: Part two of the taxonomy: sub-classes of Existence Decision and Property
Decision (Source: Keim et al. [33])
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2.2 Classical Text Classi�cation

networks. The classical process of automatic text classi�cation can be broadly broken
down into four pipeline steps: 1. preprocessing, 2. tokenization, 3. feature engineering,
and 4. training and evaluation of the classi�er. We will describe these steps and their
techniques in this section.

2.2.1 Preprocessing

In NLP, preprocessing refers to a set of techniques used to clean, transform, and prepare
text data for further analysis or modelling. The goal of preprocessing is to make the text
data more amenable to analysis and to remove any noise or irrelevant information that
may interfere with subsequent NLP tasks, such as text classi�cation.

Text Cleaning Some preprocessing steps include cleaning the text. This can involve
removing punctuation, other undesirable characters or stop words. Stop words are a set of
commonly used words, such as "the", "is", "and", "in", that do not add signi�cant meaning
to a text.

Stemming & Lemmatization Stemming and lemmatization reduce in�ected or derived
words to their base form. For example "developing" gets reduced to "develop". Stemming
usually applies simple rules and heuristics to remove the in�ectional ending of a word.
Lemmatization, on the other hand, is more precise, typically using a vocabulary with
morphological analysis and incorporating the syntactic structure of the sentence.

2.2.2 Tokenization

Tokenization is an integral step in the NLP Pipeline. It describes the process of breaking
down a piece of text into smaller units called tokens. In classical NLP approaches, tokens
are usually represented by single words or characters. Depending on the type of token,
tokenization is then performed using separation patterns or simple rules. In novel ap-
plications, such as transformer-based language models, subword tokenization has been
established. Subword tokenization learns a vocabulary of frequently occurring substrings
based on a large text corpus. As a result, frequently occurring words are represented by a
single token, while rarer or unknown words are composed of several tokens [2]. New texts
are then tokenized by matching the substrings of the text with tokens in the vocabulary.
The advantage of this method is that subword tokens have greater expressiveness than
single-character tokens while minimizing the problem of dealing with unknown words.
Popular subwort tokenization algorithms are for instance WordPieces [67], Unigram [38]
or Byte-Pair Encoding [53].

2.2.3 Feature Engineering

The goal of feature engineering is to map the preprocessed and tokenized text to numerical
vectors used to train the classi�er in the subsequent step. The entries of the vectors
represent numerical information about the text, also referred to as features. Accordingly,

7



2 Foundations

the vectors are also known as feature vectors and their vector space as feature space.
Common feature engineering methods techniques are describe below.

Bog-of-Word The bag-of-words approach is a simple method to embed text into a feature
space. A text is considered a set or multiset of words. Thus, word occurrences are taken
into account, but not their order. In bag-of-words, each word in the training corpus
is assigned a feature representing its occurrence. The value of the feature can then be
binary, representing a boolean value, or measuring its absolute or relative frequency in
the document.

N-Grams =-grams are another method to extract features from texts. This method con-
siders the occurrences of tuples of = words (word =-grams) or = characters (character
=-grams). Analogously to the bag-of-words approach, each =-gram is assigned a feature
that quanti�es its occurrences in binary terms or as relative or absolute frequencies. In
contrast to the bag-of-words approach, =-grams partially preserve the order of words and
thus acquire more text structure.

Tf-IDF The tf-idf stands for term frequency - inverse document frequency and is a statis-
tical measure that rates the relevance of a term to a document. A term can be, for instance,
a single word or an =-gram. The tf-idf of a term C with respect to a document 3 from a
text corpus ⇡ is calculated as follows:

tf-idf(C,3) = tf(C,3) ⇤ idf(C,⇡)
Where tf(C,3) is the relative frequency of C in document 3 and idf(C,⇡) is the inverse

document frequency of C with respect to a text corpus ⇡ , de�ned as:

idf(C,⇡) = log
|⇡ |

|{3 2 ⇡ : C 2 3}|
It follows that the idf becomes large if C occurs in only a few documents. The intention

behind the tf-idf is that not only the frequency of a term in a document measures its
relevance, but also its exclusivity. A term that also occurs in many other documents is not
particularly characteristic for the regarded document.

2.2.3.1 Feature Selection

Many feature engineering approaches struggle with extracting toomany irrelevant features
that result in an overly high-dimensional feature space. This phenomenon is called the
curse of dimensionality [1], [54]. The curse of dimensionality causes the data points to
become widely dispersed and sparse, making it di�cult for the classi�er to identify patterns
or relationships between features that can be used to distinguish between di�erent classes.
This can lead to poor performance, such as over�tting or under�tting, and make it di�cult
for the classi�er to generalize to new data.

This problem can often be insu�ciently curbed by preprocessing steps such as stemming,
stop-word removal or lower-casing. Applying statistical feature selection techniques can

8



2.2 Classical Text Classi�cation

address the curse of dimensionality [26] These methods use statistical tests to evaluate the
relationship between each feature and the target variable. Features with a high correlation
or statistical signi�cance are selected, while those with a low correlation or statistical
signi�cance are discarded. The following feature selection methods are applied in the
context of this work.

Mutual Information The �rst method is based on mutual information [57]. Mutual in-
formation, in simple terms, scores how much information can be gained about a target
variable by observing another variable. Thus, for feature selection, the features can be
ranked according to the amount of information they carry about the target class.

ANOVA F-Value Another metric for feature selection utilises the ANOVA f-value [17]. The
f-value tests how well a feature discriminates between target classes by comparing their
class distributions with respect to a feature. A feature where the class distributions are
well separated and have little or no overlap discriminates well between classes and thus
results in a high f-value.

Chi2 The third feature selection method is based on the Chi2 test [69]. This test measures
the dependence of two variables. This allows us to select features on which our target
class depends the most.

All of these methods have in common that they rank features using the aforementioned
information-theoretic or statistical metrics. By means of these metrics, the best = features
can be selected, where = is a hyperparameter to be chosen.

2.2.4 Classification Algorithms

For this thesis, we involve four classi�cation algorithms, based on Naive Bayes, random
forest, logistic regression and support vector machine. In this subsection, we will brie�y
introduce the four basic concepts of these classi�cation algorithms.

2.2.4.1 Naive Bayes Classifier

Naive Bayes classi�ers [7] are a family of probabilistic algorithms that is based on Bayes’
theorem. Together with the naive assumption that all features are conditionally indepen-
dent of each other with respect to a class, the Bayes’ theorem can be used to determine
the probability of a class given a set of features

% (2: |G1, ..., G=) =
% (G1, ..., G= |2:)% (2:)

% (G1, ..., G=)
_ % (2:)

=÷
8=1

% (G8 |2:)

Where 2: is a class and G8 2 - is a feature. From that, we can derive a simple classi�er
that predicts a class with the highest probability

2: = argmax
:

% (2:)
=÷
8=1

% (G8 |2:)
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2 Foundations

2.2.4.2 Random Forest

A random forest classi�er [70] is an ensemble classi�er method that combines the predic-
tions of multiple decision trees. The basic idea behind a random forest classi�er is to train
multiple decision trees on di�erent subsets of the training data and then combine their
predictions by taking a majority vote from all the decision trees.

A decision tree is built using a process called recursive partitioning. The process starts
with the entire dataset at the root node and then repeatedly splits the data into subsets
based on decision rules and the values of input features. The subsets are split until each
data in the set belongs to the same class. The decision tree can then classify a new sample
by traversing the tree node by node according to the decision rules until it is assigned to a
leaf node corresponding to a class.

The random forest creates multiple decision trees by using a technique called bootstrap
aggregating. Bootstrap aggregating randomly selects a subset of the data, with replacement,
to train each decision tree. In addition, the random forest also uses a technique called
feature randomness, which randomly selects a subset of features at each decision tree split.
This helps to reduce the correlation between the trees.

2.2.4.3 Logistic Regression

Logistic regression [31] is a statistical regression analysis method that is commonly used
for classi�cation tasks. This method estimates the probability of a binary outcome based on
a given set of independent variables. Logistic Regression models the probability of a binary
outcome through the use of a sigmoid function, described by the following equation:

% (. = 1) = 1
1 + 4�(V0+V1G1+V2G2+...+V=G=)

where % (. = 1) is the probability of the outcome 1, G1, ..G= are the independent variables
and V0, ..., V1 are regression coe�cients. The logisic regression can be transformed into
a linear model, that models the log-odds of the outcome as a linear combination of the
independent variables.

ln
✓

% (. = 1)
1 � % (. = 1)

◆
= V0 + V1G1 + V2G2 + ... + V=G=

As a result, the regression parameters V0 + V1G1 + V2G2 + ... + V=G= can be determined
analogously to a linear regression using maximum likelihood estimation or gradient
descent.

The primal logistic regression models only binary classes, but can be adapted in di�erent
ways for multi-class settings. This is known as multinomial logistic regression. A simple
solution for multinomial logistic regression is to set up and combine one logistic regression
model per class in a one-vs-rest fashion.

2.2.4.4 Support Vector Machine

Support vector machines (SVM) [45] are a family of machine learning algorithms for re-
gression and classi�cation tasks. The original SVM was developed for binary classi�cation
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Figure 2.3: Illustration of the basic support vector machine

but has since been adapted for various applications, including multi-class classi�cation
and regression tasks. The concept of SVM is to �nd a hyperplane that best separates data
points in the feature space according to their class. The objective is to place the hyperplane
so that the margin between the two classes is maximized. The margin describes the sum
of the distances between the hyperplane and the nearest data point of each class, called
support vectors. Since the data points usually cannot be perfectly separated due to outliers,
a soft margin is used, a modi�cation to the margin to ignore a certain number of outlying
data points. Figure 2.3 illustrates the basic SVM concept.
Using a hyperplane to separate the classes, the ordinary SVM implements a linear

classi�er and is thus strongly limited in its capabilities. However, the SVM can also
perform non-linear classi�cations while preserving the maximum margin hyperplane
objective by applying a technique known as the kernel trick. By applying a non-linear
kernel function, the data points are transformed into a higher dimensional feature space,
in which the data points then become separable by a hyperplane.

2.3 Transformer-based Language Models

Novel NLP approaches increasingly build on language models [43]. A language model is
a statistical model trained to represent the probability distribution over word sequences
of natural language. Thus, for any word sequence of length =, a language model assigns
a probability % (F0...F=) [30]. The idea behind a language model is to have a model that
can generally "understand" language. The language understanding can then be used as a
basis for any NLP tasks. Such a concept is also known as transfer learning. The advantage
of transfer learning over classical methods is that tasks do not require completely new
models to be trained from scratch. This potentially improves the quality of the model and
reduces the need for training data.

Modern language models are usually implemented as neural networks trained on large
text corpora to learn the probability distribution over token sequences. The structural
characteristics of natural language and the requirement to train on extensive amounts of
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Figure 2.4: The transformer architecture (Source: Vasvani et al. [61])

data e�ciently demands particular architectures for neural networks. One architecture that
has emerged as the most suitable and thus became widely established is the transformer
architecture.

2.3.1 Transformer Architecture

The transformer architecture was �rst presented by Vaswani et al. in the paper "Attention
is all you need" in 2017 [61], initially as a sequence-to-sequence transformation model
for language translation. In the following, we provide an overview of the main building
blocks of the transformer architecture and its functionality.
The original transformer architecture consists of an encoder and a decoder part, each

with a stack of encoder and decoder layers, respectively. Figure 2.4 illustrates the architec-
ture with the encoder part on the left grey box and the decoder on the right grey box. The
�gure shows a single encoder and decoder layer. In the transformer model, these layers
are repeated #G times, #G = 6 in the original paper.

2.3.1.1 Encoder

The role of the encoder is to map the tokens of the input sequence to an abstract con-
textualised vector representation, which represents the token with all its semantic and
syntactic relations to other tokens of the input sequence. For this, the input sequence is

12



2.3 Transformer-based Language Models

processed successively by the six encoder layers. The output of the �nal encoder layer,
i.e. the contextualised vector representations, is needed afterwards by the decoders to
generate the output sequence.

Input Embedding & Positional Encoding The �rst step in the encoder process is to map
the input sequence tokens into vector representations referred to as input embeddings.
These input embeddings project the tokens into a 512-dimensional vector space. The input
embeddings are determined from an embedding matrix, which learns the representations
of every token throughout the pre-training.

In the next step, the input embeddings are then extended with the so-called positional
encoding. Positional encoding augments the input embeddings with positional information
by adding vectors to the input embeddings that encode a token’s position in the input
sequence. Positional encoding is a crucial feature of the transformer architecture. For the
understanding of natural language, it is indispensable to consider the order of words. In
models such as recurrent neural networks, the order is preserved by processing a sentence
or sequence sequentially word by word. The detriment of this, however, is that models
like this are hard to parallelise, which leads to a signi�cant drawback for training with
large amounts of data. Positional encoding alleviates this problem by carrying the position
information of each token explicitly as part of the embeddings rather than implicitly via
the structure of the input sequence. This allows long word sequences to be processed by
the model at once. Consequently, transform-based language models can be trained much
more e�ciently, leading to the development of language models trained on extensive text
corpora

Multi-Head Attention After generating the input embeddings and enriching them with
positional encoding, the vectors are passed to a multi-head attention layer. The multi-head
attention layer implements the self-attention mechanism, which is the second key compo-
nent of the transformer architecture. Self-attention enables the model, while processing a
token, to attend to all other tokens of the input sequence with di�erent weights, captur-
ing complex dependencies between di�erent elements in the input without the need for
explicit recurrence or convolution. The example in Figure 2.5 shows how a transformer
model considers di�erent tokens with di�erent weights when processing the token "it".
Through the self-attention mechanism, the model is thus able to correctly resolve the
di�erent co-references of "it" in the two example sentences. In the transformer architecture,
self-attention is extended to be multi-headed. As such, the attention mechanism is applied
by eight so-called attention heads in parallel to di�erent representation subspaces learned
from the model. Thus, di�erent aspects of relations between words can be considered
simultaneously, and relations can be modelled more precisely.

All outputs of the eight attention heads are now concatenated and linearly transformed
into a lower dimension to be passed on to a feed-forward layer with a ReLU activation
function, which calculates the �nal output of the encoder layer. In this manner, the input
embeddings are fed through the six encoder layers. Eventually, the last encoder outputs
contextualised vectors that represent syntactic and semantic relations of the tokens to
their surrounding tokens, i.e., their context.
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Figure 2.5: Attention while processing the word "it" (Source: Jakob Uszkoreit [60])

2.3.1.2 Decoder

The purpose of the decoder is to generate the target sequence from the contextualised
vectors calculated by the encoder. Unlike the encoder, the decoder proceeds sequentially
or autoregressively, generating the next token of the target output sequence one step at a
time. Once the decoder generates an output token, it is fed back as additional context to
the �rst decoder layer and considered for the generation of the next token.

Masked Multi-Head Attention In the decoder, the target sequence is transformed into an
input embedding with positional encoding, similar to the process in the encoder. The
target sequence is then given to a multi-headed self-attention layer, which di�ers in one
aspect from the layer in the encoder. For the model to autoregressively learn to generate
the target sequence token by token, the context that the attention mechanism can take
into account must be restricted to the context on the left side of the token to predict.
Otherwise, the model could "cheat" by already seeing the tokens yet to be predicted. The
restriction is done by masking the attention and setting the weights of the future tokens
to 0. Consequently, the model does not attend to future tokens in the sequence. Vaswani
et al. refer to this modi�ed version as masked multi-head attention.

Cross-Attention The masked self-attention is followed by another attention layer known
as cross-attention. The cross-attention layer has a link to the output encoder stack’s �nal
layer. This cross-attention connection provides the decoder with the representations of the
previously generated tokens as well as all tokens of the source sequence in a contextualized
vector representation calculated by the encoder.

The cross-attention works analogously to self-attention but di�ers in its input. Cross-
attention takes two di�erent input sequences as input and hence, models the relations
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between the tokens of the two sequences. In this case, it is the source sequence, output by
the encoders, and the target sequence.

The output of the cross-attention is processed by a feed-forward layer and then passed
on to the next decoder. After the output has passed through all the decoder layers, it
is then processed by a �nal feed-forward layer, followed by a Softmax function, which
outputs a probability for every token in the vocabulary, determining the next token in the
target sequence.
So far, we have described the original Transformer architecture, which was developed

with the intent of language translation.
On this basis, the transformer architecture has been adapted and is used in a variety of

application �elds, including audio processing [62], and computer vision [34]. Particularly
prominent are transformer models in their role as language models, helping to achieve
state-of-the-art results for a wide range of natural language processing tasks [48], [43].
This also includes the software engineering domain, as we elaborate on in section 3. We
distinguish two �avours of transformer-based language models, the BERT-based and the
GPT models. These two transformer language model types and the particular language
models we use for our experiments are introduced in the following.

2.3.2 Bidirectional Encoder Representations from Transformers

The �rst category of transformer language models have their origin in a language model
called BERT (Bidirectional Encoder Representations from Transformers).[16]. Since the
original publication of BERT by Devlin et al., several evolutions of BERT have been devel-
oped, such as RoBERTa [42] or ALBERT[40]. These BERT-like models are improvements
or further developments of the original model but follow the same basic principles of
masked language modelling and the encoder-based architecture. In the following, we will
�rst introduce the original BERT model and then describe the BERT-based models used in
this work.

BERT is a language model that can be conceived as a framework that provides language
knowledge and can be �ne-tuned for arbitrary downstream language processing tasks. In
contrast to the complete transformer architecture, the BERT architecture relies solely on a
stack of encoder layers. Hence, the model does not generate a token sequence but outputs
embeddings, i.e., numeric vectors representing each token in its current context.
These embedding vectors can be used for downstream tasks, for instance, by adding a

task-speci�c classi�cation layer on top of the BERT model and training the whole model
end-to-end on speci�c labelled data.

BERTmodels are pre-trained on large unlabelled text corpora using the masked language
modelling objective. Masked language modelling describes a training process in which a
certain percentage of the input tokens is randomly replaced by a generic [mask] token.
The model is trained to predict the original values of the masked tokens, given the context
on both sides. This is done by feeding the input sequence into the BERT model and using
the output of the �nal layer as the prediction for each masked token. The model is then
trained to minimise the cross-entropy loss between the predicted and the actual token
values. Masked language modelling enables the model to learn the contexts before and
after a token. This is why BERT is also described as being bidirectional.
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On top of masked language modelling, BERT is trained on another training objective:
Next sentence prediction. In the next sentence prediction, the model receives two sentences
separated by a [SEP] token as input. BERT is then trained to predict whether these sentence
pairs are either sentence that immediately follows each other in the training corpus or
two randomly sampled independent sentences. To aid the next sentence prediction, BERT
additionally carries a so-called [CLS] token at the beginning of each sentence. The output
of the [CLS] token is inferred by all the other words of the sentence. Hence, it covers the
context of the entire sentence. Devlin et al. implemented next-sentence prediction to help
the model capture relationships between sentences, which they deemed relevant for tasks
such as question-answering or natural language inference.
In this thesis, we applied and compared three di�erent BERT-based language models,

that we introduce in the following.

2.3.2.1 RoBERTa

First, we introduce the BERT-like model RoBERTa [42]. RoBERTa stands for "Robustly
optimised BERT approach" and is a pre-trained language model that adopts the BERT
architecture unmodi�ed.

Liu et al.’s optimisations over the original BERT mainly relate to the pre-training process,
the hyperparameters and the datasets, with the training principle and masked language
modelling objective remaining unchanged. The researchers experimented with various
adjustments to the pre-training and, based on their �ndings, trained RoBERTa with es-
sentially four optimisations: 1. Omitting next-sentence prediction; RoBERTa was trained
without next-sentence prediction but instead on full sentences sampled contiguously from
one or more documents, rather than segment pairs as in the original BERT. This also
implies that RoBERTa was trained on longer consecutive token sequences with up to 512
tokens per sequence. 2. Dynamic masking patterns; For the masked language modelling,
ten di�erent random masking patterns are used per training sample instead of the same
static pattern per sample. This had a positive e�ect, especially in combination with the
more extended training, in which one sample is seen more often. 3. Signi�cantly more
training data; the training data set of BERT was extended by 155 of uncompressed text data.
Thus RoBERTa was pre-trained to a total of 161 of text data. 4. Longer training with larger
batch sizes; to train RoBERTa, Liu et al. used a batch size of 8k and 500k training steps,
compared to the batch size of 256 and 1M training steps for BERT, leading to prolonged
training.
The resulting RoBERTa model has 24 layers, 16 attention heads and 355m trainable

parameters. The model was evaluated on established NLP benchmarks with challenges
including question answering and sentence classi�cation, showing that RoBERTa clearly
outperforms BERT and performs equally well or slightly better in all compared to XLNet.

2.3.2.2 XLNet

Another evolution of BERT is XLNet.[68]. With XLNet, Yang et al. developed a transformer-
based language model based on a stacked encoder architecture but replaced BERT’s masked
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language modelling with a new pre-training objective named permutation language mod-
elling.

In BERT’s masked language modelling, the authors see twomain problems. One problem
is that for pre-training the corruption of the input sequence is done by replacing tokens
with the [Mask] token. However, this [Mask] token does not occur in real-world data,
leaving an ambiguous discrepancy between pre-training and �ne-tuning of the model.
Further, the authors �nd the problem that BERT presumes conditional independence
between the masked tokens of an input sequence. Suppose the sentence "New York is a
city" is masked to "[Mask][Mask] is a city". BERT may then predict "New" and "Francisco"
for the masked words as BERT reduces to the objective

JBERT = log ? (New | is a city) + log ? (Francisco | is a city)

XLNet addresses these two problems by introducing generalized autoregression as a
training procedure that relies on the permutation language modelling objective. This
training method is autoregressive. That is, one token is predicted based on all previous
tokens, i.e. the previous context. To also consider the context behind a token, XLNet
evaluates all possible factorization orders of the token in an autoregressive fashion, in
contrast to BERT’s �xed forward factorization order.

Figure 2.6 shows four permutations on a four-token input sequence in which the token
G3 is to be predicted. Due to the di�erent factorization orders, all tokens occur at least
once in the left context of the processed token. Note that only the factorization order is
permuted. The actual token order is preserved through positional encoding.

By working autoregressively, permutation language modelling resolves the problems of
masked language modelling by taking into account dependencies between the tokens to
be predicted, reducing the training of XLNet in the example to the following objective:

JXLNet = log ? (New | is a city) + log ? (York | New, is a city)

Further, the training-�ne-tuning discrepancy is tackled by no longer requiring a speci�c
mask token.

Besides improving the pre-training procedure, XLNet extends the original transformer
architecture based on the publication of Transformer-XL[15] by adding a recurrence
mechanism to the transformer architecture to handle longer dependencies and a larger
context. In the original transformer architecture, the context is limited to the length of a
segment, a �xed number of tokens that are processed at once. Thus, dependencies that
exceed this segment size cannot be modelled, which may result in torn dependencies due
to the segmentation.

XLNet incorporates a recurrence mechanism for processing the segments to overcome
this limitation. With the segment-level recurrence mechanism, each layer obtains the
representations computed for the previous segment along with the output for the current
segment from the predecessor layer. This increases the largest possible dependency length
by # times, where # is the depth of the network, as contextual information can now �ow
across segment boundaries.
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Figure 2.6: Permutation language modelling objective for predicting G3 given the same
input sequence G but with di�erent factorization orders. (Source: Yang et al.
[68])
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2.3.2.3 BERTOverflow

The third BERT-based model we experiment with is BERTOver�ow. BERTOver�ow was
designed as part of a study by Tabassum et al. on named entity recognition in software
engineering tasks, which is also discussed in the related work section. BERTOver�ow was
developed to handle domain-speci�c language better than the original BERT, eventually
improving the performance of named entity recognition for software engineering. To
this end, Tabassum et al. trained a new BERT⌫�(⇢ model, which comprises 12 layers, 12
attention heads, and 110M trainable parameters, on a domain-speci�c new text corpus. This
corpus consists of 152M sentences collected from the programmer community platform
StackOver�ow. The study demonstrates that BERTOver�ow indeed performs better in the
evaluated software engineering speci�c named entity recognition, despite the signi�cantly
smaller text corpus on which it was pre-trained.

Since SADs contain software engineering-speci�c terms or language, we apply BERTOver-
�ow for our experiments.

2.3.3 Generative Pre-trained Transformer Models

In tandem with the BERT-based language models described so far, another �avour of
transformer-based language models has emerged, namely the generative pre-trained
transformer (GPT) models. As indicated by their name, the primary function of these
models is to generate text.
Unlike BERT models, GPT models are based on the decoders of the transformer archi-

tecture owing to their generative nature. The decoders’ layout is in line with the original
transformer architecture, except for the absence of the cross-attention layer as there is no
encoder input (as shown in Figure 2.7).
A GPT model is designed to predict the most probable next token based on a token

sequence. For this purpose, the model is trained in an autoregressive fashion, generating
one token at a time and feeding the newly generated sequence back into the initial decoder
layer as context for the generation of the next token. Hence, GPT models are trained to
maximise the following likelihood [49]:

JGPT(* ) =
’
8

log % (D8 |D8�: , ..., 8 � 1)

where* = {D1, ...,D=} is text corpus and : is the size of the context window.
To avoid the model from seeing the future tokens to be predicted, the model is restricted

by the masked self-attention to attend to only the prior context of a token. Hence, GPT
models are not bidirectional in terms of capturing context.

2.3.4 GPT-3

GPT-3[11] is a generative language model introduced by OpenAI in 2020 as a follow-up to
GPT-2. GPT-3 is based on the general decoder-based architecture with some modi�cations.
The most signi�cant modi�cation is the integration of a sparse transformer. The sparse
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Figure 2.7: General GPT Architecture (Source: Radford et al. [49])

transformer is an extension of the transformer architecture that aims to improve computa-
tional e�ciency by selectively attending to a subset of the input sequence rather than all
of it. More precisely, the attention mechanism is split into two steps: a sparse attention
step and a dense attention step. In the sparse attention step, the model �rst computes
a sparse attention mask that is used to select a subset of the input sequence to attend
to. This mask is computed by applying a learnable sparse attention function to the input
sequence. In the dense attention step, the model performs regular multi-head attention on
the selected subset of the input sequence. This reduces time and memory complexity in
attention layers from$ (# 2) to$ (# ⇤

p
# ) with respect to the size of the context window

(in GPT-3 this equals the input sequence size).
GPT-3 stands out from other language models due to its enormous scale in terms of the

network size and the training corpus. OpenAI compounded a text data set that is 570GB
in compressed size and includes 500B tokens, which, assuming 0.75 words per token, is
about 375B words. They split this data set into 60% training data and 40% evaluation
data. The text corpus consists primarily of �ltered text from the CommonCrawl data set,
complemented with some smaller text corpora. OpenAI trained GPT-3 models in di�erent
sizes. The largest model includes 96 layers, 96 attention heads, and a total of 175B trainable
parameters, which is about 50x more than RoBERTa or XLNet.

Zero-Shot Learning, One-Shot Learning & Few-Shot Learning The authors see the strength
of GPT-3 in its �exibility to be used for di�erent NLP tasks without �ne-tuning the model
with much training data. They evaluate GPT-3, therefore, with three methods, referred
to as Zero-Shot learning, One-Shot learning and Few-Shot learning. In conventional
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�ne-tuning, the model is given a larger number of task-speci�c examples in the form of
input-output pairs, from which the model itself trains by adjusting its weights via gradient
update. The drawback of this method is that a high number of labelled training data must
be available. In contrast, the model can be given solely a task description, from which the
model infers the expected output. For instance, for text summarisation, a prompt could
be the text itself along with the term "TL;DR". The model may have learned from the
text-corpus that the acronym "TL;DR" indicates a subsequent brief summarisation of the
antecedent text and hence, will generate a text that summarizes the given input. Since this
example is provided without any labelled training samples, it is referred to as "zero-shot
learning". For instance, language translation could be prompted through the following
input text:

T r a n s l a t e Eng l i s h to French
chee se =>

In this case, GPT-3 would probably continue the text sequence with the word "fromage",
i.e. the French translation of cheese. Since this example is provided without any labelled
training samples, it is referred to as "zero-shot learning". To improve the result, the input
can be extended with task examples. In this case, a task description is not necessarily
required. An input for sentiment analysis could look like the following, for example:

Comment : " I ha t e i t when my phone b a t t e r y d i e s . "
Sen t iment : Nega t i ve
###
Comment : "My day has been a mess "
Sen t iment : P o s i t i v e
###
Comment : " Th i s i s the l i n k to the a r t i c l e "
Sen t iment : Neu t r a l
###
Comment : " Th i s new music v ideo was i n c r e d i b i l e "
Sen t iment :

Based on the given structure and the examples in the input text, the model can predict
that one of the labels "Negative", "Neutral" or "Positive" must follow. The GPT model
will then output the most likely of these three words based on its pre-trained language
knowledge. Because in this example, very few labelled training examples are provided,
this method is called "few-shot learning" or "one-shot learning" in the case of exactly one
training example.
OpenAI currently deploys GPT-3 as a commercial product in four di�erent versions.

The four models, Ada, Babbage, Curie, and Davinci, are described by OpenAI as having
di�erent capabilities and speeds and are priced individually. OpenAI does not publish the
exact hyperparameters of the models. Based on the descriptions, we assume that Ada is
the smallest model, followed by Babbage, Curie and Davinci as the largest model.

The models can be accessed via an API provided by OpenAI. Moreover, the API provides
an interface for �ne-tuning individual instances of the models. However, details on the
�ne-tuning process or implementation are not publicly available.
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2.4 Evaluation Metrics

To evaluate the performance of the classi�ers with regard to the classi�cation of a single
class, we resort to the performance measures precision, recall and f1-Score. These are
de�ned as follows:

%G =
C?G

C?G + 5 ?G
'G =

C?G
C?G + 5 =G

�1G =
2 ⇤ %G ⇤ 'G
%G + 'G

Where the C?G is the number of true positives of class G , 5 ?G is the number of false
positives, and 5 =G is the number of false negatives regarding class G . For the classi�cation
performance with respect to all classes - of a classi�er, we consider macro-averaged
performance measures:

%<02A> =
Õ

G %G
|- | '<02A> =

Õ
G 'G
|- | �1<02A> =

Õ
G �1G
|- |

Additionally, we measure the classi�er’s accuracy, de�ned as follows:

� =
Õ

G C?G
B

where B is the total number of samples. Note that in the multi-class setting, the accuracy
is equivalent to the micro-averaged F1 score [24].

Further, we calculate Matthews correlation coe�cient (MCC) for each classi�er we train.
The MCC measures the correlation between predicted classes and true classes. We use a
modi�ed version of the MCC adapted to the multi-class setting, as proposed by J. Gorodkin
[23]. The multi-class MCC is de�ned as:

"⇠⇠ =
2 ⇤ B �Õ

G ?G ⇤ CGp
(B2 �Õ

G ?
2
G ) ⇤ (B2 �

Õ
G C

2
G )

where

• CG = C?G + 5 =G being the number of times class G occurs

• ?G = C?G + 5 ?G being the number of times G was predicted

• 2 =
Õ

G (C?G + C=G ) being the total number of samples correctly predicted

• B being the total number of samples
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Alongside the performance measures mentioned so far, we consider hierarchical per-
formance measures to evaluate the �nal classi�cation result. These are modi�cations of
the common measures to a hierarchical classi�cation scenario to not only discriminate
true and false classi�cations but also take into account the distance between the correct
and the predicted class in the class hierarchy. The hierarchical performance metrics are
de�ned below:

⌘% =
Õ

8 |%8 \)8 |Õ
8 |%8 |

⌘' =
Õ

8 |%8 \)8 |Õ
8 |)8 |

⌘�1 =
2 ⇤ ⌘% ⇤ ⌘'
⌘% + ⌘'

Where %8 is the set consisting of the predicted leaf node class for test example 8 , and all
its ancestor classes in the taxonomy, analogously, )8 is the set consisting of the true leaf
node class for 8 and all its ancestor classes.
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3 RelatedWork

This section aims to provide an overview of existing research related to this work in one
or more dimensions. In particular, we contemplate three aspects.

At �rst, we consider work dealing with automated classi�cation of (design)- decisions.
Next, we explore work that uses pre-trained transformer-based LMs for text classi�cation
in the Software Engineering (SE) domain. Finally, we give an overview of research that
addresses hierarchical text classi�cation, especially those that employ the local classi�er
per parent node (LCPN) strategy.

3.1 Automatic Classification of Decision

Existing research on automated classi�cation of design decisions, or decisions in general,
uses di�erent premises, information sources, and classi�cation schemes to extract and clas-
sify decisions. In this regard, these works explore di�erent machine-learning techniques
for text classi�cation.
A closely related work is the pre-print published by Keim et al.[33], which we have

already introduced in the foundations chapter. In addition to the taxonomy presented,
Keim et al. implemented approaches to identify and classify design decisions, achieving
an averaged f1-score of 89.5% for identi�cation using a random forest approach and an
f1-score of 55.8% for classi�cation of design decisions using BERT. Our thesis thus ties in
with the work of Keim et al. focusing more intensely on identifying and classifying design
decisions.
Bhat et al. [8] proposed automatically detecting and classifying design decisions in

issues from an issue tracking system. They relied on a two-phase supervised machine
learning approach to �rst automatically detect design decisions from issues and second, to
automatically classify the identi�ed design decisions into �ve di�erent decision categories.
For classifying and detecting decisions, Bhat et al. trained and compared di�erent classi�ers,
such as logistic regression, SVM or Naive Bayes, on a manually labelled data set. They
used a TF-IDF representation of N-grams as features. In the end, the SVM yielded the
best results with an average accuracy of 91.27% for detection and an average accuracy of
82.79% for classi�cation.
Another related work was published in 2021 by Li et al. [41] that investigates the

automatic identi�cation of decisions from textual artefacts using di�erent machine learning
techniques. They used 1300 sentences gathered from the Hibernate developer mailing list
labelled either as a decision or as no decision. Li et al. experimented with di�erent machine
learning algorithms in combination with di�erent pre-processing and feature extraction
con�gurations by training and evaluating classi�ers with 10-fold cross-validation. The
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evaluation indicated that an SVM with a simple bag of words provided the best results
with a precision of 0.64, a recall of 0.93, and an f1-score of 0.76.

In a following publication, Fu et al. [20] followed up on this work. They proposed to
classify these various types of decisions, identi�ed from the Hibernate developer mailing
list, into the �ve categories design decision, requirement decision, management decision,
construction decision and testing decision, to aid their documentation. Fu et al. evaluated
di�erent ensemble classi�ers in which multiple machine-learning methods were applied
jointly in one classi�er. Furthermore, they tested di�erent pre-processing strategies,
vectorisation methods and a ⇠� 2 feature extraction algorithm. The best result with an f1-
score of 0.727 was achieved by an ensemble classi�er that involves linear regression, SVM
and naive Bayes in combination with a simple bag of words approach for the vectorisation.

The research outlined so far relies on classical feature engineering and machine learning
methods for text classi�cation. In contrast, Joseph et al. [29] take a di�erent tack by
leveraging transfer learning through BERT. They as well motivated the need for proper
documentation of design decisions. To support this task, they presented a concept and early
implementation of a bot integrated with the instant communication platform Slack. The
Slack bot listens to textual communication between developers to identify design decisions
and classi�es them into the seven WH(Y) classi�cation template categories. Furthermore,
the bot was designed interactively to improve the classi�cation quality continuously. Once
a design decision is identi�ed, the most likely classes are suggested to the user. Hence,
users can select the correct class and generate new labelled data to �ne-tune the BERT
model further. The early prototype implementation of their bot achieved a precision close
to 1.0. However, Josephs et al. state that good results can probably be fathomed by high
over�tting, as the data set so far only consists of 55 training clauses and 38 test clauses.

3.2 Pre-Trained LMs for So�ware Engineering Tasks

We have shown that there is already some research to identify and classify di�erent types
of decisions from textual sources. To the best of our knowledge, there is only one approach
relying on pre-trained transformer LMs for this purpose. Nevertheless, there is a sundry
of other text classi�cation tasks in the software engineering domain where pre-trained
Transformer LMs have been utilised, which we exemplary overview in this section.

3.2.1 Requirements Mining and Classification

Classi�cation of requirements is a task related to the classi�cation of design decisions.
Requirements are often found in natural language texts and can be distinguished into
functional and non-functional requirements or more �ne-grained categories. The track
record of transformer-based LMs thus also lends itself to the application for requirements
classi�cation, as indicated by recent research.
In 2020 Hey et al. [25] proposed NoRBERT, which stands for non-functional and

functional requirements classi�cation using BERT. NoRBERT was evaluated on di�erent
tasks of requirements classi�cation such as binary classi�cation in functional and non-
functional, multi-class classi�cation of non-functional subclasses and other classi�cations.
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For the evaluation, hey et al. applied a project-fold cross-validation and a leave-one-project-
out cross-validation in addition to 10-fold cross-validation to examine the generalisation
of the �ne-tuned BERT models to unseen projects. Their �ndings con�rm that NoRBERT
performs equally or better in all requirements classi�cation tasks. The advantage of
transfer learning could be played out, especially in unseen projects. For example, the
project-fold validation strategies led to a 15% better f1 score compared to state-of-the-art
results considering the binary classi�cation of requirements based on functional and
quality aspects on a data set with 612 requirements.
Another study leveraged software engineering contracts as a data set for extracting

and classifying requirements and compared BERT with other machine learning methods
for this purpose [51]. Sainani et al. likewise obtained signi�cantly better results through
�ne-tuned BERT compared to other machine learning methods. They investigated the
automatic extraction of requirements from software engineering texts and then the multi-
class classi�cation into 14 requirement types. In both disciplines, BERT performed better
than the comparison methods SVM, Random Forest, naive Bayes and BiLSTM. Especially
in multi-class classi�cation, the BERT model outperformed the second-best approach,
which used a BiLSTM, by 14% f1-score.

Requirements can be extracted from various text artefacts. One useful source is app
reviews. de Araújo et al. addressed this and improved existing approaches for extracting
requirements from app reviews, which so far only provide poor results, by using a transfer
learning approach based on BERT [4]. Requirements extraction can be approached as a
token classi�cation problem. Tokens are labelled as beginning, middle, end or outside of a
requirement phrase. de Araújo et al. �ne-tuned the BERT model on this task with 1000
labelled app reviews from di�erent apps. In their evaluation, they achieved an averaged f1
score of 46%. This is several orders of magnitude higher than the comparative approaches,
which are rule-based or use linguistic patterns and come to f1 scores of 5-7%.

3.2.2 Sentiment Analysis for So�ware Engineering

Sentiment analysis is about categorising opinions or sentiments expressed in a piece of
text, usually into positive, negative or neutral. This task has been addressed extensively in
the past for application in various �elds. Research on this topic suggests that sentiment
analysis is particularly challenging for software engineering-speci�c text, which is why
current research is tackling this challenge by applying pre-trained language models to this
problem.
The question of whether pre-trained LMs can improve the performance of sentiment

analysis for software engineering is addressed by Biswas et al. [9] as they developed a
tool based on the �ne-tuning of BERT, and compared it to an existing tool that employs
Recurrent Neural Netorks (RNNs). They �rst used a data set with 1500 labeled phrases
from Stack Over�ow for �ne-tuning and evaluation. Then they extended the data set with
4000 additional phrases, also from Stack Over�ow, to investigate the impact of a more
extensive data set on classi�cation performance. The experiment results showed that the
BERT-based tool achieves about 20% higher f1-score than the comparison tool. Further, it
was found that the larger data set improves the f1-score of the BERT tool from around
80% to 87% compared to the smaller one.
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A study by Zhang et al. points [71] in the same direction as their experiments yielded
signi�cant improvement in sentiment analysis for software engineering with BERT-based
models against prevailing methods. More speci�cally, they experimented with the BERT-
based models BERT, XLNet, Albert, and RoBERTa and compared these approaches to �ve
established methods for sentiment analysis in software engineering. They trained and
evaluated six di�erent data sets, the smallest containing 341 and the largest with 7122
phrases. Depending on the data set, they improved from 6.5% up to 35.6% with respect to
the f1-score, compared to the benchmark approaches. However, no clear winner stood out
among the four BERT⌫�(⇢ models applied.
Similar results are also presented in later publications by Batra et al. [6] and by Wu

et al. [66]. Wu et al. �ne-tuned BERT on various software engineering-speci�c data sets
and found improvements in the f1-score between 3%-21% compared to existing methods
without pre-trained models. Batra et al. as well applied BERT-based models and signi�-
cantly improved existing tools. Their experiments also suggest that an ensemble classi�er
consisting of multiple BERT-based models can slightly improve classi�cation performance,
and increasing the size of the data set through data augmentation also leads to minor
improvements.

So far, we have given an overview of the use of pre-trained transformer-based LMs in two
software engineering-speci�c tasks. We considered requirements mining and classi�cation
as a reasonably related task to design decision classi�cation. Further, examined sentiment
analysis as the use of transformer-based LMs for this task has already been much studied.
In addition, there are many other text classi�cation scenarios in software engineering
where the use of transformer-based LMs has been examined, e.g., the classi�cation of
issues of an issue tracking system [27] or the classi�cation of app reviews [3]. Beyond
text classi�cation, there are also many other NLP applications for transformer-based LMs,
such as named entity recognition [58], [13].

The trend of transfer learning for language processing using transformer-based language
models also spreads to the software engineering domain, for instance, for text classi�cation
problems. The research shows that these novel approaches provide promising results and
encourage their usage.

3.3 Hierarchical Text Classification with LCPN

In this subsection, we will contemplate research of the second conceptual building block of
this work, hierarchical text classi�cation using the local classi�er per parent node (LCPN)
strategy. Due to the advance of the internet and rapid increase in textual content, automatic
categorisation of those textual documents has become a relevant research topic. Topics and
categories of texts can often be well arranged into upper and lower categories, resulting
in a class hierarchy. It seems reasonable to include this hierarchy in the categorisation
process. One way of approaching this is the LCPN method, which is investigated in this
thesis and explained in more detail in section 4.1. The LCPN strategy for text and document
classi�cation has already been applied and studied in several research papers.
The �rst publication on this topic is by Koller et al. [36]. They aimed to train a naive

Bayes classi�er using only a few words as features. To do this, they experimented with
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a feature selection method based on information theoretical entropy. Koller et al. also
compared a hierarchical LCPN classi�er with a �at classi�er. The approaches have been
evaluated on two data sets and categories: a data set with 939 documents and a two-level
hierarchy with three parent classes and two child classes each, and a data set with only 103
documents and a two-level hierarchy with two parent classes and two child classes each.
The researchers found that the LCPN approach is superior, especially for con�gurations
with very few features. The hierarchical classi�er yielded up to 9% higher accuracy than
the �at classi�er.

An improvement in classi�cation performance using an LCPN approach was also found
by Weigend et al. [64]. They considered a data set with 13272 �nancial documents and
a two-level class hierarchy with four parent classes and a total of 37 leaf node classes.
In their research, a simple feed-forward neural network was used, and di�erent input
representations of the documents were explored. Weigend et al. evaluated both �at and
LCPN classi�ers and showed that the LCPN approach generally performed better with,
on average, 5% better precision. Furthermore, the advantage of the LCPN approach was
particularly noticeable for underrepresented classes with few examples.
Similar results were obtained in the research of Dumais et al. [18]. They classi�ed

web content into a large two-layer classi�cation scheme with 13 parent and 150 child
classes. For this purpose, they trained SVMs with di�erent con�gurations and a feature
selection based on mutual information on about 50k documents and evaluated them on
10k documents. The comparison between the LCPN and the �at classi�er indicates that
the hierarchical approach outperforms the f1-score of a �at approach by 4-6%.
Especially in the case of a large number of classes, the exploitation of the class hier-

archy seems worthwhile, as suggested by a study by Gauch et al. [21]. They made their
investigations on a part of the Open Directory Project, a web directory with an extensive
class hierarchy. The part of the class hierarchy they used includes four levels, with 10132
leaf node classes, each with at least 31 samples. Gauch et al. applied the centroid distances
to select particularly representative training documents and used them to train Rocchio
classi�ers for the �at and the LCPN approach. The �nal comparison shows that the hierar-
chical classi�er performed much more accurately than the �at one with an accuracy of
54.5% vs 76.2% in their best cases.
More recent research by Stein et al. took up the topic of hierarchical text classi�ca-

tion and applied more novel techniques in terms of classi�ers and word vectorisations.
More speci�cally, Stein et al. [56] experimented with fastText, XGBoost, SVM, and a
Convolutional Neural Network (CNN) in combination with the word embedding methods
GloVe, word2vec, and fastText. They ran the experiments on the RCV1 data set, a text
classi�cation benchmark data set with over 800k newswire stories categorised into a class
hierarchy with 104 nodes (including root) distributed over four hierarchy levels. The
hierarchical classi�er was built according to the LCPN method. In contrast to the previous
methods, documents do not have to be classi�ed in leaf node classes but can also terminate
in parent classes. To realise this, they added a virtual category for each parent class,
meaning that the classi�cation ends with the corresponding parent class if a document
is assigned to it. With the LCPN classi�ers, Stein et al. achieved better results in every
con�guration concerning the classi�cation algorithm and word embedding as compared
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to the �at baseline approaches. Thus, the best hierarchical classi�er achieved achieved a
macro-avareged f1-score of 76.6 % and the best �at classi�er only 57.7 % f1-Score.

[56]
The most recent work addressing hierarchical text classi�cation with the LCPN strategy

was published in 2021 by Brinkmann et al. [10] and, to our knowledge, is the only one so
far that explored this on a transformer-based pre-trained LM. Brinkmann et al. utilised
RoBERTa⌫�(⇢ to classify products into hierarchically arranged product categories based
on product descriptions. They set out to investigate whether and how the classi�cation
performance improves when RoBERTa is trained with additional domain-speci�c language
by training an extended RoBERTa model on three di�erent text-corpora. Moreover, they
trained and compared two hierarchical approaches, an LCPN approach and an approach
based on a Recurrent Neural Network (RNN). The LCPN classi�er works by using local
classi�ers per parent node to calculate the probabilities of each classi�cation path in the
tree and then choosing the leaf node class of the classi�cation path with the highest
probability using the Softmax function. In the RNN classi�er, the classi�cation is done
sequentially from the root to the leaf node class. To do so, the pooled output of RoBERTa
is extended with a hidden state and recurrently fed through the RNN classi�cation head
for each classi�cation step until a leaf node class is reached. As a baseline, Brinkmann et
al. implement a �at classi�er with a simple one-layer classi�cation head. The di�erent
classi�ers were evaluated on two data sets containing product o�er descriptions. One data
set with about 13k samples, 396 nodes and an average hierarchy depth of 3 and one with
about 768k samples, 410 nodes and an average hierarchy depth of 2.44. Brinkmann et al.
chose the hierarchical f1 score (hF1) as one of the metrics, which we also consider in our
work. The experiments of Brinkmann et al. found that the extension of RoBERTa with
domain-speci�c language hardly improves the �at approach with default RoBERTa. The
Hierarchical approach improved by only 1% hF1 score. With respect to the hierarchical
classi�ers, the RNN classi�er performed marginally better than the LCPN classi�er, with
88.98% vs 88.6% hF1. The �at baseline classi�er, however, performed only slightly worse
than the hierarchical ones, with an hF1 score of 87.7%.
The research on related work for hierarchical LCPN text classi�cation reveals several

papers that compare very di�erent data sets and class hierarchies with the performance
of LCPN classi�ers versus �at classi�ers as baselines. The results consistently show an
advantage for the LCPN strategy, albeit to di�erent extents.
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Software architecture documentation (SAD) is an integral artefact emerging from the
development process of a software project. The SAD contributes to the ongoing success of
a software project by tracking important design decisions, ensuring a shared understanding
of them and forestalling software erosion. In order to improve the quality of SADs and to
support downstream tasks, an automatic classi�cation of the documented design decisions
is desirable, as motivated in more detail before. In this thesis, we implement and evaluate
multiple approaches to automatically classify design decisions. These approaches are
based on two main building blocks. The �rst building block is the implementation of
hierarchical classi�ers that utilise the hierarchical nature of the classi�cation scheme in
the classi�cation process. The second building block is the exploitation of transfer learning
by �ne-tuning pre-trained transformer language models (LMs) on the design decision
classi�cation task.
In this chapter, we describe our approach in more detail. We start by explaining the

hierarchical classi�cation strategy in section 4.1. In section 4.2, we describe the classi-
�cation using pre-trained transformer LMs. And �nally, in section 4.3, we describe the
development of baseline approaches.

4.1 Hierarchical Text Classification

Classifying design decisions using the taxonomy of Keim et al. is a tricky endeavour. The
reason for this is the �ne granularity of the taxonomy and the resulting large class output
space with 25 leaf node classes (including the No Design Decision class). Furthermore, there
are �ne distinctions in the taxonomy between closely related design decisions, which could
make classi�cation more di�cult. For example, the Arrangement Decision class is further
di�erentiated into Architectural Style, Architectural Pattern and Reference Architecture,
which describe similar decisions regarding the architecture. In order to better cope with
these challenges, we propose incorporating the tree-like and, thus, hierarchical structure
of the taxonomy as additional information into the classi�cation process. Therefore, as
this thesis’s �rst building block, we apply and investigate the concept of hierarchical text
classi�cation. More speci�cally, we develop hierarchical classi�ers according to the local
classi�er per parent node (LCPN) strategy [55].

The idea behind a hierarchical LCPN classi�er is to divide the classi�cation process into
multiple sub-steps in a divide-and-conquer manner and, thus, to perform the classi�cation
with several classi�ers, referred to as local classi�ers. Accordingly, a local classi�er is
trained for every internal node class in taxonomy, classifying its direct child classes. This
is in contrast to a "�at" global classi�er that directly distinguishes between all leaf node
classes, disregarding the hierarchical nature of the taxonomy. Figure 4.1 provides an
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Figure 4.1: LCPN classi�er vs �at classi�er

example of an LCPN approach and a �at approach for a class hierarchy with six leaf node
classes.

The classi�cation with a hierarchical LCPN classi�er proceeds top-down, from the
root to the �nal leaf node class, similar to a decision tree. For the classi�cation of a SAD
text line, consider, for example, the following sentence from the SAD of TEAMMATES:
"TEAMMATES is a Web application that runs on Google App Engine (GAE).". This sentence
contains a design decision regarding the platform. The target class of this sentence is thus
Platform. As shown in the taxonomy in Figure 2.2, the Platform class has three ancestor
classes. Therefore, following the LCPN strategy, the classi�cation is done by four local
classi�ers. The �rst classi�er decides whether a design decision is given (we refer to
this as the root classi�er). The local classi�er forDesign Decision distinguishes between
Property Decision, Executive Decision and Existence Decision. The third local classi�er
distinguishes between the two child classes of Executive Decision until �nally, the fourth
classi�er determines the �nal class Platform from all child classes of Technological. For
hierarchically classifying design decisions according to the taxonomy, the LCPN classi�er
must comprise 13 local classi�ers, including the root classi�er.

An advantage of the hierarchical LCPN approach is that each local classi�er has a
signi�cantly reduced class-output space compared to a single �at global approach. In our
case, this is mostly two to three, and at most four classes. Therefore, the local classi�ers are
more specialised, leading us to expect improved classi�cation of �ner-grained categories,
such as the classes Architectural Style, Architectural Pattern, and Reference Architecture, and
improved performance overall. This property suggests the hierarchical LCPN approach
being superior to a �at global classi�er. One argument against this, however, is that for
each classi�cation, multiple steps are necessary to determine the �nal class. A single
classi�cation mistake from one of the local classi�ers leads to a wrong �nal leaf node class.
Therefore, we develop both the LCPN approach and a �at global approach to compare the
two approaches and examine the potential added value of a hierarchical classi�er.
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4.2 Pre-trained Transformer-based Text Classifiers

The second building block of this work is the application of pre-trained transformer
language models (LMs) for text classi�cation. Pre-trained LMs have recently proven to be
successful in a variety of natural language processing tasks. Their key advantage lies in
their ability to leverage prior language knowledge through transfer learning for various
NLP tasks, resulting in good performance without the need for a large data set. We see
this feature of transfer learning as particularly bene�cial for our speci�c application. Since
we strive for a classi�cation into 25 classes, the average number of training samples per
class is comparatively small and reduced compared to a classi�cation with fewer classes.
Hence, we aim to tackle this predicament by exploiting transfer learning with pre-trained
transformer LMs.

4.2.1 Choice of Transofmer Language Models

Given the promising nature of transformer LMs, numerous such models have been de-
veloped to date. These models vary in their size, pre-training, and other architectural
and functional aspects. We choose four models from the range of transformer LMs, three
BERT-based models and one GPT model, focusing on the models’ capabilities rather than
computational or memory e�ciency. We apply the following four transformer LMs:

RoBERTa As the �rst BERT-based models, we apply RoBERTa-Large[42]. RoBERTa
adopts the encoder architecture and masked language modelling objective from BERT,
but optimises its training procedure with respect to the training hyperparameters and
text corpus. As a result, RoBERTa was trained longer and on signi�cantly more text
data compared to BERT. The RoBERTa training corpus consists of a total of 161 GB of
uncompressed text, including EnglishWikipedia, the BooksCorpus[73] with over 10k books,
CC-News[44] with 63M English news articles, OpenWebText[22] with web content from
various websites, and Stories[59], a subset of CommonCrawl[14] �ltered to match a story-
like style. The RoBERTa-Large model comprises 24 layers, a hidden size of 1024, 16
attention heads, and 355M trainable parameters.

RoBERTa achieved state-of-the-art results on popular natural language understanding
benchmarks such as GLUE [63], RACE[39] and SQuAD[50]. Furthermore, RoBERTa has
already been successfully used for software engineering-speci�c text classi�cation tasks,
as we explored in our related work section 3. Therefore, we consider RoBERTa a suitable
candidate for the classi�cation of design decisions.

XLNet Another BERT-based model we use and evaluate for the classi�cation of design
decisions is XLNet-Large, the large version of XLNet [68]. XLNet is built on an encoder-
only transformer architecture and implements a new permutation language modelling
objective instead of BERT’s masked language modelling approach. In addition, XLNet’s
transformer architecture incorporates a segment-level recurrence mechanism that enables
the modelling of longer contexts beyond the segment boundary. XLNet-Large was pre-
trained on 159 GB of uncompressed text. The training data set includes the BooksCorpus
and English Wikipedia, as with RoBERTa. Additionally, the news corpus Giga5[46], as
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well as portions of the ClueWeb 2012-B[12] and Common Crawl corpora, which contain
various web texts, are part of the training data set. XLNet-Large is comparable in size to
RoBERTa with 24 layers, a hidden size of 1024, 16 attention heads and 340M parameters.
When evaluated on the GLUE, RACE and SQuAD benchmarks, XLNet-Large outper-

formed RoBERTa slightly. What makes XLNet-Large additionally interesting for this
thesis is that it has been benchmarked on several text classi�cation data sets, including
AGNews and DBpedia[72]. In these text classi�cation tasks, XLNet-Large outperformed
all competing models. These results suggest a potential good performance in classifying
design decisions, which is why we apply and evaluate XLNet-Large as another pre-trained
transformer language model.

BERTOverflow The third BERT-based model we experiment with is BERTOver�ow, de-
veloped as part of a study by Tabassum et al.[58] on named entity recognition in software
engineering tasks. BERTOver�ow is a BERT-Base model trained on a domain-speci�c
text corpus of 152M sentences collected from the programmer community platform Stack-
Over�ow. We estimate the data set size to be approximately 10 GB, assuming 70 bytes per
sentence. BERTOver�ow’s transformer architecture includes 12 layers, a hidden size of
768, 12 attention heads, and 110M parameters.

BERTOver�ow was developed with the intention of being better suited to handle lan-
guage from the domain of software engineering or programming. However, it remains
unclear whether BERTOver�ow is superior in this regard compared to the other models.
RoBERTa and XLNet were pre-trained on training data sets that are more than ten times
larger, likely including numerous programming and software engineering-related texts as
well. Therefore, we apply BERTOver�ow to our approach to investigate how suitable it is
for classifying design decisions compared to the other transformer LMs.

GPT-3 Lastly, we examine the capabilities of the large languagemodel GPT-3 in classifying
design decisions. GPT-3 is based on a decoder-only transformer architecture, unlike the
BERT-based models, focusing on text generation. The model is trained to predict the next
token in a given token sequence, based on all tokens before the token to be predicted.
Hence, GPT-3 only considers the left context when processing a token and therefore is
not classi�ed as bidirectional. GPT-3 stands out from other language models due to its
enormous scale in terms of the network size and the training corpus. GPT-3 was pre-
trained with a data set of about 324GB in compressed size consisting primarily of �ltered
text from the CommonCrawl data set, complemented with some smaller text corpora.
OpenAI trained GPT-3 models in di�erent sizes. The largest model includes 96 layers, 96
attention heads, a hidden size of 12288, and a total of 175B trainable parameters, which
is about 50x more than RoBERTa or XLNet. GPT-3 has been evaluated on various zero-
and few-shot tasks, i.e. with only a few or no training samples, highlighting GPT-3’s
strength. To investigate the impact of size and ability to handle new NLP tasks with limited
training samples on the classi�cation of design decisions, we also include GPT-3 in our
experiments.

OpenAI currently deploys GPT-3 as a commercial product in four di�erent versions and
prices. We opt for the model Curie as a good trade-o� between size and pricing. According

34



4.2 Pre-trained Transformer-based Text Classi�ers

RoBERTa-Large XLNet-Large BERTOver�ow GPT-3

Architecture Encoder Encoder Encoder Decode
Parameters 355M 340M 110M 175B (up to)
Objective Masked-LM Permutation-LM Masked-LM Next Token Pred.
Corpus Size 161 GB 159 GB ˜ 10 GB 324 GB (compressed)

Table 4.1: The pre-trained language models we employ and their main features.

to the description on the website, we assume that Curie is the second largest deployment
of GPT-3. The exact hyperparameters of the model, however, are not publicly available.
Table 4.1 summarises the language models employed and evaluated in the scope of this
research.

4.2.2 Implementation

In the following, we provide insights into the implementation of the local and �at classi�ers.
The implementation of classi�ers di�ers between GPT-3 and BERT-based models. This is
primarily due to the inherent di�erence in the encoder-only or decoder-only architecture
and the resulting property that BERT-based models output contextualised vectors while
GPT-3 outputs tokens (sequences). Additionally, the practical di�erence is that we �ne-
tune GPT-3 through an API that limits our feasibility, while BERT-based models are freely
accessible. We will �rst present the implementation of the BERT-based classi�ers.

4.2.2.1 BERT-based Classifiers

The classi�ers based on BERT models are designed as depicted in Figure 4.2. They consist
of three key components: the language model speci�c tokenizer, the transformer LM itself,
and a classi�cation head.

The text classi�er depicted in Figure4.2 processes an input text by �rst having it tokenized
by the associated tokenizer. The tokens are then embedded by the transformer LM and
processed through the stack of decoder layers to ultimately emit contextualised token
embeddings. However, the individual token embeddings are not used any further and
are thus ignored. Instead, we use the pooled output of the model. The pooled output
is a contextualised vector representation of the entire token sequence. In XLNet and
BERTOver�ow, the pooled output is computed from the last hidden state of the [CLS]
token, set for next-sentence prediction. Since RoBERTa does not implement next-sentence
prediction, it uses its own <s> token for the pooled output. The pooled output now serves
as the input to the classi�cation head. The classi�cation head essentially consists of a
single dense linear layer that projects the 1024 or 768 input dimensions to the logits of the
= class labels, determining the target classi�cation.

For the implementation of the classi�ers in Python, we relied on the open-source
library Hugging Face [65]. Hugging Face provides an extensive repository of pre-trained
transformer models, which have already been equipped with a classi�cation head or other
task-speci�c extensions. In addition, the library o�ers a variety of tools and interfaces that
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Figure 4.2: Design of a classi�er with a BERT-based model.
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aids the entire �ne-tuning process For training the models, the training hyperparameters
play an important role. To e�ciently �nd the optimal hyperparameters, we perform an
extensive hyperparameter search, considering the seed for network initialisation, the
learning rate, the number of training epochs, the training batch size and the weight decay
for the AdamW optimiser. The hyperparameter search is performed using a Bayesian
optimiser, implemented with the Optuna framework, with the objective of maximising
classi�cation accuracy. The data set used for the hyperparameter search is split into
80% training and 20% validation data using strati�ed sampling and a �xed random seed,
ensuring reproducibility

4.2.2.2 GPT-3 Classifier

Since GPT-3 is a decoder-only transformer model, the way it is used for text classi�cation
di�ers from the othermodels. The objective of GPT-3 is to predict themost likely next token
of a token sequence. This feature can be leveraged for text classi�cation by �ne-tuning
GPT-3 to predict the desired class label as the next token.
For �ne-tuning, we use the API provided by OpenAI [19] and follow the recommen-

dations outlined in their accompanying documentation. In order to �ne-tune a GPT-3
model, we need to provide the API with the training data in the form of prompt-completion
pairs. In our case, a prompt consists of the text line to be classi�ed, concatenated with a
separator string of the form "\n\n==\n\n". The separator string signals the model that the
prompt ends and completion is expected. The completion, in our case, is the corresponding
class name. We have reduced the class names to be represented as one token in order
to reduce costs and minimize the risk of an out-of-bound prediction. For example, the
class Programming Language is reduced to programming. Hence, a training sample in .json
format might look like this:

{"prompt":"The application is written in Plankalkül\n\n==\n\n", "completion":"programming"}

The classi�cation process is straightforward by sending a prompt, including the sep-
arator string, to the model and interpreting the predicted token, or completion, as the
classi�cation.
The API for �ne-tuning a GPT-3 model o�ers the ability to set basic training hyperpa-

rameters such as batch size, number of epochs, and learning rate. Since the usage of the
API is billed based on the number of processed tokens, we omit hyperparameter tuning for
cost reasons and use the default hyperparameters provided by OpenAI for all classi�ers.

4.3 Baseline

In order to better evaluate the actual bene�t of transformer LMs for the classi�cation of
design decisions, we develop four baseline models for both the �at global and hierarchical
LCPN classi�ers, based on the machine learning algorithms naive Bayes, random forest,
logistic regression, and support vector machine (SVM) as part of this work.
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When developing the models, we apply various techniques to transform the raw texts
into feature vectors. These techniques can be divided into three pipeline steps:

1. Pre-Processing The �rst step involves operations that clean up the text and remove
noise as necessary. For this purpose, we consider the processing steps of lower-casing,
removal of punctuation and special characters, replacing URLs with generic strings, stop-
word removal and stemming.

2. Tokenization For tokenization, we use word tokenization, that divides the text into
individual words, and character tokenization, dividing the text into individual characters.

3. Featurer Extraction & Selection For feature extraction, we use either single tokens or to-
ken n-grams. Depending on the tokenization, this results in single characters, single words,
character n-grams or word n-grams. We also consider n-gram ranges for the n-grams. An
n-gram range of, for instance, 2-4 means that 2-grams, 3-grams, and 4-grams are captured.
For calculating the feature values, we use either binary count, absolute or relative count,
or tf-idf. As these feature extraction methods can result in very high-dimensional and
sparse feature vectors, we apply the feature selection methods Chi2, Mutual Information,
or ANOVA F-Value by calculating the relevance of each feature using one of these methods
and selecting the top n features. After this step, we obtain the �nal feature vectors, which
are used to train the respective model.

Considering all these described techniques results in numerous possible combinations
of pre-processing, tokenization, feature extraction, and feature selection. To �nd the
optimal con�guration, we performed Bayesian optimisation, analogue to the training
hyperparameter search for the transformer LM approaches, using the Optuna framework.
In addition, we included essential machine learning algorithm-speci�c hyperparameters
to optimise them as well.

For the implementation of all baseline approaches, including all pipeline steps and the
training of the naive Bayes, random forest, logistic regression and SVM models, we use
the open-source library scikit-learn [52].
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In the evaluation, we follow a GQM plan, as proposed by [5], shown in section 5.3. In
order to obtain the most detailed information about which classi�cation steps in the
hierarchical approach perform well and which perform worse, we evaluate each local
classi�er individually. We measure the overall performance of each local classi�er and
the classi�cation performance for each child class. Eventually, we evaluate the overall
hierarchical global classi�er and compare it to the �at global approaches.

5.1 Data Set

In this study, two data sets were used for training and evaluation purposes, each consist-
ing of publicly available software architecture documentation (SADs) from open-source
projects. Table 5.1 shows the data sets with the respective projects included. The SADs
are structured in a way that each line represents a piece of text to be classi�ed. Usually,
one line contains one sentence.
The �rst data was used for cross-validation, as described in section 5.2. This data set

originates from the publication of Keim et al.[33] and includes 17 open-source projects.
Although the data set has already been labelled by the authors, we relabelled the entire
data set manually. On the one hand, we wanted to gain a better understanding of the
data set and of the design decision classes. On the other hand, we intended to ensure
consistent labelling throughout both data sets, as the second data set was not pre-labelled.
When labelling the data sets, we meticulously followed the class de�nitions of Keim et
al. In some SAD lines. We always classi�ed the �rst or foremost design decision in case
several design decisions are expressed in one SAD line. For example, the sentence "The
application is built using Spring and deployed on an Apache Web Server" contains both a
design decision of the Framework class and one of the Platform class. In this case, we
classi�ed the decision as Framework, as it appears �rst in the sentence.
In addition to the �rst data set, a second data set consisting of 4 open-source projects,

as also seen in Table 5.1, was used. The second data set had not been previously annotated
and was manually labelled by us in the same manner described for the �rst data set. We
held back the second data set exclusively as a test data set. Hence it was not employed for
any training. We refer to this data set as the hold-back data set.

5.2 Validation Methods

For validation, we proceed by applying the GQM-plan for each transformer approach and
each baseline. In order to measure the performance metrics listed in the GQM-plan, we

39



5 Evaluation

No. Project Domain #Lines Link

– Data Set 1 –
1 ZenGarden Media 109 https://github.com/mhroth/ZenGarden

2 SpringXD Data Management 95 https://github.com/spring-projects/spring-xd

3 BIBINT Science 22 https://github.com/pebbie/BIBINT

4 ROD Data Management 119 https://github.com/apohllo/rod

5 tagm8vault Media 16 https://github.com/metafacets/tagm8-vault

6 MunkeyIssues Software Development 23 https://github.com/seandgrimes/MunkeyIssues

7 OnionRouting Networking 51 https://github.com/mangei/onion-routing

8 Calipso Web Development 30 https://github.com/cliftonc/calipso

9 IOSched Event Management 81 https://github.com/google/iosched

10 MyTardis Data Management 100 https://github.com/mytardis/mytardis

11 SCons Software Development 79 https://scons.org

12 OpenRe�ne Data Management 21 https://github.com/johnconnelly75/OpenReïňĄne

13 Beets Media 125 https://github.com/steinitzu/beets

14 Teammates Teaching 252 https://github.com/TEAMMATES/teammates

15 QMiner Data Analysis 92 https://github.com/qminer/qminer

16 Spacewalk Operating System 38 https://github.com/spacewalkproject/spacewalk

17 CoronaWarnApp Healthcare 369 https://github.com/corona-warn-app/cwa-documentation

– Data Set 2 –
1 BigBlueButton Communication 85 https://github.com/JabRef/jabref

2 JabRef Data Management 15 https://github.com/bigbluebutton

3 MediaStore Media 37 https://github.com/DescartesResearch/TeaStore

4 TeaStore E-Commerce 43 https://sdq.kastel.kit.edu/wiki/Media_Store

Table 5.1: Projects of the two data sets with their SAD’s number of lines

used three di�erent validation methods, two cross-validation methods and one with a
�xed test data set.

Cross-Validation One of the two cross-validation methods is :-fold cross-validation with
: = 5, i.e., 5-fold cross-validation. In 5-fold cross-validation, the data set is partitioned into
�ve subsets or "folds" of equal size. In a test run, the model is trained on four folds while
one is held back for testing. This process is repeated 5 times, so each fold has been used as
a test set in exactly one iteration. Eventually, the average metrics across all �ve iterations
determine the �nal performance metrics.
In addition to 5-fold cross-validation, we use group cross-validation, which we group

by projects. We refer to this as project-fold or ?-fold cross-validation. With p-fold cross-
validation, we partition the data set in a way that each project appears in exactly one of
the ? partitions. Since the partitioning seeks to generate folds of approximately equal size,
the individual folds may consist of a di�erent number of projects. Therefore, the folds
may have di�erent numbers of projects. With p-fold cross-validation, we can measure the
performance of themodels on unseen projects. This is relevant because speci�c correlations
in the data may be present within one project but not apply to other projects. Therefore,
?-fold cross-validation allows us to better assess how well a classi�er generalises.

For both cross-validation methods, we apply strati�ed sampling. This aims to ensure
equal class distributions across all folds. With strati�cation, it is expected to obtain more
balanced results with low variance during the testing rounds. Furthermore, it helps to
better represent the characteristics and distribution of real-world data [35].
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5.2 Validation Methods

Asmentioned already, for both cross-validation procedures, we apply a �ve-split, i.e. :=5
and ?=5, respectively. Five and ten-folds are common con�gurations for cross-validation
as they provide a good compromise between variance and bias of the individual test runs
[74]. We eventually decided on a �ve-split because we are limited in computational and
time costs due to a large number of classi�ers we validate.

Validation on the Hold-Back Data Set Lastly, we validate all approaches on the hold-back
data set, described in section 5.2, that is held back as a test data set. Hence the model is
trained on the �rst data set and validated on the hold-back data set. The validation on the
hold-back data set provides an exemplary performance measure on new, unseen projects
without strati�cation and results being averaged over multiple test runs. Therefore, this
validation most closely resembles a real application scenario.
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5.3 GQM-Plan

In order to have a structured and reasonable proceeding for the evaluation, we have set
up a GQM plan as proposed by [5]. The GQM plan includes an overarching goal and
concrete questions for which metrics have been de�ned that aim to answer the questions
measurably. The GQM plan is presented below.

Goal:
Assessing the classification performance of design decisions in so�ware architecture
documentation.

Q1: Howwell do the local classifiers in the hierarchical classifier predict, i.e., the child class G of
the parent class- ?

In Q1, we consider a single local classi�er of the LCPN approach that classi�es the child
classes G of the parent class - . With the metrics listed, we measure how well the classi�-
cation of G works in a one-vs-the-rest fashion.

M1.1: precision ?G of class G

M1.2: recall AG of class G
M1.3: f1-score 5 1G of class G

Q2: Howwell does the classifier generally classify design decisions of parent class-

With &2, we again analyse a single local classi�er of parent class - , but measure the
overall performance of the local classi�er by aggregating and averaging the individual
scores from Q1 with the metrics listed below.

M2.1: macro-averaged precision ?<02

M2.2: macro-averaged recall A<02

M2.3: macro-averaged f1-score 5 1<02

M2.4: accuracy �
M2.5: Matthews Correlation Coe�cient"⇠⇠

Q3: How good is the final classification into the leaf node classes?

With question Q3 we want to investigate how well the �nal tool classi�es design de-
cisions into all 25 leaf node classes. In the LCPN approach, this is the combination of all
local classi�ers, and in the global approach, the direct classi�cation result.

M3.1: accuracy �
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M3.2: micro-averaged precision ?<02

M3.3: micro-averaged recall A<02

M3.4: micro-averaged f1-score 5 1<02

M3.5: hierarchical precision ?�

M3.6: hierarchical recall A�
M3.7: hierarchical f1-score 5 1�
M3.8: Matthews Correlation Coe�cient"⇠⇠

5.4 Evaluation Results

In this section, we present the evaluation results. We start by analysing the results of
the local classi�ers in subsection 5.4.1 in accordance with Q1 and Q2 of the GQM plan.
Subsequently, we recapitulate the results and draw an interim conclusion of our �ndings
in subsection 5.4.2. Finally, in subsection 5.4.3, we examine the evaluation results of the
hierarchical global and �at global classi�ers according to Q3.

5.4.1 Local Classifiers

In the following, we delve into the validation results of the local classi�ers. For each local
classi�er, we present the results of all transformer-based approaches and the result of the
best baseline approach comprehensively. In addition, we compare the measured perfor-
mance between the three validation methods. The performance of each local classi�er
is determined by analysing the metrics for the classi�er overall and the metrics for the
classi�cation performance of each child class.

5.4.1.1 Root

First, we look at the root classi�ers, which identify Design Decisions by di�erentiating
between the classes Design Decision and No Design Decision. The local root classi�er can
utilise the entire data set with a relatively balanced class distribution containing 65% of
Design Decisions. Table 5.3 shows the class distribution for the corss validation data set (
in front of the plus) and the hold-back data set ( behind the plus). Therefore, we expected
relatively good performances for this classi�er. XLNet, and GPT-3 come closest to meeting
these expectations, achieving an f1-score and accuracy of .90 in k-fold cross-validation
and an MCC of .80. RoBERTa is just behind, as shown in Table 5.2. BERTOver�ow, in
contrast, showed inferior results and is barely better than the random forest. Between the
three evaluation methods, evaluation performed slightly worse on unseen projects, except
that BERTOver�ow and RoBERTa achieved the highest scores on the hold-back projects.
If we look at the performance of the individual classes in Table 5.3, we see that RoBERTa
achieved a higher f1-score in classifying Design Decision, while all other models performed
better on the No Design Decision class. In summary, we observe that all transformer models
outperformed the best baseline, the random forest, with BERTOver�ow inferior to the
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other transformer models. The performance of the root classi�ers was relatively good
compared to the other classi�ers, whose evaluation is discussed subsequently.

Root ? A 5 1 � "⇠⇠

RoBERTa
: .90 .84 .86 .90 .73
? .85 .78 .81 .87 .62
⌘ .94 .88 .91 .94 .82

XLNet
: .91 .90 .90 .90 .80
? .87 .84 .85 .87 .71
⌘ .91 .83 .87 .92 .74

B-Over�ow
: .85 .82 .83 .82 .67
? .81 .78 .77 .80 .57
⌘ .88 .84 .86 .92 .72

GPT-3
: .91 .90 .90 .90 .80
? .89 .87 .88 .87 .76
⌘ .86 .76 .81 .89 .61

Baseline (RF)
: .83 .80 .81 .80 .62
? .77 .76 .75 .76 .52
⌘ .79 .77 .78 .78 .54

Table 5.2: Evaluation results of the root classi�er

5.4.1.2 Design Decision

Next, we look at the local Design Decision classi�ers, which classify into Existence Decisions,
Property Decisions, and Executive Decisions. We observe a lower overall performance
than with the root classi�ers. Comparing the language models shows that RoBERTa,
XLNet, and GPT-3 achieved comparable results and again outperformed BERTOver�ow,
which could not beat the baseline. When evaluated on unseen projects, RoBERTa stood
out from the other models, whose performance dropped signi�cantly more compared
to k-fold cross-validation. The evaluation of the performance per class shows that the
poor classi�cation of theProperty Decision classes had a pronounced negative impact on
the overall result. The hold-back projects data set contains only four Property Decisions.
Based on the recall, we see that XLNet and RoBERTa classi�ed two of the four samples
as such. All other models did not identify the Property Decisions. Further, observe that
the results correlate with the distribution of classes. Accordingly, the classi�cation of
Existence Decisions performed best, and Property Decisions performed worst. Overall, the
evaluation of the Design Decision classi�ers shows that Property Decision failed to be
classi�ed in our approaches. Furthermore, it shows susceptibility to uneven class sizes.
When comparing the approaches, BERTOver�ow was not better than the baseline, while
the other transformer models were superior.
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Root Design Dec. No Design Dec.
? A 5 1 ? A 5 1

RoBERTa
k .90 .97 .93 .89 .72 .79
p .88 .95 .91 .82 .62 .70
h .93 .77 .84 .95 .99 .97

XLNet
k .91 .84 .87 .90 .95 .92
p .87 .78 .82 .87 .90 .88
h .83 .71 .77 .93 .97 .95

B-Over�.
k .87 .71 .78 .83 .93 .88
p .84 .60 .70 .78 .93 .85
h .83 .71 .77 .93 .97 .95

GPT-3
k .92 .84 .87 .90 .95 .92
p .90 .80 .84 .88 .94 .91
h .83 .54 .66 .90 .97 .93

Baseline (RF)
k .84 .67 .75 .81 .92 .86
p .73 .67 .69 .81 .84 .81
h .76 .69 .72 .81 .85 .83

Class Distrib. 984 + 143 638 + 35

Table 5.3: Evaluation results for identifying design decision

Design Dec. ? A 5 1 � "⇠⇠

RoBERTa
: .77 .68 .71 .83 .62
? .60 .56 .56 .81 .55
⌘ .67 .71 .69 .85 .56

XLNet
: .80 .72 .75 .85 .66
? .48 .46 .45 .76 .36
⌘ .73 .68 .71 .86 .54

B-Over�ow
: .64 .55 .57 .79 .48
? .47 .39 .37 .73 .23
⌘ .27 .33 .30 .82 .00

GPT-3
: .79 .70 .74 .84 .63
? .49 .50 .50 .78 .46
⌘ .48 .52 .50 .82 .44

Baseline (NB)
: .61 .60 .60 .74 .45
? .43 .44 .42 .67 .26
⌘ .27 .33 .30 .82 .00

Table 5.4: Evaluation results of the design decision classi�er
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Design Dec. Existence Property Executive
? A 5 1 ? A 5 1 ? A 5 1

RoBERTa
k .87 .92 .89 .69 .44 .53 .74 .70 .72
p .83 .88 .85 .25 .12 .15 .73 .68 .69
h .93 .89 .91 .50 .50 .50 .59 .73 .65

XLNet
k .88 .93 .90 .69 .51 .57 .83 .72 .77
p .76 .91 .82 .11 .02 .03 .58 .46 .51
h .91 .91 .91 .67 .50 .57 .61 .64 .62

B-Over�.
k .82 .93 .87 .39 .19 .25 .70 .53 .60
p .75 .81 .73 .00 .00 .00 .66 .36 .38
h .82 1.0 .90 .00 .00 .00 .00 .00 .00

GPT-3
k .87 .93 .90 .73 .48 .58 .75 .68 .72
p .80 .87 .83 .00 .00 .00 .68 .65 .65
h .90 .87 .89 .00 .00 .00 .54 .68 .60

Baseline (NB)
k .85 .82 .83 .41 .34 .37 .57 .64 .60
p .75 .77 .75 .07 .01 .02 .47 .53 .49
h .82 1.0 .90 .00 .00 .00 .00 .00 .00

Class Distrib. 689 + 117 73 + 4 222 + 22

Table 5.5: Evaluation results for the classi�cation of design decision child classes

5.4.1.3 Existence Decision

When classifying Existence Decisions into Structural Decisions, Arrangement Decisions, and
Behavioural Decisions, we observe that RoBERTa, XLNet and GPT3 gave the best results,
with an accuracy of around .80, a macro averaged f1-score of around .70 and an MCC of
roughly .65. We again �nd that BERTOver�ow underperformed here and barely exceeded
the random forest baseline. When we compare the results of the evaluation methods, we
see that the hold-back projects and the p-fold cross-validation provided slightly worse
results, which is in line with expectations. On the p-fold cross-validation, GPT-3 and
RoBERTa delivered the best results. On the hold-back projects, XLNet was the most
successful. Analysing the metrics per class, the results reveal a signi�cant disparity in the
classi�cation performance between the Arrangement Decision class and the other classes.
This is most apparent in the results of BERTOver�ow, which achieved f1 scores close to
0. The other transformer models showed a decrease of about .20 - .30 in their f1 scores
when classifying samples into the arrangement class compared to the other two classes.
Furthermore, the Structural Decision achieved slightly lower results than the Behavioural
Decision, which is again most pronounced at BERTOve�ow. It is likely that the disparate
classi�cation performance is attributed to the unequal distribution of classes, with the
arrangement decision being particularly underrepresented. This had the highest impact
on BERTOver�ow, suggesting that RoBERTa, XLNet and GPT-3 are more resistant to class
imbalance.
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Overall, the evaluation of the Existence Decision classi�er again shows BERTOver�ow to
be outperformed by other transformer models. Additionally, the performance was a�ected
by class imbalance, most notably seen in BERTOver�ow and the baseline.

Existence Dec. ? A 5 1 � "⇠⇠

RoBERTa
: .77 .70 .72 .83 .69
? .76 .64 .66 .76 .52
⌘ .84 .58 .69 .76 .55

XLNet
: .86 .69 .72 .82 .66
? .66 .67 .65 .74 .49
⌘ .85 .65 .74 .78 .59

B-Over�ow
: .56 .53 .53 .74 .50
? .45 .43 .40 .61 .30
⌘ .45 .46 .45 .65 .37

GPT-3
: .83 .69 .75 .81 .64
? .66 .64 .65 .74 .53
⌘ .66 .61 .63 .73 .49

Baseline (RF)
: .62 .52 .53 .73 .47
: .46 .44 .42 .58 .26
: .55 .42 .45 .62 .32

Table 5.6: Evaluation results of the existence decision classi�er

5.4.1.4 Property Decision

Next, we evaluate the local classi�ers for the Property Decisions, which distinguish design
decisions into guideline and design rule. We see the naive Bayes approach gave the best
overall result for the k-fold cross-validation but poor results on unseen projects i.e. for
the p-fold cross-validation and hold-back projects. For the p-fold cross-validation, we
got the best results with BERTOver�ow. The result with the hold-back projects always
yielded an MCC of 0 since no samples of the class Guideline are included in the test data set.
Nevertheless, we can see that GPT-3 and BERTOver�ow correctly identi�ed all four Design
Rules. For all approaches, we observe a low MCC, despite moderate to high accuracies.
The evaluation of the performances per class indicates that this low MCC is primarily due
to the poor performance in predicting the Guideline class, which is signi�cantly lower than
that for the Design Rule class. Interestingly, in p-fold cross-validation, BERTOver�ow was
the only model that achieved better performance for the Guideline but poor performance
for the Design Rule. Evaluating the Property Decision classi�er, we �nd that all classi�ers
yielded low MCCs and moderate to low macro-averaged f1-scores. Mostly, this is due to
de�cient performance in classifying Guidelines. Again, the class imbalance problem in
the data set could contribute to poor performance. However, another factor may be that
design rule and Guideline are very similar concepts, di�ering only because the Guideline is
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Existence Dec. Structural Arrangement Behavioural
? A 5 1 ? A 5 1 ? A 5 1

RoBERTa
k .84 .78 .80 .63 .43 .51 .85 .90 .87
p .73 .68 .69 .80 .37 .48 .76 .86 .80
h .79 .78 .78 .17 .29 .55 .73 .81 .77

XLNet
k .81 .78 .80 .93 .39 .51 .83 90 .86
p .74 .65 .69 .53 .52 .50 .72 .83 .77
h .82 .72 .77 1.0 .33 .50 .73 .89 .80

B-Over�.
k .72 .68 .69 .20 .07 .10 .77 .84 .80
p .54 .38 .43 .20 .03 .06 .61 .87 .71
h .73 .50 .59 .00 .00 .00 .61 .89 .72

GPT-3
k .81 .74 .77 .85 .44 .58 .82 .90 .86
p .60 .55 .57 .68 .50 .56 .71 .88 .77
h .75 .74 .75 .50 .33 .40 .71 .75 .73

Baseline (RF)
k .70 .65 .67 .40 .07 .11 .75 .84 .79
p .47 .40 .42 .30 .12 .17 .60 .80 .67
h .66 .45 .53 .35 .09 .14 .63 .71 .67

Class Distrib. 271 + 58 32 + 6 386 + 53

Table 5.7: Evaluation results for the classi�cation of existence decision child classes

not a hard rule and thus not mandatory. Therefore, the classes Guideline and Design Rule
are sometimes not clear-cut.

5.4.1.5 Executive Decision

In our evaluation of the Executive Decision classi�ers, none of the approaches achieved
an MCC greater than 0. With this classi�er, we face a severe class imbalance with 218
Technological classes and only 4 Organisational/Process-related classes. Looking at the class-
speci�c performances, we see that for cross-validation, none of the approaches correctly
classi�ed a organisational/Process-related design decision. For the hold-back projects, only
1 out of 22 design decisions belong to the class Organisational/Process-related related. Here,
XLNet classi�ed �awless, while the other models did not correctly classify the one class.
Overall, the data set appears to be insu�cient for the local Executive Decision classi�er, as
the dearth of the organisational/Process-related class led to unreliable overall predictions,
making it hard to assess the approaches.

5.4.1.6 Structural Decision

In evaluating the Structural Decision classi�er, RoBERTa, XLNet, and GPT-3 showed
similar results in both cross-validation methods. BERTOver�ow performed slightly worse
than these models but still better than the SVM baseline. We further observe that all
models showed a signi�cant decrease in performance with the p-fold cross-validation
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Property Dec. ? A 5 1 � "⇠⇠

RoBERTa
: .62 .62 .61 .89 .27
? .53 .53 .51 .87 .11
⌘ .00 .00 .00 .00 .00

XLNet
: .75 .63 .65 .90 .36
? .43 .45 .43 .76 .00
⌘ 1.0 .25 .40 .25 .00

B-Over�ow
: .60 .66 .59 .70 .25
? .58 .63 .54 .76 .30
⌘ 1.0 1.0 1.0 1.0 .00

GPT-3
: .63 .73 .68 .90 .39
? .63 .63 .40 .63 .25
⌘ 1.0 1.0 1.0 1.0 .00

Baseline (NB)
: .76 .69 .71 .91 .45
? .25 .32 .25 .40 .02
⌘ .00 .00 .00 .00 .00

Table 5.8: Evaluation results for the classi�cation of property decision child classes

Property Dec. Guideline Design Rule
? A 5 1 ? A 5 1

RoBERTa
k .31 .30 .28 .93 .95 .93
p .40 .27 .30 .67 .80 .73
h - - - .00 .00 .00

XLNet
k .60 .25 .35 .90 .10 .15
p .20 .10 .13 .66 .80 .73
h - - - 1.0 0.25 .40

B-Over�.
k .28 .60 .38 .91 .71 .80
p .81 .87 .72 .34 .40 .37
h - - - 1.0 1.0 1.0

GPT-3
k .33 .50 .40 .93 .96 .94
p .25 1.0 .40 1.0 .25 .40
h - - - 1.0 1.0 1.0

Baseline (NB)
k .60 .40 .47 .92 .98 .95
p .01 .13 .03 .48 .50 .47
h - - - .00 .00 .00

Class Distrib. 10 + 0 63 + 4

Table 5.9: Evaluation results of the property decision classi�er
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Executive Dec. ? A 5 1 � "⇠⇠

RoBERTa
: .49 .50 .50 .98 .00
? .49 .50 .50 .98 .00
⌘ .48 .50 .49 .95 .00

XLNet
: .49 .50 .50 .98 .00
? .49 .50 .50 .98 .00
⌘ 1.0 1.0 1.0 1.0 1.0

B-Over�ow
: .49 .50 .50 .98 .00
? .48 .50 .49 .96 .00
⌘ .48 .50 .49 .95 .00

GPT-3
: .49 .50 .49 .98 .00
? .46 .50 .48 .93 .00
⌘ .48 .50 .49 .95 .00

Baseline (RF)
: .50 .50 .50 .98 .00
: .50 .50 .50 .98 .00
⌘ .48 .50 .49 .95 .00

Table 5.10: Evaluation results of the executive decision classi�er

Executive Dec. Technological Orga./Process.
? A 5 1 ? A 5 1

RoBERTa
k .98 1.0 .99 .00 .00 .00
p .98 1.0 .99 .00 .00 .00
h .95 1.0 .98 .00 .00 .00

XLNet
k .98 1.0 .99 .00 .00 .00
p .98 1.0 .99 .00 .00 .00
h 1.0 1.0 1.0 1.0 1.0 1.0

B-Over�.
k .98 1.0 .99 .00 .00 .00
p .96 1.0 .98 .00 .00 .00
h .95 1.0 .98 .00 .00 .00

GPT-3
k .98 1.0 .99 .00 .00 .00
p .93 1.0 .96 .00 .00 .00
h .95 1.0 .98 .00 .00 .00

Baseline (RF)
k .98 1.0 .99 .00 .00 .00
p .96 1.0 .98 .00 .00 .00
h .95 1.0 .98 .00 .00 .00

Class Distrib. 218 + 21 4 + 1

Table 5.11: Evaluation results for the classi�cation of executive decision child classes
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5.4 Evaluation Results

compared to the k-fold cross-validation. The results of the hold-back projects varied
between all approaches, especially with respect to the MCC. If we look at the classi�cation
performances of the individual classes, we see that the performance of Intra-Systemic was
signi�cantly better than the performance of Extra-Systemic throughout all approaches.
This is likely again a result of the class imbalance. To sum up, the results demonstrate
that all transformer models outperform the baseline on this local classi�er. Furthermore,
a relatively large performance decline is observed during p-fold cross-validation. The
results on hold-back projects are highly varied among the di�erent approaches, with MCCs
ranging from .28 to .70. Ultimately, GPT-3 emerges as the most suitable option, exhibiting
the best performance on unseen projects and marginally lower performance than the best
model during k-fold cross-validation.

Structural Dec. ? A 5 1 � "⇠⇠

RoBERTa
: .92 .82 .85 .93 .73
? .82 .70 .72 .90 .49
⌘ .87 .56 .68 .74 .30

XLNet
: .90 .82 .85 .92 .72
? .81 .65 .66 .88 .41
⌘ .91 .74 .81 .84 .62

B-Over�ow
: .89 .77 .81 .90 .64
? .77 .69 .70 .89 .45
⌘ .87 .56 .68 .74 .30

GPT-3
: .96 .77 .85 .92 .69
? .73 .76 .75 .83 .49
⌘ .89 .81 .85 .88 .70

Baseline (SVM)
: .86 .71 .75 .89 .55
? .65 .60 .57 .78 .23
⌘ .75 .67 .56 .80 .28

Table 5.12: Evaluation results of the structural decision classi�er

5.4.1.7 Arrangement Decision

Next, we examine the evaluation results of the Arrangement Decision classi�ers. Here
we see that BERTOver�ow outperformed the other transformer models in both cross-
validation evaluation methods. In cross-validation, RoBERTa, XLNet, and GPT-3 are
inferior to the baseline. Looking at the individual classi�cation results of the three classes
we see that BERTOver�ow predicted the class Architectural Style very reliably but also
predicted Architectural Pattern signi�cantly better than the other approaches, especially
compared to RoBERTa and XLNet. For all models, we observe that Architectural Style was
the best classi�ed class and Reference Architecture class the worst. When evaluating the
hold-back projects, we see strongly di�ering results between the di�erent models, with
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Structural Dec. Extra-Systemic Intra-Systemic
? A 5 1 ? A 5 1

RoBERTa
k .90 .66 .75 .94 .98 .96
p .71 .55 .59 .94 .84 .84
h 1.0 .12 .21 .73 1.0 .85

XLNet
k .88 .68 .75 .93 .97 .95
p .70 .45 .49 .92 .84 .83
h 1.0 .47 .64 .82 1.0 .90

B-Over�.
k .87 .56 .67 .91 .98 .94
p .61 .55 .57 .94 .83 .84
h .92 .65 .76 .87 .98 .92

GPT-3
k 1.0 .54 .67 .91 1.0 .95
p .83 .61 .70 .79 .99 .86
h .92 .65 .76 .89 .98 .92

Baseline (SVM)
k .83 .45 .47 .89 .98 .94
p .54 .25 .31 .77 .95 .82
h .70 .14 .23 .80 .99 .89

Class Distrib. 47 + 17 224 + 41

Table 5.13: Evaluation results for the classi�cation of structural decision child classes

XLNet classi�ed perfectly, while GPT-3 and the baseline yielded the worst possible results.
The data subset for the Arrangement Decision classi�er only consists of 32 samples. This is
likely a major limitation to the classi�cation performance of the models, especially for the
Reference Architecture class, which only appears four times in the data set. Furthermore, it
should be considered that a small data set size limit also the quality of the performance
estimation.

5.4.1.8 Behavioral Decision

Subsequently, we examine the results of the evaluation of the Behavioural Decision classi�er,
which classi�es into the classes Relation, Function, Algorithm and Messaging. Looking
at the general evaluation results, RoBERTa, XLNet and GPT-3 achieved an MCC of over
.70 in k-fold cross-validation, an accuracy of well over .80 and an f1-score of around .80.
BERTOver�ow performed poorer in k-fold cross-validation, with .35 percentage points
lower MCC than RoBERTa and .26 percentage points lower than the baseline. Considering
all the evaluation results, we see GPT-3 as the best-performing classi�er for Behavioral
Decisions. A striking observation is that all approaches scored signi�cantly worse in the
p-fold validation. For RoBERTa and XLNet, in particular, this is a di�erence of about
.30 percentage points in both the MCC and the f1-score. BERTOver�ow shows the least
performance drop in p-fold cross-validation compared to k-fold. The discrepancy between
k-fold cross-validation and the two validation methods on unseen projects is the smallest
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5.4 Evaluation Results

Arrangement ? A 5 1 � "⇠⇠

RoBERTa
: .57 .59 .57 .77 .58
? .23 .33 .26 .68 .00
⌘ .33 .50 .40 .67 .00

XLNet
: .50 .53 .49 .71 .52
? .40 .44 .42 .77 .30
⌘ 1.0 1.0 1.0 1.0 1.0

B-Over�ow
: .74 .74 .73 .77 .80
? .51 .57 .53 .78 .55
⌘ .90 .75 .82 .83 .63

GPT-3
: .53 .57 .55 .80 .65
? .42 .36 .36 .53 .24
⌘ .00 .00 .00 .00 .00

Baseline (LR)
: .55 .62 .58 .82 .69
? .43 .51 .43 .64 .28
⌘ .00 .00 .00 .00 .00

Table 5.14: Evaluation results of the arrangement decision classi�er

Arrangement Arc. Style Arc. Pattern Reference Arc.
? A 5 1 ? A 5 1 ? A 5 1

RoBERTa
k .83 .93 .87 .69 .63 .64 .20 .20 .20
p .51 .60 .55 .00 .00 .00 .17 .40 .23
h - - - .00 .00 .00 0.67 1.0 .80

XLNet
k .83 .70 .72 .55 .70 .61 .10 20 .13
p .67 .80 .72 .20 .20 .20 .33 .33 .33
h - - - 1.0 1.0 1.0 1.0 1.0 1.0

B-Over�.
k .88 1.0 .93 .93 .83 .87 .40 .40 .40
p .81 .97 .87 .70 .73 .72 .00 .00 .00
h - - - 1.0 0.5 .67 .80 1.0 .89

GPT-3
k .77 1.0 .87 .83 .72 .77 .00 .00 .00
p .70 .75 .67 .67 .39 .49 .00 .00 .00
h - - - .00 .00 .00 .00 .00 .00

Baseline (LR)
k .82 .95 .88 .83 .90 .86 .00 .00 .00
p .63 .78 .64 .66 .75 .66 .00 .00 .00
h - - - .00 .00 .00 .00 .00 .00

Class Distrib. 16 + 0 12 + 4 4 + 2

Table 5.15: Evaluation results for the classi�cation of arrangement decision child classes
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5 Evaluation

for the classi�cation of function. This is likely contributed by the fact that this class,
with 264 samples, is most frequently represented in the entire data set, and therefore the
classi�ers generalise better.

Behavioural ? A 5 1 � "⇠⇠

RoBERTa
: .85 .80 .81 .88 .77
? .60 .55 .53 .67 .47
⌘ .85 .62 .72 .77 .63

XLNet
: .84 .77 .79 .87 .73
? .57 .46 .47 .67 .43
⌘ .78 .76 .77 .81 .70

B-Over�ow
: .63 .46 .49 .76 .43
? .43 .39 .39 .70 .37
⌘ .74 .53 .62 .68 .44

GPT-3
: .87 .76 .81 .88 .75
? .53 .53 .53 .71 .59
⌘ .94 .74 .83 .81 .70

Baseline (LR)
: .55 .62 .58 .82 .69
? .43 .51 .43 .64 .28
⌘ .59 .27 .33 .66 .25

Table 5.16: Evaluation results for the classi�cation of behavioural decision child classes

5.4.1.9 Extra-Systemic

We proceed to study the evaluation results for classifying Extra-Systemic design decisions.
Comparing the transformer models with the naive Bayes baseline, we see that the baseline
performed almost as well as RoBERTa, XLNet and GPT-3 in k-fold cross-validation and even
better than BERTOver�ow. However, the advantage of the transformers becomes apparent
when evaluating unseen projects, i.e. p-fold cross-validation and hold-back projects.
We see that BERTOver�ow exhibits a signi�cantly lower performance compared to the
other transformer models. GPT-3 achieved the best overall results in the cross-validation,
while XLNet clearly outperformed the other approaches on the hold-back projects. The
evaluation of the performances of the individual classes indicates that BERTOver�ow
failed in the classi�cation of data �les, which led to overall poor performance. Furthermore,
we note that in RoBERTa, XLNet and GPT-3, the Integration class was classi�ed more
reliably in the k-fold cross-validation and on the hold-back classes. In contrast, in p-fold
cross-validation, better results were obtained for the Data File class. Therefore, we do not
see a clear tendency which of the two classes is better classi�ed.
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Behavioural Relation Function Algorithm Messaging
? A 5 1 ? A 5 1 ? A 5 1 ? A 5 1

RoBERTa
k .82 .82 .80 .92 .95 .93 .85 .65 .72 .79 .79 .78
p .46 .25 .31 .71 .93 .78 .60 .44 .48 .65 .58 .57
h 1.0 .20 .33 .73 1.0 .85 1.0 .78 .88 .67 .50 .57

XLNet
k .87 .75 .80 .89 .94 .92 .76 .69 .70 .83 .71 .76
p .68 .24 .33 .67 .86 .74 .48 .36 .38 .46 .40 .41
h .75 .30 .43 .85 .97 .91 1.0 .78 .88 .50 1.0 .67

B-Over�.
k .83 .42 .54 .77 .97 .86 .43 .28 .32 .50 .16 .23
p .30 .26 .28 .70 .89 .78 .11 .06 .08 .62 .36 .42
h .67 .20 .31 .67 .97 .79 1.0 0.22 .36 .60 .75 .67

GPT-3
k .82 .83 .79 .90 .96 .93 .75 .44 .54 1.0 .81 .89
p .40 .13 .20 .67 .91 .77 .44 .36 .40 .63 .71 .59
h 1.0 .20 .33 .75 1.0 .86 1.0 .78 .88 1.0 1.0 1.0

Baseline (LR)
k .44 .38 .40 .75 .83 .79 .25 .20 .25 .37 .32 .34
p .12 .04 .06 .62 .76 .67 .22 .10 .13 .38 .26 .27
h .26 .08 .12 .55 .64 .59 .90 .22 .35 .67 .15 .25

Class Distrib. 45 + 10 264 + 10 40 + 9 37 + 4

Table 5.17: Evaluation results of the behavioural decision classi�er

Extra-Systemic ? A 5 1 � "⇠⇠

RoBERTa
: .97 .93 .94 .96 .89
? .53 .58 .51 .80 .13
⌘ .81 .57 .67 .65 .30

XLNet
: .91 .84 .85 .89 .74
? .63 .59 .60 .87 .78
⌘ .94 .95 .94 .94 .89

B-Over�ow
: .58 .57 .53 .77 .20
? .62 .61 .61 .74 .23
⌘ .81 .57 .67 .65 .30

GPT-3
: .98 .94 .96 .97 .92
? .63 .59 .60 .87 .78
⌘ .81 .57 .67 .65 .30

Baseline (NB)
: .95 .87 .88 .92 .81
? .40 .46 .41 .65 .11
⌘ .67 .52 .49 .71 .26

Table 5.18: Evaluation results of the extra-systemic classi�er
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Extra-Systemic Data File Integration
? A 5 1 ? A 5 1

RoBERTa
k 1.0 .85 .91 .94 1.0 .97
p .73 .97 .79 .33 .19 .23
h 1.0 .14 .25 .63 1.0 .77

XLNet
k .93 .72 .77 .89 .97 .93
p .74 .75 .74 .52 .42 .46
h .88 1.0 .93 1.0 0.9 .95

B-Over�.
k .40 .13 .20 .76 1.0 .86
p .50 .44 .46 .74 .78 .76
h 1.0 .14 .25 .63 1.0 .77

GPT-3
k 1.0 .89 .93 .96 1.0 .98
p .74 .75 .74 .52 .42 .46
h 1.0 .14 .25 .63 1.0 .77

Baseline (NB)
k 1.0 .73 .82 .90 .1.0 .95
p .07 .02 .01 .74 .71 .71
h .70 .14 .23 .63 .90 .74

Class Distrib. 13 + 7 34 + 10

Table 5.19: Evaluation results for the classi�cation of extra-systemic child classes

5.4.1.10 Intra-Systemic

In analyzing the results of the local Intra-Systemic classi�er, we observed that all ap-
proaches exhibited relatively highMCC and accuracy scores in k-fold cross-validation, with
BERTOver�ow performing the lowest. However, GPT-3 emerged as the best-performing
model in this evaluation method. It is noteworthy that the classi�cation performance was
signi�cantly poorer for the p-fold cross-validation, where BERTOver�ow demonstrated
the lowest MCC delta to the p-fold cross-validation and hence performed the best. For
the hold-back projects, all models except GPT-3 achieved an MCC of 0, indicating the
absence of correlation between their predictions and actual class assignments. Examining
the distribution of the three classes, we see that 5 of 245 samples belonged to the Interface
class. This is re�ected in its poor classi�cation performance, as the class was either rarely
or never predicted correctly.

5.4.1.11 Class-Related

Next, we review the evaluation results of the Class-Related classi�er, which classi�es
Class-Related design decisions into Association, Class and Inheritance Looking �rst at the
cross-validations, we see that XLNet and GPT-3 performed best in k-fold cross-validation,
and GPT-3 outperformed the other approaches in p-fold cross-validation. The approach
with BERTOver�ow gave the lowest results compared to the other transformers and even
lower results than the baseline in the k-fold cross-validation. We �nd that RoBERTa, XLNet
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Intra-Systemic ? A 5 1 � "⇠⇠

RoBERTa
: .62 .64 .63 .93 .87
? .27 .34 .25 .52 .05
⌘ .10 .50 .16 .20 .00

XLNet
: .62 .64 .63 .93 .86
? .40 .40 .34 .65 .28
⌘ .52 .49 .51 .71 .00

B-Over�ow
: .58 .58 .58 .86 .73
? .53 .48 .47 .77 .57
⌘ .57 .34 .43 .24 .00

GPT-3
: .75 .75 .75 .94 .89
? .51 .48 .49 .71 .46
⌘ .73 .75 .74 .83 .48

Baseline (SVM)
: .59 .60 .60 .88 .77
? .48 .48 .45 .71 .43
⌘ .48 .31 .29 .31 .00

Table 5.20: Evaluation results of the intra-systemic classi�er

Intra-Systemic Interface Component Class-Related
? A 5 1 ? A 5 1 ? A 5 1

RoBERTa
k .00 .00 .00 .93 .95 .94 .94 .96 .95
p .00 .00 .00 .51 .96 .64 .30 .07 .11
h - - - .20 1.0 .33 .00 .00 .00

XLNet
k .00 .00 .00 .91 .96 .93 .94 .94 .94
p .20 .20 .20 .66 .98 .76 .34 .03 .06
h - - - .25 .13 .17 .80 .85 .82

B-Over�.
k .00 .00 .00 .89 .84 .86 .84 .92 .88
p .00 .00 .00 .86 .59 .63 .75 .84 .78
h - - - .14 .50 .22 1.0 .18 .31

GPT-3
k .33 .33 .33 .96 .92 .94 .94 .99 .96
p .00 .00 .00 .78 .75 .75 .75 .68 .67
h - - - .59 .63 .59 .91 .88 .89

Baseline (SVM)
k .00 .00 .00 .88 .89 .88 .88 .91 .89
p .00 .00 .00 .74 .57 .61 .69 .87 .76
h - - - .16 .40 .23 .80 .22 .35

Class Distrib. 5 + 0 97 + 33 122 + 8

Table 5.21: Evaluation results for the classi�cation of intra-systemic child classes
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and GPT-3 generalised better than the baseline, especially on unseen projects, which can
be seen from the fact that the MCC, the macro averaged f1-score, and the accuracy dropped
signi�cantly less in the p-fold cross-validation compared to the k-fold cross-validation.
However, this does not apply to BERTOver�ow. In the evaluation with the hold-back
projects, we get identical results for all approaches. The evaluation of the individual class
performance reveals that the primary advantage of GPT-3 lies in its classi�cation of the
Inheritance class, resulting in a higher overall f1-score compared to other approaches,
despite lower accuracy in some instances. All other approaches showed low reliability in
predicting the Inheritance class. The low representation of the Inheritance class in the data
set is a potential factor contributing to its poor classi�cation performance. In conclusion,
RoBERTa, XLNet and GPT-3 outperform the baseline and BERTOver�ow. Among the
transformer models, GPT-3 generalises best to unseen projects, making it the leading
approach. The overall performance of this classi�er was mediocre. In our evaluation, the
classi�cation performance was likely limited due to the small number of training samples
per class and the class imbalance regarding the Inheritance class.

Class-Related ? A 5 1 � "⇠⇠

RoBERTa
: .67 .62 .63 .79 .62
? .62 .57 .55 .80 .43
⌘ .83 .75 .79 .75 .58

XLNet
: .76 .71 .72 .82 .69
? .67 .57 .59 .81 .41
⌘ .83 .75 .79 .75 .58

B-Over�ow
: .59 .56 .55 .71 .48
? .41 .41 .35 .69 .16
⌘ .83 .75 .79 .75 .58

GPT-3
: .90 .75 .81 .81 .67
? .78 .79 .78 .76 .54
⌘ .83 .75 .79 .75 .58

Baseline (LR)
: .73 .63 .65 .75 .54
? .47 .43 .42 .63 .10
⌘ .83 .75 .79 .75 .58

Table 5.22: Evaluation results of the class-related classi�er

5.4.1.12 Technological

The classi�er for the Technological design decisions has the largest class output space with
�ve child classes. All classes are represented in similar proportions in the data set, except
for the tool class, which constitutes a much smaller proportion with only four samples. The
comparison of the overall performances of the approaches makes GPT-3 stand out clearly.
In all three evaluation methods, GPT-3 performed best and showed the highest values in
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Class-Related Association Class Inheritance
? A 5 1 ? A 5 1 ? A 5 1

RoBERTa
k .85 .75 .79 .76 .92 .83 .40 .20 .27
p .61 .64 .58 .67 .63 .58 .60 .44 .40
h 1.0 .50 .67 .67 1.0 .80 - - -

XLNet
k .88 .79 .80 .81 .89 .85 .60 45 .51
p .69 .56 .61 .56 .67 .61 .80 .50 .55
h 1.0 .50 .67 .67 1.0 .80 - - -

B-Over�.
k .83 .60 .65 .71 .88 .78 .23 .20 .21
p .40 .13 .18 .63 1.0 .75 .20 .10 .13
h 1.0 .50 .67 .67 1.0 .80 - - -

GPT-3
k .92 .63 .73 .78 .95 .85 1.0 .67 .77
p .74 .60 .67 .65 .78 .71 .93 1.0 .96
h 1.0 .50 .67 .67 1.0 .80 - - -

Baseline (LR)
k .82 .65 .71 .73 .88 .80 .63 .37 .45
p .40 .29 .31 .62 .73 .65 .40 .28 .31
h 1.0 .50 .67 .67 1.0 .80 - - -

Class Distrib. 40 + 4 68 + 4 14 + 0

Table 5.23: Evaluation results for the classi�cation of class-related child classes

all performance metrics. The di�erence is most pronounced in the p-fold cross-validation
and in on the hold-back projects, where the GPT-3 approach achieved a .26 higher f1-score
and .27 higher MCC compared to the second-best approach. It can further be seen that
RoBERTa and XLNet still performed moderately in the k-fold cross-validation but produced
poor predictions for the hold-back projects and in the p-fold cross-validation. Surprisingly,
apart from GPT-3, all transformer models performed worse in p-fold cross-validation
compared to the best baseline, suggesting poorer generalisation to unseen projects from
these models. The examination of the individual class performances indicates an unreliable
classi�cation of the Tool class, according to the limited number of samples in this class. All
other classes were predicted about equally well, whereas the classi�cation performance of
Framework, apart from the class tool, was predicted slightly worse in all approaches.

5.4.1.13 Boundary Interface

The deepest local classi�er in the taxonomy is the classi�er for the design decisions regard-
ing the Boundary Interfaces. In comparison, the GPT-3 approach is shown to be the most
suitable, as it delivered the best results in all evaluation methods. We �nd BERTOver�ow
and XLNet to be the second best, depending on the metric. RoBERTa performed worst
among all transformer models for this classi�er and did not outperform the baseline in the
k-fold cross-validation. Apart from that, all transformer models delivered better results
than the baseline. Remarkably, GPT-3 achieved an MCC of .65 when evaluated on the
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Technological ? A 5 1 � "⇠⇠

RoBERTa
: .74 .75 .74 .85 .81
? .15 .24 .15 .35 .13
⌘ .27 .25 .26 .43 .26

XLNet
: .69 .67 .66 .77 .72
? .21 .24 .19 .37 .15
⌘ .07 .18 .10 .33 .00

B-Over�ow
: .52 .49 .48 .58 .48
? .41 .37 .34 .53 .39
⌘ .70 .20 .10 .33 .00

GPT-3
: .88 .85 .86 .89 .87
? .70 .70 .69 .78 .72
⌘ .92 .92 .92 .86 .81

Baseline (SVM)
: .64 .62 .61 .73 .67
? .51 .47 .43 .53 .45
⌘ .70 .20 .10 .33 .00

Table 5.24: Evaluation results of the technological classi�er

Technological Tool Data Base Platform
? A 5 1 ? A 5 1 ? A 5 1

RoBERTa
k .20 .20 .20 .81 1.0 .89 .91 .81 .85
p .20 .04 .07 .13 .28 .12 .36 .77 .46
h - - - 1.0 .25 .40 .40 .37 1.0

XLNet
k .20 .20 .20 .77 89 .82 .73 .81 .76
p .16 .06 .08 .26 .28 .14 .36 .49 .38
h - - - .37 .88 .52 .00 .00 .00

B-Over�.
k .00 .00 .00 .74 .72 .73 .57 .54 .51
p .00 .00 .00 .62 .50 .50 .35 .28 .21
h - - - .00 .00 .00 .33 1.0 .50

GPT-3
k .67 .67 .67 .92 1.0 .95 .93 .89 .91
p .00 .00 .00 .94 .83 .86 .73 .85 .73
h - - - .80 1.0 .89 .78 .88 .82

Baseline (SVM)
k .00 .00 .00 .88 .84 .85 .64 .67 .64
p .00 .00 .00 .84 .69 .75 .46 .48 .40
h - - - .00 .00 .00 .33 1.0 .50

Class Distrib. 4 + 0 43 + 4 46 + 8

Table 5.25: Evaluation results for the classi�cation of the �rst three technological child
classes
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Technological Boundary Prog. Lang Framework
? A 5 1 ? A 5 1 ? A 5 1

RoBERTa
k .87 .86 .86 .91 .85 .87 .75 .79 .75
p .19 .33 .24 .00 .00 .00 .00 .00 .00
h .54 .00 .00 .00 .00 .00 .00 .00 .00

XLNet
k .77 .87 .81 .81 .75 .75 .84 .51 .61
p .32 .43 .36 .09 .11 .10 .06 .06 .06
h .00 .00 .00 .00 .00 .00 .00 .00 .00

B-Over�.
k .63 .58 .59 .48 .60 .52 .70 .49 .52
p .57 .69 .60 .37 .43 .37 .51 .32 .33
h .00 .00 .00 .00 .00 .00 .00 .00 .00

GPT-3
k .82 .94 .87 .96 .82 .87 .95 .81 .87
p .69 .71 .64 .93 .95 .93 .89 .73 .80
h 1.0 .71 .83 1.0 1.0 1.0 1.0 1.0 1.0

Baseline (SVM)
k .69 .82 .74 .88 .64 .72 .72 .72 .72
p .59 .75 .60 .62 .54 .44 .55 .36 .42
h .00 .00 .00 .00 .00 .00 .00 .00 .00

Class Distrib. 54 + 7 37 + 1 34 + 1

Table 5.26: Evaluation results for the classi�cation of the last three technological child
classes
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hold-back projects, while all others achieved a value of 0. The data set’s distribution of
the two classes user Interface and API is pretty balanced. Nevertheless, the classi�ca-
tion performances for the two classes were quite uneven. In k-fold cross-validation, all
approaches classi�ed design decisions of the class API signi�cantly more reliably than
User Interfaces, with deltas of up to .44 percentage points in the f1-score. In p-fold cross-
validation, BERTOver�ow and GPT-3 classify User Interface better than API. Concerning
the evaluation results of the hold-back projects, we see that GPT-3 is the only one that
achieves values greater than 0 for the class User Interface. In the data set of hold-back
projects, there is only one sample of the class User Interface. Based on the recall, we see
that GPT-3 is the only one that has correctly assigned this sample. However, it has also
generated a false positive for this class.

Boundary Int. ? A 5 1 � "⇠⇠

RoBERTa
: .81 .71 .71 .85 .50
? .81 .69 .68 .84 .48
⌘ .43 .50 .46 .86 .00

XLNet
: .80 .74 .75 .87 .53
? .84 .85 .89 .84 .75
⌘ .43 .50 .46 .86 .00

B-Over�ow
: .70 .68 .67 .82 .68
? .73 .60 .60 .90 .80
⌘ .43 .50 .46 .86 .00

GPT-3
: .83 .76 .79 .82 .76
? .78 .69 .73 .92 .86
⌘ .75 .92 .79 .86 .65

Baseline (LR)
: .78 .71 .73 .80 .51
? .68 .51 .55 .67 .28
⌘ .34 .88 .37 .71 .00

Table 5.27: Evaluation results of the design decision classi�er

5.4.2 Conclusion for the Local Classifiers

Upon summarising the evaluation of individual local classi�ers, we observed that the
results di�er greatly from one subclass to another and are overall relatively unreliable.
In k-fold cross-validation, 3 out of 13 classi�ers achieved an MCC greater than .80, and
5 out of 13 achieved an accuracy greater than .90. In p-fold cross-validation, only one
classi�er achieved an MCC greater than .80, and the same one was the only one to achieve
an accuracy greater than .90. In general, we found that p-fold cross-validation yields worse
results compared to k-fold cross-validation for all classi�ers.
An observation that applies to almost all classi�ers is that the performance of the

individual classes correlates with the size of class distributions. This is evident, for example,
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Boundary Int. User Interface API
? A 5 1 ? A 5 1

RoBERTa
k .76 .45 .52 .85 .97 .90
p .80 .37 .47 .82 1.0 .90
h .00 .00 .00 .86 1.0 .92

XLNet
k .75 .50 .59 .85 .97 .91
p .95 .70 .77 .89 .98 .93
h .00 .00 .00 .86 1.0 .92

B-Over�.
k .60 .37 .45 .80 1.0 .89
p .92 .73 .73 .54 .47 .47
h .00 .00 .00 .86 1.0 .92

GPT-3
k .83 .58 .67 .83 .94 .88
p 1.0 .72 .82 .55 .67 .60
h .50 1.0 .67 1.0 .83 .91

Baseline (LR)
k .80 .50 .59 .82 .93 .86
p .89 .45 .59 .47 .57 .51
h .00 .00 .00 .67 .83 .74

Class Distrib. 16 + 1 38 + 6

Table 5.28: Evaluation results for the classi�cation of boundary interface child classes

in the local classi�ers for the Design Decision classes, where Property Decisions are classi�ed
signi�cantly worse than Existence Decisions and Executive Decisions.

Another �nding that is shared by almost all local classi�ers is that the classi�ers show
inferior generalisation when evaluated with the p-fold cross-validation. A clear example
is the classi�cation of Framework by the Technological classi�er, where a signi�cant
discrepancy between k-fold and p-fold is seen across all classi�ers except GPT-3. This
outcome was anticipated, as there may be correlations or patterns in design decisions
that occur within a project but may not be present in other projects. For example, if the
JavaScript framework "Express" occurs in one project but not in other projects, then this
framework will eventually appear in the test data set but not in the training data set. If the
transformer model does not already know "Express" as a framework from the outset, it has
no chance of learning this classi�cation. With a view to the evaluation of the hold-back
project data, we observe strongly �uctuating results.
The results sometimes lay between those of p-fold and k-fold but sometimes clearly

above or below them. First of all, it should be noted that the hold-back projects are also
unseen projects, which means that some of the same e�ects can be expected as with
the p-fold cross-validation. The highly �uctuating results are likely attributed to the
fact that the distribution of classes in the test data set can be vastly di�erent from the
distribution in the training data set, unlike strati�ed cross-validation. Additionally, there
are no multiple testing runs with averaged results that reduce the variance, in contrast to
cross-validations. Therefore, the evaluation on hold-back projects is less consistent for
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performance prediction but rather highlights the issue of highly �uctuating and unreliable
classi�cations.

When comparing the performances of the transformers to those of the baseline, we
�nd that the transformer approaches generally perform better. However, BERTOver�ow
performs signi�cantly worse than XLNet, GPT-3, and RoBERTa in most cases. During
k-fold cross-validation, BERTOver�ow often provides only slightly better results than
the best baseline but generalises better to unseen projects. On the Class-Related and
Technological levels of local classi�ers, BERTOver�ow performs worse than the baseline.

If we compare XLNet, RoBERTa, and GPT-3 with each other, it is di�cult to determine
a clear winner. There is no language model that visibly dominates. In many cases, the best
model depends on which metrics are given the most weight and which validation method
we focus on. However, if we evaluate the performance solely based on the MCC, GPT-3 is
most often the best model, as shown in Table 5.29.
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Classi�er Level Method Best Model � to 2nd

Root
:-fold GPT-3, XLNet .07
?-fold GPT-3 .05
hold-back RoBERTa .08

Design Dec.
:-fold XLNet .03
?-fold RoBERTa .09
hold-back RoBERTa .02

Existence Dec.
:-fold RoBERTa .03
?-fold GPT-3 .01
hold-back XLNet .04

Property Dec.
:-fold Baseline (NB) .06
?-fold BERTOver�ow .05
hold-back all .00 -

Executive Dec.
:-fold all .00 -
?-fold all .00 -
hold-back all .00 -

Structural Dec.
:-fold RoBERTa .01
?-fold RoBERTa, GPT-3 .04
hold-back GPT-3 .40

Arrangement Dec.
:-fold BERTOver�ow .18
?-fold BERTOver�ow .25
hold-back XLNet .37

Behavioural Dec.
:-fold RoBERTa .02
?-fold GPT-3 .12
hold-back GPT-3, XLNet .07

Extra-Systemic
:-fold GPT-3 .03
?-fold GPT-3, XLNet .55
hold-back XLNet .59

Intra-Systemic
:-fold GPT-3 .02
?-fold BERTOver�ow .14
hold-back GPT-3 .48

Class-Related
:-fold XLNet .03
?-fold GPT-3 .09
hold-back all identical -

Technological
:-fold GPT-3 .06
?-fold GPT-3 .27
hold-back GPT-3 .42

Boundary Interf.
:-fold GPT-3 .08
?-fold GPT-3 .06
hold-back GPT-3 .65

Table 5.29: Best performing models for each evaluation method according to MCC
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5.4.3 Global Classifier

So far, we have examined the validation results of each local classi�er. The local classi�ers
were developed with the goal of assembling a global hierarchical LCPN classi�er that
classi�es text phrases into one of 25 leaf node classes. In the following, we analyse the
evaluation results of the global �at classi�ers and the global LCPN classi�er to investigate
whether the hierarchical approach brings an advantage.

5.4.3.1 Baselines

First, we analyse the behaviour of the global �at and hierarchical classi�ers with the
baseline approaches. An analysis of the cross-validation results reveals no signi�cant
performance disparities between the LCPN and �at approaches with the logistic regression
and SVM methods. The only noteworthy di�erence is that the logistic regression with the
hierarchical classi�er produced a higher hierarchical precision.
For the naive Bayes approach, we observe only a slight improvement in performance

with the hierarchical approach compared to the �at approach. However, a clear superiority
of the hierarchical classi�er is observed with the random forest baseline, where the
hierarchical classi�er achieved a .13 percentage point higher MCC and .6 percentage point
higher accuracy in the k-fold cross-validation. The improvements in the hierarchical
recall are also noteworthy, indicating that the predictions deviate less from the actual
classi�cations overall.

Looking at the validation results on unseen projects, we observe that the random forest
showed noticeably better performance with the LCPN classi�er. Further, we observed
improvements in the logistic regression concerning hierarchical metrics on unseen projects.
Both SVM and logistic regression performed signi�cantly better on the hold-back data with
the hierarchical classi�er than the Flat ones but still remained at a very low performance
on these data.
Overall, we �nd that in the case of baselines, the global hierarchical classi�ers are

generally slightly superior to the global �at classi�ers. Among all baseline classi�ers, the
LCPN classi�ers with naive Bayes and SVM performed best in the validation on unseen
projects. In terms of macro-averaged f1-score, accuracy, and MCC, the �at classi�er of
logistic regression was strongest in k-fold cross-validation. However, when taking into
account the hierarchical metrics as well, we deem the hierarchical classi�ers of random
forest, SVM, and logistic regression superior.

5.4.3.2 Transformer Models

Having concluded a tendency towards an advantage of hierarchical classi�ers among the
baseline approaches, we now turn to the global classi�ers based on pre-trained transformer
LMs.
To start with, we review the results of the k-fold cross-validation. We observe that

XLNet showed no substantial performance di�erences between the hierarchical and �at
classi�ers. However, XLNet performed with a slightly higher MCC and accuracy with the
LCPN classi�er. For RoBERTa, BERTOver�ow and GPT-3, we observe more pronounced
di�erences in the k-fold cross-validation. With all three transformer models, the �at
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Log. Regr. ? A 5 1 ?H AH 5 1H � "⇠⇠

Hierarchical
: .27 .24 .25 .56 .60 .59 .50 .38
? .13 .11 .12 .57 .54 .56 .39 .21
⌘ .14 .22 .17 .29 .27 .28 .22 .09

Flat
: .31 .24 .27 .54 .44 .48 .53 .39
? .14 .11 .13 .56 .39 .46 .41 .22
⌘ .01 .07 .03 .14 .12 .13 .14 .00

Table 5.30: Evaluation results of the global classi�ers of Log. Regres.

Naive Bayse ? A 5 1 ?H AH 5 1H � "⇠⇠

Hierarchical
: .27 .29 .28 .55 .60 .57 .46 .36
? .18 .20 .19 .51 .51 .51 .40 .27
⌘ .08 .04 .05 .21 .19 .20 .16 .00

Flat
: .25 .25 .25 .57 .60 .57 .43 .31
? .16 .17 .17 .52 .51 .51 .37 .21
⌘ .01 .06 .02 .16 .11 .10 .13 .00

Table 5.31: Evaluation results of the global classi�ers of Naive Bayes.

SVM ? A 5 1 ?H AH 5 1H � "⇠⇠

Hierarchical
: .25 .24 .25 .55 .63 .59 .48 .38
? .15 .13 .14 .47 .45 .46 .39 .23
⌘ .11 .05 .07 .24 .32 .27 .24 .11

Flat
: .25 .23 .24 .56 .61 .58 .49 .38
? .12 .11 .11 .50 .50 .50 .40 .24
⌘ .08 .05 .02 .21 .11 .17 .19 .02

Table 5.32: Evaluation results of the global classi�ers of SVM.

Rand. Forest ? A 5 1 ?H AH 5 1H � "⇠⇠

Hierarchical
: .25 .23 .24 .56 .61 .58 .49 .38
? .12 .11 .11 .50 .50 .50 .40 .24
⌘ .11 .05 .07 .24 .32 .27 .24 .10

Flat
: .27 .20 .23 .55 .49 .52 .43 .25
? .13 .09 .11 .50 .40 .44 .38 .16
⌘ .01 .06 .02 .16 .11 .10 .13 .00

Table 5.33: Evaluation results of the global classi�ers of Random Forest.
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approach performed better on k-fold cross-validation, outperforming the hierarchical
approach in all metrics.
Examining the validation results for the p-fold cross-validation, the expectation that

the p-fold cross-validation would generally produce worse results than the k-fold cross-
validation is con�rmed. However, it appears that the LCPN classi�ers could considerably
improve performance for all transformers, except for GPT-3. For instance, XLNet improved
its MCC from .16 to .35 and its macro-averaged f1-score from .08 to .14, using the LCPN
classi�er compared to the �at classi�er. When validating on the Hold-Back Data, an even
more drastic improvement was observed with RoBERTa, XLNet, and BERTOver�ow. Here,
the MCC for BERTOver�ow improved from .00 to .48. The performance of XLNet and
RoBERTa also improved signi�cantly. On the contrary, this behaviour was not observed
with GPT-3. The LCPN classi�er performed no better than the �at classi�er in the hold-
back data with GPT-3. In the p-fold cross-validation, the �at classi�er showed to be visibly
better.
In conclusion, after comparing all the global classi�ers, the �at RoBERTa approach

produced the best results in k-fold cross-validation. In p-fold cross-validation, GPT-3
with the �at approach yielded the best results. Lastly, in validation on hold-back data, the
hierarchical BERTOver�ow and �at GPT-3 approach performed best, with GPT-3 providing
the higher macro-averaged f1-score, while BERTOver�ow achieved the higher hierarchical
f1-score.

RoBERTa ? A 5 1 ?H AH 5 1H � "⇠⇠

Hierarchical
: .43 .44 .44 .63 .76 .69 .59 .54
? .19 .21 .20 .58 .68 .63 .46 .37
⌘ .26 .26 .26 .73 .73 .73 .54 .48

Flat
: .54 .53 .53 .79 .81 .80 .71 .64
? .10 .12 .10 .62 .53 .57 .44 .26
⌘ .04 .06 .05 .51 .51 .51 .18 .12

Table 5.34: Evaluation results of the global classi�ers of RoBERTa.

XLNet ? A 5 1 ?H AH 5 1H � "⇠⇠

Hierarchical
: .46 .42 .44 .75 .78 .76 .70 .63
? .15 .13 .14 .59 .58 .59 .55 .35
⌘ .26 .24 .25 .67 .68 .68 .39 .35

Flat
: .46 .44 .44 .75 .78 .77 .68 .61
? .01 .10 .08 .61 .52 .55 .43 .16
⌘ .02 .05 .02 .51 .46 .48 .20 .12

Table 5.35: Evaluation results of the global classi�ers of XLNet.
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B-Over�ow ? A 5 1 ?H AH 5 1H � "⇠⇠

Hierarchical
: .33 .34 .34 .53 .66 .59 .49 .34
? .19 .21 .20 .58 .58 .53 .36 .27
⌘ .26 .26 .26 .73 .73 .73 .54 .48

Flat
: .43 .44 .40 .75 .77 .75 .59 .54
? .09 .10 .08 .61 .52 .55 .43 .16
⌘ .01 .05 .02 .20 .07 .10 .20 .00

Table 5.36: Evaluation results of the global classi�ers of BERTOver�ow.

GPT-3 ? A 5 1 ?H AH 5 1H � "⇠⇠

Hierarchical
: .41 .44 .42 .61 .64 .62 .63 .59
? .33 .31 .32 .62 .59 .60 .60 .44
⌘ .34 .40 .37 .64 .70 .67 .55 .49

Flat
: .52 .46 .49 .76 .75 .76 .70 .63
? .34 .32 .33 .73 .70 .71 .65 .56
⌘ .37 .43 .40 .67 .67 .67 .54 .48

Table 5.37: Evaluation results of the global classi�ers of GPT-3.
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6 Conclusion

In this thesis, we developed and evaluated various methods for automatically classifying
design decisions. We developed hierarchical classi�ers using the LCPN strategy and
compared them with �at classi�ers that ignore the class hierarchy. Furthermore, we
applied the pre-trained language models RoBERTa, XLNet, BERTOver�ow and GPT-3 for
both the �at and hierarchical approaches. In the evaluation, we assessed the classi�cation
performance of the pre-trained transformer language model-based approaches and baseline
approaches. To do so, we �rst examined each local classi�er of the LCPN approach. Then,
we analysed and compared the results of both the hierarchical global classi�ers and the
�at global classi�ers. We will now summarise these results by addressing the research
questions.

RQ1: Are there parent classes or hierarchy levels in the taxonomy at which classi�cation
performance is proportionally high or low?
The answer to this question depends on how we weigh the performance metrics. If

we focus on the macro-averaged f1-Score and the MCC, the classi�ers with a high class
imbalance in the data set perform poorly, especially the Executive Decision and Design
Decision classi�ers. For instance, in the case of the Design Decision, although there is a
considerable amount of training data available, the child class Property only makes up 7%
of the three child classes, resulting in a decrease in the classi�cation performance in terms
of MCC and f1-score. However, this property does not have a high e�ect to the accuracy
since the poorly predicted classes only make up a small proportion of all training samples.
A similar problem occurs with the local classi�ers of the Property Decision and Ar-

rangement Decision. Here, the class imbalance is not as pronounced, but there are classes
with only 10 and 4 training samples, respectively, leading to a poor classi�cation of the
underrepresented classes and a decrease of the overall performance in terms of MCC and
macro-averaged f1.
If we give more weight to accuracy as a performance metric, the Technological class

stands out as particularly di�cult, performing poorly, particularly on unseen projects.
Here, all approaches, except for GPT-3, showed a MCC of less than .50 and an accuracy
of at most .53 on unseen projects. The sub-data set of the local classi�er Technological
includes, apart from the subclass tool, more than 30 training samples for all classes and
relatively equal distribution of classes. Therefore, the results of this local classi�er suggest
that the di�culty in classifying this class is not solely attributed to the data set but is also
inherent to the classes themselves.
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RQ2 : What is the e�ect of a hierarchical classi�cation approach versus a �at approach
on the overall classi�cation result, with conventional methods and with the transformer
approaches?

After discussing the evaluation results of all local classi�ers, we analysed and compared
the hierarchical and �at global classi�ers, allowing us to address RQ2. In the baseline ap-
proaches, the results between hierarchical and �at classi�ers were often close to each other,
with the hierarchical approaches mostly outperforming the �at ones slightly. Considering
all metrics, we hence consider the hierarchical approaches superior to the baselines.

For the Transformer models, we observe some larger di�erences between LCPN and �at
classi�ers. In k-fold cross-validation, there was no signi�cant di�erence for XLNet, but for
other Transformer models, the �at approach performed noticeably better. In validation
using p-Fold cross-validation and hold-back data, XLNet, BERTOver�ow, and RoBERTa
signi�cantly improved with the hierarchical approach. However, GPT-3 did not show
this behaviour and performed equally well on unseen projects with both the �at and
hierarchical approach, with a slight advantage for the �at approach.

In summary, we cannot make a clear statement as to whether the hierarchical approach
is superior to the �at approach, as this varies both from model to model and from vali-
dation method to validation method. The evaluation results suggest, however, that the
hierarchical approach improves performance on unseen projects for RoBERTa, XLNet, and
BERTOver�ow, indicating better generalisation.

RQ3 : How and to what extend do pre-trained LMs improve classi�cation performance
over conventional approaches? The evaluation of the local classi�ers showed that the
pre-trained transformer language models almost invariably performed better than the
baseline. This result was con�rmed when assessing the hierarchical global models, where
the transformer-based models performed better than the baselines overall. The advantage
was particularly noticeable during the validation on the hold-back data.

The transformer-based approaches also showed signi�cantly better performance during
k-fold cross-validation for the �at global models. However, during p-fold cross-validation,
the �at classi�ers of XLNet and BERTOver�ow performed worse than most baseline
approaches. GPT-3 stands out, delivering signi�cantly better results with all validation
methods compared to the baseline approaches.

Considering all these results, there were cases where the baseline approaches performed
better than some transformer-based approaches. Ultimately, however, we still �nd the
transformer-based models as leading due to their better performance in most of the local
classi�ers and the resulting hierarchical classi�ers. Further, in particular, GPT-3 delivered
the best global results, outperforming every baseline with both the hierarchical and the
�at approach.

RQ4 : Which of the applied LMs leads to the best classi�cation results? Finally, we address
RQ4. Upon evaluation of the results of local classi�ers, we found that BERTOver�ow
performed worst compared to other transformer models. Further, we observed no clear
winner among XLNet, RoBERTa, and GPT-3. However, when evaluated based on MCC
scores, GPT-3 was found to be the most frequent leader.
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When looking at the evaluation results of hierarchical classi�ers, these �ndings are
supported. The transformer models produced similar good results, with the hierarchical
model of GPT-3 performing slightly better on unseen projects, while the hierarchical
model of RoBERTa performed best in k-fold cross-validation. The hierarchical classi�er
with BERTOver�ow performed lower than the other transformers.

When including the global �at classi�ers, RoBERTa was found to have the best result
in k-fold cross-validation, with GPT-3 slightly behind. However, GPT-3 was superior in
p-fold cross-validation and on the hold-back data.

Out of all global models, GPT-3 produced the second-best result in k-fold cross-validation
with only a slight de�cit to RoBERTa, and the clearly best results during validation on
unseen projects. Therefore, we see GPT-3 pre-trained transformer language model for
classifying design decisions.

6.1 Threads to Validity

In this work, we identify several factors that threaten the validity of our experiments and
research. In this section, we discuss these potential threats to validity.

Data Set An essential factor that jeopardises the validity of our work attributes to our
data sets. Although the data sets include projects from di�erent domains, it is unclear
how representative the software architecture documentations of these projects are and
whether the data set may be subject to certain biases. Further, all projects in our data set
are open-source. The documentations of commercial closed-source projects are may be
written and constructed di�erently, which could decrease the transferability of our results
to other projects. An indicator of this issue is that the validation on our hold-back data set
sometimes yielded results that deviated clearly from those obtained by cross-validation
methods.
Another penalty of our data sets pertain to their size and class imbalances. Especially

with local classi�ers using a particularly small sub-data set with underrepresented classes,
it remains unclear to what extent the measured performance can be attributed to these
characteristics of the data set. To address these problems, the data sets should be expanded
to ensure at least a minimum number of samples per class.

Labelling The data set was manually labelled by one student. Despite the conscientious
execution of the labelling process, inconsistent or erroneous labels may occur. In particular,
if underrepresented classes in the data set were inconsistently or incorrectly labelled, this
could have a pronounced negative impact on the classi�ers’ performance. This risk could
be mitigated by a more extensive labelling process involving multiple labellers or quality
control measures.

Hyperparameters The training hyperparameters can signi�cantly in�uence the perfor-
mance of a neural network. Therefore, we conducted a separate hyperparameter search for
each transformer-based classi�er, except for GPT-3, using a Bayesian optimiser. However,
hyperparameter search only provides an approximation of the optimal hyperparameters.
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Thus, we do not know if and to what extent the potential of each transformer language
model was utilised. Thus, there is a chance that performance di�erences between the
di�erent Transformer LMs are due to their hyperparameters rather than their capabilities.
Speci�cally for GPT-3, there is a risk that the hyperparameters were not optimal since we
waived a hyperparameter search.

Overfitting Another risk threat to validity is over�tting. In case of over�tting, the model
is too closely adapted to the training data and therefore generalises much worse. Although
we have implemented a form of early stopping as a countermeasure, the risk of over�tting
remains. This pitfall is related to that of the training hyperparameters since they can be
one of the causes. A larger data set would be a step towards reducing the risk of over�tting.

Cross Validation For the p-fold and the k-fold cross-validation we applied in our evalua-
tion, we use a �ve-way split in each case, i.e. k=5 and p=5. We made this choice primarily
for computing time reasons. Since the number of folds in�uences the performance estima-
tion, the performance estimation might not be optimal in our case. A higher number of
folds, e.g. 10-fold, may improve the performance estimation since more training data is
available in the individual test runs.
In addition, to split the data into individual folds, we also use a �xed random seed to

maintain the reproducibility of the results. However, the choice of the seed may also has
an impact on the results, which we have taken into account. One way to improve the
validation process in this regard would be to perform the cross-validation multiple times
with di�erent random seeds and average the results.

6.2 Future Work

The results of this study can serve as a starting point for further research in this direction.
As stated in conclusion and the threads to validity, the results of this study are strongly
limited by the size and imbalance of the data set. Therefore, the most crucial future work
is to conduct evaluations on signi�cantly larger data sets to provide more reliable answers
to our research questions and to increase the validity of the results.
The measured performances of our approach are currently de�cient. Although these

results are partly due to a scarce data set, we see the potential to improve our approach.
The application of transfer learning using pre-trained language models has been shown
to be advantageous. However, we could not �nd a clear advantage of the LCPN strategy
in combination with transfer learning. Therefore, we propose combining pre-trained
transformer language models with alternative classi�cation strategies, such as binary
classi�cation, for future work.

In this thesis, we only addressed multi-class classi�cation, assigning each line of text in
the documentation to exactly one class. However, these lines sometimes contain multiple
design decisions. In order to fully bene�t from the automatic classi�cation of design
decisions in software architecture documentation, a multi-label classi�cation should be
pursued. Therefore, a desirable future work is to extend the approach to a multi-label
setting.
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