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Abstract

The analysis of 3D microscopic cell culture images plays a vital role in the development of

new therapeutics. While 3D cell cultures offer a greater similarity to the human organism

than adherent cell cultures, they introduce new challenges for automatic evaluation, like

increased heterogeneity. Deep learning algorithms are able to outperform conventional

analysis methods in such conditions but require a large amount of training data. Due to data

size and complexity, the manual annotation of 3D images to generate large datasets is a

nearly impossible task. We therefore propose a pipeline that combines conventional simula-

tion methods with deep-learning-based optimization to generate large 3D synthetic images

of 3D cell cultures where the labels are known by design. The hybrid procedure helps to

keep the generated image structures consistent with the underlying labels. A new approach

and an additional measure are introduced to model and evaluate the reduced brightness

and quality in deeper image regions. Our analyses show that the deep learning optimization

step consistently improves the quality of the generated images. We could also demonstrate

that a deep learning segmentation model trained with our synthetic data outperforms a clas-

sical segmentation method on real image data. The presented synthesis method allows

selecting a segmentation model most suitable for the user’s data, providing an ideal basis

for further data analysis.

Introduction

The automated analysis of image and video streams from microscopes has become well estab-

lished for the assessment of, e.g., cell states. Conventional image processing methods allow for

the generation of single features and time series (live cell imaging), which are subsequently

used for state estimation of cells.

Advancing biotechnology enables the generation and imaging of complete 3D cell cultures

such as spheroids or organoids. Such structures are often preferred in biological studies because

they provide a cell environment more similar to the human organism than conventional
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mono-layer cell cultures [1, 2]. However, this advantage comes with its drawbacks. The three-

dimensional structure leads to a constant change of organic material along the z-axis, differing

in their refractive index. This increases light scattering in deeper regions, reducing the sharp-

ness and brightness of the image. Fig 1 shows two 2D slices of the same 3D image and their cor-

responding orthogonal views. The left and right images show a depth of z = 40px (60μm) and

z = 70px (105μm), respectively. While the image quality of the upper part (left image) is rela-

tively uniform, the lower part (right image) shows areas of varying brightness and image qual-

ity. Outer regions show less deterioration since fewer occluding structures are located above

them. In addition, a typical limitation of confocal microscopy can be seen in the orthogonal

views: the achievable resolution in the z-axis is much lower compared to the y- and x-axis, as

the point spread function (PSF) is more spread out in this axis. Furthermore, the increased

blurring of the structures in this direction also lets objects appear bigger than their actual size.

Machine-learning approaches, specifically deep-learning methods, have proven powerful in

the medical and biological domains under different conditions [3–7]. However, these methods

require large annotated data sets for training and subsequent evaluation to achieve this perfor-

mance [6, 8, 9]. While the annotation of 2D data is time-consuming and burdensome, the

annotation of 3D data is an almost impossible task. The additional dimension massively

increases the amount of data to be annotated. In addition, the limitation to visualizing 3D

structures in 2D images makes it difficult to recognize volume structures and leads to inconsis-

tent annotations between layers. Additionally, unsharp object borders in z-direction make

start and end points of objects hard to define. The varying quality and anisotropic resolution

thus make accurate and consistent labeling of the structural outline impossible.

An alternative approach to the manual annotation of training data is the synthesis of real

recordings, where the labels are known by design. The methods can be divided into

Fig 1. Orthogonal image slices of a 3D cell culture recording. The images are grouped in two triple-sets, each displaying xy, zy and zx views of the same data set. The

left side shows a slice at the z-depth 40, and the right side shows a slice at the z-depth 70. The images show a varying quality dependent on the region and a reduced

sharpness in the z-axis as a result of the PSF being more spread out in this direction.

https://doi.org/10.1371/journal.pone.0283828.g001
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simulation-based and data-driven approaches. In simulation-based approaches, parametric

models are used to reproduce real characteristics, while in data-driven approaches, algorithms

learn to reproduce real images based on the data itself. Hybrid models combining both

approaches in different steps are also possible.

A common simulation-based tool for generating synthetic cell nuclei images is CytoPacq

[10]. Due to the complex simulation, the generation of large images containing a high number

of nuclei is time-consuming in this tool. Additionally, the online version only allows the place-

ment of a limited number of nuclei. Since the program was not designed to generate large 3D

cell structures, relevant characteristics like the deterioration of the image quality in deeper layers

are not simulated. Stegmaier et al. [11] introduced a simulation-based method for the synthesis

of 3D+t cell data. The main component of the method is a simulation of the nucleus positions

and the corresponding cell stages. First, cell nuclei are extracted from synthetic time-lapse

images and inserted in an empty image. In the subsequent acquisition simulation, a depth-

dependent linear brightness decay, a point spread function, and noise are applied to the image.

Data-driven approaches mainly rely on generative adversarial networks (GANs) [12],

where two networks are trained in a competitive manner. A generator network attempts to

generate data samples to fool a discriminator network, which in turn attempts to distinguish

the generated samples from real samples. The introduction of the Cycle-GAN [13] enables the

use of unpaired images to learn the transformation between two image domains, i.e., no

matching image pairs between the two domains are needed. For the transformation between

label images and real images, one no longer needs exact segmentations corresponding to the

real images, but random labels can be used.

Fu et al. [14] applied the Cycle-GAN to create synthetic training data for a 3D segmentation

network. Synthetic label images are generated and afterwards transformed for the synthesis of

microscopic images. Due to mismatches in the spatial correspondence, an enhanced version,

the spatially constrained Cycle-GAN, is introduced. A disadvantage of their method lies in the

2D-based transformation. The 3D label image is transformed layer by layer and afterwards

reassembled, which can lead to hard transitions between the layers. Dunn et al. [15] use syn-

thetic data generated with the spatial constrained Cycle-GAN to train a deep learning segmen-

tation network. It is shown that the network can outperform classical segmentation methods

on heterogeneous data. Han et al. [16] later tested the Recycle-GAN [17], developed for the

transformation of video data, to improve the transitions between layers caused by the 2D

transformations by treating the third dimension as the time axis.

Eschweiler et al. [18] use an adapted Cycle-GAN to transform label images of cell mem-

branes into real images. The transformation is also limited to 2D data. During training, a struc-

ture-aware loss is used to ensure consistency between the label and image data. They also

introduced multiple parametric models to generate synthetic cell membrane labels. Later,

Eschweiler et al. [19] introduced a 3D synthesis method based on a conditional GAN. As posi-

tional information would be lost due to the required patch-based transformation, they propose

a conditional input to encode the positional information of each voxel. They further claim that

the positional encoding function can also control the quality of the generated synthetic images.

While this seems to be true for noise and sharpness, the brightness distribution seems to be

mostly unaffected by the encoding. In order to reduce tiling artifacts, an advanced overlapping

strategy is utilized. However, averaging overlapping areas leads to a reduction in noise.

The current state of the art simulation models suffer from one of two problems. Either the

simulation method is so complex that cumbersome and often non-intuitive parameterization

together with long calculation times are required, or the simulation method is simplified and

therefore does not produce as realistic data. Furthermore, there is no simulation method that

realistically models the reduced brightness and quality in deeper image regions.
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Current data-driven approaches are mostly limited to 2D transformations and are not able

to generate large 3D images with realistic global properties. Only the method introduced by

Eschweiler et al. [19] enables the generation of such 3D images. However, this method relies

solely on the identity loss to achieve structural correlation between labels and synthetic data.

To avoid structural discrepancies, they put great effort into the generation of label data used to

train the GAN by utilizing manual annotations or automatic segmentation.

Both, simulation-based and data-driven approaches have specific weaknesses. Therefore,

we develop a new method for the synthesis of large 3D spheroid data which combines simula-

tion-based and data-driven learning methods (3D Cycle-GAN) into a new hybrid approach.

This allows the use of a simplified simulation while still producing high-quality results. In con-

trast to existing data-driven methods, simulated data is used for the training of the GAN. This

reduces the domain gap and thus minimizes the risk of undesired discrepancies introduced by

the transformation. Furthermore, we introduce a new brightness reduction model that

depends on the image content to realistically model the brightness decay in deeper image

regions. A new measure is presented to evaluate the results of the introduced reduction model.

Furthermore, two measures are used to compare the generated synthetic data to the real data.

Finally, the real data segmentation performance of a deep learning segmentation model

trained with generated synthetic data is tested.

With the synthetic images and labels generated by our method, users can create large data-

sets for training 3D deep learning segmentation models. The synthetic data furthermore allows

the selection of a segmentation model most suitable for the data to be analyzed. Based on the

segmentation of real data, detailed analysis, like the correlation with additionally stained mark-

ers, can be performed.

Materials and methods

Concept

Formerly, the process of data segmenting consisted of selecting a segmentation algorithm and

tuning its parameters. However, as deep learning methods became popular, they mostly

replaced traditional segmentation algorithms. The process then consisted of selecting an

appropriate deep-learning network and manually creating enough training data. Nowadays,

the trend is to synthesize training data, again changing the process of data segmentation. First,

a deep learning network is selected, and then labeled synthetic training data is created to train

the selected model. As the quality of the generated training data greatly impacts the subsequent

segmentation performance, sophisticated synthesis methods are required.

As mentioned, there are two main ways to generate labeled synthetic data: simulation-based
and data-driven. Simulation approaches either suffer from a simplified model generating low-

quality data or a long runtime if a complex simulation model is used. On the other hand, data-

driven approaches mainly use GANs to transform binary label data into real-looking images.

However, such networks often suffer from inconsistencies introduced by the transformation if

the label data does not correspond to the real data [20–22]. For example, additional cells can

be placed during the transformation in case of differing cell densities or changed nuclei shapes

if ellipsoids are used as label data. Therefore, significant effort is needed to generate label data

that matches the properties of the real data. We want to overcome this issue by drastically

reducing the domain gap using simulated data instead of binary label data. For the synthesis of

3D microscopic images, we therefore introduce a hybrid approach based on parametric simu-

lation and data-driven optimization. The procedure can be divided into four parts (see Fig 2):

dataset preparation, prototype generation, imaging simulation, and optimization. A detailed

description can be found in S1 Appendix.
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The pipeline relies on a database containing 3D nucleus images and labels. The data for this

nuclei database is generated during the dataset preparation. Typically a small number of nuclei

is sufficient, which can be manually extracted from real images. Ideally, deconvoluted images

with high resolution are used for this task, as the influence of the microscope optics is minimal

here. In addition, the individual nuclei are easier to annotate in such images. Once the user has

annotated the nuclei, augmentation (rotation, scaling, blur, contrast, gamma, and elastic trans-

formation) is used to further increase the number of nuclei in the database.

The nuclei database is then used during prototype generation to generate a simulated 3D
image showing a 3D cell culture. First, a nucleus prototype is randomly drawn from the nuclei
database. An additional basic augmentation procedure further increases the variability of the

nucleus samples. In contrast to the augmentation in the dataset preparation, this augmentation

is applied on each repetition, making a low runtime crucial. Therefore, only random flipping

and axis swapping are used. During the following nucleus placement, a random position is

sampled and checked for its validity. This ensures that overlaps with other nuclei are avoided

and that the position lies within an optionally provided shape mask, enabling the generation of

a cell culture with a realistic 3D shape. After the validation of the position, the first nucleus is

placed in an empty 3D image.

Following the placement of the first nucleus or in case of an invalid position, the process is

repeated by drawing a new random nucleus prototype from the nuclei database. This process

is then repeated until a given number of consecutive attempts to place new nuclei is reached.

In this case, the process is stopped, and the prototype generation is completed. The number of

consecutive attempts therefore influences the uniformity of the generated sample. With a

lower number (e.g., 50), holes will appear inside the cell culture. A higher number (e.g., 2000)

will lead to an evenly filled cell culture. The cell density of the generated cell culture can also be

adjusted with the parameters of the nucleus placement. The output of the prototype generation
is a simulated 3D image of a cell culture sample and its corresponding 3D label image.

Fig 2. Concept of the data synthesis pipeline. The pipeline consists of four steps: dataset preparation, prototype generation, imaging simulation, and optimization. In

favor of a clear visualization, 3D images are shown as 2D slices.

https://doi.org/10.1371/journal.pone.0283828.g002
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In imaging simulation, the recording process of the microscope is simulated and applied to

the image. One important aspect of confocal imaging is the reduced brightness and quality in

deeper regions of the sample. This effect is modeled by the brightness reduction: for each voxel

(z, y, x) in the synthetic image, a brightness reduction factor b(z, y, x) is calculated. The factor

depends on i(z, y, x), the number of foreground voxels above (z-direction). The foreground is

defined by the shape mask also used in the prototype generation. As different optical clearing

methods can vary in effectiveness [23], the reduction can be tuned by the parameter p. In sum-

mary, the brightness reduction factor b is calculated as follows:

bðz; y; xÞ ¼ maxðminð
iðz; y; xÞ

p
þ 1

� �� 6

; 1Þ; 0Þ: ð1Þ

The intensity of each voxel in the synthetic image is then multiplied by the brightness

reduction factor b.

Following the brightness reduction, the blurring effect of the diffraction-limited optics is

simulated by the PSF image convolution. In this step, the image is convolved with multiple

point spread functions to generate a reduced quality in deeper image regions. The convolution

increases the perceived size of the nuclei. Labels created by manual annotation would therefore

be larger in size compared to the generated ones. To optionally mimic this effect, the size of

the labels can be increased by a PSF label convolution utilizing the same point spread

functions.

After the convolution, downsampling can be applied to the image to match a specific output

resolution. The downsampling mimics the discretization effect by the microscope’s image sen-

sor. The downsampling also allows the PSF convolution to be performed in higher resolution,

increasing the quality. Afterwards, the noise simulation calculates and applies Poisson noise to

the image.

Since not all microscope effects can be modeled in full detail in the imaging simulation, the

generated simulated 3D images differ slightly from the real ones. For example, the noise within

the cell culture is less pronounced than in real images. We therefore utilize a 3D Cycle-GAN as

an optimization method to reduce such differences. For this, the Cycle-GAN receives the simu-
lated 3D image as an input and transforms it to the real domain, resulting in the optimized 3D
image. In contrast to other methods directly transforming binary label masks, the use of simu-

lated data reduces the domain gap. This minimizes the risk of the transformation introducing

unwanted differences between domains, such as the placement of additional nuclei not present

in the label maps [20–22].

Since Cycle-GANs are heavy on GPU memory, the images need to be split into smaller

patches before the transformation. This is not ideal since regional information is lost in this

process, and the independent transformation can lead to different image properties in neigh-

boring patches. Other methods therefore use an auxiliary conditional layer containing regional

information. However, as we use simulated data instead of binary labels, global information

like the brightness distribution is directly contained in the patches. This leads to a more consis-

tent transformation, minimizing the differences between neighboring patches after their indi-

vidual processing.

After the image patches are transformed by the 3D Cycle-GAN the optimized 3D image is

reassembled from the individual patches. Border regions of transformed patches can contain

artifacts due to missing information in convolution operations. As this can lead to hard transi-

tions between the patches, the border regions of the transformed patches are omitted by using

overlapping patches.
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In the following, the term naive is used to describe data generated with the presented simu-

lation pipeline, i.e., without the optimization step.

Synthetic data generation

This section describes the parameters used to generate the naive and optimized image data. In

total, four images were generated. The shape masks for the images were generated with the

automatic mask generator of the pipeline. To fill the nuclei database, a total of ten nuclei were

manually segmented as described in Data set and augmented to create a total number of 320

nuclei. he number of consecutive placement attempts for the prototype generation was set to

1000, and no overlap between the nuclei was allowed. Furthermore, no optional enlargement

of nuclei was used to increase the nuclei distance in the culture.

The brightness reduction parameter p was set to 150, and a single measured PSF was used

for the PSF image convolution. The simulation was performed with a voxel size of

0.9 × 0.122 × 0.122 μm3(z, y, x), which was increased to 1.5 × 0.489 × 0.489 μm3(z, y, x) in the

downsampling step. After the downsampling, Poisson noise was calculated and applied to the

image.

The training data for the optimization network were generated from four real and four

naive images. The network was trained on a NVIDIA RTX A6000 for 7000 epochs requiring a

time of 145h. A detailed description of the network structure and training/inference procedure

can be found in S1 Appendix.

Quality evaluation measures

Evaluation criteria are necessary to check the quality of the generated synthetic images quanti-

tatively and to compare them with real-world images. As the position of nuclei differs between

real and synthetic images, standard evaluation measures like the mean squared error or the

structure similarity index (SSIM) cannot be applied. In this section, we introduce three mea-

sures for comparing our data. TheWasserstein distance calculates the difference between

intensity distributions of generated and real images. The q95 edge quality explicitly compares

the quality and brightness reduction in increasing image depths. Finally, the DET measure

[24] is used to test the real-world performance of segmentation models trained on synthetic

data.

Wasserstein distance. An intuitive way to compare real and synthetic images is to analyze

their intensity histograms. Histograms are frequently used to visualize the intensity distribu-

tions of images. They can thus give information about the noise distribution or how well the

signal is separated from the noise.

As a visual comparison of histograms is not suitable as a quantitative measure, the Wasser-

stein distance [25] is used to calculate the difference between two distributions. To obtain a

more informative output, we propose a novel division of the analyzed images into three

regions: the background outside, the background inside, and the foreground inside the cell

culture. Importantly, this split avoids the dependency of the measure on the ratio of fore-

ground to background signal, e.g., the cell density.

To define the regions, a corresponding label mask is needed. For the naive and optimized

images, the generated label mask is given. For the real images, the segmentation network

trained with synthetic data is used to calculate the label masks. The detailed procedure for cal-

culating the three image regions is described in S2 Appendix.

The Wasserstein distanceW is calculated between the real and naive as well as between the

real and optimized images. The distance is calculated for each image region and each z-slice

separately. Finally, the difference between the real and a completely black image is calculated
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to normalize the Wasserstein distanceW to an output range of [0, 1]. This differenceW(preal,

pblack) is seen as the worst possible result. The normalized distance metricWnorm is then

defined as:

Wnormðpreal; psynÞ ¼ 1 �
Wðpreal; psynÞ
Wðpreal; pblackÞ

: ð2Þ

The distribution of either the naive or the optimized image is given by psyn. With the nor-

malization, a value of 1 indicates the best possible result. It is obtained if the compared distri-

butions are the same.

Edge quality. The reduced quality and brightness in deeper regions of a sample is an

essential aspect of 3D microscopic imaging. Therefore, a new measure is introduced to mea-

sure and compare how well this feature is represented in the generated synthetic data.

The primary source of the deterioration results from light scattering enlarging the PSF,

leading to washed-out structures and a lower sharpness. This can be quantified by the edge

strength of the present image structures. Therefore, the introduced measure for quality deteri-

oration is based on the Sobel edge filter. A 95% quantile is used to summarize the results of the

edge image into a single value:

To extract the edges of the image, each z-slice of the input image is first smoothened by a

Gaussian filter (σ = 3) and subsequently filtered with the Sobel operator. The high σ value

ensures that the resulting edge image is not influenced by noise but focuses on the difference

between foreground and background intensity.

As 3D spheroid cultures are approximately round in shape, objects in the same z-slice are

less occluded if they are located in outer regions. A comparison of complete slices is therefore

not sensible. Thus, the edge image is divided into multiple zn × 100 × 100 px3 sections, where

zn indicates the number of z-slices of the image. For each z-slice i in a section j, the 95% quan-

tile e0.95,j, i of the edge image is calculated.

Due to the roundish shape of the cell cultures, the foreground in each section will start at a

different image depth, making a z-axis alignment between the sections necessary. The normal-

ized z-index dj is calculated based on the z-index with the highest value of e0.95,j, i:

dj ¼ i � arg max
i

e0:95;j;i: ð3Þ

Sections with a maximum value smaller than a threshold tb are discarded as they only show

background signals. Equally discarded are sections whose slice index of the highest value is

greater than tr. The number of remaining sections is given by sn. Finally, the q95 edge quality

measure is calculated for each normalized z-index d:

e0:95;d ¼
1

sn

Xsn

j¼1

e0:95;j;dj
; ð4Þ

where sn represents the number of remaining sections.

Segmentation. A central goal of synthetic data generation is the training of deep learning

segmentation models which can then be used to segment real data. The closer the synthetic

data is to the real data, the better segmentation results can be expected. We therefore train 3D

segmentation networks with the synthesized data and test their performance on real images.

As a basis, we use the model proposed by Scherr et al. [7]. The network structure is adapted to

allow for direct 3D segmentation. As training data, image patches with the size of 32 × 128 ×
128 px3 (z, y, x) are used. Due to the increased memory usage of 3D processing, the batch size
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is reduced to three. The Ranger optimizer is used in combination with an initial learning rate

of 1*10−3. The remaining training settings are consistent with those used in [7].

Three models are trained. The first model Snaive is trained with only naive data, i.e., gener-

ated by the proposed method without the optimization step. The second model Sopti is trained

with only optimized data, i.e., the same data as for the first model, but optimized with the 3D

Cycle-GAN. The third model Snaive+opti is trained with both naive and optimized data. The

models Snaive and Sopti are trained with two synthetic spheroid images, and one additional

image is used for training validation. For the third model, Snaive+opti, four images are used for

training and two for training validation.

Furthermore, the conventional segmentation method TWANG [26], implemented in XPI-

WIT [27], is used to enable a comparison of the deep learning models. Before the segmenta-

tion, the images are filtered by a Gaussian smoothing operator with σ = 1. The pixel spacing

for x and y are set to 1, and spacing in z is set to 2.64 to match the image data. Based on manual

nucleus diameter measurements, σmin and σmax values for seed detection are set to 4 and 9,

respectively, with a step size of 0.5. The key point threshold for the seed detection is tuned

manually to achieve the best performance on the DET score (described later) and is set to 0.15.

Otherwise, the parameters are left unchanged from the ones in the provided example.

To measure the performance of segmentation models, ground truth data of real images is

needed. As the labeling of real 3D data is nearly impossible, the ground truth creation is

reduced to a center point annotation task. A real image region of 32 × 256 × 256 px3 (z, y, y) is

annotated using the 3D Slicer [28] software. The annotations are performed by a person with

labeling experience but limited biological expertise. Afterwards, the labels are verified by a bio-

logical expert to ensure their correctness.

To evaluate the performance of the models based on the center point annotations, the

detection measure introduced in [24] and provided by the cell tracking challenge [5] is used.

The measure provides a combined detection accuracy value. Additionally, the number of false

positives, false negatives, and missed splits are determined, allowing the calculation of the final

detection accuracy. The number of false splits is not explicitly given by the measure, but is

rather included in the false positive count.

Data set

To generate synthetic microscopic images of large 3D cell cultures, a hybrid approach, com-

bining classical simulation and data-driven optimization is used. The data presented in this

section serves as the basis for the development of the synthesis pipeline. It is furthermore used

as training data for the data-driven optimization and to evaluate the similarity of the synthe-

sized data to the real data. We want to emphasize that no special cell culture protocol is

required for image synthesis with the proposed method.

As real-world data, spheroid cultures of MDA-MB-231 human breast cancer cells, grown in

96 well plates, are used. The spheroids are stained with DAPI. Imaging was performed with a

confocal microscope (Leica Microsystems, Mannheim, Germany; TCS SP8) with an HC PL

APO 20 x/0.75 objective. Images were taken at a resolution of 1024 × 1024 px2 with a step size

of 1μm. This results in a voxel size of 0.45 × 0.061 × 0.061 μm3 (z, y, x). The images range in

their z-depth from 77 to 120 px. Further information about the protocol is provided at [29].

For the extraction of nuclei prototypes, one spheroid was separately recorded with a higher

magnification to obtain a voxel size of 0.45 × 0.061 × 0.061 μm3 (z, y, x). This image was decon-

volved using the DeconvolutionLab2 ImageJ plugin [30]. Afterwards, ten individual nuclei are

annotated using the 3D Slicer [28] software by a person with labeling experience but limited

biological expertise.
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A data set containing four real and four naive 3D images is used to train the aforemen-

tioned optimization. The naive images are created with the same resolution and cell culture

shape as their real counterparts. Due to the generation process of the naive images, the posi-

tions of the nuclei differ from those of the real images. The same four real and synthetic images

are used for the quality evaluation as described in the methods.

Statistical analysis

The later shown results of the normalized Wasserstein distance and the q95 edge quality mea-

sure are statistically analyzed, as described in the following. The results of naive and optimized

images for each region and z-slice are compared. As the optimized images are based on naive

images, and both are compared to the same real images, the samples are considered to be

paired.

To test whether the requirements of the t-test are fulfilled, the distribution of the samples is

analyzed. Based on the central limit theorem, the result samples of the q95 edge degradation

measure should follow a normal distribution. However, in some cases, the distribution visually

differs from the normal distribution. This finding was verified using the Shapiro–Wilk test,

which shows that the null-hypothesis (the data is normally distributed) can be significantly

(p<0.05) rejected in five of six cases. In the case of the normalized Wasserstein metric, the

null-hypothesis of this test can be rejected in 14 of 18 cases. Therefore, the nonparametric Wil-

coxon signed-rank test is used with the one-sided alternative hypothesis to compare the results

of the two measures statistically. All p-values are calculated using the exact method. Compared

to the t-test, the Wilcoxon signed-rank test is more conservative. The statistical analysis was

performed using the python package scipy with the functions scipy.stats.shapiro (Shapiro-Wilk

test) and scipy.stats.wilcoxon (Wilcoxon signed-rank test).

Results

Intensity distributions

For a visual comparison between real, naive, and optimized images, corresponding 2D slices

are shown in Fig 3. The upper row shows x − y and the lower row y − z slices. Inside the spher-

oid, the naive image looks sharper and less noisy than the real image. Especially in the darker

center region, the simulation misses the increased signal spreading of the real data. In the side

view, the simulated nuclei look smaller and more flat compared to the real data. The optimized

image shows considerably more noise inside the spheroid region and a decreased sharpness

compared to the naive image, which renders it more realistic. The nuclei in the side view

appear larger and less flat compared to the naive data. The shapes of the nuclei in the opti-

mized image mostly match the ones in the naive image, although they appear more blurred.

Only in a few cases does a nucleus’s shape slightly differs between naive and optimized image.

There seem to be no object mismatches, e.g., additionally placed or removed objects. The

shape of the synthetic cell culture is nearly identical to the real counterpart. Furthermore, the

brightness reduction of the real image is well represented in both the naive and the optimized

image. As in the real image, the nuclei brightness does not depend on the distance to the bor-

der but rather on the amount of structure above.

The results of the Wasserstein distance analysis are shown in Fig 4. The normalized distance

of naive and optimized images are given for three image regions: background outside and

inside the cell culture and foreground. Additionally, the z-slices are grouped into the regions

upper, middle, and lower with intervals of [0, 41), [41, 82), and [82,1) px, respectively.

The difference between the real and naive data is the smallest for the background region

outside the spheroid. The median scores for the upper, middle, and lower image parts are 0.89,
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0.9, and 0.86, respectively. The optimization of the naive data significantly improves the score

with median values between 0.94 and 0.96 (exact Wilcoxon test: w = 46, p<.001, n = 156 j

w = 195, p<.001, n = 157 j w = 0, p<.001, n = 48).

The overall largest difference between real and naive data exists in the background region

within the spheroid. In this region, the median values lie between 0.57 and 0.6. However, the

optimization significantly improves the score for this region with lowest and highest median

values of 0.84 and 0.93 (exact Wilcoxon test: w = 545, p<.001, n = 148 j w = 0, p<.001,

n = 156 j w = 0, p<.001, n = 45). The larger scatter of the results, especially in the upper part of

the image, is noticeable.

Fig 4. Normalized Wasserstein metric between intensity distributions of real and naive (orange bars, Naive) and

real and optimized data (blue bars, Optimized). The measure is calculated for three image regions: background

outside and inside the spheroid, and foreground. The images are divided into an upper, middle and lower part. A value

of one indicates a perfect result, while a value of zero indicates a bad result.

https://doi.org/10.1371/journal.pone.0283828.g004

Fig 3. 2D slice of a real, naive and optimized image (top) and corresponding enlarged orthogonal views (bottom). While the shape of the cell culture roughly matches

between real and synthetic data, the positions of the nuclei are different due to the generation process of the synthetic data.

https://doi.org/10.1371/journal.pone.0283828.g003
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While the naive data in the two background regions show relatively consistent results

between the image’s upper, middle, and lower portions, the results for the foreground

region worsens for deeper image sections. The median values in this region are 0.76, 0.68,

and 0.57 for the upper, middle, and lower image parts, respectively. The scatter of the indi-

vidual results is larger compared to the two background regions. The optimization also sig-

nificantly reduces the difference to the real data in the foreground region (exact Wilcoxon

test: w = 3593, p<.001, n = 164 j w = 0, p<.001, n = 159 j w = 0, p<.001, n = 54). The

median score for the upper, middle and lower image sections is 0.9, 0.94, and 0.75, respec-

tively. The optimization thus substantially improves the results in all regions and all image

depths.

Brightness and quality degradation

For the comparison of brightness reduction and quality in occluded image regions between

real, naive, and optimized images, the q95 measure is used. Fig 5 shows the results of the paired

analysis between real and naive and real and optimized images. The results of four image pairs

are grouped based on their normalized z-index. The groups are the upper, middle, and lower

regions with the intervals of [0, 41), [41, 82), and [82,1) px, respectively.

The outcome shows that the difference between real and naive data gets smaller in deeper

regions. While the upper region shows a median value of 0.01, the middle and lower regions

have medians of 0.0033 and 0.0023, respectively. The interquartile range for the distance

between real and naive data is also getting smaller for deeper image regions.

The analysis shows that the optimization improves the scores of the naive data. The opti-

mized data reduces the difference to the real-world data by more than half compared to the

naive data for the upper image region (median score 0.0037). The difference in the middle

image region is still reduced by one-half compared to naive data but shows a greater overlap

when comparing the interquartile distance. In the lower image region, the results of naive and

optimized data are nearly identical. Based on the exact Wilcoxon test, the optimization signifi-

cantly improves the results in all image regions (w = 13530, p<.001, n = 164jw = 9123, p
<.001, n = 149jw = 417, p = .002, n = 32).

Fig 5. Difference in q95 edge quality between real and naive (orange bars, Naive) and real and optimized data

(blue bars, Optimized). Four corresponding images are compared, and the results for the normalized z-indices are

grouped into the upper, middle, and lower region.

https://doi.org/10.1371/journal.pone.0283828.g005
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Segmentation performance

Fig 6 shows the real data performance of segmentation models trained on the naive (Snaive),

optimized (Sopti), and the combination of both data (Snaive+opti). Additionally, the performance

of the classical segmentation algorithm TWANG is given. The left graph shows the detection

accuracy (DET), and the right graph shows the number of false positive and false negative

detections and the number of required splitting operations.

The classical segmentation algorithm TWANG achieves a DET accuracy of 0.721 with 71

false positive, 43 false negative, and 12 missed splits. By using a deep learning segmentation

model (see Methods/Segmentation) trained on only naive data (Snaive), a DET accuracy of

0.815 can be achieved. The model Snaive makes 220 false positive, zero false negative detections,

and 30 missed splits. Using optimized instead of naive data (Sopti) increases the DET accuracy

to a score of 0.925. The model Snaive gives 66 false positive, 1 false negative detections, and

misses 15 splits. The combination of both naive and optimized data for training (Snaive+opti)

can only slightly increase the DET accuracy (0.926). The number of false positive and false neg-

ative detections is 63 and zero, respectively. The number of missed splits is 17.

Discussion

The results of the Wasserstein metric show that for the region “background outside the spher-

oid”, the simulation is already able to produce data similar to the real images. This indicates

that the simplified noise generation process is a good approximation to the real data, at least

for this region. However, the analysis also shows that the simulation lacks realism within the

cell culture. This matches the visual impression of the data shown in Fig 3, where naive data

looks sharper and lacks additional noise present inside the cell culture. One explanation for

this is the PSF used for the simulation. As the beads used to measure the PSF are only embed-

ded in a homogeneous gel, the measurement process does not include the effect of abbrevia-

tions caused by the different components of a cell culture. Therefore, the measured PSF causes

less spreading compared to the real PSF. Experiments were performed to embed fluorescent

beads inside a cell culture, but due to high autofluorescence signals and clumping of beads, no

valid measurement could be performed.

The Wasserstein metric shows that the optimization can improve the naive data in all

image regions. As can also be seen in Fig 3, the greatest improvements are obtained in the

Fig 6. Performance of segmentation models on real data. The models are trained on naive and optimized image

data. The left figure shows the detection accuracy (DET-Score), while the right figure shows the individual components

of the metric: the number of false positive detections (FP), the number of false negative detections (FN), and the

number of splitting operations (SplitOps).

https://doi.org/10.1371/journal.pone.0283828.g006
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regions within the cell culture. This indicates that the GAN can compensate the effects of the

ideal PSF used in the simulation. Based on the image slices, the signal spreading introduced by

the GAN seems not to be directly influenced by the brightness of the nuclei. The nuclei look

equally sharp in the outer region and the darker inner region, which may be improved by

using a space variable PSF during simulation. The variability could be coupled to the bright-

ness reduction function and achieved by Gaussian filtering of the original PSF.

Importantly, the optimization seems to not change the shapes of the simulated nuclei. This

is important, as otherwise the shapes of the labels would not match the image data. Especially

Cycle-GAN-based synthesis methods, which directly transform ellipse-shaped label maps to

image data, suffer from this problem. Additionally, based on visual comparison, no additional

nuclei are placed or removed by the optimization. This indicates that the reduced domain gap

by using simulated image data instead of label maps leads to better results.

The analysis of the edge degradation shows that the optimized images have a greater simi-

larity to the real images than the naive images. This also corresponds to the visual impression

(see Fig 3). Due to the low noise inside the spheroid and the reduced signal spreading, the

edges in the naive image seem to be more pronounced compared to real and optimized images.

However, by analyzing the raw values of the measure instead of their difference to the real data

(see S1 Fig), it can be seen that the values of the naive data are consistently lower than those of

the real data. This is in contrast to the aforementioned visual impression, as by the raw mea-

sure, the edges of the naive image are weaker. One explanation for this discrepancy is the gen-

erally lower brightness of the naive image compared to the real image. Interestingly, the

optimization increases the intensity of the nuclei and thus also increases the edge strength. As

the rate of reduction is nearly identical between naive and optimized data (see S1 Fig), it can

be assumed that the optimization shows the same brightness reduction as the naive image but

with a globally increased intensity. This means that no extra conditional channel featuring

brightness information is required for the patch-based training and inference of the Cycle-

GAN.

As depicted in Fig 5, the distance between the naive/optimized and real data decreases for

deeper image regions due to the generally decreasing raw values of the measure. As the values

get lower, the difference between them will also get smaller. This can be avoided by calculating

the percentage deviation to the real data values.

Based on the DET accuracy measure (Fig 7), the segmentation model trained only on naive

data (Snaive) can already outperform a classical segmentation algorithm on real image data. In

contrast to the classical segmentation algorithm TWANG, the model Snaive delivers fewer false

negative detections but considerably more false positive detections. As can be seen in Fig 7, Sna-

ive often detects the background signal as foreground, which explains the high number of false

positive detections. As the naive data does not feature realistic noise in background regions

inside the spheroid, Snaive might not be able to distinguish high noise from the actual fore-

ground signal. The seed detection threshold was reduced to reduce the high number of false

positive detections of the TWANG algorithm, but this showed no improvement.

The performance of the deep learning segmentation model can be greatly increased by

using optimized data instead of naive data (Sopti), illustrating that the optimization is an

important step in the pipeline. As can be seen in Fig 3, the optimized data shows an increased

noise level inside the background region of the spheroid. In particular, this improves the num-

ber of false-positive detections since non-specific background signals are no longer recognized

as foreground. (see Fig 7). Additionally, the use of optimized data reduces the number of

merges, resulting in fewer required splitting operations.

The combination of naive data and optimized data for the training of the segmentation

model (Snaive+opti) only results in minimal improvements in the segmentation performance.
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The difference may be neglected as the performance is only measured on a single training run.

The results of all segmentation models might be improved by hyperparameter optimization, as

the parameters are set based on empirical values.

As shown, the method allows the generation of large 3D training datasets with minimal

annotation effort, usable for the training of segmentation models. In this case, only ten nuclei

were manually extracted from a high-resolution image. The otherwise required difficult, labo-

rious, and very time-consuming annotation of 3D image data is exchanged with computation

time and a one-time simulation parameter optimization.

With the augmentation and random placement of nuclei prototypes, a high variation in

nuclei shape and positioning can be achieved. However, special variations, e.g., mitotic cells

not being present in the nuclei database, will not be represented in the generated synthetic

data. This can lead to segmentation errors if such objects are present in the images to be seg-

mented. However, this also holds true for conventionally trained segmentation networks.

No special cell culture preparation is necessary to generate synthetic images with this

method. While the proposed method is evaluated on images of spheroid cell culture models,

Fig 7. Zoomed 2D slices of a real image (upper left, Input), the corresponding ground truth (upper, middle, center point annotations) and segmentation results.

As segmentation methods, the classical algorithm TWANG and deep learning algorithms trained with naive, optimized, and the combination are used as indicated. The

center point annotations are enlarged by five repeated morphological dilation operations with a diamond shaped structuring element. The size of the center points

therefore corresponds to their distance to the shown slice.

https://doi.org/10.1371/journal.pone.0283828.g007
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other models, such as organoids or tissue samples, can also be synthesized. However, a limita-

tion are distinct cell arrangements, e.g., present in the gut section, which cannot be replicated

by the random nuclei positioning during the simulation. Furthermore, samples with only

sliced nuclei, e.g., thin tissue sections, cannot be generated with this method. However, the

annotation effort and complexity of such data is comparable to that of regular 2D images.

Therefore, we think one is faster manually annotating this data than using the proposed syn-

thesis method.

Conclusion

In the past, conventional algorithms were first selected for segmenting new data, and then

their parameters were optimized. With the increasing popularity of deep learning algorithms,

the process changed and consisted of selecting a segmentation network and manually annotat-

ing a sufficient amount of training data. However, the possibility of creating realistic synthetic

datasets again changes the process as the manual annotation can be skipped. Now a segmenta-

tion model is selected, and synthetic training data is generated.

In this work, we presented a new method for the synthesis of large 3D microscopic image

data. We used a hybrid approach consisting of a simulation followed by a data-driven optimi-

zation. The simulation allows adjusting settings like cell density or the strength of the bright-

ness decay. To feature a realistic brightness reduction in deeper image regions, we introduced

a new reduction model which is based on the image content. With the introduced quality deg-

radation measure, we could show that the new reduction model produces data with a similar

decay compared to the real data.

Using the Cycle-GAN as a post-processing method, e.g., transforming simulated data to

real data, we could show that no additional channel is required to introduce global properties

like brightness distributions. The quantitative comparison of synthetic and real data showed

that the deep-learning-based optimization overall improved the quality of the naive images,

especially in the region inside the cell culture. Based on visual comparison, shape differences

of nuclei between naive and optimized data are minimal, and neither objects are removed nor

arbitrary ones inserted. We furthermore proved that the generated data can be used to train a

deep learning segmentation model that can outperform a classical segmentation method.

In the future, we plan to use a physically motivated method for the placement of nucleus

prototypes to achieve a more realistic orientation of nuclei and to directly obtain realistic cell

cultures shapes. Furthermore, it is planned to investigate in the additional synthesis of nucleus

prototypes to further increase the diversity.
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