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a b s t r a c t

This study is focused on an extension of a well established
geostatistical software to enable one to effectively and interac-
tively cope with uncertainty in geostatistical applications. The
extension includes a rich component library, pre-built inter-
faces and an online application. We discuss the concept of
replacing the empirical variogram with its uncertainty bound.
This enables one to acknowledge uncertainties characterizing
the underlying geostatistical datasets and typical methodolog-
ical approaches. This allows for a probabilistic description of
the variogram and its parameters at the same time. Our ap-
proach enables (1) multiple interpretations of a sample and (2) a
multi-model context for geostatistical applications. We focus the
sample application on propagating observation uncertainties into
manual variogram parametrization and analyze its effects. Using
two different datasets, we show how insights on uncertainty
can be used to reject variogram models, thus constraining the
space of formally equally probable models to tackle the issue of
parameter equifinality.
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1. Introduction

Geostatistical analyses are key in several research and industrial areas, including environmental
nd Earth sciences and engineering application. In this broad context, geostatistics typically consid-
rs (statistical) dependences of spatial or spatio-temporal datasets. In viewing a given quantity as a
orrelated random field, it has been shown to provide critical insights on ways to interpolate, assess,
e-scale, and model scenarios of interest in the presence of scarce information. A broad variety
f studies is geared towards assessing uncertainty through geostatistical estimation or simulation
rameworks (Handcock and Stein, 1993; Journel, 1994; Mowrer, 1997; Zehe et al., 2005; Nowak and
erly, 2005; Delbari et al., 2009; Emery and Peláez, 2011; Todini, 2001; Lloyd and Atkinson, 2001),
ncluding some recent hydrological applications focused on preferential pathway analysis (Zehe
t al., 2021; Schiavo et al., 2022). Otherwise, only a limited number of studies focus on a rigorous
ramework of analysis to explicitly include uncertainties associated with the empirical variogram
nd the way these can impact the estimation of an appropriate interpretive model. In this context,
ur study aims at providing enhanced insights on this, as the reliability of a geostatistical analysis
inges on an appropriate estimation of the empirical variogram. Thus, our distinctive objective
elates to the way one can incorporate uncertainties into the variogram estimation. We then assess
he way uncertainty associated with the assessment of the empirical variogram can propagate
nto subsequent analysis steps. This allows seamless inclusion of uncertainty into geostatistical
nterpolations.

To the best of our knowledge, only a limited series of studies address uncertainty in the empirical
ariogram. Webster and Oliver (1993) define confidence limits for individual spatial models and
heir parametrizations. Their study considers sub-sampling of a dense datasets and focuses solely
n the impact of sample size and the way a threshold can be defined for it through numerical
onte Carlo simulations. Pardo-Igúzquiza and Dowd (2001) describe various approaches to yield
pproximations of the standard error associated with the variance evaluated across a sample.
hese authors point out that exact confidence intervals for the empirical variogram are difficult
o construct in practice and only a number of approximations can be employed. Some of the
ethods discussed therein are detailed in Section 3. Their studies relate the uncertainty of empirical
ariograms to the nature of the semi-variance estimator. Metrics of statistical robustness are then
roposed on the basis of the size of the underlying finite sample.
While building on these approaches, here we address the joint effect of several sources of

ncertainty on the empirical variogram. We highlight ways these can be tackled and ultimately
e included into a variogram modeling context. Some of these sources of uncertainty are aleatory.
hese include e.g., the inherently limited precision of data in terms of accuracy of an observed
uantity as well as of the spatial locations at which observations are taken. Other sources of
ncertainty are epistemic and stem from incomplete knowledge about a system functioning and/or
rocesses taking place therein (Hora, 1996; Der Kiureghian and Ditlevsen, 2009; Hüllermeier and
aegeman, 2021). Observations are never perfect in terms of precision and accuracy associated
ith a given measurement. Furthermore, in some cases one cannot observe directly a target
uantity, while only data (corrupted by uncertainty) associated with other related quantities can
e monitored. As a common example, one can refer to a rainfall radar, which is not rendering
ainfall observation, but reflectivity of hydro-meteors. The latter depends on size and shape of the
eteors, their chemical phase and a variety of additional factors (Neuper and Ehret, 2019). All of

hese sources of uncertainty jointly contribute to what we term observation uncertainty in this study.
An exemplary scenario underpinning of our study is associated with the geostatistical Python

package SciKit-GStat (Mälicke, 2022b) and corresponds to an image of a pancake taken at a given
time during browning. Fig. 1(a) illustrates the actual image and an inset of a target area. Color
gradation corresponds to the red channel pixel value, which has a resolution of 8-bit, as common
for images. We rely on this pixel value as observation here. This is also consistent with common
remote sensing observation techniques, the pancake surface and the image corresponding to the
random field under study and to the measurement, respectively. Note that this representation (along
with the 8-bit resolution) already implies observation uncertainty. Any given RGB value in the

photograph does not reflect the real color of the actual pancake. There are systematic and random
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Fig. 1. Image of the pancake, which motivated this work. It shows the image of a pancake with several conceptualized
errors applied. (a) Red channel of the original image with a 20 × 20 zoom of an area with apparent gradient on short
istance. (b) Image from (a) with a systematic shift of 5 in the red channel value. (c) Image from (a) with a random
rror of 5 applied to each cell in the red channel. (d) Image from (a) with a random error of 15 applied to each cell in
he red channel. (For interpretation of the references to color in this figure legend, the reader is referred to the web
ersion of this article.)

rrors influencing the measurement. These include e.g., the moisture of the air between the camera
nd the pancake or oscillations of the light bulb brightness slightly affecting room illumination.
o assist evaluation of observation uncertainties in the context of pancakes and as an example to
rovide a visual depiction of the effect of uncertain observation, we apply a systematic shift in value
Fig. 1(b)) and a random variation in value (Fig. 1(c), (d)) of a different magnitude in each sub-panel
o the original image. Differences in color from Fig. 1(a) (original) to Fig. 1(b) and c are visually very
ard to detect. This illustrates that even a considerable variation in value might manifest in a subtle
ay from a visual standpoint. Fig. 1(c) depicts the magnitude of measurement error, which forms
he basis for some of the analyses detailed in Sections 3 and 4.

These kinds of observation uncertainties are somehow less subtle in remote sensing, groundwa-
er hydrology or soil science. Sensor sensitivity studies have shown that observation values are
ypically subject to much larger ranges of uncertainty (ie. fig. 4 Jackisch et al., 2020; Zehe and
löschl, 2004; Arthur and Robinson, 2015). In addition to the above mentioned elements, one should
ote that some research studies can also be affected by un-calibrated sensors and/or, in some
nstances, on community-sourced sensors (Chapman et al., 2017), which do not comply with the
3
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same measurement standards and might also provide only indirect information about the quantity
of interest.

Prompted by these elements, we illustrate here the software library SKGstat-Uncertainty that has
een developed to specifically address these outstanding issues. The latter is built on existing and
stablished packages for geostatistics in Python. It implements existing and original methods to
nalyze, assess, quantify, visualize, and propagate uncertainties in variogram estimation. Existing
oftware solutions in Python include SciKit-GStat (Mälicke, 2022b). The latter is a variogram
stimation toolbox that is currently characterized by only limited capabilities to handle observation
ncertainties. For example, in the current implementation one could add error bars to semi-variance
alues on the basis of a manual input. Additionally, GSTools (Müller et al., 2021), an advanced
eostatistical toolbox in Python, implements uncertainty elements for Kriging only if the user can
upply the measurement error as a parameter. In this context, SKGstat-Uncertainty can be identified
rimarily as an extension to SciKit-GStat and is also compatible with GSTools.
SKGstat-Uncertainty is designed as a general toolbox, that is aimed at performing uncertainty

nalyses associated with variogram estimation in a way that is accessible to a broad audience. As
uch, end-users are envisioned to be associated with education, research, and industry sectors. In
ddition to providing a thorough introduction to the various functions of the toolbox, we exemplify
he importance of variogram uncertainty upon considering two exemplary datasets.

Note that our study does not involve automatic fitting of a variogram model, even as the toolbox
ncludes these features (namely the method-of-moments and the Maximum Likelihood approach).
or the purpose of our exemplary study, we favor manual fitting of variogram functions to the
ncertainty bounds. Doing so enables users to readily inspect various dimensions of uncertainty
rising in the context of variogram analysis. By replacing the empirical semi-variance with its
onfidence limits (see Section 3.3), we explore the uncertainty in the parametrization of a given
ariogram model. Importantly, we also show that the choice of the theoretical model itself becomes
ncertain. In this sense, the heart of the toolbox is a processing module that implements a suite
f methods for the quantification of uncertainty associated with empirical semi-variance. Each of
hese is conducive to an uncertainty bound against which a collection of variogram models and
nsuing parametrizations can be assessed. A rich selection of visualization routines enables the user
o inspect various aspects of uncertainty. This offers a considerable added value with respect to
arameterizing a black-box workflow to obtain a result, which might possibly be considered as the
ight or most probable one.

We perform the uncertainty analysis for (a) the pancake dataset depicted in Fig. 1 and (b)
a hydrogeological dataset. The latter comprises a set of well-established and broadly used air
permeability data collected across a Berea sandstone rock on a regular, dense grid (Tidwell and
Wilson, 1997, 1999, 2002) and is detailed in Section 3.1.2.

After an introducing the software package and the sample application for manual variogram
parametrization, we explore the following two research hypotheses:

• hypothesis H1: Empirical variograms (or semi-variances) are uncertain due to inherent obser-
vation and estimation uncertainty.

• hypothesis H2: Uncertain empirical semi-variances imply that an interpreting variogram
model and the embedded parameters are uncertain; this, in turn, yields uncertain geostatistical
interpolation results.

Testing both hypotheses relies on the presented toolbox.
Our study is structured as follows: Section 2 describes the toolbox from a technical perspective;

Section 3 includes all methodologies used for the presented analysis; Section 4 illustrates the results
and our findings, which are then discussed in Section 5. Conclusions are presented in 6.

2. Software implementation

Our software is a toolbox that is designed to extend the functionality of two well-established
geostatistical Python packages, i.e., SciKit-GStat (Mälicke, 2022b) and GSTools (Müller et al., 2021).
Key extensions include the implementation of geostatistical analysis tools and functions with
4
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options for uncertainty analysis and propagation. The toolbox implements building blocks to form
applications governed through a dedicated graphical user interface. While the main focus is set on
variography and Kriging, the toolbox is general and can be readily extended to include additional
features.

The toolbox SKGstat-Uncertainty is written in Python and is published as open source (Mälicke,
022a). It is a collection of functions, which can be run through the Python framework streamlit.

This opens a web-browser based interface to operate the underlying Python code and its settings.
As such, advanced programming skills are not required to load data, set up geostatistical libraries,
pre- and post-process data, set model parameters, run analyses, and visualize the ensuing results.

Applications built with our toolbox can be scaled. With minimal overhead, it can be run locally
on any client computer, a feature that enables one to readily interact with locally hosted data.
Alternatively, public streamlit applications can be hosted on a cloud infrastructure of streamlit
with limited resources, freely available. It is further noted that deploying a streamlit application
on custom infrastructure is straightforward and in line with common web-based deployment
strategies. This enables one to use the software at any scale in educational and professional
scenarios, in a freely accessible mode, or as the foundation of a paid model. Finally, the toolbox
is distributed as a Docker image with fixed software versions and architecture. Docker is a common
solution to ensure reproducible software deployment independent of the host architecture and
operating system. This enables one to repeat analyses ensuring consistent results.

The software toolbox is structured across several units. First, the Data Models describes the
structure of the data used by the application. Exemplary, one model describes the attributes and
structure of uploaded samples, while another one describes the attributes, which represent an
empirical variogram. Data models also include relations between data model instances (usually
called entities). Each model is implemented as a Python class and can easily be exported to the open
standard format JSON.1 Thus, students, scientists, or engineers and practitioners can easily export
data and results from the application and use these for further analyses in any other framework of
their choice. SKGstat-Uncertainty uses an SQLite database to save application data and intermediate
results, as a default option. Connecting the toolbox to other database systems is also possible, as it
uses the widely spread Python module SQLAlchemy (Bayer, 2012), which can connect to (almost)
any relational database management system. The demo application stores the data in a remote
PostgreSQL database.

Another unit termed processor implements algorithms for model evaluation, sampling, un-
certainty propagation, and analysis. These algorithms are detailed in Section 3. An Application
Programming Interface (API) unit collects functions for all common data management tasks, including
filtering, creating, editing, or deleting information. While the API is used by the application, it is also
usable as a standalone Python module and can be run as a command line interface directly from
the operating system. The core unit is termed components. It includes the main functions, which
are used by the streamlit framework to build the application. These functions run and operate the
analysis as specified by the developer.

The chapters unit is a collection of standalone streamlit applications. These can be composed
together into a final application, or can be run individually. Each of the chapters covers a given
topic. Most chapters build on others, e.g., the chapter about Kriging algorithms can only be used
after variograms are estimated for a target dataset. The software toolbox currently implements the
following chapters:

• Data management — This chapter can upload, list and edit existing datasets. New samples
can be created by re-sampling existing datasets.

• Learn geostatistics — This chapter provides an interactive and guided step-by-step introduc-
tion to geostatistics, which might be appropriate for an undergraduate or early stage graduate
student. The details are not covered in this work, given their introductory nature and target
audience.

1 Human readable JSON format specification. URL:https://www.json.org/json-en.html, last accessed: 25.10.2022.
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• Variogram estimation — The chapter implements an interactive interface to estimate sample
variograms and propagate various kinds of uncertainty into the empirical variogram. This
yields a uncertainty bound-based empirical variogram.

• Model parametrization — The chapter implements an interactive interface to identify an
arbitrary amount of models and associated model parametrization within the uncertainty
bounds of each variogram.

• Kriging — The chapter implements four different Kriging algorithms (simple, ordinary, uni-
versal, and external drift Kriging) leveraging on the identified variogram model functions to
project data onto unobserved locations.

• Geostatistical simulations — The chapter implements an interface to perform geostatistical
simulations for each theoretical variogram model function. For simplicity, the simulation
feature of the tool is not included in this study.

• Analysis tool — The chapter enables one to visualize estimation (i.e., Kriging) or simulation
results with a variety of pre-defined visualization options (see, e.g., Section 4).

A scientific demo application (termed uncertain geostatistics) is implemented to assist the user
and can be reached publicly at https://geostat.hydrocode.de.2 It does not add any significant
functionality in terms of geostatistics or uncertainty analysis. The demo application runs an
additional PostgreSQL database instead of the default sqlite database. Besides the chapters of
SKGstat-Uncertainty described above, three more chapters were added to the application. The help
page chapter loads documentation from the underlying Python packages SciKit-GStat and GSTools
for reference. A tutorials page lists a number of short video tutorials about the other chapters.
Additionally, a landing page including a login was added. Authenticated users are granted full
access to additional data samples, which are not available under an open data license. Without
authentication, data are still available when using the application. Otherwise, re-sampling and
downloading non-open data (e.g., the Berea sandstone dataset illustrated in Section 3.1.2) are
disabled. Authenticated access to the scientific sample application is managed by a third party3,
access to the Berea sandstone dataset can be obtained from the original publication (Tidwell and
Wilson, 1997).

3. Data and methods

3.1. Data

3.1.1. Pancake dataset
A detailed description of the pancake dataset is offered by Mälicke (2022b). In line with this

study, we consider the red channel of the RGB image in our analyses. For the purpose of our analysis,
we re-scale the original red channel image described by Mälicke (2022b) (and associated with a
500 × 500 resolution) to a 100 × 100 resolution using a mean filter. Note that this step corresponds
to smoothing the original image, hence decreasing the sample spatial variance. Otherwise, (a) it does
not affect the workflow underpinning the application of our approach to tackling sample variogram
uncertainty and (b) it enables us to obtain a sample that is approximately the same size as the
one associated with the air permeability information evaluated across the block of Berea sandstone
described in Section 3.1.2. We then apply our workflow considering a reduced size data sample
constructed upon re-sampling the 100 × 100 resolution image according to a uniform 10× 10 grid
ithout any offset from the border, to avoid extrapolations in Kriging analyses.

2 The whole geostatisitcal ecosystem around SciKit-GStat, SKGstat-Uncertainty and demo applications can be reached
at https://geostat.hydrocode.de. The standalone demo application is deployed at https://uncertain.geostat.hydrocode.de.
3 As of this writing, the demo application and the Python package are properties of hydrocode GmbH (https://hydroc

ode.de). The Python package is open source, while the demo application is free of charge.
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Table 1
Overview of all lag class binning methods implemented in SciKit-GStat.
Source: From Mälicke (2022b).
Function Identifier Description Implementation

Equidistant lags ‘even’ N lags of same width; Almost always
used.

Mälicke et al. (2021)

Uniform lags ‘uniform’ N lags of same sample size; Estimates
are based on the same sample size & no
empty bins

Mälicke et al. (2021)

Sturge’s rule ‘sturges’ Equidistant lags derived from Sturge’s
rule; use for small normal distributed
distance matrices

Virtanen et al. (2020)

Scott’s rule ‘scott’ Equidistant lags derived from Scott’s
rule; use for large datasets

Virtanen et al. (2020)

Freedman–
Diaconis
estimator

’fd’ Equidistant lags; use for small datasets
with outliers in the distance matrix

Virtanen et al. (2020)

Square-root ‘sqrt’ Equidistant lags; Very fast function, but
usually not recommended

Virtanen et al. (2020)

Doane’s rule ‘doane’ Equidistant lags; based on data
skewness, use for small non-normal
distance matrices

Virtanen et al. (2020)

K-Means ‘kmeans’ Non-equidistant lags; clustered distance
matrix is used as binning; slow but
statistically robust

Pedregosa et al.
(2011)

Hierarchical clusters ‘ward’ Non-equidistant lags; clustered distance
matrix is used as binning; Based on
Ward’s criterion for minimizing cluster
variance. Computational intensive

Pedregosa et al.
(2011)

3.1.2. Berea sandstone
The second dataset we consider is well established and representative of a Darcy-scale collection

f air-permeability data (Tidwell and Wilson, 1997, 1999, 2002). The latter are sampled on the
ix faces of a 81 × 74 × 63 cm3 block of Berea sandstone, across an area of 30 × 30 cm2. The
ampling grid comprises 36 × 36 regularly spaced nodes (horizontal resolution ∆ = 0.85 cm). Data
ollection relies on four air minipermeameters, each with a given tip-seal (inner and out radius of
he minipermeameter are r i = {0.15, 0.31, 0.63, 1.27} and r2 i = {1, 2, 3, 4}, respectively). For
he purpose of our analyses, we focus on the set of data associated with the smallest tip-seal radius.

Recent geostatistical analyses of these data include the works of Riva et al. (2013) and Dell’Oca
t al. (2020).
Given the size of the minipermeameter tip, the original Berea sandstone dataset can be con-

idered exhaustive and is used as the (hydrogeological) field equivalent of the pancake image. A
ub-sample of the air permeability data to be used in our uncertainty analyses is then obtained
pon considering the information available on a uniform 8 × 8 grid, approximately corresponding

to 10% of the field. This enables us to perform the same types of analyses for the two selected
datasets and consistently compare results across these.

3.2. Empirical variogram estimation

Empirical variograms are estimated using the Python package SciKit-GStat (Mälicke, 2022b).
The package offers various options to this end. The scientific demo application integrates nine out
of the ten binning algorithms implemented in SciKit-GStat (Table 1). Depending on the binning
algorithm, the user may select the number of lag classes for the evaluation of the variogram and
the associated confidence limits. The largest separating distance at which point pairs are formed
can be set directly or selected from predefined values such as, e.g., the median separating distance.
7
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Table 2
Overview of all semi-variance estimator functions implemented in SciKit-GStat (Mälicke, 2022b).
Source: Modified after Mälicke (2022b).
Estimator Identifier Description Reference

Mathéron ‘matheron’ Default, most popular estimator Matheron (1963)

Cressie–Hawkins ‘cressie’ Power transformation based - robust to
outliers

Cressie and
Hawkins (1980)

Dowd ‘dowd’ Median based, fast estimator for non-normal
distributed residuals

Dowd (1984)

Genton ‘genton’ Percentile-based estimator - powerful for
skewed residuals, but very computationally
intensive

Genton (1998)

Shannon entropy ‘entropy’ Information theory metric focusing on
information content of residuals

Shannon (1948)

The semi-variance of the resulting population of increments corresponds to the sample variogram
for a given separation distance (or lag) and can be estimated through one of the five implemented
estimators (Table 2). In case of a positively skewed dataset and in the presence of outliers, we
recommend the use of robust semi-variance estimators (see, e.g., Table 2).

The empirical variogram for the pancake dataset (Fig. 2 d) is estimated upon relying on Matheron
emi-variance (Matheron, 1963) according to 14 evenly spaced bins. The largest separating distance
etween a point pair was set to 100 grid units, thus coinciding with the length of the side of the
omain across which data are sampled. Visual inspection of the results shows that the empirical
ariogram is characterized by a nugget/sill ratio of about 0.25. This is deemed as a remarkable
mount of the total observed variability that could not be explained by the observed degree of
patial dependence (or correlation) of the target quantity.
The empirical variogram for the data associated with the Berea sandstone sample is depicted in

ig. 2(c). The KMeans based binning algorithm (see Table 1) is employed to form 10 lag classes up
o the largest considered lag of 24 cm. Similar to the pancake dataset, this corresponds to the length
f the side of the domain across which data are sampled. The semi-variance is evaluated using the
atheron estimator, consistent with the pancake dataset. These results (see Fig. 2) suggest that the
ugget/sill ratio of the empirical variogram might be smaller for the Berea than for the pancake
ataset.

.3. Uncertainty bounds of the empirical variogram

The key element of the application is the possibility to propagate observation uncertainties onto
he estimation of the empirical variogram. These are then ultimately employed to characterize the
mpirical variogram through bounds of uncertainty. We note that we specifically tailor our approach
o empirical variograms and consider the underlying random field to be either second-order
tationary or to satisfy the intrinsic hypothesis.
The first option available relies on the quantification of a confidence interval through the

tandard deviation of the empirical density of the (zero-mean) residuals of the squared increments
f the target quantity corresponding to a given lag. The approach is straightforward and can be used,
.g., when no other information on observation uncertainty is available. The characteristic width, δ,

associated with the confidence interval is evaluated as:

δ = z
σ

√
N

(1)

here σ is the standard deviation of sample squared increments, N is sample size, and z is the
-score of the desired confidence level of the standard Normal distribution function Z . As the
ncertainty bound is evaluated on the basis of the confidence interval of the mean point pair
esidual, the central limit theorem is expected to hold. The latter may be violated, though, when
sing a high number of lag classes in combination with a small sample size for some of these.
8
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Fig. 2. Data Overview: (a) Permeability data associated with one of the faces (denoted as face 1) of the Berea sandstone
ample obtained through the minipermeameter characterized by a 0.15 cm inner radius of the tip. Data are originally
ublished and described in Tidwell and Wilson (1997, 1999). (b) Spatial distribution of the data associated with the
ancake setting (see also Fig. 1(a)), color gradation being adjusted to match the corresponding visualization related to
he Berea sandstone sample. Symbols in (a) and (b) correspond to the data employed in our exemplary analyses. (c, d)
mpirical variogram obtained considering the sampled data depicted in (a) and (b) for the Berea sandstone grid sample (c,
lue circles) and the pancake dataset (d, black circles). The purple area corresponds to the uncertainty bounds estimated
or the variograms. (For interpretation of the references to color in this figure legend, the reader is referred to the web
ersion of this article.)

e thus encourage the user to carefully inspect the histogram of point pairs associated with all
ag classes. Note that in the following we consider typical 95% confidence intervals for the Berea
andstone sample variograms. This approach is employed for the Berea sandstone scenario, as no
urther information on actual observation uncertainties is available.

The second approach is based on the evaluation of semi-variance values for each lag class in
he context of a k-fold statistical robustness test. The application implements options to subdivide
ach class associated with a given lag into 3, 5, 7, or 10 folds and evaluate the semi-variance
times for k − 1 folds comprised in the bin. Upon relying on 100 iterations, values of squared

ncrements are allocated randomly to the folds and the uncertainty bounds are evaluated for the
9
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i × k estimated semi-variance values. The number of iterations can be adjusted by the user. The
ey assumption underlying this approach is that the robustness of semi-variance values calculated
or a large number of smaller subsets strongly reflects the true uncertainty associated with the
emi-variance. The main advantage of the methodology is that it does not require any particular
ssumptions about the residual distribution because it simply evaluates the actual semi-variance
iven the reduced size dataset. Otherwise, a weak element of the procedure is that it is quite
ensitive to the settings of the robustness test (especially to sample size). If the number of pairs
ithin each lag class is not sufficiently large, the k-subsets might be too small to infer robust
tatistics. Otherwise, when considering large samples, the computational demand for this iterative
rocess needs to be carefully considered and might hamper its efficiency. The approach is well
uited to tackle scenarios where the user cannot quantify observation uncertainties and the amount
f data enables one to avoid resorting to the simple approach encapsulated in Eq. (1).
The third approach implemented is set within a numerical Monte Carlo simulation context. It

s here demonstrated considering the (re-sampled) field of observations resulting from the original
ata. The array of observations is replaced by a randomly generated array, given a specified aleatory
ncertainty measure. Here, we consider three kinds of uncertainty metrics that can be propagated
nto the variogram.
A first metric is based on considering measurement error to be represented by a uniform

istribution with a given mean (corresponding to the observed value) and a minimum/maximum
alue specified by the user, which we will denote as measurement error bounds. This enables one to
ssign the same weight to all of the values included in the support of the distribution.
A second metric relies on the standard error of the mean (SEM) of the observations. The latter

eeds to be specified by the user as an input parameter to the procedure. By doing so one considers
bservation errors to be characterized by a Normal distribution with a given mean (corresponding
o the observed value) and standard deviation, σ , given by:

σ = SEM ∗
√
N (2)

here N corresponds to the sample size.
A third option considers specifying directly the standard deviation of the aforementioned Normal

istribution.
Resorting to a given observation error metric depends on available metadata, i.e., on additional

nformation eventually complementing the analyzed dataset. For example, some manufacturers
f physical sensor devices might supply SEM values, while modeling results might rather be
ssociated with a well defined error bound. It is quite often possible to estimate one of the three
forementioned metrics from expert knowledge. When knowledge on the uncertainty metrics
escribed above is available, the Monte Carlo approach is preferable, as compared to the other
ptions described, which are based on stronger assumptions. If available, SEM is possibly a preferred
leatory uncertainty measure, as it describes observation uncertainties by definition.
The empirical variogram is then represented through the evaluated uncertainty bounds. These

mbed the concept of uncertainty we propose to employ in the context of geostatistical analyses
ully encapsulating uncertainty in the empirical variogram. In line with the spirit of our study, we
hen obtain a collection of variogram models (and ensuing parametrizations) that are consistent
ith an interpretation of a variogram based on the concept of uncertainty bounds. As previously
tated, the ensuing collection of models (and parameters) can then be employed to propagate var-
ogram uncertainty onto geostatistical analyses (i.e., in the context of estimation and/or simulation
cenarios).

.4. Theoretical model performance metrics

Accounting for uncertainty bounds of the empirical variogram enables one to consider (a)
ultiple parameter sets conditional to a given model and/or (b) multiple competing model for-
ulations that are all consistent with the level of uncertainty associated with observations. Thus,
odel selection is a major epistemic source of uncertainty, directly tied to our research hypothesis
2 (Section 1). A key research question tackled through the tool hinges on the identification of
10
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Table 3
Overview of all theoretical variogram model functions implemented in SciKit-GStat.
Source: Modified after Mälicke (2022b).
Model Identifier Description Implementation

Spherical ‘spherical’ Short ranged correlation length, popular model
in geoscience; for smooth, but steep gradients
in fields.

Burgess and
Webster (1980)

Exponential ‘exponential’ Long ranged for smooth fields with less steep
gradients.

Journel and
Huijbregts (1976)

Gaussian ‘gaussian’ Mid ranged for sharply changing fields Journel and
Huijbregts (1976)

Cubic ‘cubic’ Similar to Gaussian models, but with a shorter
correlation length.

Montero et al.
(2015)

Matérn ‘matern’ Has an additional smoothness parameter to
adapt shapes between Exponential and
Gaussian models.

Zimmermann
et al. (2008)

Stable ‘stable’ Has an additional shape (power) parameter to
adapt the range.

Montero et al.
(2015)

theoretical variogram models that, following a given parametrization, are fully comprised within
the identified uncertainty margins.

Model formulations available in the toolbox are listed in Table 3.
The toolbox implements a variety of metrics to assess model performance, as detailed in the

ollowing Sections.

.4.1. Root squared mean error — RMSE
An adjusted version of the root squared mean error (RMSE) can be used as a goodness-of-fit

metric for a given variogrammodel parametrization. In this context, for uncertainty bounds of width
∆γ = u− l (u and l being an upper and lower limit) at a given lag and for a target model variogram
γ , we set RMSE := 0 if l < γ ′ < u. Otherwise, RMSE is evaluated as:

RMSE =

√∑N
i=0 min(γ ′

i − u, l − γ ′

i )2

N
(3)

here N is the number of lags at which the empirical variogram (and hence the uncertainty bounds)
is estimated from available data. We note that RMSE is used to assess the model solely on the basis
of the fit of the theoretical model to the empirical variogram uncertainty bounds. As such, it does
not provide information about the ability of a given model (or model parameter set) to correctly
estimate or simulate the analyzed quantity at unobserved locations.

3.4.2. Cross-validation through ordinary Kriging
As a second metric that can be employed to evaluate the performance of a given variogram

model, we also rely on a classical leave-one-out cross-validation. For Z(sN ) observations, the model
s applied considering N − 1 observations to estimate Z(sN )∗ at the omitted location via Ordinary
riging. The ensuing differences between observed and interpolated values are then assessed upon
elying on their associated RMSE. A value of RMSE = 0 indicates that the model is capable of
eproducing the observations. Increasing values of RMSE correspond to an increased mismatch
etween observation and interpolation-based estimates.

.4.3. Deviance information criterion — DIC
The application also allows for the evaluation of a given variogram model upon relying on

odel selection criteria. These are employed to evaluate the relative skill of a candidate model
as compared against other model analyzed) to interpret available observations. We rely here on

ormal model selection criteria to evaluate (in a relative sense) the ability of each of the models we

11
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consider to be consistent with the estimated uncertainty bounds related to the empirical variogram.
Among the various model selection criteria proposed in the literature to discriminate amongst
models (see e.g. Riva et al., 2011; Höge et al., 2018), we rest here on the Deviance Information
Criterion DIC (Spiegelhalter et al., 2002, 2014), which is a generalization of the Akaike Information
Criterion AIC (Akaike, 1973; Hurvich and Tsai, 1989).

The deviance D of a given model (parameterized through a set of parameters collected in vector
Θ⃗) is given by:

D(Θ⃗) = −2ln(L) (4)

here L is the likelihood function of the considered theoretical variogram model. Here, we consider
the following definition of a negative log-likelihood function from Lark (2000, Eq. (14)):

L(r, s| ⃗̂m, σ̂ 2, z⃗) =
n
2
ln(2π ) +

n
2

−
n
2
ln(n) +

1
2
ln|A⃗|+

n
2
ln

(
(z⃗ − ⃗̂m)TA−1(z⃗ − ⃗̂m)

) (5)

here z⃗ is a vector whose entries correspond to n available observations; r and s are the range
nd sill of the considered variogram model, respectively; ⃗̂m is a vector of maximum likelihood
stimates of the available data at the observation points (see also Lark, 2000, Eq. (12)); σ̂ 2 is a
aximum likelihood estimate of the sample variance (see also Lark, 2000, Eq. (13)); and A is the
uto-correlation matrix for the sample and specified (Lark, 2000, Eq. (9)) as follows:

A⃗(i, j)= 1 i = j,
= s{1 − f (x⃗i − x⃗j|r)} i ̸= j

s =
c

c0 + c
(6)

ere, i, j are the indices corresponding to the observation locations; f (x⃗i − x⃗j|r) is the spatially
tructured component of the variogram model conditioned only to the range parameter, r; s is
term associated with the nugget to sill ratio, c and c0 corresponding to the variogram sill and

nugget, respectively. We note that Eq. (5) underlies the assumption of Gaussian distribution for the
associated variogram model parameters.

The deviance information criterion penalizes a model with respect to its competing counterparts
through the complexity of its parametrization. The latter is quantified via the concept of effective
parameters, pD, defined as:

pD = D(Θ⃗) − D(Θ⃗) (7)

where Θ⃗ is the mean of all parameters associated with a given model (i.e., a given functional
ormat of the variogram) and D(Θ⃗) is the sample mean of deviance evaluated across all models
and parameter sets.

Considering the sample probability density of model parameters, DIC is then evaluated as:

DIC = D(Θ⃗) + pD (8)

ollowing Spiegelhalter et al. (2002), one could assess pD upon relying on the mode or on the
edian of the distribution of model parameters assessed through model characterization on the
asis of the uncertainty bounded empirical variogram. All of these options are implemented in the
oolbox. As an additional option to evaluate pD, we also consider Gelman et al. (2014, Eq. (7).10):

pD =
1
2
var(D(Θ⃗)) (9)

his formulation always yields positive values for pD, which, in turn, makes the use of DIC very
ntuitive. Thus, we use the latter approach and formulation for this study and as a default option
or the toolbox due to its readily intuitive nature.
12
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3.4.4. Structural risk minimization
Another area where one usually needs to balance between model complexity and over-fitting is

achine learning. In this context, an appealing framework is provided by the concept of structural
isk minimization (Vapnik and Chervonenkis, 1974). While the toolbox implements a variation of
he latter, we not pursue it further in this study. The interested reader is referred to Appendix A,
here the available option from the toolbox is briefly illustrated.

.5. Variogram model assessment

The toolbox function for manual variogram fitting enables the user to (a) select any of the
vailable theoretical variogram models and (b) interactively parameterize these for the desired
umber of model parameter sets while considering the estimated uncertainty bounds related to
he given empirical variogram. The quantitative metrics described in Section 3.4 are evaluated
or the collection of all models and associated parameters employed for data interpretation. We
ecall that the objective here is to sample the set of possible theoretical model functions and their
arametrizations. We further note that other techniques conductive to (posterior) distributions
f model parameters such as, e.g., acceptance–rejection sampling (e.g. Russian et al., 2017, and
eferences therein) are not yet embedded in the toolbox. Otherwise, the modular nature of the
oolbox facilitates the integration of additional simulation tools. Thus, users are foreseen to be able
o choose among various approaches (as soon as these are implemented) to obtain a collection
i.e., an ensemble) of candidate theoretical models (and ensuing model parameter sets) in their
cenarios of interest.
The collection of model functions and ensuing parameter sets are then filtered to retain the best-

erforming models. With reference to this issue, our toolbox implements an interactive, feature-rich
election interface. The user may perform model selection analysis upon relying on one of the
etrics detailed in Sections 3.4.1 to 3.4.4 or comparing the results associated with the use of all
f these. While the demo application is currently confined to a given number of options for model
election, its flexible structure enables one to seamlessly expand on these. The user can either (a)
etain a fixed amount of parameter sets (e.g 10 best ones), (b) retain a fixed amount of parameter
ets stratified by model type (like 3 Gaussian, 3 Spherical, and so on) or (c) calculate a threshold by
efining an acceptable relative deviation from the best parameter set. Only the selected parameter
ets are then considered for the estimation of a Kriging uncertainty bound, as described in the
ollowing Section.

.6. Kriging uncertainty bounds

Our toolbox includes four different Kriging algorithms from GSTools (Müller et al., 2021). While
he default option is Ordinary Kriging, the user may select to rely on either Simple or Universal
riging. If auxiliary information is available, external drift Kriging can be used, incorporating such
ata as drift. For Simple Kriging, the mean of the field needs to be specified by the user. For Universal
riging, a linear or a quadratic internal drift term is currently available.
To propagate uncertainties to a Kriging application, each of the selected models is used with each

f the associated parameter sets to project the data onto a target grid. While the size of such grid can
e specified interactively by the user, the toolbox also implements some options to automatically
valuate the coordinate locations for each grid cell.
The following option is of interest for our demo software. In case the user uploads a field (such

s, e.g., the pancake scenario we consider) and uses the toolbox to sub-sample it, the toolbox
utomatically uses the grid of the originally uploaded field, if Kriging is applied to the sub-sample.
he advantage of this procedure is that one can associate a value from the originally uploaded field
o any location of the target grid which is not tied to the sub-sample. This enables the user to
bjectively assess the overall performance of each kriged field.
The uncertainty propagated onto the Kriging-based estimates corresponds to the range of

nterpolation estimates associated with each grid location. We note that the number of available
stimates matches the number of selected models and model parameter sets. In some cases, it is
13
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possible that a given parameter set is conducive to kriged estimates that markedly differ from those
of the remaining models and model parameter sets, either across the whole target field or only
within a certain region. Thus, an important feature implemented in the tool enables one to examine
and compare the contribution of a given parameter set to the overall uncertainty of the results.
We do so upon relying on the Shannon entropy (Shannon, 1948) associated with the collection of
predictions at each grid cell/node. The Shannon entropy is defined as:

H = −

M∑
i=0

pi ∗ log2(pi) (10)

here pi is the empirical probability of non-exceedance of the ith value of the collection of estimates
elated to a target location in the domain. The Shannon entropy is well suited to analyze redundancy
ithin a model and model parameter collection (Loritz et al., 2018; Mälicke et al., 2020, e.g.). Non-
xceedance probabilities are evaluated upon subdividing the range of the obtained interpolated
alues across the whole domain into a number M of bins, which is typically set to the number of
elected parameter sets. This is tantamount to considering the same binning for obtaining pi at all
rid locations.
In order to compare Shannon entropy across datasets and assess the agreement of estimates

etween the models and ensuing parameter sets, the Shannon entropy is normalized. A suitable
ormalization considers the Shannon entropy of a distribution of M uniformly sized bins, Hmax.
or the whole domain, the same Hmax will be considered. The normalized Entropy Hn =

H
Hmax

is
a measure of how close the distribution of estimates in each grid cell is to a uniform distribution
(corresponding to Hn = 1). Thus, it can be used to identify grid locations of high estimate variability
within a set of Kriging results. It can also be used to compare results across multiple datasets, with
respect to the number of parameter sets selected. We note that a H = 0 for a given grid location
implies that all estimates reside within the same bin. This does not imply that all estimates are
numerically close, because M (i.e., the number of selected parameter sets) might be quite small in
some cases. Here, we use the normalized Shannon Entropy to identify regions of the domain where
there is high estimate variability, that can then be compared across multiple datasets.

4. Results

4.1. Variograms and related uncertainty

Here, we illustrate all details of the application with reference to the pancake sample. We then
present and analyze our findings for the Berea sandstone sample (see Fig. 2, a&b). Visual inspection
suggests that the two fields display a similar spatial structure and their variograms exhibit a
similar pattern (Fig. 2 c&d). The two variograms differ clearly with respect to the width of their
uncertainty bounds. The latter is larger for the Berea sandstone dataset. We note that, taking only
the uncertainty bounds into account, almost any theoretical model might fit each of these empirical
variograms and a prior selection of a specific model is not justified.

4.2. Theoretical variogram models and associated performance metrics

With respect to the uncertainty bound of the empirical variogram, almost none of the theoretical
model (here manually parameterized) can be rejected (see Fig. 3(a)). Fig. 3(b) provides a graphical
depiction of the relevant metrics for all of these models. Here, the different model types are listed
in the first column and each band represents one set of model parameters, color gradation being
indicative of a given model type. The first connection to the second column ranks the models
by their fit in terms of RMSE (Eq. (3)). For visual reasons, RMSE values are ranked and grouped
into quartiles, with the 25% best performing model parameter sets at the top of the column. The
bands spread out significantly and are not grouped by model type anymore. This stresses the visual
impression that no model instances are significantly off when considering empirical variogram
uncertainty.
14
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Fig. 3. (a) Uncertainty bounds (gray area) associated with the empirical variogram related to the pancake dataset,
ncluding with all theoretical variogram models fitted (green curves). (b) Parallel coordinates plot for the models depicted
n (a) showing the considered performance metrics, i.e., RMSE (2nd column), DIC (3rd column), and cross-validation (4th
olumn). The first column groups the individual models by their type and corresponding color gradation. For each of the
easures, the models are ranked into quartiles; as an illustrative example, we consider < 25% to delineate the collection
f the best performing models. (For interpretation of the references to color in this figure legend, the reader is referred
o the web version of this article.)

The third column in Fig. 3(b) ranks the model parameter sets by the corresponding DIC value
Eq. (8)). By design the model parameter sets are grouped by model type, as DIC is a performance
etric on model type and does not distinguish among the different parametrizations. Similar to
ther information criteria, DIC grounds the suitability of a given model on the likelihood of the
odel parameters, given the sample distribution. In terms of DIC , the Cubic and Gaussian models
erform best, while exponential and stable models are characterized by poorer performance. We
urther note that, due to manual parametrization, the model collection sizes are quite small and
IC values might change when additional parameter sets are added to the collection.
The last column in Fig. 3(b) provides a ranking of the model parameter sets grounded on cross-

alidation results. The predictive power of each (manually fitted) model and model parameter set
s assessed by applying Kriging interpolation via a leave-one-out cross-validation for all observation
oints. Interestingly, all bands cross on the connection of the third and fourth column (see Fig. 3(b)).
hus, model and model parameter ranking change to favor Matérn parametrizations over Gaussian
nd cubic models. One has to keep in mind that for the purpose of our demonstration Kriging is only
pplied to the sample considered and model performance might differ for unobserved locations. This
s expected to depend on the density and structure of the observation points.

Taking all of the above elements into consideration, one can conclude that the uncertain
bservations allow for various models and ensuing parametrizations to be considered as suitable
15
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Fig. 4. (a) Uncertainty bounds (gray area) associated with the empirical variogram related to the Berea sandstone dataset,
ncluding all theoretical variogram models fitted (green curves). (b) Parallel coordinates plot for the models depicted in
a) showing the considered performance metrics, i.e., RMSE (2nd column), DIC (3rd column), and cross-validation (4th
olumn). The first column groups the individual models by their type and corresponding color gradation. For each of the
easures, the models are ranked into quartiles; as an illustrative example, we consider < 25% to delineate the collection
f the best performing models. (For interpretation of the references to color in this figure legend, the reader is referred
o the web version of this article.)

n a virtually indistinguishable way. This is largely supported by the RMSE results. In practice all
arameter sets would be accepted in any least-square based automatic procedure. The DIC criterion
ests on variogram likelihoods given the sample distribution and does favor specific model types
ver others. This can loosely be seen as an assessment of how and which models an automated
aximum likelihood approach favors. Results from cross-validation, which is conceptualized as a
isualization of the training error of the model, are in contrast with those provided by DIC . This
inding is unexpected and raises some interesting questions about when and how to apply automatic
nd semi-automatic fitting procedures.
The shape of the uncertainty bound is slightly different for the Berea sandstone sample and

s characterized by a less pronounced increase of semi-variances within the first few lag classes.
imilar to what can be observed for the pancake dataset, all theoretical variogram functions (green
urves in Fig. 4(a)) appear to be equally compatible with the estimated uncertainty bounds. This
esults in a straightforward parametrization of Gaussian or Gaussian-shaped Matérn models. Oth-
rwise, the exponential and exponentially shaped stable models appear not to be fully compatible
ith the estimated uncertainty bounds, with special reference to the upper limit of these. This
ehavior is also reflected by the RMSE values in the second column (Fig. 4(b)), which rank the
xponential model parametrizations slightly lower than for the pancake dataset.
According to the values of DIC (Fig. 4(b)), spherical and exponential models are highly ranked,

s opposed to their Gaussian and stable counterparts. Similar to the pancake dataset, results of
16
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cross-validation based on Kriging appear to favor some models that were ranked low according to
the other metrics employed. While the Gaussian models still perform worse than others, the stable
models are ranked significantly higher according to this metric. It is worth noting that all parameter
sets of the stable model lie in the best performing quartile in terms of Kriging cross-validation, even
those that visually show notable deviations when juxtaposed to the uncertainty bound. The same
finding holds for the exponential model. All parametrizations of the latter are ranked in the lowest
quartile for RMSE, in the highest quartile for DIC and close to median for the cross-validation metric.

In summary, there is no model type that is ranked low consistently by all metrics across both
atasets considered. Likelihood- and uncertainty bound-driven metrics do not yield a unique and
nequivocal outcome when analyzed jointly and neither of these is entirely supported by Kriging
ross-validation across the collection of the corresponding parameters. Possibly, a clear conclusion
s that Gaussian models should be avoided, although they appear to fit the uncertainty bound best.

All of these results suggest that any kind of automatic variogram fit should always be comple-
ented by careful inspection of results of the kind we illustrate, on the basis of multiple metrics,
ach revealing a particular aspect of uncertainty.

.3. Kriging uncertainty bounds

A collection of about 30 different model parameter sets has been identified for the pancake
ataset. A critical element in the analysis of the way variogram uncertainty propagates onto Kriging
esults is the possibility of ranking model parameter sets according to the performance metrics
elected. This is accomplished through the implementation of a filtering step in the tool. The
atter allows for various functions to filter the model parameter sets with respect to one of the
erformance metrics detailed in Section 3.4.
All models parameter sets are then ranked with reference to each of the metrics considered

i.e., RMSE, DIC , and cross-validation). The filter rejects the 10% worst parameter sets for each metric.
or both datasets we find that six instances were rejected, most of these associated with Gaussian
odels, which is seen to be ranked lowest in more than one metric.
Propagating variogram uncertainties onto the Kriging results generally leads to large correspond-

ng uncertainty bounds. By taking different model parametrizations into consideration, one finds a
pread of Kriging interpolation results which is typically of about 25 units, while attaining peaks of
bout 70 units (Fig. 5(a)), which corresponds to about 30% of the range of values of the available
ata. The width of the Kriging uncertainty bounds is highly heterogeneous in space. In some areas
he uncertainty bounds are not much larger than the observation uncertainty propagated into
he procedure, while being markedly larger in other regions. In general, uncertainty band widths
orrelate with the location on the grid and most model parameter sets seem to disagree in terms
f Kriged values close to the domain boundaries.
As expected, the Kriging error variance generally tends to vanish close to observation locations.

ig. 5(b) shows the range of Kriging error variances for all selected model parameter sets. As
xpected, and consistent with the dense sampling arrangement, no particular spatial differences
an be identified. We remark that a value of 0 in Fig. 5(b) implies that all Kriging variance values
oincide, all models being in agreement.
While the range of kriged values for a given unobserved location can be large, this can be

ue, in some cases, to a single parameter set or to a limited number thereof. This element can
e investigate through the analysis of the entropy map of model Kriging results. Fig. 5(c) depicts
he spatial distribution of the values of the normalized information entropies. Here, a value of 1 or
implies large variability across the collection of estimates or that all estimates fall into the same
in, respectively. Values of the normalized information entropy of estimates (Fig. 5(c)) are largely
pread evenly across the domain, even as some clusters are noted around a number of observation
ocations. Values are small in most areas. This finding suggests that only a few model parameter
ets are driving the width of the uncertainty bands in Fig. 5(a). The entropy map displays a high
evel of spatial organization.

The Berea sandstone sample is characterized by similar results (Fig. 6). There is a considerable
verlap of larger normalized entropies and wider uncertainty bands. This is especially evident
17
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Fig. 5. Kriging estimation results for the pancake dataset after re-sampling on a regular grid. Width of the interval of
ariability of (a) Kriged values and (b) Kriging error variance values associated with all models analyzed at each cell across
he domain . Note that a zero variance value means that the Kriging variance is the same for all models. Large values
mply a variable Kriging error variance (It is illustrating the variability of variances). (c) Normalized Shannon entropy
f all model estimates (d) Kriging interpolation result for the best model parameter set (mean rank of RMSE, DIC and
ross-validation).

n the proximity of the right boundary of the domain. Normalized information entropy values
re considerably larger for the Berea dataset (attaining values consistently > 0.4) than their

counterparts associated with the pancake datset. This is consistent with the observation that a
number of estimations differ by orders of magnitudes in these areas. Interestingly, one can also
note the presence of the smallest values of the underlying field in this area. Fig. 6(d) shows the
Kriging interpolation result stemming from the model parameter set, best performing in terms of
mean rank in all used performance metrics. From here, these areas, colored blueish, can easily be
identified.

4.4. Identifiability of variogram model parameters for uncertain variograms

We exemplify the way one can select some parameter sets as optimal upon relying on the
concept of variogram uncertainty bounds through a detailed analysis of the corresponding metrics
18
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Fig. 6. Kriging estimation results for the Berea sandstone dataset after re-sampling on a regular grid. Width of the
nterval of variability of (a) Kriged values and (b) Kriging error variance values associated with all models analyzed at
ach cell across the domain . Note that a zero variance value means that the Kriging variance is the same for all models.
arge values imply a variable Kriging error variance (It is illustrating the variability of variances). (c) Normalized Shannon
ntropy of all model estimates (d) Kriging interpolation result for the best model parameter set (mean rank of RMSE, DIC
nd cross-validation).

ased on the spherical variogram model. We do so because (a) the model is seen to perform well for
oth datasets and (b) this is the model type selected to demonstrate automatic fitting of empirical
ariograms with SciKit-GStat by Mälicke (2022b).
Here, we use only the definition of the deviance in Eq. (4). As the mean deviance will be the

ame for all parameters, the value of DIC will be linearly dependent on the deviance. At the same
ime, the negative log-likelihood function used in a maximum likelihood approach differs only by a
actor of 2 from Eq. (4). Thus, this enables us to jointly interpret the results in terms of maximum
ikelihood (deviance) and method-of-moment (RMSE) approaches.

Each of the aforementioned metrics is evaluated (Fig. 7) for 100 × 100 combinations of range
nd nugget/sill ratios. A maximum nugget to sill ratio value of 1 was used (i.e., nugget and sill
ave the same (absolute) value). We note that considering values of this ratio larger than unity
ight hamper the usefulness of geostatistical approaches, which rest on the concept of a spatial
orrelation structure.
19
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Fig. 7. Results of the parameter testing phase for 100 × 100 combinations of sill/nugget ratio and effective range for a
pherical model using the pancake dataset. (a) RMSE (Eq. (3)) of the model fit to the uncertainty bound. Red or blue
rading denotes larger or smaller metric values. (b) deviance value for all parameter combinations. (c) Leave-one-out

cross-validation of the interpolated observation values. The orange symbols show the models and parametrizations used
in manual fitting for all model types (the spherical model types are marked by thick yellow outline). The red cross marks
the global minimum for each of the parameter tests. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

We added to the coordinates of the grid locations a white noise of about 0.1‰of the grid
xtent. Thus, any impact on the lag classes of the empirical variogram can be neglected. This was a
ecessary step to circumvent the issue that the Kriging system of equations be associated with too
any instances of singular matrices. This likely originated from the regular spacing of the sampling

ocations, as further detailed in Section 5.3.
Large areas show a satisfactory performance in terms of RMSE of model fit (Fig. 7(a)). Moreover,

ig. 7(a) illustrates clearly that there is in fact parameter equifinality (Beven and Binley, 1992) due
o parameter interaction. We note that a global minimum is not readily identifiable across the
arameter space. All of the results of the manual parametrizations here presented (orange dots)
ie within the area of optimal parameter values (blue-graded region).

The deviance metric does not yield a result for several parameter sets (Fig. 7(b)); white regions.
ere, the auto-correlation matrix A (see Eq. (6)) is singular and could not be inverted. The extent of
he blue-graded areas is considerably smaller than for the RMSE metric. Finally, Fig. 7(c) illustrates
he leave-one-out cross-validation metric for all 100 × 100 parameter combinations. Similar to the
MSE, all manually fitted parameter sets are contained in the blue-graded area within which good
erformance values of the metric are obtained. The global minimum is very close to the lower right
orner (range of 93 and nugget to sill ratio of 0.01). We note that the RMSE and cross-validation
etrics appear to be in a substantial overall agreement.

. Discussion

Our analysis provides a clear evidence that (a) uncertainty of the experimental variogram should
ot be ignored and (b) the presented toolbox markedly facilitates assessment and propagation of
uch uncertainty onto a set of acceptable theoretical variogram models and corresponding Kriged
ields. The presented test cases yield insights into the ability of different performance metrics and
n the goodness of individual members of a family of acceptable variogram models (in terms
f their ensuing parameters). Interestingly, ranks of individual models and parameter sets is not
he same for the different metrics. We show these elements for two datasets, by propagating
20
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uncertainties into the empirical variogram, assessing acceptable theoretical variogram models and
their associated parameter sets, and comparing their kriged estimates across the system (also
considering cross-validation) as well as the spreading of Kriging results at unobserved locations.
Overall, a clear choice of a superior variogram model type or the identification of a best parameter
set cannot be identified. A key asset of the presented toolbox is that it also provides enhanced
understanding about how and where these uncertainties are caused. While a variety of selection
algorithms or variogram parameter optimization approaches could be considered, for the purpose
of our demonstration we choose a straightforward approach and eliminate models which perform
poorest with respect to each of the performance metrics.

We acknowledge that the current stage of our work and version of the associated tool is re-
tricted to an isotropic spatial covariance. Otherwise, a variety of environmental variables/quantities
xhibit an anisotropic spatial covariance, also depending on the scale at which they are considered.
s an example, we mention cold front precipitation bands, topography or macropores in soils,
s well as sedimentological attributes or parameters characterizing variably saturated subsurface
low. The standard approach to detect a geometric anisotropy is to use directional experimental
ariograms. While our method to estimate uncertainties can be readily applied to the assessment
f directional experimental variograms, this task is beyond the scope of the current study.
In the following we discuss (a) the way the toolbox can assist interactive geostatistical anal-

ses, (b) variogram estimation under uncertainty and the related model evaluation, and (c) the
ssessment of our driving hypotheses.

.1. Interactive geostatistical analysis

Our software toolbox is built on established and well-tested software packages for numerical
omputing, visualization, and geostatistics. The implementation focuses on well-defined datasets.
y providing clear interfaces and metadata, our API can be used to automate common tasks and
uild user interfaces such as those associated with the illustrated sample application. This is not only
onvenient but also considerably speeds up analysis workflows. As such, it empowers early stage
esearchers and students to dive deeper into the material and scientists and practitioners to operate
n data more effectively. This will ultimately favor practical implementations of new approaches.
s an example: We would not have been able to manually parameterize so many models more
ffectively and faster than automatic approaches if it would not have been for an interactive slider
lement that enables one to adjust variogram parameters on the fly.
All this convenience comes at the cost of the implementation effort. As the user is less engaged

ith the actual, technical implementation than in more traditional scripting approaches, the
oftware to be employed needs to be built in a generalized way. Achieving this element, in turn,
eeds comprehensive tests to ensure technical correctness. Tutorials and a complete and detailed
ocumentation are equally important. Otherwise, the user will not be able to identify misuses and
rrors. A website and video tutorials are available for SKGstat-Uncertainty. Remarkably, the
ssential core of all calculations is implemented within other software products, each of these being
arefully chosen to entail comprehensive testing and documentation. This enables the user to focus
n analysis and visualization while being confident in the technical correctness of the results.

.2. Uncertain variogram estimation and model evaluation

Using different methods for uncertainty propagation and estimation, we evaluate uncertainty
ounds for the empirical variogram associated with the two showcases illustrated. This is a key
esult, as by simple visual inspection it is possible to estimate variogram parameters manually,
hus favoring enhanced understanding on the system behavior. We note that at least one of each
vailable theoretical variogrammodel type could be parameterized to fit into the uncertainty bound,
r at least very close to it. This result confirms our hypothesis H2, as it makes the epistemic
ncertainty relate to a prior model choice way more obvious than through a classical fitting
rocedure targeting empirical variograms. We rely here on manual procedures, due to their ease
f usage and pedagogic potential. Otherwise, we stress that the toolbox is not limited to manual
21
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parametrization. Any suitable alternative approach implemented in Python (such as, e.g., ensemble
learning methods or acceptance rejection) can be readily implemented into a new chapter of the
tool. An additional added value of tool resides in the observation that data management and
processing chapters, as well as subsequent analysis chapters, are modular.

An important limitation to our illustrative results, though, is that only one instance of an
mpirical variogram was estimated. The estimation is known to be sensitive to sampling strategies,
specially sampling size, binning procedures, and amount of lag classes used. While our modeling
hoices are based on expert knowledge, there might be a more suitable empirical variogram
andidate, especially for the Berea sandstone setting. The purpose of this work, however, is
o demonstrate the software package for exemplary analyses. Thus, we are confident that the
llustrated insights can be adapted and transferred to focus on other critical aspects of empirical
ariograms, such as uncertainty bands based on systematic testing for different sample sizes.
Each selected variogram model parameter set was used in a Kriging interpolation context. As

hown in Figs. 5 and 6, the corresponding interpolation results differ substantially. Considering all of
he interpolation results, it was not possible to identify a unique model type (or parameter set) that
learly describes the spatial correlation structure of the field unequivocally better than all others.
therwise, by combining insights from three different kinds of evaluation metrics, which focus on
ifferent aspects of a variogram fit, we can exclude model types. This is considered as an additional
ey result of our study and approach.
The Gaussian and cubic models are found to interpret adequately the empirical variogram

ssociated with the pancake dataset (in terms of its uncertainty bounds). While DIC favors these two
odel formulations, the leave-one-out cross-validation excludes both of them regardless of their
arametrizations. Inspection of the single interpolated grids based on Gaussian variogram models
evealed that all of them produced considerable amounts of kriged values far outside the observa-
ion value space. We encourage the user of the application to interpret the results by considering
he critical message that observation uncertainties exist and need to be comprehensively addressed.
s analysis results may differ vastly, one could at least rely on insights obtained through modeling
nder uncertainty to exclude models (or parametrizations). This enables one to learn by rejection
nd enhance our knowledge from quantification of uncertainties, instead of neglecting these.
We assess sources of uncertainty that affect the different kinds of fitting procedures (least

quares, maximum likelihood, manual) in very different ways and demonstrate the significance of
ur results in geostatistical applications . These insights, if taken into account, can assist in limiting
he parameter space for a geostatistical analysis and lead to new knowledge about a field under
nvestigation. It also bears an important implication with respect to quality and precision of the
easured data. A smaller sample of highly precise observations will result in a small variogram
ncertainty similar to what one could obtain through a large sample of less accurate data.

.3. Model fitting and model parameters

A core decision taken for the application and in the exemplary study we present is the focus
n manual variogram parametrization. Such a manual parametrization is a valid operational and
ducational choice. This is especially relevant in cases where one might select to renounce to some
omputing speed for a more thoughtful and detailed variogram analysis. Manual parametrization is
traightforward, reflects a deep understanding of the variogram concept, and can be applied without
he need for the implementation of optimization algorithms.

During the systematic exhaustive testing of variogram parameter values, the leave-one-out
ross-validation calculation failed in several instances, especially for medium and small values of
he effective range parameter. Due to the repetitive pattern underlying a grid, the number of distinct
eparating distances was significantly decreased in our examples. For the pancake sample, while the
pper triangle of the distance matrix contains more than 4500 entries, these hold only 34 different
istance values. The main reason for this is conceptually illustrated in Fig. 8. For the center point (in
ed), the Kriging equation systemmay be built solely from the surrounding blue points, which are all
or

√
2 units away from the center point. The two blue points at y = 1 are symmetrical with respect

o the center. This means that the Kriging equation system is characterized by duplicated rows at
22
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Fig. 8. Conceptual figure of an observation grid in a dimensionless Cartesian space. Blue dots correspond to observation
ocations. The red dot is the point of interest, which is subject to estimation in a leave-one-out cross-validation. The figure
llustrates the repetitive pattern of just two different distances being used in a Kriging application. (For interpretation
f the references to color in this figure legend, the reader is referred to the web version of this article.)

he index of exactly these two points. This makes the Kriging matrix singular thus hampering its
nversion. This was verified to happen quite often in our examples, as the Kriging algorithm built
nto SciKit-GStat limits the neighbor selection by the effective range of the variogram.

The same principle underpins the failure of the likelihood-based calculations observed in most
ases.
In line with our first hypothesis that empirical variograms are uncertain, we present evidence

hat (Kriging) interpolation results cannot be simply limited to rely on a unique parametrization.
hus, geostatistical applications need to fully consider empirical variogram uncertainty bounds.
oreover, the parametrization of the variogram itself is markedly affected by different kinds
f uncertainty. Our exemplary scenarios provide strong evidence of the basic assumption that
ropagating observation uncertainties into the variogram would lead to broad ranges of variogram
arameter values that can be employed in a practical application. It is also apparent that a global
inimum for a given metric cannot be identified easily. Furthermore, our results show that there is
o evidence that any automatic procedure would perform better, even if only one set of parameters
s considered to be valid. And finally, the best manual fit is very close to the global minimum of
MSE, even if the difference to adjacent parameter sets is considered to be significant.
While, in general terms, RMSE (Fig. 7(a)) and cross-validation (Fig. 7(b)) agree in identifying some

ets of well-performing parameters (blue-graded), they also show some disagreements. These two
igures suggest that even if a variogram model fits well to the uncertainty bound (or to the empirical
ariogram), cross-validation adds an additional (enriching) dimension against which the goodness
f a performance should be assessed.
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6. Conclusions

We introduce the toolbox SciKit-GStat Uncertainty and exemplify its use upon relying on sample
data-sets pertaining to two different processes and scenarios. Our work leads to the following major
conclusions

1. The toolbox is envisioned as a required extension of existing geostatistically-oriented com-
putational tools and software. Our toolbox is built in a Python environment and includes
the implementation of existing and new approaches to analyze, visualize, and quantitatively
propagate uncertainties in variogram estimation onto kriging-based estimates and the associ-
ated variance. Its interactive nature empowers one to tackle uncertainty in a straightforward
way and underpins the potential of the tool to play a key role in the context of research and
educational contexts.

2. The toolbox enables one to explore the way various sources of uncertainty can imprint the
results of a geostatistical analysis. Uncertainties considered through the toolbox arise from
measurements (in terms of observations and location associated with these) as well as from
the choice of an interpretive model and its parameters. Thus, the user can readily inspect
various dimensions of uncertainty during variogram analyses. As a notable research element,
we introduce and embed in SciKit-GStat Uncertainty the concept of replacing an empirical
variogram (or semi-variance) through uncertainty bounds. This provides an original way to
explore uncertainty, as imprinted onto the way one can evaluate the ability of a collection
of models and ensuing parameters to perform variogram analysis upon relying on such
uncertainty bounds. This is accomplished through a processing module that implements a
suite of methods for the quantification of uncertainty associated with empirical variograms.

3. The software allows operating in a multi-model context and enhances our ability to interpret
spatially correlated (random) fields. Exemplifying the use of our toolbox with emphasis on
manual variogram parametrization enables us to emphasize the value of the toolbox in the
context of a pedagogical/educational perspective. The user can then explore the benefit of
resorting to the joint use of various metrics, each of them providing a specific insight on
the quantification of uncertainty, to yield a comprehensive depiction of system behavior and
characterization. In this context, we investigate the way coupling the concept of variogram
uncertainty-bounds with the joint analysis of multiple methods and metrics can contribute
to disregard some models and parametrizations over others.
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Appendix A. Structural risk minimization

Another available option to assess model parameter performance is derived form structural risk
minimization. The work of Vapnik and Chervonenkis (1974) is focused on classification problems
and support vector machines, its basic idea can be transferred to the scenario we consider. This
is consistent with the observation that model selection can be viewed as a classification problem
driven by uncertainty. The methodology introduced by Vapnik and Chervonenkis (1974) is designed
to balance training errors and an expected over-fitting. Similar to an information criterion, the so-
called capacity of the parameter space is employed, which in turn should measure model complexity
through the minimization of:

J(Θ⃗) = εtrain(Θ⃗) + λH(Θ⃗) (11)

Here, εtrain(Θ⃗) is a measures of training error and H(Θ⃗) is a regularization term. The latter penalizes
models with a higher level of complexity, in terms of parametrization. The value of the weight

lambda, needs to be set by the user. We adapt this concept by interpreting the parametrization
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of a variogram model as the training of our model and combine it with the pD as described in
ection Section 3.4.3. The scientific demo application evaluates εtrain(Θ⃗) either with the RMSE (see
ection 3.4.1) or the MAE as suggested by Vapnik and Chervonenkis (1974):

MAE =

N∑
i=1

min(l − γ ′

i , γ ′

i − u) (12)

Where γ ′

i the modeled semi-variance at the ith lag class. As such, MAE := 0 for l < γ ′ < u.
With reference to the regularization term H(Θ⃗) in Eq. (11) one can set it either to Eq. (7) or

Eq. (9).
The toolbox implements all combinations to evaluate Eq. (11), but the exemplary demo applica-

tion does not make use of these metrics.

Appendix B. Data and code

The pancake dataset is available with the SciKit-GStat package (Mälicke, 2022b). The source code,
including the pancake data sample, is available on Github4. The Berea sandstone data sample can
be obtained from the original publication (Tidwell and Wilson, 1997).

The source code for the SciKit-GStat Uncertainty extension is available on Github.5 This repository
includes a copy of the used data samples. The primary distribution of the software package is a
docker image.6

The demo application is not open source. It can be reached at https://geostat.hydrocode.de.
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