
Optimizing Hash-Based Signatures in Java

Bachelor’s Thesis of

Tim Rausch

at the Department of Informatics
KASTEL – Institute of Information Security and Dependability

Reviewer: Prof. Dr. Jörn Müller-Quade
Second reviewer: Prof. Dr. Thorsten Strufe
Advisor: M.Sc. Felix Dörre
External advisor: Dr. Anselme Tueno (SAP SE)

01. December 2022 – 28. March 2023

Karlsruher Institut für Technologie
Fakultät für Informatik
Postfach 6980
76128 Karlsruhe

I declare that I have developed and written the enclosed thesis completely by myself. I
have submitted neither parts of nor the complete thesis as an examination elsewhere. I
have not used any other than the aids that I have mentioned. I have marked all parts of
the thesis that I have included from referenced literature, either in their original wording
or paraphrasing their contents. This also applies to figures, sketches, images and similar
depictions, as well as sources from the internet.

Karlsruhe, 28. March 2023

. .
(Tim Rausch)

Abstract

Hash-based signature schemes are an extensively studied and well-understood choice
for quantum-safe digital signatures. However, certain operations, most notably the key
generation, can be comparably expensive. It is, therefore, essential to use well-optimized
implementations.

This thesis aims to explore, implement, and evaluate optimization strategies for hash-
based signature implementations in Java. These include the use of special hardware
features like vector instructions and hardware acceleration for hash functions as well as
the parallelization of the key generation. Overall, we are able to reduce the time required
for an XMSS key generation with SHA-2 by up to 96.4% (on four CPU cores) compared
to the unmodified BouncyCastle implementation. For SPHINCS+ with the Haraka hash
function family, we achieve a reduction of up to 95.7% on only one CPU core.

Furthermore, we investigate the use of two scheme variants WOTS-BR and WOTS+C
proposed in the literature for verification-optimized signatures. We improve the exist-
ing theoretical analysis of both, provide a comparison and experimentally validate our
improved theoretical analysis.

i

Zusammenfassung

Hashbasierte Signaturverfahren sind eine ausführlich untersuchte und gut verstandene
Option für quantensichere digitale Signaturen. Jedoch können einige Operationen, vor
allem die Schlüsselerzeugung, vergleichsweise teuer sein. Deswegen ist es notwendig, gut
optimierte Implementierungen zu verwenden.

Diese Thesis zielt darauf ab, Optimierungsstrategien für hashbasierte Signaturverfahren
in Java zu erkunden, zu implementieren und zu evaluieren. Dies umfasst die Nutzung von
speziellen Hardwarefunktionen, wie Vektorinstruktionen und Hardwarebeschleunigung
für Hashfunktionen, sowie die Parallelisierung der Schlüsselerzeugung. Insgesamt konnten
wir die für eine XMSS Schlüsselerzeugung mit SHA-2 benötigte Zeit um bis zu 96.4%
reduzieren (auf vier Prozessorkernen), verglichen mit der unveränderten BouncyCastle-
Implementierung. Für SPHINCS+ mit der Haraka-Hashfuntionenfamilie erreichen wir eine
Reduktion um bis zu 95.7% auf nur einem Prozessorkern.

Zusätzlich untersuchen wir den Einsatz der zwei Verfahrensvarianten WOTS-BR und
WOTS+C aus der Literatur für verifikationsoptimierte Signaturen. Wir verbessern die
bestehende theoretische Analyse beider, vergleichen sie und bestätigen unsere verbesserte
theoretische Analyse experimentell.

iii

Contents

Abstract i

Zusammenfassung iii

1. Introduction 1
1.1. Motivation . 1
1.2. Contribution . 2
1.3. Organization . 2

2. Background and Theory 5
2.1. Notation . 5
2.2. Digital Signatures . 5
2.3. Hash Functions . 7

2.3.1. One-Way Functions . 7
2.3.2. Collision-Resistant Hash Functions 7
2.3.3. Other Security Properties . 8
2.3.4. Merkle-Damgård Constrution . 9
2.3.5. Sponge Constructions . 10

2.4. Hash-Based One-Time Signatures . 11
2.4.1. Lamport One-Time Signature Scheme 11
2.4.2. Winternitz One-Time Signature Scheme 13
2.4.3. WOTS-BR . 16
2.4.4. WOTS+C . 17

2.5. Merkle Signature Scheme . 18
2.6. Hypertrees . 22
2.7. Hash-Based Few-Time Signatures . 24

2.7.1. HORS Signature Scheme . 24
2.7.2. HORST Signature Scheme . 26
2.7.3. FORS Signature Scheme . 28

3. Specification and Standardization 31
3.1. Signature Schemes . 31

3.1.1. XMSS . 31
3.1.2. LMS . 33
3.1.3. SPHINCS+ . 34

3.2. Hash Functions . 36
3.2.1. SHA-2 . 36

v

Contents

3.2.2. SHA-3 . 37
3.2.3. Haraka . 38

3.3. Hash Function Implementation . 39
3.3.1. XMSS . 39
3.3.2. LMS . 41
3.3.3. SPHINCS+ . 42

4. Related Work 45
4.1. Implementation Optimization . 45

4.1.1. Optimizing SHA-2 . 45
4.1.2. Implementing Haraka . 47
4.1.3. Application to Hash-Based Signature Schemes 47
4.1.4. Scheme-Specific Optimizations 48

4.2. Scheme Variants . 49
4.2.1. RapidXMSS . 50
4.2.2. SPHINCS+C . 50
4.2.3. WOTS Encodings . 50

5. Practical Foundations 53
5.1. Java Architecture and Limitations . 53
5.2. Software . 54

5.2.1. BouncyCastle . 54
5.2.2. OpenSSL . 55
5.2.3. eXtended Keccak Code Package 56
5.2.4. Amazon Corretto Crypto Provider 56

5.3. Benchmarking Methodology . 56
5.3.1. Java Microbenchmark Harness 57
5.3.2. Benchmarking Environment . 57

6. Implementation 61
6.1. XMSS Reference Implementation . 61
6.2. Optimization Levels . 62

6.2.1. Hash Encapsulation . 62
6.2.2. BouncyCastle . 62
6.2.3. Amazon Corretto Crypto Provider 64
6.2.4. JNI . 64
6.2.5. Java . 69

6.3. Parallelization . 71
6.3.1. XMSS . 71
6.3.2. LMS . 73

6.4. Verification-Optimized Signatures . 73
6.4.1. Theoretical Analysis . 74
6.4.2. Practical Validation . 83

vi

Contents

7. Evaluation 85
7.1. XMSS Reference Implementation . 85
7.2. Optimization Levels . 87

7.2.1. BouncyCastle . 87
7.2.2. Amazon Corretto Crypto Provider 91
7.2.3. JNI . 92
7.2.4. Java . 98
7.2.5. Summary . 101

7.3. Parallelization . 102
7.3.1. Results . 103
7.3.2. Superlinear Speedups . 103

7.4. Verification-Optimized Signatures . 106
7.4.1. WOTS-BR . 107
7.4.2. WOTS+C . 109
7.4.3. Comparison . 110

8. Conclusion 113
8.1. Summary . 113
8.2. Future Work . 114

Bibliography 115

A. Benchmark Results 123
A.1. XMSS . 123
A.2. LMS . 127
A.3. SPHINCS+ . 129

vii

Abbreviations

ACCP Amazon Corretto Crypto Provider
AES Advanced Encryption Standard
AES-NI AES New Instructions
AVX Intel Advanced Vector Extensions
AVX-512 Intel Advanced Vector Extensions 512
AVX2 Intel Advanced Vector Extensions 2
AWS Amazon Web Services
CMSS Chained Merkle Signature Schemes
CRHF Collision-Resistant Hash Function
EC2 Amazon Elastic Compute Cloud
EUF-CMA Existential Unforgability under Chosen-Message Attack
EUF-SMA Existential Unforgability under Single-Message Attack
FIPS Federal Information Processing Standard
FORS Forest of Random Subsets
FTS Few-Time Signature Scheme
HBS Hash-Based Signature Scheme
HORS Hash to Obtain Random Subset
HORST HORS with Trees
HSS Hierarchical Signature Scheme
JCA Java Cryptographic Architecture
JCE Java Cryptographic Extension
JIT Just-in-Time Compiler
JMH Java Microbenchmark Harness
JNI Java Native Interface
JVM Java Virtual Machine
LD-OTS Lamport-Diffie One-Time Signature Scheme
LMS Leighton-Micali Signature Scheme
MSS Merkle Signature Scheme
NIST National Institute of Standards and Technology
OTS One-Time Signature Scheme
OWF One-Way Function
PPT Probabilistic Polynomial-Time
PQC Post-Quantum Cryptography
RFC Request for Comments
SHA-NI SHA New Instructions

ix

SIMD Single Instruction Multiple Data
SMT Simultaneous Multithreading
SP Special Publication
SSE Streaming SIMD Extensions
SUF-CMA Strong Unforgability under Chosen-Message Attack
SUF-SMA Strong Unforgability under Single-Message Attack
WOTS Winternitz One-Time Signature Scheme
XKCP eXtended Keccak Code Package
XMSS eXtended Merkle Signature Scheme
XMSSMT eXtended Merkle Signature Scheme Multi-Tree
XOF Extendable-Output Function

x

List of Figures

2.1. The Merkle-Damgård iterated hash function 9
2.2. The sponge construction . 10
2.3. LD-OTS key generation and signature with key reuse 13
2.4. WOTS key generation and signature . 15
2.5. MSS key generation . 19
2.6. MSS authentication path . 20
2.7. Example of a hypertree structure . 22
2.8. Example of a hypertree signature . 23
2.9. HORS key and signature . 25
2.10. HORS signature verification . 25
2.11. HORST key generation . 27
2.12. HORST signature . 28
2.13. FORS key generation and signature . 29

3.1. Example of an L-Tree . 32
3.2. SPHINCS and SPHINCS+ structure . 35
3.3. SHA-2 compression function . 36
3.4. Haraka round function . 38

5.1. XMSS key generation by EC2 instance 59

6.1. Partitioning of the XMSS key generation 72
6.2. WOTS Verification cost by message block sum 75
6.3. WOTS-R expected verification cost . 77
6.4. WOTS+C expected iterations for both models 80
6.5. WOTS+C expected iterations by message sum 81
6.6. Comparison of WOTS+C, WOTS-R, and WOTS-BR 82

7.1. XMSS hashing with the reference implementation 85
7.2. XMSS operations with the reference implementation 86
7.3. XMSS hashing and operations with bc . 89
7.4. XMSS hashing with SHA-256 and bc-optimized 90
7.5. XMSS key generation with bc-optimized 91
7.6. XMSS hashing with SHA-2 and corretto 91
7.7. JNI data transfer benchmark . 92
7.8. SHA-256 with different OpenSSL interfaces 93
7.9. SHAKE256 with different native implementations 94
7.10. XMSS hashing and key generation with SHA-256 and jni-hash 95

xi

List of Figures

7.11. XMSS hashing with SHAKE256 and jni 97
7.12. SPHINCS+ hashing with Haraka and jni 97
7.13. XMSS hashing with SHA-256 and java and java-optimized 98
7.14. XMSS key generation with SHA-256 and java and java-optimized 99
7.15. SPHINCS+ hashing with SHAKE256 and java 100
7.16. SPHINCS+ hashing with Haraka and java 101
7.17. Speedup parallel XMSS and LMS key generation 104
7.18. Executions of the parallel hash benchmark 105
7.19. WOTS-R signature time . 107
7.20. WOTS-R observed verification cost . 108
7.21. WOTS-R total verification cost . 108
7.22. WOTS+C signature time . 109
7.23. WOTS+C observed iterations . 110
7.24. Comparison of WOTS+C, WOTS-R and WOTS-BR 110

A.1. XMSS hashing on m5zn . 123
A.2. XMSS hashing on m6i . 124
A.3. XMSS key generation on m5zn . 124
A.4. XMSS key generation on m6i . 125
A.5. XMSS signing on m5zn . 125
A.6. XMSS signing on m6i . 126
A.7. XMSS verification on m5zn . 126
A.8. XMSS verification on m6i . 127
A.9. LMS key generation on m5zn . 128
A.10. LMS key generation on m6i . 128
A.11. SPHINCS+ hashing on m5zn . 129
A.12. SPHINCS+ hashing on m6i . 130
A.13. SPHINCS+ key generation with SHA-256 130
A.14. SPHINCS+ key generation with SHAKE256 131
A.15. SPHINCS+ key generation with Haraka 131
A.16. SPHINCS+ signing with SHA-256 . 132
A.17. SPHINCS+ signing with SHAKE256 . 132
A.18. SPHINCS+ signing with Haraka . 133

xii

List of Tables

3.1. Hash functions and 𝑛 specified for XMSS 39
3.2. Type discriminator length 𝑙𝑡𝑑 for XMSS 40
3.3. Hash function input length for XMSS . 40
3.4. Hash functions and 𝑛 specified for LMS 41
3.5. Hash operations in LMS with input sizes in bytes. 41
3.6. Hash operations in SPHINCS+ with SHAKE 42
3.7. Hash operations in SPHINCS+ with SHA-2 43
3.8. Hash operations in SPHINCS+ with Haraka 43

5.1. Evaluated EC2 instance types . 58
5.2. Overview of the benchmarking setup . 60

6.1. Repurposed methods for the Haraka intrinsic 70

xiii

1. Introduction

This thesis proposes, implements, and evaluates optimizations for Hash-Based Signature
Schemes (HBSs) in Java. Section 1.1 presents the motivation behind this thesis, Section 1.2
summarizes our main contributions, and Section 1.3 outlines the structure of this thesis.

1.1. Motivation

HBSs are promising candidates for quantum-safe signature schemes. As opposed to most
other established and post-quantum cryptographic schemes, they do not rely on any
number-theoretical assumptions and only require a secure hash function. Secure hash-
based signature schemes are proven to exist as long as any secure digital signature scheme
exists [9]. Furthermore, HBSs have been extensively studied and are considered to be
well-understood. They are, therefore, deemed a conservative choice for quantum-safe
signatures.

Two stateful HBS schemes are already standardized as RFCs: the eXtended Merkle Sig-
nature Scheme (XMSS) [9, 36] and the Leighton-Micali Signature Scheme (LMS) [49].
SPHINCS+ [5] is a stateless HBS scheme that was chosen by NIST in the Post-Quantum
Cryptography Standardization project and will therefore be standardized [51].

Implementation Optimizations In contrast to most other signature schemes, key pairs
for both stateful and stateless HBSs can only be used for a limited number of signatures.
For XMSS and LMS, the time required to generate a key pair is linear in the number of
signatures that can be created with it. Generating XMSS keys valid for 220 signatures may
take several hours. For practical applications, it is therefore essential to optimize and
speed-up HBS operations.

While most HBS implementations are written in C or C++ for better performance, the
Java platform is one of the most popular programming environments for business applica-
tions. For the security and performance of Java applications, it is critical to have fast and
quantum-safe cryptographic primitives available. Therefore, this thesis aims to improve
the performance of HBS implementations in Java.

1

1. Introduction

Verification-Optimized Signatures An important application scenario for digital signatures
is code signing. Software and firmware packages are signed to prove their authenticity to
the users. For code signing, the number of verification operations is significantly greater
than the number of key generation or signature operations. Consider a device that verifies
the signature of its firmware at every startup. In this scenario, the verification of the
signature must be as fast as possible. At the same time, a greater cost of signing may be
acceptable due to the low number of created signatures.

Thus, this thesis investigates and implements scheme variants for verification-optimized
signatures.

1.2. Contribution

Implementation Optimizations We present, implement, and evaluate various optimiza-
tions to accelerate the implementation of XMSS, LMS, and SPHINCS+ in Java.

Therefore, we explore strategies to optimize the evaluation of underlying hash functions.
These include the scheme-agnostic integration of native implementations that utilize
specific hardware acceleration as well as scheme-specific software optimizations. We,
furthermore, investigate the use of parallelization on modern multi-core systems for
certain HBS operations. We provide extensive benchmark results and guidance for HBS
implementations in Java based on our insights.

For XMSS with SHA-2, we are able to reduce the key generation time by up to 85.0% using
one CPU core and by up to 96.4% on four CPU cores. We achieve even better results for
SPHINCS+ with the Haraka hash function. On one core, we are able to reduce the key
generation time by 95.4%.

Verification-Optimized Signatures This thesis provides a theoretical analysis, implemen-
tation, experimental validation, and comparison of the use of the schemes WOTS-BR and
WOTS+C for verification-optimized signatures.

In the theoretical analysis, we present a new and more accurate model for the behavior
of the checksum in WOTS-BR than the models presented in the literature. For WOTS+C,
we correct the model provided in the literature and give a theoretical comparison of both
schemes based on the presented models. Furthermore, we experimentally validate them
by implementing and benchmarking the schemes.

1.3. Organization

The remainder of this thesis is organized as follows: Chapter 2 presents the theoretical
background required for this thesis and introduces the underlying constructions used in
the HBSs. Chapter 3 presents how these constructions are used to build HBSs for practical

2

1.3. Organization

use. An overview of related work that optimizes HBSs is given in Chapter 4. Chapter 5
introduces the architecture of the Java platform, the various software projects used in this
thesis, and the benchmarking methodology used to evaluate the optimizations.

Chapter 6 describes the implementation optimizations in detail and provides an analysis
of WOTS-BR and WOTS+C for verification-optimized signatures. Chapter 7 presents and
evaluates the results of benchmarks based on the previous chapter. This thesis concludes
in Chapter 8 by providing a summary and an overview of potential future work.

3

2. Background and Theory

The current chapter discusses the theoretical background relevant for the understanding of
the thesis. It starts in Section 2.1 by describing the notation used throughout this document.
In Sections 2.2 and 2.3, we give a brief overview over digital signatures and hash functions.
These two concepts will be used later in this chapter to introduce hash-based one-time
signature schemes in Section 2.4 and hash-based few-time signature schemes in Section 2.7.
Sections 2.5 and 2.6 present constructions building upon these signature schemes to achieve
keys that can be used for many signatures.

2.1. Notation

For strings 𝑠 and 𝑡 , let |𝑠 | denote the length of the string 𝑠 and 𝑠 ∥ 𝑡 their concatenation.
By {0, 1}𝑛 , we denote the set of all bit strings of length 𝑛 and by {0, 1}∗, the set of all bit
strings of arbitrary length. We denote the set of all 𝑗-tuples of bit strings of length 𝑛 as
{0, 1}(𝑛,𝑗) . The function trunc𝑖 (𝑥) truncates the bit string 𝑥 to length 𝑖 . More precisely, it
returns the first 𝑖 characters of 𝑥 . For 𝑥 ∈ N, the function toByte(𝑥,𝑦) returns the binary
representation of 𝑥 as a 𝑦-byte string in big-endian order.

By 𝑥 $←− 𝐾 , we denote that 𝑥 is randomly sampled from the set 𝐾 using the uniform
distribution. This thesis only uses the logarithm to base 2. Consequently, the function log
refers to the logarithm to base 2, log2.

For a set 𝑆 , let P(𝑆) denote its power set, i.e. the set of all subsets of 𝑆 . Let P𝑘 (𝑆) be the
set of all non-empty subsets of 𝑆 with no more than 𝑘 elements. Precisely, P𝑘 (𝑆) = {𝑠 ∈
P(𝑆) | 0 < |𝑠 | ≤ 𝑘}. By [𝑧], we denote the set {0, . . . , 𝑧 − 1}.

2.2. Digital Signatures

Digital signatures are a means to ensure the authenticity and integrity of a message in
a public-key setting: A signer has a key pair consisting of a secret key 𝑋, which is only
known to the signer, and a public key𝑌 which is assumed to be publicly known. The signer
can generate a signature for a certain message using 𝑋 and transmit both the message
and signature to one or multiple verifiers. A verifier can now verify the signature for this
message using the public key 𝑌 . The following section is based on Katz and Lindell [40].

5

2. Background and Theory

Formally, a digital signature scheme is a tuple of Probabilistic Polynomial-Time (PPT)
algorithms Π = (Gen, Sign,Verify) where:

1. Gen is the key-generation algorithm: (𝑋,𝑌) ← Gen(1_). It takes a security parame-
ter 1_ as input and returns a key pair consisting of the secret key 𝑋 and the public
key 𝑌 ,

2. Sign is the signature algorithm: 𝜎 ← Sign𝑋 (𝑀) . It takes a private key 𝑋 and a
message 𝑀 as input and returns a signature 𝜎 , and

3. Verify is the deterministic verification algorithm: 𝑏 = Verify𝑌 (𝑀′, 𝜎′). The algorithm
takes a public key 𝑌 , a message 𝑀′, and a signature 𝜎′ as input and returns a bit 𝑏. If
𝑏 = 1 the signature is considered valid, otherwise invalid.

For this thesis, we require perfect correctness: For every _ ∈ N, (𝑋,𝑌) ← Gen(1_),
𝑀 ∈ {0, 1}∗, and 𝜎 ← Sign𝑋 (𝑀), the condition Verify𝑌 (𝑀,𝜎) = 1 must hold.

For this to be useful, it must additionally be infeasible for an attacker to create a forgery,
that is, to compute a new signature that is accepted by a verifier but was not created
by the signer. The most common security property for digital signature schemes is
Existential Unforgability under Chosen-Message Attack (EUF-CMA) which is defined
using the experiment Sig-forgeA,Π (_).
For a signature scheme Π = (Gen, Sign,Verify), an algorithmA, and a security parameter
, the experiment Sig-forgeA,Π () is defined as:

1. A key pair is generated using the key-generation algorithm: (𝑋,𝑌) ← Gen(1_).
2. The public key 𝑌 and access to a signature oracle Sign𝑌 (·) are given to the algorithm
A, which then outputs a tuple (𝑀,𝜎).

3. Let Q be the set of all oracle queries made by A. The experiment outputs 1 if and
only if Ver𝑌 (𝑀,𝜎) = 1 and 𝑀 ∉ 𝑄 .

A signature scheme Π = (Gen, Sign,Verify) is considered existentially unforgeable under
chosen-message attack (EUF-CMA) if, for all PPT algorithmsA, a negligible function negl
exists such that:

Pr
[
Sig-forgeA,Π (_) = 1

] ≤ negl(_).

A related, but stronger security property is Strong Unforgability under Chosen-Message
Attack (SUF-CMA) which is defined via the experiment Sig-sforgeA,Π (_). This experiment
is defined analogous to Sig-forgeA,Π (_) with one difference: We define 𝑄 as the set of
all message-signature tuples provided by the oracle. A tuple (𝑀,𝜎) output by A is only
accepted if (𝑀,𝜎) ∉ 𝑄 .

An algorithm A wins the experiment Sig-sforgeA,Π (_) if it outputs a valid signature for
any message, as long as the pair of message and signature was not previously obtained
from the oracle. This is experiment is easier for A to win, therefore SUF-CMA is the
stronger property.

6

2.3. Hash Functions

2.3. Hash Functions

Hash functions map inputs of arbitrary length to fixed-length outputs. Furthermore, hash
function must have other properties to be useful for cryptographic applications.

This section gives an overview of these security properties and the constructions for hash
functions. Sections 2.3.1 and 2.3.2 introduce One-Way Functions and Collision-Resistant
Hash Functions, respectively. Further security properties are given in Section 2.3.3. Sec-
tions 2.3.4 and 2.3.5 present two constructions to build hash functions for arbitrary input
data from building blocks that only accept fixed-size inputs.

2.3.1. One-Way Functions

A One-Way Function (OWF) is a function 𝑓 : {0, 1}∗ → {0, 1}∗ that can be efficiently
computed but cannot be efficiently inverted. The formal definition presented below is
based on Katz and Lindell [40].

The requirement that 𝑓 is efficiently computable can be easily formalized: we required the
existence of a polynomial-time algorithm that computes 𝑓 (𝑥) for a given 𝑥 . The hardness
of the function inversion is defined over an experiment.

Inverting Experiment For a given function 𝑓 : {0, 1}∗ → {0, 1}∗, an algorithm A, and a
security parameter _, the inverting experiment InvertA,𝑓 (𝑛) is defined as:

• Sample 𝑥 $←− {0, 1}_ randomly using the uniform distribution and compute 𝑦 = 𝑓 (𝑥),
• Compute 𝑥′← A(1_, 𝑦),
• Output 1 if 𝑥 = 𝑥′ and 0 otherwise.

One-Way Property A function 𝑓 : {0, 1}∗ → {0, 1}∗ is one-way if it fulfills the following
two requirements:

1. A polynomial-time algorithm 𝑀𝑓 exists that computes 𝑓 . That is, 𝑀𝑓 (𝑥) = 𝑓 (𝑥) for
all 𝑥 ∈ {0, 1}∗.

2. For every PPT algorithm A, the success probability in the inverting experiment is
negligible. That is, a negligible function negl exists such that

𝑃𝑟 [InvertA,𝑓 (_) = 1] ≤ negl(_) .

2.3.2. Collision-Resistant Hash Functions

Collision-Resistant Hash Functions (CRHFs) are functions for which it is hard to find
collisions. That is, distinct values 𝑥, 𝑥′ that are mapped to the same value in the function’s
range. Below, we give a formal definition based on Katz and Lindell [40].

7

2. Background and Theory

Keyed Hash Functions A (keyed) hash function is a tuple of PPT algorithms (Gen, 𝐻) that
fulfill:

• Gen takes the security parameter 1_ as input and outputs a random key 𝑘 . The
security parameter 1_ is assumed to be implicitly contained in 𝑘 .

• 𝐻 is a deterministic algorithm that takes a key 𝑘 and a bit string 𝑥 as input and
returns a value 𝐻𝑘 (𝑥) ∈ {0, 1}𝑙 (_) .

𝐻 is called a fixed-length hash function or compression function if 𝐻𝑘 (𝑥) is only defined
for strings 𝑥 ∈ {0, 1}𝑙 ′ (1_) .

Collision-Finding Experiment For a given hash function Π = (Gen, 𝐻), an algorithm A,
and a security parameter _, the collision-finding experiment Hash-collA,Π (_) is defined
as:

1. Generate a function key 𝑘 ← Gen(_).

2. Execute A on input 𝑘 . The algorithm A returns two bit strings 𝑥, 𝑥′.

3. Output 1 if 𝑥 ≠ 𝑥′ and 𝐻𝑘 (𝑥) = 𝐻𝑘 (𝑥′), and 0 otherwise.

Collision-Resistant Hash Functions A hash function Π = (Gen, 𝐻) is collision-resistant if,
for every PPT algorithm A, a negligible function negl exists such that

Pr
[
Hash-collA,Π (_) = 1

] ≤ negl(_).

2.3.3. Other Security Properties

Apart from collision resistance, two weaker security properties for hash functions are
commonly used: Preimage resistance and second-preimage resistance.

Preimage Resistance Given 𝑘 ← Gen(1_) and 𝑦 ∈ {0, 1}𝑙 (_) , the success probability of all
PPT algorithms in finding 𝑥 with 𝐻𝑙 (𝑥) = 𝑦 is negligible.

Second-Preimage Resistance Given 𝑘 ← Gen(1_) and 𝑥 ∈ {0, 1}_ , the success probability
of all PPT algorithms in finding 𝑥′ with 𝑥′ ≠ 𝑥 and 𝐻𝑘 (𝑥) = 𝐻𝑘 (𝑥′) is negligible.

Note that collision resistance implies second-preimage resistance which in turn implies
preimage resistance [40]. The notion of preimage resistance for hash functions is essentially
equivalent to the one-way property introduced in Section 2.3.1.

8

2.3. Hash Functions

Birthday Attacks Birthday attacks are generic attacks on the collision resistance of a hash
function. Boneh and Shoup [7] and Katz and Lindell [40] give a detailed presentation and
analysis. For this thesis, it is only important to know that for a hash function with range
{0, 1}𝑙 , it is possible to find a collision with only 𝑂 (2𝑙/2) evaluations of 𝐻 [7].

In terms of concrete security, this means that if finding a collision for 𝐻 should be as hard
as the exhaustive search over all 𝑛-bit keys, the hash function must have an output length
of at least 2𝑛 bits [40].

This type of attack can only be used to find collisions, not to find preimages or second
preimages. There are no other generic attacks on the preimage or second-preimage
resistance of a hash function that require fewer than 2𝑙 evaluations of 𝐻 [40].

In summary, hash functions with an output length of 𝑙 bits can provide a security level of
𝑙 against preimage and second-preimage attacks, but only 𝑙/2 against collision attacks.

2.3.4. Merkle-Damgård Constrution

The Merkle-Damgård construction can be used to construct a CRHF for arbitrary-length
inputs from a collision-resistant compression function. We require the compression
function (Gen, ℎ) to have an input length of 2𝑛 and an output length of 𝑛. This restriction
is not strictly necessary for the construction, but it allows for a simpler presentation.

Additionally, a padding function pad : N → {0, 1}∗ is required. The function pad must
fulfill the following properties:

1. 𝑖 + |𝑝𝑎𝑑 (𝑖) | must be a multiple of 𝑛 for all 𝑖 ∈ N,

2. 𝑥 ∥ 𝑝𝑎𝑑 (|𝑥 |) ≠ 𝑥′ ∥ 𝑝𝑎𝑑 (|𝑥′|) for all distinct 𝑥, 𝑥′ ∈ {0, 1}∗.

ℎ𝑡0 = IV

𝑚0

ℎ𝑡1

𝑚1

ℎ𝑡2

𝑚2

ℎ

𝑚 𝑗−1

𝑡3 𝑡 𝑗−1
𝑡 𝑗 = 𝐻 (𝑀)

Figure 2.1.: Illustration of the Merkle-Damgård iterated hash function. Based on [7].

To calculate the Merkle-Damgård hash for a message 𝑀 , it is first padded to block length
using pad: 𝑀′ = 𝑀 ∥ 𝑝𝑎𝑑 (|𝑀 |). The padded message is then split into 𝑗 = |𝑀

′ |
𝑛 bit strings

of length 𝑛: 𝑀′ =𝑚0 ∥ · · · ∥ 𝑚 𝑗−1.

The message blocks are processed iteratively. With each processed block, the internal
state 𝑡 is updated. The initial state is a fixed initialization vector: 𝑡0 = IV. For each block,
the state is updated using the compression function:

𝑡𝑖+1 = ℎ𝑠 (𝑡𝑖 ∥ 𝑚𝑖) 𝑖 ∈ [𝑗] .

9

2. Background and Theory

The Merkle-Damgård hash 𝐻 (𝑀) is defined as 𝐻 (𝑀) = 𝑡 𝑗 . Boneh and Shoup [7] propose
a padding function and prove that the Merkle-Damgård construction with this padding
function yields a CRHF.

2.3.5. Sponge Constructions

Sponge constructions present an alternative approach to building hash functions in practice.
Unlike Merkle-Damgård, sponge constructions require no collision-resistant compression
function, but only a permutation 𝜋 : {0, 1}𝑛 → {0, 1}𝑛 . The presentation below is based
on Boneh and Shoup [7].

However, it is not known how to generically prove the collision resistance of the resulting
hash function based on a concrete security property of 𝜋 .

In addition to supporting variable input sizes, sponge constructions can also generate hash
values of variable length.

𝑟 bits

𝑐 bits

0

0

𝜋

⊕

𝜋

⊕ ⊕

𝜋

𝑚0 𝑚1 𝑚2

⊕

𝜋

𝑚 𝑗−1 𝑧0

𝜋

𝑧1

𝜋

Absorbing Phase Squeezing Phase

Figure 2.2.: Illustration of the sponge construction. Based on [7].

A sponge construction is parameterized by its rate 𝑟 and its capacity 𝑐 . Rate and capacity
must fulfill 𝑟 + 𝑐 = 𝑛.

Similar to Merkle-Damgård, the message 𝑀 is padded to a multiple of 𝑟 using a padding
function pad. Let 𝑀′ = 𝑀 ∥ 𝑝𝑎𝑑 (|𝑀 |) and split 𝑀′ into 𝑗 = |𝑀 ′ |

𝑟 blocks of length 𝑟 :
𝑀′ =𝑚0 ∥ · · · ∥ 𝑚 𝑗−1.

The sponge construction operates on an internal state of 𝑛 bits. The initial value is usually
𝑡0 = 0𝑛 .

In the absorbing phase, each message block is then processed to update the state:

𝑡𝑖+1 = 𝜋 (𝑡𝑖 ⊕ (𝑚𝑖 ∥ 0𝑐)) 𝑖 ∈ [𝑗]

10

2.4. Hash-Based One-Time Signatures

After all message blocks have been processed, the resulting state 𝑡 𝑗 is used in the squeezing
phase to compute the hash value. To generate a 𝑙-bit hash value, set 𝑘 = ⌈𝑙/𝑟⌉ and
compute

𝑡 𝑗+𝑖+1 = 𝜋 (𝑡 𝑗+𝑖) 𝑖 ∈ [𝑘 − 1],
𝑧𝑖 = trunc𝑟 (𝑡 𝑗+𝑖) 𝑖 ∈ [𝑘],
𝑧 = trunc𝑙 (𝑧0 ∥ · · · ∥ 𝑧𝑘−1)

The resulting hash value of the sponge construction is 𝑧.

2.4. Hash-Based One-Time Signatures

In this section, we present two hash-based One-Time Signature Schemes (OTSs): the
Lamport-Diffie One-Time Signature Scheme (LD-OTS) in Section 2.4.1, and the Winternitz
One-Time Signature Scheme (WOTS) in Section 2.4.2. After that, we introduce two variants
of the latter in Sections 2.4.3 and 2.4.4.

2.4.1. Lamport One-Time Signature Scheme

The Lamport one-time signature scheme, sometimes also referred to as Lamport-Diffie
One-Time Signature Scheme (LD-OTS), was originally proposed by Lamport in 1979 [47].
In contrast to traditional digital signatures, a one-time signature scheme can only be used
to sign exactly one message per generated key pair. In the following, we present the three
algorithms of LD-OTS: Key generation, signing, and verification. We follow the notation
used by Buchmann et al. [10].

Prerequisites Let 𝑛 be the security parameter, a positive integer. LD-OTS requires two
functions: a one-way function 𝑓 and a cryptographic hash function 𝑔:

𝑓 : {0, 1}𝑛 → {0, 1}𝑛,
𝑔 : {0, 1}∗ → {0, 1}𝑛 .

Key Generation The secret key 𝑋 is an ordered set of 2𝑛 bit strings of length 𝑛 which are
randomly sampled:

𝑋 = (𝑥𝑛−1 [0], 𝑥𝑛−1 [1], . . . , 𝑥0 [0], 𝑥0 [1]) $←− {0, 1}(𝑛,2𝑛) .

The public key 𝑌 is derived by applying the one-way function 𝑓 to each element individu-
ally:

𝑦𝑖 [𝑗] = 𝑓 (𝑥𝑖 [𝑗]) 𝑖 ∈ [𝑛], 𝑗 ∈ {0, 1},
𝑌 = (𝑦𝑛−1 [0], 𝑦𝑛−1 [1], . . . , 𝑦0 [0], 𝑦0 [1]) .

Public and secret key have a size of 2𝑛2 bits each.

11

2. Background and Theory

Signing A message 𝑀 ∈ {0, 1}∗ is first hashed using the cryptographic hash function 𝑔:
𝑑 = 𝑔(𝑀). Let𝑑𝑛−1, . . . , 𝑑0 denote the individual bits of the hash value, i.e. 𝑑 = (𝑑𝑛−1, . . . , 𝑑0).
Each bit is signed individually and the signature 𝜎𝑖 for the bit 𝑑𝑖 is the value 𝑥𝑖 [𝑑𝑖]. The
signature for the message 𝑀 is, therefore, defined as

𝜎 = (𝑥𝑛−1 [𝑑𝑛−1], . . . , 𝑥0 [𝑑0]) ∈ {0, 1}(𝑛,𝑛) .

We note that the signature’s size is 𝑛2 bits in total and signature generation requires no
evaluation of 𝑓 .

Verification To verify a signature 𝜎′ = (𝜎′𝑛−1, . . . , 𝜎
′
0) for a message 𝑀′ and a public key

𝑌 , the message is hashed 𝑑′ = 𝑔(𝑀′) = (𝑑′𝑛−1, . . . , 𝑑
′
0). The signature is considered valid if

and only if
𝑓 (𝜎′𝑖)

?
= 𝑦𝑖 [𝑑′𝑖] ∀𝑖 ∈ [𝑛] .

Verification of an LD-OTS signature requires 𝑛 evaluations of 𝑓 .

Security The security of LD-OTS depends on three factors: the one-way property of
𝑓 , the collision resistance of 𝑔, and the one-time use of key pairs. If 𝑓 is not a one-way
function, the secret key (or parts thereof) can be derived from the public key. Intuitively, a
key pair can be used only once because the signature process reveals parts of the secret
key. If only one message is signed, the revealed parts of the secret key can only be used to
sign messages with exactly this hash value. However, if a key is re-used, this will reveal
additional parts of the secret key. This information can be used to sign messages with
certain other hash values. In the worst case, assume two messages𝑀 ,𝑀′ that fulfill 𝑑𝑖 ≠ 𝑑′𝑖
for all 𝑖 ∈ [𝑛]. Their signatures 𝜎 , 𝜎′ can be used to trivially reconstruct the entire secret
key 𝑋 . This can, in turn, be used to generate signatures for arbitrary messages.

Note that this means that LD-OTS is not EUF-CMA secure. Instead, it is necessary to
introduce new security properties for OTSs. These are Existential Unforgability under
Single-Message Attack (EUF-SMA) and Strong Unforgability under Single-Message Attack
(SUF-SMA) which are defined similar to their CMA counterparts. The only difference is
that the attackerA can only send one query to the oracle instead of a polynomial number
of queries. This restriction models the one-time use of keys. Katz and Lindell [40] prove
that LD-OTS indeed fulfills EUF-SMA if 𝑓 is one-way. Furthermore, Chia et al. [12] claim
SUF-SMA security if instantiated with a one-way function.

Example Assume 𝑛 = 4. In this case, both keys 𝑋 and 𝑌 consist of 8 bit strings. We depict
this scenario in Figure 2.3. To sign a message 𝑀 with hash value 𝑑 = 1101, the secret
key elements 𝑥3 [1], 𝑥2 [1], 𝑥1 [0], and 𝑥0 [1] are used as the signature. To illustrate the
consequences of key reuse, we assume another message 𝑀′ with hash value 𝑑′ = 1010 is
signed. The signature for this message is 𝑥3 [1], 𝑥2 [0], 𝑥1 [1], and 𝑥0 [0]. Observe that the
two signatures reveal all parts of the secret key except 𝑥3 [0]. An attacker can now use
this information to trivially generate forgeries for all messages whose hash value starts
with 1.

12

2.4. Hash-Based One-Time Signatures

𝑥3 [0]
𝑥3 [1]

𝑥2 [0]
𝑥2 [1]

𝑥1 [0]
𝑥1 [1]

𝑥0 [0]
𝑥0 [1]

Secret Key 𝑋

() 𝑦3 [0]
𝑦3 [1]

𝑦2 [0]
𝑦2 [1]

𝑦1 [0]
𝑦1 [1]

𝑦0 [0]
𝑦0 [1]

Public Key 𝑌

()𝑓

Key Generation:

Sign first message 𝑀 :

𝑔(𝑀):
𝜎 : 𝑥3 [1]

1 1 0 1
𝑥2 [1] 𝑥1 [0] 𝑥0 [1]

Sign second message 𝑀′:

𝑔(𝑀′):
𝜎′: 𝑥3 [1]

1 0 1 0
𝑥2 [0] 𝑥1 [1] 𝑥0 [0]

Figure 2.3.: Example of the LD-OTS key generation and signature with key reuse for 𝑛 = 4

2.4.2. Winternitz One-Time Signature Scheme

The Winternitz One-Time Signature Scheme (WOTS) is a similar one-time scheme that
was presented by Merkle [50]. It can be considered an improvement of LD-OTS and has a
generally smaller key and signature size. It allows for a trade-off between the size of keys
and signatures and the run-time of the operations. The presentation below is based on [10,
9].

Prerequisites As with LD-OTS, we require a security parameter 𝑛, a one-way function 𝑓 ,
and a cryptographic hash function 𝑔. Let 𝑤 = 2𝑖 be the Winternitz parameter for some
𝑖 ∈ N+.
Note that this definition deviates from Buchmann et al. [10] who define the Winternitz
parameter as𝑤𝑙 = log𝑤 . Both definitions are used in the literature. To avoid confusion,
the definition above is used for the rest of this thesis as in [9, 36].

Let
𝑙1 =

⌈
𝑛

log𝑤

⌉
, 𝑙2 =

⌊
log(𝑙1(𝑤 − 1))

log𝑤

⌋
+ 1, 𝑙 = 𝑙1 + 𝑙2

as in [9].

Key Generation The secret key X consists of 𝑙 bit strings of length 𝑛 chosen at random:

𝑋 = (𝑥𝑙−1, . . . , 𝑥0) $←− {0, 1}(𝑛,𝑙) .

The iterated application of 𝑓 is defined as

𝑓 𝑖 (𝑥) =
{
𝑥 𝑖 = 0
𝑓 𝑖−1(𝑓 (𝑥)) 𝑖 ≠ 0

.

13

2. Background and Theory

Similar to LD-OTS, the public key 𝑌 is derived from 𝑋 using the one-way function 𝑓 .
However, 𝑓 is applied𝑤 − 1 times to each 𝑥𝑖 :

𝑦𝑖 = 𝑓
𝑤−1(𝑥𝑖) 𝑖 ∈ [𝑙]

𝑌 = (𝑦𝑛−1, . . . , 𝑦0)

The key generation requires 𝑙 (𝑤 − 1) evaluations of 𝑓 and both secret and public keys
have a size of 𝑙𝑛 bits [10].

Signing To sign a message 𝑀 , a hash value 𝑑 = 𝑔(𝑀) is computed . The hash 𝑑 is then
split into 𝑙1 bit strings 𝑏𝑙1−1, . . . , 𝑏0 of length log𝑤 . If log𝑤 does not divide 𝑛 = |𝑑 |, 𝑑 is
padded with zeroes on the left. This corresponds to a base-𝑤 encoding of 𝑑 interpreted as
an integer.

𝑑 = 𝑏𝑙1−1 ∥ · · · ∥ 𝑏0

To prevent trivial forgeries, a checksum is calculated and signed along the message blocks
𝑏𝑙1−1, . . . , 𝑏0. To calculate this checksum, the 𝑏𝑖 are interpreted as integers in [𝑤]. Let

𝐶 =
𝑙1−1∑︁
𝑖=0
(𝑤 − 1 − 𝑏𝑖).

The checksum 𝐶 is encoded to its base-𝑤 representation: 𝐶 = (𝑐𝑙2−1, . . . , 𝑐0). This is
equivalent to converting 𝐶 to its binary representation and splitting it into bit strings of
length log𝑤 . Due to 𝐶 ≤ 𝑙1(𝑤 − 1), the length of the base-𝑤 representation is not greater
than 𝑙2 [11]. Set (𝑏𝑙−1, . . . , 𝑏𝑙1) = (𝑐𝑙2−1, . . . , 𝑐0).
The signature of 𝑀 is defined as:

𝜎𝑖 = 𝑓
𝑏𝑖 (𝑥𝑖) 0 ≤ 𝑖 < 𝑙

𝜎 = (𝜎𝑙 , . . . , 𝜎0)

While the size of the signature is always 𝑙 · 𝑛, the number of evaluations of 𝑓 is
∑𝑙−1
𝑖=0 𝑏𝑖

and therefore the runtime of the signing operation depends on the message 𝑀 .

Verification To verify a signature 𝜎′ = (𝜎′
𝑙
, . . . , 𝜎′0) for a message 𝑀′, the message is

encoded into blocks 𝑏𝑙 , . . . , 𝑏0 as described for signing. The signature is considered valid if
and only if

(𝑓 𝑤−1−𝑏𝑙 (𝜎′𝑙), . . . 𝑓 𝑤−1−𝑏0 (𝜎′0))
?
= 𝑌

Again, the number of evaluations of 𝑓 required for the verification depends on the message:∑𝑙−1
𝑖=0 (𝑤 − 1 − 𝑏𝑖). However, signing and verification require

𝑙−1∑︁
𝑖=0

𝑏𝑖 +
𝑙−1∑︁
𝑖=0
(𝑤 − 1 − 𝑏𝑖) = 𝑙 · (𝑤 − 1)

invocations of 𝑓 in total for one message.

14

2.4. Hash-Based One-Time Signatures

𝑥5 𝑥4 𝑥3 𝑥1 𝑥0

𝑓 1(𝑥5) 𝑓 1(𝑥4) 𝑓 1(𝑥3)

𝑓 2(𝑥5) 𝑓 2(𝑥4) 𝑓 2(𝑥3)

𝑓 1(𝑥1) 𝑓 1(𝑥0)

𝑓 2(𝑥1) 𝑓 2(𝑥0)

𝑦5 =
𝑓 3(𝑥5)

𝑦4 =
𝑓 3(𝑥4)

𝑦3 =
𝑓 3(𝑥3)

𝑦1 =
𝑓 3(𝑥1)

𝑦0 =
𝑓 3(𝑥0)

𝑥2

𝑓 1(𝑥2)

𝑓 2(𝑥2)

𝑦2 =
𝑓 3(𝑥2)

Secret Key 𝑋 :

Public Key 𝑌 :

Message and
Checksum: 𝑏5 = 1 𝑏4 = 2 𝑏3 = 2 𝑏2 = 3 𝑏1 = 0 𝑏0 = 1

Signature: 𝑓 1(𝑥5) 𝑓 2(𝑥4) 𝑓 2(𝑥3) 𝑓 3(𝑥2) 𝑓 0(𝑥1) 𝑓 1(𝑥0)

Checksum Message

Figure 2.4.: Example of the WOTS key generation and signature for 𝑛 = 8 and𝑤 = 4

Example Let 𝑛 = 8 and 𝑤 = 4. The message is then split into 𝑙1 = ⌈𝑛/(log𝑤)⌉ =
⌈8/2⌉ = 4 blocks. In this scenario, the checksum 𝐶 can reach a maximum value of
𝑙1(𝑤 − 1) = 4 · (4 − 1) = 12. Hence, 𝑙2 = ⌊log(𝑙1(𝑤 − 1)/(log𝑤)⌋ + 1 = 2 checksum blocks
are required.

Assume 𝑑 = 101100012 = 23014. This bit string is split into 𝑏3 = 2, 𝑏2 = 3, 𝑏1 = 0, and
𝑏0 = 0. It follows that 𝐶 = (3 − 2) + (3 − 3) + (3 − 0) + (3 − 1) = 610 = 01102 = 124. Hence,
𝑏5 = 1 and 𝑏4 = 2. Figure 2.4 shows this scenario.

Key Extraction Figure 2.4 shows that the repeated application of 𝑓 forms so-called hash
chains. Each node in a hash chain has a value and the next node is derived by applying
𝑓 once. The first node of a hash chain is always one of the 𝑥𝑖 , i.e. one of the secret key
elements. The chains’ length is𝑤 and the last node is one of the 𝑦𝑖 , i.e. one of the public
key elements. The signature contains one element of each hash chain. Note that once a
node is known, all following nodes can be calculated as this is done for verification. Hence,
the verification does not only yield a true or false value, but it returns a public key 𝑌 ′. This
value is equal to the public key 𝑌 if (and only if) the signature is valid.

This property allows the compression of the public key: instead of using the entire 𝑙 · 𝑛
bit public key, the verifier can also use a smaller hash value of 𝑌 , for example, ℎ(𝑌).
During verification, the extracted key 𝑌 ′ is hashed, and only the hash values are compared:
ℎ(𝑌 ′) ?

= ℎ(𝑌).

Domination-free encoding As noted above, once any signature element is known, all
elements following a signature node in the respective hash chain can easily be calculated.
In the example in Figure 2.4, these are the dotted nodes. For the security of the scheme, it

15

2. Background and Theory

is essential that it is not possible to construct a signature for a different message from the
known nodes. In WOTS, this is ensured by the addition of a checksum.

Let 𝑃 : {0, 1}𝑛 → {0, . . . ,𝑤 − 1}𝑙 be the function that maps a message digest 𝑑 to the hash
chain positions (𝑏𝑙 , . . . , 𝑏0) as described above. A vector 𝑣 = (𝑣𝑘−1, . . . , 𝑣0) dominates a
vector 𝑣′ = (𝑣′

𝑘−1, . . . , 𝑣
′
0) if for every 𝑖 ∈ [𝑘] the condition 𝑣𝑖 ≥ 𝑣′𝑖 holds [7].

A function 𝑄 : {0, 1}𝑛 → [𝑤]𝑙 is considered domination-free if for every distinct𝑚1,𝑚2 ∈
{0, 1}𝑛 the vector 𝑄 (𝑚1) does not dominate 𝑄 (𝑚2) [7]. Boneh and Shoup [7] prove that 𝑃
as constructed above is indeed domination-free. Examples for different domination-free
encodings are given in Section 4.2.3.

Security Boneh and Shoup [7] claim EUF-SMA security for WOTS as presented above.
Buchmann et al. [11] present a detailed security analysis of WOTS. They propose a slightly
modified scheme which uses a family of pseudo-random functions instead of a OWF
and prove that this variant is EUF-SMA secure. By requiring additional properties of the
function family, they are able to prove that WOTS is also strongly unforgeable.

Hülsing [34] introduces WOTS+, a variant that adds bitmasks to the chaining function
and presents a an exact and tight proof that WOTS+ is SUF-SMA secure.

2.4.3. WOTS-BR

Perin et al. [57] propose two modifications of WOTS to provide faster verification at the
cost of more expensive signing. There are application scenarios where the verification
of a signature is used significantly more often than signing. One example is a signed
device firmware that is only signed once but verified at each startup of the device. In these
scenarios, it makes sense to provide the fastest possible verification and a higher signature
cost is acceptable.

Both modifications are based on the observation that the sum of the cost of signing and
verifying a signature is constant while the fractions vary depending on the message.

WOTS-R This variant introduces an 𝑅-tuple of nonces _ = (_(𝑅−1), . . . , _(0)). Instead of
hashing 𝑀 directly, all 𝑑 (𝑟) = 𝑔(𝑀 ∥ _(𝑟)) with 0 ≤ 𝑟 < 𝑅 are computed. Each 𝑑 (𝑟) is split
into 𝑙1 bit strings of length log𝑤 :

𝑑 (𝑟) = 𝑏 (𝑟)
𝑙1−1 ∥ · · · ∥ 𝑏

(𝑟)
0 , 𝑟 ∈ [𝑅] .

Afterward, the nonce _𝑚𝑎𝑥 is chosen that maximizes the sum of all message blocks:

𝑟𝑚𝑎𝑥 = arg max
𝑟∈[𝑅]

𝑙1−1∑︁
𝑖=0

𝑏 (𝑟)𝑖 ,

_𝑚𝑎𝑥 = _𝑟𝑚𝑎𝑥
.

16

2.4. Hash-Based One-Time Signatures

The hash value 𝑑 (𝑟𝑚𝑎𝑥) is then signed as in WOTS. The chosen nonce _𝑚𝑎𝑥 is included in
the signature. A verifier can use this information and calculate 𝑑 (𝑟𝑚𝑎𝑥) directly without
testing all 𝑅 nonces. The rest of the verification is the same as with WOTS.

WOTS-B This variant slightly modifies the signature checksum which is defined as 𝐶 =∑𝑙1−1
𝑖=0 (𝑤 − 1 − 𝑏𝑖). Due to 0 ≤ 𝐶 ≤ 𝑙1(𝑤 − 1), a maximum of 𝑛𝑐 = ⌈log(𝑙1(𝑤 − 1))⌉

bits are required to encode the checksum. The 𝑙2 signature blocks can encode a total
of 𝑛𝑟 = 𝑙2 · log(𝑤) bits. For many parameter choices, 𝑛𝑟 > 𝑛𝑐 holds, and more bits are
allocated for the checksum than are needed. Let 𝑛𝑢 = 𝑛𝑟 −𝑛𝑐 . The 𝑛𝑢 unused bits are set to
0 in WOTS. As a consequence, only the log(𝑤) −𝑛𝑢 lower-order bits of the first checksum
block 𝑐𝑙2−1 are used. Therefore, its value is always small: 𝑐𝑙2−1 < 2log(𝑤)−𝑛𝑢 . This means
that there are always at least 𝑤 − 1 − 2log(𝑤)−𝑛𝑢 evaluations of 𝑓 required to verify the
signature of the first checksum block.

To allow for faster verification, Perin et al. [57] suggest instead setting the unused bits
in the first checksum block to 1. This effectively moves these evaluations of 𝑓 from the
verification to the signing operation. With this modification, the number of evaluations of
𝑓 to verify the first checksum block is no more than 2log(𝑤)−𝑛𝑢 .

We remark that it would also be possible to shorten the hash chain for the first checksum
block. Instead of𝑤 , its length should be the maximum value of the first checksum block.
This has construction has two advantages over WOTS-B: It removes the unnecessary
evaluations of 𝑓 from the signing process and may further reduce verification cost in the
case that the new chain length is not a power of two.

WOTS-BR WOTS-BR applies both modifications described above in one scheme.

Security Perin et al. [57] argue that the WOTS-B variant has no impact on the security of
the scheme. Furthermore, they present a rough analysis based on the collision resistance
of the underlying hash function. Bos et al. [8] give a security analysis of RapidXMSS, a
XMSS variant that is built using WOTS-R.

2.4.4. WOTS+C

Kudinov et al. [46] propose a variant called WOTS+C that is primarily geared toward
reducing the size of the signature. This is achieved by removing the checksum and
other message blocks. To still provide a domination-free encoding, a constant sum of the
message blocks is required. The message blocks to be removed have to be 0. To fulfill these
conditions, the message 𝑀 is repeatedly hashed with nonces.

Prerequisites A message block sum 𝑆 and a number of zero-blocks 𝑧 are required. Let

𝑙1 =

⌈
𝑛

log𝑤

⌉
, 𝑙 = 𝑙1 − 𝑧.

17

2. Background and Theory

Key Generation The key generation is analogous to WOTS, only that for the same pa-
rameters 𝑛 and𝑤 , the key size 𝑙 is smaller.

Signing To sign a message 𝑀 , a nonce _ is selected and a hash value is computed:
𝑑 = 𝑔(𝑀 ∥ _). The hash𝑑 is again split into 𝑙1 bit strings of length log𝑤 : 𝑑 = 𝑏𝑙1−1 ∥ · · · ∥ 𝑏0.
The hash is tested for the following properties:

1.
∑𝑙1−1
𝑖=0 𝑏𝑖 = 𝑆 ,

2. ∀𝑖 ∈ [𝑧] : 𝑏𝑖 = 0.

If 𝑑 does not fulfill both conditions, another nonce _ is chosen and tested. Once a suitable
nonce was found, the signature 𝜎 is computed as:

𝜎𝑖 = 𝑓
𝑏𝑖+𝑧 (𝑥𝑖) 𝑖 ∈ [𝑙]

𝜎 = ((𝜎𝑙−1, . . . , 𝜎0), _)

Verification To verify a signature 𝜎′ for a message 𝑀′, the hash value 𝑑′ = 𝑔(𝑀′ ∥ _) is
calculated and split into blocks: 𝑑′ = 𝑏′

𝑙1−1 ∥ · · · ∥ 𝑏′0. Afterward, the verifier checks that
the hash fulfills the two conditions above. If this is the case, the signature is considered
valid if and only if

(𝑓 𝑤−1−𝑏′
𝑙+𝑧 (𝜎′𝑙), . . . 𝑓 𝑤−1−𝑏′𝑧 (𝜎′0))

?
= 𝑌 .

Choice of parameters We present a detailed analysis of the effects of the choice of the
parameters 𝑆 and 𝑧 on the scheme in Section 6.4.1.2.

Security Bos et al. [8] present security proofs for both the standalone use of WOTS+C
and the use of WOTS+C as part of SPHINCS+C. In the standalone setting, they prove
that WOTS+C is EUF-CMA secure if the underlying has function is multi-target extended
target collision resistant [8].

2.5. Merkle Signature Scheme

The one-time signature schemes presented above have one major drawback: a new key
pair is required for each signature. This means that for each message signed, a key pair
needs to be exchanged in advance. This is not feasible in practice. Merkle trees present
a solution to this problem: they can be used to authenticate a fixed number of one-time
key pairs using one long-term public key. This is achieved by applying a binary hash tree.
Below, we give a description of the Merkle Signature Scheme (MSS) based on [10].

Prerequisites Select the Merkle Tree height ℎ ∈ N, ℎ ≥ 2. Each MSS key pair can be used
to sign up to 2ℎ messages. MSS requires an underlying OTS and a cryptographic hash
function 𝑔 : {0, 1}∗ → {0, 1}𝑛 .

18

2.5. Merkle Signature Scheme

Key Generation First, 2ℎ key pairs (𝑋𝑖, 𝑌𝑖), 0 ≤ 𝑖 < 2ℎ , for the chosen OTS are generated.
Afterward, a binary hash tree is constructed. Each node of a binary hash tree has a value
associated with it. In this case, this value is a bit string of length 𝑛. The value of the 𝑖-th
leaf is the hash value of the public key 𝑔(𝑌𝑖). The value of each inner node is calculated by
hashing the values of its children.

Let 𝑣𝑖 [𝑗] be the value of the 𝑗-th node on layer 𝑖 . In this notation, the 𝑣0 [𝑗] are the leaf
values and 𝑣ℎ [0] is the value of the root node. More precisely, the node values are defined
as:

𝑣𝑖 [𝑗] =
{
𝑔(𝑌𝑗) 𝑖 = 0
𝑔(𝑣𝑖−1 [2 𝑗] ∥ 𝑣𝑖−1 [2 𝑗 + 1]) 𝑖 > 0

, 0 ≤ 𝑖 ≤ ℎ, 0 ≤ 𝑗 < 2𝐻−𝑖 .

The MSS public key is the value of the root node: 𝑌𝑀𝑆𝑆 = 𝑣ℎ [0]. The secret key consists of
the 2ℎ secret keys for the underlying OTS. Figure 2.5 illustrates a Merkle tree of height
ℎ = 3.

𝑋0 𝑋1 𝑋2 𝑋3 𝑋4 𝑋5 𝑋6 𝑋7

𝑌0 𝑌1 𝑌2 𝑌3 𝑌4 𝑌5 𝑌6 𝑌7

𝑣0 [0] =
𝑔(𝑌0)

𝑣0 [1] =
𝑔(𝑌1)

𝑣0 [2] =
𝑔(𝑌2)

𝑣0 [3] =
𝑔(𝑌3)

𝑣0 [4] =
𝑔(𝑌4)

𝑣0 [5] =
𝑔(𝑌5)

𝑣0 [6] =
𝑔(𝑌6)

𝑣0 [7] =
𝑔(𝑌7)

𝑣1 [0] =
𝑔(𝑣0 [0] ∥ 𝑣0 [1])

𝑣1 [1] =
𝑔(𝑣0 [2] ∥ 𝑣0 [3])

𝑣1 [2] =
𝑔(𝑣0 [4] ∥ 𝑣0 [5])

𝑣1 [3] =
𝑔(𝑣0 [6] ∥ 𝑣0 [7])

𝑣2 [0] =
𝑔(𝑣1 [0] ∥ 𝑣1 [1])

𝑣2 [1] =
𝑔(𝑣1 [2] ∥ 𝑣1 [3])

𝑌𝑀𝑆𝑆 = 𝑣3 [0] =
𝑔(𝑣2 [0] ∥ 𝑣2 [1])

OTS
Key
Pairs

MSS
Public
Key

OTS Key Gen.

Figure 2.5.: Example of the MSS key generation for ℎ = 3

Signing As a first step, an unused one-time key is selected. Let this be (𝑋𝑖, 𝑌𝑖). An OTS
signature 𝜎𝑂𝑇𝑆 for the message 𝑀 is generated using the selected key pair. Afterward, the
so-called authentication path is calculated. It is used to prove that 𝑌𝑖 is part of the Merkle
tree.

The authentication path consists of all sibling nodes on the path from the leaf 𝑣0 [𝑖] to the
root node 𝑣ℎ [0]. Precisely, the authentication path is defined as:

𝐴𝑠 = (𝑎ℎ−1, . . . , 𝑎0),

19

2. Background and Theory

𝑎 𝑗 =

{
𝑣 𝑗 [𝑠/2 𝑗 − 1] if

⌊
𝑠/2 𝑗 ⌋ ≡ 1 mod 2

𝑣 𝑗 [𝑠/2 𝑗 + 1] if
⌊
𝑠/2 𝑗 ⌋ ≡ 0 mod 2

.

The MSS signature consists of four parts:

• The one-time signature 𝜎𝑂𝑇𝑆

• The index of the one-time key 𝑖

• The one-time public key 𝑌𝑖

• The authentication path 𝐴𝑠

𝑌0 𝑌1 𝑌2 𝑌3 𝑌4 𝑌5 𝑌6 𝑌7

𝑣0 [0] =
𝑔(𝑌0)

𝑣0 [1] =
𝑔(𝑌1)

𝑣0 [2] =
𝑔(𝑌2)

𝑣0 [3] =
𝑔(𝑌3)

𝑣0 [4] =
𝑔(𝑌4)

𝑣0 [5] =
𝑔(𝑌5)

𝑣0 [6] =
𝑔(𝑌6)

𝑣0 [7] =
𝑔(𝑌7)

𝑣1 [0] =
𝑔(𝑣0 [0] ∥ 𝑣0 [1])

𝑣1 [1] =
𝑔(𝑣0 [2] ∥ 𝑣0 [3])

𝑣1 [2] =
𝑔(𝑣0 [4] ∥ 𝑣0 [5])

𝑣1 [3] =
𝑔(𝑣0 [6] ∥ 𝑣0 [7])

𝑣2 [0] =
𝑔(𝑣1 [0] ∥ 𝑣1 [1])

𝑣2 [1] =
𝑔(𝑣1 [2] ∥ 𝑣1 [3])

𝑌𝑀𝑆𝑆 = 𝑣3 [0] =
𝑔(𝑣2 [0] ∥ 𝑣2 [1])

Figure 2.6.: Example of an MSS authentication path for the one-time public key 𝑌3

Figure 2.6 illustrates an authentication path in a Merkle tree of size ℎ = 3. The framed
nodes represent the path from the corresponding leaf node to the root. The dotted nodes
are the elements of the authentication path. It includes the siblings of the nodes on this
path. Together with the one-time public key 𝑌3, the authentication path provides all
information required for a verifier to recalculate all nodes on this path up to and including
the root node.

Verification Verification consists of two steps: first, the one-time signature 𝜎′𝑂𝑇𝑆 is verified
with 𝑌 ′𝑖 . In the next step, the nodes on the path from the corresponding leaf to the root are
re-calculated using 𝑌 ′𝑖 and the authentication path. The resulting value of the root node is
then compared to the MSS public key 𝑌𝑀𝑆𝑆 . More specifically, the values (𝑝′

ℎ
, . . . , 𝑝′0) are

computed where 𝑝′0 = 𝑔(𝑌 ′𝑖) and

𝑝′𝑗 =

{
𝑔(𝑎′𝑗−1 ∥ 𝑝′𝑗−1) if

⌊
𝑠/2 𝑗−1⌋ ≡ 1 mod 2

𝑔(𝑝′𝑗−1 ∥ 𝑎′𝑗−1) if
⌊
𝑠/2 𝑗−1⌋ ≡ 0 mod 2

, 1 ≤ 𝑗 ≤ ℎ.

20

2.5. Merkle Signature Scheme

The MSS signature is considered valid if (and only if)

𝑝′ℎ
?
= 𝑌𝑀𝑆𝑆 .

Key Extraction If the chosen OTS allows key extraction it is not necessary to include the
one-time public key 𝑌𝑖 into the MSS signature. Instead, the key extraction is performed
on the signature resulting in 𝑌 ′𝑖 . The path to the root node is calculated starting with
𝑝′0 = 𝑔(𝑌 ′𝑖). This allows for smaller signatures for OTS allowing key extraction. This is the
case for WOTS, but not for LD-OTS.

State As described above, the signer has to ensure that each of the OTS key pairs is only
used once. This has two consequences: firstly, each MSS can only be used for a fixed
number of signatures. Secondly, this means that the signer has to keep track of which keys
have already been used. This introduces a state which has to be updated with each created
signature. Correct state management is essential to the security of MSS as improper state
management can lead to key reuse - which breaks the security of the underlying OTS and
the entire MSS.

Security MSS introduces a state that has to be updated with each signature. The def-
initions of digital signatures, EUF-CMA, and EUF-SMA presented in section 2.2 do not
cover this case. To overcome these limitations, we extend the definitions of EUF-CMA
and EUF-SMA for stateful signature schemes: The signature oracle Sign𝑋 (·) should keep
track of the state and update it with each requested signature such that it is not possible
to request signatures for two messages starting from the same state.

Coronado [15] proves that MSS is EUF-CMA secure under the assumption that the under-
lying OTS is EUF-SMA secure and the hash function is collision-resistant.

Pseudo-Random Key Generation The secret key for MSS consists of the one-time secret
keys and the current state. As mentioned above, one one-time key has to be used for
each message to be signed in the MSS. For long-living keys, this means that numerous
OTS keys are required. In practice, ℎ ≥ 15 is not uncommon. This however leads to large
storage requirements to store the OTS keys if they are chosen at random.

Instead, the OTS keys may be pseudo-randomly generated from a significantly smaller
seed. This leads to considerably lower storage requirements for the signer [10].

Tree Traversal During the key generation, all nodes in the tree must be computed. During
a key’s lifetime, each node is part of at least one authentication path. However, it is
not feasible to store all nodes of a tree as this increases the key size linearly in the
number of signatures and therefore exponentially in ℎ. Not storing any nodes is however
also problematic as each signature will require about as much computation as the key
generation.

To address this problem, several tree traversal algorithms have been proposed. For an
overview, refer to [10]. In general, they extend the state to also include certain tree nodes

21

2. Background and Theory

which are computed and discarded with each signature. The current state of the art is the
so-called BDS algorithm [10].

2.6. Hypertrees

𝑌𝐻𝑇

...

Layer 0
ℎ0 = 2

Layer 1
ℎ1 = 2

Layer 2
ℎ2 = 2

Figure 2.7.: Example of a hypertree structure with layer count 𝑑 = 3 and ℎ0 = ℎ1 = ℎ2 = 2.

Hypertrees, also called Multitrees or Tree Chaining, are a technique to achieve keys for a
large number of signatures at a greatly decreased key generation cost. However, this comes
at the cost of slower signing and verification operations and larger signatures. Instead of
using a single large MSS tree that has to be traversed entirely when a key is generated,
a hypertree is a tree that consists of MSS trees. The intermediate trees are used to sign
the root of a tree on the next lower level. The trees at the lowest level are used to sign
messages. Buchmann et al. [10] present the Chained Merkle Signature Schemes (CMSS), a
simple signature scheme based on a hypertree.

Let 𝑑 be the number of layers of the hypertree. The layer 𝑖 of the hypertree consists of
a certain number of MSS trees of height ℎ𝑖 . In total, the hypertree can be used to sign
2ℎ0+···+ℎ𝑑−1 messages. There is exactly one MSS tree on layer 0. On layer 𝑖 > 0, there are
2ℎ0+···+ℎ𝑖−1 trees.

The public key of the hypertree 𝑌𝐻𝑇 is the value of the single root node of the single MSS
tree on layer 0. Figure 2.7 shows an example of the hypertree structure for a 𝑑 = 3 and
ℎ0 = ℎ1 = ℎ2 = 2. Each of the triangles represents an MSS tree of height 2 and can be used
to create up to four MSS signatures.

To sign a message 𝑀 using a hypertree scheme, an unused leaf 𝑌𝑑−1 of an MSS tree on the
bottom layer 𝑑 − 1 is selected. The message 𝑀 is signed using this key resulting in the
OTS signature 𝜎𝑑−1. As in MSS, the authentication path 𝐴𝑑−1 to the root of the MSS tree
𝑟𝑑−1 is constructed. However, the root of the tree on the bottom layer is not known to a
verifier.

22

2.6. Hypertrees

𝑌𝐻𝑇

OTS Sign

OTS Sign

𝜎0

𝜎1

OTS Sign 𝜎2

𝑚

Layer 0
ℎ0 = 3

Layer 1
ℎ1 = 3

Layer 2
ℎ2 = 3

Figure 2.8.: Example of a hypertree signature with 𝑑 = 3 and ℎ0 = ℎ1 = ℎ2 = 3. Dotted
notes represent the authentication paths.

Hence, 𝑟𝑑−1 is signed using the corresponding leaf of the tree on the layer above 𝑌𝑑−2. This
yields the signature 𝜎𝑑−2, the authentication path 𝐴𝑑−2, and the root of this tree 𝑟𝑑−2. This
process is repeated until a signature was created using the tree on layer 0. Its root 𝑟0 is
known to the verifier as it is the public key of the hypertree scheme 𝑌𝐻𝑇 . The complete
hypertree signature is

𝜎𝐻𝑇 = (𝜎𝑑−1, 𝑌𝑑−1, 𝐴𝑑−1,

𝜎𝑑−2, 𝑌𝑑−2, 𝐴𝑑−2,

. . . ,

𝜎0, 𝑌0, 𝐴0).

If the chosen OTS allows key extraction, the 𝑌𝑖 can be reconstructed by the verifier from
the message or root of the tree below. In this case, it is not necessary to include them in
the signature.

Verification is straightforward: The message is hashed and verified using𝑌 ′
𝑑−1. If the scheme

supports key extraction and 𝑌 ′
𝑑−1 is not transferred, it is extracted from the signature and

the message. Using 𝑌 ′
𝑑−1 and 𝐴′

𝑑−1, 𝑟 ′
𝑑−1 is computed. It is used to compute 𝑟 ′

𝑑−2 in the
same manner. This process is repeated for each layer until 𝑟 ′0 is known. The signature is
considered valid if and only if 𝑟 ′0

?
= 𝑌𝐻𝑇 .

Coronado [15] claims EUF-CMA security for CMSS with two layers. However, this result
can also be applied to the generalized setting with multiple layers.

23

2. Background and Theory

2.7. Hash-Based Few-Time Signatures

In this section, we introduce three Few-Time Signature Schemes (FTSs). Unlike in OTSs, a
FTS key may be used to sign multiple messages. However, the security level decreases
with each signature.

2.7.1. HORS Signature Scheme

Reyzin and Reyzin [60] propose the signature scheme Hash to Obtain Random Subset
(HORS). In contrast to WOTS and its variants, HORS is a so-called Few-Time Signature
Scheme (FTS). This means that each HORS key can be used for up to 𝑟 signatures (for
small 𝑟).

Prerequisites HORS requires a one-way function 𝑓 and parameters 𝑘 and 𝑡 with 𝑘 < 𝑡 .

Additionally, HORS requires an encoding function 𝐻 : {0, 1}∗ → P𝑘 ([𝑡]). This encoding
function maps a message of arbitrary length to a set of integers. The set is not empty and
has a maximum of 𝑘 elements which are all integers in [𝑡].
Informally, Reyzin and Reyzin [60] describe the security requirements for 𝐻 as follows: It
should be infeasible to find messages𝑚0, . . . ,𝑚𝑟 such that 𝐻 (𝑚0) ⊆ 𝐻 (𝑚1) ∪ · · · ∪𝐻 (𝑚𝑟).
We abstain from presenting the formal definition of subset-resilience. This property allows
𝑟 messages to be signed with one key.

Key Generation The secret key 𝑋 consists of 𝑡 bit strings of length 𝑛 which are chosen at
random:

𝑋 = (𝑥𝑡−1, . . . , 𝑥0) $←− {0, 1}(𝑛,𝑡) .

The public key 𝑌 is then derived by applying the one-way function 𝑓 to each element:

𝑦𝑖 = 𝑓 (𝑥𝑖) 𝑖 ∈ [𝑡],

𝑌 = (𝑦𝑡−1, . . . , 𝑦0).

Signing The message 𝑀 is encoded using 𝑠 = 𝐻 (𝑀). Let 𝑠 𝑗−1, . . . , 𝑠0 be the members of 𝑠
in a certain order (for example, in ascending order).

As a signature, the secret key elements specified by 𝑠 are revealed:

𝜎𝑖 = 𝑥𝑠𝑖 𝑖 ∈ [𝑗],

𝜎 = (𝜎 𝑗−1, . . . , 𝜎0).

24

2.7. Hash-Based Few-Time Signatures

𝑥8, 𝑥7, 𝑥6, 𝑥5, 𝑥4, 𝑥3, 𝑥2, 𝑥1, 𝑥0) 𝑦8, 𝑦7, 𝑦6, 𝑦5, 𝑦4, 𝑦3, 𝑦2, 𝑦1, 𝑦0)𝑋 = (𝑌 = (𝑓

𝑀 (8, 7, 4, 2)𝐻
𝜎 = (𝑥8, 𝑥7, 𝑥4, 𝑥2)

Figure 2.9.: Example of a HORS key and signature with 𝑘 = 4 and 𝑡 = 10

Verification Verification of a signature 𝜎′ = (𝜎′𝑗 ′−1, . . . , 𝜎
′
0) is straightforward. As above,

let {𝑠′𝑗 ′′−1, . . . , 𝑠
′
0} = 𝐻 (𝑀′). If 𝑗 ′ ≠ 𝑗 ′′ abort. The signature is considered valid if and only

if:
𝑓 (𝜎′𝑖) = 𝑌𝑠′𝑖 ∀𝑖 ∈ [𝑗 ′] .

Example Suppose 𝑘 = 4 and 𝑡 = 9. To generate a key, 9 random bit strings are sampled
and hashed to retrieve the public key. Figure 2.9 depicts this scenario. Suppose for a given
encoding function 𝐻 and a message 𝑀 to be signed, we have 𝐻 (𝑀) = {8, 7, 4, 2}. The
signature for this message is 𝜎 = (𝑥8, 𝑥7, 𝑥4, 𝑥2).

𝑦8, 𝑦7, 𝑦6, 𝑦5, 𝑦4, 𝑦3, 𝑦2, 𝑦1, 𝑦0)𝑌 = (

𝑀 (8, 7, 4, 2)𝐻 (𝑦8, 𝑦7, 𝑦4, 𝑦2)

𝜎′ = (𝜎′3, 𝜎′2, 𝜎′1, 𝜎′0) (𝑓 (𝜎′3), 𝑓 (𝜎′2), 𝑓 (𝜎′1), 𝑓 (𝜎′0))
𝑓

?

Figure 2.10.: Example of a HORS signature verification with 𝑘 = 4 and 𝑡 = 9

The verification process for this message and a signature 𝜎′ = (𝜎′3, 𝜎′2, 𝜎′1, 𝜎′0) is illustrated
in Figure 2.10. Each of the signature elements is hashed using 𝑓 and the result is compared
to the tuple (𝑦8, 𝑦7, 𝑦4𝑠,𝑦2).

Construction of 𝐻 Reyzin and Reyzin [60] present the following construction for an
encoding function 𝐻 . It requires a hash function 𝑔 with an output length of 𝑛 where
𝑛 = 𝑘 · log 𝑡 . For a message 𝑀 , divide 𝑑 = 𝑔(𝑀) into 𝑘 bit strings of length log 𝑡 :

𝑑 = 𝑏𝑘−1 ∥ · · · ∥ 𝑏0

Interpret each 𝑏𝑖 as an integer in [𝑡] and return {𝑏𝑘−1, . . . , 𝑏0}. Note that this set is not-
empty and has 𝑘 or fewer elements.

Reyzin and Reyzin [60] give no proof that this construction does indeed fulfill the required
property in the standard model.

25

2. Background and Theory

Runtime and sizes Key generation requires 𝑡 evaluations of 𝑓 . Singing requires no evalu-
ation and verification 𝑘 evaluations. The public key size is 𝑡 · 𝑛 and signatures have a size
of 𝑘 · 𝑛. For a given 𝑛, the choice of 𝑡 and 𝑘 allows for a trade-off between the size and
generation time of keys and signatures.

Reyzin and Reyzin [60] suggest the following parameters for𝑛 = 160: 𝑘 = 16, 𝑡 = 210 = 1024
or 𝑘 = 20, 𝑡 = 28 = 256. Even for the second choice, the public key consists of 256 bit
strings of length 𝑛. This is significantly larger than WOTS.

HORS also does not allow key extraction. This means that for use in a Merkle tree, the
HORS public key must be included in the Merkle tree signature. This leads to comparably
large signatures.

2.7.2. HORST Signature Scheme

Bernstein et al. [4] propose HORS with Trees (HORST) to address the limitations of HORS
described above. It was introduced as part of the signature scheme SPHINCS.

Their main improvement comes from building a binary hash tree on top of the secret key
elements, similar to a Merkle tree. Only the root of this tree is used as the public key
(instead of all leaves). Each signature element has an accompanying authentication path
that authenticates the path from the corresponding leaf to the root.

In the following, we give a slightly simplified definition of HORST that is intended to
illustrate the structure of the scheme. Therefore, we omit the bitmasks for randomized
hashing used by Bernstein et al. [4].

Prerequisites As above, let 𝑓 be a one-way function and 𝑔 a cryptographic hash function
with output length 𝑛. HORST requires parameters 𝑘 and 𝑡 = 2𝜏 for some 𝜏 ∈ N+ with
𝑘𝜏 = 𝑛. Select 𝑧 ∈ N+ such that 𝑘 (𝜏 − 𝑧 + 1) + 2𝑧 is minimal. If this is the case for two
successive values, the larger one is chosen.

Key Generation The secret key 𝑋 consists of 𝑡 bit strings of length 𝑛. Bernstein et al. [4]
chose them pseudo-randomly. For the sake of simplicity, we present them as randomly
sampled:

𝑋 = (𝑥𝑡−1, . . . , 𝑥0) $←− {0, 1}(𝑛,𝑡) .

The one-way function 𝑓 is applied to each of the secret key elements:

𝑦𝑖 = 𝑓 (𝑥𝑖) 𝑖 ∈ [𝑡] .

Afterward, a binary hash tree of height log 𝑡 is constructed that has the 𝑦𝑖 as leaves. We
omit a formal definition as this is analogous to the one on section 2.5. Let 𝑌 be the root of
this tree which is used as the public key.

26

2.7. Hash-Based Few-Time Signatures

Signing To sign a message 𝑀 , divide its hash 𝑑 = 𝐻 (𝑀) into 𝑘 bit strings of length log 𝑡 :
𝑑 = 𝑏𝑘−1 ∥ · · · ∥ 𝑏0. Let 𝐴(𝑖) = (𝐴(𝑖)log(𝑡)−1, . . . , 𝐴

(𝑖)
0) be the authentication path for 𝑦𝑖 in

binary hash tree described above. The signature element 𝜎𝑖 is defined as the 𝑏𝑖-th secret
key element with the first log(𝑡) − 𝑧 elements of its authentication path:

𝜎𝑖 = (𝑥𝑏𝑖 , (𝐴(𝑏𝑖)log(𝑡)−1−𝑧, . . . , 𝐴
(𝑏𝑖)
0)) 𝑖 ∈ [𝑘] .

Additionally, let 𝜎𝑘 contain all nodes of the binary hash tree on layer log(𝑡) − 𝑧: 𝜎𝑘 =
(𝑣log(𝑡)−𝑧 [0], . . . , 𝑣log(𝑡)−𝑧 [2𝑧 − 1]).

𝜎 = (𝜎𝑘 , . . . , 𝜎0)

Verification Compute 𝑏′
𝑘−1, . . . , 𝑏

′
0 as described above. Then for each 𝑖 ∈ [𝑘] calculate the

corresponding node on layer log(𝑡) − 𝑥 above the leaf with index 𝑏′𝑖 using 𝑓 (𝜎′𝑖) and the
partial authentication path as given in the signature. The result is compared to the value
provided in 𝜎′

𝑘
. If they are equal for all 𝑖 , the elements of 𝜎′

𝑘
are used to compute the root

of the binary hash tree 𝑌 ′. The signature is considered valid, if and only if 𝑌 ′ ?
= 𝑌 .

𝑥7, 𝑥6, 𝑥5, 𝑥4, 𝑥3, 𝑥2, 𝑥1, 𝑥0) 𝑦7, 𝑦6, 𝑦5, 𝑦4, 𝑦3, 𝑦2, 𝑦1, 𝑦0)𝑋 = ((𝑓
𝑣1 [0] 𝑣1 [1] 𝑣1 [2] 𝑣1 [3]

𝑣2 [0] 𝑣2 [1]
𝑌

Figure 2.11.: Example of a HORST key with 𝑛 = 9, 𝑡 = 8, and 𝑘 = 3

Example Suppose 𝑛 = 9, 𝑡 = 8 and 𝑘 = 𝑛
log 𝑡 = 3. With these parameters, the term

𝑘 (log(𝑡) − 𝑧 + 1) + 2𝑧 is minimal for 𝑧 = 2. The key generation is illustrated in Figure 2.11.
Eight bit strings are sampled and hashed. From the hashed values, a binary hash tree of
height log 𝑡 = 3 is constructed. Its root 𝑌 is used as the public key.

Figure 2.12 shows the signature generation process. Because of 𝑧 = 2 all nodes on layer
one will be included in 𝜎3 = (𝑣1 [0], 𝑣1 [1], 𝑣1 [2], 𝑣1 [3]). Hence, the authentication path
for each leaf will only have a length of log 𝑡 − 𝑧 = 1. This means that for this choice of
parameters, the authentication path only consists of the respective neighboring leaf. This
is independent of the message to be signed.

Assume 𝑔(𝑀) = 110011001. This hash value is split into 3 blocks of length 3. Interpreting
the blocks as integers yields (6, 3, 1). The leaf 𝑦6 has the authentication path 𝐴(6) =
(𝑦7, 𝑣2 [1], 𝑣1 [1]). Because of 𝑏2 = 6, we have 𝜎2 = (𝑥6, (𝑦7)). The other signature elements
𝜎1 and 𝜎0 are computed in the same way. With all elements known, the signature can be
assembled: 𝜎 = (𝜎𝑘 , . . . , 𝜎0).

27

2. Background and Theory

𝑥7, 𝑥6, 𝑥5, 𝑥4, 𝑥3, 𝑥2, 𝑥1, 𝑥0) 𝑦7, 𝑦6, 𝑦5, 𝑦4, 𝑦3, 𝑦2, 𝑦1, 𝑦0)𝑋 = ((𝑓

𝑀 (6, 3, 1)𝑔, split

𝑣1 [0] 𝑣1 [1] 𝑣1 [2] 𝑣1 [3]
𝑣2 [0] 𝑣2 [1]

𝑌

Layer
log(𝑡) − 𝑧

𝜎2 = (𝑥6, (𝑦7))
𝜎1 = (𝑥3, (𝑦2))
𝜎0 = (𝑥1, (𝑦0))

𝜎3 = (𝑣1 [0], 𝑣1 [1],
𝑣1 [2], 𝑣1 [3])

Figure 2.12.: Example of a HORST signature with 𝑛 = 9, 𝑡 = 8, 𝑘 = 3, and 𝑧 = 2

Sizes The secret key has a size of 𝑡 · 𝑛, but this can be trivially reduced by using a
pseudo-random key generation. The public key consists of a single value of size 𝑛. Each
signature consists of 𝑘 secret key elements, their corresponding authentication paths
of length log(𝑡) − 𝑧, and the 2𝑧 nodes on layer log(𝑡) − 𝑧. In total, a signature’s size is
(𝑘 (log(𝑡) − 𝑧 + 1) + 2𝑧)𝑛 bits.

Note that depending on the message, there may be redundant information in the signature.
If 𝑏𝑖 = 𝑏 𝑗 holds, then 𝜎𝑖 = 𝜎 𝑗 , and one of the elements could be omitted in the signature.
Additionally, the authentication paths for two included leaves may merge. In this case,
the last elements of the authentication path will be redundant in the signature. These
observations allow compressing the signature further.

Key Extraction In contrast to HORS, HORST allows key extraction from the signature.
This makes HORST a good candidate for signature schemes based on Merkle trees. Its
signature size is larger than HORS, but this is more than compensated by the key extraction
capability.

2.7.3. FORS Signature Scheme

Bernstein et al. [5] present the Forest of Random Subsets (FORS) signature scheme as an
improvement upon HORST. Instead of using the 𝑏𝑖 as indices into one tree, FORS uses 𝑘
trees and each 𝑏𝑖 is used as an index into one tree.

Prerequisites As for HORS, the parameter 𝑥 is not needed.

28

2.7. Hash-Based Few-Time Signatures

Key Generation Choose 𝑘𝑡 bit strings of length 𝑛 as the secret key grouped into sets of 𝑡
values:

𝑋 (𝑖) = (𝑥 (𝑖)𝑡−1, . . . , 𝑥
(𝑖)
0)

$←− {0, 1}(𝑛,𝑡) 𝑖 ∈ [𝑘],
𝑋 = (𝑋 (𝑘−1), . . . , 𝑋 (0)).

For each 𝑋 (𝑖) , construct a binary hash tree. Let 𝑌 (𝑖) denote its root. Then compute the
public key:

𝑌 = 𝑔(𝑌 (𝑘−1), . . . , 𝑌 (0))

𝑥 (1)7 𝑥 (1)6 𝑥 (1)5 𝑥 (1)4 𝑥 (1)3 𝑥 (1)2 𝑥 (1)1 𝑥 (1)0

𝑌 (1)

𝑥 (0)7 𝑥 (0)6 𝑥 (0)5 𝑥 (0)4 𝑥 (0)3 𝑥 (0)2 𝑥 (0)1 𝑥 (0)0

𝑌 (0)

𝑥 (3)7 𝑥 (3)6 𝑥 (3)5 𝑥 (3)4 𝑥 (3)3 𝑥 (3)2 𝑥 (3)1 𝑥 (3)0

𝑌 (3)

𝑥 (2)7 𝑥 (2)6 𝑥 (2)5 𝑥 (2)4 𝑥 (2)3 𝑥 (2)2 𝑥 (2)1 𝑥 (2)0

𝑌 (2)

𝑀 (3,6, 2)𝑔, split 3,

Figure 2.13.: Example of a FORS key and signature with 𝑘 = 4 and 𝑡 = 8

Signing The message hash 𝑑 = 𝑔(𝑀) is split into 𝑏𝑘−1, . . . , 𝑏0 as above. Let 𝐴(𝑗)𝑖 be the
authentication path of the node with index 𝑖 in the hash tree 𝑗 . The signature is defined
as:

𝜎𝑖 = (𝑥 (𝑖)𝑏𝑖 , 𝐴
(𝑖)
𝑏𝑖
) 𝑖 ∈ [𝑘],

𝜎 = (𝜎𝑘−1, . . . , 𝜎0).

Figure 2.13 shows the structure of a FORS key and the signature for a message𝑚. The
dotted nodes in the trees represent the authentication path of the respective leaf used in
the signature.

Verification For each tree 𝑖 , the root 𝑌 ′𝑖 is recomputed using the index 𝑏′𝑖 , the hashed
secret key element 𝑓 (𝑥′(𝑖)

𝑏𝑖
) and the provided authentication path 𝐴′(𝑖)

𝑏𝑖
. The signature is

considered valid, if and only if

𝑌
?
= 𝑔(𝑌 ′(𝑘−1), . . . , 𝑌 ′(0)).

29

2. Background and Theory

Improvement over HORST One of the shortcomings of HORS is that, in extreme cases, a
signature may only comprise a single secret key element. This is the case, if all message
blocks are equal. If this element is known from a previous signature, a signature for such
a message can be easily forged. In FORS, this is not possible as even if all the message
blocks are equal, different secret key elements are required for the signature [3].

30

3. Specification and Standardization

While the previous chapter presented theoretical constructions for one- and few-time
signature schemes, hash functions, and Merkle tree constructions, this chapter presents
concrete signature schemes and hash functions that are used in practice. It is structured
as follows: First, we present three hash-based signature schemes and how they are built
from the constructions presented in the previous chapter. Secondly, we present the
cryptographic hash functions that are used to implement hash-based signatures. Lastly,
we close the gap between both and describe how the cryptographic hash functions are
used to implement the functions required in the signature schemes.

3.1. Signature Schemes

This section introduces three fully specified HBSs for practical use: XMSS, LMS, and
SPHINCS+. We describe their structure and how they relate to the constructions in the
previous chapter.

3.1.1. XMSS

The first signature scheme with the name eXtended Merkle Signature Scheme (XMSS) was
proposed in 2011 by Buchmann et al. [9]. It uses the Merkle tree construction with the
WOTS one-time signature. In the following, we describe the main differences between
XMSS and the standard MSS as presented in Section 2.5 [9]:

Pseudo-Random Key Generation The WOTS keys are pseudo-randomly generated from a
single seed. This effectively reduces the secret key to just this seed.

Bitmasks in Tree The nodes in the hash tree are defined as 𝑣𝑖 [𝑗] = 𝑔((𝑣𝑖−1 [2 𝑗] ⊕ 𝑏𝑙 [𝑖]) ∥
(𝑣𝑖−1 [2 𝑗 + 1] ⊕𝑏𝑟 [𝑖])). The bitmasks 𝑏𝑙 [𝑖] and 𝑏𝑟 [𝑖] are bitstrings of length 𝑛 that are
randomly sampled and are fixed for each layer and part of the public key. This change
allows dropping the requirements to 𝑔 from collision resistance to second-preimage
resistance.

L-Trees In MSS, a WOTS secret key 𝑌𝑖 = (𝑦𝑖,𝑙−1, . . . , 𝑦𝑖,0) is compressed as 𝑣0 [𝑖] = 𝑔(𝑦𝑖,𝑙−1 ∥
· · · ∥ 𝑦𝑖,0). In XMSS, a so-called L-Tree is applied. An L-Tree is a binary hash tree
that has the leaf values 𝑦𝑖,𝑙−1, . . . , 𝑦𝑖,0. However, 𝑙 is not necessarily a power of two.
To construct a hash tree, all nodes without a right sibling are lifted until they become
the right sibling of another node. The L-Tree also uses bitmasks as described above.

31

3. Specification and Standardization

Figure 3.1.: Example of an L-Tree with 11 nodes. Construction (left) and resulting tree
(right). Dotted squares represent leaf nodes, dotted arrows represent the lifting
of a node.

Public Key The public key contains the root node of the Merkle tree. Additionally, it
contains all bitmasks used in the Merkle tree and the L-Trees.

Security Buchmann et al. [9] prove that XMSS is EUF-CMA if it is instantiated with
a second-preimage resistant function family and a pseudorandom function family, and
argue that these requirements are minimal. That is, the existence of any digital signature
scheme implies the existence of both a second-preimage resistant function family and a
pseudorandom function family. This means that as long as any digital signature scheme
exists, a secure instantiation of XMSS exists. The security requirements of XMSS are
minimal in this sense.

RFC 8391 In 2018, Hülsing et al. published RFC 8391 [36]. In this standard, a signature
scheme also called XMSS is fully specified for implementation. However, this RFC does
not standardize XMSS as described above. Instead, it also includes further improvements
originally published in [34, 35]. The main differences between XMSS as in [36] and XMSS
as in [9] are:

Domain Separation Instead of using two functions 𝑓 and 𝑔 as MSS, RFC 8391 uses four
domain-separated functions: 𝐹 for Winternitz chaining, 𝐻 for tree node calculation,
𝐻𝑚𝑠𝑔 for the initial message hash, and 𝑃𝑅𝐹 for the pseudo-random generation of
bitmasks and prefixes. Nevertheless, all functions may be implemented using the
same underlying cryptographic hash function (see subsection 3.3.1).

Addressing RFC 8391 introduces an addressing scheme: Each hash function invocation
has a unique address assigned to it. This address only depends on the position of
the hash in the XMSS structure, but not on keys or messages. For example, the
address to compute the next element of a Winternitz chain includes the index of the
WOTS key in the Merkle tree, the number of the chain in the key, and the current
position in that chain, because the hash invocation can be uniquely identified by this
information.

Bitmasks and Prefixes For each invocation of 𝐹 and𝐻 , a prefix and bitmask are used. Both
are pseudo-randomly derived from a public seed using PRF and the address. This
leads to a further strengthening of the scheme.

For the remainder of this thesis, we will use XMSS to refer to the signature scheme specified
in RFC 8391 [36].

32

3.1. Signature Schemes

Hypertree RFC 8391 [36] also specifies a hypertree variant of XMSS called eXtended
Merkle Signature Scheme Multi-Tree (XMSSMT). Hypertree constructions are presented in
section 2.6.

Parameter Choice RFC 8391 [36] specifies the Winternitz parameter as 𝑤 = 16. The
security parameter 𝑛 depends on the chosen hash function and is either 256 or 512 bits. In
Special Publication (SP) 800-208 [14], NIST published additional parameter sets which use
𝑛 = 256 or 𝑛 = 192. The Merkle tree height ℎ is either 10, 16, or 20. This means that the
largest XMSS tree supports up to 220 signatures.

3.1.2. LMS

The Leighton-Micali Signature Scheme (LMS) was first published by Leighton and Micali
in 1995 as a patent [48]. In 2019, McGrew et al. published RFC 8554 [49] that specifies LMS
for implementation building on this patent.

Similar to XMSS, LMS uses an OTS in combination with a Merkle tree. The OTS is
called LM-OTS, but in practice this scheme is equivalent to WOTS. Overall, the high-
level structure of XMSS and LMS are the same. In the following, we describe the main
differences between LMS and XMSS or MSS:

Functions LMS only requires one second-preimage resistant function 𝐻 and no pseudo-
random function. Unlike XMSS, there is no explicit domain separation. Implicit
domain separation is achieved by the input formats of 𝐻 (see subsection 3.3.2).

Addressing and Bitmasks There is no explicit addressing in LMS. However, the position
of each hash evaluation is encoded in the input data for the hash function.

Prefixes There are no pseudo-random bitmasks or prefixes in LMS. Instead, a constant
prefix 16-byte prefix 𝐼 is used for all hash function calls.

OTS Key Compression As in MSS, the WOTS public key is compressed using one hash
function call. MSS does not use L-Trees.

Security Katz [39] provides a security analysis of LMS under the assumption that the
underlying hash function behaves like a random oracle. Fluhrer [23] presents another
concrete security analysis which assumes that the underlying hash function is based on a
Merkle-Damgård construction and its compression function behaves like a random oracle.
In contrast to XMSS, there is no security analysis in the standard model and all existing
results rely entirely on the random-oracle model.

33

3. Specification and Standardization

Parameter Choice McGrew et al. [49] differentiate between 𝑛, the hash output length
used in LM-OTS, and 𝑚, the hash output length used in the Merkle tree. As it is hard
to find a scenario in which chosing 𝑛 ≠ 𝑚 is reasonable, we assume 𝑛 = 𝑚 for the rest
of this thesis for simplicity and comparability with XMSS. RFC 8554 [49] only specifies
parameter sets with 𝑛 =𝑚 = 32. SP 800-208 [14] additionally defines parameter sets with
𝑛 =𝑚 = 24.

Additionally, LMS requires a Winternitz parameter𝑤 with𝑤 ∈ {2, 4, 16, 256}. Note that
RFC 8554 [49] does not use𝑤 as defined in this thesis, but instead its base-2 logarithm.

LMS supports a Merkle tree height ℎ of 5, 10, 15, 20, or 25. The smallest LMS key can be
used for up do 25 = 32 signatures, while the largest size supports up to 225 = 33554432
signatures.

Hypertree RFC 8554 [49] also specifies a hypertree variant of LMS, called Hierarchi-
cal Signature Scheme (HSS). It applies the generic hypertree construction described in
section 2.6.

3.1.3. SPHINCS+

Unlike XMSS and LMS, SPHINCS+ is a stateless signature scheme. Like traditional digital
signature schemes, the private key does not change over time and no additional state is
needed. We recall that the purpose of the state in a stateful HBS is to keep track of which
OTS keys were already used. As illustrated in Section 2.4.1, key reuse can completely
break the security of an OTS.

The main idea behind transforming stateful into stateless HBS is to use a large number
of OTS keys such that the probability of key reuse is negligible. This was proposed
by Goldreich [25, Section 6.4.2.3]. For a security parameter 𝑛, the author presents an
authentication-tree structure with 2𝑛 OTS keys for signing documents. The leaf is either
chosen at random or pseudo-randomly depending on the message to achieve a deterministic
signing algorithm.

Bernstein et al. [4] elaborate on the idea of pseudo-random leaf selection and suggest the
usage of a CRHF 𝐻 with an output length of 𝑛 bits. To sign a message 𝑀 , a hash value
ℎ = 𝐻 (𝑀) is computed, interpreted as an integer in [2𝑛] and used as the leaf index. This
reduces the problem of OTS key reuse to the collision resistance of 𝐻 .

However, it is not feasible to construct a Merkle tree of height 𝑛 for usual values of 𝑛. A
different approach is required to authenticate the chosen OTS key. Goldreich [25] suggest
a binary authentication tree. Each node contains an OTS key that is used to sign the
concatenated OTS public keys of its children. The signature contains an OTS key and a
signature of this key for every of the 𝑛 layers of the tree. This leads to large signature
sizes. For common parameters, the signature size is larger than 1 MB [4].

Another possibility is the use of a hypertree, as proposed in [4] as part of the stateless
signature scheme SPHINCS. Additionally, SPHINCS does not use an OTS to sign messages,

34

3.1. Signature Schemes

but the FTS HORST instead (see Section 2.7.2). This significantly reduces the security
impact of key reuse. Hence, the tree height can be reduced without lowering the security
level.

Building on SPHINCS, Bernstein et al. [5] propose SPHINCS+. The scheme was submitted to
the NIST Post-Quantum Cryptography (PQC) competition [51]. Therefore, an exhaustive
specification of SPHINCS+ [3] exists.

Structurally, SPHINCS and SPHINCS+ are quite similar. Both use a hypertree whose OTS
leafs are used to sign FTS keys which in turn are used to sign the messages. Figure 3.2
illustrates the structure of SPHINCS and SPHINCS+.

Figure 3.2.: Example of the structure of SPHINCS and SPHINCS+. Source: [5].

In the following, we describe the main differences between SPHINCS and SPHINCS+. For
an exhaustive list, see Aumasson et al. [3].

FTS SPHINCS+ uses FTS FORS instead of HORST. We briefly describe the advantages of
FORS over HORST in Section 2.7.3.

OTS SPHINCS+ uses a WOTS+ as proposed by Hülsing [34]. OTS keys are compressed
with one hash call, SPHINCS+ does not use L-Trees.

Hypertree The SPHINCS+ hypertree is essentially a fixed input-length variant of XMSSMT

[3].

Verifiable leaf selection While the verifier cannot verify the leaf choice in SPHINCS,
SPHINCS+ provides a publicly verifiable leaf selection. This further strengthens
the scheme [5].

35

3. Specification and Standardization

Parameter Selection SPHINCS+ defines parameter sets for three different security param-
eters: 𝑛 ∈ {128, 192, 256}. For each possible security parameter, there are two different
SPHINCS+ parameter sets. One is optimized for small signatures (suffix s) and the other is
optimized for fast signing (suffix f). Both provide roughly the same level of security [3,
Table 3].

3.2. Hash Functions

In this section, we present three hash function families that are used to instantiate the
signature schemes introduced in the previous section.

3.2.1. SHA-2

SHA-2 is a family of hash functions specified by NIST in the Federal Information Processing
Standard (FIPS) 180-4 [17]. It consists of the hash functions SHA-224, SHA-256, SHA-384,
SHA-512, SHA-512/224, and SHA-512/256. We focus on SHA-256 and SHA-512 because only
these are used in the signature schemes covered in this thesis. Additionally, the other hash
functions are structurally equivalent to SHA-256 or SHA-512 and only differ in the chosen
initialization vector and a truncation of the final hash value.

Both SHA-256 and SHA-512 use a Merkle-Damgård construction with a compression function.
SHA-256 uses a block size of 512 bits (64 bytes) and works on an internal state of 256 bits
(32 bytes). The size of the hash value is also 256 bits (32 bytes). For SHA-512, all numbers
are doubled: the block size is 1024 bits (128 bytes), and states and hash values are 512 bits
(64 bytes) [17].

Figure 3.3.: SHA-2 compression function (one round). Source: [41].

36

3.2. Hash Functions

Message Padding Before a message is split into block-sized pieces, it has to be padded
to ensure that the message length is a multiple of the block size. Generally, the padding
consists of a 1-bit, a variable number of 0-bits, and the message length in bits as a 64-bit
(SHA-256) or 128-bit (SHA-512) integer. The number of 0-bits is chosen minimally such that
the total length is a multiple of the block length [17].

Merkle-Damgård Processing Afterward, the message is split into blocks of the respective
block length. Starting from an initial state, the state is updated for each message block
using the compression function as described in subsection 2.3.4. The resulting state is used
as the hash value.

Compression Function The compression functions for SHA-256 and SHA-512 are struc-
turally the same and only differ in the word size they operate on. The function works
in two phases: the message schedule phase and the state update phase [22]. In the first
phase, the message block is scheduled, that is, split and extended into 64 words𝑊0, . . . ,𝑊63.
The state update phase consists of 64 iterations. The structure of one such iteration is
illustrated in Figure 3.3. Initially, the working variables 𝐴, . . . , 𝐻 are initialized with the
current state. The 𝑖-th iteration incorporates the scheduled message word𝑊𝑖 and the
round constant 𝐾𝑖 . After 64 iterations, the working variables are added to the state [22].

3.2.2. SHA-3

SHA-3 is another family of hash functions specified by NIST and intended as a successor
for SHA-1 and SHA-2. It is specified in FIPS 202 [19] and is a subset of the Keccak family
[6]. Unlike its predecessors, SHA-3 is not based on a Merkle-Damgård construction, but on
a sponge construction as presented in subsection 2.3.5. We focus on the Extendable-Output
Functions (XOFs) SHAKE128 and SHAKE256 as only these are used in the schemes covered
in this thesis.

All SHA-3 hash functions are based on the Keccak-𝑝 [1600, 24] permutation, which op-
erates on bit strings of 𝑛 = 1600 bits. SHAKE128 uses a capacity 𝑐 = 256 and SHAKE256
uses 𝑐 = 512 [19]. The resulting rates are 𝑟 = 1344 and 𝑟 = 1088, respectively. Recall that,
for sponge constructions, the rate 𝑟 is the block size that is absorbed for each call of the
permutation.

Message Padding All SHA-3 hash functions use a 10*1 padding scheme. An additional
suffix is appended to the message for domain separation before the padding. For SHAKE128
and SHAKE256, this is 1111 [19]. In total, the padding pattern is 111110*1.

37

3. Specification and Standardization

3.2.3. Haraka

The Haraka v2 hash function was proposed by Kölbl et al. in 2017 [45]. Traditional hash
functions like SHA-2 and SHA-3 are geared towards optimal performance on larger inputs.
However, in hash-based signature schemes, input sizes are generally rather small (often
less than 128 bytes). Haraka was specially designed to perform well on small inputs.

Kölbl et al. [45] specify two permutations as part of the Haraka family:

𝜋256 : {0, 1}256 → {0, 1}256,

𝜋512 : {0, 1}512 → {0, 1}512.

The two hash functions are derived from these permutations using a Davies-Meyer con-
struction:

Haraka256 : {0, 1}256 → {0, 1}256, 𝑥 ↦→ 𝜋256(𝑥) ⊕ 𝑥,
Haraka512 : {0, 1}512 → {0, 1}256, 𝑥 ↦→ truncH(𝜋512(𝑥) ⊕ 𝑥)

where truncH : {0, 1}512 → {0, 1}256 is a truncation function specified in [45].

Permutations The permutations are iterated constructions and built upon the Advanced
Encryption Standard (AES) round function specified in FIPS 197 [20]. The AES round
function operates on 128 bits (32 bytes) of data and requires a round key of 128 bits. For
Haraka, the round keys are replaced with fixed round constants.

Each Haraka round consists of two rounds of AES and a permutation. To cover the Haraka
block of 256 or 512 bits, the AES round function is used two or four times, respectively.
The following permutation permutes words of 32 bits. Figure 3.4 illustrates the structure
of the Haraka round function.

Figure 3.4.: Illustration of the Haraka round function for 𝜋512 (left) and 𝜋256. Source: [45].

Security Kölbl et al. only claim second-preimage resistance for the Haraka construction
as described above. However, collision resistance can be achieved by adding one more
round to the permutations [45].

38

3.3. Hash Function Implementation

Sponge Construction Aumasson et al. [3] specify a sponge construction named HarakaS
based on the permutation 𝜋512. It uses a rate 𝑟 = 256 and a capacity 𝑐 = 256. It is used to
support other input sizes and allow for longer hash values if required. Sponge constructions
are presented in subsection 2.3.5.

Round Constants Kölbl et al. [45] define round constants used as the round keys for the
AES round function evaluations. They propose round constants derived from 𝜋512 but
also note that other choices would equally qualify as long as they do not contain strong
symmetries [45].

Aumasson et al. [3] suggest deriving the round constants from a seedseed. More precisely,
they derive the 40 120-bit constants using HarakaS:

𝑅𝐶0, . . . , 𝑅𝐶39 = HarakaS(seed, 5120).

Note that for this operation, the default round constants are used. The derived round
constants are then used in the functions Haraka256seed, Haraka512seed, and HarakaSseed.

3.3. Hash Function Implementation

This section connects both preceding sections and covers how the presented hash functions
are used to instantiate the signature schemes.

3.3.1. XMSS

Name Hash Function 𝑛 Defined in
SHA2_256 SHA-256 256 [36, 14]
SHA2_512 SHA-512 512 [36]
SHAKE_256 SHAKE128 256 [36]
SHAKE_512 SHAKE256 512 [36]
SHA2_192 SHA-256 192 [14]
SHAKE256_256 SHAKE256 256 [14]
SHAKE256_192 SHAKE256 192 [14]

Table 3.1.: Hash functions and 𝑛 specified for XMSS

Table 3.1 shows the combinations of hash functions and the security parameter and hash
output length 𝑛 specified in RFC 8391 [36] and NIST SP 800-208 [14]. In the following, we
describe how the four hash functions 𝐹 , 𝐻 , 𝐻𝑚𝑠𝑔, and PRF are implemented.

Let Hash and 𝑛 be a combination of hash function and output length as specified in
Table 3.1. Let 𝑙𝑡𝑑 be the type discriminator length as specified in Table 3.2.

39

3. Specification and Standardization

𝑛 𝑙𝑡𝑑

192 32
256 256
512 512

Table 3.2.: Type discriminator length 𝑙𝑡𝑑 for XMSS

If the chosen hash function is an XOF, let Hash have the output length 𝑛 bits. For example,
for SHAKE256, we define Hash as Hash(𝑥) = SHAKE256(𝑥, 𝑛). For SHA-256 with 𝑛 = 192,
Hash is defined as Hash(𝑥) = trunc192(SHA-256(𝑥)).
The four functions used in XMSS are now defined as [36, 14]:

𝐹 (Key, 𝑀) = Hash(𝑡𝑜𝐵𝑦𝑡𝑒 (0, 𝑙𝑡𝑑/8) ∥ Key ∥ 𝑀),
𝐻 (Key, 𝑀) = Hash(𝑡𝑜𝐵𝑦𝑡𝑒 (1, 𝑙𝑡𝑑/8) ∥ Key ∥ 𝑀),

𝐻𝑚𝑠𝑔 (Key, 𝑀) = Hash(𝑡𝑜𝐵𝑦𝑡𝑒 (2, 𝑙𝑡𝑑/8) ∥ Key ∥ 𝑀),
PRF(Key, 𝑀) = Hash(𝑡𝑜𝐵𝑦𝑡𝑒 (3, 𝑙𝑡𝑑/8) ∥ Key ∥ 𝑀).

Table 3.3 gives the input lengths for the underlying hash function. We observe that for all
functions except 𝐻𝑚𝑠𝑔, the input lengths are constant and known in advance. The input
length for 𝐻𝑚𝑠𝑔 depends on the message to be signed.

For 𝐹 and 𝐻 , the value Key is always a pseudo-random value derived by PRF from a public
seed SEED and the current address. In addition to this, the data to be hashed is XORed
with a bitmask that is also computed using PRF, SEED and the address before it is passed
to 𝐹 or 𝐻 as 𝑀 .

For PRF, the value Key is usually the public seed SEED used for the computation of keys
and bitmasks or the private seed SK_SEED used for pseudo-randomized message hashing.
Additionally, PRF may be used with another secret seed S for pseudo-random key genera-
tion. For 𝐻𝑚𝑠𝑔, the value Key consists of the pseudo-random value 𝑟 derived from S, the
root of the XMSS tree, and the index of the leaf to be used.

Function |Key| |𝑀 | Total (Bits)
𝐹 𝑛 𝑛 𝑙𝑡𝑑 + 2𝑛
𝐻 𝑛 2𝑛 𝑙𝑡𝑑 + 3𝑛
𝐻𝑚𝑠𝑔 3𝑛 variable variable
PRF 𝑛 256 𝑙𝑡𝑑 + 𝑛 + 256

Table 3.3.: Hash function input length for XMSS

For the optimizations implemented and evaluated in this thesis, we focus on the parameter
sets defined in NIST SP 800-208 [14].

40

3.3. Hash Function Implementation

3.3.2. LMS

Name Hash Function 𝑛,𝑚 (bits) Defined in
SHA2_N32 SHA-256 256 [49, 14]
SHA2_N24 SHA-256 192 [14]
SHAKE_N32 SHAKE256 256 [14]
SHAKE_N24 SHAKE256 192 [14]

Table 3.4.: Hash functions and 𝑛 specified for LMS

RFC 8554 [49] only specifies one choice of hash function and 𝑛. Additional options are
defined in SP 800-208 [14]. Table 3.4 provides an overview over the hash functions and
their respective output sizes defined by both publications. Analogous to XMSS, SHA2_N24
computes a full SHA-256 hash and truncates it to 192 bits.

Operation Inputs (size) Total size
WOTS Chaining I (16), q (4), i (2), j (1), data (𝑛/8). 𝑛/8 + 23
Key Compression I (16), q (4), 0x8080 (2), data (𝑙𝑛/8). 𝑙𝑛/8 + 22
Tree Leaf I (16), r (4), 0x8282 (2), HASH (𝑛/8). 𝑛/8 + 22
Tree Intermediate I (16), r (4), 0x8383 (2), L_CHILD (𝑚/8), R_CHILD (𝑚/8). 𝑚/4 + 22
PRF Key Gen I (16), q (4), i (2), 0xFF (1), SEED (𝑚/8). 𝑚/8 + 23
Message Hash I (16), q (4), 0x8181 (2), C (𝑛/8), message. variable

Table 3.5.: Hash operations in LMS with input sizes in bytes.

Table 3.5 shows the operations which the hash function 𝐻 is used for and the respective
inputs with their length. The input I is a 16-byte prefix that is used for every operation. It
is randomly sampled at the time of key generation. The parameter q identifies the leaf
of the LMS tree (that is, the WOTS key), i the Winternitz chain of an OTS key, and j the
position in a Winternitz chain. The value r identifies the tree node that is computed and C

is a random string sampled for each message.

Note that again the input sizes for almost all operations are fixed and only depend on
the parameter choices. The input size for the message hash is not fixed as LMS can sign
messages of arbitrary length.

The defined input format achieves implicit domain separation: There are no two different
operations that can pass the same inputs to the hash function. This is because the value
𝑖 contains the number of the current hash chain. For 𝑛 = 256 and 𝑤 = 2, the number of
hash chains reaches its maximum at 265 chains. Hence, i never has the same value as any
of the constants. The value of j has a maximum of𝑤 − 2 and therefore cannot reach 255
either.

41

3. Specification and Standardization

3.3.3. SPHINCS+

The SPHINCS+ proposal [3] contains the specification for implementing the scheme with
three cryptographic hash functions: SHAKE, SHA-2, and Haraka. Additionally, there are
two variants per hash function. The robust variant applies pseudo-random bitmasks to
the input before hashing, similar to XMSS. The simple variant omit these bitmasks, as
in LMS. This significantly speeds up the scheme. However, the security analysis of the
simple variant relies on the random oracle model. For a more detailed comparison, see
Aumasson et al. [3, Section 8.1.6].

In the following, we present the hash function implementations for each cryptographic
hash function as defined in [3, Section 7.2].

SHAKE The function mask(𝑀,ADRS) is used to calculate the bitmasked input. As the
simple variants do not use any bitmasks, mask is defined as mask(𝑀,ADRS) = 𝑀 . For
the robust variants, the function is defined as:

mask(𝑀) = 𝑀 ⊕ SHAKE256(PK.seed ∥ ADRS, |𝑀 |).

The Hash functions used by SPHINCS+ are implemented as presented in Table 3.6.

SPHINCS+ Underlying Inputs Output
Function Function Size
𝐻𝑚𝑠𝑔 SHAKE256 𝑅, PK.seed, PK.root, M. m
PRF SHAKE256 PK.seed, ADRS, SK.seed. n
PRF𝑚𝑠𝑔 SHAKE256 SK.prf, OptRand, M. n
𝐹 SHAKE256 PK.seed, ADRS, mask(𝑀1). n
𝐻 SHAKE256 PK.seed, ADRS, mask(𝑀1), mask(𝑀2). n
𝑇𝑙 SHAKE256 PK.seed, ADRS, mask(𝑀). n

Table 3.6.: Hash operations in SPHINCS+ with SHAKE

SHA-2 For 𝑛 = 128, define SHA-X as SHA-256 and as SHA-512 for all other values of 𝑛. Let 𝑏
be the block length of SHA-X. The function MGF1 refers to the mask generation function as
specified in RFC 2437 [38]. By HMAC, we refer to the message authentication code defined
in NIST FIPS 198-1 [18]. As an optimization, the address ADRS can be compressed from a
32-byte value to only 22 bytes. We denote the compressed address by ADRS𝑐 .

For SHA-2, we define two masking functions for the robust variants:

mask𝐹 (𝑀) = 𝑀 ⊕ MGF1SHA-256(PK.seed ∥ ADRS𝑐, |𝑀 |/8),
mask(𝑀) = 𝑀 ⊕ MGF1SHA-X(PK.seed ∥ ADRS𝑐, |𝑀 |/8).

42

3.3. Hash Function Implementation

For the simple variants, let both functions be the identity function. Furthermore, define a
padding function pad as:

pad𝑥 (𝑀) = 𝑀 ∥ 0𝑥−|𝑀 | .

and let seed512 = 𝑝𝑎𝑑512(PK.seed) and seed𝑏 = 𝑝𝑎𝑑𝑏 (PK.seed).
The hash functions in SPHINCS+ are implemented as in Table 3.7.

SPHINCS+ Underlying Inputs Output
Function Function Size
𝐻𝑚𝑠𝑔 MGF1SHA-X 𝑅, PK.seed, SHA-X(𝑅 | |PK.seed| |PK.root| |𝑀). m
PRF SHA-256 seed512 ADRS𝑐 , SK.seed.
PRF𝑚𝑠𝑔 HMACSHA-XSK.prf OptRand, M.
𝐹 SHA-256 seed512 ADRS𝑐 , mask𝐹 (𝑀1).
𝐻 SHA-X seed𝑏 ADRS𝑐 , mask(𝑀1 | |𝑀2).
𝑇𝑙 SHA-X seed𝑏 ADRS𝑐 , mask(𝑀).

Table 3.7.: Hash operations in SPHINCS+ with SHA-2

For 𝑛 < 256, the outputs of 𝐹 , 𝐻 , PRF, and PRF𝑚𝑠𝑔 are truncated to the required length.

Note that the value of the public seed PK.seed is the same for every hash function call for
one SPHINCS+ key. This seed is always padded to the block length. As a result, the first
block of the input data to SHA-256 or SHA-512 is always the same.

Haraka The last specified cryptographic hash function for SPHINCS+ is Haraka as intro-
duced in Section 3.2.3. As for SHA-2, we start by defining two masking functions for the
robust variants:

mask𝐹 (𝑀) = 𝑀 ⊕ Haraka256PK.seed(ADRS),
mask(𝑀) = 𝑀 ⊕ HarakaSPK.seed(ADRS, |𝑀 |) .

The hash functions are implemented as shows in Table 3.8.

SPHINCS+ Underlying Inputs Output
Function Function Size
𝐻𝑚𝑠𝑔 HarakaSPK.seed 𝑅, PK.root, M. m
PRF Haraka512PK.seed ADRS, SK.seed.
PRF𝑚𝑠𝑔 HarakaSPK.seed SK.prf, OptRand, M. n
𝐹 Haraka512PK.seed ADRS, mask𝐹 (𝑀1).
𝐻 HarakaSPK.seed ADRS, mask(𝑀1), mask(𝑀2). n
𝑇𝑙 HarakaSPK.seed ADRS, mask(𝑀). n

Table 3.8.: Hash operations in SPHINCS+ with Haraka

43

4. Related Work

This chapter gives an overview of other work on the topic of the optimization of HBSs.
Optimization techniques can generally be divided into two categories: implementation
optimizations and scheme variations. Implementation optimizations aim at improving and
accelerating the implementation of a specific HBS. Scheme variations are incompatible
changes to the signature scheme itself. These variations often improve the signature size,
signature cost, or verification cost. This chapter first covers implementation optimization
and then gives an overview of proposed scheme variations.

4.1. Implementation Optimization

This section presents previous work that aims to improve HBSs. It is structured as follows:
First, we cover optimization techniques for SHA-2 and describe the efficient implementation
of Haraka. We continue by presenting research on how to apply these optimizations to
HBSs and conclude with an overview for other scheme-specific optimizations.

4.1.1. Optimizing SHA-2

As the computation of hash values is crucial for many cryptographic and non-cryptographic
applications, a large amount of previous work on accelerating hash functions exists. This
section summarizes optimization strategies for the SHA-2 hash function family on the
Intel x86 platform.

Core x86 Optimizations In 2012, Gueron [27] proposed changes to the OpenSSL SHA-2
implementation that only uses the core x86 instruction set on second-generation Intel
Core processors. They claim a speedup factor of 1.22 for the SHA-256 update function. This
result shows small implementation details can have a major impact on the performance of
SHA-2.

SIMD Message Scheduling As described in Section 3.2.1, the SHA-2 compression function
consists of two phases: The message schedule and state update phase. Gueron and Krasnov
[28] observe that only the state update phase depends on the previous state. The message
schedule phase only depends on the message block. This means that if multiple message
blocks are known, the message schedule phase can be parallelized.

45

4. Related Work

Gueron and Krasnov [28] propose the use of SIMD instructions on the Intel x86 platform.
Depending on the processor family, they observe a performance improvement of up to 31%
compared to the best implementation at the time. Additionally, this approach is expected
to deliver better performance on later SIMD instruction sets.

Guilford et al. [30] elaborate on this idea and provide additional guidance on how to
implement SHA-2 efficiently using SIMD message scheduling.

Multi-Message Hashing In their 2010 white paper, Gopal et al. [26] present the idea of
performing cryptographic operations with predominant data dependencies on multiple
messages in parallel using SIMD instructions. They give AES-CBC encryption and HMAC-
SHA1 as examples of such operations.

Gueron and Krasnov [29] apply this approach to SHA-256: Multiple independent messages
are hashed in parallel using SIMD instructions. On a platform with the Intel Advanced
Vector Extensions (AVX), four messages can be hashed in parallel. Using this approach,
they achieve a speed-up of 3.42x compared to OpenSSL at the time of writing and 2.25x
compared to SIMD message scheduling.

An implementation of vectorized multi-message hashing with SHA-2 is available as part of
the OpenSSL library [73, File sha256-mb-x86_64.pl].

SHA New Instructions Intel published the specification of the SHA-NI in 2013 [31]. These
are an extension to the x86 instruction set that provides hardware acceleration for certain
operations in the compression functions of SHA-1 and SHA-2.

Faz-Hernández et al. [22] present benchmark results for hashing with SHA-NI on an AMD
Zen platform. Their implementation provides a speedup of about 4 for 64-byte messages
compared to OpenSSL’s x86 implementation without SHA-NI.

It is important to note that even if the specification for SHA-NI was released in 2013, it
is still not available in many computers in use at the time of writing this thesis. This is
because the first mainstream Intel Core processor architecture to support SHA-NI was Ice
Lake, which was released in 2019. This architecture was, however, only used in mobile
and server processors. Support in desktop processors was introduced as late as 2021 [77,
76, 78].

Pipelining SHA-NI Multi-message hashing can also be used to increase the efficiency of
hash implementations that make use of SHA-NI. This is achieved by pipelining SHA-NI
instructions for the hash instances. Interleaving the execution of multiple instances
allows better utilization of the processor pipeline by reducing the adverse effects of data
dependencies.

Faz-Hernández et al. [22] implement and benchmark multi-message hashing by pipelining
SHA-NI instructions. Their results show an 18% improvement for only two simultaneously
hashed messages compared to the sequential computation of the message hashes. For four
instances, the result improves to 21%.

46

4.1. Implementation Optimization

4.1.2. Implementing Haraka

The Haraka hash functions were explicitly designed for the use on platforms with AES
hardware acceleration [45]. The Intel x86 platform, for example, provides the aesenc

instruction as part of the AES New Instructions (AES-NI). This instruction can be used
to efficiently compute the AES round function that is used in Haraka. Additionally, the
permutation that is used after applying the AES round function to the state was specifically
designed to be efficiently implementable using the instructions punpckldq and punpckhdq

on x86.

To further increase the pipeline utilization, Kölbl et al. [45] also propose, implement, and
benchmark multi-message hashing with Haraka. Their results show an improvement of
up to 25.8% when using four parallel messages with Haraka512 on Skylake.

4.1.3. Application to Hash-Based Signature Schemes

Faz-Hernández et al. [22] implement XMSS and XMSSMT with the acceleration techniques
for SHA-2 described above: Multiple message hashing and SHA-NI. They use both SIMD
instruction sets Streaming SIMD Extensions (SSE) and Intel Advanced Vector Extensions 2
(AVX2) for multiple message hashing. With SSE, four messages can be hashed in parallel,
and eight messages with AVX2. Additionally, they provide a sequential and a pipelined
implementation using SHA-NI. Their source code is available on GitHub [21].

Furthermore, they present the following benchmark results for their XMSS implementation
on an AMD Zen CPU: Compared to a core x86 implementation, XMSS key generation is
faster by a factor of 1.72 and 1.18 for SSE and AVX2, respectively. For the sequential and
the pipelined SHA-NI implementation, they achieve an improvement of 4.01 and 4.41.

The observation that the AVX2 implementation performs worse than SSE is due to a
platform limitation on AMD Zen. Zen emulates a 256-bit AVX2 instruction by executing
two 128-bit vector instructions. On other platforms, this limitation does not exist. As
an example, they also present benchmarks for the Intel Kaby Lake platform. Here, they
achieve an acceleration factor of about 2.2 for SSE and 4.0 for AVX2.

As part of their proposal for SPHINCS, Bernstein et al. [4] describe an efficient imple-
mentation for SPHINCS-256, a specific instantiation of SPHINCS which uses the BLAKE
cryptographic hash function and the ChaCha permutation to implement the hash functions
of the scheme. They suggest applying multi-message hashing for eight messages and
using this to vectorize the computation of eight independent WOTS public keys and the
corresponding L-Tree. Their code is available in the public domain [61].

Kölbl [44] implements and evaluates SPHINCS with additional hash functions: SHA-2,
Keccak, Simpira, Haraka, and ChaCha. Multi-message hashing is implemented for every
hash function. SHA-2 uses SHA-NI, if available. Additionally, an implementation for
ARM is provided that utilizes the Neon SIMD instruction set and the SHA-2 hardware

47

4. Related Work

acceleration. Kölbl presents benchmark results across multiple platforms. The used source
code is published on GitHub [43].

As part of their submission to NIST, Rijneveld et al. [62] provide a reference implemen-
tation for the SPHINCS+ scheme. There is no precise description of the optimizations
applied in this implementation, only that it uses architecture-specific optimizations such
as AES-NI and AVX2 [5]. Additionally, they implement multi-message hashing for all hash
functions.

Hanson et al. [32] improve this implementation by utilizing the SHA-NI. In addition
to using AVX2 for parallelizable hashes, they use SHA-NI for non-parallelizable hashes.
Through this optimization, they achieve an 8% improvement in signing and 23% in verifi-
cation.

Before optimizing SPHINCS+, Hanson et al. investigate the performance of multi-message
hashing on an Intel Tiger Lake processor. They compare a sequential implementation, a
presumably pipelined SHA-NI implementation, an AVX2, and an AVX-512 implementation
for 16 parallel hashes. Compared to the sequential implementation, AVX2 reduces the time
for 16 hashes by 56.3%, SHA-NI by 53.9%, and AVX-512 by 81.6%. These results show that
there is additional optimization potential by using AVX-512 for the parallelizable hashes
instead of AVX2. Even if AVX-512 is not available on an older processor, SHA-NI performs
slightly better than AVX2. However, Hanson et al. leave this optimization potential for
SPHINCS+ unconsidered.

4.1.4. Scheme-Specific Optimizations

Wang et al. [74] propose a so-called software-hardware co-design for XMSS. Their work
contains designs for hardware accelerators as well as two software optimizations. In the
following, we focus on the latter. The authors publish their source code on GitHub [75].

XMSS Fixed Padding Wang et al. observe that, for most hash operations in XMSS, the
input length to the underlying hash function (for example, SHA-256) is fixed and known in
advance. For details on the input formats for XMSS, refer to Section 3.3.1.

SHA-2 applies padding to the input to ensure that its length is a multiple of the block
length (see Section 3.2.1). This padding depends on the message length. As this is mostly
known in advance, the authors propose to hard-code this padding to save the time required
to calculate the padding at runtime. Though they limit their remarks to XMSS with SHA-2,
this approach is applicable to every HBS scheme with fixed input sizes and hash functions
with length-depending padding.

Their benchmark results show that this optimization accelerates all XMSS operations by a
factor of 1.06 compared to the XMSS reference implementation [63].

48

4.2. Scheme Variants

XMSS PRF Caching Furthermore, Wang et al. observe that for XMSS with SHA-2 and
𝑛 = 256, the first 512 bits of the input to SHA-256 for PRF are:

𝑡𝑜𝐵𝑦𝑡𝑒 (3, 32) ∥ Key.

As we elaborated in Section 3.3.1, the value Key is always one of three possible values
per key pair. Because the block size of SHA-256 is exactly 512 bits, it is possible to only
consume each of the three values once and cache the state of the hash function. If a new
message with the same first block should be hashed, the first block can be disregarded and
the corresponding cached state can be restored.

Because restoring a SHA-2 state is significantly faster than one evaluation of the SHA-2
compression function, Wang et al. observe a speedup of about 1.44 for all XMSS operations
compared to the XMSS reference implementation with the fixed padding optimization.

We note that Wang et al. assume in both [74, 75] that Key is always the public seed SEED.
However, there are three different possibilities. In their code, the other values of Key
are passed to PRF in expand_seed() in wots.c and xmssmt_core_sign() in xmss_core.c.
Nevertheless, PRF ignores the provided value and restores the single cached state.

This does not limit the applicability or effect of their optimization. However, we expect
that their implementation [75] is not correct when PRF caching is used. Still, this can be
fixed easily. We describe one possibility in Section 6.2.2.

SPHINCS Parallelism Sun et al. [67] parallelize SPHINCS. Unlike multiple message hashing,
their work aims to parallelize using multiple cores instead of SIMD data parallelism. They
optimize for both multi-core CPUs and GPUs. As part of their work, they present parallel
versions of both WOTS and HORS as well as a parallelized version of SPHINCS. They
present extensive benchmark results for both x86 CPUs and Nvidia GPUs.

4.2. Scheme Variants

While the previous section focused on how to optimize implementations for a certain HBS,
this section covers different variants of HBSs proposed in the literature. These variants
usually improve the signature or verification time, or the signature size.

Many proposals only focus on the underlying WOTS and can be used in a Merkle tree
scheme of choice. Few proposals consider the entire scheme.

This section starts by presenting RapidXMSS and SPHINCS+C. Afterward, it gives an
overview on the work of WOTS with constant-sum encodings and zNAF encodings.

49

4. Related Work

4.2.1. RapidXMSS

Bos et al. [8] introduce RapidXMSS, a variant of XMSS that is geared towards fast signature
verification at the cost of more expensive signature creation. RapidXMSS is built to be
verifiable by existing XMSS implementations and mainly modifies the signature generation.
Overall, they claim an expected improvement of the verification time by a factor of 1.44 at
a signature generation time of one minute.

RapidXMSS is mainly based on WOTS-R as introduced in Section 2.4.3. The contribution
of Bos et al. primarily consists of a security proof, a theoretical analysis of the variant,
and an experimental verification thereof. Also, they propose to use a caching strategy to
achieve signature performance independent of the message length: to calculate the hash
of 𝑀 ∥ _(𝑟) for all _(𝑟) , 𝑀 is consumed once and the resulting state is cached. For each _(𝑟) ,
this state is restored and _(𝑟) is consumed. This optimization significantly improves the
performance of the signing process, especially for longer messages 𝑀 .

Bos et al. do not apply the WOTS-B optimization proposed by Perin et al. [57] to preserve
compatibility with existing XMSS verification implementations.

4.2.2. SPHINCS+C

Kudinov et al. [46] propose SPHINCS+C which is a variant of SPHINCS+ optimized for
smaller signatures. They claim a 20% reduction in signature size for one choice of parame-
ters while reducing signing time as well.

SPHINCS+C introduces WOTS+C (see Section 2.4.4) and a variant of FORS called FORS+C.
Similar to WOTS+C, FORS+C utilizes message hashing with a counter. To compress the
signature, FORS+C requires that the value of the last message block is 0. Therefore, it is
not necessary to sign this block, compute a FORS tree and include the authentication path
for this FORS tree in the SPHINCS+C signature. Kudinov et al. remark that the expected
number of hashes required to find a suitable counter and the number of hashes saved by
removing the last tree are equal. Therefore, the signature time is roughly unchanged while
reducing the signature size and slightly reducing the verification time.

The primary changes between SPHINCS+ and SPHINCS+C are the different OTS and FTS.
In general, SPHINCS+C reduces the signature size while slightly reducing the signature
time [46]. Note that the signature time is randomized in SPHINCS+C which is not the case
for SPHINCS+.

4.2.3. WOTS Encodings

We remarked in Section 2.4.2 that the mapping from a message’s hash to the hash chain
positions (𝑏𝑙 , . . . , 𝑏0) by splitting the hash value into blocks and appending a checksum
can be seen as a domination-free encoding. In the following, we present three other classes

50

4.2. Scheme Variants

of encodings proposed in the literature: run-length encoding, constant-sum encoding, and
non-adjacent form encoding.

WOTS encoding functions are extensively covered by Perin [55]. We refer the interested
reader there and focus on the essentials for the sake of brevity.

Run-Length Encoding The first alternative encoding is due to Steinwandt and Villányi
[66]. Their encoding scheme performs a run-length encoding for the message hash. As this
encoding is only possible for hash values with a certain structure, they use hashing with a
counter to find a suitable hash. For their scheme, they claim a reduction of verification
cost by 33% while increasing the key generation and signing cost by a factor of 2 and 7,
respectively. However, they only compare their results to WOTS with𝑤 = 4. Nowadays,
𝑤 = 16 is a more common choice that halves the signature size compared to 𝑤 = 4. We
conjecture that reducing the signature size by half for the scheme by Steinwandt and
Villányi would significantly increase signing cost which would lead to an unfavorable
comparison to WOTS. We also remark that their work was published in 2008 and to the
best of our knowledge, there has been no follow-up research on run-length encodings for
WOTS.

Constant-Sum Encodings Cruz et al. [16] propose a so-called constant-sum encoding.
This idea is based on the observation that if the sum of the hash-chain positions for an
encoding is always a constant for all messages, this encoding is always domination-free.
Their encoding is optimized for faster verification and greatly increases the key generation
and signing time. For a parameter choice with a signature size comparable to WOTS with
𝑤 = 16, the proposed scheme reduces the (expected) verification cost by 47%. Additionally,
the verification cost is guaranteed and does not depend on the message. However, the cost
for key generation and signing is increased by a factor of 12.7 and 25.9, respectively.

Kaji et al. [37] improve upon this encoding. They observe that most messages are encoded
to only high positions in the hash chains. Therefore, they propose to only construct the
upper part of the hash chains. To ensure that construct only requires nodes from the
upper part of the hash chains, they use hashing with a counter. Kaji et al. only provide a
direct comparison of their scheme to WOTS for𝑤 ≥ 64. For an expected number of eight
different counter values to try, they reduce key generation and (expected) verification
costs by 6.3% and 36.6%, respectively. Note that the signature cost does not include finding
a suitable hash and computing the encoding.

Perin et al. [56] propose another variant that works with shorter hash chains and therefore
allows faster key generation and, to some extent, signing. It is deterministic and does not
require hashing with a counter. However, they do not provide a way to efficiently compute
this encoding. The algorithm in their work is expensive to compute. Overall, the use of
this encoding only presents a small improvement over WOTS because of this.

Zhang et al. [80] introduce SPHINCS-𝛼 , a variant of SPHINCS+ that also includes new
variants of WOTS and FORS. Their WOTS variant also uses a constant-sum encoding
similar to [56]. Zhang et al. prove that their encoding is size-optimal, that is, no other
domination-free encoding uses fewer code words.

51

4. Related Work

We remark that WOTS+C (see Section 2.4.4) uses a constant-sum encoding in some sense.
The constant sum is however not achieved by an encoding algorithm as above, but only
through hashing with a counter.

Non-Adjacent Forms The idea of using non-adjacent forms as an encoding for WOTS
is due to Roh et al. [64] and was later improved by Zheng and Jr. [81]. We refrain from
describing the encodings and refer the reader to the literature. Overall, [81] achieve a
reduction of the verification cost of 30-40% at the cost of a 5-70% increase in key generation
cost and a 52-170% increase in signing cost for a verification-optimized parameter set.

52

5. Practical Foundations

This chapter covers the practical foundations of this work. It introduces the architecture of
the Java platform and its relevant limitations, gives an overview of the other software used
in this work, and presents the methodology used for benchmarking our optimizations.

5.1. Java Architecture and Limitations

Language Architecture Languages like C and Rust are so-called compiled languages.
Their source code is compiled statically (i.e. without execution) into machine code. The
resulting platform-specific binary can be executed later on the platform it was compiled
for. Therefore, the resulting binary can be executed without any runtime dependencies,
ignoring libraries.

Interpreted languages do not require explicit compilation before the execution. An inter-
preter interprets and executes the source code. This of course requires a language-specific
interpreter to be present at runtime. However, code written in an interpreted language
can usually be executed on any platform. One disadvantage of interpretation is that the
process and therefore the executed code is generally slower than executing native code.

Java employs a hybrid model that tries to reap the benefits of both approaches: performant,
yet platform-independent code. To achieve this goal, Java code is first compiled into a
low-level, yet platform-independent intermediate language, the so-called Java byte code.

This byte code is interpreted by the Java Virtual Machine (JVM) at runtime. The overhead
for interpretation is smaller than for classical interpreted languages because the code is
already compiled and not raw source code.

Just-in-Time Compilation To achieve better performance, the Java runtime uses a so-
called Just-in-Time Compiler (JIT) in addition to the interpretation mechanism. The JIT
compiles byte code into native code at runtime. In general, the JVM does not compile all
byte code immediately, but only code portions that are executed repeatedly. In these cases,
the savings of native code outweigh the compilation cost.

Additionally, the JIT can observe the previous executions of the code and therefore has
more information available about the code and its typical execution than a static compiler.
This information can be used to further optimize the resulting native code.

Oaks [53, Chapter 4] gives a detailed introduction to the Java JIT.

53

5. Practical Foundations

Limitations Due to this platform-independent design, it is not possible for Java code to
directly use platform-dependent features and instructions. For the use with HBSs, we are
especially interested in SIMD instructions and SHA-NI.

The upcoming Java Vector API [65] may provide a way to implement a more efficient
message scheduling or multi-message hashing in Java (see Section 4.1.1). As of writing
this thesis, the Vector API is still in the incubator.

Nevertheless, there are two ways that Java code can profit from native features: via the
Java Native Interface (JNI) and JIT intrinsics.

Java Native Interface JNI allows Java code on the JVM to interact with native code
[54]. The native code is platform-specific and can therefore use any feature the platform
provides.

However, calling native code from Java comes at a considerable cost. This cost is even
greater when the parameters passed to the native code are not primitives. During the time
an object or array is used in native code, it must be pinned and explicitly released later.
Pinning however hinders the garbage collector from running and significantly affects the
performance of the program [53].

JIT Intrinsics Java compiler intrinsics [24] change how the JIT handles certain methods:
instead of compiling the Java byte code, a hard-coded native implementation will be
executed. This native implementation of the method may make use of additional optimiza-
tions that the JIT cannot use on-the-fly. For example, there is an intrinsic for the SHA-2
compression function that uses SHA-NI, if available.

This approach is limited to a few methods in the Java API as introducing a new intrinsic
requires changes to the Java runtime. Unlike JNI, intrinsics are not intended to be directly
used, added, or modified by the user.

Newland [52] provides a list of currently existing intrinsics in OpenJDK.

5.2. Software

This section gives a brief overview of the cryptographic libraries and related software
used in this thesis and highlights their important features for this work.

5.2.1. BouncyCastle

BouncyCastle [69, 68] is a popular cryptography library for Java and C# maintained by
The Legion of the Bouncy Castle. It is published as open-source under the MIT license
[68]. Its source code is therefore freely available and can be easily modified.

54

5.2. Software

In the following, we focus on the Java library. It provides implementations for a wide vari-
ety of cryptographic schemes and protocols, including a growing number of post-quantum
cryptography algorithms. Most importantly for this thesis, BouncyCastle provides imple-
mentations of the HBSs XMSS, XMSSMT, LMS, HSS, SPHINCS, and SPHINCS+.

To the best of the author’s knowledge, BouncyCastle provides the only Java implemen-
tations for these schemes that are intended for production use. Another SPHINCS+ im-
plementation in Java is due to Heimberger [33]. It appears to be primarily intended for
evaluation purposes.

The crypto implementations provided by BouncyCastle can usually be used in two ways:
First, via a custom lightweight API [69] or via a Java Cryptographic Architecture (JCA)/Java
Cryptographic Extension (JCE) provider.

5.2.2. OpenSSL

OpenSSL [73] is an open-source crypto library. Unlike BouncyCastle, it is a native library
and is primarily written in C. Most relevant for this thesis, it provides implementations
for the hash function families SHA-2 and SHA-3.

Implementations The crypto library contains different implementations for SHA-2. There
is a generic implementation written in C [73, File crypto/sha/sha512.c] as well as a
highly optimized one in Assembler [73, File crypto/sha/asm/sha512-x86_64.pl] (or, more
precisely, a Perl script that generates an implementation in Assembler). The optimized
implementation uses SHA-NI, if available. Otherwise, it uses AVX2, AVX, or SSE to
compute SHA-2 hashes.

OpenSSL also provides a multi-message implementation for SHA-256 to hash multiple
messages in parallel [73, File crypto/sha/asm/sha256-mb-x86_64.pl]. However, we were
unable integrate this implementation into our code.

Similarly, there is a generic implementation for SHA-3 [73, File crypto/sha/keccak1600.c]
and optimized implementations for x86 and multiple SIMD instruction sets [73, Files
crypto/sha/asm/keccak1600-*].

All optimized implementations originate from the CRYPTOGAMS project by Polyakov
[58].

Interfaces For SHA-2, there are two ways to access the implementation: a legacy in-
terface [73, File doc/man3/SHA256_Init.pod] and the newer, more generic EVP interface
[73, File doc/man3/EVP_DigestInit.pod]. SHA-3 is only accessible using the newer EVP
interface.

The older SHA-2 interface is considered deprecated as of OpenSSL 3.0. The older legacy
interface is still available on OpenSSL 3.0, but it is implemented as a wrapper for the EVP
interface [73, File crypto/evp/legacy_sha.c]. However, the EVP interface provides signifi-
cantly worse performance for small inputs [2, File csrc/hash_template.cpp.template].

55

5. Practical Foundations

As HBSs almost exclusively work with short inputs, it is not sensible to work with the
EVP interface. Therefore, we will continue to work with OpenSSL 1.1.1 for this thesis
because it still exposes the SHA-2 implementation directly via the legacy interface.

We were also able to experimentally confirm a significant drop in performance for the
legacy interface on short inputs when moving from OpenSSL 1.1.1 to version 3.0.

5.2.3. eXtended Keccak Code Package

The eXtended Keccak Code Package (XKCP) [79] is a collection of implementations of
the Keccak hash function family, which includes SHA-3, and therefore SHAKE128 and
SHAKE256.

For example, it includes Keccak implementations derived from CRYPTOGAMS [58] which
is also used in OpenSSL for different SIMD instruction sets. Additionally, it contains several
multi-message implementations.

XKCP includes different interfaces that can be used to interact with the Keccak implementa-
tions. We focus on the SimpleFIPS202 interface, which provides simple and low-overhead
access to the hash functions specified in FIPS 202 [19].

For this reason, XKCP may be preferential over OpenSSL for short-input hashing with
SHA-3. Both use very similar implementations of Keccak but XKCP has an interface with
a lower overhead.

5.2.4. Amazon Corretto Crypto Provider

The Amazon Corretto Crypto Provider (ACCP) is a JCA/JCE provider that makes high-
performance crypto primitives available to Java applications [2]. This includes hashing
with SHA-2.

ACCP does not implement SHA-2 on its own, instead, it relies on OpenSSL which is called
via JNI. As we elaborated above, OpenSSL uses a highly optimized implementation of
SHA-2. ACCP’s JCA/JCE provider can now easily be used as a drop-in replacement for
the default provider and increase hashing performance in any Java application using
JCA/JCE.

5.3. Benchmarking Methodology

To evaluate the performance of our optimized HBS implementations in Java, we conduct a
series of benchmarks. The following section describes the tools and environment used in
our experiments.

56

5.3. Benchmarking Methodology

5.3.1. Java Microbenchmark Harness

The Java Microbenchmark Harness (JMH) is a framework for writing and executing
benchmarks in Java (and other JVM languages) [71].

Every JMH benchmark consists of a benchmark method that is invoked repeatedly and
whose performance is measured. Optionally, a benchmark may include setup and tear-
down methods that can be run at different stages. Additionally, benchmarks can have
parameters that are configurable at run-time.

A benchmark run is structured as follows: for each combination of benchmark method and
respective parameters, a specified number of trials (also referred to as forks) is performed.
For each trial, a new JVM is launched and used to perform a specified number of warm-up
and measurement iterations. Warm-up iterations are intended to allow the JVM to do
operations like class loading, JIT compilation, caching, or similar. Generally, any operation
influencing the run times that is only done once in a long-running program. As the name
suggests, the performance of the benchmark method is measured during the measurement
iterations.

A so-called benchmark mode determines how this measurement works. For our bench-
marks, we use the average time mode. In this mode, the benchmarking method is invoked
repeatedly for each measurement iteration until a specified time interval has passed. Af-
terward, the total elapsed time is divided by the number of invocations of the benchmark
method.

For a more detailed introduction to JMH and Java benchmarking in general, refer to [53,
Chapter 2].

5.3.2. Benchmarking Environment

As the execution environment for the benchmarks, we chose the Amazon Elastic Compute
Cloud (EC2) on the Amazon Web Services (AWS) cloud platform. EC2 provides virtual
machines in a wide variety of configurations.

The choice to run on a cloud hyperscaler was made because of the following considera-
tions:

Reproducibility Benchmarks run on EC2 are reproducible in the sense that the bench-
marking setup (i.e. the benchmarked software including dependencies and operating
system) can be easily reset after each run and reproduced at a later point. Addition-
ally, we assume that the performance of an EC2 instance is reproducible in the sense
that each instance with the same setup provides very similar performance.

Variety Many different instance types are available on EC2. Instance types vary primarily
in the processor family and additional features like graphics processors or machine
learning accelerators. In this work, we do not make use of any such additional

57

5. Practical Foundations

features. The range of available processors includes a range of different x86 processors
by Intel and AMD as well as ARM processors [1].

Scalability AWS allows us to easily run multiple independent instances of the benchmark
machine. This can be used to execute benchmarks in parallel while guaranteeing
that they do not directly influence each other. Therefore, the development process
can be accelerated compared to running all benchmarks sequentially on a single
physical machine.

Cost Running on AWS is more cost-efficient than buying physical systems to benchmark
on. This is exacerbated by the fact that some hardware features (most notably,
SHA-NI) are only available on the latest generations of processors.

Instance type selection To minimize benchmark the run time, we evaluate different EC2
instance types by benchmarking the XMSS key generation for the SHA2_16_256 parameter
set with unmodified BouncyCastle to find the fastest instance type for our use case.

XMSS key generation in BouncyCastle is single-threaded, hence we are not expecting
improvements for high core count instances. However, the influence of other background
tasks on the benchmark results could decrease when multiple cores are available.

Key generation creates a relatively consistent workload over a longer time. As a result,
burstable instance types should be avoided. They allow bursting CPU usage above the
intended maximum for a limited time. On EC2, the low-end T4, T3, and T2 instances are
burstable [1].

Lastly, we note that we will focus on the x86 because of its prevalence among CPUs for
desktop and server use.

Instance type CPU Cores
m5zn.large Intel Xeon Platinum 8252C (Cascade Lake) 1
m5zn.xlarge Intel Xeon Platinum 8252C (Cascade Lake) 2
m5zn.2xlarge Intel Xeon Platinum 8252C (Cascade Lake) 4
m6i.large Intel Xeon Platinum 8375C (Ice Lake) 1
m6a.large AMD EPYC 7R13 1
m6g.large AWS Graviton2 (Neoverse-N1) 1

Table 5.1.: Evaluated EC2 instance types

Therefore, we choose the instance types with the most promising CPU platform from the
general purpose category [1]. Table 5.1 shows the instance types with the corresponding
size that we evaluated.

Figure 5.1 shows that there is a considerable difference in performance across different
EC2 instance types. Comparing the large instances, we see that the m5zn is the fastest,
followed by m6i and lastly m6a. Overall, the key generation takes about 72% longer on m6a

58

5.3. Benchmarking Methodology

m5zn.large

m5zn.xla
rge

m5zn.2xla
rge

m6i.la
rge

m6a.large

m6g.large

Instance

0

50

100

150

200

250

D
ur

at
io

n
[s

]

BouncyCastle XMSS Key Generation SHA-2, ℎ = 16, = = 256

Figure 5.1.: XMSS key generation by EC2 instance type for the SHA2_16_256 parameter set

compared to m6i. The ARM-based m6g is slower than m6i but still considerably faster than
m6g.

Across the different sizes of the m5zn instance type, we see only insignificant differences.
However, in other tests, we observe that the variance across multiple iterations is smaller
when more than one core is available.

Hence, we pick the m5zn instance type as the primary benchmark machine and choose the
xlarge size for single-threaded tasks. However, this instance does not support SHA-NI.
Therefore, we decide to also run benchmarks on m6i to evaluate the impact of SHA-NI.

Benchmark Setup In the following, we briefly describe how we configure the EC2 in-
stances for benchmarking. We follow the standard procedure for benchmarks and disable
Simultaneous Multithreading (SMT). The instances run the Ubuntu 20.04 operating system
and the OpenSSL release provided by it. A custom fork of OpenJDK 18 is used as described
in Section 6.2.5.

Table 5.2 gives an overview of our benchmarking setup.

59

5. Practical Foundations

Component Remarks
CPU m5zn Intel Xeon Platinum 8252C SMT disabled
CPU m6i Intel Xeon Platinum 8375C SMT disabled
Operating System Ubuntu 20.04.5 LTS (Focal Fossa)
JDK Fork of OpenJDK 18+36 see Section 6.2.5
OpenSSL 1.1.1f see Section 5.2.2
XKCP Commit 64404be

Table 5.2.: Overview of the benchmarking setup

60

6. Implementation

This section presents the main parts of our contribution and is structured as follows: Fist,
we present how we evaluate the XMSS reference implementation as a baseline. Second,
we describe the different implementation optimizations we implement and evaluate in
BouncyCastle. Third, we describe how paralellization can be used to accelerate HBS
operations. Lastly, we give a theoretical analysis of two verification-optimized scheme
variants and describe their experimental validation.

The source code used in this thesis is published as open-source [59].

6.1. XMSS Reference Implementation

To provide a performance baseline and an external comparison for our work, we use the
XMSS reference implementation [63] accompanying RFC 8391 [36]. It is written in C and
supports the parameter sets specified in [36, 14] (see Section 3.3.1).

For SHA-2, this implementation relies on OpenSSL which is used via the legacy interface
(see Section 5.2.2). More precisely, it uses the SHA256 function provided by OpenSSL. We
discuss different interfaces for SHA-256 in Section 6.2.4.2. The SHAKE hash functions are
computed by a custom implementation in C [63, File fips202.c].

We observe that this custom implementation is slower than the SHAKE implementations
contained in OpenSSL and XKCP. For more details, refer to Section 7.2.3.2. To achieve a
fair comparison, we replace the custom implementation with XKCP.

The project already includes a benchmark that measures performance for key generation,
signing, and verification [63, File test/speed.c]. We slightly modify this benchmark
to test multiple parameter sets in one run and output the results in a more convenient
format.

Additionally, we add a dedicated benchmark for the function core_hash [63, File hash.c].
This function performs the hash operation with the underlying hash function depending
on the chosen parameter set. We evaluate the function with input sizes that correspond to
the Winternitz chaining function 𝐹 (see Section 3.3.1).

Apart from these changes, we leave the reference implementation unmodified. We present
the benchmark results in Section 7.1.

61

6. Implementation

6.2. Optimization Levels

This section describes the various different changes and optimizations we implement in
BouncyCastle to improve the performance of the HBSs. We present optimizations to Boun-
cyCastle’s hash implementations, different variants to use native hash implementations
using JNI and describe how we use JIT intrinics.

6.2.1. Hash Encapsulation

To allow for easily replaceable hash implementations, we use a class for each HBS that
provides the scheme’s hash function and implements them using some underlying hash
function implementation.

For XMSS, the hash functions are already encapsulated in the class KeyedHashFunctions
in BouncyCastle [68]. The same applies to SPHINCS+ and the class SPHINCSPlusEngine.
For LMS, we extract all hashing to a class called LMSHash.

All those classes are abstract and multiple implementations exist. Additionally, we intro-
duce the interface HashingProvider and provide one implementation for each optimization
level. This can be used to retrieve the concrete implementation of KeyedHashFunctions,
LMSHash, or SPHINCSPlusEngine for this optimization level for a choice of hash function
and output length.

Furthermore, we introduce a HashingProviderProvider through which one can configure
and retrieve the hashing provider to be used (and therefore the optimization level).

6.2.2. BouncyCastle

Optimization Level XMSS LMS SPHINCS+

bc yes yes yes

The bc optimization level refers to the hash implementations provided by and used in
BouncyCastle by default. It does not include any explicit optimizations.

For all schemes, this optimization level uses the generic SHA-256 implementation in the class
SHA256Digest and the SHAKE256 implementation in SHAKEDigest [68]. The implementation
of the Haraka functions used in SPHINCS+ can be found in the classes HarakaS256Digest,
HarakaS512Digest, and HarakaXof [68].

All of these implementations are part of BouncyCastle, use plain Java, and implement
BouncyCastle’s Digest interface. A Digest exposes the operations typical for a message
digest: an update method to consume several bytes and a doFinal method to calculate and
retrieve the digest of the previously consumed bytes. Usually, the Digest holds an internal
buffer of block size and the state. The state update function is invoked whenever enough
bytes are provided via the update method. Additional bytes are stored in the internal

62

6.2. Optimization Levels

buffer. The doFinal method calculates the padding, invokes the state update function on
the content of the buffer and the padding, and returns the hash value.

Optimization Level XMSS LMS SPHINCS+

bc-optimized only SHA-256 only SHA-256 no

This optimization level applies a few, targeted optimizations to the existing SHA-256
implementation in BouncyCastle. It uses the following three changes:

Buffering We described above that a typical implementation of a message digest uses
a buffer of block size and invokes the state update function whenever this buffer is full.
The SHA256Digest extends the GeneralDigest which has a buffer of one word (4 bytes).
Whenever this buffer is full, it is passed on to the underlying SHA256Digest which in
turn has a buffer of block size. As the input length is usually a multiple of 4 bytes, the
GeneralDigest can be bypassed and the input can be directly passed to SHA256Digest.

Consuming Zero-Words For XMSS with 𝑛 = 256, the hash type discriminator consists
of seven zero-words (see Section 3.3.1). SHA256Digest clears its buffer after each call to
the state update function. Therefore, it is not necessary to actually update the buffer
when zero-words are consumed. It is sufficient to only increase the amount of data in the
buffer.

PRF Caching We additionally implement the PRF caching optimization proposed by Wang
et al. [74] and described in Section 4.1.4. We recall that this optimization is only applicable
to XMSS with SHA-256 and 𝑛 = 256.

In Section 4.1.4, we described a problem in the implementation of this optimization provided
by Wang et al.: they assume that the value Key is constant for every call to PRF for one
XMSS key. This is, however, not the case. There are three possible values. We implement
a lightweight hash map with 1024 entries indexed by 10 bits of the value Key. We save
additional 32 bits of the address along the cached state. This brings the probability of two
entries colliding to 2−10. This only causes decaying performance. The probability of an
undetected collision is 2−42 which we consider to be low enough for the purposes of this
work. In the case of an undetected collision, the implementation will return the wrong
results. However, this can be easily mitigated by storing and comparing all 256 bytes of
the Key at little additional cost.

An alternative implementation could exploit that PRF is called from distinct contexts for
the three possible values of Key. Therefore, it would be possible to pass not only the Key

but also a cached state to PRF. This would eliminate the need for the hash-map structure
described above but would require changes to the XMSS implementation itself. This may
be the better approach for a productive implementation, but it would make generically
swapping the underlying hash implementation harder.

63

6. Implementation

6.2.3. Amazon Corretto Crypto Provider

Optimization Level XMSS LMS SPHINCS+

corretto only SHA-256 only SHA-256 only SHA-256

The Amazon Corretto Crypto Provider (ACCP) provides a high-performance implementa-
tion of SHA-2 backed by OpenSSL and JNI as a JCA/JCE provider. We introduced ACCP
in Section 5.2.4.

The SHA-256 implementation provided by ACCP is accessible via the JCA/JCE interface
MessageDigest. The HBS implementations by BouncyCastle however expect a Digest as
described above. As the interfaces are quite similar, we write a simple adapter class that
wraps the MessageDigest by ACCP into a Digest.

Instead of using the adapter class to instantiate the KeyedHashFunctions, LMSHash, and
SPHINCSPlusEngine, we use alternative implementations of these classes to reduce over-
head. However, as the interfaces of Digest and MessageDigest are almost identical, so are
both implementations of these classes. The adapter classes are only used when the HBS
implementation explicitly requires a Digest.

This approach can be applied to all signature schemes: XMSS, LMS, and SPHINCS+.
However, ACCP does not support SHA-3 or Haraka. Therefore this optimization level is
limited to SHA-2 only.

6.2.4. JNI

Our evaluation of ACCP shows that native hash implementation can significantly speed up
HBSs in Java. However, we also noted the limitations of ACCP: It currently only supports
SHA-2 and it uses the generic JCA/JCE interface. This may be convenient for many
applications but does not provide the best performance. This is partly due to the generic
update/doFinal interface which is not necessary for our application. Additionally, we
consider integrating additional optimizations and hash functions to be rather difficult.

For these reasons, we instead write our own replacement for ACCP which is specially
designed for use with the HBSs in this thesis.

6.2.4.1. JNI Data Transfer

Through the Java Native Interface (JNI), Java code can interact with native code and
vice-versa. As we sketched in Section 5.1, calling native functions from Java comes at a
considerable cost. This cost consists of two parts: The cost of invoking the native function
and the cost of transferring data between Java and native memory and back. While we
cannot reasonably influence the cost of the method invocation, there are several ways
to transfer data between Java and native memory. In the following, we describe these
methods and our approach to benchmark them.

64

6.2. Optimization Levels

Benchmark Setting For hashing in HBSs, both input and input consist of binary data
whose size varies depending on the choice of scheme and parameter set. The input of the
hash function is typically between 46 bytes (LMS Tree Leaf for 𝑛 = 192) and 128 bytes
(XMSS 𝐻 for 𝑛 = 256). This range may not cover all hash function calls, especially since
the initial message hash may have a longer input. However, most hash function calls in
the HBSs in this thesis fall into this range. The output usually consists of 24 or 32 bytes.

We choose an input length of 64 bytes and an output length of 32 bytes for the benchmark.
This means that a buffer of 64 bytes is passed from Java to native code where a trivial
computation is performed: each element is added to one of its neighbors and the result is
written to the output buffer which is passed back to the Java code.

We evaluated the following methods to transfer data between Java and native:

JNI GetByteArrayElements In this setting, two byte arrays are passed to the native method.
One contains the input data and the output is written into the other. The methods
GetByteArrayElements and ReleaseByteArrayElements are used to access these byte ar-
rays from native code. The function GetByteArrayElements returns a pointer to the data
contained in the array. This may or may not be a copy of the Java byte array. The function
ReleaseByteArrayElements is used to free up allocated resources afterward and copy data
back to the Java byte array, if necessary. For more details on these operations, see [54,
Chapter 4].

JNI GetByteArrayElementsCritical This setting is very similar to the previous ones. It uses
the functions GetByteArrayElementsCritical and ReleaseByteArrayElementsCritical

to access the byte array. These behave similarly to the functions used above but introduce
a so-called critical section. For details, refer to [54, Chapter 4]. We expect that this may
have different performance characteristics.

JNI GetByteArrayRegion The functions GetByteArrayRegion and SetByteArrayRegion

allow retrieving a copy of a byte array and write a native buffer back to a byte array. This
may be beneficial because we only read from one byte array and write to the other. The
methods above allow both reading and writing.

Direct ByteBuffer Unlike in the previous methods, the data is not passed as a byte array
to the native method. Instead, a java.nio.ByteBuffer is used. More specifically, a direct
ByteBuffer. In the native code, the function GetDirectBufferAddress can be used to
directly retrieve the address of the memory associated with this buffer [54, Chapter 4].
This however comes with the drawback that the data must be explicitly copied into and
out of this buffer on the Java side. We use the methods put and get of the ByteBuffer for
this task.

65

6. Implementation

Netty ByteBuf The Netty framework [70] provides a ByteBuf class that represents a buffer
of bytes. For certain implementations of the ByteBuf class, it is possible to extract the
memory address of the underlying memory that stores the data. This address can be passed
via JNI as a primitive. The native code can then simply access the data using this address.
Multiple ByteBufAllocators are available to create different ByteBufs. We evaluate both
the PooledByteBufAllocator and the UnpooledByteBufAllocator.

Java Unsafe The Unsafe class allows low-level operations from Java that are considered
to be unsafe [72, Class Unsafe]. For example, it provides the functionality to directly
allocate native and copy memory between objects and native memory. We use this class
to allocate two buffers for input and output and copy data between Java byte arrays and
the buffers. The address of the buffers is passed via JNI to the native method which can
directly access the memory. We remark that the use of the Unsafe class in production code
should be avoided.

6.2.4.2. Chosing the Hash Implementations

This section describes which different native hash implementations and interfaces we
evaluate to provide the best performance for the JNI hashing module.

Benchmark Setting We benchmark different implementations and interfaces for SHA-256
and SHAKE256 with input sizes of 52, 96, and 128 bytes as these are typical sizes for XMSS.
The output size is 256 bits. This benchmark is native-only, it does not use any Java code.

We evaluate the following interfaces to OpenSSL for SHA-256:

OpenSSL direct This uses the function SHA256 function provided by OpenSSL. This func-
tion takes an input buffer and an output buffer as a parameter and directly writes the hash
value of the input buffer into the output buffer.

OpenSSL with CTX This variant uses the functions SHA256_Init, SHA256_Update, and
SHA256_Final which work similarly to the Digest class in BC: SHA256_Init initializes a
digest context of type SHA256_CTX, SHA256_Update consumes the provided message and
updates the context accordingly, and SHA256_Final computes and consumes the padding
and returns the hash value.

OpenSSL Fixed Padding This variant uses the fixed padding optimization proposed by
Wang et al. [74] and introduced in Section 4.1.4. Our implementation is similar to the one
provided by Wang et al. [75]. For a new hash, a new buffer is allocated and input data and
the matching padding are copied into this buffer. The padding values are hard-coded into
the program. This buffer is passed to SHA256_Update. The buffer’s length is a multiple of
the block size and therefore this invocation of SHA256_Update executes all required state
updates. The internal buffer is empty and the current state is the hash value. Therefore,
the hash value is then extracted from the SHA256_CTX. It is not possible to use the SHA256

66

6.2. Optimization Levels

function as it would add another padding to the message. We remark that Wang et al. [75]
instead copy the input data into a static buffer that contains the appropriate padding at
the end. This approach is however generally not thread-safe.

OpenSSL Custom Padding To evaluate the real benefit of the fixed padding compared
to saved copy operations to the internal buffer, we evaluate another custom padding
implementation. The input data is copied to a larger buffer and the required SHA-2
padding is computed on-the-fly. As described in Section 3.2.1, computing the padding is a
rather simple task. Afterward, the padded message is passed to SHA256_Update and the
hash value is extracted from the SHA256_CTX.

For SHAKE256, we evaluate the following implementations:

Custom Uses the custom SHA-3 implementation also used in the XMSS reference imple-
mentation [63]. It is written in plain C without any explicit optimizations.

OpenSSL This variant uses the SHA-3 implementation provided by OpenSSL and accessed
via the EVP interface. For further details, see Section 5.2.2.

XKCP This evaluates a SHA-3 implementation of XKCP [79]. We remarked in Section 5.2.3
that these implementations are closely related to those used in OpenSSL. The main differ-
ence is the interface.

6.2.4.3. Implementation of jni-hash

This section describes the implementation of jni-hash, our JNI bridge for hashing in HBSs,
in detail. We present the resulting optimization levels based on the insight gained in the
previous sections.

Optimization Level XMSS LMS SPHINCS+

jni yes yes SHAKE256 and Haraka

The optimization level uses the best of the hash function implementations described above
but does not apply any further optimizations. We implement jni for all parameter sets of
the three HBSs except SPHINCS+ with SHA-2. This can also be implemented. However,
we refrain from it as we do not expect any additional insights.

67

6. Implementation

Data Transfer We use the Netty unpooled ByteBuf to transfer data between Java and native
code. For more details, see Sections 6.2.4.1 and 7.2.3.1. However, this makes additional
handling necessary: as allocating buffers is costly, the ByteBufs should be reused whenever
possible. Additionally, they must be explicitly freed.

Using static buffers is also not possible as this would not be thread-safe. Instead, we use
Java ThreadLocals. They ensure that each thread operates on an independent instance.
However, we can also use them to ensure that each thread only allocates one instance and
uses it for its lifetime. We use ThreadLocals for the KeyedHashFunctions and LMSHash as
described in Section 6.2.1. To explicitly release the ByteBufs before garbage collection, we
use the Java Cleaner.

SHA-256 To implement SHA-256, we use OpenSSL with a custom padding function as in
the previous section.

SHAKE256 We use the implementation provided by XKCP for SHAKE256. More specifically,
we use the AVX2 implementation on m5zn and the AVX-512 implementation on m6i.

Haraka The previous sections did not discuss Haraka as there is only one existing native
implementation and therefore no comparison is possible. This is the reference implemen-
tation by Kölbl [42]. Heimberger [33] provides a Java implementation for SPHINCS+that
includes a JNI bridge to a modified version of the Haraka reference code. While it is written
in C, the core implementation uses intrinsics for AES-NI to implement the permutation as
suggested in [45] and presented in Section 4.1.2.

For jni-hash, we build upon the code provided by Heimberger [33] and slightly modify it
to integrate it into our project. Additionally, we adapt the code to also use Netty ByteBufs

for data transfer.
Optimization Level XMSS LMS SPHINCS+

jni-fixed-padding only SHA-256 only SHA-256 no

The optimization level jni-fixed-padding is limited to SHA-256 and uses OpenSSL with
fixed padding as described in the previous section. This is only possible for those functions
whose input size is fixed and known in advance. This is the case for the majority of hash
function calls in the HBSs. In all other cases, the custom padding implementation is used.
Additionally, the custom padding function is used for LMS key compression, as there is
numerous possible input sizes depending on the choice of parameters.

This approach could also be applied to SPHINCS+. However, we again do not expect any
further insight from this.

Optimization Level XMSS LMS SPHINCS+

jni-prf-caching only SHA-256 with 𝑛 = 256 no no

This optimization level builds upon the previous one and additionally applies the PRF
caching strategy introduced in Section 4.1.4. This optimization is only applicable to XMSS
with SHA-256 and 𝑛 = 256.

68

6.2. Optimization Levels

For caching the states, the hash map described in Section 6.2.2 is used.

6.2.5. Java

This section introduces the optimization levels java and java-optimized that use the de-
fault implementation for SHA-2 and SHA-3 provided by the JDK. The state update function
of these implementations is an intrinsic candidate. This means that Java implementation
may be replaced by an equivalent native implementation by the Java runtime. For an
introduction to the Java JIT and its compiler intrinsics, see Section 5.1.

As there is no existing implementation for Haraka in the JDK with a compiler intrinsic,
we implement and evaluate a proof of concept that uses an intrinsic for the Haraka
permutations.

Optimization Level XMSS LMS SPHINCS+

java only SHA-256 only SHA-256 yes

SHA-2 and SHA-3 For the HBS instantiations with SHA-256 and SHAKE256, we use the
respective message digest implementation provided by the default SUN JCA/JCE provider.
As the implementation of SHAKE256 [72, Class sun.security.provider.SHAKE256] only
outputs one block and does not implement the squeezing phase of the sponge construction,
we modify it accordingly.

Similar to ACCP, this implementation is provided as a MessageDigest instance. Hence, we
use the same approach as for ACCP. As described in Section 6.2.3, the MessageDigest is
used to instantiate the three hash function implementation classes and an adapter class.

This approach can also be used for SHAKE256 in XMSS and LMS. However, we do not
implement this variant as we do not expect any further insight (see Section 7.2.4).

Haraka As the Haraka hash function is rather new and not widely used, there is no exist-
ing implementation in the JDK. For this reason, we decide to create a Java implementation
of Haraka with a JIT intrinsic. This requires changes to the JDK which are described
below.

Our evaluation showed that introducing entirely new intrinsics is too complex and there-
fore out of scope for this work. Instead, we repurpose existing functions with an intrinsic
by entirely replacing their implementation. This, of course, destroys the functionality
these methods previously provided. As our implementation is intended for evaluation
purposes only, this is acceptable. Furthermore, this has no influence on performance
compared to introducing new intrinsics.

We implement three functions for Haraka: the hash functions Haraka256, Haraka512, and
the permutation 𝜋512 which is used for the sponge construction HarakaS. We choose the
methods to repurpose based on the method parameters. All three functions require the
Haraka round constants and a bit string as input and return a bit string. Therefore, we

69

6. Implementation

choose methods that have two byte arrays as parameters: one contains the round constants
and the other one is used for the input and the returned bit string.

Haraka Function Java Method (Package com.sun.crypto.provider) Type Signature
Haraka256 AESCrypt::implEncryptBlock ([BI[BI)V

Haraka512 ElectronicCodeBook::implECBEncrypt ([BII[BI)I

𝜋512 AESCrypt::implDecryptBlock ([BI[BI)V

Table 6.1.: Repurposed methods for the Haraka intrinsic. For an explanation of Java type
signatures, see [54, Chapter 3].

Table 6.1 gives an overview of the methods we re-implemented for Haraka. All parameters
except the byte arrays are ignored. As we noted earlier, the JIT usually does not compile
code on its first execution. Instead, the Java byte code is interpreted and the JIT is only
invoked if the code is executed repeatedly. Therefore, it is not only necessary to change
the intrinsics for the methods in Table 6.1 but also to change their Java implementation to
also compute the corresponding Haraka function.

As the Java implementation is only used before the JIT is invoked, its performance is not
critical. Hence, we integrate the Haraka implementation by BouncyCastle. We implement
the intrinsic by translating the Haraka reference implementation [42] to the C++ code
generator syntax used in OpenJDK.

Optimization Level XMSS LMS SPHINCS+

java-optimized only SHA-256 only SHA-256 no

This optimization level contains changes similar to bc and bc-optimized: Instead of using
the MessageDigest interface, the underlying SHA-256 implementation is used directly.
Additionally, the PRF caching optimization for XMSS with 𝑛 = 32 is integrated.

Like with bc-optimized, the SHA-256 implementation is not accessed via the JCA/JCE
interface, but directly instead. However, the class sun.security.provider.SHA2, which
contains this implementation, is not publicly visible. It is possible to invoke all methods
without regard to their visibility over the Java Reflection API using the setAccessible

method. However, the use of this functionality is generally discouraged. Additionally, we
observe a performance penalty when invoking the SHA-256 implementation via reflection.
In our experiments, the JCA/JCE API is faster than directly calling the implementation
using reflection.

Instead, we change the visibility of this class by modifying the JDK’s source code. This
allows us to directly use the implementation provided by this class without reflection.

70

6.3. Parallelization

6.3. Parallelization

Modern processors provide multiple cores and threads that can be used to concurrently
execute code. Current HBS implementations are usually single-threaded and therefore do
not fully utilize the available resources. In the following, we present how we parallelize
the HBS implementations in BouncyCastle. We focus on key generation, as it is the most
expensive operation for XMSS and LMS by a large margin. We focus on XMSS and LMS as
parallelization of SPHINCS was extensively investigated by Sun et al. [67] and the results
are largely also applicable to SPHINCS+.

6.3.1. XMSS

Key Generation The main task of the XMSS key generation is to traverse the entire Merkle
tree and calculate the value of the root node, which is part of the public key. For this
task, the values of all nodes in the tree must be calculated. The Treehash algorithm [10] is
commonly applied here because of its low memory requirements. The values of non-root
nodes are usually discarded and later recalculated whenever they are required.

The leaves are derived from the public one-time signature keys, which in turn can be
individually derived from a private seed in constant time. This allows us to easily parallelize
the key generation as follows.

The task is divided into 2𝑖 independent subtasks. For each task 𝑗 , we calculate the root of
the subtree with height ℎ − 𝑖 that has the leaf nodes 𝑗 ∗ 2ℎ−𝑖 through (𝑗 + 1) ∗ 2ℎ−𝑖 − 1 of
the original tree. This can be achieved by utilizing the Treehash algorithm. After that, we
merge results by calculating the root node of the distinct subtree of height 𝑖 that has the
same root as the original tree. All the leaves of this subtree have been calculated in the
previous step.

Figure 6.1 shows how an XMSS tree of height ℎ = 3 can be split into four tasks with
𝑖 = 2. Each task computes the root of its respective subtrees. In Figure 6.1, these are the
dotted nodes. In the next step, these are uses to sequentially compute the value of the root
node.

In practice, the XMSS key generation in BouncyCastle does not only calculate the root
node but also initializes the state of the BDS algorithm [10] for tree traversal. It is used to
traverse the tree to calculate the nodes required for signing later. The following information
is needed to initialize the BDS state during key generation:

• The authentication path of the first leaf,

• A list retain of nodes on high levels in the tree,

• A list of Treehash instances initialized with the third node for each layer (when the
layer is not stored in retain).

After running the subtasks, we can simply merge the created BDS states by:

71

6. Implementation

𝑋0 𝑋1 𝑋2 𝑋3 𝑋4 𝑋5 𝑋6 𝑋7

𝑌0 𝑌1 𝑌2 𝑌3 𝑌4 𝑌5 𝑌6 𝑌7

Task 0 Task 1 Task 2 Task 3

Sequential
Task

Figure 6.1.: Partitioning of the XMSS key generation with ℎ = 3 into 2𝑖 = 4 independent
tasks

• Using the authentication path of the first subtask,

• Merging the retain lists,

• Merging the Treehash instances by ignoring uninitialized instances. For each layer,
there is no more than one initialized instance among the subtask results.

After merging the BDS states, we can continue to execute the key generation algorithm
on the subtask roots and the merged BDS state. This yields the root node and a correctly
initialized BDS state.

Signing and Verification The XMSS signing process consists of two main tasks: computing
the WOTS signature and the authentication path. These are independent and can be done
in parallel. Sun et al. [67] propose a parallelized version of WOTS. For each message block,
the signature is computed in its own thread by applying the chaining function.

The WOTS verification can be parallelized in the same manner. However, the XMSS
verification additionally includes the recalculation of the root node. This step depends on
the WOTS key that is extracted during the WOTS verification. Therefore, these two tasks
can not be executed in parallel.

However, creating threads comes at a cost. Splitting a task on many threads such that the
amount of work per thread is small relative to the thread creation overhead leads to bad
performance overall. Hence, parallelizing WOTS in BouncyCastle as suggested by Sun
et al. [67] would require careful consideration and evaluation.

As noted above, we focus on key generation for this thesis and, therefore, do not present
an implementation of parallelized signing and verification.

72

6.4. Verification-Optimized Signatures

XMSSMT Key Generation XMSSMT uses a hypertree consisting of multiple XMSS trees. If
large XMSS trees (ℎ ≥ 10) are used, XMSS key generation profits from the parallelization
the same way XMSS does.

Some parameter sets use XMSS trees of height ℎ = 5 [36, 14]. For example, the paramter
XMSSMT-SHA2_60/12_256 uses 12 layers of subtrees of height 5. Splitting the generation into
8 = 23 subtasks results in the parallel generation of 8 subtrees of height 2 and sequential
merging a subtree of height 3.

The cost of each subtask is rather small. As XMSSMT requires the generation of multiple
XMSS trees before the first message can be signed, it is possible to compute multiple
trees in parallel. Each tree individually can be generated sequentially or, if sensible, in
parallel with a smaller number of subtasks. This could reduce the thread creation overhead
compared to sequentially executing multiple parallelized key generations.

6.3.2. LMS

Generally, the LMS key generation is structurally equivalent to XMSS and the observations
in the previous section apply as well. However, BouncyCastle uses a different algorithm to
traverse the LMS tree: Instead of using Treehash, it calculates a node’s value by recursively
calculating its children.

This can be easily parallelized using the Fork-Join pattern in Java: both child nodes are
calculated concurrently and then merged to get the node’s value. Due to synchronization
overheads, this is only done for nodes on a high level, while nodes on a lower level are
calculated sequentially. Testing showed that calculating nodes on level 5 (and lower)
sequentially seems reasonable. However, even better performance might be achieved by
optimizing this parameter through more extensive benchmarking.

6.4. Verification-Optimized Signatures

In the previous section, we presented strategies to optimize implementations of specific
HBSs. This section focuses on verification-optimized scheme variants. They are designed
to provide rapid signature verification at increased signature generation cost. This is
especially useful in scenarios where only few signatures are created, but each signature is
verified often.

One such scenario is digitally signed software and firmware: each new version could only
be signed once, yet this signature is verified at each launch of the software or start-up
of the device. Here, it is critical to optimize the signature verification, especially if the
verification is done on a resource-constraint device. New signatures are only rarely created
and may be computed on a powerful central server. Therefore, larger signature generation
costs may be acceptable.

73

6. Implementation

We focus on the underlying OTS as the verification of the OTS signature makes up the
majority of the verification cost in a Merkle tree scheme. For common parameter choices,
the verification of the Merkle tree itself only requires a few hash function evaluations. To
the best of the author’s knowledge, there are no proposals in the literature that explicitly
optimize the Merkle tree for faster verification.

6.4.1. Theoretical Analysis

This section aims to provide a theoretical evaluation of WOTS-BR and WOTS+C for rapidly
verifiable signatures.

6.4.1.1. WOTS-BR

WOTS-BR is introduced in Section 2.4.4 and was proposed by Perin et al. [57]. Bos et
al. [8] integrate WOTS-R into XMSS and provide a detailed analysis. We focus on the
WOTS-R modification and discuss the impact of the WOTS-B optimization at the end of
this section.

Let 𝑑 = 𝑏𝑙1−1 ∥ · · · ∥ 𝑏0 be the hash value of a message and define 𝑆 =
∑𝑙1−1
𝑖=0 𝑏𝑖 . The

corresponding checksum is defined as:

𝐶 =
𝑙1−1∑︁
𝑖=0
(𝑤 − 1 − 𝑏𝑖)

= 𝑙1(𝑤 − 1) −
𝑙1−1∑︁
𝑖=0

𝑏𝑖

= 𝑙1(𝑤 − 1) − 𝑆.

Let (𝑐𝑙2−1, . . . , 𝑐0) be its base-𝑤 representation. The verification cost 𝑣 of a signature is the
required number of evaluations of the Winternitz chaining function 𝑓 . It is the sum of
the cost of verifying the message blocks 𝑣𝑚 and the cost of verifying the checksum blocks
𝑣𝑐 .

For a given message hash, the message block verification cost is

𝑣𝑚 =
𝑙1∑︁
𝑖=0
(𝑤 − 1 − 𝑏𝑖) = 𝑙1(𝑤 − 1) − 𝑆

and the checksum verification cost is

𝑣𝑐 =
𝑙2∑︁
𝑖=0
(𝑤 − 1 − 𝑐𝑖) = 𝑙2(𝑤 − 1) −

𝑙2∑︁
𝑖=0

𝑐𝑖 .

74

6.4. Verification-Optimized Signatures

The total verification cost is therefore

𝑣 = 𝑣𝑚 + 𝑣𝑐 = 𝑙 (𝑤 − 1) − 𝑆 −
𝑙2∑︁
𝑖=0

𝑐𝑖 .

Minimizing 𝒗 We observe that the verification cost 𝑣 only depends on the message block
sum 𝑆 . This is because the checksum is also fully determined by the value of 𝑆 . Let
𝑣 (𝑆) be the verification cost of a message with message block sum 𝑆 . WOTS-R iterates
over to multiple nonces to maximize 𝑆 and therefore minimize 𝑣𝑚 (𝑆). However, it is not
immediately clear how 𝑣𝑐 (𝑆) behaves and that the larger 𝑆 leads to smaller 𝑣 (𝑆), that is,
that 𝑣 is a monotonous function.

0 200 400 600 800 1000
Message block sum (

0

200

400

600

800

1000

Ve
ri

fic
at

io
n

co
st
E
((
)

Verification cost F = 16

(a)𝑤 = 16

0 50 100 150 200 250 300 350 400
Message block sum (

0

50

100

150

200

250

300

350

400

Ve
ri

fic
at

io
n

co
st
E
((
)

Verification cost F = 4

(b)𝑤 = 4

Figure 6.2.: WOTS Verification cost 𝑣 (𝑆) by message block sum 𝑆 for 𝑛 = 256

Figure 6.2 shows the function 𝑣 for two choices of parameters and for these, 𝑣 is indeed a
monotonous function. Furthermore, we can prove for all parameters that 𝑣 is monotonous,
that is, that 𝑣 (𝑆 + 1) ≤ 𝑣 (𝑆) holds for all 𝑆 . Let 𝐶 be the checksum for message block sum
𝑆 and 𝐶′ for 𝑆 + 1. We observe that there is only exactly one index 𝑖 such that 𝑐′𝑖 = 𝑐𝑖 + 1
while for all other 𝑗 ≠ 𝑖 the condition 𝑐′𝑗 ≤ 𝑐 𝑗 holds. It follows that

∑𝑙2−1
𝑖=0 𝑐

′
𝑖 ≤ 1 +∑𝑙2−1

𝑖=0 𝑐𝑖
and therefore that 𝑣 (𝑆 + 1) ≤ 𝑣 (𝑆). For 𝑐0 < 𝑤 − 1, the conditions 𝑐 𝑗 = 𝑐′𝑗 for all 𝑗 ≠ 0
and therefore 𝑣 (𝑆 + 1) = 𝑣 (𝑆) holds. This means that 𝑣 is a step function that changes in
intervals of size𝑤 .

This result means that maximizing 𝑆 yields in all cases the minimal message verification
cost 𝑣 (𝑆).

Modeling 𝒗 Bos et al. [8] assume that the hash function 𝑔 behaves like a random function.
Hence, the 𝑏𝑖 follow the uniform distributionU([0,𝑤 − 1]). They prove that the random

75

6. Implementation

variable 𝑋 =
∑𝑙1−1
𝑖=0 (𝑏𝑖)/𝑙1 has the mean E[𝑋] = 𝑤−1

2 and the variance V[𝑋] = 𝑤2−1
12𝑙1 . There-

fore, they approximate the behavior of 𝑋 and assume it follows the normal distribution
N(𝑤−1

2 , 𝑤
2−1

12𝑙1)1.

The sum of message blocks 𝑆 = 𝑙1𝑋 therefore follows the distribution N(`𝑆 , 𝜎2
𝑆) for

`𝑆 = 𝑙1 (𝑤−1)
2 and 𝜎2

𝑆 = 𝑙1 (𝑤2−1)
12 . To model hashing with 𝑅 nonces, we define the random

variables 𝑆𝑅−1, . . . , 𝑆0 with this distribution. As the nonce with the largest associated
message block sum is chosen, we evaluate the expected verification cost for a message
with sum 𝑆𝑚𝑎𝑥 = max{𝑆𝑅−1, . . . , 𝑆0}.
Bos et al. show that the expected value of the message block verification cost is:

E[𝑣𝑚 (𝑆𝑚𝑎𝑥)] = E[𝑙1(𝑤 − 1) − 𝑆𝑚𝑎𝑥]
= 𝑙1(𝑤 − 1) − E[𝑆𝑚𝑎𝑥]

=
𝑙1(𝑤 − 1)

2 − Φ−1
(

𝑅 − 𝛼
𝑅 − 2𝛼 + 1

) √︂
𝑙 (𝑤2 − 1)

12

where Φ−1 is the inverse of the normal distribution N(0, 1) and 𝛼 = 𝜋
8 .

Calculating the expected verification for the entire signature for 𝑅 nonces, E[𝑣 (𝑆𝑚𝑎𝑥)], is
more challenging as it requires the expected verification cost for the checksum blocks,
E[𝑣𝑐 (𝑆𝑚𝑎𝑥)]:

E[𝑣 (𝑆𝑚𝑎𝑥)] = E[𝑣𝑚 (𝑆𝑚𝑎𝑥) + 𝑣𝑐 (𝑆𝑚𝑎𝑥)] = E[𝑣𝑚 (𝑆𝑚𝑎𝑥)] + E[𝑣𝑐 (𝑆𝑚𝑎𝑥)]

Bos et al. present two different approximations for E[𝑣𝑐 (𝑆𝑚𝑎𝑥)]:

Random Checksum The checksum blocks 𝑐𝑙2−1, . . . , 𝑐0 are assumed to follow the uniform
distribution U([0,𝑤 − 1]) and to be independent of the message blocks 𝑏𝑙1−1, . . . , 𝑏0.
Therefore, the verification cost of the message signature blocks is independent of 𝑅 and
we have E[𝑣𝑐 (𝑆𝑚𝑎𝑥)] = 𝑙2(𝑤 − 1)/2.

Worst-Case Checksum Bos et al. claim that maximizing the values of the message blocks
leads to a lower average of the checksum blocks. Hence, the independence assumption
above does not hold. Instead, E[𝑣𝑐 (𝑆𝑚𝑎𝑥)] is modeled as an upper bound for the verification
cost of the checksum: E[𝑣𝑐 (𝑆𝑚𝑎𝑥)] = 𝑙2(𝑤 − 1).
This may be an acceptable approximation for large values of 𝑅 as large iteration counts
lead to high message blocks on average which leads to a low average of the checksum
blocks and, therefore, to a verification cost close to the worst case.

1Bos et al. [8, Assumption 1] assume the normal distribution asN(𝑤−1
2 , 𝑤

2−1
12). Yet, they proveV[𝑋] = 𝑤2−1

12𝑙1
and present further calculations using this value. We expect this is merely a typing mistake in the variance
used in the normal distribution.

76

6.4. Verification-Optimized Signatures

Expected Checksum Additionally, we present a way to specifically calculate E[𝑣𝑐 (𝑆𝑚𝑎𝑥)].
Note that the random variable 𝑆𝑚𝑎𝑥 takes values in {0, . . . , 𝑙1(𝑤 − 1)}. Therefore, the
definition of the expected value yields:

E[𝑣𝑐 (𝑆𝑚𝑎𝑥)] =
𝑙1 (𝑤−1)∑︁
𝑠=0

𝑣𝑐 (𝑠) · Pr[𝑆𝑚𝑎𝑥 = 𝑠] .

As 𝑆𝑚𝑎𝑥 is a discrete random variable, we can determine the required probabilities as:

Pr[𝑆𝑚𝑎𝑥 = 𝑠] = Pr[𝑆𝑚𝑎𝑥 ≤ 𝑠] − Pr[𝑆𝑚𝑎𝑥 ≤ 𝑠 − 1],
Pr[𝑆𝑚𝑎𝑥 ≤ 𝑠] = Pr[𝑆𝑅−1 ≤ 𝑠] · . . . · Pr[𝑆0 ≤ 𝑠]

= (Pr[𝑆0 ≤ 𝑠])𝑅,

Pr[𝑆0 ≤ 𝑠] = Φ

(
𝑠 − `𝑆
𝜎𝑆

)
where Φ is the distribution function of the normal distribution N(0, 1).

23 28 213 218 223 228 233

Iterations '

250

300

350

400

450

500

Ex
pe

ct
ed

ve
ri

fic
at

io
n

co
st
E

WOTS-R Expected Verification Cost F = 16
Random Checksum
Worst-Case Checksum
Expected Checksum

(a)𝑤 = 16

23 28 213 218 223 228 233

Iterations '

120

140

160

180

200

Ex
pe

ct
ed

ve
ri

fic
at

io
n

co
st
E

WOTS-R Expected Verification Cost F = 4
Random Checksum
Worst-Case Checksum
Expected Checksum

(b)𝑤 = 4

Figure 6.3.: WOTS-R expected verification cost for different checksum models

Figure 6.3 shows the expected verification cost for the three models of the checksum. We
observe that the verification cost with the expected checksum lies between the random
and the worst-case checksum. For𝑤 = 16, it approaches the random checksum at about
𝑅 = 231 and about 𝑅 = 224 for𝑤 = 4.

WOTS-B Perin et al. [57] propose another modification of WOTS which we describe in
Section 2.4.3. It fills the unused bits of the checksum with ones instead of zeroes. This
increases 𝑐𝑙2−1 by a fixed amount and therefore reduces 𝑣𝑐 by the same amount. The actual
amount depends on the concrete choice of parameters. Overall, this optimization does not
influence the verification cost beyond a constant reduction.

77

6. Implementation

Let 𝑛𝑢 denote the number of unused bits in the checksum. Setting these bits to one
effectively increases the value of the highest-order checksum block 𝑐𝑙2−1 by 𝑏 = 𝑤 −
2log(𝑤)−𝑛𝑢 . This change directly reduces the checksum verification cost 𝑣𝑐 and thereby the
overall verification cost by 𝑏.

Recall that 𝑛𝑢 = 𝑛𝑟 − 𝑛𝑐 = 𝑙2 log(𝑤) − ⌈log(𝑙1(𝑤 − 1))⌉. For 𝑛 = 256 and𝑤 = 16, we have
𝑙1 = 64, 𝑙2 = 3, 𝑛𝑢 = 2, and therefore 𝑏 = 12. For𝑤 = 4, we have 𝑙1 = 128, 𝑙2 = 6, 𝑛𝑢 = 1 and
𝑏 = 2. Note that the impact of the WOTS-B optimization is smaller for smaller values of𝑤
as the number of checksum blocks 𝑙2 can adapt better to the required number of checksum
bits 𝑛𝑐 .

6.4.1.2. WOTS+C

While the main intention behind WOTS+C is the reduction of the signature size, Kudinov
et al. remark that, with the right choice of parameters, it could also be used for verification-
optimized signatures [46]. In the following, we present a theoretical evaluation of WOTS+C
for this purpose.

As introduced in Section 2.4.4, the scheme uses two parameters: a designated message
block sum 𝑆 and a number of zero-blocks 𝑧. A given message is hashed with nonces until
the resulting hash value has the message block sum 𝑆 and 𝑧 zero-blocks on the left.

Given parameters 𝑆 and 𝑧, we want to determine the expected number of nonces that have
to be tested until a hash value is found that fulfills the requirements.

We define the sets 𝑀𝑤,𝑙1 = {0, . . . ,𝑤 − 1}𝑙1 and 𝑀𝑤,𝑙1,𝑆 = {(𝑚𝑙1−1, . . . ,𝑚0) ∈ 𝑀𝑤,𝑙1 | 𝑚𝑙1−1 +
· · · +𝑚0 = 𝑆}. Not that base-𝑤 encoding of message hashes bijectively maps hash values
to 𝑀𝑤,𝑙1 . As a result, the number of possible hash values is equal to |𝑀𝑤,𝑙1 | = 𝑤 𝑙1 .

The elements of 𝑀𝑤,𝑙1,𝑆 directly correspond to the hash values with message block sum 𝑆 .
Assuming the hash function behaves like a random function, we find that the probability
that a hash has the message block sum 𝑆 is:

𝑝𝑆 =
|𝑀𝑤,𝑙1,𝑆 |
|𝑀𝑤,𝑙1 |

=
|𝑀𝑤,𝑙1,𝑆 |
𝑤 𝑙1

.

Kudinov et al. [46] find that

|𝑀𝑤,𝑙1,𝑆 | =
𝑙1∑︁
𝑗=0
(−1) 𝑗

(
𝑙1
𝑗

) ((𝑆 + 𝑙1) − 𝑗𝑤 − 1
𝑙1 − 1

)
.

Additionally, they set 𝑧𝑏 = log 𝑧 and argue that 𝑧𝑏 is the number of zero-bits the hash value
must have. Therefore, the probability that a hash value has 𝑧 zero-blocks is:

𝑝𝑧 = 2−𝑧𝑏 .

78

6.4. Verification-Optimized Signatures

Based on those two probabilities, Kudinov et al. [46] claim that the probability of finding a
hash that fulfills both properties is:

𝑝𝑆,𝑧 = 𝑝𝑆 · 𝑝𝑧 .

By giving this formula, they implicitly assume that both events are statistically independent.
However, this is not the case. Assume 𝑆′ is the value that maximizes 𝑝𝑆 ′,0. In this case, 𝑆′
is also the expected value for the message block sum. According to the formula above,
the same 𝑆′ also maximizes 𝑝𝑆 ′,𝑙1/2. This means that, when looking only at hash values
where half the blocks are zero, the same message block sum 𝑆′ still yields the highest
probability. This is, however, not the case, especially, because the expected message block
sum halves.

In the most extreme case, consider 𝑝1,𝑙1 . This is the probability that a given message hash
has only zero-blocks and the sum of its blocks is one. Its value is zero, as this event is
impossible. Still, the given formula yields a small, but non-zero probability.

Let 𝑀𝑤,𝑙1,𝑆,𝑧 = {(𝑚𝑙1−1, . . . ,𝑚0) ∈ 𝑀𝑤,𝑙1,𝑆 | 𝑚0 = · · · = 𝑚𝑧−1 = 0}. This is the set of the
base-𝑤 encodings of all hashes that fulfill both properties.

We observe that
|𝑀𝑤,𝑙1,𝑆,𝑧 | = |𝑀𝑤,𝑙1−𝑧,𝑆 |.

With this, we can correctly determine the probability 𝑝𝑆,𝑧 as:

𝑝𝑆,𝑧 =
|𝑀𝑤,𝑙1,𝑆,𝑧 |
|𝑀𝑤,𝑙1 |

=
|𝑀𝑤,𝑙1−𝑧,𝑆 |
𝑤 𝑙1

.

Given 𝑝𝑆,𝑧 , the expected number of nonces that have to be tested until a matching hash is
found can be trivially calculated as 1

𝑝𝑆,𝑧
.

Impact of Wrong Probability In this section, we discuss the impact of the flawed formula
for 𝑝𝑆,𝑧 given by Bos et al. [8]. First, we note that for 𝑧 = 0, the event that the hash value
has the required number of zero-blocks is always fulfilled. In this case, the calculation by
Bos et al. is correct.

Figure 6.4 shows that the results diverge with growing values of 𝑧. Most importantly, the
expected values 𝑆 are different, that is, the value of 𝑆 that minimizes the expected number
of iterations. Bos et al. propose using WOTS+C for smaller signatures. Therefore, they
chose the expected value of 𝑆 . If this value is chosen based on the wrong assumption, the
resulting scheme will perform worse than the preceding analysis suggested. For example,
for𝑤 = 16 and 𝑧 = 4, the value 𝑆 = 480 would be chosen with an expected value of around
0.6× 107 iterations. In reality, the expected value is about a third higher at around 0.8× 107.
Therefore, the scheme would perform about a third worse due to the parameter selection
based on wrong assumptions.

79

6. Implementation

300 350 400 450 500 550 600 650
Message block sum (

0.2

0.4

0.6

0.8

1.0

Ex
pe

ct
ed

nu
m

be
r

of
it

er
at

io
ns

×107
WOTS+C Comparison Expected Iterations Bos et al. F = 16

Own I = 0
Bos I = 0
Own I = 1
Bos I = 1
Own I = 2
Bos I = 2
Own I = 3
Bos I = 3
Own I = 4
Bos I = 4

(a)𝑤 = 16

140 160 180 200 220 240
Message block sum (

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Ex
pe

ct
ed

nu
m

be
r

of
it

er
at

io
ns

×105
WOTS+C Comparison Expected Iterations Bos et al. F = 4

Own I = 0
Bos I = 0
Own I = 1
Bos I = 1
Own I = 2
Bos I = 2
Own I = 3
Bos I = 3
Own I = 4
Bos I = 4
Own I = 5
Bos I = 5
Own I = 6
Bos I = 6

(b)𝑤 = 4

Figure 6.4.: WOTS+C expected iterations by message sum for both models. For 𝑧 = 0, both
models are identical.

Bos et al. do not explicitly mention which value of 𝑧 they use for SPHINCS+C. We assume
that they chose 𝑧 = 0. In this case, their formula is also correct. Therefore, we expect
that the flawed assumption made by Bos et al. does not have any influence on their main
contribution.

Performance impact of z In the following, we discuss the impact of the parameter 𝑧 on
the application of WOTS+C for verification-optimized signatures.

In this evaluation, we focus on the verification performance while reducing the signature
size is not the main objective. Increasing 𝑧 by one reduces the verification cost by 𝑤−1

2
on average as one signature block less has to be signed. At the same time, the size of
the signature is reduced by 𝑛 bits. However, the signing cost increases by a factor of
approximately 𝑤 . Note that this approximation is based on the same assumption of
statistical independence discussed above.

However, this increased budget for signing could alternatively be used to instead increase
𝑆 for an unchanged 𝑧. This would also reduce the signature cost. We want to evaluate
which change provides the better result.

Additionally, we remark that a further possibility would be to increase 𝑧, which effectively
decreases 𝑛 and results in a smaller signature size. The reduction in the signature size
could possibly be used to decrease the value of𝑤 while not increasing the signature size
compared to the original signature size. This generally also improves the verification cost
as it reduces the length of the Winternitz chains. For this thesis, we limit the Winternitz
parameter𝑤 to powers of two. Therefore, this is not possible for reasonable choices of 𝑧,
𝑤 , and 𝑙1.

80

6.4. Verification-Optimized Signatures

300 350 400 450 500 550 600 650
Message block sum (

1

2

3

4

5
Ex

pe
ct

ed
N

um
be

r
of

it
er

at
io

ns
×105 WOTS+C Expected Iterations F = 16

I = 0
I = 1
I = 2
I = 3

(a)𝑤 = 16

160 180 200 220
Message block sum (

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Ex
pe

ct
ed

N
um

be
r

of
it

er
at

io
ns

×103 WOTS+C Expected Iterations F = 4
I = 0
I = 1
I = 2
I = 3

(b)𝑤 = 4

Figure 6.5.: WOTS+C expected iterations by message sum

Figure 6.5 shows the expected signature cost for parameters 𝑧 and𝑤 . We recall that the
verification cost is directly dependent on 𝑆 : 𝑣 (𝑆) = 𝑣𝑚 (𝑆) = 𝑙1(𝑤 − 1) − 𝑆 . As WOTS+C
does not use an explicit checksum, we have 𝑣𝑐 (𝑆) = 0.

Therefore, we expect that increasing 𝑧 by one and increasing 𝑆 by 𝑤−1
2 lead to a similar

reduction in the verification cost. Under this assumption, we find for the combinations
of 𝑆 , 𝑧, and 𝑤 depicted in Figure 6.5 that it is generally better to increase 𝑆 by 𝑤−1

2 than
to increase 𝑧 without changing 𝑆 . At the same expected verification cost, it is possible to
either increase the 𝑧 by one or 𝑆 by more than 𝑤−1

2 .

We assume that this is generally applicable. Therefore, we set 𝑧 = 0 for the rest of this
thesis as this achieves the lowest verification cost.

6.4.1.3. Comparison

Comparability of the Iterations In WOTS-B, each iteration consists of computing the hash
of the message with a new nonce and calculating the message block sum for this hash
value. The resulting message block sum is then compared to the current best result and
for most iterations, no further action is required.

In WOTS+C with 𝑧 = 0, the iterations are very similar: a hash value with a new nonce and
its message block sum are computed. The sum is then compared to 𝑆 and if they are equal,
no further iterations are required.

The iterations in WOTS-BR and WOTS+C are very similar. We, therefore, assume that
iterations for both schemes have the same cost.

81

6. Implementation

WOTS-BR To compare the schemes, we want to evaluate the message verification cost
achieved on average for a certain number of iterations. For WOTS-R, this is straightforward
once a checksum model has been chosen. This is depicted in Figure 6.3. For WOTS-BR, we
simply reduce the expected message verification cost for WOTS-R by 𝑏.

WOTS+C For WOTS+C, we can calculate the expected number of iterations for a choice of
𝑆 . As 𝑣 = 𝑙1(𝑤 − 1) − 𝑆 , we can compute the expected number of iterations by verification
cost and plot this into the same diagram as the expected performance of WOTS-B and
WOTS-BR.

24 29 214 219 224 229 234 239

(Expected) Number of Iterations

250

300

350

400

450

(E
xp

ec
te

d)
Ve

ri
fic

at
io

n
C

os
t

Comparison WOTS+C and WOTS-BR F = 16
WOTS+C
WOTS-R Expected Checksum
WOTS-BR Expected Checksum

(a)𝑤 = 16

24 29 214 219 224 229 234 239

(Expected) Number of Iterations

120

140

160

180

(E
xp

ec
te

d)
Ve

ri
fic

at
io

n
C

os
t

Comparison WOTS+C and WOTS-BR F = 4
WOTS+C
WOTS-R Expected Checksum
WOTS-BR Expected Checksum

(b)𝑤 = 4

Figure 6.6.: Comparison of WOTS+C, WOTS-R, and WOTS-BR

Figure 6.6 shows a comparison of the (expected) verification cost at a given (expected)
number of iterations for WOTS+C, WOTS-R, and WOTS-BR. We recall that the expected
verification cost for WOTS-R and WOTS-BR only differ by 𝑏. For small iteration counts,
we find that both WOTS-R and WOTS-BR perform better than WOTS+C. This is mainly
because even for the choice of 𝑆 that minimizes the expected number of iterations, multiple
iterations are required. This value is exactly the expected value of the message block sum
for one hash value and therefore has the same verification cost as WOTS-R with 𝑅 = 1
(neglecting the checksum).

However, for more than 213 (𝑤 = 16) or 29 (𝑤 = 4) iterations, we expect WOTS+C to achieve
better results than WOTS-R. Overall, the results of WOTS+C are close to or better than the
over-optimistic random checksum model for WOTS-R. For more than 232 iterations and
𝑤 = 16, we find that the expected performance of WOTS-R approaches that of WOTS+C.
We do not observe this behavior for𝑤 = 4.

For WOTS-BR and𝑤 = 16, we expect that WOTS-BR provides better results than WOTS+C
for less than about 220 iterations, comparable results for less than about 230 iterations and
better performance for even more iterations. We note that the last observation might
not be practically relevant as such large signature costs may not be feasible in many
application scenarios. For𝑤 = 4, the improvement of WOTS-BR over WOTS-R is smaller.

82

6.4. Verification-Optimized Signatures

We find that, for more than about 211 signatures, we expect WOTS+C to achieve better
results than WOTS-BR.

Overall, we find that for most verification-optimized application scenarios, the scheme vari-
ant WOTS+C shows a better expected performance than WOTS-R. Comparing WOTS+C
and WOTS-BR, it is harder to draw a general conclusion. For small choices of𝑤 , WOTS+C
appears preferable. For larger values of 𝑤 , a more detailed investigation based on the
concrete choice of parameters is required.

Additionally, WOTS+C reduces the size of the signature by removing the checksum. Note
that for a choice of parameters, WOTS-R and WOTS-BR guarantee the signing cost with
variable verification cost while WOTS+C guarantees the verification cost with variable
signing cost. Depending on the specific application scenario, one might be preferable over
the other.

6.4.2. Practical Validation

This section describes how we implement WOTS-BR and WOTS+C to practically validate
the theoretical results presented in the previous section.

6.4.2.1. WOTS-BR

Implementation We implement WOTS-BR as an extension of the WOTS implementation
used by BouncyCastle for XMSS to allow for a possible integration of the WOTS variant
into XMSS. Our implementation is parameterized by the number of iterations 𝑅 and
whether the WOTS-B padding optimization should be used. Additionally, we implement
the option to select the message not by maximal message block sum 𝑆 but by minimal
total verification cost 𝑣 . However, this option is unnecessary as described in Section 6.4.1.1
and we will therefore not evaluate it further.

As suggested by Bos et al. [8], the implementation initially invokes the update function
of the hash function for the message. The resulting state is cached. For each nonce, the
cached state is restored and the nonce is consumed to calculate the hash. Afterward, the
message block sum 𝑆 is calculated. If the 𝑆 is larger than the current best value, 𝑆 , the used
nonce and the resulting digest are stored.

The implementation uses the 64-bit binary representation of the values {0, . . . , 𝑅 − 1} as
nonces. Once all nonces have been used, the nonce with the maximum 𝑆 is chosen and
the resulting digest is signed by the regular WOTS implementation.

83

6. Implementation

Benchmarking To evaluate WOTS-BR and our implementation, we measure two aspects:
the runtime of the implementation and the verification cost of the generated signatures.
We chose 𝑅 = 2𝑡 for 𝑡 ∈ {10, . . . , 30}. For the majority of values of 𝑅, 1024 messages are
signed. As the cost of the signing process grows exponentially in 𝑡 , we reduce the number
of messages signed for 𝑡 ≥ 27 to keep the runtime of the benchmark in a reasonable time
frame.

We only benchmark WOTS-R and derive the message verification cost for WOTS-BR by
subtracting 𝑏. For a given number of iterations 𝑅, the runtime difference of both schemes
is negligible.

The used messages are generated pseudorandomly by hashing the number of the mes-
sage.

6.4.2.2. WOTS+C

Implementation To validate the theoretical evaluation of WOTS+C, we implement the
scheme similar to WOTS-BR as an extension of the WOTS implementation for XMSS in
BouncyCastle. It uses the parameters 𝑆 and 𝑧, yet we set 𝑧 = 0 as elaborated above. Again,
we use the state caching strategy to compute hashes for multiple nonces at a minimal
cost.

Benchmark In the benchmarks for WOTS+C, we once more measure the runtime of the
implementation. As the verification cost of the resulting message is directly determined
by the parameter 𝑆 , it is not necessary to measure it. Instead, we measure the number of
nonces that has to be tested before a suitable hash value is found.

For 𝑤 = 16, 1024 messages with 𝑆 increasing in steps of 10 between 480 and 670. Addi-
tionally, 256 messages are signed for 𝑆 = 680 and 𝑆 = 686. For 𝑤 = 4, we evaluate 1024
messages for 𝑆 between 192 and 156 with a step size of 4 and 256 messages for 𝑆 = 260,
𝑆 = 264, and 𝑆 = 266.

6.4.2.3. Comparison of Iterations

In Section 6.4.1.3, we assume that iterations of WOTS+C and WOTS-R require the same
amount of time and are therefore comparable. We want to experimentally confirm this.

For this, we select a message and a value 𝑆 and observe the number of required iterations.
This value is then chosen as the parameter 𝑅 for WOTS-R. In this configuration, both
schemes make the same number of iterations and therefore should have a similar total
runtime.

84

7. Evaluation

This chapter presents the results of the implementation and, therefore, largely follows the
structure of the previous chapter: first, we present the benchmark results for the XMSS
reference implementation. Second, we present the benchmark results for the different
optimization levels in BouncyCastle. We continue by giving results for the parallelization
of the HBS key generation and finish by presenting the validation of the evaluation of the
verification-optimized scheme variants.

7.1. XMSS Reference Implementation

(SHA-256, m5zn)

(SHA-256, m6i)

(SHAKE256, m5zn)

(SHAKE256, m6i)

Digest, Instance

0.00

0.05

0.10

0.15

0.20

0.25

D
ur

at
io

n
[µ

s]

XMSS Reference Hashing

=

256
192

Figure 7.1.: Benchmark results for hashing with the XMSS reference implementation

Figure 7.1 shows the results of the hash benchmark with the XMSS reference implementa-
tion described in Section 6.1. We present benchmark results for two different EC2 instances:
m5zn and m6i. Recall that our previous tests in Section 5.3.2 showed that the m5zn instances
are generally faster, but do not support SHA-NI.

The input sizes are equivalent to the ones used for the Winternitz chaining function 𝐹 as
specified in Section 3.3.1. For 𝑛 = 256, this is 768 bits, and 416 bits for 𝑛 = 192.

For SHA-256 with a block size of 512 bits, this means that two blocks have to be processed
for 𝑛 = 256 and only one for 𝑛 = 192. Each processed block requires one evaluation of the

85

7. Evaluation

SHA-256 compression function. This is recognizable in the results we see: on both m5zn

and m6i, there is almost a factor of 2 difference between the two choices for 𝑛.

SHAKE256 uses a block size of 1088 bits, hence for both choices of 𝑛 only one block must
be processed. This matches our benchmark results: on both instance types, 𝑛 = 192 is only
insignificantly faster.

Comparing the results across instance types, we observe that m6i is slower than m5zn for
SHAKE256. This coincides with our observations in Section 5.3.2.

For SHA-256, m6i only requires half the time of m5zn. The XMSS reference implementation
relies on OpenSSL for SHA-256. OpenSSL uses SHA-NI if they are available. As this is the
case on m6i, SHA-256 is significantly faster on this instance type.

(SHA-256, m5zn)

(SHA-256, m6i)

(SHAKE256, m5zn)

(SHAKE256, m6i)

Digest, Instance

0

10

20

30

40

50

60

70

D
ur

at
io

n
[s

]

XMSS Reference Key Generation ℎ = 16

n
256
192

(a) Key Generation

(SHA-256, m5zn)

(SHA-256, m6i)

(SHAKE256, m5zn)

(SHAKE256, m6i)

Digest, Instance

0

1

2

3

4

5
D

ur
at

io
n

[m
s]

XMSS Reference Signing ℎ = 16

n
256
192

(b) Signing

(SHA-256, m5zn)

(SHA-256, m6i)

(SHAKE256, m5zn)

(SHAKE256, m6i)

Digest, Instance

0.0

0.1

0.2

0.3

0.4

0.5

D
ur

at
io

n
[m

s]

XMSS Reference Verify ℎ = 16

=

256
192

(c) Verification

Figure 7.2.: Benchmark results for the XMSS Reference Implementation with ℎ = 16

86

7.2. Optimization Levels

Figure 7.2 shows the benchmark results for key generation, signing, and verification with
the XMSS reference implementation. We observe that the results for all operations are
relatively similar.

The performance gain for SHA-256when reducing𝑛 from 256 to 192 is lower than the results
for hashing presented above. This is mainly due to two factors: the XMSS operations
contain other operations whose run-time is independent of 𝑛, like the allocation and
management of the addresses. Additionally, the hash results above take only the Winternitz
chaining function 𝐹 into account. Other functions may behave differently. For example,
PRF requires the same number of blocks for both values of 𝑛.

For SHAKE256, we observe a different effect: Though hashing with 𝐹 takes the same time
for both choices of 𝑛, the operations are overall faster for 𝑛 = 192. This is primarily due
to non-hashing operations whose runtime still depends on 𝑛, e.g. copying data between
buffers.

7.2. Optimization Levels

This section presents the benchmark results for the integration of the different optimiza-
tions proposed in Section 6.2 into BouncyCastle’s implementation of HBS, and compares
them to the default BouncyCastle implementation and the reference implementation
(XMSS only).

7.2.1. BouncyCastle

Level bc Figure 7.3 shows the benchmark results for XMSS for the reference implemen-
tation and unoptimized BouncyCastle. We observe that BouncyCastle behaves similarly
to the reference implementation: For SHA-2, reducing 𝑛 to 192 almost halves the cost of
hashing. In the XMSS operations, this effect is also noticeable, yet at a lower factor than 2.
For SHAKE, 𝑛 has little influence on hashing with 𝐹 , but overall, 𝑛 = 192 performs better
in the XMSS operations.

Comparing bc to the reference implementation, we observe that there is usually a factor of
about two or larger between both implementations. This applies to hashing, key generation,
and verification. For signing, this effect is slightly dampened. This might be caused by a
different implementation or instantiation of the BDS algorithm for tree traversal which is
an important part of the signing operation (see Section 2.5).

Furthermore, on m6i, the reference implementation with SHA-2 performs better by a factor
of up to seven. This is due to the use of SHA-NI on this instance type.

Overall, we draw two conclusions from these results: First, hashing and XMSS operations
behave qualitatively similarly when comparing different hash implementations and in-
stances for the same parameter set. Therefore, we will only present results for hashing for
the rest of the optimization levels. Additionally, we show results for the key generation if

87

7. Evaluation

(SHA-256, bc)

(SHA-256, ref
ere

nce)

(SHAKE256, bc)

(SHAKE256, ref
ere

nce)

Digest, HashingProvider

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

D
ur

at
io

n
[µ

s]

XMSS F Hashing m5zn

=

256
192

(a) Hashing on m5zn

(SHA-256, bc)

(SHA-256, ref
ere

nce)

(SHAKE256, bc)

(SHAKE256, ref
ere

nce)

Digest, HashingProvider

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

D
ur

at
io

n
[µ

s]

XMSS F Hashing m6i

=

256
192

(b) Hashing on m6i

(SHA-256, bc)

(SHA-256, ref
ere

nce)

(SHAKE256, bc)

(SHAKE256, ref
ere

nce)

Digest, HashingProvider

0

25

50

75

100

125

150

175

D
ur

at
io

n
[s

]

XMSS Key Generation m5zn ℎ = 16
=

256
192

(c) Key Generation with ℎ = 16 on m5zn

(SHA-256, bc)

(SHA-256, ref
ere

nce)

(SHAKE256, bc)

(SHAKE256, ref
ere

nce)

Digest, HashingProvider

0

25

50

75

100

125

150

175

D
ur

at
io

n
[s

]

XMSS Key Generation m6i ℎ = 16
=

256
192

(d) Key Generation with ℎ = 16 on m6i

88

7.2. Optimization Levels

(SHA-256, bc)

(SHA-256, ref
ere

nce)

(SHAKE256, bc)

(SHAKE256, ref
ere

nce)

Digest, HashingProvider

0

2

4

6

8

10

D
ur

at
io

n
[m

s]

XMSS Signing m5zn ℎ = 16
=

256
192

(e) Signing with ℎ = 16 on m5zn

(SHA-256, bc)

(SHA-256, ref
ere

nce)

(SHAKE256, bc)

(SHAKE256, ref
ere

nce)

Digest, HashingProvider

0

2

4

6

8

10

D
ur

at
io

n
[m

s]

XMSS Signing m6i ℎ = 16
=

256
192

(f) Signing with ℎ = 16 on m6i

(SHA-256, bc)

(SHA-256, ref
ere

nce)

(SHAKE256, bc)

(SHAKE256, ref
ere

nce)

Digest, HashingProvider

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

D
ur

at
io

n
[m

s]

XMSS Verification m5zn ℎ = 16
=

256
192

(g) Verification with ℎ = 16 on m5zn

(SHA-256, bc)

(SHA-256, ref
ere

nce)

(SHAKE256, bc)

(SHAKE256, ref
ere

nce)

Digest, HashingProvider

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

D
ur

at
io

n
[m

s]

XMSS Verification m6i ℎ = 16
=

256
192

(h) Verification with ℎ = 16 on m6i

Figure 7.3.: Benchmark results for the XMSS with the bc optimization level

89

7. Evaluation

they can not be directly inferred from the hashing results. Further results are available in
Appendix A.

Secondly, we note that BouncyCastle performs significantly worse than the reference
implementation and there is a large potential for optimization.

bc bc-optimized reference
HashingProvider

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

D
ur

at
io

n
[µ

s]

XMSS Hashing SHA-256 m5zn

=, Function
(256, F)
(256, PRF)
(192, F)

(a) m5zn

bc bc-optimized reference
HashingProvider

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

D
ur

at
io

n
[µ

s]

XMSS Hashing SHA-256 m6i

=, Function
(256, F)
(256, PRF)
(192, F)

(b) m6i

Figure 7.4.: Benchmark results for XMSS hashing with SHA-256 with the optimization level
bc-optimized

Level bc-optimized Figure 7.4 shows the benchmark for hashing with the optimization
level bc-optimized. This level only implements SHA-256. Unlike the previous hash
benchmarks, we additionally simulate the function PRF for 𝑛 = 256. Without the PRF
caching optimization, PRF behaves exactly like 𝐹 as the input lengths are equal. Therefore,
we only expect a difference between 𝐹 and PRF for bc-optimized and 𝑛 = 256. For this
reason, we do not provide benchmark results for PRF with 𝑛 = 192 or reference.

For 𝐹 , we find that the optimizations bring a small, yet still noticeable improvement of 6.3%
on m5zn and 5.5% on m6i over bc. Nevertheless, the PRF caching optimization considerably
speeds up PRF. While PRF for 𝑛 = 256 takes as long as 𝐹 for 𝑛 = 192 with bc, it only takes
as long as 𝐹 for 𝑛 = 192 for bc-optimized. This represents a reduction by 46% and is the
behavior we expect from PRF caching: Without PRF caching, two SHA256 blocks must be
evaluated for each invocation of PRF. Caching reduces this to one block. For 𝑛 = 192, the
function 𝐹 only requires one block as well.

Figure 7.5 shows our measurements for key generation. For XMSS with 𝑛 = 192 and
LMS the optimizations only bring a minor improvement over bc of up to 5.5% and 2.1%,
respectively. For XMSS with 𝑛 = 256, we see significantly boosted performance due to the
PRF caching. Overall, we observe that PRF caching allows using 𝑛 = 256 with a level of
performance comparable to 𝑛 = 192.

The other optimizations have only little influence on the performance. However, the
relatively minor changes made still have an effect. We conjecture that a SHA-256 imple-

90

7.2. Optimization Levels

bc bc-optimized reference
HashingProvider

0

20

40

60

80

100

120

140

D
ur

at
io

n
[s

]
XMSS Key Generation SHA-256 m5zn ℎ = 16

=

256
192

(a) m5zn

bc bc-optimized reference
HashingProvider

0

25

50

75

100

125

150

175

D
ur

at
io

n
[s

]

XMSS Key Generation SHA-256 m6i ℎ = 16
=

256
192

(b) m6i

Figure 7.5.: Benchmark results for XMSS key generation with the bc-optimized optimiza-
tion level and ℎ = 16

mentation dedicated to short-input hashing for HBS might be able to provide another
small improvement over the general-purpose implementation in BouncyCastle.

7.2.2. Amazon Corretto Crypto Provider

bc corre�o reference
HashingProvider

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

D
ur

at
io

n
[µ

s]

XMSS F Hashing SHA-256 m5zn

=

256
192

(a) XMSS Hashing on m5zn

bc corre�o reference
HashingProvider

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

D
ur

at
io

n
[µ

s]

XMSS F Hashing SHA-256 m6i

=

256
192

(b) XMSS Hashing on m6i

Figure 7.6.: Benchmark results for XMSS hashing with SHA-2 and the corretto optimiza-
tion level

The benchmark results for hashing with corretto compared to bc and the XMSS reference
implementation are visualized in Figure 7.6. We find that the optimization level corretto
provides a significant improvement over bc. On m5zn, it reduces the runtimes by up to
36%. On m6i, this is even more noticeable: corretto provides an improvement by 68% for
𝑛 = 256 over bc.

91

7. Evaluation

Even with this improvement, corretto still performs considerably worse than the reference
implementation. On m6i, it is worse by a factor of two. Hence, there may still be room for
further improvement.

Once more, the hashing performance is well reflected in the performance of the HBS key
generation operations as shown in Appendix A. For example, corretto improves the
XMSS key generation by 64% for 𝑛 = 256 on m6i.

Overall, we observe that using ACCP brings a performance improvement, but the XMSS
reference implementation is still considerably faster.

7.2.3. JNI

This section presents our benchmark results for JNI described in Section 6.2.4. Specifically,
we start by giving the results for the JNI data transfer, the evaluated native hash imple-
mentations, and finally the achieved performance when using the combination of the best
data transfer method and the best hash implementation in HBSs.

7.2.3.1. JNI Data Transfer

ByteA
rra

yCriti
cal

ByteA
rra

yElem
ents

ByteA
rra

yRegion

Dire
ctB

yteB
u�er

Ne�
yPooledByteB

uf

Ne�
yUnpooled

ByteB
uf

Unsafe

Method

0

10

20

30

40

50

60

70

80

D
ur

at
io

n
[n

s]

JNI Data Transfer on m6i

Figure 7.7.: Benchmark results for the JNI data transfer benchmark on m6i

Figure 7.7 shows the results of the JNI transfer benchmark. The measurements include
copying the data from a Java byte array to another buffer (if necessary), calling the native
void, adding each pair of elements in the native code, returning to Java, and copying the
data from the buffer to a Java byte array, if necessary. The initial allocation of the buffers is
not part of the benchmark. However, the buffers may be reused and, therefore, the initial
allocation is only required once.

92

7.2. Optimization Levels

Overall, we find significant differences in performance depending on the chosen transfer
method. All three JNI methods and the Java ByteBuffer perform rather badly. Both
Netty ByteBufs and the Unsafe approach are quite comparable. The fastest JNI method,
GetByteArrayRegion and SetByteArrayRegion, takes more than twice as long as using
Unsafe.

The Netty Pooled ByteBuf is backed by a Java direct ByteBuffer. However, data is not
written to the ByteBuffer using the methods provided by it. Rather, the Unsafe class is
used to read from and write to the memory backing the ByteBuffer. Additionally, the
Netty ByteBuf does proper bounds checking. This explains why the performance of the
Netty ByteBufs and Unsafe are similar.

We proceed using the Netty unpooled ByteBuf as it provides better performance than
pooled ByteBufs. Additionally, it properly encapsulates the use of Unsafe and, therefore,
it is not necessary to directly use Unsafe. We consider the small performance penalty over
Unsafe to be acceptable for this benefit.

7.2.3.2. Choosing the Hash Implementations

52 96 128
Input Size [bytes]

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

D
ur

at
io

n
[µ

s]

Hashing SHA-256 m5zn

Implementation
OpenSSL direct
OpenSSL with CTX
OpenSSL Fixed padding
OpenSSL Custom padding

(a) m5zn

52 96 128
Input Size [bytes]

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

D
ur

at
io

n
[µ

s]

Hashing SHA-256 m6i

Implementation
OpenSSL direct
OpenSSL with CTX
OpenSSL Fixed padding
OpenSSL Custom padding

(b) m6i

Figure 7.8.: Benchmark results for different OpenSSL interfaces and padding implementa-
tions for SHA-256

SHA-256 The benchmark results for SHA-256 are shown in Figure 7.8. One block has to
be processed for an input size of 52 bytes, two blocks for 96 bytes, and three blocks for
128 bytes. This is well reflected in the results. We observe that the differences between
the implementations are relatively small. Across all input sizes and platforms, the direct
OpenSSL interface is the slowest, followed by OpenSSL with context. Both approaches
with external padding perform better than using the finalize function provided by OpenSSL.
This may be because, with external padding, it is not necessary to copy the data of the last
block into the internal buffer until the finalize function is invoked. Additionally, fewer
calls into OpenSSL are required.

93

7. Evaluation

Overall, the hard-coded padding performs slightly better than the custom padding that
is calculated on the fly. However, hard-coded padding like this can only be applied if
the input sizes are known in advance. We decide to further evaluate both approaches in
separate optimization levels to observe their impact on the HBS.

We remark at this point that another possibility would be to compute the padding on the
fly, but cache it for later use. This approach should provide a performance level similar
to the hard-coded padding while eliminating the need for the input sizes to be known in
advance.

52 96 128
Input Size [bytes]

0.0

0.1

0.2

0.3

0.4

D
ur

at
io

n
[µ

s]

Hashing SHAKE256 m5zn

Implementation
Custom
OpenSSL
XKCP

(a) m5zn

52 96 128
Input Size [bytes]

0.0

0.1

0.2

0.3

0.4

D
ur

at
io

n
[µ

s]

Hashing SHAKE256 m6i

Implementation
Custom
OpenSSL
XKCP

(b) m6i

Figure 7.9.: Benchmark results for different native SHAKE256 implementations

SHAKE256 Figure 7.9 depicts our benchmark results for SHAKE256. First, we note that the
run times appear to be independent of the input size. Due to the block size of 1088 bits,
only one block has to be processed for all the evaluated input sizes. There are significant
differences in performance for the different implementations. The custom implementation
is the slowest while XKCP only requires about half the amount of time on m5zn. The
performance of OpenSSL is somewhere between these two, depending on the platform.

As OpenSSL and XKCP use a closely related underlying implementation, this shows the
impact of the OpenSSL EVP interface on short-input hashing. Hence, we use XKCP for
the further implementation.

7.2.3.3. Implementation of jni-hash

SHA-2 Figure 7.10 shows the benchmark results for XMSS hashing and key generation
with the optimization levels jni, jni-fixed-padding, and jni-prf-cache.

For hashing, we find that jni is significantly faster than corretto. Compared to bc, this
optimization level reduces the runtime of a hash operation with 𝐹 by up to 53.7% on m5zn

and 80.4% on m6i. As in Section 7.2.3.2, the addition of the fixed padding optimization only

94

7.2. Optimization Levels

bc

corre
�o jni

jni-fi
xed

-padding

jni-p
rf-c

ache

ref
ere

nce

HashingProvider

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

D
ur

at
io

n
[µ

s]

XMSS Hashing SHA-256 m5zn

=, Function
(256, F)
(256, PRF)
(192, F)

(a) XMSS Hashing on m5zn

bc

corre
�o jni

jni-fi
xed

-padding

jni-p
rf-c

ache

ref
ere

nce

HashingProvider

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

D
ur

at
io

n
[µ

s]

XMSS Hashing SHA-256 m6i

=, Function
(256, F)
(256, PRF)
(192, F)

(b) XMSS Hashing on m6i

bc

corre
�o jni

jni-fi
xed

-padding

jni-p
rf-c

ache

ref
ere

nce

HashingProvider

0

25

50

75

100

125

150

175

D
ur

at
io

n
[s

]

XMSS Key Generation SHA-256 m5zn ℎ = 16
=

256
192

(c) XMSS Key Generation on m5zn with ℎ = 16

bc

corre
�o jni

jni-fi
xed

-padding

jni-p
rf-c

ache

ref
ere

nce

HashingProvider

0

25

50

75

100

125

150

175

D
ur

at
io

n
[s

]

XMSS Key Generation SHA-256 m6i ℎ = 16
=

256
192

(d) XMSS Key Generation on m6i with ℎ = 16

Figure 7.10.: Benchmark results for XMSS hashing and key generation with SHA-256 and
jni-hash

95

7. Evaluation

brings a slight improvement over jni bringing the overall reduction to 54.3% and 80.7%,
respectively.

We reiterate that for all shown optimization levels except jni-prf-cache, we expect 𝐹
and PRF to behave identically as they operate on the same input size. The optimization
level jni-prf-cache improves upon jni-fixed-padding by significantly reducing the cost
of PRF. This is due to the PRF caching optimization and comparable to the observations
for PRF caching in bc-optimized presented in Section 7.2.1. On m5zn, jni-fixed-padding
performs roughly on par with the reference implementation while it performs slightly
worse on m6i. Compared to PRF with bc, the combination of JNI and the fixed padding
optimization results in an improvement of 74.1% and 89.5%, respectively.

The results for the key generation once more directly reflect the behavior of 𝐹 for jni and
jni-fixed-padding. Overall, the performance of these optimization levels is comparable
to the reference implementation. For jni-prf-cache, we find a significant improvement
over jni and jni-fixed-padding. This means that XMSS key generation for 𝑛 = 256 is
also faster than the reference implementation. Compared to the reference implementation,
jni-prf-cache reduces the required time for the key generation by 28.8% on m5zn and
20.4% on m6i. Relative to bc, this is 66.2% and 84.1%.

The smaller savings on m6i compared to the XMSS reference implementation may be be-
cause hashing is considerably faster, yet the cost introduced by the use of JNI is comparable
on both platforms.

In conclusion, we find that the PRF caching optimization in combination with a fixed
padding or a custom padding implementation is more than able to compensate for the
cost of the JNI function calls. As a result, we can achieve better performance from a Java
implementation than the XMSS reference implementation.

However, we note that it would be easy to integrate the PRF caching optimization into the
reference implementation. For 𝑛 = 24, it would be possible to achieve better performance
by using a custom padding implementation as described in Section 6.2.4.2.

For LMS, we observe similar results. For example, jni-fixed-padding reduces the key
generation time on m6i by up to 78.4% (see Figure A.10). We expect to see worse results
for LMS than for XMSS because the PRF caching optimization can not be used with LMS.
We do not present benchmark results for SPHINCS+ with SHA-2 via JNI as we did not
implement this variant.

SHAKE256 Figure 7.11 shows the performance of XMSS hashing with SHAKE256. The
optimization level jni improves the hashing cost by up to 45.4% on m5zn and 45.9% on m6i

relative to bc. However, it still is noticeably slower than the reference implementation.
Unlike SHA-256, we are not aware of any further optimizations that could be applied to
jni.

XMSS key generation with SHAKE256 behaves similar to hashing and we measure a
reduction of up to 43.1% on m5zn (see Figures A.3 and A.4). We refrain from presenting the
benchmark results at this point and refer to Appendix A.

96

7.2. Optimization Levels

bc jni reference
HashingProvider

0.0

0.1

0.2

0.3

0.4

0.5

D
ur

at
io

n
[µ

s]

XMSS F Hashing SHAKE256 m5zn

=

256
192

(a) m5zn

bc jni reference
HashingProvider

0.0

0.1

0.2

0.3

0.4

0.5

D
ur

at
io

n
[µ

s]

XMSS F Hashing SHAKE256 m6i

=

256
192

(b) m6i

Figure 7.11.: Benchmark results for XMSS hashing with SHAKE256 and jni

bc jni
HashingProvider

0.0

0.2

0.4

0.6

0.8

D
ur

at
io

n
[µ

s]

SPHINCS+ Hashing F Haraka m5zn

=

128
192
256

(a) m5zn

bc jni
HashingProvider

0.0

0.2

0.4

0.6

0.8

D
ur

at
io

n
[µ

s]

SPHINCS+ Hashing F Haraka m6i

=

128
192
256

(b) m6i

Figure 7.12.: Benchmark results for SPHINCS+ hashing with Haraka and jni

97

7. Evaluation

Haraka Figure 7.12 compares the performance of the Winternitz chaining function 𝐹 in
SPHINCS+ for all specified values of 𝑛 with Haraka as the underlying hash function. Using
jni provides a reduction of up to 96.1% compared to bc. This is mainly due to the use of
the AES-NI as described in Section 4.1.2.

As each invocation of 𝐹 requires one evaluation of the permutation 𝜋512, we expect the
runtime of Haraka to be independent of 𝑛. This matches the benchmark results for bc.
However, the runtime of Haraka with jni decreases as 𝑛 increases. We conjecture that
this might be caused by the use of one Netty ByteBuf for transferring both input to and
output from JNI. For 𝑛 = 256, the input fills the entire buffer. For smaller values of 𝑛, this
is not the case, and it is necessary to explicitly clear the rest of the buffer because it may
still contain output data from the last invocation. This might lead to worse performance
for 𝑛 < 256.

For key generation, we observe an improvement of up to 95.3% compared to bc. We again
do not present further benchmark results at this point and refer to Appendix A.

7.2.4. Java

jni-fi
xed

-padding

jni-p
rf-c

ache
java

java-optim
ize

d

ref
ere

nce

HashingProvider

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

D
ur

at
io

n
[µ

s]

XMSS Hashing SHA-256 m5zn

=, Function
(256, F)
(256, PRF)
(192, F)

(a) m5zn

jni-fi
xed

-padding

jni-p
rf-c

ache
java

java-optim
ize

d

ref
ere

nce

HashingProvider

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

D
ur

at
io

n
[µ

s]

XMSS Hashing SHA-256 m6i

=, Function
(256, F)
(256, PRF)
(192, F)

(b) m6i

Figure 7.13.: Benchmark results for XMSS hashing with SHA-256 for java and
java-optimized

SHA-256 Figure 7.13 depicts the benchmark results for hashing with the optimization
levels java and java-optimized. We find that, on m6i, the level java slightly outperforms
jni-fixed-padding. On m5zn, java is slower than jni-fixed-padding.

The optimization level java-optimized significantly reduces the time required to calculate
a hash compared to java. For 𝐹 , the only difference is the way the implementation is
invoked: java uses the JCA/JCE interface, while java-optimized directly invokes the

98

7.2. Optimization Levels

underlying implementation. This shows that, for short-input hashing, the JCA/JCE adds
a considerable cost. Due to this optimization, java-optimized performs roughly on par
with reference on both platforms. Relative to BC as shown in Figures 7.10a and 7.10b,
the required time for one evaluation of 𝐹 is reduced by up to 54.8% on m5zn and 84.4% on
m6i.

For 𝑛 = 256, we find that the PRF caching optimization significantly reduces the cost
of hashing with PRF. This is consistent with our observations for bc-optimized and
jni-prf-cache shown in Figures 7.4, 7.10a and 7.10b. Overall, this brings the total im-
provement over bc for PRF to 71.5% and 89.7%, respectively.

jni-fi
xed

-padding

jni-p
rf-c

ache
java

java-optim
ize

d

ref
ere

nce

HashingProvider

0

10

20

30

40

50

60

70

80

D
ur

at
io

n
[s

]

XMSS Key Generation SHA-256 m5zn ℎ = 16

=

256
192

(a) m5zn

jni-fi
xed

-padding

jni-p
rf-c

ache
java

java-optim
ize

d

ref
ere

nce

HashingProvider

0

10

20

30

40

50

60

70

80

D
ur

at
io

n
[s

]

XMSS Key Generation SHA-256 m6i ℎ = 16

=

256
192

(b) m6i

Figure 7.14.: Benchmark results for XMSS key generation with SHA-256 for java and
java-optimized

The benchmark results for the XMSS key generation are visualized in Figure 7.14. Key
generation with java on m6i is comparable to jni-fixed-padding while it is slower on
m5zn. One possible reason for this is that the SHA-2 implementation in OpenSSL may
be better optimized than the implementation of the intrinsic. This would not affect m6i
because the SHA-NI are used on this platform for both implementations.

We find that even for 𝑛 = 192 without PRF caching, java-optimized is faster than
jni-fixed-padding on both platforms. It performs on par with the reference implementa-
tion on m5zn and is better than the reference on m6i. Relative to bc as shown in Figure 7.5,
the key generation cost is reduced by 52.1% on m5zn and 81.9% on m6i.

For 𝑛 = 256, java-optimized considerably outperforms the reference implementation.
While it is slightly faster than jni-prf-cache on m6i, it is insignificantly slower on m5zn.
Compared to bc as shown in Figure 7.5 (and the reference implementation), we achieve an
improvement of 64.5% (25.8%) on m5zn and 85.0% (25.1%) on m6i.

99

7. Evaluation

Overall, we find that the JNI and JIT intrinsics used in the java levels perform similarly
with all possible optimizations. For the majority of parameter sets and platforms, the
approach using intrinsics is faster, but only slightly.

bc jni java
HashingProvider

0.0

0.2

0.4

0.6

0.8

D
ur

at
io

n
[µ

s]

SPHINCS+ Hashing F SHAKE256 m5zn

=

128
192
256

(a) m5zn

bc jni java
HashingProvider

0.0

0.2

0.4

0.6

0.8

D
ur

at
io

n
[µ

s]

SPHINCS+ Hashing F SHAKE256 m6i

=

128
192
256

(b) m6i

Figure 7.15.: Benchmark results for SPHINCS+ hashing with SHAKE256 for the optimization
level java

SHAKE256 We implement SPHINCS+ as the only signature scheme with SHAKE256 for the
optimization level java. Figure 7.15, therefore, shows the hashing results for SPHINCS+.
Unexpectedly, the optimization level java is up to 3.4 times slower than jni. Furthermore,
it is up to about 80% slower than bc.

The main reason is that even though the SHA-3 state update function in the SUN provider is
an intrinsic candidate, there is no implementation of this intrinsic for the x86 platform. In
OpenJDK 18 [72], there is only an intrinsic implementation for the aarch64 platform. There-
fore, we can not expect java to reach the level of performance of a native implementation
for SHAKE256.

The reason why java performs worse than bc may be a combination of a less efficient Java
implementation and the overhead introduced by the JCA/JCE interface.

Without an intrinsic, we do not consider further implementation and investigation for
SHAKE256 with java to be worthwhile. We consider integrating a high-performance
SHAKE256 implementation as an intrinsic to be too complex and, therefore, out of scope
for this thesis.

Haraka Figure 7.16 shows that the Haraka intrinsic used in java performs even better
than jni. Overall, this is an improvement by up to 96.8% compared to bc. For the SPHINCS+

key generation, we observe a reduction by up to 95.7%. The benchmarks for the SPHINCS+

operations are available in Appendix A.3.

This is mainly due to the design of Haraka. It is designed to be efficiently implementable
using the AES round function and a permutation that can be implemented using a few

100

7.2. Optimization Levels

bc jni java
HashingProvider

0.0

0.2

0.4

0.6

0.8

D
ur

at
io

n
[µ

s]
SPHINCS+ Hashing F Haraka m5zn

=

128
192
256

(a) m5zn

bc jni java
HashingProvider

0.0

0.2

0.4

0.6

0.8

D
ur

at
io

n
[µ

s]

SPHINCS+ Hashing F Haraka m6i

=

128
192
256

(b) m6i

Figure 7.16.: Benchmark results for SPHINCS+ hashing with Haraka for the optimization
level java

vector instructions. In Java, both the AES round function and the permutation must be
manually implemented which leads to an inefficient implementation. Additionally, Haraka
with AES-NI is significantly faster than the other hash functions, including SHA-2 with
SHA-NI. Therefore, the relative impact of the JNI performance is larger and this leads to a
larger relative improvement between jni and java.

On m6i, we observe that 𝑛 = 256 is faster than smaller inputs. Our remarks for jni in
Section 7.2.3.3 also apply here because our implementation uses one buffer for both input
and output.

7.2.5. Summary

Overall, we find that techniques that use platform-specific native implementations via JNI
or as an intrinsic significantly boost performance. The results are comparable to native
implementations.

General Implementation Guidance Comparing JNI and intrinsics as a method to use native
instructions, intrinsics generally have a lower overhead and are therefore faster. This may
not be the case for SHA-256 on m5zn as displayed in Figure 7.13a. We expect that this is not
caused by how the underlying native implementation is called, but instead by different
native implementations.

Introducing new intrinsics requires changes to the Java runtime which is often not feasible.
However, many large software vendors already maintain a fork of OpenJDK for their
purposes. In this case, introducing new intrinsics may be viable.

An additional advantage of using intrinsics is that it is necessary to provide a working
Java implementation as well. This means that the resulting code can also be run on other

101

7. Evaluation

architectures, even if only with reduced performance. This is generally not the case for JNI
implementations if the required native binary is not available for the current platform.

On the other hand, JNI implementations are more flexible as this approach is easier to
develop and maintain. Furthermore, the resulting code can be executed on any Java
runtime.

Overall, we recommend considering intrinsics for the best performance. Otherwise, JNI
provides a more flexible and simpler alternative at a slightly increased cost.

Optimizations for BouncyCastle We also want to discuss which of the presented opti-
mizations can reasonably be integrated into BouncyCastle. The crypto library aims to be
compatible across many Java versions. Requiring a specific JDK with custom intrinsics
would therefore not be feasible. Additionally, the BouncyCastle library may be used as
part of other applications which may have their own requirements to the Java runtime.

From a technical point of view, little speaks against integrating a native hash implementa-
tion over JNI. However, to the best of the author’s knowledge, BouncyCastle is currently
a Java-only library without native dependencies. To retain the platform independence, it
would be necessary to include a Java implementation as a fallback for when the library is
used on another platform for which no dedicated library was built. However, introducing
native dependencies into BouncyCastle would considerably increase the complexity of the
project and therefore the maintenance effort. Furthermore, BouncyCastle explicitly aims
to provide Java implementations of cryptographic algorithms [68].

If integrating native hashing via JNI is not an option, the underlying hash implementation
should be made configurable. In this case, a developer integrating the library into an
application can provide a hash implementation suitable for the application scenario: a
JNI implementation, one using the SUN JCA/JCE provider, or the default BouncyCastle
implementation if performance is not critical.

Additionally and independent of the underlying hash implementations, the PRF caching
should be integrated into BouncyCastle. The effort required is presumably quite small and
yet it considerably accelerates XMSS with 𝑛 = 256.

For LMS, a better tree traversal algorithm should be applied as BouncyCastle does not use
an explicit one yet. The best choice at the moment is the BDS algorithm [10] which is
already used by BouncyCastle for XMSS.

7.3. Parallelization

We run benchmarks for parallelized key generation on the EC2 instances m5zn.2xlarge
and m6i.2xlarge. With SMT disabled, they provide four CPU cores. For each combination
of parameter set and optimization level, the sequential and parallel key generation bench-
marks are executed in direct succession to minimize the impact of possible long-term
performance changes of the benchmark machines.

102

7.3. Parallelization

7.3.1. Results

Figure 7.17 shows the speedup for XMSS and LMS key generation, that is, the run time of the
parallel execution divided by the sequential execution. Note that for perfectly parallelizable
tasks the maximum speedup theoretically possible is the number of processors used.

The traversal of a large Merkle tree is well parallelizable as the cost of the sequential
merging of the subtasks is negligible compared to the cost of a subtask as long as the
number of subtasks is reasonably small. In practice, we might expect a somewhat smaller
speedup value when the parallel execution used all available processors. This is due
to other tasks running on the machine like background tasks of the operating systems.
If the parallel benchmark uses all available processors, these tasks might interrupt the
benchmark and therefore influence its performance.

Concretely, when running a parallelized Merkle tree generation with ℎ ≥ 15 on four
processors, we expect a speedup close to 4, but not exceeding it.

Figure 7.17 shows our benchmark results. We observe speedup values in the range of 3.5 to
4.22. The majority of observed speedups is around 3.9 which matches our expectations. Yet,
we observe some outliers, especially speedups exceeding 4. This represents a superlinear
speedup, the sum of the computation time spent by the processors is lower for the parallel
execution than for the sequential speedup. This requires further investigation.

Overall, we can reduce the required time for an XMSS key generation on m6i by 96.4%
compared to the single-threaded bc implementation when using the parallelized imple-
mentation with java-optimized on four cores.

7.3.2. Superlinear Speedups

Superlinear speedups are not per se impossible. Consider a perfectly parallelizable task
whose working set does not fit into the processor cache and therefore requires a large
number of accesses to the memory. Splitting the task leads to smaller working sets that
might fit entirely into the processor cache. In such a situation, a superlinear speedup may
be achievable.

However, this is not the case for the key generation in Merkle trees. For both implemen-
tations, the number of subtasks does not significantly influence the size of the working
set.

We were able to reproduce this behavior in an isolated setting independent of the HBS
implementations. Listing 1 shows the code for a benchmark that computes 10,000,000
hash values with the SHA-256 implementation provided by BouncyCastle. This is done
either on only one thread or four threads in parallel. Note that the tasks on the threads
are independent and do not change when the number of threads changes.

We expect that executing this code on four threads takes slightly longer than on one thread
due to the overhead of creating threads and the full utilization of all CPU cores.

103

7. Evaluation

(SHA-256, bc)

(SHA-256, bc-o
ptim

ize
d)

(SHA-256, corre
�o)

(SHA-256, java)

(SHA-256, java-optim
ize

d)

(SHA-256, jni)

(SHA-256, jni-fi
xed

-padding)

(SHA-256, jni-p
rf-c

ache)

(SHAKE256, bc)

(SHAKE256, jni)

Digest, HashingProvider

3.0

3.2

3.4

3.6

3.8

4.0

4.2

Sp
ee

du
p

XMSS Key Generation Speedup ℎ = 16 m5zn

=

256
192

(a) XMSS on m5zn with ℎ = 16

(SHA-256, bc)

(SHA-256, bc-o
ptim

ize
d)

(SHA-256, corre
�o)

(SHA-256, java)

(SHA-256, java-optim
ize

d)

(SHA-256, jni)

(SHA-256, jni-fi
xed

-padding)

(SHA-256, jni-p
rf-c

ache)

(SHAKE256, bc)

(SHAKE256, jni)

Digest, HashingProvider

3.0

3.2

3.4

3.6

3.8

4.0

4.2

Sp
ee

du
p

XMSS Key Generation Speedup ℎ = 16 m6i

=

256
192

(b) XMSS on m6i with ℎ = 16

(SHA-256, bc)

(SHA-256, bc-o
ptim

ize
d)

(SHA-256, corre
�o)

(SHA-256, java)

(SHA-256, java-optim
ize

d)

(SHA-256, jni)

(SHA-256, jni-fi
xed

-padding)

(SHAKE256, bc)

(SHAKE256, jni)

Digest, HashingProvider

3.0

3.2

3.4

3.6

3.8

4.0

4.2

Sp
ee

du
p

LMS Key Generation Speedup ℎ = 15 m5zn

=

192
256

(c) LMS on m5zn with ℎ = 15

(SHA-256, bc)

(SHA-256, bc-o
ptim

ize
d)

(SHA-256, corre
�o)

(SHA-256, java)

(SHA-256, java-optim
ize

d)

(SHA-256, jni)

(SHA-256, jni-fi
xed

-padding)

(SHAKE256, bc)

(SHAKE256, jni)

Digest, HashingProvider

3.0

3.2

3.4

3.6

3.8

4.0

4.2

Sp
ee

du
p

LMS Key Generation Speedup ℎ = 15 m6i

=

192
256

(d) LMS on m6i with ℎ = 15

Figure 7.17.: Speedup for parallel key generation on 4 cores

104

7.3. Parallelization

@Param({"1", "4"})

int threads;

@Param({"10000000"})

int iterations;

@Benchmark

public int testParallelHash() {

return IntStream.range(0, threads)

.parallel()

.map((i) -> {

int sum = 0;

SHA256Digest digest = new SHA256Digest();

byte[] data = new byte[64];

byte[] out = new byte[32];

for(int j = 0; j < iterations; j++){

data[2] = (byte) j;

digest.update(data, 0, data.length);

digest.doFinal(out, 0);

sum += out[0];

}

return sum;

}).sum();

}

Listing 1: Benchmark for the parallel execution of BouncyCastle’s SHA256Digest

1 4
Thread count

7.30

7.35

7.40

7.45

7.50

7.55

Ex
ec

ut
io

n
ti

m
e

[s
]

Parallel Hash Benchmark on m6i

Figure 7.18.: Box plot of the individual executions of the parallel hash benchmark

105

7. Evaluation

This benchmark is executed on m6i.2xlarge which provides four CPU cores with SMT
disabled. Figure 7.18 displays the distribution time of the benchmark. Each execution
consists of one invocation of the benchmark method in Listing 1. Overall, we observe that
the execution times of the benchmark with four threads show more variation than for
only one thread. However, the majority of executions with four threads are faster than the
fastest single-threaded execution. Over 15 iterations, the executions with four threads are
also faster on average.

This does not align with our expectations. Yet, it is similar to our observations for paral-
lelized HBS key generation. We investigated multiple hypotheses for the reasons for this
behavior including the following:

Code Caching If the same code and constants are used by multiple threads concurrently,
it may be held in higher levels of the CPU cache. If only one thread is used, the code in the
cache is accessed less frequently and might be evicted more often, causing more accesses
to memory or a higher cache level which cause a slower execution. This could especially
affect the benchmark above because it requires the round constants for SHA-2 which are
relatively large.

We were hoping to confirm this by reducing the code footprint of the task in the bench-
mark.

Dynamic Performance Allocation Our benchmarks run on a virtual machine on AWS. We
have no influence on and little information about how the host’s resources are allocated
to the virtual machines. One possibility is that the hypervisor generally allocates more
resources to machines that utilize all provided virtual CPUs. For example, the hypervisor
could ensure that a cores’ multi-threads are not used by another VM or that such a VM is
interrupted less frequently leading to fewer related cache flushes.

We hoped to confirm this by only executing the hash benchmark on one thread while
keeping the other cores busy with another simple task.

Unfortunately, we were unable to finally confirm or repudiate any of our hypotheses.
Nevertheless, we are able to reproduce this behavior in an isolated setting and are therefore
confident that this is caused by the execution environment used for the benchmarks and
not by the parallelized implementation itself.

7.4. Verification-Optimized Signatures

This section presents the results of the experimental validation of the verification-optimized
WOTS variants WOTS-BR and WOTS+C. We first discuss WOTS-BR, then WOTS+C and
finish by comparing both schemes.

106

7.4. Verification-Optimized Signatures

7.4.1. WOTS-BR

For this section, we only focus on the WOTS-R optimization as the addition of WOTS-B
only causes an improvement by a constant offset. Section 7.4.3 compares both scheme
variants.

The benchmarks for WOTS-R are executed on the m6i instances with the java-optimized

optimization level. Two choices of the Winternitz parameter are evaluated,𝑤 = 16 (default
in XMSS) and𝑤 = 4. We do not provide any comparison to other optimization levels and
instances and focus on the impact of the parameter 𝑅 on the scheme.

29 212 215 218 221 224 227 230

Iterations '

21

24

27

210

213

216

Si
gn

at
ur

e
ti

m
e

[m
s]

WOTS-R Signature Time F = 16
Score

(a)𝑤 = 16

29 212 215 218 221 224 227 230

Iterations '

21

24

27

210

213

216

219

Si
gn

at
ur

e
ti

m
e

[m
s]

WOTS-R Signature Time F = 4
Score

(b)𝑤 = 4

Figure 7.19.: WOTS-R signature time on m6i with java-optimized

Runtime Figure 7.19 shows that there is a clear linear dependence between the number of
iterations 𝑅 and the signature generation time. The curve flattens a little for small values
of 𝑅. This is because the WOTS-R signing process consists of two main operations: finding
the best nonce and generating the WOTS signature. While the cost of the first is linear in
𝑅, the cost of the latter is constant.

Verification Cost This section discusses the observed verification costs for the generated
signatures and compares them to the approximations of the expected value presented in
Section 6.4.1.1.

Figure 7.20 shows our experimentally achieved verification costs compared to the expected
values presented in the theoretical evaluation. We recall that the observed value is always
the average over a number of messages (usually 1024).

For both choices of 𝑤 , the observed verification cost for the message blocks 𝑣𝑚 is very
close to the expected value. The total verification cost 𝑣 lies between the expected value
assuming random checksums and the expected value assuming the worst-case checksum.
For𝑤 = 16, the observed values start roughly in the middle between both for 𝑅 = 210 and

107

7. Evaluation

23 28 213 218 223 228 233

Iterations '

250

300

350

400

450

500

Ve
ri

fic
at

io
n

co
st

WOTS-R Observed Verification Cost F = 16
Observed message block cost E<
Observed total cost E
Expected message block cost
Expected total cost with random checksum
Expected cost with worst-case checksum

(a)𝑤 = 16

23 28 213 218 223 228 233

Iterations '

120

140

160

180

200

Ve
ri

fic
at

io
n

co
st

WOTS-R Observed Verification Cost F = 4
Observed message block cost E<
Observed total cost E
Expected message block cost
Expected total cost with random checksum
Expected cost with worst-case checksum

(b)𝑤 = 4

Figure 7.20.: WOTS-R observed verification cost

then converge to the expected value for the worst-case checksum. However, a slight bend
is recognizable at about 𝑅 = 228.

For𝑤 = 4, the observed total verification cost behaves differently. It starts roughly in the
middle, approaches the expected value for a random checksum at around 𝑅 = 224, and
returns to the middle.

We note that our experimental results closely resemble those presented by Bos et al. [8].
All features described here are recognizable in their results as well.

29 212 215 218 221 224 227 230

Iterations '

280

300

320

340

360

380

400

Ve
ri

fic
at

io
n

co
st

WOTS-R Total Verification Cost F = 16
Observed
Expected with random checksum
Expected with worst-case checksum
Expected with expected checksum

(a)𝑤 = 16

29 212 215 218 221 224 227 230

Iterations '

120

130

140

150

160

Ve
ri

fic
at

io
n

co
st

WOTS-R Total Verification Cost F = 4
Observed
Expected with random checksum
Expected with worst-case checksum
Expected with expected checksum

(b)𝑤 = 4

Figure 7.21.: WOTS-R total verification cost

Figure 7.21 compares the observed total verification cost 𝑣 to the approximations presented
in Section 6.4.1.1. We observe for𝑤 = 4, the expected value with the expected checksum
very closely approximates the observed behavior. The same holds for𝑤 = 16, but only for

108

7.4. Verification-Optimized Signatures

small values of 𝑅. For 𝑅 ≥ 226, the approximation significantly diverges from the observed
results.

One reason for this may be that for large 𝑅, we only evaluate a smaller number of mes-
sages. Therefore, the observed signature costs may be less representative. However, the
experimental results presented by Bos et al. [8] are very similar to ours for large values of
𝑅.

7.4.2. WOTS+C

As for WOTS-R, we run all benchmarks on m6i instances with the optimization level
java-optimized. We set 𝑧 = 0 and evaluate both𝑤 = 16 and𝑤 = 4.

28 211 214 217 220 223 226 229

Iterations

20

23

26

29

212

215

218

Si
gn

at
ur

e
ti

m
e

[m
s]

WOTS+C Signature Time F = 16

(a)𝑤 = 16

27 211 215 219 223 227 231

Iterations

2−1

22

25

28

211

214

217
Si

gn
at

ur
e

ti
m

e
[m

s]

WOTS+C Signature Time F = 4

(b)𝑤 = 4

Figure 7.22.: WOTS+C signature time on m6i with java-optimized

Runtime Figure 7.22 shows the total signature runtime by the number of iterations made.
For larger iteration counts, we observe a clear linear dependency as one would expect.
Like with WOTS-R, we see the impact of the WOTS signature after a suitable nonce has
been found for small iteration counts. This effect looks more distinct in Figure 7.22 than
in the benchmark results for WOTS-R in Figure 7.19. This is, however, only because the
benchmark results for WOTS+C include measurements for smaller iteration counts while
we only evaluated 𝑅 ≥ 210 for WOTS-R.

Verification Cost Figure 7.23 shows the observed number of iterations on average (and its
quantiles) for a given verification cost which is configured by the parameter 𝑆 . Additionally,
it contains the expected behavior determined in the theoretical evaluation.

For both choices of 𝑤 , the experimental results match the expected value remarkably
closely. This validates the theoretical evaluation.

109

7. Evaluation

24 28 212 216 220 224 228 232

Number of Iterations

300

350

400

450

Ve
ri

fic
at

io
n

C
os

t

WOTS+C Iterations F = 16
Observed Mean
Observed @ = 0.95
Observed @ = 0.05
Expected Value

(a)𝑤 = 16

23 27 211 215 219 223 227 231

Number of Iterations

120

130

140

150

160

170

180

190

Ve
ri

fic
at

io
n

C
os

t

WOTS+C Iterations F = 4
Observed Mean
Observed @ = 0.95
Observed @ = 0.05
Expected Value

(b)𝑤 = 4

Figure 7.23.: WOTS+C observed iterations for given verification costs

7.4.3. Comparison

Iterations To confirm that the cost of iterations of WOTS+C and WOTS-R are indeed
comparable, we chose a message and set 𝑤 = 16 and 𝑆 = 650. For these parameters,
we benchmark WOTS+C and find that the signing process takes 615 ms and requires
2,986,488 iterations. Hence, we set 𝑅 to this value and benchmark WOTS-R. Here, the
signing process takes 613 ms. We consider the difference between both measurements to
be insignificant.

Due to the selection of parameters, both schemes make the same number of iterations and
require the same amount of time for a signature. Therefore, we argue that the amount of
time required for one iteration has to be equal for both schemes.

28 211 214 217 220 223 226 229

Number of Iterations

300

350

400

450

Ve
ri

fic
at

io
n

C
os

t

Comparison WOTS+C and WOTS-BR F = 16
WOTS+C Observed
WOTS+C Expected
WOTS-R Observed
WOTS-R Expected
WOTS-BR Observed
WOTS-BR Expected

(a)𝑤 = 16

27 211 215 219 223 227 231

Number of Iterations

120

130

140

150

160

170

180

190

Ve
ri

fic
at

io
n

C
os

t

Comparison WOTS+C and WOTS-BR F = 4
WOTS+C Observed
WOTS+C Expected
WOTS-R Observed
WOTS-R Expected
WOTS-BR Observed
WOTS-BR Expected

(b)𝑤 = 4

Figure 7.24.: Comparison of WOTS+C, WOTS-R and WOTS-BR

110

7.4. Verification-Optimized Signatures

Experimental comparison In Figure 7.24, we compare the experimental results for the
variants WOTS+C, WOTS-B, and WOTS-BR. As we note in the previous sections, the
results for WOTS+C closely match the expected values, while the results for WOTS-R and
WOTS-BR tend to be worse than the expected value. This is especially the case for𝑤 = 16
with large 𝑅.

Overall, this confirms our remarks in the theoretical comparison in Section 6.4.1.3. For
𝑤 = 4 and a reasonably large number of iterations, the verification cost for WOTS+C
is on average smaller than WOTS-R and WOTS-BR while also reducing the size of the
signature. For𝑤 = 16, we observe that the observed results for WOTS-R and WOTS-BR
are worse than the expected value, especially so for larger iteration counts. Therefore, we
recommend the use of WOTS+C also for this choice of parameters. For iteration counts
significantly larger than 230, a further investigation is required as we expect WOTS-BR
to perform better (see Section 6.4.1.3). However, we consider such iteration counts to be
infeasible for most application scenarios.

Hence, we find that for common parameter choices, WOTS+C performs better than or on
par with WOTS-BR. Therefore, we recommend the use of WOTS+C in these scenarios.

111

8. Conclusion

This chapter gives a short summary of the results of this thesis and provides an outlook
on possible future work.

8.1. Summary

Implementation Optimizations We find that using native hash implementations via JNI
or as an intrinsic significantly improves the performance of HBS implementations in Java.
Intrinsics are generally the more efficient way to integrate native implementations but
JNI with the proper data transfer technique is usually only marginally slower and more
flexible.

Using the PRF caching optimization, we achieve a faster XMSS key generation with our
Java implementation than with the XMSS reference implementation. Overall, we achieve
an improvement of up to 85.0% for SHA-2 with SHA-NI. For Haraka in SPHINCS+, the
acceleration achieved through the use of AES-NI is even larger. We observe a reduction of
the SPHINCS+ key generation time by up to 95.7%.

Additionally, we observe that parallelization also improves the performance of HBS opera-
tions significantly. The key generation for a Merkle tree is very well parallelizable. We
confirm this experimentally. However, our experimental results prove to be inconsistent.
Still, we are confident that this is not due to the parallelized task or our implementation,
but an artifact of the benchmark environment.

Verification-Optimized Signatures We improve the models for WOTS+C and WOTS-BR
presented in the literature and provide a theoretical comparison. It shows that, for small
Winternitz parameters𝑤 and a reasonable number of iterations, we can expect WOTS+C
to yield signatures with a lower verification cost than WOTS-BR while also reducing the
signature size.

We experimentally validate the models and note that the observed behavior of WOTS+C
closely matches the expected behavior, while WOTS-BR performs worse for some pa-
rameters in our experiments than in the theoretical analysis. Therefore, we recommend
WOTS+C even for larger Winternitz parameters. However, this depends on the concrete
choice of parameters and requires careful consideration when choosing a scheme for
non-standard parameters.

113

8. Conclusion

8.2. Future Work

This section presents additional optimization strategies for HBS that were not covered in
this thesis but could be investigated in future studies.

Multi-Message Hashing Several papers presented in Chapter 4 use multi-message hashing
to accelerate hashing or specifically HBS operations. We expect that the HBS implementa-
tions could be further improved by using a multi-message hashing implementation that
utilizes some form of hardware-level parallelism. Such implementations could then be
invoked from Java via JNI or as an intrinsic.

Java Vector API The Java Vector API [65] allows Java code to utilize the vector capabilities
of the CPU in a platform-independent way. At the time of writing, it is still in the incubator
and not finally released. This API could be used to implement multi-message hashing or
vectorized message scheduling in SHA-2 using Java code only. We do not expect that such
an implementation will perform better than a native implementation using SHA-NI or
AES-NI. However, a vectorized hash implementation in Java could perform better than
current Java-only implementations. The benefit of this approach is that the resulting
implementation does not rely on native libraries or a modified JDK and is therefore fully
platform-independent.

Java Foreign Function & Memory API The upcoming Java Foreign Function & Memory
API [13] provides an alternative way to invoke native functions from Java and to access
native memory from Java. Similar to the Vector API, this API was not finally released
at the time of writing. Future work could investigate and evaluate integrating native
hash implementations via this API instead of JNI. The new API explicitly aims to deliver
performance comparable to or better than JNI. Additionally, passing data to native methods
is handled differently than using JNI. Overall, the use of this new API could provide a
more performant way to integrate native hash implementations.

Parallelized Signing and Verification A parallelized HBS implementation should also make
use of parallelized signing and verification operations. Sun et al. [67] describe how WOTS
signatures can be computed in parallel. Further research could also evaluate the paral-
lelization of the BDS algorithm for Merkle tree traversal.

Encodings for Verification-Optimized Signatures In addition to our comparison of WOTS-
BR and WOTS+C, further work may investigate the use of different encoding functions
for verification-optimized signatures. The most prominent examples are constant-sum
encodings [16, 37, 56] and encodings using non-adjacent forms [64, 81]. These proposals
generally have many parameters. Future research could determine if and how they can be
tuned for verification-optimized signatures.

114

Bibliography

[1] Amazon Web Services, Inc. Amazon EC2 Instance Types. [Online; accessed 2023-02-
15]. Feb. 2023. url: https://aws.amazon.com/ec2/instance-types/.

[2] Amazon.com Inc. Amazon Corretto Crypto Provider. GitHub Repository. Feb. 2023.
url: https://github.com/corretto/amazon-corretto-crypto-provider.

[3] Jean-Philippe Aumasson et al. SPHINCS+ - Submssion to the NIST post-quantum
project, v3.1. June 2022. url: https : / / sphincs . org / data / sphincs+ - r3 . 1 -
specification.pdf.

[4] Daniel J. Bernstein et al. “SPHINCS: practical stateless hash-based signatures”. In:
IACR Cryptol. ePrint Arch. (2014), p. 795. url: http://eprint.iacr.org/2014/795.

[5] Daniel J. Bernstein et al. “The SPHINCS+ Signature Framework”. In: Proceedings of
the 2019 ACM SIGSAC Conference on Computer and Communications Security, CCS
2019, London, UK, November 11-15, 2019. Ed. by Lorenzo Cavallaro et al. ACM, 2019,
pp. 2129–2146. doi: 10.1145/3319535.3363229.

[6] Guido Bertoni et al. The Keccak Reference. Jan. 2011. url: https://keccak.team/
files/Keccak-reference-3.0.pdf.

[7] Dan Boneh and Victor Shoup. A graduate course in applied cryptography. Jan. 2020.
url: https://crypto.stanford.edu/~dabo/cryptobook/BonehShoup_0_5.pdf.

[8] Joppe W. Bos et al. “Rapidly Verifiable XMSS Signatures”. In: IACR Trans. Cryptogr.
Hardw. Embed. Syst. 2021.1 (2021), pp. 137–168. doi: 10.46586/tches.v2021.i1.137-
168.

[9] Johannes Buchmann, Erik Dahmen, and Andreas Hülsing. “XMSS - A Practical
Forward Secure Signature Scheme Based on Minimal Security Assumptions”. In:
Post-Quantum Cryptography. Ed. by Bo-Yin Yang. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2011, pp. 117–129. doi: 10.1007/978-3-642-25405-5_8.

[10] Johannes Buchmann, Erik Dahmen, and Michael Szydlo. “Hash-based Digital Signa-
ture Schemes”. In: Post-Quantum Cryptography. Ed. by Daniel J. Bernstein, Johannes
Buchmann, and Erik Dahmen. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009,
pp. 35–93. doi: 10.1007/978-3-540-88702-7_3.

[11] Johannes Buchmann et al. “On the Security of the Winternitz One-Time Signature
Scheme”. In: Progress in Cryptology – AFRICACRYPT 2011. Ed. by Abderrahmane
Nitaj and David Pointcheval. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011,
pp. 363–378. doi: 10.1007/978-3-642-21969-6_23.

115

https://aws.amazon.com/ec2/instance-types/
https://github.com/corretto/amazon-corretto-crypto-provider
https://sphincs.org/data/sphincs+-r3.1-specification.pdf
https://sphincs.org/data/sphincs+-r3.1-specification.pdf
http://eprint.iacr.org/2014/795
https://doi.org/10.1145/3319535.3363229
https://keccak.team/files/Keccak-reference-3.0.pdf
https://keccak.team/files/Keccak-reference-3.0.pdf
https://crypto.stanford.edu/~dabo/cryptobook/BonehShoup_0_5.pdf
https://doi.org/10.46586/tches.v2021.i1.137-168
https://doi.org/10.46586/tches.v2021.i1.137-168
https://doi.org/10.1007/978-3-642-25405-5_8
https://doi.org/10.1007/978-3-540-88702-7_3
https://doi.org/10.1007/978-3-642-21969-6_23

Bibliography

[12] Jason Chia, Ji-Jian Chin, and Sook-Chin Yip. “Digital signature schemes with strong
existential unforgeability”. In: F1000Research 10 (Sept. 2021), p. 931. doi: 10.12688/
f1000research.72910.1.

[13] Maurizio Cimadamore. JEP 434: Foreign Function & Memory API (Second Preview).
[Online; accessed 2023-03-21]. Mar. 2023. url: https://openjdk.org/jeps/434.

[14] David Cooper et al. Recommendation for Stateful Hash-Based Signature Schemes. en.
Oct. 2020. doi: 10.6028/NIST.SP.800-208.

[15] Carlos Coronado. “On the security and the efficiency of the Merkle signature scheme”.
In: IACR Cryptol. ePrint Arch. (2005), p. 192. url: http://eprint.iacr.org/2005/
192.

[16] Jason Paul Cruz, Yoshio Yatani, and Yuichi Kaji. “Constant-sum fingerprinting for
Winternitz one-time signature”. In: 2016 International Symposium on Information
Theory and Its Applications, ISITA 2016, Monterey, CA, USA, October 30 - November
2, 2016. IEEE, 2016, pp. 703–707. url: https://ieeexplore.ieee.org/document/
7840516/.

[17] Quynh Dang. Secure Hash Standard. en. Aug. 2015. doi: 10.6028/NIST.FIPS.180-4.
[18] Quynh Dang. The Keyed-Hash Message Authentication Code (HMAC). en. July 2008.

doi: 10.6028/NIST.FIPS.198-1.
[19] Morris Dworkin. SHA-3 Standard: Permutation-Based Hash and Extendable-Output

Functions. en. Aug. 2015. doi: 10.6028/NIST.FIPS.202.
[20] Morris Dworkin et al. Advanced Encryption Standard (AES). en. Nov. 2001. doi:

10.6028/NIST.FIPS.197. url: https://csrc.nist.gov/publications/detail/
fips/197/final.

[21] Armando Faz-Hernández, Weikeng Chen, and Ana Karina D. S. de Oliveira. FLO-
SHANI-AESNI. GitHub Repository. Apr. 2021. url: https://github.com/armfazh/
FLO-shani-aesni.

[22] Armando Faz-Hernández, Julio César López-Hernández, and Ana Karina D. S. de
Oliveira. “SoK: A Performance Evaluation of Cryptographic Instruction Sets on
Modern Architectures”. In: Proceedings of the 5th ACM on ASIA Public-Key Cryp-
tography Workshop, APKC@AsiaCCS, Incheon, Republic of Korea, June 4, 2018. Ed.
by Keita Emura, Jae Hong Seo, and Yohei Watanabe. ACM, 2018, pp. 9–18. doi:
10.1145/3197507.3197511.

[23] Scott R. Fluhrer. “Further Analysis of a Proposed Hash-Based Signature Standard”. In:
IACR Cryptol. ePrint Arch. (2017), p. 553. url: http://eprint.iacr.org/2017/553.

[24] Brian Goetz. JEP 348: Compiler Intrinsics for Java SE APIs. [Online; accessed 2023-02-
15]. Feb. 2023. url: https://openjdk.org/jeps/348.

[25] Oded Goldreich. The Foundations of Cryptography - Volume 2: Basic Applications.
Cambridge University Press, 2004. doi: 10.1017/CBO9780511721656. url: https:
//www.wisdom.weizmann.ac.il/~oded/foc-vol2.html.

116

https://doi.org/10.12688/f1000research.72910.1
https://doi.org/10.12688/f1000research.72910.1
https://openjdk.org/jeps/434
https://doi.org/10.6028/NIST.SP.800-208
http://eprint.iacr.org/2005/192
http://eprint.iacr.org/2005/192
https://ieeexplore.ieee.org/document/7840516/
https://ieeexplore.ieee.org/document/7840516/
https://doi.org/10.6028/NIST.FIPS.180-4
https://doi.org/10.6028/NIST.FIPS.198-1
https://doi.org/10.6028/NIST.FIPS.202
https://doi.org/10.6028/NIST.FIPS.197
https://csrc.nist.gov/publications/detail/fips/197/final
https://csrc.nist.gov/publications/detail/fips/197/final
https://github.com/armfazh/FLO-shani-aesni
https://github.com/armfazh/FLO-shani-aesni
https://doi.org/10.1145/3197507.3197511
http://eprint.iacr.org/2017/553
https://openjdk.org/jeps/348
https://doi.org/10.1017/CBO9780511721656
https://www.wisdom.weizmann.ac.il/~oded/foc-vol2.html
https://www.wisdom.weizmann.ac.il/~oded/foc-vol2.html

[26] Vinodh Gopal et al. Processing Multiple Buffers in Parallel to Increase Performance on
Intel® Architecture Processors. Tech. rep. Intel Corporation, July 2010. url: https:
//web.archive.org/web/20220901053149/https://www.intel.com/content/dam/

www/public/us/en/documents/white-papers/communications-ia-multi-buffer-

paper.pdf.
[27] Shay Gueron. “Speeding Up SHA-1, SHA-256 and SHA-512 on the 2nd Generation

Intel® Core™ Processors”. In: Ninth International Conference on Information Technol-
ogy: New Generations, ITNG 2012, Las Vegas, Nevada, USA, 16-18 April, 2012. Ed. by
Shahram Latifi. IEEE Computer Society, 2012, pp. 824–826. doi: 10.1109/ITNG.2012.
62.

[28] Shay Gueron and Vlad Krasnov. “Parallelizing message schedules to accelerate the
computations of hash functions”. In: J. Cryptogr. Eng. 2.4 (2012), pp. 241–253. doi:
10.1007/s13389-012-0037-z.

[29] Shay Gueron and Vlad Krasnov. “Simultaneous Hashing of Multiple Messages”. In:
J. Information Security 3.4 (2012), pp. 319–325. doi: 10.4236/jis.2012.34039.

[30] Jim Guilford, Kirk Yap, and Vinodh Gopal. Fast SHA-256 Implementations on Intel ®
Architecture Processors. Tech. rep. Intel Corporation, May 2012. url: https://web.
archive.org/web/20220901094842/https://www.intel.com/content/dam/www/

public/us/en/documents/white-papers/sha-256-implementations-paper.pdf.
[31] Sean Gulley et al. Intel SHA Extensions: New Instructions Supporting the the Secure

Hash Algorithm on Intel Architecture Processors. Tech. rep. Intel Corporation, July
2013. url: https://www.intel.com/content/dam/develop/external/us/en/
documents/intel-sha-extensions-white-paper.pdf.

[32] Thomas Hanson et al. “Optimization for SPHINCS+ using Intel Secure Hash Al-
gorithm Extensions”. In: IACR Cryptol. ePrint Arch. (2022), p. 1726. url: https:
//eprint.iacr.org/2022/1726.

[33] Lena Heimberger. JavaSphincsPlus. GitLab Repository. Feb. 2021. url: https://
extgit.iaik.tugraz.at/krypto/javasphincsplus.

[34] Andreas Hülsing. “W-OTS+ - Shorter Signatures for Hash-Based Signature Schemes”.
In: Progress in Cryptology - AFRICACRYPT 2013, 6th International Conference on
Cryptology in Africa, Cairo, Egypt, June 22-24, 2013. Proceedings. Ed. by Amr M.
Youssef, Abderrahmane Nitaj, and Aboul Ella Hassanien. Vol. 7918. Lecture Notes in
Computer Science. Springer, 2013, pp. 173–188. doi: 10.1007/978-3-642-38553-
7_10.

[35] Andreas Hülsing, Joost Rijneveld, and Fang Song. “Mitigating Multi-target Attacks
in Hash-Based Signatures”. In: Public-Key Cryptography - PKC 2016 - 19th IACR
International Conference on Practice and Theory in Public-Key Cryptography, Taipei,
Taiwan, March 6-9, 2016, Proceedings, Part I. Ed. by Chen-Mou Cheng et al. Vol. 9614.
Lecture Notes in Computer Science. Springer, 2016, pp. 387–416. doi: 10.1007/978-
3-662-49384-7_15.

[36] Andreas Hülsing et al. XMSS: eXtended Merkle Signature Scheme. RFC 8391. May
2018. doi: 10.17487/RFC8391. url: https://www.rfc-editor.org/info/rfc8391.

117

https://web.archive.org/web/20220901053149/https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/communications-ia-multi-buffer-paper.pdf
https://web.archive.org/web/20220901053149/https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/communications-ia-multi-buffer-paper.pdf
https://web.archive.org/web/20220901053149/https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/communications-ia-multi-buffer-paper.pdf
https://web.archive.org/web/20220901053149/https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/communications-ia-multi-buffer-paper.pdf
https://doi.org/10.1109/ITNG.2012.62
https://doi.org/10.1109/ITNG.2012.62
https://doi.org/10.1007/s13389-012-0037-z
https://doi.org/10.4236/jis.2012.34039
https://web.archive.org/web/20220901094842/https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/sha-256-implementations-paper.pdf
https://web.archive.org/web/20220901094842/https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/sha-256-implementations-paper.pdf
https://web.archive.org/web/20220901094842/https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/sha-256-implementations-paper.pdf
https://www.intel.com/content/dam/develop/external/us/en/documents/intel-sha-extensions-white-paper.pdf
https://www.intel.com/content/dam/develop/external/us/en/documents/intel-sha-extensions-white-paper.pdf
https://eprint.iacr.org/2022/1726
https://eprint.iacr.org/2022/1726
https://extgit.iaik.tugraz.at/krypto/javasphincsplus
https://extgit.iaik.tugraz.at/krypto/javasphincsplus
https://doi.org/10.1007/978-3-642-38553-7_10
https://doi.org/10.1007/978-3-642-38553-7_10
https://doi.org/10.1007/978-3-662-49384-7_15
https://doi.org/10.1007/978-3-662-49384-7_15
https://doi.org/10.17487/RFC8391
https://www.rfc-editor.org/info/rfc8391

Bibliography

[37] Yuichi Kaji, Jason Paul Cruz, and Yoshio Yatani. “Hash-Based Signature with Constant-
Sum Fingerprinting and Partial Construction of Hash Chains”. In: Proceedings
of the 15th International Joint Conference on e-Business and Telecommunications,
ICETE 2018 - Volume 2: SECRYPT, Porto, Portugal, July 26-28, 2018. Ed. by Pierangela
Samarati and Mohammad S. Obaidat. SciTePress, 2018, pp. 463–470. doi: 10.5220/
0006828204630470.

[38] Burt Kaliski and Jessica Staddon. PKCS #1: RSA Cryptography Specifications Version
2.0. RFC 2437. Oct. 1998. doi: 10.17487/RFC2437. url: https://www.rfc-editor.
org/info/rfc2437.

[39] Jonathan Katz. “Analysis of a Proposed Hash-Based Signature Standard”. In: Security
Standardisation Research - Third International Conference, SSR 2016, Gaithersburg,
MD, USA, December 5-6, 2016, Proceedings. Ed. by Lidong Chen, David A. McGrew,
and Chris J. Mitchell. Vol. 10074. Lecture Notes in Computer Science. Springer, 2016,
pp. 261–273. doi: 10.1007/978-3-319-49100-4_12.

[40] Jonathan Katz and Yehuda Lindell. Introduction to Modern Cryptography, Second
Edition. CRC Press, 2014. doi: 10.1201/b17668.

[41] Kockmeyer. A schematic that shows the SHA-2 algorithm. [Online; accessed 2023-03-
09]. Mar. 2007. url: https://commons.wikimedia.org/wiki/File:SHA-2.svg.

[42] Stefan Kölbl. Haraka v2. GitHub Repository. Sept. 2017. url: https://github.com/
kste/haraka.

[43] Stefan Kölbl. Putting Wings on SPHINCS. GitHub Repository. Nov. 2017. url: https:
//github.com/kste/sphincs.

[44] Stefan Kölbl. “Putting Wings on SPHINCS”. In: Post-Quantum Cryptography - 9th
International Conference, PQCrypto 2018, Fort Lauderdale, FL, USA, April 9-11, 2018,
Proceedings. Ed. by Tanja Lange and Rainer Steinwandt. Vol. 10786. Lecture Notes in
Computer Science. Springer, 2018, pp. 205–226. doi: 10.1007/978-3-319-79063-
3_10.

[45] Stefan Kölbl et al. “Haraka v2 - Efficient Short-Input Hashing for Post-Quantum
Applications”. In: IACR Trans. Symmetric Cryptol. 2016.2 (Feb. 2017), pp. 1–29. doi:
10.13154/tosc.v2016.i2.1-29.

[46] Mikhail A. Kudinov et al. “SPHINCS+C: Compressing SPHINCS+ With (Almost) No
Cost”. In: IACR Cryptol. ePrint Arch. (2022), p. 778. url: https://eprint.iacr.org/
2022/778.

[47] Leslie Lamport. Constructing Digital Signatures from a One Way Function. Tech. rep.
CSL-98. This paper was published by IEEE in the Proceedings of HICSS-43 in January,
2010. Oct. 1979. url: https://www.microsoft.com/en-us/research/publication/
constructing-digital-signatures-one-way-function/.

[48] Frank T. Leighton and Silvio Micali. Large provably fast and secure digital signature
schemes based on secure hash functions. U.S. Patent 5,432,852. US Patent 5,432,852.
July 1995. url: https://image- ppubs.uspto.gov/dirsearch- public/print/
downloadPdf/5432852.

118

https://doi.org/10.5220/0006828204630470
https://doi.org/10.5220/0006828204630470
https://doi.org/10.17487/RFC2437
https://www.rfc-editor.org/info/rfc2437
https://www.rfc-editor.org/info/rfc2437
https://doi.org/10.1007/978-3-319-49100-4_12
https://doi.org/10.1201/b17668
https://commons.wikimedia.org/wiki/File:SHA-2.svg
https://github.com/kste/haraka
https://github.com/kste/haraka
https://github.com/kste/sphincs
https://github.com/kste/sphincs
https://doi.org/10.1007/978-3-319-79063-3_10
https://doi.org/10.1007/978-3-319-79063-3_10
https://doi.org/10.13154/tosc.v2016.i2.1-29
https://eprint.iacr.org/2022/778
https://eprint.iacr.org/2022/778
https://www.microsoft.com/en-us/research/publication/constructing-digital-signatures-one-way-function/
https://www.microsoft.com/en-us/research/publication/constructing-digital-signatures-one-way-function/
https://image-ppubs.uspto.gov/dirsearch-public/print/downloadPdf/5432852
https://image-ppubs.uspto.gov/dirsearch-public/print/downloadPdf/5432852

[49] David McGrew, Michael Curcio, and Scott Fluhrer. Leighton-Micali Hash-Based
Signatures. RFC 8554. Apr. 2019. doi: 10.17487/RFC8554. url: https://www.rfc-
editor.org/info/rfc8554.

[50] Ralph C. Merkle. “A Certified Digital Signature”. In: Advances in Cryptology —
CRYPTO’ 89 Proceedings. Ed. by Gilles Brassard. New York, NY: Springer New York,
1990, pp. 218–238. doi: 10.1007/0-387-34805-0_21.

[51] Dustin Moody. Status Report on the Third Round of the NIST Post-Quantum Cryptog-
raphy Standardization Process. Tech. rep. 2022. doi: 10.6028/nist.ir.8413.

[52] Chris Newland. VM Intrinsics Explorer - HotSpot Intrinsics for OpenJDK18. [Online;
accessed 2023-02-15]. Feb. 2023. url: https : / / chriswhocodes . com / hotspot _
intrinsics_openjdk18.html.

[53] Scott Oaks. Java Performance - The Definitive Guide: Getting the Most Out of Your
Code. O’Reilly, 2014. url: http://shop.oreilly.com/product/0636920028499.do.

[54] Oracle. Java Native Interface Specification. [Online; accessed 2023-02-15]. 2022. url:
https://docs.oracle.com/en/java/javase/18/docs/specs/jni/.

[55] Lucas Pandolfo Perin. “Message encoding algorithms for Winternitz signatures”. PhD
thesis. Universidade Federal de Santa Catarina, 2021. url: https://repositorio.
ufsc.br/handle/123456789/231005.

[56] Lucas Pandolfo Perin et al. “Improved constant-sum encodings for hash-based
signatures”. In: J. Cryptogr. Eng. 11.4 (2021), pp. 329–351. doi: 10.1007/s13389-021-
00264-9.

[57] Lucas Pandolfo Perin et al. “Tuning the Winternitz hash-based digital signature
scheme”. In: 2018 IEEE Symposium on Computers and Communications, ISCC 2018,
Natal, Brazil, June 25-28, 2018. IEEE, 2018, pp. 537–542. doi: 10.1109/ISCC.2018.
8538642.

[58] Andy Polyakov. CRYPTOGAMS. GitHub Repository. Feb. 2023. url: https://github.
com/dot-asm/cryptogams.

[59] Tim Rausch.Optimizing Hash-Based Signatures in Java. GitHub Repository. Mar. 2023.
url: https://github.com/SAP-samples/optimizing-hash-based-signatures-
java.

[60] Leonid Reyzin and Natan Reyzin. “Better than BiBa: Short One-time Signatures
with Fast Signing and Verifying”. In: IACR Cryptol. ePrint Arch. (2002), p. 14. url:
http://eprint.iacr.org/2002/014.

[61] Joost Rijneveld. SPHINCS-256. GitHub Repository. May 2018. url: https://github.
com/sphincs/sphincs-256.

[62] Joost Rijneveld et al. SPHINCS+. GitHub Repository. Jan. 2023. url: https://github.
com/sphincs/sphincsplus.

[63] Joost Rijneveld et al. XMSS reference code. GitHub Repository. Mar. 2021. url: https:
//github.com/XMSS/xmss-reference.

119

https://doi.org/10.17487/RFC8554
https://www.rfc-editor.org/info/rfc8554
https://www.rfc-editor.org/info/rfc8554
https://doi.org/10.1007/0-387-34805-0_21
https://doi.org/10.6028/nist.ir.8413
https://chriswhocodes.com/hotspot_intrinsics_openjdk18.html
https://chriswhocodes.com/hotspot_intrinsics_openjdk18.html
http://shop.oreilly.com/product/0636920028499.do
https://docs.oracle.com/en/java/javase/18/docs/specs/jni/
https://repositorio.ufsc.br/handle/123456789/231005
https://repositorio.ufsc.br/handle/123456789/231005
https://doi.org/10.1007/s13389-021-00264-9
https://doi.org/10.1007/s13389-021-00264-9
https://doi.org/10.1109/ISCC.2018.8538642
https://doi.org/10.1109/ISCC.2018.8538642
https://github.com/dot-asm/cryptogams
https://github.com/dot-asm/cryptogams
https://github.com/SAP-samples/optimizing-hash-based-signatures-java
https://github.com/SAP-samples/optimizing-hash-based-signatures-java
http://eprint.iacr.org/2002/014
https://github.com/sphincs/sphincs-256
https://github.com/sphincs/sphincs-256
https://github.com/sphincs/sphincsplus
https://github.com/sphincs/sphincsplus
https://github.com/XMSS/xmss-reference
https://github.com/XMSS/xmss-reference

Bibliography

[64] Dongyoung Roh, Sangim Jung, and Daesung Kwon. “Winternitz Signature Scheme
Using Nonadjacent Forms”. In: Secur. Commun. Networks 2018 (2018), 1452457:1–
1452457:12. doi: 10.1155/2018/1452457.

[65] Paul Sandoz. JEP 426: Vector API (Fourth Incubator). [Online; accessed 2023-02-15].
July 2022. url: https://openjdk.org/jeps/426.

[66] Rainer Steinwandt and Viktória I. Villányi. “A one-time signature using run-length
encoding”. In: Inf. Process. Lett. 108.4 (2008), pp. 179–185. doi: 10.1016/j.ipl.2008.
05.004.

[67] Shuzhou Sun, Rui Zhang, and Hui Ma. “Efficient Parallelism of Post-Quantum
Signature Scheme SPHINCS”. In: IEEE Trans. Parallel Distributed Syst. 31.11 (2020),
pp. 2542–2555. doi: 10.1109/TPDS.2020.2995562.

[68] The Legion of the Bouncy Castle. The Bouncy Castle Crypto Package For Java. GitHub
Repository. Feb. 2023. url: https://github.com/bcgit/bc-java.

[69] The Legion of the Bouncy Castle. The Legion of the Bouncy Castle. [Online; accessed
2023-02-14]. url: https://www.bouncycastle.org/.

[70] The Netty Project. Netty Project. GitHub Repository. Feb. 2023. url: https://github.
com/netty/netty.

[71] The OpenJDK Project. Java Microbenchmark Harness. GitHub Repository. Jan. 2023.
url: https://github.com/openjdk/jmh.

[72] The OpenJDK Project. JDK. GitHub Repository. Feb. 2023. url: https://github.
com/openjdk/jdk.

[73] The OpenSSL Project, Eric A. Young, and Tim J. Hudson. OpenSSL. GitHub Reposi-
tory. Feb. 2023. url: https://github.com/openssl/openssl.

[74] Wen Wang et al. “XMSS and Embedded Systems”. In: Selected Areas in Cryptography
- SAC 2019 - 26th International Conference, Waterloo, ON, Canada, August 12-16, 2019,
Revised Selected Papers. Ed. by Kenneth G. Paterson and Douglas Stebila. Vol. 11959.
Lecture Notes in Computer Science. Springer, 2019, pp. 523–550. doi: 10.1007/978-
3-030-38471-5_21.

[75] Wen Wang et al. XMSS and Embedded Systems - XMSS Hardware Accelerators for
RISC-V. Code Archive. May 2019. url: https://caslab.csl.yale.edu/code/
xmsshwswriscv/.

[76] Wikipedia contributors. Ice Lake (microprocessor) —Wikipedia, The Free Encyclopedia.
[Online; accessed 2023-02-14]. 2023. url: https://en.wikipedia.org/w/index.
php?title=Ice_Lake_(microprocessor)&oldid=1132219048.

[77] Wikipedia contributors. Intel SHA extensions — Wikipedia, The Free Encyclopedia.
[Online; accessed 2023-02-14]. 2022. url: https://en.wikipedia.org/w/index.
php?title=Intel_SHA_extensions&oldid=1123723151.

[78] Wikipedia contributors. Rocket Lake — Wikipedia, The Free Encyclopedia. [Online;
accessed 2023-02-14]. 2023. url: https://en.wikipedia.org/w/index.php?title=
Rocket_Lake&oldid=1139076937.

120

https://doi.org/10.1155/2018/1452457
https://openjdk.org/jeps/426
https://doi.org/10.1016/j.ipl.2008.05.004
https://doi.org/10.1016/j.ipl.2008.05.004
https://doi.org/10.1109/TPDS.2020.2995562
https://github.com/bcgit/bc-java
https://www.bouncycastle.org/
https://github.com/netty/netty
https://github.com/netty/netty
https://github.com/openjdk/jmh
https://github.com/openjdk/jdk
https://github.com/openjdk/jdk
https://github.com/openssl/openssl
https://doi.org/10.1007/978-3-030-38471-5_21
https://doi.org/10.1007/978-3-030-38471-5_21
https://caslab.csl.yale.edu/code/xmsshwswriscv/
https://caslab.csl.yale.edu/code/xmsshwswriscv/
https://en.wikipedia.org/w/index.php?title=Ice_Lake_(microprocessor)&oldid=1132219048
https://en.wikipedia.org/w/index.php?title=Ice_Lake_(microprocessor)&oldid=1132219048
https://en.wikipedia.org/w/index.php?title=Intel_SHA_extensions&oldid=1123723151
https://en.wikipedia.org/w/index.php?title=Intel_SHA_extensions&oldid=1123723151
https://en.wikipedia.org/w/index.php?title=Rocket_Lake&oldid=1139076937
https://en.wikipedia.org/w/index.php?title=Rocket_Lake&oldid=1139076937

[79] XKCP Contributors. eXtended Keccak Code Package. GitHub Repository. Dec. 2022.
url: https://github.com/XKCP/XKCP.

[80] Kaiyi Zhang, Hongrui Cui, and Yu Yu. “SPHINCS-𝛼 : A Compact Stateless Hash-
Based Signature Scheme”. In: IACR Cryptol. ePrint Arch. (2022), p. 59. url: https:
//eprint.iacr.org/2022/059.

[81] Amos Zheng and Marcos A. Simplicio Jr. “z-OTS: a one-time hash-based digital
signaturescheme with fast verification”. In: IACR Cryptol. ePrint Arch. (2021), p. 1506.
url: https://eprint.iacr.org/2021/1506.

121

https://github.com/XKCP/XKCP
https://eprint.iacr.org/2022/059
https://eprint.iacr.org/2022/059
https://eprint.iacr.org/2021/1506

A. Benchmark Results

A.1. XMSS

(SHA-256, bc)

(SHA-256, bc-o
ptim

ize
d)

(SHA-256, corre
�o)

(SHA-256, jni)

(SHA-256, jni-fi
xed

-padding)

(SHA-256, jni-p
rf-c

ache)

(SHA-256, java)

(SHA-256, java-optim
ize

d)

(SHA-256, ref
ere

nce)

(SHAKE256, bc)

(SHAKE256, jni)

(SHAKE256, ref
ere

nce)

Digest, HashingProvider

0.0

0.1

0.2

0.3

0.4

0.5

0.6

D
ur

at
io

n
[µ

s]

XMSS Hashing m5zn

=, Function
(256, F)
(256, PRF)
(192, F)

Figure A.1.: XMSS hashing on m5zn

123

A. Benchmark Results

(SHA-256, bc)

(SHA-256, bc-o
ptim

ize
d)

(SHA-256, corre
�o)

(SHA-256, jni)

(SHA-256, jni-fi
xed

-padding)

(SHA-256, jni-p
rf-c

ache)

(SHA-256, java)

(SHA-256, java-optim
ize

d)

(SHA-256, ref
ere

nce)

(SHAKE256, bc)

(SHAKE256, jni)

(SHAKE256, ref
ere

nce)

Digest, HashingProvider

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

D
ur

at
io

n
[µ

s]

XMSS Hashing m6i

=, Function
(256, F)
(256, PRF)
(192, F)

Figure A.2.: XMSS hashing on m6i

(SHA-256, bc)

(SHA-256, bc-o
ptim

ize
d)

(SHA-256, corre
�o)

(SHA-256, jni)

(SHA-256, jni-fi
xed

-padding)

(SHA-256, jni-p
rf-c

ache)

(SHA-256, java)

(SHA-256, java-optim
ize

d)

(SHA-256, ref
ere

nce)

(SHAKE256, bc)

(SHAKE256, jni)

(SHAKE256, ref
ere

nce)

Digest, HashingProvider

0

20

40

60

80

100

120

140

D
ur

at
io

n
[s

]

XMSS Key Generation m5zn ℎ = 16
=

256
192

Figure A.3.: XMSS key generation on m5zn

124

A.1. XMSS

(SHA-256, bc)

(SHA-256, bc-o
ptim

ize
d)

(SHA-256, corre
�o)

(SHA-256, jni)

(SHA-256, jni-fi
xed

-padding)

(SHA-256, jni-p
rf-c

ache)

(SHA-256, java)

(SHA-256, java-optim
ize

d)

(SHA-256, ref
ere

nce)

(SHAKE256, bc)

(SHAKE256, jni)

(SHAKE256, ref
ere

nce)

Digest, HashingProvider

0

25

50

75

100

125

150

175

D
ur

at
io

n
[s

]
XMSS Key Generation m6i ℎ = 16

=

256
192

Figure A.4.: XMSS key generation on m6i

(SHA-256, bc)

(SHA-256, bc-o
ptim

ize
d)

(SHA-256, corre
�o)

(SHA-256, jni)

(SHA-256, jni-fi
xed

-padding)

(SHA-256, jni-p
rf-c

ache)

(SHA-256, java)

(SHA-256, java-optim
ize

d)

(SHA-256, ref
ere

nce)

(SHAKE256, bc)

(SHAKE256, jni)

(SHAKE256, ref
ere

nce)

Digest, HashingProvider

0

1

2

3

4

5

6

7

8

D
ur

at
io

n
[m

s]

XMSS Signing m5zn ℎ = 16
=

256
192

Figure A.5.: XMSS signing on m5zn

125

A. Benchmark Results

(SHA-256, bc)

(SHA-256, bc-o
ptim

ize
d)

(SHA-256, corre
�o)

(SHA-256, jni)

(SHA-256, jni-fi
xed

-padding)

(SHA-256, jni-p
rf-c

ache)

(SHA-256, java)

(SHA-256, java-optim
ize

d)

(SHA-256, ref
ere

nce)

(SHAKE256, bc)

(SHAKE256, jni)

(SHAKE256, ref
ere

nce)

Digest, HashingProvider

0

2

4

6

8

10

D
ur

at
io

n
[m

s]

XMSS Signing m6i ℎ = 16
=

256
192

Figure A.6.: XMSS signing on m6i

(SHA-256, bc)

(SHA-256, bc-o
ptim

ize
d)

(SHA-256, corre
�o)

(SHA-256, jni)

(SHA-256, jni-fi
xed

-padding)

(SHA-256, jni-p
rf-c

ache)

(SHA-256, java)

(SHA-256, java-optim
ize

d)

(SHA-256, ref
ere

nce)

(SHAKE256, bc)

(SHAKE256, jni)

(SHAKE256, ref
ere

nce)

Digest, HashingProvider

0.0

0.2

0.4

0.6

0.8

1.0

1.2

D
ur

at
io

n
[m

s]

XMSS Verification m5zn ℎ = 16
=

256
192

Figure A.7.: XMSS verification on m5zn

126

A.2. LMS

(SHA-256, bc)

(SHA-256, bc-o
ptim

ize
d)

(SHA-256, corre
�o)

(SHA-256, jni)

(SHA-256, jni-fi
xed

-padding)

(SHA-256, jni-p
rf-c

ache)

(SHA-256, java)

(SHA-256, java-optim
ize

d)

(SHA-256, ref
ere

nce)

(SHAKE256, bc)

(SHAKE256, jni)

(SHAKE256, ref
ere

nce)

Digest, HashingProvider

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

D
ur

at
io

n
[m

s]
XMSS Verification m6i ℎ = 16

=

256
192

Figure A.8.: XMSS verification on m6i

A.2. LMS

127

A. Benchmark Results

(SHA-256, bc)

(SHA-256, bc-o
ptim

ize
d)

(SHA-256, corre
�o)

(SHA-256, jni)

(SHA-256, jni-fi
xed

-padding)

(SHA-256, java)

(SHA-256, java-optim
ize

d)

(SHAKE256, bc)

(SHAKE256, jni)

Digest, HashingProvider

0.0

0.1

0.2

0.3

0.4

0.5

D
ur

at
io

n
[s

]

LMS Key Generation m5zn ℎ = 10
=

256
192

Figure A.9.: LMS key generation on m5zn

(SHA-256, bc)

(SHA-256, bc-o
ptim

ize
d)

(SHA-256, corre
�o)

(SHA-256, jni)

(SHA-256, jni-fi
xed

-padding)

(SHA-256, java)

(SHA-256, java-optim
ize

d)

(SHAKE256, bc)

(SHAKE256, jni)

Digest, HashingProvider

0.0

0.1

0.2

0.3

0.4

0.5

0.6

D
ur

at
io

n
[s

]

LMS Key Generation m6i ℎ = 10
=

256
192

Figure A.10.: LMS key generation on m6i

128

A.3. SPHINCS+

A.3. SPHINCS+

(SHA-256, bc)

(SHA-256, java)

(SHAKE256, bc)

(SHAKE256, java)

(SHAKE256, jni)

(H
araka, bc)

(H
araka, java)

(H
araka, jni)

Digest, HashingProvider

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
SPHINCS+ Hashing m5zn

=

128
192
256

Figure A.11.: SPHINCS+ hashing on m5zn

129

A. Benchmark Results

(SHA-256, bc)

(SHA-256, java)

(SHAKE256, bc)

(SHAKE256, java)

(SHAKE256, jni)

(H
araka, bc)

(H
araka, java)

(H
araka, jni)

Digest, HashingProvider

0.0

0.2

0.4

0.6

0.8

SPHINCS+ Hashing m6i

=

128
192
256

Figure A.12.: SPHINCS+ hashing on m6i

(bc, 128)

(bc, 192)

(bc, 256)

(ja
va, 128)

(ja
va, 192)

(ja
va, 256)

HashingProvider, =

0

50

100

150

200

250

300

350

400

SPHINCS+ Key Generation SHA-256 small [ms]

Instance, Robust
(m5zn, True)
(m5zn, False)
(m6i, True)
(m6i, False)

Figure A.13.: SPHINCS+ key generation with SHA-256

130

A.3. SPHINCS+

(bc, 192)

(bc, 256)

(jn
i, 192)

(jn
i, 256)

(ja
va, 192)

(ja
va, 256)

HashingProvider, =

0

100

200

300

400

500

600

700

SPHINCS+ Key Generation SHAKE256 small [ms]

Instance, Robust
(m5zn, True)
(m5zn, False)
(m6i, True)
(m6i, False)

Figure A.14.: SPHINCS+ key generation with SHAKE256

(bc, 192)

(bc, 256)

(jn
i, 192)

(jn
i, 256)

(ja
va, 192)

(ja
va, 256)

HashingProvider, =

0

100

200

300

400

500

600

700

SPHINCS+ Key Generation Haraka small [ms]

Instance, Robust
(m5zn, True)
(m5zn, False)
(m6i, True)
(m6i, False)

Figure A.15.: SPHINCS+ key generation with Haraka

131

A. Benchmark Results

(bc, 128)

(bc, 192)

(bc, 256)

(ja
va, 128)

(ja
va, 192)

(ja
va, 256)

HashingProvider, =

0

1000

2000

3000

4000

SPHINCS+ Sign SHA-256 small [ms]

Instance, Robust
(m5zn, True)
(m5zn, False)
(m6i, True)
(m6i, False)

Figure A.16.: SPHINCS+ signing with SHA-256

(bc, 192)

(bc, 256)

(jn
i, 192)

(jn
i, 256)

(ja
va, 192)

(ja
va, 256)

HashingProvider, =

0

1000

2000

3000

4000

5000

6000

7000
SPHINCS+ Sign SHAKE256 small [ms]

Instance, Robust
(m5zn, True)
(m5zn, False)
(m6i, True)
(m6i, False)

Figure A.17.: SPHINCS+ signing with SHAKE256

132

A.3. SPHINCS+

(bc, 192)

(bc, 256)

(jn
i, 192)

(jn
i, 256)

(ja
va, 192)

(ja
va, 256)

HashingProvider, =

0

1000

2000

3000

4000

5000

6000

7000

8000

SPHINCS+ Sign Haraka small [ms]

Instance, Robust
(m5zn, True)
(m5zn, False)
(m6i, True)
(m6i, False)

Figure A.18.: SPHINCS+ signing with Haraka

133

	Abstract
	Zusammenfassung
	Introduction
	Motivation
	Contribution
	Organization

	Background and Theory
	Notation
	Digital Signatures
	Hash Functions
	One-Way Functions
	Collision-Resistant Hash Functions
	Other Security Properties
	Merkle-Damgård Constrution
	Sponge Constructions

	Hash-Based One-Time Signatures
	Lamport One-Time Signature Scheme
	Winternitz One-Time Signature Scheme
	WOTS-BR
	WOTS+C

	Merkle Signature Scheme
	Hypertrees
	Hash-Based Few-Time Signatures
	HORS Signature Scheme
	HORST Signature Scheme
	FORS Signature Scheme

	Specification and Standardization
	Signature Schemes
	XMSS
	LMS
	SPHINCS+

	Hash Functions
	SHA-2
	SHA-3
	Haraka

	Hash Function Implementation
	XMSS
	LMS
	SPHINCS+

	Related Work
	Implementation Optimization
	Optimizing SHA-2
	Implementing Haraka
	Application to Hash-Based Signature Schemes
	Scheme-Specific Optimizations

	Scheme Variants
	RapidXMSS
	SPHINCS+C
	WOTS Encodings

	Practical Foundations
	Java Architecture and Limitations
	Software
	BouncyCastle
	OpenSSL
	eXtended Keccak Code Package
	Amazon Corretto Crypto Provider

	Benchmarking Methodology
	Java Microbenchmark Harness
	Benchmarking Environment

	Implementation
	XMSS Reference Implementation
	Optimization Levels
	Hash Encapsulation
	BouncyCastle
	Amazon Corretto Crypto Provider
	JNI
	Java

	Parallelization
	XMSS
	LMS

	Verification-Optimized Signatures
	Theoretical Analysis
	Practical Validation

	Evaluation
	XMSS Reference Implementation
	Optimization Levels
	BouncyCastle
	Amazon Corretto Crypto Provider
	JNI
	Java
	Summary

	Parallelization
	Results
	Superlinear Speedups

	Verification-Optimized Signatures
	WOTS-BR
	WOTS+C
	Comparison

	Conclusion
	Summary
	Future Work

	Bibliography
	Benchmark Results
	XMSS
	LMS
	SPHINCS+

