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Abstract The stability of a body suspended asymmetrically by means of an inelastic rope is investigated.
The rope is attached to the body at two points and passed over a frictionless hook or a nail in the vertical
plane. The equilibrium points of the system and their stability are described as a function of the rope length,
the distance of the attachment points and the position of the center of mass. Depending on the choice of the
parameters, one, two or three equilibrium positions exist: their structural change manifests itself in the form
of cusp bifurcations of co-dimension two, which is determined in exact analytical form.

1 Introduction

Bodies suspended by a rope and fixed at two points are common in both everyday life and engineering practice.
A picture hanging on a wall and lifting a body by a crane are typical examples of this method of fixation (see
Fig. 1). In case of a short rope passed over a hook (or nail) without further fixation at the hook, the body
hanging on it might hang tilted to the side. As a result of environmental effects (vibrations, rope stretching,
temperature fluctuations or creep, etc.), it can sometimes also happen that the body that has otherwise been
motionless for a long time suddenly completely changes the direction of its suspension. In the case of pictures,
this is purely aesthetically annoying, but in the case of heavy bodies moved by a crane, the sudden change in
position can cause damage, accidents or even endanger lives. Due to the risk of the above described catastrophe
phenomenon, it is prohibited to attach hanging loads to a crane this way.

The article is based on the model published in [1]. Taking into account the possible asymmetry of the body,
the extended model presented in this article is suitable for the mathematical description of the suspension of
arbitrarily shaped rigid bodies. The methods applied in the article are similar to the methods used to investigate
the stability of blocks floating onwater surface, which problem also depends onmany geometrical and physical
parameters at the same time [2]. Similarity in themodeling approach can also be foundwith themethods applied
for the description of water-filled containers, able to turn around a fixed axis [3,4]. The stability of ships is an
active research topic with direct applications in naval design problems [5–7]. Despite being a simpler problem
with easy experimental verification, the problem of a body suspended by a rope received much less attention
in the literature [1].
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The findings presented in the current paper have direct constructional implications. They can be utilized
to avoid catastrophe when designing safe suspensions of the above kind. It also has relevance in the design of
tensegrity structures where bi-stability is actually desired [8].

The paper is structured as follows: in Sect. 2 the setup of the model is presented, followed by Sect. 3,
where the equation describing the equilibrium positions is derived. In Sect. 4, graphical solution of the above
equation is given and the stability analysis of the equilibrium positions is performed. In Sect. 5, the catastrophe
surface and the region in the parameter plane where multiple equilibrium points coexist are calculated in exact
closed form.

Section 6 summarizes the findings and gives scope for future research.

2 Model setting

Let us investigate the problem setting depicted in Fig. 1. An inelastic rope of length 2c is fixed to the rigid body
of mass m at the points F1 and F2 of distance 2a from each other. The rope is passed over the point P ′ that
represents the hook (or nail). Would the point lie at the middle of the rope (point P) so would the suspension
be symmetric; this point P is represented relative to the body in Fig. 1.

Without loss of generality, it is sufficient to consider the problem in two dimensions, in the plane defined
by the points P ′, F1 and F2. The coordinate system (x ′, y′) is bound to the direction of the gravitational force,
such that the y′ axis is parallel to it. Let us define a second, new coordinate system, fixed to the suspended
object, such that its center, O , is at the halfway between F1 and F2 with x axis parallel to �rF1F2 and y axis
parallel to �rOP . The position of the center of mass, C , is a further important parameter in the problem setting.
At the equilibrium, it lies in the vertical plane of the x ′ − y′ coordinate system. Let us denote its position by
(−e, −d) in the newly defined coordinate system O(x, y), where e and d refer to the eccentricity of the center
of mass and its depth, respectively. For convenience, we introduce the dependent parameter

h :=
√
c2 − a2 (1)

which is just the distance between P and O . As already described in [1], the feasible positions of the suspension
point P ′(x, y) are located at a half ellipse where yP ′ ≥ 0. The focal points of the ellipse are just F1 and F2.
Its major and minor axes have lengths c and h, respectively.
The angle ϕ′ between the y axis and the vector �rCP ′ represents the skewness of the suspended body in the
ground based coordinates O ′(x ′, y′), since at the static hanging position, �rCP ′ is parallel to the direction of the

Fig. 1 Problem setting of an asymmetrically suspended body



Stability of bodies suspended by a rope

gravitational force. ϕ′ is not used in further investigations, only serves to facilitate the characterization of the
body’s position in the plane.

3 Finding the equilibrium positions

The equilibrium positions corresponding to P ′(x, y) of the hanging body can be found by means of the local
extrema of the body’s potential energy given by

U = −mg|�rCP ′ |. (2)

In case of a minimum ofU , the equilibrium is stable, in case of a maximum, it is unstable. The only factor
influencing stability is the distance l := |�rCP ′ |, which guarantees a stable equilibrium if it has a local maximum
due to the negative sign in Eq. (2).

The position vector of the center of mass from the suspension point is given by

�rCP ′ =
(
e + x
d + y

)
, (3)

leading to

l(x) =
√

(e + x)2 + (d + y(x))2 (4)

where y can be expressed by x from the condition that the rope is in tension, and consequently, the point P ′
is located on the ellipse defined by

x2

c2
+ y2

h2
= 1 ⇒ y(x) = h

√

1 − x2

c2
. (5)

An extremum of the potential function U (x) exists when, according to Eq. (4), it holds that an extremum
of the always positive l(x) exists, i.e., where an extremum of its square is taken. Being l2(x) a continuous
function, it has a local extremum in x ∈ (−c, c) if

d

dx
l2(x) = 2(e + x) + 2 (d + y(x)) y′(x) != 0, (6)

where

y′(x) = − hx

c2
√
1 − x2

c2

. (7)

Inserting Eqs. (5) and (7) into Eq. (6), we have

e + x −
d + h

√
1 − x2

c2

c2
√
1 − x2

c2

hx = 0. (8)

Using Eq. (1) and rearranging the equation, we find

(
e + a2

c2
x

)√

1 − x2

c2
= hd

c2
x . (9)

Non-dimensionalization of x is performed by introducing

X := x

c
, (10)

which after insertion into Eq. (9) and multiplication both sides of the equation with c/a2 yields
( ec
a2

+ X
) √

1 − X2 = hd

a2
X. (11)



A. Genda, G. Stepan

Fig. 2 Graphical representation of the solutions of Eq. (14). The left hand side of the equation is an upper semi-circle, while
the right hand side is a hyperbola with asymptotes at −E and D. Based on the value of D and E , the upper semi-circle and the
hyperbola have either 1, 2 (double root, when touching) or 3 distinct, real solutions (X1, X2 and X3). The hyperbola also has an
intersection with the lower semi-circle yielding the extraneous solution X∗

The four parameters a, c, d and e finally can be reduced to the two independent parameters

D := hd

a2
, E := ec

a2
, (12)

denoting the dimensionless depth and eccentricity of the center of mass, respectively.1 Then, Eq. (11) can be
written in the form

(E + X)
√
1 − X2 = DX, (13)

the solutions of which present the equilibrium positions of the suspended body, where the potential function
U (x) has extrema. If E = 0, then the trivial solution of Eq. (13) is the real root X1 = 0 that always exists, and
if D < 1, there exist two further real roots given by X2,3 = ±√

1 − D2. In case of E 	= 0, that is with some
eccentricity e 	= 0, it is not so simple to find the roots of Eq. (13), since the roots of a non-reducible quartic
polynomial have to be found. To carry out a graphical interpretation of the problem, we divide both sides of
the equation by E + X leading to

√
1 − X2 = D

X

X + E
. (14)

4 Graphical solution and stability analysis

Although it would be possible to solve Eq. (14) in closed form, since it is equivalent to a fourth-degree
polynomial, we evade this step, as the solution is very intricate and not necessary for the stability analysis.
Instead, let us construct a qualitative picture of the solutions graphically. This way, the overall effects of the
parameters D and E become visible.

Based on Fig. 2, there are three different cases regarding the number of the distinct real solutions of Eq.
(14):

1 Since every configuration with D < 0 is unstable, only the case D ≥ 0 is considered in the main text. For a purely theoretical
analysis including D < 0, see the appendix.
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• 1 real solution, if the values of D and E are sufficiently large. The body possesses one resting position.
• 2 real solutions, if one branch of the hyperbola intersects while the other branch just touches the upper
semi-circle. This case is a bifurcation point.

• 3 real solutions, when there are three equilibrium positions for sufficiently small values of D and E .

It is important to note that since the hyperbola always crosses the origin, there exists at least one solution.
In order to determine whether an equilibrium point is stable or not, we can check the sign of the second

derivative of l2(x) evaluated at the root xk in question. We get

d2

dx2
l2(x) = 2

(
a2

c2
− chd

(c2 − x2)3/2

)
. (15)

The equilibrium point xk is stable if l2(x) has a local maximum there, which can be found out by checking
the sign of the second derivative at the equilibrium point. After division by 2a2/c2 and using Eq. (12), the
condition of the existence of a maximum in dimensionless form is

1 − D2/3 < X2
k , (16)

which means that the potential function (2) has a minimum, that is, the equilibrium at Xk is stable.
Based on the geometry, it is clear that if Eq. (14) has only one real solution, that must be stable. In case of

three solutions, Eq. (16) implies that the middle one X1 must be unstable. This can be proven by contradiction,
assuming X1 is stable. Due to the geometry, we have X2

1 < X2
2 and X2

1 < X2
3; thus, X2 and X3 fulfill condition

(16) as well, which implies that all three solutions are stable. But this is clearly a topological contradiction.
Thus, in case of three equilibrium positions X1 is always unstable and X2,3 are stable.

5 Finding the catastrophe surface in closed form

In the next step, we would like to determine whether Eq. (13) has one, two or three real roots depending on
the combinations of the parameters D and E . Thus, we can also obtain two regions in the E–D parameter
plane resulting in one or three real roots, divided by a curve, which corresponds to the case of two real roots.
To simplify Eq. (13) further, we need to take the square of both sides

(X + E)2
(
1 − X2) = D2X2. (17)

Yet, doing so, unwillingly we produce a false root X∗ (cf. Fig 2) of Eq. (17). When taking the square, not
only the intersections of the hyperbolas and the upper semi-circle are calculated, but also the intersection with
the lower semi-circle leading always to X∗. Thus, we consider two different scenarios: Eq. (17) has either 2
or 4 real roots, including the false root as well. Expanding Eq. (17), we have

X4 + 2EX3 + (E2 + D2 − 1)X2 − 2EX − E2 = 0. (18)

Equation (18) has two symmetries, axial symmetry to the E–X plane and central symmetry to the D axis. The
axial symmetry is due to D2, which is the only occurrence of the dimensionless depth variable D and the axial
symmetry is due to the fact that the equation remains valid under simultaneous sign change in E and X .

We focus on the finding of the parameter combinations of D and E which describes the limiting case that
separates the regions of 2 and 4 real roots. When a transition takes place, at least two roots are identical. Such
structural changes in the solutions of a polynomial are related to the polynomial’s discriminant � [9] which
becomes zero at the transition. It suffices to calculate the parametric curve

�(D, E) = 0. (19)

The discriminant of a general fourth-degree polynomial of the form

p4X
4 + p3X

3 + p2X
2 + p1X + p0 = 0 (20)

is given by formula [9]

� = 256p34 p
3
0 − 192p24 p3 p1 p

2
0 − 128p24 p

2
2 p

2
0 + 144p24 p2 p

2
1 p0 − 27p24 p

4
1

+ 144p4 p
2
3 p2 p

2
0 − 6p4 p

2
3 p

2
1 p0 − 80p4 p3 p2 p

3
1 + 16p4 p

4
2 p0 − 4p4 p

3
2 p

2
1

− 27p43 p
2
0 + 18p33 p2 p1 p0 − 4p33 p

3
1 − 4p23 p

3
2 p0 + p23 p

2
2 p

2
1 .

(21)
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Fig. 3 Projection of the catastrophe surface on the plane of the parameters E and D defined by E2/3 + D2/3 < 1. In the
white region, only one equilibrium position exists, which is stable. In the gray region, three equilibrium positions exist (stable–
unstable–stable). The pink region D < 0 is not of interest due to the instability of such constructions (color figure online)

Fig. 4 The distance l(X) of the center of the mass C from the suspension point P ′ with parameters a = 0.6, d = 0.31275, c = 1,
(h = 0.8) for three different values of the eccentricity e = {0.018, 0.036, 0.054}. The corresponding non-dimensional values
are X = x , D ≈ 0.695 and E = {0.05, 0.1, 0.15}. The markers represent the equilibrium points. With growing eccentricity,
the stable equilibrium position on the left disappears. The value Ec = 0.1 is the limiting case, where the two left hand side
equilibrium points meet and disappear for E > Ec

In our case, this means

p4 = 1, p3 = 2E, p2 = E2 + D2 − 1, p1 = −2E, p0 = −E2, (22)

which inserted into condition (19) yields

− E8D2 − 3E6D4 + 3E6D2 − 3E4D6 − 21E4D4 − 3E4D2

− E2D8 + 3E2D6 − 3E2D4 + E2D2 = 0.
(23)

Rearranging and simplifying the terms results in

E2/3 + D2/3 = 1. (24)

This is the equation of the so called astroid (see Fig. 3) [10]. This curve is obtained, if one rolls a circle of
radius 1/4 along the inner side of the unit circle and follows the path of a chosen point on the rolling circle’s
circumference. In this context, it presents those lines along the catastrophe surface where a fold bifurcation
takes place and the number of equilibrium positions changes from 1 to 3.

A graphical representation of the function l(X) is shown in Fig. 4 together with its extrema. In Fig. 5, we
can see the plots of the roots of Eq. (13) for various fixed values of E . The supercritical pitchfork bifurcation
for E = 0 falls apart into a fold bifurcation and a regular, always stable solution for the eccentricity E 	= 0.
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Fig. 5 The roots of Eq. (13), Xi depicted against D for fixed values of E . The root in the middle is unstable (- - -), while the roots

on the side are stable (—). When having E = 0.1, the fold is at D ≈ 0.695 (- - - ), for which parameter choice the rope length
is illustrated in Fig. 4 (color figure online)

6 Conclusions

The stability of the equilibrium points of a rigid body which is suspended asymmetrically at two points by a
single rope passed frictionless over a hook (or a nail) has been investigated in gravitational space. It has been
shown that the four parameters describing the model, such as the distance of the fixations, rope length, the
vertical and the horizontal position of the body’s center ofmass, can be reduced to twodimensionless parameters
suitable to describe the behavior of the system regarding stability. Under the variation of the above parameters,
the number of equilibrium points changes. This structural change is categorized as a cusp bifurcation of co-
dimension two.Under the variation of the non-dimensional parameter D andwithout eccentricity, the remaining
one-parameter bifurcation is supercritical pitchfork, which for nonzero eccentricity of the suspension falls apart
into a regular branch and into a fold. In the other hand, under the variation of E , the bifurcations are always
folds.

In safety-critical applications, the parameter regionwheremultiple equilibrium points exist at the same time
is to be avoided as the transposition from one resting position to the other one, even for a slight perturbation,
might be a sudden and unexpected movement possibly endangering lives and material goods [11]. Such a
dangerous scenario is, for example, when a person is climbing up or down on a suspended heavy object slowly
causing the variation of the depth of the whole system’s center of mass. In case of climbing down, the current
equilibrium solution might disappear due to the slowly increasing value of D and a sudden, dangerous jump
occurs to the remaining stable equilibrium. In case of climbing upwards, the stable equilibrium starts shifting
continuously while a pair of stable and unstable equilibrium positions also appears. Similarly dangerous
situations occur when the center of mass of a suspended container gets shifted downwards or upwards due to
rain [3], for example. Analogous scenarios take place if a person (or an animal, see Fig. 6) moves horizontally
on the suspended object causing the change of the eccentricity E . In the paper, the easily applicable condition
D2/3 + E2/3 > 1 has been derived to check whether a given setup is safety-critical or not.

An interesting question that might give scope for further research regards the effect of an external force
acting on the body. In case of multiple equilibrium points, a dynamic external force could also cause transition
from one local minimum of the potential energy to another local minimum, which dynamic process is called
escape [11]. This problem generalization might find applications in the construction of safe suspensions on
floating cranes, in the shifting of goods by crane in windy weather, or large tanks with fluid streaming out of
them, in which case the excitation is a follower force.
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Fig. 6 Cat walking on a suspended beam. Due to the cat’s movement, the system’s center of mass also changes. If the cat gets
close to the other side of the beam, the actual equilibrium position might disappear leading to a sudden movement of the beam
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Appendix

The surface of equilibrium positions Xi as a multi-valued function of the non-dimensional parameters E and
D is investigated in the appendix.
The original problem’s stable equilibrium positions are given by the maxima of Eq. (4) which might include
also boundary points at X = ±1. The unstable equilibrium positions are given, however, only by the local
minima of Eq. (4) excluding the boundary values. Thus, the set of all equilibrium positions is given by the
solutions of Eq. (13) and by the values X = ±1, in case they are local maxima. It is easy to check that
for D > 0, l(X) always has local minima at the boundary points X = ±1, and thus, these points are not
equilibrium positions. For D < 0, l(X) has always local maxima at X = ±1, and thus, these points are stable
equilibria. The surface of all equilibrium positions depicted in the plane of the non-dimensional parameters E
and D is shown in Fig. 7. We can observe the Whitney fold cusp bifurcation centered at (E, D) = (0, 1).
Due to the change to Eq. (18), the problem’s solution gains an extra, spurious solution. Not considering the
stable boundaries in case of D < 0, the equilibrium positions, including the spurious one, are given by the
real solutions of Eq. (18) and are depicted in Fig. 8.
The projection of the bifurcation points of Eq. (18) on the plane of the non-dimensional parameters, i.e.,
the astroid (c.f. Figure 3), resembles of that found in case of Zeeman’s catastrophe machine that has also 4
cusps [12,13]. It should be noted, however, that by the removal of the spurious solution, three cusps disappear.
The one at (E, D) = (0,−1) gets entirely lost and the ones at (E, D) = (±1, 0) become simple folds.

http://creativecommons.org/licenses/by/4.0/
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Fig. 7 The surface of equilibrium positions depicted in the E–D–X -space. The curve along which the bifurcation points are
located is given in red (color figure online)

Fig. 8 The surface of the solutions of Eq. (18) depicted in the E–D–X space. The curve along which the bifurcation points are
located is given in red (color figure online)
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