
KIT – Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu

Composable Definitions of Long-
Term Security for Commitment
Schemes and their Applications

Master’s Thesis
KIT – Karlsruher Institut für Technologie
ITI – Institut für Theoretische Informatik

Forschungsruppe Kryptographie und Sicherheit

Sarai Eilebrecht

28. Februar 2021

Verantwortlicher Betreuer: Prof. Dr. Jörn Müller-Quade
Betreuender Mitarbeiter: Jeremias Mechler, M. Sc.

Astrid Ottenhues, M. Sc.

v

Abstract.

What happens if a cryptographic assumption turns out not to hold and in which way does it
affect the security of cryptographic protocols?
One might consider on updating the security assumption and prove the security of the

updated protocol with this new security assumption including the update procedure. But
how to prove the security of the updated protocol and the update procedure? One way
might be to prove the protocol in question as long-term UC secure, a security framework
which assumes that an adversary is unbounded after the computation of the protocol is
completed and therefore computational assumptions do not hold once the protocol has finished
its computation. Additionally, for long-term UC security are impossibility results shown,
especially for commitment protocols. Therefore the notion of long-term UC security may be
too strong if one wants to prove security against adversaries that increase their computational
power during the computation since such an adversary is still computationally bounded, even
after the computation of a protocol is completed.

In this thesis, we define a relaxed notion of long-term security, called F post security.
Additionally, we show a combination of commitment and coin toss protocols to toss a new

CRS of an updated commitment scheme such that the commitment scheme is F post secure.

vi

Deutsche Zusammenfassung.

Was passiert, falls eine kryptographische Annahme als nicht mehr sicher gilt und in welcher
Weise betrifft dies die Sicherheit von kryptographischen Protkollen?

In dieser Hinsicht mag man sich überlegen, die Sicherheitsannahme zu aktualisieren und die
Sicherheit des aktualisierten Protokolls inklusive der Aktualisierungsprozedur nachzuweisen.
Wie jedoch lässt sich die Sicherheit des aktualisierten Protokolls und der Aktualisierungsproze-
dur nachweisen?
Eine Möglichkeit wäre zu beweisen, dass das gegebene Protokoll nachweisbar langfristig

UC-sicher ist, ein Sicherheitsbegriff bei dem angenommen wird dass der Angreifer nach
Protokollausführung unbeschränkt ist und daher nach Protokollausführung keine Komplex-
itätsannahmen gelten. Zudem wurden Unmöglichkeitsresultate gezeigt, insbesondere für
Commitmentprotokolle. Daher kann der Begriff der langfristigen UC-Sicherheit etwas zu stark
sein, wenn man die Sicherheit gegenüber Angreifern nachweisen möchte, die zwar während
der Protokollausführung die Rechenkapazität erhöht, diese aber limitiert bleibt, auch nach der
Ausführung des Protkolls.

In dieser Arbeit definieren wir einen gelockerten Begriff der langfristigen UC-Sicherheit,
den wir F post-Sicherheit nennen.
Darüber hinaus möchten wir zeigen, wie man ein F post-sicheres Commitment-Schema

verwenden kann, um einen Common Reference String (CRS) eines anderen Commitments zu
aktualisieren.

vii

Contents

1 Introduction 1
1.1 The New Framework . 1
1.2 Updating the Security Assumption of a CRS For a UC-Secure Commitment

Scheme . 3
1.3 Overview . 4

2 Preliminaries 5
2.1 Notations . 5
2.2 Trapdoor Permutations . 6
2.3 Commitment Schemes . 8
2.4 Coin Toss . 10
2.5 Universal Composability . 10

2.5.1 Overview . 11
2.5.2 Composability . 14

2.6 Long-Term Universal Composability . 15
2.6.1 Long-Term Security . 16
2.6.2 Restrictions on Commitment Schemes 18

3 Defining the Functionality For Updatable Commitments 21
3.1 The DN Commitment Scheme . 25

3.1.1 The Statistically Binding DN Commitment 27
3.1.2 The Statistically Hiding DN Commitment 31

4 The Update Process For the CRS of A Commitment 37
4.1 The Coin Toss for the CRS . 38

4.1.1 On the Impossibility of An Fpost Secure Coin Toss 38
4.1.2 How to Modify the Commitment Functionality 45
4.1.3 Relation to Long-Term UC Security . 50

4.2 The UCC-OneTime Commitment Scheme . 50

viii Contents

5 Sampling the New CRS 63
5.1 Defining the Multi-Use Commitment . 63
5.2 The Final Step: Sampling the New CRS . 67

6 Conclusion 69

Bibliography 71

List of Tables 75

List of Figures 77

List of Theorems 79

Listings 81

1

1 Introduction

In today’s world, computational power increases very fast. Algorithms that took days to
compute a certain function some years ago are now able to compute the same functions only
within hours or even less. For the security of cryptographic protocols this can lead to a problem:
Some of the cryptographic assumptions like the length of a encryption scheme’s private key
turn out to be not sufficiently long enough, which makes the protocol itself insecure. Therefore
one might ask: Is it possible to update a cryptographic assumption and how can be the security
of such an updated protocol and the update process be proven?

A good start point for defining a security notion for updated protocols is the long-term UC
security introduced by Müller-Quade and Unruh [MU10]. This notion of security combines two
strong notions of security: long-term security which provides a definition of security which
considers adversaries that may get unbounded after a protocol is completed and the notion of
universal composability [Can00] which is a strong tool for proving security of protocols in
complex environments.
Yet, the long-term UC security may be a too strong notion if we only consider adversaries

that increase their computational power during the computation of a protocol but remain
computationally bounded after the computation is completed. Therefore some protocols can
be secure against such adversaries but fail to be proven long-term UC secure.
In this work we want to find a way to relax the notion of long-term UC security such that

protocols whose security assumptions are updated can be proven as secure against adversaries
that increase their computational power during the computation. Thereby we will focus on
the security of commitment schemes.
Furthermore, we want to show how to update a CRS of a commitment scheme using a

process of commitments and coin tosses.

1.1 The New Framework

The updatability of a commitment is based on a new framework, called F post which is a
relaxation of long-term universal composability framework [MU10]. Before we shortly recap
the long-term universal composability framework and explain our relaxed framework, we

2 1 Introduction

want to shortly explain the universal composability framework on which long-term UC and
(and also F post) is based on:

The universal composability framework defines security by comparing a real world in which
a protocol is computed by two or more ITMs, called the parties, in a distributed manner and an
ideal world where the same function is computed by a single machine, called the functionality.
More precisely, in both worlds there is an environment which tries to distinguish between
those two worlds. In the real world we have a protocol that is computed by two or more
machines, called that parties, and an adversarial machine that may try to control one or more
parties and potentially tries to instruct them to deviate from the protocol. In the ideal world, we
have a single and incorruptible machine that computes the protocol’s function and a machine
called the simulator which tries to simulate the execution of the protocol by simulating the
communication with the corrupted parties. By showing the indistinguishability of those two
worlds, we are able to show that an adversary in the real world can not do more harm than in
the ideal world where the function is computed in an incorruptible manner.

In the original universal composability framework the environment, the adversary and the
simulator are defined as computationally bounded machines. This definition of security is not
strong enough if we assume that an adversary may be computationally unbounded after the
protocol execution: For example, the witness of a zero-knowledge proof can be learned by
such an adversary. Therefore [MU10] have defined a stronger framework that is secure against
this type of attackers: To achieve long-term UC security, the view of the environment (which
is the environment’s output after the execution protocol) in the real world and in the ideal
world is statistically indistinguishable. This framework therefore defines long-term security
for UC secure protocols. It assumes adversaries that may be potentially unbounded after the
computation of the protocol and protocols that securely long-term UC realize a functionality
F guarantee everlasting input privacy.

For a setup that assumes an adversary that remains computationally bounded after protocol
execution but potentially increases its computational power during the computation, this
definition of security seems to be too strong, especially protocols in the FCRS-Hybrid model
cannot be proven long-term UC secure. The F post framework therefore is a relaxation of
the long-term UC framework: We define a protocol to F post-realize a given functionality
if the environment’s view in the ideal world is computationally indistinguishable from the
environment’s view in the real world iff the old assumption does not hold and the new
asumption is believed to computationally hold.

1.2 Updating the Security Assumption of a CRS For a UC-Secure Commitment Scheme 3

1.2 Updating the Security Assumption of a CRS For a
UC-Secure Commitment Scheme

The update procedure we present in this work is based on [BMM21]. Their result is a composable
multi-party protocol based on timed commitments [BN00]. As in our results they construct a
coin toss protocol in the plain model for which the corruption of one party is simulatable. Using
this protocol, they instantiate the CRS of a commitment scheme. Unlike in their work we do
not use timed commitments which can be forcefully opened (with some effort) by the recipient
using an algorithm that takes at most a certain time to open the commitment. Instead we use
commitments generated by the commitment scheme that will be updated based on the weaker
complexity assumption which are not hiding once the adversary increases its computational
power.

Our main result is updating a CRS of a commitment scheme whose complexity assumption
has to be updated. To update the CRS we will instantiate a coin toss protocol based on the new
complexity assumption and sample a new CRS based on the new complexity assumption using
the coin toss protocol. The update process of the CRS can roughly described as follows: In
the initial step, the commitment scheme whose setup assumption has to be updated is used to
create commitments. Those commitments are then used for several bit coin tosses. Those bit
coin tosses are then used to instantiate the CRS of a single-use commitment scheme which
is based on the new complexity assumption. The commitments generated with the stronger
commitment scheme can then be used in a coin toss to sample the new CRS of the commitment
scheme whose setup assumption is then updated. Yet, this instantiating process only suffices if
at the beginning of the update process the amount of commitments generated with the updated
commitment scheme is known. Therefore we additionally describe how the update process
can be extended by using a multi-use commitment. By using a multi-use commitment, one can
generate several commitments using the same instance of the multi-use commitment scheme
and therefore it is possible to instantiate several CRS of the updated commitment scheme in a
flexible way.
For the update process, we make some requirements on the protocols that are involved:

First of all, we want to assure that at the initial state of the update process the commitments
generated by the commitment scheme that is still based on the setup assumption to be secure
against the adversary. Therefore we require the initial commitment scheme (whose setup
assumption will be updated) to be long-term UC secure. This means that only statistically
binding commitment schemes or statistically hiding commitment schemes can be updated.
Since the commitment scheme we update has a CRS, this scheme cannot be proven to be long-
term UC secure (against Fcom) since the CRS generated in the CRS can only be computationally

4 1 Introduction

indistinguishable from the CRS generated in the real world. To ensure long-term security
of the commitment scheme in question we will define two relaxed variants of Fcom such
that unconditionally binding UC secure commitment schemes and unconditionally hiding UC
secure commitment can be proven long-term UC secure compared to the new functionalities
we define. Those unconditionally binding or unconditionally hiding commitment schemes
can be candidates for being updated. For the update procedure of the CRS we will instantiate
a coin toss. When building the coin toss protocol, we will see that a F post-secure coin toss
using both of the weakened commitment functionalities is impossible. A short explanation
explanation for this is that the new functionalities we define in this work are actually too weak
to be used in a UC (and hence F post) secure composition. Yet, there is a way to fix the coin
toss such that this coin toss protocol is at least stand-alone secure. Therefore this coin toss
protocol can only be used in a non-modular way. For creation of the two commitment schemes
based on the stronger setup assumption we modify two UC secure commitment schemes: one
single- commitment scheme whose CRS can be split in two parts and is uniformly random
to ensure that the commitment scheme can be used with the modified functionality and one
multi-use commitment scheme whose CRS can also be uniformly random.

1.3 Overview

In Chapter 2, we will shortly recap the definitions needed for our work, including the UC and
long-term UC framework.

In Chapter 3 we will define the new F post framework and define commitment functionalities
that are used for showing long-term UC security of updatable commitment schemes and show
two candidates that long-term UC securely realize those functionalities and therefore can
assumed to be updated.
The impossibility of a F post secure toss using our newly defined functionalities is shown

in Chapter 4 as well as a way to redefine one of the functionalities. Furthermore, we give
one example of a F post-secure commitment protocol that is usable in a F post secure coin toss
protocol in order to sample the new CRS.
In Chapter 5 we show how a multi-use commitment has to be modified to be able to toss

several CRS for the updated commitment protocol when themulti-use commitment is composed
with the commitment protocol defined in Chapter 4.

We conclude this work in 6 by recapping the results of this work.

5

2 Preliminaries

In this chapter, we define the notions of tools we will need throughout this work. Many
of the standard definitions use uniform probabilistic polynomial-time algorithms. Since our
work is based on the Universal composability framework whose definition uses non-uniform
probabilistic polynomial-time algorithms, we will cite many of the security definitions with a
modification.

If we cite a definition verbatim or without a modification from another work, then we will
give a keyword “see” or give the citation in brackets. If we modify a definition according to our
needs, then we will use the keyword “compare” or “cmp.” followed by the citation we modified.

First, we will define the notations we will use throughout this work in 2.1.
In 2.2 we will recap the definitions of trapdoor permutations, enhanced trapdoor permuta-

tions and trapdoor permutations with dense public keys.
In 2.3 we will define commitment schemes, followed by recapping coin tosses in 2.4.
In the last two sections, we will shortly explain the two security frameworks on which our

new framework is based on: The universal composability framework is described in 2.5 and a
short recap on long-term universal composability can be seen in 2.6.

2.1 Notations

Throughout this work we will let ⊕ denote as the bitwise XOR operator.
We call a function f negligible if for every positive polynomial p and all sufficiently large

n ∈ � we have f (n) ≤ 1
p(n) .

We now define probability distribution ensembles and indistinguishability as defined in
[Can00], Section 4.2 and [Lin17], Section 2. We call {X (n,z)n∈,z∈{0, 1}∗} a probability distribution
ensemble as an infinite set of probability distributions. Each distribution X (n,z) is associated
with a n ∈ � and z ∈ {0, 1}∗.

Now we want to define two notions of indistinguishability. Therefore we will cite the
definition of computational indistinguishability in [Lin17], Section 2 and [Can00], Definition 4
for a formal definition of statistical indistinguishability:

6 2 Preliminaries

Definition 2.1 (Computational indistinguishability, [Lin17], Section 2) Let
X = {X (n,z)n∈�,z∈{0, 1}∗} and Y = {Y (n,z)n∈�,z∈{0, 1}∗} be two probability distribution
ensembles. We call X and Y computationally indistinguishable if for any non-uniform
polynomial-time algorithm A there exists a negligible function µ(·) and an n0 ∈ � such that for
any security parameter n < n0 and any z ∈ {0, 1}∗ we have

Pr
�� [A(X (n,z)) = 1

] − Pr [A(Y (n,z)) = 1
] �� < µ(n)

Definition 2.2 (Statistical indistinguishability, [Can00], Definition 4) Let X =

{X (n,z)n∈�,z∈{0, 1}∗} and Y = {Y (n,z)n∈�,z∈{0, 1}∗} be two probability distribution en-
sembles. We call X and Y statistically indistinguishable if there exists a negligible function µ(·)
and an n0 ∈ � such that for any security parameter n < n0 and any z ∈ {0, 1}∗ we have

Pr
�� [X (n,z) = 1

] − Pr [Y (n,z) = 1
] �� < µ(n)

2.2 Trapdoor Permutations

This section is based on [Gol01], Section 2.4.4.1, [Gol04], Section C.1 and [DP92]. Section 3.
Since trapdoor permutations will be used in many of our protocols, we will shortly recap its

definition.
Informally a trapdoor permutation is a function whose domain is the same as its image.

Additionally, there is a public key pk (in the following definition denoted as index) together
with a private key sk for this function f such that, given the public key pk the evaluation f (x)
can be computed within polynomial time for each value x out of f ’s domain. Yet, this function
is hard to invert (i. e. given a random value y from the image of f , the probability to find an
x such that y = f (x) within polynomial time is negligible) unless one has the private key sk .
This makes sk a trapdoor for the permutation f . More specifically, given sk one can compute
for every given y from the image of f the inverse of f (i. e x such that x = f −1(y)) within
polynomial time.
For a formal definition, we cite [Gol01], Definition 2.4.5 (in this definition we omit the

standard version of the inversion hardness property since we will focus in this work on
non-uniform adversaries):

Definition 2.3 (Trapdoor permutation ([Gol01], Definition 2.4.5)) Let Ī ⊆ {0,1}∗ and
Īn

def
= Ī ∩ {0,1}n . A collection of permutations with indices in Ī is a set { fi : Di → Di }i ∈Ī such

that fi is 1 − 1 on the corresponding Di . Such a collection is called a trapdoor permutation if there
exist four probabilistic polynomial-time algorithms I , D, F and F−1 such that the following five
conditions hold:

2.2 Trapdoor Permutations 7

1. Index and trapdoor selection: for every n,

Pr [I (1n) ∈ Īn × {0,1}∗] > 1 − 2−n

2. Selection in domain: For every n ∈ � and i ∈ Īn
a) Pr [D(i) ∈ Di] > 1 − 2−n

b) Conditioned on D(i), the output is uniformly distributed in Di . That is, for every
x ∈ Di ,

Pr [D(i) = x |D(i) ∈ Di] = 1
|Di |

Thus, Di ⊆ ∪m≤poly(|i |){0,1}m . Without loss of generality, Di ∈ {0,1}poly(|i |).

3. Efficient evaluation: For every n ∈ �, i ∈ Īn and x ∈ Di ,

Pr [F (i,x) = fi (x)] > 1 − 2−n

4. Hard to invert: Let In be a random variable describing the distribution of the first element

in the output of I (1n) and Xn
def
= D(In). For every family of polynomial-sized circuits

{Cn}n∈�, every positive polynomial p(·), and all sufficiently large n’s

Pr [Cn(In , fIn (Xn)) = Xn] < 1
p(n)

5. Inverting with trapdoor: For every n ∈ �, any pair (i, t) in the range of I (1n) such that
i ∈ In , and every x ∈ Di ,

Pr [F−1(t ,fi (x)) = x] < 1 − 2−n

An enhanced trapdoor permutation is a trapdoor permutation which has some “enhancement”.
This enhancement is the following: given the index and the randomness used for sampling the
domain of fi , it is infeasible to invert the function fi on a random value x ← Di drawn from
the domain of fi .

In the definition of enhanced trapdoor permutations, there will be used a varied definition
of the sampling algorithm D: an algorithm D ′ that additionally gets the random coins from a
distribution Rn as an auxiliary input.

More formally, we define enhanced trapdoor permutations as in [Gol04], Definition C.1.1:

Definition 2.4 (Enhanced trapdoor permutations ([Gol04], Definition C.1.1)) Let { fi :
Di → Di } be a collection of trapdoor permutations. We say that this collection is enhanced (and
call it an enhanced collection of trapdoor permutations) if for every non-uniform probabilistic
polynomial-time algorithm A, every positive polynomial p and all sufficiently large n’s

8 2 Preliminaries

Pr [A(I1(1n),Rn) = fI1(1n)
−1(D ′(I1(1n),Rn))] < 1

p(n) ,

where D ′ is the residual two-input algorithm obtained from D when treating the coins of D as an
auxiliary input and Rn denotes the distribution of the coins of D on n-bit long inputs.

The last variant of a trapdoor functions we will use in this work, we have trapdoor functions
with dense public keys. Such trapdoor functions have public keys which are uniformly dis-
tributed. This concludes that if a random element is drawn from {0,1}k where k is the length
of public keys for f , then with non-negligible this public key is a secure public key and has a
corresponding private key.
For the definition of a trapdoor permutation dense public keys, we recap the informal

definition of De Santis et al. [DP92] in a modified way for trapdoor permutations. We modify
the definition minimally since the original definition was defined for encryption schemes.

Definition 2.5 (Trapdoor permutation with dense public keys, compare [DP92], Section 3)
Let k be the length of the public keys used for a trapdoor permutations and d ∈ �.
A trapdoor permutation with dense public keys is a trapdoor permutation such that

• Each k-bit string defines a public key of the trapdoor permutation

• If an k-bit string is picked at random, then there is a non-negligible probability of at least
k−d that a secure public key is picked

• It is possible to generate uniformly distributed k-bit public keys along with their correspond-
ing secret keys.

Remark 2.6 Please note that the definition of trapdoor permutations with dense public keys is
not strong enough for our purposes: need the probability to pick secure public key randomly with
overwhelmingly probability, not with a probability of k−d . One solution for this problem may be
combining several trapdoor permutations with dense public keys to ensure that the probability of
generating a secure public key is high enough.

2.3 Commitment Schemes

Since we will focus on commitment schemes in this thesis, we will shortly recap the definition
of commitment schemes, compare [Gol01], Section 4.4.1:
A commitment scheme is a two-party protocol in which a party, called the committer C ,

can commit itself on a value whereas the recipient R only learns the committed value when
the committed value is revealed. More precisely, it is a two-phase protocol consisting of a

2.3 Commitment Schemes 9

committing phase (in which the committer can commit itself to a value) and a unveil phase in
which the recipient learns the committed value.

For a formal definition, we will cite [BHY09], Definition 3 in a modified way: in the original
definition the machine A (the adversarial machine) is defined as a uniform machine. Since
we will use commitment schemes in the UC framework where the adversary is defined as a
non-uniform machine, we will accommodate the definition of A.

We now formally cite a [BHY09], Definition 3 in a modified way for a formal definition of a
commitment scheme:

Definition 2.7 (Commitment scheme, (compare [BHY09], Definition 3)) For a pair of
PPT machines Com = (C,R) and a non-uniform machine A, consider the following experiments:

Experiment ExpbindinдCom,A (n) Experiment Exphidinд−bCom,A (n)
run ⟨R(recv),A(com)⟩ (m0,m1) ← A(choose)
m′0 ← ⟨R(open),A(open,0)⟩ return ⟨A(recv),C(com,mb)⟩
rewind A and R back to after step 1
m′1 ← ⟨R(open),A(open,1)⟩
return 1 iff ⊥,m′0 ,m′1 ,⊥

In this, ⟨A,C⟩ denotes the output of A after interacting with C and ⟨R,A⟩ denotes the output of
R after interacting with A. We say that Com is a commitment scheme iff the following holds:

Syntax For any m ∈ {0,1}n , C(com,m) first interacts with R(recv). We call this the commit
phase. After that, C(open) interacts again with R(open), and R finally outputs a value
m′ ∈ {0,1}n ∪ {⊥}. We call this the opening phase.

Correctness We havem′ =m always for allm.

Hiding For a non-uniform PPT machine A, let

Advhidinдcom,A (n) := Pr [Exphidinд−0
Com,A](n) − Pr [Exphidinд−1

Com,A](n),

where Exphidinд−bCom,A is depicted above. For Com to be hiding, we demand that Advhidinдcom,A (n)
is negligible for all non-uniform PPT A that satisfym0,m1 ∈ {0,1}n always.

Binding For a machine A, consider the experiment Advbindinдcom,A (n) above. For Com to be binding, we

require that Advbindinдcom,A (n) = Pr [ExpbindinдCom,A (n) = 1] is negligible for all non-uniform PPT
A.

10 2 Preliminaries

Further, we say that Com is perfectly binding iff Advbindinдcom,A (n) = 0 for all non-uniform (not

necessarily PPT) A. We say that Com is statistically hiding iff Advhidinдcom,A (n) is negligible for all
non-uniform (not necessarily PPT) A.

2.4 Coin Toss

In this Section, we will shortly recap the notion of a cryptographically secure coin toss.
The first cryptographically secure coin toss protocol was introduced by Manuel Blum in

[Blu81]. The idea for this coin toss protocol was to securely flip a coin even when one of
the two participants acts maliciously. The protocol is a simple three-step protocol and uses a
commitment protocol.
A coin toss protocol is used to sample a random bit or a random string in a distributed

manner.
This protocol which can be seen in Figure 2.1 is still nowadays the standard protocol for

tossing a coin or a random string, yet the commitment protocol for executing the coin toss
protocol is chosen individually according to the security requirements of the protocol.

Protocol ΠBlum−CT

• P1 draws a random bit b1 ← {0,1}, generates a commitment c sends c to P2.

• When getting a commitment c , P2 sends bit b2 ← {0,1} to P1.

• P1 then unveils c to b1.

• When getting the unveil information to c , both P1 and P2 compute b = b1 ⊕ b2.

Figure 2.1: The protocol ΠBlum−CT−bit for tossing a coin.

Assumed that the commitment scheme is secure, the coin toss protocol outputs a uniformly
random bit.

2.5 Universal Composability

In this section we will recap the universal composability framework which is a powerful tool
for defining cryptographic protocols and proving their security. The whole section is based on
[Can00], Sections 4 and 5 as well as [MU10], Section 3.1.

First, we will give an overview of the UC framework. Then we will describe the real-world
model and the ideal-world model is described at last.

2.5 Universal Composability 11

2.5.1 Overview

The Universal Composability framework [Can00] defined by Ran Canetti is a very powerful
framework: As the name already suggests, a protocol sufficing the UC security can be composed
in any way with another protocol sufficing the UC security without losing its security, even
when concurrently composed.

The security is proven by comparing the real execution of the protocol in presence of an
adversary with an ideal and non-corruptible computation of the protocol’s function in presence
of a simulator that simulates the behavior of the real-world adversary. This definition looks
quite familiar compared to the stand-alone model where a protocol can be composed with
other protocols as long as the composition is done sequentially, i. e. it is guaranteed that only
one instance of the protocol is run at a time. The difference to the stand-alone security is
formulated by an environment that is able to interact during the execution of the protocol
with the adversary (whereas in the stand-alone model the adversary gets its instructions at
the beginning of the protocol and at the end of the computation the adversary sends only
the transcript to the environment). This makes the simulator in the UC setting impossible to
rewind a party or the internal simulation of an adversary since the environment can notice
this behavior and therefore easily distinguish the real-world execution from the ideal-world
simulation.

Real Execution

Z

π1 π2

A

Figure 2.2: The real world with environmentZ, functionality F , adversary S and parties π1
and π2 computing protocol Π , see [Can00], Figure 2.

We define the real execution of a protocol as the distributed computation of a specific

12 2 Preliminaries

function by several machines (called the parties) in presence of an adversarial machine, called
the adversary A. The adversary may behave in several ways: It may read the messages sent
by and delivered to the corrupted parties (such an adversary is called a semi-honest or passive
adversary). It additionally run arbitrary code on the corrupted parties (this type of adversary
is called a malicious or active adversary). First of all, we define three types of ITMs which are
acting in the real execution: the environment, the adversary and the computing parties which
are executing the protocol.

The environment machine is a non-uniform ITM that represents all possible machines that
interact with the parties during the computation of the protocol. It additionally provides all
parties with input and receives their outputs.

Then there is the adversary: it is a non-uniform ITM that is able to corrupt any party and is
able to read the messages of the parties it corrupts (if the adversary instructs each corrupted
party to follow the instructions of the protocol, then the adversary is passive) and maybe
additionally tries to bias the outcome of the computation (then the adversary is active).
The last type of machines we have in the real world are the computing parties: These are

ITMs which compute together a certain function, where a subset of the parties follows the
instructions of the adversary instead of the instructions of the protocol. We call this subset of
parties corrupted parties.
The adversary may corrupt parties only at the beginning of the execution of the protocol

and then is not allowed to change the set of corrupted parties (i. e. corrupt additional parties)
during the computation. In this case the adversary is called a static adversary. In some models
the adversary may corrupt additional parties during the execution. This type of adversary is
called an adaptive adversary. In our work we will only focus on static adversaries.

Ideal Execution

In the ideal world we do not have parties that execute the protocol but a central machine that
computes securely the function the protocol intends to compute: the ideal functionality F .

We also have the environment machine that represents protocols the functionality interacts
with. It further sends inputs to the functionality and receives output from the functionality.

As in the real world, there exists an ideal-world adversary, called the simulator S. Since in
the ideal world are no computing parties, the ideal-world adversary only sends to and receives
messages from the functionality and the environment.
To show that a certain real-world protocol Π securely realizes a given functionality F , we

show that there exists an ideal protocolΦ (which is computed by the functionality F and has
the same amount of parties which only directly deliver messages coming from the environment

2.5 Universal Composability 13

Z

φ1 φ2

F

S

Figure 2.3: The ideal world with environment Z, functionality F , simulator S and dummy
parties φ1 and φ2, see [Can00], Figure 3.

to F and vice versa, called the dummy parties) and show that for any adversary there exists a
simulator such that no environment can distinguish between the real-world protocol Π and
the ideal-world protocolΦ.

More formally, we define {EXECΠ,A,Z(n, z)}n∈�,z∈{0, 1}poly(n) to be the distribution ofZ’s
outputs in the real world when interacting with the parties computing Π and the real-world
adversary A with security parameter n ∈ � on input z ∈ {0, 1}poly(n) and analogously de-
fine {EXECΦ,S,Z(n, z)}∈�,z∈{0, 1}poly(n) to be the distribution ofZ’s output in the real-world
when interacting with the dummy parties and the ideal-world adversary S with security
parameter n ∈ � on input z ∈ {0, 1}poly(n). For better readability, we will abbreviate
{EXECΦ,S,Z(n, z)}n∈�,z∈{0, 1}poly(n) as {EXECF,S,Z(n, z)}n∈�,z∈{0, 1}poly(n) . This makes the dis-
tribution easier to recognize the functionality.

For a formal definition we cite Definition 3.1 in [MU10]:

Definition 2.8 (UC-realization ([MU10], Definition 3.1)) A protocol Π UC realizes a pro-
tocol Φ, if for any polynomial-time adversary A there exists a polynomial-time simula-
tor S such that for any polynomial-time environment Z the families of random variables
{EXECΠ,A,Z(n, z)}n∈�,z∈{0, 1}poly(n) and {EXECφ,S,Z(n, z)}n∈�,z∈{0, 1}poly(n)are computation-
ally indistinguishable.

14 2 Preliminaries

Remark 2.9 As stated as in [MU10], Section 3.4, we will assume throughout this work that the
adversary is informed of every invocation of the ideal functionality F and the functionality only
delivers outputs if the adversary allows this delivery. We will shortly formulate the phrase “Upon
input a from party P1 [...] generate a publicly delayed output y to P2”, meaning the phrase “Upon
input a from party P1, deliver message (i-th input from P1) to A. Upon message (deliver
i), F outputs y to P2.”

Dummy Adversaries

Throughout this work we will work with a so-called “dummy adversary”, which does nothing
except passing messages it gets fromZ directly to the corrupted parties and vice versa. This
enables us to create simulators that do not depend on the adversary’s behavior. This is different
from the original definition of UC-realization since according to the definition, the simulator
has to depend on the adversary (since we define the simulator’s behavior by the adversary’s
behavior). Even if the simulator is quantified over this specific dummy adversary, the notion
of security remains the same. The idea is the following: by assuming the dummy adversary,
we assume the “hardest adversary to simulate” since the environment is able to simulate every
adversary and therefore is able to control all communication (see [Can00], Section 4.4.1).

For a formal definition of UC emulation with the dummy adversary, we cite [Can00], Claim
10:

Theorem 2.10 (UC-emulation with dummy adversaries ([Can00], Claim 10)) Let Π

andΦ be protocols. Then Π UC-emulatesΦ if and only if it UC-emulatesΦ with respect to the
dummy adversary.

Well-Formed Functionalities

Since throughout this work we will work in many cases with well-formed functionalities,
we want to informally describe a well-formed functionality, which is informally explained
in [Can+02], Section 3.3: A well-formed functionality is a functionality that consists of two
levels of procedures: the core procedure which computes the function and the shell procedure
which forwards all communication coming from the parties to the core procedure except the
information which of the parties is corrupted. This guarantees that the functionality’s function
does not depend on the information which party is corrupted.

2.5.2 Composability

Now we will look at one main tool of the UC framework: the composability.

2.6 Long-Term Universal Composability 15

Generally, all protocols that are proven UC secure are simultaneously proven as concurrently
secure, meaning that even several instances of the same protocol run concurrently, the security
of the protocols still remains. The security remains even if the protocol is run as a subroutine
of another protocol, which is the composability of a protocol.

Hybrid Model

In a hybrid model, we have the real-world model consisting of the environment, the adversary
and the parties computing a protocol Π . Additionally to these we have a functionality F which
the parties have access to. More specifically, the parties have access to an unbounded number
of copies of F , called instances of F . We then say Π is a protocol in the F -Hybrid model.

Composition Theorem

If we replace in the F -hybrid model the functionality F by a protocol Π that UC-realizes F ,
we can show that this composition of protocols is secure as the protocol σ in the F -hybrid
model. An intuitive idea for this is to view the protocol σ as the environment of Π . Therefore
we view Π as the real-world protocol and view F as the functionality in the ideal world. Since
Π UC-realizes F , no environment can distinguish between the real-world protocol and the
ideal-world and security follows.
Informally the composition theorem states that if a protocol σ is defined in an Π-hybrid

model (i. e. it uses the protocol Φ) and the protocol Φ is replaced by a protocol Π that UC-
securely realizesΦ, then the protocol σΠ (that uses Π instead ofΦ) remains secure.

For a more formal statement, we cite the composition theorem as stated in [MU10], Theorem
3.2:

Theorem 2.11 (Universal composition theorem, ([MU10], Theorem 3.2)) Let Φ,Π and
σ be polynomial-time protocols. Assume that Π UC realizesΦ. Then protocol σΠ UC-realizes σΦ .

As we will see later on, this theorem will be used several times.

2.6 Long-Term Universal Composability

In this section which is based on [MU10], Section 1.1 and 3.2 we will describe the long-term
universal composability framework as defined in [MU10].
A problem that arises with the UC framework is that the security of the protocols is not

guaranteed against adversaries that increase their computational power after the execution
of a protocol, being able to break the protocol after its execution (very simple examples

16 2 Preliminaries

are learning the witness of a zero-knowledge proof or being able to extract the value of a
commitment that was not unveiled). More precisely, a possible violation of the input privacy of
a protocol after the completion of the protocol results in a statistical distinguishability between
the environment’s output in the simulation and the environment’s output in the real world,
which is not captured by the UC framework (in the UC framework only the computational
indistinguishability between the environment’s output in the ideal world and the environment’s
output in the real world is considered).
A question that arises in this context is: Can there be a UC-like framework that defines

security even against such adversaries?
This question was solved by Müller-Quade and Unruh in [MU10]. They defined the Long-

term Universal Composability which is based on the Universal Composability framework and
also defines long-term security of UC secure protocols.

2.6.1 Long-Term Security

Informally, a protocol is long-term secure if no adversary is able to break its security after the
computation on the protocol was completed, i. e. the adversary is not able to get the private
inputs and private random coins used for the protocol of the uncorrupted parties even if the
adversary gets unlimited amount of time after the computation of the protocol was completed.
A simple intuition is letting the environment and adversary be unbounded after the com-

putation of the protocol is completed. Therefore any adversary is able to gain computational
power after the computation is completed. Since the adversary does not communicate with the
environment (and therefore the simulator does neither communicate with the environment)
and in the UC model only the environment computes after the execution of the protocol after
computation of the protocol is completed, the definition for long-term UC-security is a bit
different than the intuition.
We now formally define the long-term UC security by citing Definition 3.3 in [MU10]:

Definition 2.12 (Long-term UC security, ([MU10], Definition 3.3)) Let Π be a two-party
or multi-party protocol andΦ be an ideal one-party protocol. We say that Π securely long-term UC
realizesΦ if for any computationally bounded adversaryA there exists a computationally bounded
simulator S such that for any computationally bounded environmentZ the family of random
variables {EXECΠ,A,Z(n,z)z∈{0,1}poly(n)} (the real-world execution with security parameter n
and output z byZ) and {EXECΦ,S,Z(n,z)z∈{0,1}poly(n)} (the ideal world execution with security
parameter n and output z byZ) are statistically indistinguishable.

Remark 2.13 The output {EXECΠ,A,Z(n,z)z∈{0,1}poly(n)} of the environment is defined dif-
ferently than in the definition of standard-UC emulation: In the standard UC-emulation, the

2.6 Long-Term Universal Composability 17

environment’s output is generally defined as a single bit, whereas in the definition of long-term
UC-emulation, the environment is allowed to output arbitrary strings. Especially, the environment
is allowed to output its complete view.

This means for the long-term security of a UC-secure protocol that the computational power
of adversary, environment and simulator remains the same as in the standard UC framework
but the output of the environment (which is the environment’s view) in the ideal world is
statistically indistinguishable from the environment’s output in the real world. This is obviously
a stronger notion compared to standard UC security. Also, it is easy to see that long-term UC
security implies standard UC security.
Since the modification of the security definition of the UC framework towards long-term

UC is minimal, the composition theorem also holds for the long-term UC framework.
More formally, the Composition Theorem for long-term UC security ([MU10], Theorem 3.4)

is stated as follows:

Theorem 2.14 (Universal composition theorem, see [MU10], Theorem 3.4) Let Π , Φ

and σ be polynomial-time protocols. Assume that Π long-term UC-realizes Φ. Then ρΠ UC
realizes σΦ

We say a protocol is long-term revealing for some party P if its view can be entirely computed
from the communication of all other parties with P without having P ’s view itself.

The intuition behind the definition of a long-term revealing functionality that if a function-
ality F is long-term revealing towards a party P then any secrets that P and F share may
eventually become public.
Before we formally cite the definition of long-term revealing functionalities, we want to

explain the notion of a network within the long-term UC framework: The real-world model
and the ideal-world model can both be represented as a graph with the machines (Z, A and
the parties in the real world and Z, F and the dummy parties in the ideal world) depicted
as vertices and the direct communication between two machines represented as edges. We
denote a network S as such a communication graph as explained above.

Definition 2.15 (Long-term revealing functionality, [MU10], Definition 4.1) Let P be a
party identifier. For a given network S , let transS denote the transcript of all communication
between a functionality F and all other machines (including the adversary) in an execution of
S ∪ F . Let transS\P denote the transcript of all communication between F and all machines
except P .

18 2 Preliminaries

We say a functionality F is long-term revealing (LTR) for party P if the following holds for
any network S : There is a deterministic function fS (not necessarily efficiently computable) such
that with overwhelming probability we have transS = fS (n, transS\P)

2.6.2 Restrictions on Commitment Schemes

This Subsection is mainly based on [MU10], Section 4.1.
There are some restrictions on the long-term security of UC-secure commitment schemes.

As a first result, we have that commitment schemes in general are long-term revealing for
the recipients. This means that any secrets that are shared among the recipient and the
functionality Fcom (i. e. any inputs that Fcom receives from R and any outputs that R receives
from Fcom) will become eventually public.
Therefore we cite [MU10], Lemma 4.2:

Lemma 2.16 (See [MU10], Lemma 4.2) Coin toss (Fct) and CRS (FCRS) are long-term reveal-
ing for all parties. Commitment (Fcom) and ZK (Fzk) are long-term revealing for the recipient/ver-
ifier. If G is a key generation algorithm such that the secret key depends deterministically on on
the public key then PKI FPKI is long-term revealing for all parties.

Since unconditionally binding commitment schemes are also long-term revealing for the
committer, unconditionally binding commitments cannot be long-term secure.
Also commitment protocols which are based on an hybrid model whose functionality is

long-term revealing to the committer, such as the functionality Fcrs are neither long-term
secure. Since many UC-secure commitment protocols are in the Fcrs-hybrid model, those
cannot be long-term UC-secure.
For a formal statement, we cite [MU10], Theorem 4.3:

Theorem 2.17 (Impossibility of commitment with LTR functionalities ([MU10], Theorem 4.3))
Let F be a functionality that is long-term revealing for party C . Then there is no non-trivial
polynomial-time protocol that long-term UC-realizes commitment with sender C (Fcom) in the
F -hybrid model.

To be able to UC-realize a commitment we have to use a setup assumption as Canetti and
Fischlin have shown in [CF01], Theorem 6 that it is impossible to UC-realize Fcom in the plain
model (i. e. without using a setup assumption). This also holds for the realization of long-term
UC secure commitment schemes.

As a direct consequence, a commitment cannot be turned around. This means the following:
If we have a long-term UC secure commitment from a party A to B then we are not able to
construct a long-term UC secure commitment from B to A.

2.6 Long-Term Universal Composability 19

For a formal statement we cite [MU10], Corollary 4.4:

Corollary 2.18 (Commitments cannot be turned around ([MU10], Corollary 4.4))
There is no non-trivial, polynomial-time protocol long-term UC realizing Fcom with committer A
and recipient B using any number of instances of Fcom with committer B and recipient A.

21

3 Defining the Functionality For Updatable
Commitments

In this chapter, we want to define the the security notion of updated protocols, called F post

security and we additionally want to define the functionalities for commitments whose CRS
can be updated.
Since we consider that the adversary increases its computational power during the com-

putation but stays computationally bounded, we cannot rely on the UC security since in
this framework the computational power of the adversary is not allowed to increase during
the computation of the protocol. Therefore we will define the F post framework which is a
relaxation of the long-term UC framework [MU10].

Analogously to the notion of long-term security, we allow the output of the environment to
be an arbitrary output. Especially we enable the environment to output its entire view.
Instead of requiring the view of the environment in the ideal world to be statistically

indistinguishable from the environment’s view in the real world, we require the view of the
environment in the ideal world to be computationally indistinguishable from its view in the
real world iff one problem L is solvable (this problem resembles the old complexity assumption
that might eventually not hold anymore) and one problemM is not solvable within polynomial
time (which resembles the updated complexity assumption).

For a formal definition of F postsecurity, we modify the definition of long-term security in a
relaxed way:

Definition 3.1 (Fpost, compare [MU10], Definition 3.3) Let L and P be two problems.

A protocol π F post securely realizes an ideal protocol ρ if for any polynomial-time ad-
versary A there exists an ideal-world adversary S such that for any polynomial-time
environment Z, the families of random variables {EXECπ ,A,Z(n, z)}n∈�,z∈{0,1}poly(n) and
{EXECρ,S,Z(n, z)}n∈�,z∈{0,1}poly(n) are computationally indistinguishable iff L is solvable and
M is not solvable within polynomial time.

Obviously, the definition of F post security is stronger that standard UC security: the def-
inition of secure realization is defined by computational indinstinguishability between the

22 3 Defining the Functionality For Updatable Commitments

environment’s output in the real world and the environment’s output in the ideal world, just
as the definition of UC secure realization of protocols. We additionally require that secure
emulation is given iff one problem is solvable and another is not efficiently solvable. Therefore
F post security implies UC security. On the other hand, long-term UC security implies F post

security since for F post security the outputs of the environment in the real world vs. in the
ideal world have to be computationally whereas for long-term CU security the environment’s
output in the real world has to be statistically indistinguishable from the environment’s output
in the ideal world.
This concludes that F post lies between standard UC security and long-term UC security.
Analogously, we relax the notion of long-term revealing functionalities:

Definition 3.2 ((L,M)-long-term revealing functionalities, compare [MU10], Definition 4.1)
Let P be a party identifier and S be a network. Let transS denote the transcript of all communica-
tion between a functionality F and all other machines (including A) in an execution of S ∪ F .
Let transS\P denote the transcript of all communication between F and all machines except P .

Let furthermore L andM be two problems.

We say a functionality F is (L,M)-long-term revealing (LTR) for party P if the following
holds for any network S : There is a deterministic function fS that is efficiently computable iff L is
solvable andM is not solvable within polynomial time such that with overwhelming probability
we have transS = fS (n, transS\P)

This weakened variant of the definition of long-term security suffices for our cases since
our goal is not everlasting security but security against an adversarial machine that gains
computational power during the computation. Therefore we only require computational
indistinguishability for the emulation and define the function computing the communication
of the machines in the definition of long-term revealing functionalities to to be efficiently
computable.

For a better readability, we mostly omit stating the two problems L andM when those are
clear from the context (i. e. we mostly will state F post secure and therefore mean (L,L)-F post

secure for given problems L andM).
When updating a commitment scheme, we want to switch the setup assumption of the

commitment scheme in question from a weaker one to a stronger one.
Since the adversary may break the old setup assumption during the update, we want to

reassure that the commitment scheme that has to be updated cannot be broken at the beginning
of the update process (i. e. that the adversary does not learn the committed values and is not
able to equivocate the commitment). Therefore we want the commitment scheme that has to

23

be updated and which produces the initial commitments in the update process to be long-term
secure.

When looking at UC secure commitments in the FCRS-hybrid model, the CRS created by the
simulator can only be computationally indistinguishable from the real CRS since the simulator
has to have trapdoors for both equivocality and extractability.
In the case of a statistically binding commitment, the CRS is statistically indistinguishable

from a real-world CRS if the committer is corrupted and in this case of corruption the environ-
ment’s view in the real world is statistically indistinguishable from the environment’s view
in the ideal world. Thus, we can get the notion of long-term security for statistically binding
commitments if we only view the case of a corrupted committer. If we look at the case of
a corrupted recipient then we have that both the CRS and the environment’s view are only
computationally indistinguishable from the CRS and the environment’s view in the real world.
The same goes with statistically hiding commitments: in the case of a corrupted recipient

the CRS generated by the simulator is statistically indistinguishable from a CRS generated by
FCRS in the real-world protocol and the environment’s view in the real world is statistically
indistinguishable fromZ’s view in the real world.

Therefore we have to split the commitment functionality in two functionalities: A function-
ality that defines a statistically binding commitment, called F post

com−binding and a functionality
that defines a statistically hiding commitment, called F post

com−hiding.
We define the new functionality F post

com−binding to behave like Fcom with the following changes:
In the commit phase, the adversary gets the committed message. This will enable the simulator
to generate a CRS that is statistically indistinguishable from the CRS produced by FCRS in the
real world. The resulting functionality F post

com−binding can be seen in Figure 3.1.

F post
com−binding for statistically binding commitments

Let C and R be two parties. Let n ∈ � be the security parameter and l(n) ∈ � be the length
of the message space depending on n. The functionality F post

com−binding behaves as follows:
Upon the inputm ∈ {0,1}l (n) from C , generate a public delayed output (committed) to R
and send (committed, m) to S. additionally to S.
Upon input (unveil) from C generate a public delayed output (unveil, m) to R.

Figure 3.1: The functionality F post
com−binding for statistically binding commitments (compare

[MU10], Definition 3.8).

We also want to see whether statistically hiding commitments in the FCRS-hybrid model
can be long-term secure. Therefore we will again define a functionality that is based on Fcom

24 3 Defining the Functionality For Updatable Commitments

with some changes in the behavior.

Since the ideal-world adversary has to generate a CRS that is statistically indistinguishable
from the real-world CRS, it is not able to generate a trapdoor for commitment extraction.
Therefore we have to modify the unveil phase of Fcom: we let the committer send the commit
message again in the unveil phase when it gets the unveil information from the committer.

The resulting functionality, denoted as F post
com−hiding, can be seen in Figure 3.2.

F post
com−hiding for statistically hiding commitments

Let C and R be two parties. Let n ∈ � be the security parameter and l(n) ∈ � be the length
of the message space depending on n. The functionality F post

com behaves as follows:
Upon the inputm ∈ {0,1}l (n) from C , generate the public delayed (committed) to R.
Upon input (unveil, m), fromC , generate the delayed output (committed, m) and send
the output to R.

Figure 3.2: The functionality F post
com−hiding for statistically hiding commitments (compare [MU10],

Definition 3.8).

This means that statistically binding or statistically hiding commitment schemes may be
able to be updated if they long-term UC realize F post

com−binding or F
post

com−hiding.

First, we want to investigate whether statistically hiding and resp. statistically binding UC
secure commitments can be long-term secure, i. e. if there exist statistically binding and resp.
statistically hiding commitment protocols that long-term securely realize F post

com−binding, resp.
F post

com−hiding. Those commitment schemes can be candidates for a CRS update.

As an example we will use the commitment scheme in [DN02]. A statistically hiding variant
of this commitment scheme was used in [MU10] to show that a statistically hiding commitment
scheme in the Fcrs-hybrid model can not be proven as long-term UC secure since the CRS
generated by the simulator is only computationally indistinguishable from the CRS provided
by Fcrs in the real world.

In Section 3.1 we will provide an overview of the basic (computationally hiding and bind-
ing) commitment scheme. In Subsection 3.1.1 we will investigate whether the statistically
binding variant of the commitment scheme in [DN02] can be proven to long-term UC-realize
F post

com−binding. In Subsection 3.1.2 we will do the same with the statistically hiding variant of this
commitment scheme.

3.1 The DN Commitment Scheme 25

3.1 The DN Commitment Scheme

In this section we show that there exist UC secure commitment schemes that long-term securely
realize F post

com−binding, resp. F
post

com−hiding.
As an example we take the commitment scheme by Damgård and Nielsen [DN02] since this

commitment scheme has two variants.
The basic commitment scheme is a commitment scheme that is both computationally binding

and hiding. The scheme is based on a mixed commitment scheme which was introduced in
[DN02]. A mixed commitment scheme is a commitment scheme that comes with two different
keys for commitment generation. One type of key, called an X -key allows generating a
commitment which is extractable when having the trapdoor tN for a system key N . When
having the other type of key, called E-key together with its trapdoor tKE , one can generate a
fake commitment that is equivocal, i. e. it can be unveiled to an arbitrary message from the
message space. The last but most significant property of both key types is that those two type
of keys are computationally indistinguishable, meaning that given such a commitment, no
computationally bounded algorithm can decide whether this commitment is extractable or
equivocal.

For a formal definition, we cite [DN02], Definition 1:

Definition 3.3 (Mixed commitment scheme (see [DN02], Definition 1)) A mixed com-
mitment scheme commitK is a commitment scheme with some global system key N which deter-
mines the key space KN and message spaceMN . The key space contains two subsets (the E-keys
and the X -Keys) for which the following holds:

• Key Generation: The system key N can be generated efficiently, together with the so-called
X -trapdoor tN (this trapdoor is the trapdoor for all X -Keys in KN). Given N , one can
efficiently generate an X -Key and an E-Key K together with its corresponding E-trapdoor
tK , as well as commitment keys.

• Key Indistinguishability: Random E-Keys and random X -Keys are computationally indis-
tinguishable from random keys as long as the X -trapdoor is not known.

• Equvocality: Given the E-Key K and trapdoor tK , one can efficiently generate fake commit-
ments c which are exactly distributed as real commitments, which can be later unveiled to
an arbitrary messagem′ ∈ MN out of the message space, i e. one can compute a uniformly
random value r for which c = COMK (m′, r) holds.

• Extractability: Given a commitment c = COMK (m, r) generated with an X -Key K , one can
efficiently extract the messagem out of c using the trapdoor tN for system key N .

26 3 Defining the Functionality For Updatable Commitments

[DN02] remark that as long as the trapdoor for the X -Keys is not known, a commitment
generated with any key out of KN is computationally hiding and as long as both the trapdoor
for an E-Key and the trapdoor for the X -Keys are not known, a commitment generated with
any key out of KN is computationally binding. This is due to the fact, that E-Keys, X -Keys
and random keys are computationally indistinguishable.

For computing a commitment c , we need some randomness which is drawn from a random-
ness space under system key N . We will denote this space as RN .
For the UC-commitment scheme, [DN02] require a special form of mixed commitment

schemes, called special mixed commitment schemes. This type of commitment scheme is a
mixed commitment scheme as defined in Definition 3.3 with the following additional properties:

• The sets KN andMN have to be finite groups.

• The amount of E-Keys has to be negligible compared to |KN | and the number of X -Keys
has to be overwhelming compared to |KN |. This means that there is a negligible fraction
of keys in KN which are neither E-Keys nor X -Keys.

Now we describe the actual UC commitment scheme, which we from now on denote as the
DN commitment scheme.
The CRS of this basic scheme consists of two keys: the system key N along with an E-key

K1 which is generated using the system key N .
For committing, the committer and the recipient first execute a coin toss for sampling a key

for the actual commitment. Therefore the committer draws a random key KC ← KN for the
system key N and generates a commitment c1 = COMKC (K1, r1) on K1 using the key K1 given
in the CRS and some randomness r1 ∈ RN . The recipient then draws a random key KR ← KN

for the system key N and sends KR to C . In the last step of the coin toss, the committer sends
the unveil information KC and r1 for commitment c1 to R and both parties compute the new
commitment key K = K1 ⊕ K2. Then the committer generates the actual commitment on its
input m ∈ MN : it generates a commitment c2 = COMK (m, r) using the underlying mixed
commitment scheme with randomness r ∈ RN .
Since the committer commits on a key for tossing a commitment key, we will require the

key space KN ⊆ MN to be a subset of the message space for system key N .
In the unveil phase, the committer simply sends the unveil informationm and r for commit-

ment c2 to R. The recipient then checks whether the commitment c2 is a commitment onm
using r . If this is the case, R outputs (unveil, m)

As stated in [DN02], the DN commitment scheme has two variants: one variant which is
perfectly binding and computationally hiding and the other variant is perfectly hiding and

3.1 The DN Commitment Scheme 27

computationally binding. In the next two sections we will describe both variants and show
that both variants long-term securely realize F post

com−binding, resp. F
post

com−hiding.

3.1.1 The Statistically Binding DN Commitment

For the perfectly binding DN-commitment scheme, an additional key is added to the CRS of
the basic DN-commitment scheme which is an X -key KX . This key enables the simulator to
extract the committed value out of the commitment when the committer is corrupted without
generating a CRS that is statistically distinguishable from a CRS generated in the real-world
protocol by FCRS. Additionally, when sending the actual commitment c2 on its input x , the
committer generates an additional commitment c3 = COMKX (x) onm using the X -key and
sends both c2 and c3 to R. In the simulation, the simulator is then able to extractm out of c3

using the trapdoor tN for system key N . The protocol is represented in Figure 3.3.

C R

Commit:

input: (commit,m) input: recv

KC ← KN , r1 ← RN

KR←KN

K = KC ⊕ KR

r2, r3 ← RN K = KC ⊕ KR

Unveil:

input: unveil input: unveil

CRS: N ,K1, KE

c1 = comK1 (KC , r1)

KR

(KC , r1)
c2 = comK (m, r2), c3 = comKX (m, r3)

(m, r2), (x , r3)

Figure 3.3: The statistically binding DN commitment scheme, cmp. [MU10], Figure 3.

28 3 Defining the Functionality For Updatable Commitments

Since the commitment scheme is perfectly binding and the simulator can generate a CRS in
an honest manner, we can show that the perfectly binding DN-commitment scheme long-term
UC-realizes F post

com−binding:

Lemma 3.4 If COM is a special mixed commitment scheme, then the perfectly binding DN-
commitment shown in Figure 3.3 securely long-term UC-realizes F post

com−binding.

Proof. To prove our lemma we have to look at two different cases that can occur in an execution
of the protocol: the case that C is corrupted and the case that R is corrupted. For each case we
have to construct a simulator S that generates a CRS and communicates withZ such thatZ’s
view in the ideal world is statistically indistinguishable from the environment’s view in the
real world.

The committer C is corrupted and R is honest In this case we assume the dummy ad-
versary. Then the environment directly provides input to C (since the dummy adversary
directly passes the messages on to C) and henceZ directly provides messages to R. Z also
receives messages from the honest R (via the dummy adversary). This means that we have
to construct a simulator that interacts with an environment in such a way that the view of
any possible computationally boundedZ in the ideal world is statistically indistinguishable
from the environment’s real-world view. The simulator SC simulating a corrupted committer
is constructed as follows:

• The CRS is generated as follows: Generate a random system keyN . Furthermore generate
a random E-key K1 and a random X-key KX . In this case SC knows the trapdoors for K1

and KX .

• SC simulates an honest and unmodified instance of the recipient R.

• When receiving a message c1 fromZ, simulate sending c1 to R.

• Draw a random key KR ← KN , as in the protocol and simulate receiving it from R.

• When receiving the reveal information (KC , r1) for c1 from Z, check whether c1 =

COMK (KC , r1) and abort if this is not the case. Else compute K = KC ⊕ KR and simulate
sending the reveal information to the internal simulation of R.

• When receiving the message (c2, c3) fromZ, check that c3 is extractable using the trap-
door for system key N . If the check fails, abort the simulation. Then extract the commit
messagem out of c3 using the trapdoor for system key N and sendm to F post

com−binding and
simulate sending (c2, c3) to the internal simulation of R.

3.1 The DN Commitment Scheme 29

• When receiving reveal information (m′, r2, r3) from Z, check that m = m′ and that
c2 = COMK (m,r2) and c3 = COMK (m, r3). If this is not the case, then abort. Else send
(reveal) to F post

com−binding and simulate sending (m′, r2, r3) to the internal simulation of
R.

Obviously the CRS is generated as in the real-world protocol and hence such a CRS is
statistically indistinguishable from a real-world CRS.

The coin-toss in steps two to step four is also done as a real committer and a real recipient
would have done. Furthermore, if the execution is not aborted, it is guaranteed that the revealed
KC always equals the committed KC . Also, if the simulation is aborted in the last step of the
coin-toss, the reason is that the committed KC does not equal the revealed KC . In this case an
honest R would abort the execution of the real-world protocol. In step four, the message is
only sent to R, which would also happen in the real world.
In the reveal phase SC sends the unveil information of c2 and c3 to R which corresponds

to the message delivered in the reveal phase of the real-world protocol. The only difference
in this step could occur ifm , m′ and c2 = COMK (m, r2) and c3 = COMKX (m, r3). But since
c3 is an perfectly binding commitment, this will happen only with negligible probability.
To show this, we make a reduction and show that if m , m′ and c2 = COMK (m, r2) and
c3 = COMKX (m, r3) happens with non-negligible probability, then the commitment c3 cannot
be statistically binding.
Therefore assume for sake of contradiction thatm , m′ and c2 = COMK (m, r2) and c3 =

COMKX (m, r3) happens with non-negligible probability.
Then we can construct an adversary that successfully equivocates the underlying commit-

ment, breaking the perfectly binding property.
The adversary is constructed as follows:

• The input is a key N together with a trapdoor tN and a X -Key KX .

• Generate a random E-Key K1 together with its trapdoor tK1 .

• Run the ideal-world simulation with the following modifications:

– Simulate the coin toss according to the simulation and get as result a key K ∈ KN .

– When receiving a commitment (c2, c3) consisting of commitments c2 generated
with K and c3 generated with KX , use the trapdoor tN to extract the committed
messagem out of c3.

– If in the unveil phase the environment sends unveil informationm′, r2, r3 withm ,
m′, c2 = COMK (m′, r2) and c3 = COMKX (m′, r3) (i. e. the environment successfully

30 3 Defining the Functionality For Updatable Commitments

equivocates the commitment), find a proper r ∈ RN such that c3 = COMK (m, r)
and output the tuple (m, r ,m′, r3, c3)

Now let us analyze the advantage of our adversary to equivocate a commitment generated
with KX : By assumption the probability that the environment can equivocate the commitment
is non-negligible. This means that the environment has also to be able to successfully equivocate
the underlying commitment c3 with non-negligible probability and therefore our adversary
outputs messages m, m′ together with randomness r ∈ RN for which holds m , m′ and
c3 = COMKX (m, r) = COMKX (m′, r3) for some appropriate r ′ ∈ RN with non-negligible
probability.

This concludes that the commitment generated with KX is not perfectly binding, which is a
contradiction to the requirement that commitments computed using KX are perfectly binding.
We conclude that in the case of a corrupted committer we can create a simulator that

communicates with an environment in such a way that the environment’s view in the ideal
world is statistically indistinguishable fromZ’s view in the real world.

The recipient R is corrupted and C is honest Now we want to prove that simulating the
corrupted recipient also results in the environment’s view in the ideal world such that it is
statistically indistinguishable fromZ’s view in the real world. Without loss of generality we
assume the dummy adversary which only forwards the received messages fromZ to C (via
the corrupted R) and forwards all received messages from C (via R) toZ. The simulator SR is
constructed as follows:

• The CRS is generated as follows: Draw a random system key N , a random E-key K1 and
a random X-Key KX .

• SR simulates an honest and unmodified instance of the recipient C .

• Upon receiving a message (commit,m) from F post
com−binding, generate a random key KC ←

KN , compute the commitment c1 = COMK1(KC , r1) using randomness r1 ← Rn and
simulate receiving c1 from C .

• When receiving a message KR fromZ where KR ∈ KN is a key, simulate sending it toC .

• In the last step of the coin toss simulate receiving the reveal information KC , r1 from the
internal simulation of C and compute K = KC ⊕ KR .

• As last step of the commit-phase draw r2, r3 ← Rn randomly and compute commitments
c2 = COMK (m, r2) and c3 = COMKX (m, r3). Simulate receiving c2, c3 from the internal
simulation of C .

3.1 The DN Commitment Scheme 31

• When receiving (unveil) fromZ, simulate receiving (m, r2, r3) from the internal simu-
lation of C .

Again it is obvious that the CRS generated in the simulation is statistically indistinguishable:
It is generated as in the real world.

Since the coin-toss is performed in an honest manner, the first three steps of the simulation
are statistically indistinguishable from the first three steps of the real-world protocol.

In the reveal phase the simulated message is a valid opening information for the generated
c2 and c3 and thus a valid reveal message for the commitment.

Since in all steps the simulator behaves in an honest manner and the simulation is never
aborted (if the environment does not abort the simulation), even an unbounded environment
Z would have zero probability distinguishing the ideal-world simulation from a real-world
execution.

Since we have shown that in each of the possible two cases of corruption we can construct a
simulator that communicates in such a way that the view of the environment is statistically
indistinguishable from the real-world view ofZ we conclude that the perfectly binding DN
commitment scheme long-term UC-realizes F post

com−binding. □

3.1.2 The Statistically Hiding DN Commitment

The next variation of the basic DN-commitment scheme is the perfectly hiding commitment
scheme which additionally contains a commitment generated with an E-key. Therefore the
CRS consists of the system key N and two E-keys: K1 for executing the coin toss and KE for
generating the additionally equivocal commitment c3 which is generated in the actual commit
phase.
When executing the commitment scheme, both C and R together execute a coin toss as

described in Section 3.1 to draw a random key K for commitment c2. Then the committer draws
a random message m̃ ← MK which has the same length as the inputm and generates the
commitment c2 = COMK (m ⊕ m̃) and generates an additional perfectly hiding commitment
c3 = COMKE (m̃) on the randomly drawn message m̃. Then C sends both c2 and c3 to R. In the
unveil phase, the committer sends the unveil information for both c2 and c3 to the recipient.
This commitment scheme scheme is obviously perfectly hiding: the commitment on the

random message m̃ is perfectly hiding and thereforem ⊕ m̃ statistically hides the messagem.
For proving the security of the commitment scheme in the case of a corrupted recipient,

we let the simulator act in an honest way if the committer is corrupted and in the case of a
corrupted recipient, the simulator generates a fake commitment c3 using the E-key KE and
its trapdoor tKE and generates a random commitment c2 using the random commitment key

32 3 Defining the Functionality For Updatable Commitments

K produced in the coin toss phase. When getting the committed message m in the unveil
phase by F post

com−hiding, the simulator can then computes the unveil information m̃, r̃ such that
c3 = COMKE (m̃,r̃). To show the indistinguishability between simulation and real protocol we
will reduce the indistinguishability of the environment’s view in the ideal world and in the
real world to the equivocality property of the underlying mixed commitment scheme when
using an E-Key: If the environment is able to distinguish between the simulation and the real
execution of the commitment protocol, then we are able to construct a distinguisher that is
able to distinguish between a genuine commitment c = comKE (c,r) for a messagem ∈ MN

and some randomness r ∈ RN and a fake commitment c produced by using the trapdoor tKE .

C R

Commit:

input: (commit,m) input: recv

KC ← KN , r1 ← RN

KR ← KN

K = KC ⊕ KR

r , r2, r3 ← RN K = KC ⊕ KR

Unveil:

input: unveil input: unveil

CRS: N ,K1, KE

c1 = comK1 (KC , r1)

KR

(KC , r1)
c2 = comK (x ⊕ r , r2), c3 = comKE (r , r3)

(x ⊕ r , r2), (r , r3)

Figure 3.4: The statistically hiding DN commitment scheme, see [MU10], Figure 3.

We now formally prove that the statistically hiding DN commitment scheme long-term
securely realizes F post

com−hiding:

Lemma 3.5 If COM is a special mixed commitment scheme, then the statistically hiding DN
commitment scheme shown in Figure is long-term UC-realizes F post

com−hiding.

Proof. To prove our lemma we again have to show that we can construct a simulator that both
generates a CRS and communicates with the environment in such a way that the environment’s

3.1 The DN Commitment Scheme 33

view in the ideal world is statistically indistinguishable from its view in the real world. Again
we have to look at two different cases of corruption: The case that only C is corrupted and
the case that only R is corrupted. In each case we again have to construct a simulator S that
communicates with the environment in such a way that environment’s view in the ideal world
is statistically indistinguishable from its view in the real world.

The committer C is corrupted and R is honest Without loss of generality we assume
the dummy adversary which forwards all communication fromZ to R (via the corrupted C)
and forwards all communication from R toZ. In a first step, we construct the simulator SC
corrupting the committer:

• The CRS is generated as follows: Draw random a system key N , and two E-keys K1 and
KE .

• SC simulates an honest and unmodified instance of the recipient R.

• When receiving a commitment c1 fromZ , simulate sending c1 to the internal simulation
of R.

• Draw randomly a key KR ← KN , as in the protocol and simulate receiving it from the
internal simulation of R.

• When receiving the reveal information (KC , r1) for c1 from Z, check whether c1 =

COMK (KC , r1) and abort if this is not the case. Else compute the commitment key
K = KC ⊕ KR and simulate sending the reveal information to the internal simulation of
R.

• When receiving the message (c2, c3) fromZ, where the commitment c3 was computed
with KE , set m′ = 0, send m′ to F post

com and simulate sending (c2, c3) to the internal
simulation of R.

• When receiving reveal information (m,m̃, r2, r3) from Z, check whether c3 =

COMK (m̃, r3) and c2 = COMK (m ⊕ m̃,r2). If this is not the case, then abort. Else send
(reveal, m) to F post

com and simulate sending (m,m̃, r2, r3) to the internal simulation of
R.

It is easy to see that the CRS is generated in an honest manner: it is drawn as FCRS would
draw the CRS in the real world.

The coin-toss which is simulated in the first three steps of the simulation is also done in an
honest manner. More precisely, if the coin toss is not aborted it is guaranteed that the unveiled

34 3 Defining the Functionality For Updatable Commitments

KC matches to the committed KC . This concludes that the environment’s view of the coin-toss
in the ideal world and environment’s view of the coin toss in the real world are identically
distributed.

In the reveal phase, the simulator aborts the simulation if the commitments c2 and c3 cannot
be opened to the received unveil information. In the real-world execution of the protocol, the
recipient would also abort the execution of the protocol if the given unveil information does
not match to the received commitments c2 and c3. This concludes that SC aborts in the reveal
phase if the real-world protocol is aborted in the reveal phase. If the simulation is not aborted,
we have a valid opening for c2 and c3 which would also be sent by C to R in the real-world
execution.
All in all, since there is no difference between the simulation and a real-world execution,

even an unbounded Z cannot distinguish between the ideal-world simulation and the real
world execution.

The recipient R is corrupted and the committerC is honest Nowwe prove that simulat-
ing a corrupted recipient results in an environment’s view in the ideal world that is statistically
indistinguishable fromZ’s view in the real world. Without loss of generality we can assume
the dummy adversary. The constructed simulator SR behaves as follows:

• The CRS is generated as follows: Draw a random system key N , and two random E-keys
K1 and KE .

• SR simulates an honest and unmodified instance of the recipient C .

• Upon receiving a message (commit) from F post
com , generate a random key KC , compute

c1 = COMK1(KC , r1) and simulate receiving c1 from the internal simulation of C .

• Then draw a random key KR ← KN and simulate sending it to C .

• In the last step of the coin toss simulate receiving the reveal information (KC , r1) from
the internal simulation of C and compute K = KC ⊕ KR .

• As last step of the commit phase compute commitment c2 = COMK (m′, r2) for a random
message m′ ∈ MN using randomness r2, ∈ RN and produce a fake commitment c3

together with an equivocation key ekc3 usingKE and the trapdoor tKE . Simulate receiving
(c2, c3) from the internal simulation of C

• When receiving (unveil,m) from F post
com , compute m̃ =m′⊕m and use the equivocation

key ekc3 for the fake commitment c3 to produce valid randomness r̃ for c3 and m̃ and
simulate receiving r , r̃ ,m and m̃ from the internal simulation of C .

3.1 The DN Commitment Scheme 35

It is easy to see that the CRS generated by SR is generated in an honest manner and therefore
such a generated CRS is statistically indistinguishable from a CRS generated in the real world.
Since SR simulates C in an honest manner and it simulates sending the only message KR

received from Z, the resulting simulation of the coin-toss is statistically indistinguishable
from the coin toss phase of a real-world execution of the commitment scheme.
In the reveal phase, SR computes the revealed m̃ =m ⊕m′. Sincem′ =m ⊕ m̃ is chosen at

random, m̃ is also random. Since SR has a trapdoor for KE and since c3 is perfectly hiding, it
is possible for SR to produce a fake commitment c3 and later to compute reveal information
m̃, r ′3 such that c3 can be unveiled to m̃.

The commitment c3 is perfectly hiding since fake commitments generated with an E-key
together with its trapdoor are by definition identically distributed as genuine commitments
and therefore no unbounded entity is able to distinguish a fake commitment from a genuine
commitment produced by using a random E-key.

Since c3 perfectly hides the random message m̃, c2 also perfectly hidesm and therefore even
an unbounded environment is able to distinguish between the ideal world and the real world.

Hence in the case of a corrupted recipient there exists a simulator that communicates with
the environment in such a way that the environment’s view is statistically indistinguishable
fromZ’s view in the real world.
We have shown that for each type of corruption we can construct a simulator such that

the view of any environment is statistically indistinguishable from the real-world view of the
environment and thus we have shown that the statistically hiding DN commitment long-term
UC-realizes F post

com−binding. □

We conclude the chapter by stating that with the perfectly binding DN commitment protocol
we have found a protocol that securely long-termUC realizes F post

com−binding andwith the perfectly
hiding DN commitment protocol we have found a protocol that securely long-term UC realizes
F post

com−hiding. Thus both protocols seem to be candidates for a CRS update.

37

4 The Update Process For the CRS of A
Commitment

In this chapter we want show how to update a a fixed amount of CRS of an updated UC-secure
commitment. By updating a CRS we mean instantiating a new CRS using a coin toss based
on the new setup assumption. Therefore we want to use a coin toss to draw randomly each
bit of the new CRS. For the coin toss we will use a modified commitment scheme that uses a
modification of F post

com−binding.

For the update process of the CRS we want to use a commitment of the commitment scheme
that is based on the old setup assumption as an initial commitment. Since the adversary
may increase its computational power and therefore may break the input privacy of the
initial commitment protocol, we require the initial commitment to long-term UC-realize the
functionality F post

com−binding or F post
com−hiding. Using one of the functionalities one may assume that

a F post secure coin toss was possible.

Unfortunately, such a coin toss does not exist, as we will see below. Yet, we will find a
way to instantiate a F post secure coin toss using a F post secure modification of a UC secure
commitment scheme whose CRS is instantiated using a stand-alone secure coin toss in a
modification of the F post

com−binding-hybrid model.

The commitment scheme using the modification of F post
com−binding is a single-use commitment,

meaning one instance of the protocol can only produce one secure commitment. For an
arbitrary use of a coin toss we have to use a commitment scheme for which one instance can
be used to produce several commitments, i. e. which is a multi-use commitment.

In Section 4.1, we will show that it is impossible to instantiate a F post secure coin toss in
the F post

com−binding- or in the F post
com−hiding-hybrid model and define modified variant of F post

com−binding
such that a stand-alone secure coin toss is possible. Then we show how to modify a UC
commitment scheme such that it is F post secure using the variant of F post

com−binding.

38 4 The Update Process For the CRS of A Commitment

Fct for l-bit coin toss

Let P1 and P2 be two parties.
The functionality Fct behaves as follows:
Upon input (init) from parties P1 and P2, draw a random l-bit string r ∈ {0, 1}l and
generate a public delayed output r to P1, P2 and S.

Figure 4.1: The functionality Fct for l-bit coin toss, see [MU10], Definition 3.6.

4.1 The Coin Toss for the CRS

In this section, we show two things: First, we show that there does no coin toss exist in the
F post

com−binding- or in the F post
com−hiding-hybrid model that securely F post-realizes Fct.

For an overview of the coin toss, the functionality Fct as defined in [MU10] is shown in
Figure 4.1.
In Subsection 4.1.2 we show how the functionality F post

com−binding has to be modified such
that a stand-alone secure bit coin toss is possible using the modified functionality. Lastly, in
Subsection 4.1.3 we show that the modified version of the functionality F post

com−binding−od cannot
be used to instantiate a long-term UC-secure commitment and explain why this fact does not
cause any problems for updating a CRS.

4.1.1 On the Impossibility of An Fpost Secure Coin Toss

To be able to update a CRS of a commitment scheme, we would like to generate a F post

secure coin toss in the F post
com−binding-hybrid or in the F post

com−hiding-hybrid model. Unfortunately,
as we will see in this subsection, there is no such coin toss protocol that is UC-secure (and
hence not F post secure). The reason for this is that if a coin toss protocol was UC-secure
in the F post

com−binding-hybrid model or in the F post
com−hiding-hybrid model, then the commitment

functionality Fcom was UC-realizable in the plain model, which is an obvious contradiction to
Theorem 6 stated in [CF01].

We will prove the impossibility of a UC secure coin toss in the F post
com−binding- and the impos-

sibility of a UC secure coin toss in the F post
com−hiding- hybrid model. Since F post security implies

UC security, those statements also hold for the impossibility of F post secure coin tosses in the
F post

com−binding- or in the F post
com−hiding-hybrid model.

To prove that there does not exist a UC secure coin toss in the F post
com−binding- or in the

F post
com−hiding-hybrid model, we will state several lemmas.
First, wewill show thatFct is a UC-complete functionality, meaning that any functionality can

4.1 The Coin Toss for the CRS 39

be securely UC-realized in theFct-hybridmodel. Thenwewant to show that both functionalities
F post

com−binding and F
post

com−hiding are UC-incomplete. The idea for this proof is the following: UC-
completeness is closed under composition. This means that a protocol using a functionality F
can only securely UC-realize a UC-complete functionality if F is UC-complete.
To show that both F post

com−binding and F post
com−hiding are not UC-complete, we show that both

functionalities can be realized in the plain model and that it is impossible to securely UC-
realize Fcom in the F post

com−binding- or in the F post
com−hiding-hybrid model. We will show this via

contradiction: If Fcom was UC-realizable using one of the two functionalities, then (by using
the composition theorem) Fcom was UC-realizable in the plain model, which is an obvious
contradiction to Theorem 6 in [CF01].

As the first step we formally state without proving this lemma that Fcom is UC-complete:

Lemma 4.1 (UC-completeness of Fcom, compare [Can+02], Theorem 8.3) Assume that
enhanced trapdoor permutations exist. Then there exists for any well-formed functionality F
a protocol in the Fcom-hybrid model that securely UC-realizes F .

An intuitive idea why Fcom is UC-complete is that Fzk is UC-complete: Theorem 8.3 in
[Can+02] states that if enhanced trapdoor permutations exist, then every well-formed func-
tionality can be realized in the Fzk-hybrid model, which means that Fzk is UC-complete. Since
Fzk can be realized in the Fcom-hybrid model and due to the composition theorem, every
well-formed functionality can be realized in the Fcom-hybrid model (assumed that enhanced
trapdoor permutations exist).

Now we want to show that Fct is UC-complete, meaning any functionality is UC-realizable
in the Fct-hybrid model, especially Fcom. We instantiate the CRS of a UC secure commitment
scheme using a coin toss.

For the proof of this lemma, wewill use a commitment scheme that is amulti-use commitment
scheme, hence it is proven to UC securely realize Fmcom, a multi-use extension of Fcom. But
this commitment scheme can also be used as a UC secure single-use commitment scheme
with syntactical changes only. Hence we will use this commitment scheme as an example for
commitment scheme in our proof.

Lemma 4.2 (UC-completeness of Fct, compare [Can+02], Theorem 8.3) Assume that
enhanced trapdoor permutations with dense public keys exist. Then there exists for any
well-formed functionality F a protocol in the Fct-hybrid model that securely UC-realizes F .

Proof. Since UC-completeness is closed under composition (meaning that if a protocol realizes
a UC-complete functionality F in a hybrid model using functionality G, then functionality G

40 4 The Update Process For the CRS of A Commitment

is also complete), we can use Lemma 4.1 to prove our lemma. Therefore we show that there
exists a protocol that realizes Fcom in the Fct-hybrid model. To show this any commitment
protocol in the CRS-hybrid model which assumes enhanced trapdoor permutations with dense
public keys suffices.

As an example we use the single-use variant of the UAHC commitment scheme by Canetti
et al. in [Can+02]. This commitment scheme assumes enhanced trapdoor permutations and
we are able to further assume the enhanced trapdoor permutations to have dense public keys.

The security of this commitment scheme is based on three primitives: a pseudorandom
IND-CPA secure encryption scheme (i. e. a commitment scheme that produces ciphertexts that
are pseudorandom, meaning that such a ciphertext is computationally indistinguishable from a
real random bit string of the same length), an IND-CCA secure encryption scheme which both
are based on enhanced trapdoor permutations (for which we can assume to have dense public
keys) and a commitment scheme whose security is based on the Hamiltonian cycle problem.
The CRS which we will instantiate by using Fct consist of a random image of a one-way

function (which will be used for the underlying commitment based on Hamiltonicity) and the
public keys for the IND-CPA and IND-CCA secure encryption schemes.
The modified protocol works as follows:

• Both C and R send input (init) to Fct and get a random string which can be split into
three strings of the CRS: the random image y of a one-way function f , a random public
key pkE for the IND-CPA secure encryption scheme E and a random public key pkEcca
for the IND-CCA secure encryption scheme Ecca .

• commit phase on bit b

– On input b C computes:

∗ z = aHC(b, r) for random string r ∈ {0, 1}n

∗ a ciphertext cb ← E(Ecca(r)) with randomness s

∗ a random string c1−b of length |c1−b | = |cb |
– C sends (z, c0, c1) to R.

– Upon receiving, R outputs (Received)

• reveal phase

– C sends (Dec, b, r , s) to R

– Upon receiving, R checks whether y ?
= aHC(b, r), cb = E(Ecca(r)) under random-

ness s . If the verification succeeds, R outputs Open, b

4.1 The Coin Toss for the CRS 41

Since the CRS is uniformly random, the CRS of this UC secure commitment scheme can be
instantiated using Fct. Due to the composition Theorem, this commitment scheme is UC-secure
and the lemma follows.
□

As a next step, we want to show that both F post
com−binding and F

post
com−hiding are realizable in the

plain model by proving that a protocol which directly sends the committed message in the
commit phase to the recipient securely UC-realizes F post

com−binding and F
post

com−hiding. This shows
that F post

com−binding and F
post

com−hiding are too weak to be used in a UC-secure protocol.

Lemma 4.3 (Fpost
com−binding is UC-realizable in the plain model) There exists a protocol that

securely UC-realizes F post
com−binding in the plain model.

Proof. The protocol that realizes F post
com−binding in the plain model is the following:

• Commit Phase: On input messagem, C sendsm to R

• Reveal Phase: C sends (unveil) to R. Upon receiving (unveil) from C , R outputsm.

To show that the protocol above securely UC-realizes F post
com−binding in the plain model, we

have to construct a simulator that interacts with the environment such that the view of the en-
vironment in the ideal model is computationally indistinguishable from the environment’s view
in the real world. Again we assume the dummy adversary which forwards all communication
coming from the environment to the corrupted parties and vice versa.

Let us first look at the case when the committer is corrupted: The simulatorSC is constructed
as follows:

• Upon receiving the commitment m which is the plain text message m, send m to
F post

com−binding and simulate sendingm to the internal simulation of R.

• Upon receiving the message (unveil), send the message (unveil) to F post
com−binding

simulate sending the received message to the internal simulation of R.

It is easy to see thatZ has zero probability in distinguishing the real commit phase from
the ideal commit phase since the simulator behaves like an honest committer.

Since the simulator also behaves like an honest committer in the unveil phase, the environ-
ment also has zero probability in distinguishing the real unveil phase from the ideal unveil
phase.
Now let us look us at the case when the recipient is corrupted. Therefore construct the

simulator SR as follows:

42 4 The Update Process For the CRS of A Commitment

• Upon receiving the messagem from F post
com−binding, simulate receivingm from the internal

simulation of C .

• Upon receiving the message (unveil) from F post
com−binding, simulate receiving (unveil)

from the internal simulation of C .

Since the simulator behaves like an honest recipient in the commit phase, Z has zero
probability in distinguishing the real from the ideal commit phase.
In the reveal phase, the simulator also behaves like an honest recipient and therefore the

environment has zero probability in distinguishing the real unveil phase from the ideal unveil
phase.
This concludes the proof. □

Lemma 4.4 (Fpost
com−hiding is UC-realizable in the plain model) There exists a protocol that

securely UC-realizes F post
com−hiding in the plain model.

Proof. The protocol that realizes F post
com−hiding in the plain model is the following:

• Commit Phase: C sends (committed) to R.

• Reveal Phase: C sends (unveil, m) to R. Upon receiving (unveil) from C , R outputs
m.

To show that the protocol above securely UC-realizes F post
com−hiding in the plain model, we

have to construct a simulator that interacts with the environment such that the view of the
environment in the ideal world is statistically indistinguishable from the environment’s view
in the real world.

Let us first look at the case when the committer is corrupted: The simulatorSC is constructed
as follows:

• Upon receiving the message (committed), send ⊥ to F post
com−hiding and simulate sending

(committed) to the internal simulation of R.

• Upon receiving the message (unveil, m), send the message (unveil, m) to
F post

com−hiding simulate sending the received message to the internal simulation of R.

It is easy to see thatZ has zero probability in distinguishing the real commit phase from
the ideal commit phase since the simulator behaves like an honest committer.

4.1 The Coin Toss for the CRS 43

Since the simulator also behaves like an honest committer in the unveil phase, the environ-
ment also has during the unveil phase zero probability to distinguish the real unveil phase
from the ideal unveil phase.
Now let us look us at the case when the recipient is corrupted. Therefore construct the

simulator SR as follows:

• Upon receiving the message (committed) from F post
com−hiding, simulate receiving

(committed) from the internal simulation of C .

• Upon receiving the message (unveil, m) from F post
com−binding, simulate receiving

(unveil, m) from the internal simulation of C .

Since the simulator behaves like an honest committer in the commit phase, Z has zero
probability in distinguishing the real from the ideal commit phase.
In the reveal phase, the simulator also behaves like an honest committer and thereforeZ

has zero probability in distinguishing the real world from the ideal world.
This concludes the proof. □

Since we have shown that both F post
com−binding and F

post
com−hiding are UC-realizable in the plain

model, we are able to show that both F post
com−binding and F post

com−hiding are UC-incomplete func-
tionalities. An easy way to prove this is to show that both functionalities cannot be used to
instantiate a UC-complete functionality, e. g. Fcom. Using this, we are finally able to show that
Fct cannot be instantiated using F post

com−binding or F
post

com−hiding.

Lemma 4.5 (UC-incompleteness of Fpost
com−binding) The functionality F post

com−binding is not UC-
complete.

Proof. Assume for contradiction that F post
com−bindingwas UC-complete. Then every well-formed

functionality was realizable in the F post
com−binding-hybrid model, especially Fcom. Yet since

F post
com−binding is UC-realizable in the plain model and due to the composition theorem, this

would mean that Fcom also is UC-realizable in the plain model, which is a contradiction to
Theorem 6 in [CF01]. Therefore there exists at least one well-formed functionality which is not
realizable in the F post

com−binding-hybrid model and thus F post
com−binding cannot be UC-complete. □

Lemma 4.6 (UC-incompleteness of Fpost
com−hiding) The functionality F post

com−hiding is not UC-
complete.

The proof is analogous to proof of Lemma 4.5.

44 4 The Update Process For the CRS of A Commitment

Since we have shown that both F post
com−hiding and F

post
com−binding are not UC-complete and that

Fct is UC-complete, we can combine those two theorems to show that Fct is not UC-realizable
in the F post

com−binding- or in the F post
com−hiding-hybrid model. For the next corollary, we have to

informally define two terms: bilateral protocols and terminating protocols (see [CF01], Chapter
3).
A protocol is bilateral if only two parties are computing throughout the execution (i. e.

such a protocol is a two-party protocol). A terminating two-party commitment protocol is a
commitment protocol in which the recipient accepts the messages coming from the honest
committer with overwhelming probability.

For a formal statement of the impossibility of securely UC realizing Fct we state our theorem
in a similar way as [CF01], Theorem 6.

Corollary 4.7 (Fct is not realizable using Fpost
com−binding or F

post
com−hiding, compare [CF01], Theorem 6)

There does no bilateral and terminating protocol exist that realizes Fct in the F post
com−binding or

in the F post
com−hiding hybrid model. This even holds if the simulator is allowed to depend on the

environment.

Proof. Now we want to formally prove why Fct neither can be realized in the F post
com−binding-

hybrid model nor in the F post
com−hiding-hybrid model.

Lemma 4.2 states that Fct is UC-complete and since UC-completeness is closed under com-
position each UC-complete functionality can only be realized by a protocol that uses another
UC-complete functionality. Since we have shown in Lemmas 4.5 and 4.6 that both F post

com−binding

and F post
com−hiding are not UC-complete, the theorem directly follows. □

Remark 4.8 These proofs are made towards UC security. Since F post security implies UC secu-
rity those impossibbility results also hold towards F post security.

Although we are not able to construct a UC secure coin toss neither in the F post
com−binding- nor

in the F post
com−hiding-hybrid model, we are able define a stand-alone secure coin toss to F post

realize commitments in a modification of the F post
com−binding-hybrid model. In this variant, we

only simulate only the committing party. For P2, we have to show that the possible output is
indistinguishable from a random value.

The modification of F post
com−binding and the resulting coin toss protocol are shown in the next

section.

4.1 The Coin Toss for the CRS 45

4.1.2 How to Modify the Commitment Functionality

In this section we will explain how the functionality F post
com−binding is to be modified such that a

stand-alone secure version of a coin toss is possible. This will enable us to build a F post secure
commitment scheme using the modified version of F post

com−binding and therefore the resulting
commitment protocol will be F post secure based on the new computational, stronger setup
assumption.
As we have seen, the reason why the proof failed was because in the case of a corrupted

P2, the simulator could not create a valid commitment c such that c would open correctly to
b1 = b ⊕ b2. A solution for this is to only simulate a corrupted P1 and reduce the security of
the coin toss to the the hiding property when P2 is corrupted. This means that if we assume
that an adversaryA can alter the outcome the coin toss protocol if it corrupts the party P2, we
can construct an adversary B that is able to break the hiding property (i. e. it is able to assign
a given commitment to its committed value without having any trapdoors to equivocate the
commitment) of the underlying commitment scheme by using A). There is another problem
that occurs if P2 is corrupted: In this case the adversary gets the committed value itself and
therefore the adversary can generate a value b2 dependent on b1. A solution to prevent this is
to let the adversary corrupting P2 receive only the computationally hiding commitment of the
committed value, not the committed value itself. Therefore the adversary corrupting P2 gets
access to an oracle to receive on request a commitment to the committed value.

This oracle can be viewed as a non-information oracle, which was introduced in [CK02] to
relax the UC security for key exchange. According to [CK02], a non-information oracle is a
special type of interactive Turingmachine having the property that its output is computationally
independent from its communication. More specifically, the non-infomation oracle behaves as
follows: When requested by the functionality, it computes (interactively) a given requested
value or on a function. Thereby the functionality lets the adversary interact with the non-
information oracle throughout the computation. When one of the parties is corrupted, the
adversary additionally learns the internal state of the non-information oracle.

There is a significant difference between our definition of the oracle and the non-information
oracle as defined in [CK02]: upon corruption, the adversary learns the internal state of the
non-information oracle whereas the adversary learns nothing about the internal state of the
oracle used in our scheme. Yet, viewing our oracle as a non-information oracle suffices since a
commitment can be viewed as an encryption of the committed value as long as the committed
value is not unveiled.

The modified functionality F post
com−binding−od depicted in Figure 4.2 works as follows: First it

generates a CRS for the commitment and distributes the CRS to the ideal adversary S. If the

46 4 The Update Process For the CRS of A Commitment

committer is corrupted, then F post
com−binding−od additionally sends the extraction trapdoor to S

(this enables the committer to extract the commitment in the commit phase without having to
generate the CRS by itself).

When F post
com−binding−od gets a commit input fromC , it sends the committed message to R and

S. If the recipient is corrupted and S requests a commitment on the committed message, then
the non-information oracle computes (interactively with S) the requested commitment.
The unveil phase is the same as the unveil phase of Fcom: When F post

com−binding−od receives
an input unveil from R, then it sends the output (unveiled,m) to R and A, wherem is the
committed message.

F post
com−binding−od for unconditionally binding commitments using the

non-information oracle

Let n ∈ � denote the security parameter and l(n) denote the length of the committed
message m. Let C and R be two parties. The functionality F post

com−binding−od behaves as
follows:

Generation of the CRS:

Generate a random string crs ← C from the distribution C of CRS for the commitment and
send crs toA. If the committer is corrupted, send additionally the extraction trapdoor tx to
A.

Generation of the commitment:

Upon the inputm ∈ {0,1}l (n) from C , generate a public delayed output (committed) to R.
If R is corrupted and A requests the non-information for a commitment, then generate
a commitment c on m and send c on behalf of the non-information oracle to A. If the
commitment scheme used by the non-information oracle is interactive and A who is
corrupting R requests the non-information oracle for a commitment, then generate the
commitment c interactively with A according to the protocol.
Upon input (unveil) from C generate a public delayed output (unveil, m) to R and if
the recipient is corrupted and a commitment c was requested in the commit phase, send
the unveil information for c to A.

Figure 4.2: The functionality F post
com−binding−od using a non-information oracle for statistically

binding commitments in the FCRS hybrid model.

We then are able to create a stand-alone secure coin toss protocol in the F post
com−binding−od-

hybrid model.
We differentiate between two versions of the coin toss protocol in the F post

com−binding−od-hybrid

4.1 The Coin Toss for the CRS 47

model: a coin toss on a single bit which can be seen in 4.3 and a coin toss on an n-bit string
which can be seen in 4.4.

Both protocols work in the same way except that the bit length of the bit coin toss is limited
to 1.
Therefore we will explain the protocol Πpost

CT−bit : When both parties get the input init, P1

first generates a random bit b1 ← {0,1} and commits on this random bits by sending the input
message (commit, b1) to F post

com−binding−od. P2 then gets a committed message by F post
com−binding−od

and draws a random bit b2 ← {0,1} and sends the bit b2 to P1. In the last step of the protocol,
P1 unveils its commitment on b1 by sending an unveil message o F post

com−binding−od and P2 gets
the unveiled bit b1. Then both parties are able to compute b = b1 ⊕ b2 and output b.

Protocol Πpost
CT−bit

• On input init b1 ← {0,1}, P1 sends (commit, b1) to F post
com−binding−od to commit to

bit b1.

• When getting (committed) from F post
com−binding−od, P2 draws a random bit b2 ← {0,1}

and sends b2 to P1.

• P1 then sends (unveil) to F post
com−binding−od to send the unveil information to P2, com-

putes the bit b = b1 ⊕ b2 and outputs b.

• When getting the unveil information to the commitment, P2 computes b = b1 ⊕ b2
and outputs b.

Figure 4.3: The protocol Πpost
CT−bit for tossing a single bit.

To show the security of Πpost
CT−bit , we will show that in the case of a corrupted party P1, the

protocol is F post secure by constructing a simulator that acts in an honest way. Since we are
not able to show the F post security of the protocol in case of a corrupted P2 we instead reduce
the security of the coin toss protocol to the computational hiding property of the underlying
commitment scheme, making the protocol stand-alone secure. Therefore we partially use the
proof of Theorem 6.7.2 in [Lin17].
Now we formally want to show that Πpost

CT−bit is a stand-alone secure coin toss in the
F post

com−binding−od-hybrid model.

Lemma 4.9 The protocol Πpost
CT−bit shown in figure 4.3 is a stand-alone secure coin toss protocol

that tosses a single bit in the F post
com−binding−od hybrid model.

48 4 The Update Process For the CRS of A Commitment

Protocol ΠCT−str inд

• Upon input init, P1 draws a random l-bit string r1 ← {0,1}l and sends (commit,
r1) to F post

com−binding−od to commit to string r1.

• When getting (committed) from F post
com−binding−od, P2 draws a random n-bit string

r2 ← {0,1}l and sends r2 to P1.

• P1 then sends (unveil) to F post
com−binding−od to send the unveil information to P2, com-

putes the string r = r1 ⊕ r2 and outputs r .

• When getting the unveil information to the commitment, P2 computes r = r1 ⊕ r2
and outputs r .

Figure 4.4: The protocol Πpost
CT−str inд for tossing a random l-bit string.

Proof. To prove that the given protocol is long-term UC-secure if P1 is corrupted, we have to
build a simulator, such that Z’s view is statistically indistinguishable from Z’s real-world
view in the case that P1 is corrupted and that the output of the simulation is statistically
indistinguishable from a random value. Since we want to use the functionality F post

com−binding−od
to achieve a coin toss, we cannot use the equivocality. Therefore we have to prove that if
an adversary corrupting P2 is able to bias the outcome into a value dependent on b1 with
non-negligible probability then the hiding property of the commitment generated by the
non-information is violated.

First, consider the case that P1 is corrupted. To show that no adversary can bias the outcome
of the coin toss into a value dependent on b1 with non-negligible probability, we have to build
a simulator that communicates with the environment in such a way that no environment is
able to distinguish between the ideal-world simulation and the real-world execution. Again,
we assume the dummy adversary that forwards all communication from the environment to
the corrupted party and vice versa.
The simulator behaves as follows:

• When getting b1 as input to the functionality F post
com−binding−od, simulate sending

(committed) to the internal simulation of P2 and send (init) to Fct.

• When receiving b from Fct, compute b2 = b ⊕ b1 and simulate receiving b2 from the
internal simulation of P2.

• When receiving message (unveil) as input to F post
com−binding−od, simulate sending the

unveil information to the commitment to string b1 to the internal simulation of P2 and

4.1 The Coin Toss for the CRS 49

output b.

It is easy to see that the view of the environment in the ideal world is statistically indistin-
guishable from the view of the environment in the real world-execution of the protocol: Since
the environment is not able to send another value to F post

com−binding−od after the commit phase is
executed, the environment can obviously not alter the random bit b1. Since the bit b1 is chosen
at random, the bit b2 = b ⊕ b1 computed by the simulator also is a random bit and therefore no
environment is able to distinguish the real world from the ideal world.

Next, we want to prove that the interaction with a corrupted P2 results in an output whose
distribution is statistically close to the distribution of outputs generated by the real-world
protocol. Since the protocol cannot be proven as F post secure we have to reduce the security of
the protocol in the case that the party P2 is corrupted to the hiding property of the commitment
sent by the non-information oracle.
This part of the proof is analogous to the proof of Theorem 6.7.2 in [Lin17]. Therefore we

only roughly sketch the proof. For further details, see [Lin17].
The main tool in this proof is to set the outcome to the bit b received by Fct and rewinding

the adversary that wants to bias the outcome if the adversary sends another value than the bit
b2 = b1 ⊕ b (defined by the simulator), where b1 is randomly chosen by the simulator.

Informally, the simulator sends the message (init) to Fct in order to receive a uniformly
random b.

Then it generates a random bit b1, compute the commitment c on b1 and simulate receiving
the commitment from the internal simulation of the non-information oracle. Compare the
answer bit b2 and if b2 = b ⊕b1 output bit b and complete the simulation. Else if b , b1 ⊕b2 and
the adversary is not rewound n times, then rewind the adversary. If the adversary is rewound
n times, where n is the security parameter and the adversary has still not answered with a
correct bit b2, then abort the simulation.
The simulation works since the underlying commitment sent by the simulator is computa-

tionally hiding and therefore the probability that the simulation is aborted is only negligible
conditioned on the event thatZ does not abort the simulation. Sinceb1 is chosen independently
of b2 and since the commitment on b1 is computationally hiding, the bit b2 is chosen indepen-
dently of b1. This means that each step in the simulation is statistically indistinguishable from
the corresponding step in the execution of the real-world protocol and thus the transcript of
the ideal simulation is computationally indistinguishable from the transcript of the real-world
execution.
□

This protocol also is usable when tossing a coinmultiple times. This is due to the commitment

50 4 The Update Process For the CRS of A Commitment

functionality that distributes for each instance one unique CRS.
The only part of the coin toss that could make the coin toss malleable is the commitment sent

by the non-information oracle. Yet, in each instance of F post
com−binding−od a separate CRS is dis-

tributed. Since in each instance of the coin toss protocol one separate instance of F post
com−binding−od

is called, the coin toss in the F post
com−binding−od-hybrid model is non-malleable. If the functionality

F post
com−binding−od in the coin toss protocol is replaced by a protocol that securely long-term

UC-realizes F post
com−binding−od, then by the composition theorem the composed protocol is also

non-malleable.

4.1.3 Relation to Long-Term UC Security

If we want to see whether F post
com−binding−od can be used to instantiate a long-term secure com-

mitment scheme, we investigate whether F post
com−binding−od is long-term revealing.

Unfortunately, the functionality F post
com−binding−od is long-term revealing for both parties: the

communication of both parties with F post
com−binding−od can be computed via the communication

of the adversary and F post
com−binding−od

This means that F post
com−binding−od cannot be used to instantiate another long-term secure

commitment scheme. Yet, to instantiate the coin toss for sampling the new CRS we only
have to use a F post secure commitment scheme in the F post

com−binding−od-hybrid model. In the
next section we will see how a F post secure commitment scheme can be generated in the
F post

com−binding-hybrid model.

4.2 The UCC-OneTime Commitment Scheme

In this section which is based on [CF01], Section 4 we want to modify a UC secure commitment
scheme such that it uses the coin toss protocol Πpost

CT−bit to build a F post secure commitment
scheme in order to instantiate a F post secure coin toss that is based on the stronger setup
assumption. This F post secure coin toss can then be used to sample the new CRS of the updated
commitment scheme.
There are some requirements to the commitment scheme to be used for the coin toss: We

want the commitment scheme to have a uniformly random CRS such that the CRS is able to be
drawn using a coin toss. Also, we require the CRS to be able be split into two parts to assure
that the commitment scheme is usable in the F post

com−binding−od-hybrid model. This enables the
simulator to create a CRS with either an extraction trapdoor or an equivocation trapdoor. This
ensures that when instantiating the CRS by using the coin toss in the F post

com−binding−od-hybrid

4.2 The UCC-OneTime Commitment Scheme 51

model in a non-modular way the modified commitment scheme is F post secure.
One might consider using the unconditionally binding or the unconditionally hiding DN

commitment described in Section 3.1 to use as the commitment scheme for the F post secure
coin toss. Unfortunately, neither the unconditionally binding DN commitment scheme nor the
unconditionally hiding DN commitment scheme can be used for this. The answer is simple: To
be able to use a commitment scheme for the CRS update, the commitment scheme has to have
a uniformly random CRS which is not guaranteed in the case of the unconditionally binding
commitment scheme:

Therefore each key used in the CRS has to be from the uniform distribution, especially the
E-Keys. Yet, if we recall the definition of special mixed commitments, then we can easily see
that the key space for the E-Keys has to be a subspace E ⊂ KN and that the number of E-Keys
has to be negligible compared to KN whereas the number of X -keys has to be overwhelming
compared to the KN and an E-key has to be computational indistinguishable from an X -key.
This concludes that an E-Key has to have the same length as an X -key. This means that even if
KN was uniformly distributed, then E is not.
Since an E-Key K1 is used both in the CRS of the unconditionally hiding DN-commitent

scheme and in the unconditionally binding commitment scheme, neither the unconditionally
binding nor the unconditionally hiding variant of the DN-commitment scheme can be used
for updating the CRS of another commitment scheme. This also means that the CRS of the
perfectly binding DN commitment scheme cannot be updated using our update procedure.

Therefore we have to use another commitment scheme whose CRS can be uniformly random
and its CRS can be splits into two distinctive parts.

A good example that fulfills this requirement is the UCC-OneTime commitment scheme by
Canetti and Fischlin [CF01].

The UCC-OneTime commitment scheme is an unconditionally binding UC-secure commit-
ment scheme that was introduced by Cannetti and Fischlin in 2001. This non-interactive and
unconditionally binding commitment scheme has an specific CRS structure—it consists of
two parts: a random string σ which has the length of 4n bits and two key pairs pk0 and pk1

for pseudorandom generators Gpk0 and Gpk1 which map bit strings of length n to bit strings
of length 4n. This form of the CRS is important for us since one part of the CRS enables
the simulator to extract the commitment in the case of a corrupted committer whereas the
other part of the CRS enables the simulator to equivocate the commitment by creating the
corresponding trapdoor when the recipient is corrupted. Thus we can generate the CRS using
two phases of coin tosses.
The pseudorandom generator is according to [CF01] a Blum-Micali-Yao generator [BM84;

Yao82] with the modification that the function used is a trapdoor permutation, not a one-way

52 4 The Update Process For the CRS of A Commitment

function. The pseudorandom generator consists of a trapdoor permutation fpk and a hard-core
predicate B for fpk and expands n random bits to 4n bits. The generator Gpk is described as
follows:

Gpk (r) = (fpk 3n(r),B(fpk 3n−1(r)),B(fpk 3n−1(r)), ...,B(fpk (r)), B((r)),

where f npk (r) is the n-th fold application of fpk to r .
To ensure that the CRS of the update commitment scheme can be instantiated using a coin

toss, we require the CRS to be uniformly random. One way to reassure this is to assume
trapdoor permutations with dense public keys. Therefore we require the trapdoor permutation
used for the pseudorandom generator to have dense public keys, meaning in this case that the
distribution of public keys D used for the pseudorandom generatorGpk has to be D = {0, 1}k
for key length k of public keys pk ∈ D. Otherwise it is not guaranteed that a random k-bit
string is a valid public key for a pseudorandom generator Gpk .
A UCC-OneTime commitment is done as follows: The committer first draws a random r ∈
{0,1}n and computes Gpkb (r) for given bit b to commit to. Then C computes the commitment,
depending on the input bit b: if b = 0, then c is set to c = Gpk0(r), else to c = Gpk1(r) ⊕ σ . The
commitment c is then sent to the recipient R. In the reveal phase the committer sends b and r
as the unveil information to the recipient and R can then easily check whether commitment
was generated correctly or not.

To be able to use the UCC-OneTime commitment scheme for a F post secure coin toss in
order to update a CRS, we have to instantiate the CRS of the UCC-OneTime commitment
scheme by using coin toss protocol Πct−bit in the F post

com−binding−od-hybrid model. The idea for
the realization of the CRS of the is UCC-OneTime commitment scheme using the protocol
Πct−bit is to split the CRS in two parts: the random string σ and the public keys pk0 and pk1 for
which σ is a bit string of length 4n and the tuple (pk0,pk1) can be interpreted as a bit string of
length 2k (since each key is of length k). Then we can use the coin toss 4n times to create σ
and again 2k times to create (pk0,pk1) separately.
For the coin tosses used in this scheme we use the functionality F post

com−binding−od as seen in
Figure 4.2 for which the non-information oracle produces a statistically binding UC-secure
commitment when requested. We define the distribution of the CRS used for the underlying
commitment used by the non-information oracle as C. The hiding property of this commitment
scheme is based on the old complexity assumption. This means that if the adversary has not
increased its computational power during the coin toss phase of the commitment scheme then
the adversary is not able to bias the outcome of the coin toss phase (which is the CRS for the
actual commitment scheme) into some values selected by itself.

4.2 The UCC-OneTime Commitment Scheme 53

Protocol UCC-OneTime

• The CRS
– (pk0,pk1), public keys for pseudorandom generators Gpk0 ,Gpk1 : {0, 1}n →
{0, 1}4n

– σ ∈ {0, 1}4n , random string)

• commit phase
– If the bit to commit is b = 0, C computes the commitment y as follows: y =
Gpk0(r) for a randomly drawn r ← {, 1}n , else it computes y = Gpk1(r) ⊕ σ .
Then it sends y to R.

• reveal phase
– C sends b and r to R. R checks whether y = Gpk0(r) if b = 0 or whether
y = Gpk1(r) ⊕ σ if b = 1. If the check succeeds, R outputs (unveil,b).

Figure 4.5: The original protocol UCC-OneTime, see [CF01], Figure 4.

In the simulation we let the simulator in the case of a corrupted committer draw two random
key pairs (pk0, sk0) and (pk1, sk1) using the generation algorithmGen and let the output of the
first coin toss phase equal (pk0,pk1) and simulates the second coin toss phase in an honest
manner. Then the simulator is able to extract the messagem out of the commitment in the
commit phase. In the case of a corrupted recipient the simulator simulates the first coin toss
phase in an honest manner to randomly generate a tuple of public keys (pk0,pk1) and generates
a fake string σ = Gpk0(r0) ⊕ Gpk1(r1) for two random k-bit strings r0, r1 and lets the output of
the second coin toss phase be the fake string σ . In the unveil phase the simulator is then able
to unveil the commitment to both 0 and 1.

To show the indistinguishability between simulation and protocol execution, we reduce in
the case of a corrupted committer the security of the commitment scheme to the computational
hiding property of the commitment generated by the non-information oracle. In the case
of a corrupted recipient, the security of the commitment scheme will be reduced to the
pseudorandomness of the strings produced by the pseudorandom generator Gpk .

Now we can formally prove that the UCC-OneTime in combination with the two phases of
coin tosses is F post secure:

Theorem 4.10 ((L,M)-Fpost-security of UCC-OneTime-CT) Let L and M be two prob-
lems. Assume that trapdoor permutation with dense public keys exist, L is solvable andM is not
solvable within polynomial time. If the trapdoor permutation used for the commitment scheme

54 4 The Update Process For the CRS of A Commitment

UCC-OneTime-CT is based on problem M and the commitments sent by the non-information
oracle is based on problem L, then the commitment protocol UCC-OneTime-CT described in fig-
ure 4.6 is an active and statistically binding commitment protocol in the F post

com−binding−od-hybrid
model that securely (L,M)-F post realizes Fcom.

Proof. We prove this theorem in a similar way as the proof of Theorem 7 in [CF01].
To show that this commitment scheme is (L,M)-F post secure, we have to construct a simu-

lator such that the environment’s output in the ideal world is computationally indistinguishable
from the its output in the real world iff problemM is not solvable within polynomial time.
When constructing the simulator, we have to distinguish between two cases: The case in

which the committer is corrupted and the case in which the recipient is corrupted. Additionally
we have to look at the case that no party is corrupted to show that the protocol is a non-trivial
protocol, meaning that even if no party is corrupted, R generates an output.

The committerC is corrupted and the recipient R is honest Without loss of generality
we assume the dummy adversary which forwards all communication from and to the envi-
ronment to and from the corresponding party (via the corrupted party C). As a first step, we
construct the following simulator SC :

• Draw 2k + 4n random CRS crs1, ..., crsk+4n ∈ C and simulate receiving them from the
2k + 4n instances of F post

com−binding.

• Generate two key pairs (pk0, td0) ← Gen(1n) and (pk1, td1) ← Gen(1n) and interpret
(pk0,pk1) as a bit string s = s1 · ... · s2k of length 2k

• Simulate the 2k coin tosses for (pk0,pk1) sequentially in the following way (let i be the
counting variable for the number of coin tosses):

– When receiving the message (commit, si1) as the input to the i-th instance of
functionality F post

com−binding, simulate sending the message to the internal simulation
of F post

com−binding.

– Compute si2 = si1 ⊕ si and simulate receiving si2 from the internal simulation of R.

– When receiving the message unveil as input to the i-th instance of functionality
F post

com−binding, simulate sending the message to the internal simulation of the i-th
instance of F post

com−binding.

• Simulate the 4n coin tosses for σ sequentially in the following way (let i be the counting
variable for the number of coin tosses):

4.2 The UCC-OneTime Commitment Scheme 55

– Simulate receiving the subroutine output (committed) from the 2k + i-th instance
of F post

com−binding.

– When getting a request to the non-information oracle, generate a random commit-
ment ci2 = com(b) for a random bit b using crs2k+i and simulate receiving ci2 from
the internal simulation of the non-information oracle.

– When receiving a random bit t i2, simulate sending it to the internal simulation of R

– Simulate receiving the unveil information to ci2 from the internal simulation of the
2k + i-th instance of functionality F post

com−binding.

• Set σ to the concatenation of t1 to t4n , i. e. σ = t1 · ... · t4n

• When receiving a commitment y, check whether y lies within the image ofGpk0 by using
the trapdoor td0 for generator Gpk0 . If this is not the case, send the bit 1 to Fcom, else
send 0 to Fcom and simulate sending y to the internal simulation of R.

• When receiving the unveil information r ′ and b ′, check whether b = b ′ and if y matches
to the commitment tob ′with r ′. If this is not the case, abort the simulation. Else, simulate
sending the unveil information to the internal simulation of R.

The coin tosses generating the public keys are done in an honest manner. This is the case
since the public keys for the pseudorandom generators are both randomly generated using the
key generation algorithm and then simulating the 2k coin tosses. Since we require the trapdoor
permutation used for the pseudorandom generator to have dense public descriptions, the
generation algorithm Gen producing a public-private key pair for a pseudorandom generator
Gpk produces a uniformly random public key pk ∈ {0, 1}k . Thus the public keys produced
using Gen and the public keys produced with the first coin toss phase are randomly drawn
from the same distribution. Therefore the environment is not able to distinguish between the
ideal-world coin tosses generating the public keys and the real-world coin tosses of the same
type.
In the coin tosses carried out for generating σ the simulator behaves in an honest manner.

Therefore the environment is not able to distinguish the coin tosses for generating σ in the
ideal world from the coin tosses carried out in the real world.
In the commit phase, the simulator only extracts the committed value out of the com-

mitment and does not deviate from the protocol. Therefore the commit phase is perfectly
indistinguishable from a real commit phase.

If in the reveal phase the real-world committer does not unveil the commitment to another
value than it committed to, then the ideal unveil phase is computationally indistinguishable

56 4 The Update Process For the CRS of A Commitment

from a real unveil phase. Therefore consider the case that the probability that there exist
commitments that can both be unveiled to 0 and 1 is non-negligible, i. e. that there exist
values y that lie both in the image of Gpk0 and Gpk1 . Then with non-negligible probability the
random string σ created in the second instance of coin tosses has to be pseudorandom. This
would mean that the environment was able to bias the outcome of second coin toss phase
with non-negligible probability to a value dependent on the values sent by the simulator with
non-negligible probability. Therefore we have to show that if the probability for creating such
a pseudorandom σ with the second coin toss phase is non-negligible then the commitments
requested by the environment in the second coin toss phase are not computationally hiding.

More formally, we construct an algorithm that forces the environment to honest behavior in
the second coin toss phase and compare the behavior of the environment used by the algorithm
to the environment’s behavior in the simulation.
The algorithm is constructed as follows:

• Generate two key pairs (pk0, td0) ← Gen(1n), (pk1, td1) ← Gen(1n), interpret the tuple
(pk0,pk1) as a bit string of length 2k and execute the 2k coin tosses according to the
simulation.

• Draw a random bit string σ of length 4n and execute 4n coin tosses sequentially in the
following way:

1. set a counter l = 0

2. Denote σ i the i-th bit of the bit string σ . Set in the i-th coin toss σ i as the output
of the coin toss.

3. Draw a random bit bi1, compute a commitment ci = com(bi1) and simulate receiving
ci from the internal simulation of the 2k + i-th instance of F post

com−binding.

4. If the environment answers the commitment with a bit bi2 for which σ i = bi1 ⊕ bi2
holds, go to the coin toss of the next bit σ i+1 or if this is the 4n-th coin toss, then
proceed to the commit phase. IfZ answers with a bit bi2 that does not fulfill the
condition stated above and if the counter fulfills l < n, then set l = l + 1, rewind
the environment and go back to step 3. Else (this is the case if si , bi1 ⊕ bi2 and if
l ≥ n), abort the simulation.

• When getting a commitment y fromZ, check with the help of td0, whether y lies in the
image of Gpk0 . If the environment unveils the commitment y successfully to a bit b ′ = 1,
then output 1, else output 0.

4.2 The UCC-OneTime Commitment Scheme 57

Let us now analyze the probability of the environment in succeeding to equivocate a com-
mitment and compare the output of the environment in the algorithm to the output of the
environment in the simulation.

If the environment behaves honestly during the second coin toss phase (i. e. it does not try
to bias the outcome of the second coin toss phase), then the probability that the algorithm
aborts the simulation is only negligible (compared to the ideal-world simulation) since the
second coin toss phase is aborted with only negligible probability by the reduction algorithm
and the resulting string σ is a uniformly random one. Then the probability thatZ is able to
equivocate the commitment is only negligible since σ has to be of form σ = Gpk0(r0) ⊕Gpk1(r1),
which happens only with negligible probability for a uniformly random σ .

If the environment was able to bias the outcome of second coin toss phase to a chosen bit
string σ of the form σ = Gpk0(r0) ⊕ Gpk1(r1) (for which r0 and r1 were chosen by Z) with
non-negligible probability, then there is with non-negligible probability a difference between
the output of the environment in the ideal-world simulation andZ’s output in the reduction
emulation: The ideal-world simulation is aborted in the unveil phase, whereas the reduction
algorithm aborts its emulation with non-negligible probability during the second coin toss
phase. This happens since at least one bit of the string σ chosen by the reduction algorithm
differs from the string σ ′ chosen by the environment. As a conclusion the reduction algorithm
rewinds at least one coin toss n times and then aborts the emulation since the bit bi2

′ in each
rewinding of the coin toss does not match to the bit bi2 = σ i ⊕ bi1 needed by the reduction
algorithm to generate its randomly chosen σ . This in turn means that the environment was able
to extract the committed bit out of the commitment received by the non-information oracle to
bias at least one coin toss outcome and therefore the commitment used by the non-information
oracle is not hiding, which is a contradiction to the security of protocolΠct−bit shown in [Lin17],
Theorem 6.2.7.

Therefore the distribution of σs generated in the ideal-world (and in the real world) is
statistically close to the distribution of σs in the reduction algorithm. Conclusively, the
random string σ generated in the second coin toss phase is pseudorandom only with negligible
probability.
We conclude that in the case of a corrupted committer, the commitment scheme UCC-

OneTime-CT securely (L,M)-F post realizes Fcom.
Next, we consider the case when the recipient is corrupted.

The recipient R is corrupted and the committerC is honest Without loss of generality
we again can assume the dummy adversary. The simulator SR which simulates corrupting the
recipient is constructed as follows:

58 4 The Update Process For the CRS of A Commitment

• Generate 2k + 4n random CRS crs1, ..., crs2+4n ∈ C and simulate receiving them from
the first and second instance of F post

com−binding.

• Simulate the 2k coin tosses for (pk0,pk1) sequentially in the following way:

– Simulate receiving the output (committed) from the first instance of F post
com−binding.

When receiving the request to the non-information oracle, draw a random bit bi
and generate a commitment ci1(bi) using crsi and simulate receiving ci1 from the
internal simulation of the non-information oracle.

– When receiving a random bit si2, simulate sending it to the internal simulation ofC .

– Simulate receiving the unveil information to ci1 from the internal simulation of the
first instance of F post

com−binding.

• Set (pk0,pk1) to the concatenation of s1 to sk , i. e. (pk0,pk1) = s1 · ... · sk

• Draw random strings r1, r2 ← {0, 1}n and compute σ = Gpk0(r0) ⊕ Gpk1(r2)

• Simulate the 4n coin tosses for σ = σ 1 · ... · σ 4n sequentially in the following way:

– When getting the message (commit, t i1) as input to the second instance of func-
tionality F post

com−binding, simulate sending it to the internal simulation of the second
instance of F post

com−binding.

– Compute t i2 = t i1 ⊕ σ i and simulate receiving t i2 from the internal simulation of C .

– When getting themessage (unveil) as input to the second instance of functionality
F post

com−binding, simulate sending it to the internal simulation of the second instance
of F post

com−binding.

• Compute the commitment y = Gpk0(r0) and simulate receiving it from the internal
simulation of C .

• When getting the committed bit b from Fcom in the reveal phase, simulate receiving the
unveil information b, rb from the internal simulation of C .

The coin tosses generating the public keys are done in an honest manner. Since the outcome
of the first phase of coin tosses is a randomly chosen tuple of public keys for two pseudoran-
dom generators, the coin tosses generating the public keys in the ideal world are identically
distributed to the first type of coin tosses done in the real world.

4.2 The UCC-OneTime Commitment Scheme 59

The coin tosses for generating σ are also computationally indistinguishable from the real-
world coin tosses generating σ : Since in the simulation the string σ is generated using pseu-
dorandom generators, the resulting string is pseudorandom and therefore computationally
indistinguishable from a truly random value.

Now we have to show that the simulated commit phase and unveil phase of the commitment
scheme is computationally indistinguishable from the real-world commit and unveil phase.

Therefore we assume for the sake of contradiction that there exists an environment that is
able to distinguish the real world from the ideal world. Then we can construct an algorithm
that is able to distinguish between a pseudorandom value and a truly random one.
The algorithm gets as inputs a public key pk for a pseudorandom generator Gpk , security

parameter n and a string z that is either truly random or a pseudorandom value generated
using Gpk .

The constructed distinguishing algorithm works as follows:

• Choose a random bit c ← {0, 1} (which is our guess that the honest committer will
commit to), set pk1−c = pk , generate another key pair (pkc , tdc) ← Gen(1n).

• Run the ideal-world simulation of the commitment scheme with the following modifica-
tions:

• Interpret the tuple (pk0,pk1) as bit string s of length |(pk0,pk1)| = 2k and run 2k coin
tosses sequentially:

1. set a counter l = 0

2. Denote si the i-th bit of the bit string s . Set in the i-th coin toss si as the output of
the coin toss.

3. Generate a random bit bi1, compute a commitment ci = com(bi1) and simulate
receiving ci from the internal simulation of C .

4. If the environment answers the commitment with a value bi2 for which si = bi1 ⊕ bi2
holds, go to the coin toss of the next bit or if this is the k-th coin toss and the check
succeeds, then proceed to the first coin toss of generation of σ . IfZ answers with
a bi2 that does not fulfill the condition stated above and if the counter l < n, then
set l = l + 1, rewind the environment and go back to step 3. Else (this is the case if
si , bi1 ⊕ bi2 and if l ≥ n), abort the simulation.

• Draw a random string rc ∈ {0, 1}n , set the string σ to σ = Gpkc (rc) ⊕ z, interpret σ as a
bit string of length 4n and run 4n coin tosses according to the ideal world simulation.

60 4 The Update Process For the CRS of A Commitment

• Generate a commitment y = Gpkc (rc) if c = 0 or y = Gpkc (rc) ⊕ σ if c = 1 and simulate
receiving y from the internal simulation of C .

• If in the unveil phase the functionality Fcom sends a bit b , c (i.e. our guess was wrong),
then abort the simulation. Else simulate receiving the unveil information b = c, r to y
from the internal simulation of C and output whateverZ outputs.

First of all, since the underlying commitments for the coin toss are computationally hiding,
the environment is not able to bias the outcome of the first coin toss phase and the distinguisher
aborts the simulation during the coin toss phase only with a negligible probability compared
to the ideal-world simulation. The proof for this can be found in the proof for theorem 6.7.2 in
[Lin17]. Also, since the distinguisher draws two uniformly random keys pk0,pk1 ∈ D = {0, 1}k
by using the generation algorithm Gen, the outcome of the first coin toss phase is equally
distributed as the outcome of the first coin toss phase in the ideal-world simulation.

Let us now analyze the advantage of our algorithm in determining whether z is truly random
or pseudorandom.
If z is a truly random 4n bit string (i. e. it is uniformly distributed), then σ is also truly

random and therefore σ hides the committed bit c information-theoretically from Z at the
beginning of the simulation. The probability that the distinguisher aborts the simulation during
the unveil phase is 1/2 plus some negligible proportion (conditioned on the event that the
simulation is not aborted during the coin toss phase).

Conditioning on the event that the simulation is not aborted, the output of the simulation is
identically distributed asZ’s output in the real-world execution (since the random string σ is
truly random and the public keys for the pseudorandom generators are valid keys).
Now let us look at the case if z is generated using Gpk , i. e. z = Gpk1(r1) for some random

r1 ∈ {0, 1}n . Then σ = Gpk0(r0) ⊕ z = Gpk0(r0) ⊕Gpk1(r1) is a pseudorandom value and the fake
string σ also hides the committed bit c information-theoretically fromZ at the beginning of
the simulation. We conclude that the distinguisher also aborts the simulation with probability
1/2 plus some negligible proportion since the environment has no chance in distinguishing
a commitment on 0 from a commitment on 1. Again, we conclude that the output of the
distinguisher is identically distributed asZ’s output in the ideal-world simulation, conditioned
on the event that the distinguishing algorithm does not abort the simulation.

As a result, if the environment’s view is computationally distinguishable formZ’s view in the
ideal world then the probability of the distinguisher in distinguishing between a pseudorandom
value and a truly random value is ε(n)/2. Since by assumption ε(n) is non-negligible, ε(n)/2 is
also non-negligible, contradicting the requirement that the pseudorandom generator generates
pseudorandom values which are computationally indistinguishable from truly random values.

4.2 The UCC-OneTime Commitment Scheme 61

BothC and R are honest When both parties are honest, we want to show that the recipient
generates outputs, showing that the protocol is non-trivial.

When the honest committer gets an input (commit, x), it initiates the coin tosses to produce
the CRS together with R. Then it generates the commitment y on its input b and sends it to R.
The recipient then outputs upon receiving y the message (committed). In the unveil phase,
R receives the unveil information (b, r) to the commitment y from C and then outputs the
message (unveil, b). Since the recipient generates an output even if both parties are honest,
the protocol is non-trivial.
Since we have shown that in both cases of corruption we can generate a simulator that

communicates in such away that the environment’s output in the ideal world is computationally
indistinguishable from the environment’s output in the real world and have additionally shown
that the protocol is non-trivial, this concludes the proof.
□

We conclude that as long as the adversary was not able to increase its computational power
during the coin toss phase of the commitment scheme then it is neither able to equivocate the
commitment nor to extract the committed value if it was not unveiled.

Remark 4.11 In this work we did not state a proper composition theorem since proving the
composition theoremwas beyond the scope of this thesis. However, having a composition theorem,
proving the composition of protocols is much easier than proving the composition without having
the composition theorem.

Since this security framework is based on the UC framework, it should be possible to state a
proper composition theorem for the F post framework.

Using the UCC-OneTime commitment scheme we are able to create a F post secure coin toss
based on the F post

com−binding−od-hybrid model: We have shown that the commitment scheme
UCC-OneTime-CT is F post secure (and hence based on the new complexity assumption) and a
UC secure coin toss is possible in the Fcom-hybrid model. If we instantiate Fcom in the coin toss
protocol by UCC-OneTime-CT, then we have a coin toss protocol in the F post

com−binding−od-hybrid
model. If there was a composition theorem was stated for the F post framework we were able
use the composition theorem and the statement would follow.
If at the beginning is clear how many commitments are generated with the updated com-

mitment scheme then instantiating the CRS by using a coin toss in combination with the
commitment scheme UCC-OneTime-CT may suffice. However, if one wishes to create com-
mitments in a flexible way, then we have to use a coin toss in the Fmcom-hybrid model, the
multi-use extension of Fcom. In Chapter 5 we explain how such a multi-use commitment
scheme is instantiated using a F post secure coin toss.

62 4 The Update Process For the CRS of A Commitment

Protocol UCC-OneTime-CT

• Generating the CRS
– BothC and R receive 4n + 2k CRSs crs1, ..., crs4n+2k ∈ C from 4n + 2k instances

of F post
com−binding−od.

– Execute the coin toss protocol ΠCT−bit 2k times in the following way (let i be
the counter variable for the number of the current coin toss):

∗ C sends (commit, si1) to the first instance of F post
com−binding−od to commit to

si1.

∗ When getting (committed) from the i-th instance of F post
com−binding−od, R

sends si2 to C .

∗ C then sends (unveil) to the i-th instance ofF post
com−binding−od to send the

unveil information to R and computes si = si1 ⊕ si2.
∗ When getting the unveil information to the commitment from the i-th
instance of F post

com−binding, R computes si = si1 ⊕ si2.
– Both parties concatenate the outcomes of all 2k coin tosses (i. e they compute
(pk0,pk1) = s1 · ... · s2k)

– Execute the coin toss protocol ΠCT−bit 4n times in the following way (let i be
the counter variable for the number of the current coin toss):

∗ R sends (commit, t i1) to the k + i-th instance of F post
com−binding−od to commit

to t i1.

∗ When getting (committed) from the k + i instance of F post
com−binding−od, C

sends t i2 to R.

∗ R then sends (unveil) to the k + i-th instance ofF post
com−binding−od to send

the unveil information to C and computes t i = t i1 ⊕ t i2.
∗ When getting the unveil information to the commitment from the k + i-th
instance of F post

com−binding−od, C computes t i = t i1 ⊕ t i2.
– Both parties concatenate the outcomes of all 4n coin tosses (i. e. they compute

σ = t1 · ... · t4n)

• commit phase
– If the bit to commit is b = 0, C computes the commitment y as follows: y =
Gpk0(r) for a randomly drawn r ← {0, 1}n , else it computes y = Gpk1(r) ⊕ σ .
Then it sends y to R.

• reveal phase
– C sends b and r to R. R checks whether y = Gpk0(r) if b = 0 or whether
y = Gpk1(r) ⊕ σ if b = 1. If the check succeeds, R outputs (unveil,b).

Figure 4.6: The protocol UCC-OneTime with incorporated coin toss.

63

5 Sampling the New CRS

In this chapter, we will show how a multi-use commitment has to be modified such that it
can be used for tossing several CRS of the updated commitment scheme. In Section 5.1, we
will define the properties the multi-use commitment needs to be used for tossing the new CRS
and give an example how it can be instantiated. In Section 5.2 we show how the multi-use
commitment can be used to toss the bits for a new CRS.

5.1 Defining the Multi-Use Commitment

When tossing the new CRS for an updated commitment scheme, one may not know how many
commitments one will generate with the updated scheme. Therefore using a one-time usable
bit commitment scheme like the UCC-OneTime commitment scheme is not sufficing for tossing
the new CRS. Therefore we additionally have to use a multi-use commitment scheme where
one instance of the protocol can be used several times to commit to different values.

For this we use an already existing multi-use UC-secure commitment scheme and instantiate
its CRS by making several F post secure coin tosses in the Fcom-hybrid model, one coin toss for
each bit of the CRS.
To be able to instantiate the CRS of the commitment scheme with a F post secure coin toss

the commitment scheme we require the commitment scheme to be able to have a uniformly
random CRS. One example that fulfills this condition is the multi-use Commitment UAHC (for
UC Adaptive Hamiltonian Commitment) defined in [Can+02] which is both computationally
binding and hiding.

First we describe the commitment UAHC as defined in [Can+02], Section 5 and then shortly
explain how the CRS of this commitment scheme has to be modified to be usable for sampling
the new CRS of the updated commitment scheme.
The commitment scheme UAHC uses an underlying commitment scheme aHC (short for

adaptive Hamiltonian Commitment scheme) based on Hamiltonian cycles and additionally
uses two encryption schemes: an IND-CCA secure encryption scheme Ecca and an IND-CPA
secure encryption scheme E. The underlying commitment aHC is a variant of the Feige-Shamir
commitment [FS90] which is an equivocal commitment scheme and secure against adaptive

64 5 Sampling the New CRS

adversaries. This modified underlying commitment scheme aHC works as follows:

• Given the CRS y which is a value that lies within the image of a one-way function f (i. e.
y = f (x) for some random x), use the Cook-Levin NP-reduction on the language {y |∃x
such that y = f (x)} to that of Hamiltonicity to obtain a graph G

• To commit to the bit 0, the committer commits to a random permutation π of the graphG
using an underlying commitmentCom. For committing on 1, the committer commits to a
random q-cycle for q being the number of vertices inG using the underlying commitment
scheme Com.

• To unveil the commitment, the committer unveils the underlying commitments on the
entire graph G plus the permutation π to R if the committed bit was 0, otherwise the
committer unveils only the q-cycle of G.

For the extractability of the commitment, Canetti et. al added an IND-CCA encryption to
encrypt the randomness used for the commitment aHC. Also, they added an IND-CPA secure
encryption scheme which produces pseudorandom ciphertexts. Yet, having only the encryption
of the randomness destroys the equivocality. Therefore [Can+02] added a random string of
the same length as the encryption which is computationally indistinguishable from a real
ciphertext to restore the equivocality. This requires the encryption scheme to be pseudorandom.
Since there is no known IND-CCA secure encryption scheme that produces pseudorandom
ciphertexts, Canetti et al. require the additional IND-CPA secure encryption scheme.

For an overview of the classic UAHC commitment scheme, we roughly sketch the commit-
ment:
The CRS consist of a random value y which lies in the image of a one-way function f

(this value is needed for the underlying commitment scheme aHC) together with a public key
pkcca for an IND-CCA secure encryption scheme and a public key pk for an IND-CPA secure
encryption scheme which produces pseudorandom ciphertexts.

To commit to a bit, the committer uses the underlying commitment scheme aHC to commit
to the input b and uses for this commitment z = aHC(b) some random string r . ThenC encrypts
the randomness r using the IND-CCA secure scheme and additionally encrypts the encrypted
randomness with the IND-CPA secure encryption scheme using some randomness s which
yields in a pseudorandom ciphertext cb . As a last step of the commit phase, C draws a random
string c1−b with length |c1−b | = |cb | and sends the commitment z on b together with cb and
c1−b to R.

5.1 Defining the Multi-Use Commitment 65

In the unveil phase,C sends the unveil information r and b for the commitment together with
the randomness s used for the encryption to R. R then checks whether the unveil information
for the commitment z is valid and whether cb is a valid encryption of r .

Since the CRS of our modified commitment scheme has to be uniformly random, the one-way
function f has to produce pseudorandom values. This is since a random value y in the image
of f is used in the CRS.
For the use of an IND-CCA encryption scheme, [Can+02] suggested a scheme based on

enhanced trapdoor permutations with the property that each encryption has at most one valid
decryption. This holds for almost any encryption scheme based on enhanced trapdoor permu-
tations, especially the encryption scheme defined in [DDN00]. For the IND-CPA encryption
scheme a scheme based on trapdoor permutations with hard-core predicates is suggested. We
additionally require the the trapdoor schemes used for the encryption schemes to have dense
public descriptions to ensure that the public keys can be drawn using a coin toss.
To instantiate the CRS of the multi-use commitment, we will use a coin toss in the Fcom-

hybrid model. This time we are able to use a F post-secure coin toss since we can instantiate
the coin toss using a F post secure commitment scheme in the F post

com−binding−od-hybrid model.
In more detail, the multi-use commitment is instantiated as follows:
First of all, we have to instantiate the F post secure coin tosses used for generating the CRS

of the multi-use commitment. This is done by generating as many commitments as there are
bits in the CRS of the commitment scheme. Then the generated commitments are used to
securely execute bit-coin tosses. As the last step, the tossed bits will be used as the CRS for the
commitment scheme.

The commit and the unveil phase remain unchanged compared to the original protocol.
The modified protocol can be seen in 5.1.
The modified commitment succeeds since we require the trapdoor permutation to have

dense public keys (that are based on the stronger complexity assumptionM) and therefore
the CRS can be uniformly distributed.

An easyway to show the existence of aF post secure commitment scheme in theF post
com−binding−od-

hybrid model was to use the composition theorem. Unfortunately, stating a proper composition
theorem for the F post framework was beyond the scope of this work. But to get an idea why the
commitment scheme UAHC-CT is F post secure if the CRS is updates we assume that a proper
composition was stated. Then we were able to informally prove the update of the CRS in the
following way: Since the commitment scheme UCC-OneTime-CT is proven to be F post secure
in the F post

com−binding−od-hybrid model and a F post secure coin toss is possible in the Fcom-hybrid
model, we were able to use the composition theorem to show that the coin toss protocol using

66 5 Sampling the New CRS

Protocol UAHC-CT

• Generating the CRS
– Let l = |s | denote the length of the CRS s used for this commitment scheme.

Then bothC and R send (init) to l instances of Fct and receive each a random
bit si from each instance of Fct.

– Both C and R concatenate all l bits s = s1 · ... · sl to compute the CRS s .
– Both parties split the string s into a triple (y,pk,pkcca), where:

∗ y is a random image of the one-way function f

∗ pk is a public key for an IND-CPA secure encryption scheme E
∗ pkcca is a public key for an IND-CCA secure encryption scheme Ecca

• commit phase on bit b
– On input b C computes:

∗ z = aHC(b, r) for random string r ∈ {0, 1}n
∗ a ciphertext cb ← E(Ecca(r)) with randomness s
∗ a random string c1−b of length |c1−b | = |cb |

– C sends (z, c0, c1) to R.
– Upon receiving, R outputs (Received)

• reveal phase
– C sends (Dec, b, r , s) to R

– Upon receiving, R checks whether y ?
= aHC(b, r), cb = E(Ecca(r)) under ran-

domness s . If the verification succeeds, R outputs Open, b

Figure 5.1: The protocol UAHC-CT in the Fct-hybrid model, compare [Can+02], Figure 5.

UCC-OneTime-CT is a F post secure coin toss protocol in the F post
com−binding−od-hybrid model.

Then, by instantiating Fct in the commitment scheme UAHC-CT by the composition of the
coin toss with the commitment scheme UCC-OneTime-CT, we were able to show that there
existed a protocol that F post-realizes Fmcom in the F post

com−binding−od-hybrid model.

Sincewe assume the UCC-OneTime-CT commitment scheme to beF post-secure, the resulting
multi-use commitment scheme UAHC-CT is F post secure.

5.2 The Final Step: Sampling the New CRS 67

5.2 The Final Step: Sampling the New CRS

Since we have now a commitment scheme we can use several times, we are finally able to
sample a new CRS.
Since the new CRS is sampled using a F post secure coin toss, we require the CRS of the

commitment scheme to be uniformly random.
The generation of the new CRS is done as follows:
For each bit of the new CRS execute one coin toss in the Fmcom-hybrid model, which

is the multi-use extension of Fcom. For instantiating the functionality Fmcom, one can use
the suggested multi-use bit commitment protocol UAHC-CT described in Figure 5.1. Then
concatenate all outcomes of the coin tosses to a string s which is the new resulting CRS for the
commitment scheme to be updated.
We do not give a formal proof for the security of sampling the new CRS but rather an

intuition why the sampling results in a secure CRS. Therefore we again would like to use the
composition theorem. Since stating the composition theorem was beyond the scope of this
work, we assume that there was such a composition theorem:

Since we require the new CRS based on the stronger complexity assumption to be uniformly
random, we are able to sample it using a F post secure coin toss protocol. Since the protocol
UAHC-CT is based on the stronger complexity assumption and due to the (currently not
existing) composition theorem, the coin toss protocol using UAHC-CT then could also proven
to be F post secure.

69

6 Conclusion

In this thesis we have seen how one can update a common reference string for a commitment.
Therefore one can switch the setup assumption for the CRS.

We have defined two functionalities for commitments and showed that using a modifi-
cation of one of the functionalities, one can construct a F post secure commitment in the
F post

com−binding−od-hybrid model that is usable for a coin toss for tossing the bits of the new CRS
based on the stronger setup assumption.

We also have seen that a F post secure coin toss is neither possible in the F post
com−binding-hybrid

model nor in the F post
com−hiding-hybrid model. Yet, we have seen that we can construct a stand-

alone secure coin toss that uses a modification of F post
com−binding.

We also have shown which type of commitments can be used for tossing the new CRS
in the F post

com−binding−od-hybrid model. Those commitment schemes have a uniformly random
CRS to ensure that its CRS can be generated using a coin toss protocol. We also require the
commitments to have a CRS that can be split in two parts such that the generation of the CRS
using the coin toss protocol is simulatable. To be able to create multiple commitments with the
updated commitment using a new CRS, we also have modified a multi-use commitment such
that it can be used in combinationwith the single-use commitment in the F post

com−binding−od-hybrid
model.

We conclude that a CRS can be updated using our construction if it is uniformly random.
Some possible future work may include:

• This work was not focused on efficiency, therefore the update takes several steps. An
idea for further work therefore can be to optimize the update process by finding more
efficient protocols or by finding a multi-use commitment protocol that can even replace
the modified UCC-OneTime-CT protocol such that the amount of steps in the update
process can be shortened.

• The definition of a composition theorem was out of the scope of this thesis. Some future
work might be concentrated on defining a proper composition theorem for the F post

framework.

70 6 Conclusion

• We were not able to find a combination of enhanced trapdoor permutations with dense
public keys such that the probability is high enough to pick randomly a secure public
key. Some further work may also concentrate on finding a solution for this.

• Also, we have focused on static adversaries. For security against adaptive adversaries,
some functionalities and protocols have to be modified.

• For further work one may consider how other protocols may be updated.

71

Bibliography

[Ben+15] Fabrice Benhamouda et al. “Efficient Zero-Knowledge Proofs for Commitments
from Learning with Errors over Rings.” In: ESORICS 2015: 20th European Sympo-
sium on Research in Computer Security, Part I. Ed. by Günther Pernul, Peter Y. A.
Ryan, and Edgar R. Weippl. Vol. 9326. Lecture Notes in Computer Science. Vienna,
Austria: Springer, Heidelberg, Germany, Sept. 2015, pp. 305–325.

[BHY09] Mihir Bellare, Dennis Hofheinz, and Scott Yilek. “Possibility and Impossibility
Results for Encryption and Commitment Secure under Selective Opening.” In:
Advances in Cryptology – EUROCRYPT 2009. Ed. by Antoine Joux. Vol. 5479. Lecture
Notes in Computer Science. Cologne, Germany: Springer, Heidelberg, Germany,
Apr. 2009, pp. 1–35.

[Blu81] Manuel Blum. “Coin Flipping by Telephone.” In: Advances in Cryptology –
CRYPTO’81. Ed. by Allen Gersho. Vol. ECE Report 82-04. Santa Barbara, CA, USA:
U.C. Santa Barbara, Dept. of Elec. and Computer Eng., 1981, pp. 11–15.

[BM84] Manuel Blum and Silvio Micali. “How to Generate Cryptographically Strong Se-
quences of PseudorandomBits.” In: SIAM Journal on Computing 13.4 (1984), pp. 850–
864.

[BM92] Mihir Bellare and Silvio Micali. “How to Sign Given Any Trapdoor Function.” In:
Journal of the ACM 39.1 (1992), pp. 214–233.

[BMM21] Brandon Broadnax, Jeremias Mechler, and Jön Müller-Quade. Environmentally
Friendly Composable Multi-Party Computation in the Plain Model from Standard
(Timed) Assumptions. 2021.

[BN00] Dan Boneh and Moni Naor. “Timed Commitments.” In: 2000. Vol. 1880. Lecture
Notes in Computer Science. Santa Barbara, CA, USA: Springer, Heidelberg, Ger-
many, Aug. 2000, pp. 236–254.

[Can+02] Ran Canetti et al. Universally Composable Two-Party and Multi-Party Secure Com-
putation. Cryptology ePrint Archive, Report 2002/140. http://eprint.iacr.
org/2002/140. 2002.

http://eprint.iacr.org/2002/140
http://eprint.iacr.org/2002/140

72 Bibliography

[Can00] Ran Canetti. Universally Composable Security: A New Paradigm for Cryptographic
Protocols. Cryptology ePrint Archive, Report 2000/067. http://eprint.iacr.
org/2000/067. 2000.

[CF01] Ran Canetti and Marc Fischlin. “Universally Composable Commitments.” In: Ad-
vances in Cryptology – CRYPTO 2001. Ed. by Joe Kilian. Vol. 2139. Lecture Notes
in Computer Science. Düsseldorf, Germany: Springer, Heidelberg, Germany, Aug.
2001, pp. 19–40.

[CK02] Ran Canetti and Hugo Krawczyk. “Universally Composable Notions of Key Ex-
change and Secure Channels.” In: Advances in Cryptology – EUROCRYPT 2002.
Ed. by Lars R. Knudsen. Vol. 2332. Lecture Notes in Computer Science. Amsterdam,
The Netherlands: Springer, Heidelberg, Germany, Apr. 2002, pp. 337–351.

[DDN00] Danny Dolev, Cynthia Dwork, and Moni Naor. “Nonmalleable Cryptography.” In:
SIAM Journal on Computing 30.2 (2000), pp. 391–437.

[DN02] Ivan Damgård and Jesper Buus Nielsen. “Perfect Hiding and Perfect Binding Uni-
versally Composable Commitment Schemes with Constant Expansion Factor.”
In: Advances in Cryptology – CRYPTO 2002. Ed. by Moti Yung. Vol. 2442. Lec-
ture Notes in Computer Science. Santa Barbara, CA, USA: Springer, Heidelberg,
Germany, Aug. 2002, pp. 581–596.

[DP92] Alfredo De Santis and Giuseppe Persiano. “Zero-Knowledge Proofs of Knowledge
Without Interaction (Extended Abstract).” In: 33rd Annual Symposium on Founda-
tions of Computer Science. IEEE Computer Society Press, Oct. 1992, pp. 427–436.

[FS90] Uriel Feige andAdi Shamir. “Zero Knowledge Proofs of Knowledge in Two Rounds.”
In: Advances in Cryptology – CRYPTO ’89. Ed. by Gilles Brassard. Vol. 435. Lecture
Notes in Computer Science. Santa Barbara, CA, USA: Springer, Heidelberg, Ger-
many, Aug. 1990, pp. 526–544.

[Gol01] Oded Goldreich. Foundations of Cryptography: Basic Tools. Vol. 1. Cambridge, UK:
Cambridge University Press, 2001, pp. xix + 372.

[Gol04] Oded Goldreich. Foundations of Cryptography: Basic Applications. Vol. 2. Cam-
bridge, UK: Cambridge University Press, 2004.

[GR13] Oded Goldreich and Ron D. Rothblum. “Enhancements of Trapdoor Permutations.”
In: Journal of Cryptology 26.3 (July 2013), pp. 484–512.

http://eprint.iacr.org/2000/067
http://eprint.iacr.org/2000/067

73

[Lin17] Yehuda Lindell. “How To Simulate It - A Tutorial on the Simulation Proof Tech-
nique.” In: Tutorials on the Foundations of Cryptography. Ed. by Yehuda Lindell.
Information Security and Cryptography. Springer, Heidelberg, Germany, 2017,
pp. 277–346.

[MU10] Jörn Müller-Quade and Dominique Unruh. “Long-Term Security and Universal
Composability.” In: Journal of Cryptology 23.4 (Oct. 2010), pp. 594–671.

[Yao82] Andrew Chi-Chih Yao. “Theory and Applications of Trapdoor Functions (Extended
Abstract).” In: 23rd. Chicago, Illinois: IEEE Computer Society Press, Nov. 1982,
pp. 80–91.

75

List of Tables

77

List of Figures

2.1 The protocol ΠBlum−CT−bit for tossing a coin. 10
2.2 The real world with environmentZ, functionality F , adversary S and parties

π1 and π2 computing protocol Π , see [Can00], Figure 2. 11
2.3 The ideal world with environmentZ, functionality F , simulatorS and dummy

parties φ1 and φ2, see [Can00], Figure 3. 13

3.1 The functionality F post
com−binding for statistically binding commitments (compare

[MU10], Definition 3.8). 23
3.2 The functionality F post

com−hiding for statistically hiding commitments (compare
[MU10], Definition 3.8). 24

3.3 The statistically binding DN commitment scheme, cmp. [MU10], Figure 3. . . . 27
3.4 The statistically hiding DN commitment scheme, see [MU10], Figure 3. 32

4.1 The functionality Fct for l-bit coin toss, see [MU10], Definition 3.6. 38
4.2 The functionality F post

com−binding−od using a non-information oracle for statisti-
cally binding commitments in the FCRS hybrid model. 46

4.3 The protocol Πpost
CT−bit for tossing a single bit. 47

4.4 The protocol Πpost
CT−str inд for tossing a random l-bit string. 48

4.5 The original protocol UCC-OneTime, see [CF01], Figure 4. 53
4.6 The protocol UCC-OneTime with incorporated coin toss. 62

5.1 The protocol UAHC-CT in the Fct-hybrid model, compare [Can+02], Figure 5. 66

79

List of Theorems

2.1 Computational indistinguishability, [Lin17], Section 2 5
2.2 Statistical indistinguishability, [Can00], Definition 4 6
2.3 Trapdoor permutation ([Gol01], Definition 2.4.5) 6
2.4 Enhanced trapdoor permutations ([Gol04], Definition C.1.1) 7
2.5 Trapdoor permutation with dense public keys, compare [DP92], Section 3 8
2.7 Commitment scheme, (compare [BHY09], Definition 3) 9
2.8 UC-realization ([MU10], Definition 3.1) . 13
2.10 UC-emulation with dummy adversaries ([Can00], Claim 10) 14
2.11 Universal composition theorem, ([MU10], Theorem 3.2) 15
2.12 Long-term UC security, ([MU10], Definition 3.3) 16
2.14 Universal composition theorem, see [MU10], Theorem 3.4 17
2.15 Long-term revealing functionality, [MU10], Definition 4.1 17
2.16 See [MU10], Lemma 4.2 . 18
2.17 Impossibility of commitment with LTR functionalities ([MU10], Theorem 4.3) . . . 18
2.18 Commitments cannot be turned around ([MU10], Corollary 4.4) 19
3.1 F post, compare [MU10], Definition 3.3 . 21
3.2 (L,M)-long-term revealing functionalities, compare [MU10], Definition 4.1 22
3.3 Mixed commitment scheme (see [DN02], Definition 1) 25
3.4 . 28
3.5 . 32
4.1 UC-completeness of Fcom, compare [Can+02], Theorem 8.3 39
4.2 UC-completeness of Fct, compare [Can+02], Theorem 8.3 39
4.3 F post

com−binding is UC-realizable in the plain model . 41
4.4 F post

com−hiding is UC-realizable in the plain model . 42
4.5 UC-incompleteness of F post

com−binding . 43
4.6 UC-incompleteness of F post

com−hiding . 43
4.7 Fct is not realizable using F post

com−binding or F
post

com−hiding, compare [CF01], Theorem 6 44
4.9 . 47

80 List of Theorems

4.10 (L,M)-F post-security of UCC-OneTime-CT . 53

81

Listings

	1 Introduction
	1.1 The New Framework
	1.2 Updating the Security Assumption of a CRS For a UC-Secure Commitment Scheme
	1.3 Overview

	2 Preliminaries
	2.1 Notations
	2.2 Trapdoor Permutations
	2.3 Commitment Schemes
	2.4 Coin Toss
	2.5 Universal Composability
	2.5.1 Overview
	2.5.2 Composability

	2.6 Long-Term Universal Composability
	2.6.1 Long-Term Security
	2.6.2 Restrictions on Commitment Schemes

	3 Defining the Functionality For Updatable Commitments
	3.1 The DN Commitment Scheme
	3.1.1 The Statistically Binding DN Commitment
	3.1.2 The Statistically Hiding DN Commitment

	4 The Update Process For the CRS of A Commitment
	4.1 The Coin Toss for the CRS
	4.1.1 On the Impossibility of An Fpost Secure Coin Toss
	4.1.2 How to Modify the Commitment Functionality
	4.1.3 Relation to Long-Term UC Security

	4.2 The UCC-OneTime Commitment Scheme

	5 Sampling the New CRS
	5.1 Defining the Multi-Use Commitment
	5.2 The Final Step: Sampling the New CRS

	6 Conclusion
	Bibliography
	List of Tables
	List of Figures
	List of Theorems
	Listings

