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a b s t r a c t

Clustering and regression are two of the most important problems in data analysis and
machine learning. Recently, mixed-integer linear programs (MILPs) have been presented
in the literature to solve these problems. By modelling the problems as MILPs, they
are able to be solved very quickly by commercial solvers. In particular, MILPs for
bivariate clusterwise linear regression (CLR) and (continuous) piecewise linear regression
(PWLR) have recently appeared. These MILP models make use of binary variables and
logical implications modelled through big-M constraints. In this paper, we present
these models in the context of a unifying MILP framework for bivariate clustering and
regression problems. We then present two new formulations within this framework, the
first for ordered CLR, and the second for clusterwise piecewise linear regression (CPWLR).
The CPWLR problem concerns simultaneously clustering discrete data, while modelling
each cluster with a continuous PWL function. Extending upon the framework, we
discuss how outlier detection can be implemented within the models, and how specific
decomposition methods can be used to find speedups in the runtime. Experimental
results show when each model is the most effective.
© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Two of the most common problems in the fields of data analysis and statistics are data fitting and classification. Such
roblems allow the interpolation and extrapolation from discrete data by means of predicting future trends and classifying
ata points based on their inherent qualities. Regression analysis is the most common form of data fitting, and is used to
stimate the relationship between the dependent variables and the independent variables. Linear regression attempts to
odel the data with a linear function.
Classification is usually achieved by clustering the data. Clustering is the process of partitioning a set of objects (data)

nto clusters, such that objects in the same cluster share some similarity, and are dissimilar to objects in different clusters.
hat is, the goal of clustering problems is to maximise the homogeneity within each cluster, while also maximising
he heterogeneity between different clusters. From a machine learning perspective, clustering is a form of unsupervised
earning, since inferences must be drawn from input data without labelled responses. In general, clustering is considered
ne of the most difficult and challenging problems in the field of machine learning. Applications of clustering are
ound in the fields of biology, medicine, business and computer science [54]. Perhaps the most famous approach to
lustering is the k-Means approach, where data points are assigned to the nearest clusters, whose centres are iteratively
pdated to the mean position of the inherent data points [29]. Recent approaches have used clustering approaches
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ithin multivariate data modelling algorithms [49], and utilised branch-and-bound approaches alongside semi-definite
rogramming relaxations to solve very large instances [41].
Clustering problems can be divided into two classes [22]:

1. Each cluster is considered as an area of high density of the original data set distribution;
2. Each cluster is considered as a subset of the whole set of data points, and each cluster can be separately modelled

with a given function. In these instances, one is interested in the classification and estimation within each cluster.

Problems within the first category group the data into different clusters. However, this is usually an exploratory first
tep in the data analysis, since no further information or characteristics are immediately given from the data within each
luster. While smaller data sets run the risk of being overfitted, post cluster analysis can be performed on larger data sets.
Clusterwise linear regression (CLR) problems fall into the second category. The aim of CLR is to simultaneously

luster objects while performing linear regression on each of the clusters [44,45]. Early attempts to solve the CLR
roblem used heuristic methods, such as maximum likelihood [12] and simulated annealing [13]. Recently, Bertsimas
nd Shioda [6] approached the problem from an integer optimisation perspective by constructing a software package
alled CRIO (classification and regression via integer optimisation), which gives promising results compared to heuristic
pproaches. Park et al. [40] presented various heuristic and exact methods to solve the generalised CLR problem (which
llows each data point to have multiple observations), including mathematical programming methods and adapted k-
eans approaches. Angün and Altınoy [1] presented a nested algorithm to solve the CLR problem which decomposes

o a mixed-integer linear programming (MILP) model when the number of clusters is fixed. Recently, Joki et al. [24]
tilised support vector machines for regression within a difference of convex approach for CLR, resulting in a constrained
onsmooth optimisation problem, while da Silva and de Carvalho [11] introduced a weighted CLR method which is robust
gainst overfitting. In general, typical approaches to CLR in the literature consider high-dimensional data points with many
eatures.

As opposed to standard linear regression models, fitting data with a continuous piecewise linear (PWL) function is
lightly more complex. PWL regression (PWLR), also known as segmented regression or linear spline regression, is the
roblem of fitting a (continuous) PWL function to discrete data. A continuous PWL function consists of a given number
f linear segments which intersect at breakpoints. PWLR allows us to predict data trends and make observations based
n modelled data which does not necessarily adhere to a strict singular linear relationship.
Early attempts at PWLR used information provided by the convex hull of the data to find PWL functions in polynomial

ime [19,20,23]. Another typical approach has been the use of dynamic programming (DP) to solve the PWLR problem,
ncluding the early approach by Bellman and Roth [2] whereby breakpoints are selected from a grid of uniformly
istributed candidate points. Recent DP approaches have implemented an adaptive refinement approach on the candidate
reakpoints [18], as well as robust approaches to deal with noise in the data set [7].
The PWLR problem has recently been modelled as a MILP problem, with binary variables assigning data points to their

ssociated linear segments and big-M constraints working to model logical implications [27,42]. Recently, Warwicker and
ebennack [52] showed that the MILP approach presented by Rebennack and Krasko [42] is preferable on most instances
o the similar approach presented by Kong and Maravelias [27] over three different distance metrics and a number of
ata sets with differing landscapes. Typical PWL modelling works consider bivariate data, since modelling PWL functions
n higher dimensions is prohibitive and only heuristic or approximate non-linear methods exist to date (see e.g., [14,15]).

The MILP models for bivariate CLR and PWLR fit into the same monolithic framework, where binary variables are used
o assign data points to their linear functions. In this paper, we extend upon this framework by introducing the clusterwise
iecewise linear regression (CPWLR) problem. CPWLR is another problem in the second category of clustering problems,
here each cluster is modelled with a continuous PWL function. This allows for a greater level of precision, since it is not
ecessarily the case that each cluster adheres to a strict linear relationship. Since CPWLR can be seen as an advancement
f both the CLR and PWLR problems, all applications from these two areas benefit from models for CPWLR, including
upermarket forecasting [40], pavement condition prediction [25,30], utilities networks [17,33], classification [6,32,55],
nd combinatorial optimisation [38,39]. DeSarbo and Cron [12] also suggest possible applications of CLR in marketing,
sychological analysis and political science, for which CPWLR would present more accurate models.
For CPWLR, the measure of similarity within each cluster can be given by the objective of the PWLR problem. We

im to model the bivariate CPWLR problem within our overarching MILP framework, such that standard solvers (such
s ILOG-Cplex) can be employed to solve the problem quickly and efficiently. The MILP simultaneously clusters the
ata and fits each cluster with a PWL function. The initial model we present in this paper relies on three assumptions:
irstly, that the clusters are ordered. Formally, we seek a partition of the data set {x1, . . . , xI} into K ≥ 1 clusters, where
C1 = {x1, . . . , xC1}, C2 = {xC1+1, . . . , xC2}, . . . , CK = {xCK−1+1, . . . , xCK }, and xC1 < xC2 < · · · < xCK = xI holds. Secondly, we
assume that each data point has only one observation, and thirdly, that the number of clusters (and the total number of
linear segments) is known in advance. That is, we present a MILP for ordered, non-generalised, non-hierarchical CPWLR.

Throughout this paper, we present MILP models for the (bivariate) CLR problem [40], the ordered CLR problem, the
PWLR problem [42], and the CPWLR problem. Each MILP formulation builds on the previous models by introducing
constraints to bypass the difficulty in modelling the extra requirements. Furthermore, we show how each model can
be adapted to remove outliers during the solution process, and how combinatorial Benders decomposition [8] can be
used to take advantage of the special structure of the models in order to find optimal solutions quicker.

This paper has the following main contributions:
16
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• We present a unified MILP framework for bivariate clustering and regression problems, which generalises existing
models from the literature using a consistent structure;

• We introduce two new programs within this framework, one for an ordered variant of CLR, and an innovative
formulation for CPWLR. The formulation for CPWLR simultaneously clusters the data and performs piecewise linear
regression on each of the clusters;

• We discuss how outlier detection and decomposition methods can be implemented to bring improvements in
robustness and efficiency to the models presented within the framework;

• We present a comparison of the models on a series of real-world data sets with differing landscapes, drawing
conclusions on situations in which each of the models is advantageous.

The rest of the paper is structured as follows. In Section 2, we introduce the existing MILP models in the literature. We
present the formulations for CLR, the newly introduced ordered CLR (oCLR), and the existing model for PWLR, discussing
how the formulations are related. In Section 3, we introduce the first MILP model for the CPWLR problem. This model
takes inspiration from the previous models and allows the simultaneous clustering and piecewise linear regression of
discrete data. In Section 4, we discuss how to implement outlier detection into the MILP models, and how combinatorial
Benders decomposition can be used to bring speedups to the runtime. We present experimental results in Section 5, and
we finish with some conclusions and ideas for future work.

2. Existing mixed-integer linear models

In this section, we discuss the existing mixed-integer linear models for clusterwise linear regression (including an
ordered variant) and piecewise linear regression from the literature.

Throughout this paper we use the following notation: [n] to denote the set {1, . . . , n}. For each problem, we are given
a set of I data tuples, of the form (Xi, Yi) ∈ R2, i ∈ [I], and we are looking to model this data using functions defined over
the interval [X, X]. We can assume without loss of generality that:

−∞ < X = X1 ≤ · · · ≤ Xi ≤ Xi+1 ≤ · · · ≤ XI = X < ∞.

The standard model for linear regression can be represented as a MILP in the following way (see e.g., [46]).

LR : min
I∑

i=1

ξi

s.t. Yi − (cXi + d) ≤ ξi ∀ i ∈ [I]
(cXi + d) − Yi ≤ ξi ∀ i ∈ [I]

ξi ≥ 0 ∀ i ∈ [I]
c ∈ [C, C], d ∈ [D,D]

This model fits a linear function of the form y = cx + d (with slope c and intercept d) such that the sum of absolute
errors between the regression function and the data points (i.e., the residuals, each calculated by ξi) is minimised. The
extreme values for the slope (i.e., C and C) can, for example, be calculated by interpolating between every pair of data
points. The corresponding values for the intercept (i.e., D and D) can then be calculated by using the extreme values of
the slopes to calculate the maximal and minimal possible values for the x-intercept of segments (see Section A of the
Appendix, or, e.g., [42] for detailed derivations for these values).

2.1. Clusterwise linear regression

We first present a MILP model for the clusterwise linear regression (CLR) problem, in which data is simultaneously
clustered and each cluster is modelled with a linear regression function. This model forms the basis of our universal
framework, and is based on the model presented by Park et al. [40] (yet assumes only one observation from each data
point, i.e., it is non-generalised). The model returns B optimal CLR functions for the data (i.e., one linear segment for each
of the B clusters), subject to the given distance metric. We introduce the following variables, which are used throughout
each of the models in our framework presented in this section.

Continuous variables
• cb, the slope of segment b ∈ [B];
• db, the intercept of segment b ∈ [B];
• ξi, absolute error at data point i ∈ [I].

Binary variables
• δ , set to 1 if data point X (i ∈ [I]) is associated with segment b ∈ [B];
i,b i
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That is, the model returns B affine functions, y = cbx + db (for b ∈ [B]), defined by their slopes and intercepts. We
present the model in formulation (1).

(1) CLR : min
I∑

i=1

ξi (1a)

s.t. Yi − (cbXi + db) ≤ ξi + M1
i (1 − δi,b) ∀ i ∈ [I]; b ∈ [B] (1b)

(cbXi + db) − Yi ≤ ξi + M1
i (1 − δi,b) ∀ i ∈ [I]; b ∈ [B] (1c)

B∑
b=1

δi,b = 1 ∀ i ∈ [I] (1d)

ξi ≥ 0 ∀ i ∈ [I] (1e)

cb ∈ [Cb, Cb] ∀ b ∈ [B] (1f)

db ∈ [Db,Db] ∀ b ∈ [B] (1g)

δi,b ∈ {0, 1} ∀ i ∈ [I]; b ∈ [B] (1h)

The objective function of the CLR problem is given by constraint (1a). For the given example, we present the sum of
bsolute differences metric. The contribution towards the value of the objective function by each data point is evaluated
n constraints (1b)–(1c). Constraint (1d) ensures that each data point is only associated to one linear segment. Finally,
onstraints (1e)–(1h) give the domains of the variables. Note that the formulation itself does not ensure the ordering of
he data points, and hence clusters may consist of disjoint sets (i.e., non-continuous sets in x-space).

The model also includes the big-M constants M1
i , for each i ∈ [I], which should be set as tightly as possible for

fficient performance. In order for constraints (1b)–(1c) to hold, they should be greater than or equal to the largest possible
ifference between Yi and any linear segment (i.e., M1

i ≥ maxb∈[B] |Yi − (cbXi + db)|). Hence, we can set:

M1
i = max{|Yi − CXi − D|, |Yi − CXi − D|, |Yi − CXi − D|, |Yi − CXi − D|} ∀ i ∈ [I].

The MILP formulation introduced by Park et al. [40] also includes a constraint which requires each cluster to have a
inimum number (n ≥ 1) of data points associated with it:

I∑
i=1

δi,b ≥ n ∀ b ∈ [B].

A different mixed-integer model for CLR has also been presented by Bertsimas and Shioda [6], which first classifies
he data into a pre-defined number of clusters, before assigning each cluster with regression co-efficients. However, due
o the non-linearity of this approach, we consider the MILP presented in formulation (1) (inspired by Park et al. [40]) as
he canonical MILP for CLR within the framework we present.

.2. Distance metric

Formulation (1) provides optimal CLR functions for the given data set, subject to the chosen objective function. There
re many objective functions in the literature to measure the closeness of clusters and the fit of the PWL function. For
ost applications of CLR and PWLR problems, the absolute vertical distance between the data points and their associated

inear segments (i.e., the values ξi, i ∈ [I]) contributes to the objective function.
Constraint (1a) presents the objective function for the sum of absolute differences metric (also referred to as the L1 norm

n the literature). If the term being summed is replaced by ξ 2
i , then this results in the sum of squared differences metric (L2

orm), which is commonly used in regression problems. However, we note that this results in formulation (1) becoming
(quadratically constrained convex) mixed-integer non-linear program (MINLP). These two metrics (which take each
ata point into account when calculating the objective function) are less prone to outliers, and are generally preferred in
ealistic settings due to the quality of their approximations. However, due to their complexity, the time required to find
n optimal fit (with regard to the given metric) is significantly increased in comparison with ‘simpler’ metrics, even more
o for the sum of squared differences due to the non-linearity in the objective function.
For the use of the maximum absolute difference metric (L∞ norm), we adapt the constraints (1a)–(1c) and the variable

omain in constraint (1e) as such:

min ξ

s.t. Yi − (cbXi + db) ≤ ξ + M1
i (1 − δi,b) ∀ i ∈ [I]; b ∈ [B]

(cbXi + db) − Yi ≤ ξ + M1
i (1 − δi,b) ∀ i ∈ [I]; b ∈ [B]
ξ ≥ 0
18
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Fig. 1. An example of clusterwise linear regression (CLR) with three clusters on the DebrisFlow data set [28,34]. Different clusters are marked by
ifferent shapes.

his metric seeks to minimise the distance to the farthest outlier point, and hence is heavily susceptible to outliers in the
ata set. However, finding an optimal ξ with regards to this metric takes less time in comparison to the two previous
etrics, and often provides good approximations to the data in the case of data sets without outliers.
We can also consider the maximum absolute clusterwise difference metric, which aims to minimise the maximum

bsolute difference from each cluster.

min
B∑

b=1

ξb

s.t. Yi − (cbXi + db) ≤ ξb + M1
i (1 − δi,b) ∀ i ∈ [I]; b ∈ [B]

(cbXi + db) − Yi ≤ ξb + M1
i (1 − δi,b) ∀ i ∈ [I]; b ∈ [B]

ξb ≥ 0 ∀ b ∈ [B]

his metric is specific to CLR and CPWLR applications. In this setting, each data point for a given segment b is within a
aximum distance of ξb to the associated linear segment (for b ∈ [B]). One advantage of this approach (alongside the
aximum absolute difference metric) is that by translating each resulting linear segment b ∈ [B] above and below by ξb,
e can form an approximation of the interior of the convex hull formed by the data points associated to each cluster,
nd provide over- and underestimators for each cluster. Regarding the performance of this metric, it typically provides
etter approximations than the maximum absolute differences metric (although it is slightly slower), and any outlier data
oints will only affect the approximation of the cluster they are assigned to.
In order to present an application of CLR to a real world data set, Fig. 1 shows the result of formulation (1) (using the

um of absolute differences metric) applied to the DebrisFlow data set, which is taken from a case study of postfire debris
low hazard management after a wildfire [28,34]. The goal is to predict the cost of the damage based on the volume of
ostfire debris flow.
The result fits the data very well for the given number of clusters (B = 3). However, the two highlighted data points

ave been assigned to the triangle-marked cluster. That is, data points may be misclassified based on their proximity
o other clusters, as visually it appears the two points are a more natural fit for the circle-marked cluster. We note
hat this effect is dependent on the selection of the objective function; in particular, objective functions that penalise ill
itting models harshly (e.g., sum of squared differences) will reduce such occurrences of possible misclassification. Since
ormulation (1) aims at providing an analytical description of the data set, any new data points can be used to refine the
odel (although it must be re-solved in each case).

.3. Ordered clusterwise linear regression

The CLR model presented in formulation (1) does not take into account the ordering of the data points, and there are
ew limitations on the assignment of the data points to clusters. Hence, the solve times are very long. To combat the long
olve times, we can implement an ordering of the data points such that adjacent data points are either in the same or
djacent clusters. Due to the inclusion of such symmetry-breaking constraints on the binary variables, there is a modelling
dvantage in that solutions can be found significantly quicker. Although this comes at the cost of solution quality, it also
llows for the clusters to be more well-defined around a given area.
We implement the ordering constraints for the data points from the MILP model for continuous PWLR presented

y Rebennack and Krasko [42]. Formulation (2) presents the first MILP model for ordered clusterwise linear regression
19
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oCLR), using the sum of absolute differences metric:

(2) oCLR : min
I∑

i=1

ξi (2a)

s.t. (1b)–(1d) (2b)

δi+1,b+1 ≤ δi,b + δi,b+1 ∀ i ∈ [I − 1]; b ∈ [B − 1] (2c)

δi+1,1 ≤ δi,1 ∀ i ∈ [I − 1] (2d)

δi,B ≤ δi+1,B ∀ i ∈ [I − 1] (2e)

(1e)–(1h) (2f)

Constraints (2c)–(2e) ensure the ordering of the data points amongst the linear segments, ensuring that adjacent data
oints are either associated to the same linear segment, or consecutive linear segments. Constraints (2d) and (2e) ensure
he same for the first and last data points. The remaining constraints match exactly those of formulation (1).

Fig. 2 shows the result of applying formulation (2) for oCLR (using the sum of absolute differences metric) to the real
orld DebrisFlow data set. We can see that the clusters are well-defined, as we can identify the first and last data point

n each cluster. Furthermore, we do not have the issue which is experienced by the CLR formulation, whereby data points
ay be misclassified based on their proximity to other clusters. The DebrisFlow data set is modelled very well by oCLR;
owever, we note that other data sets may not be modelled so accurately. Furthermore, oCLR does not allow for accurate
redictions from future data where the independent variable lies between existing clusters. Again, the model would have
o be re-solved in such instances.

.4. Piecewise linear regression

As opposed to fitting discontinuous linear functions to discrete data, there is an advantage to fitting a continuous
iecewise linear (PWL) function. In particular, if we want to model the data as a function, using a PWL function as opposed
o a polynomial function avoids the non-linearities associated with such models. Hence, they are computationally efficient.
he continuity aspect of a PWL function can provide breakpoint information as to where different trends can occur.
Continuous PWL functions consist of linear segments which intersect at breakpoints. A variety of MILP models for

iecewise linear regression (PWLR) have been presented in the literature, although the majority avoid the complicating
ontinuity requirement [3–5]. In order to fit optimal PWL functions, it is necessary that the location of breakpoints is
llowed to be placed freely, and not in fixed locations. Toriello and Vielma [48] introduced the first MILP model to fit
ptimal continuous PWL functions; however, the resulting PWL function is required to be convex:

min
I∑

i=1

ξi

s.t. Yi − (cbXi + db) ≤ ξi + M1
i (1 − δi,b) ∀ i ∈ [I]; b ∈ [B − 1]

(cbXi + db) − Yi ≤ ξi ∀ i ∈ [I]; b ∈ [B − 1]

B−1∑
b=1

δi,b = 1 ∀ i ∈ [I]

cb ≤ cb+1 ∀ b ∈ [B − 2]
(1e) - (1h)

This model takes advantage of the fact that the value of the resulting convex PWL function evaluated for any data
point is maximal at the linear segment associated with that data point. That is, for yi, the evaluation of the PWL function
for data point i,

yi ≥ cbXi + db ∀ i ∈ [I]; b ∈ [B − 1].

We present an application of this formulation to the DebrisFlow data set in Section B of the Appendix.
Recently, Rebennack and Krasko [42] presented the first MILP model to fit optimal continuous PWL functions without

any requirements on convexity. Their model extends upon formulation (2) by implementing the continuity requirement
between the linear segments. Firstly, they require that the data set be strictly ordered, i.e,;

−∞ < X = X1 < · · · < Xi < Xi+1 < · · · < XI = X < ∞.

Furthermore, the following variables are introduced (note that a PWL function with B breakpoints and B − 1 linear
segments is being fitted):
20
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Fig. 2. An example of ordered clusterwise linear regression (oCLR) with three clusters on the DebrisFlow data set. Different clusters are marked by
different shapes.

Continuous variables
• δ

+/−

i,b , continuous variables taking values in [0, 1], and either δ+

i,b or δ−

i,b is set to 1 if a breakpoint exists between Xi
and Xi+1.

Binary variables
• γb, set to 0 or 1 depending on the change in gradient between adjacent linear segments.

The following big-M constant is also introduced:

M2
i = D − D − Xi(C − C) ∀ i ∈ [I].

The MILP model for PWLR by Rebennack and Krasko [42] is presented in formulation (3).

(3) PWLR : min
I∑

i=1

ξi (3a)

s.t. (1b)–(1d) (3b)

(2c)–(2e) (3c)

δi,b + δi+1,b+1 + γb − 2 ≤ δ+

i,b ∀ i ∈ [I − 1]; b ∈ [B − 2] (3d)

δi,b + δi+1,b+1 + (1 − γb) − 2 ≤ δ−

i,b ∀ i ∈ [I − 1]; b ∈ [B − 2] (3e)

db+1 − db ≥ Xi(cb − cb+1) − M2
i (1 − δ+

i,b) ∀ i ∈ [I − 1]; b ∈ [B − 2] (3f)

db+1 − db ≤ Xi+1(cb − cb+1) + M2
i+1(1 − δ+

i,b) ∀ i ∈ [I − 1]; b ∈ [B − 2] (3g)

db+1 − db ≤ Xi(cb − cb+1) + M2
i (1 − δ−

i,b) ∀ i ∈ [I − 1]; b ∈ [B − 2] (3h)

db+1 − db ≥ Xi+1(cb − cb+1) − M2
i+1(1 − δ−

i,b) ∀ i ∈ [I − 1]; b ∈ [B − 2] (3i)

γb ∈ {0, 1} ∀ b ∈ [B − 1] (3j)

δ
+/−

i,b ∈ [0, 1] ∀ i ∈ [I − 1]; b ∈ [B − 2] (3k)

(1e)–(1h) (3l)

Note firstly that constraints (1b)–(1c) and (1f)–(1h) are instead defined over the set of linear segments, i.e., b ∈ [B−1].
The new constraints (3d)–(3i) ensure the continuity of the PWL function. Suppose there is a breakpoint between data

oint Xi and Xi+1 connecting the linear segments b and b + 1 (with equations y = cbx + db and y = cb+1x + db+1,
espectively). In this case, we have δi,b = δi+1,b+1 = 1. In order for the two adjacent linear segments to be continuous,
hey must attain the same value at the breakpoint location r , where Xi ≤ r ≤ Xi+1. That is, for cb ̸= cb+1,

cbr + db = cb+1r + db+1 H⇒ r =
db+1 − db
cb − cb+1

H⇒ Xi ≤
db+1 − db
cb − cb+1

≤ Xi+1.

When multiplying through by the denominator, the direction of the inequalities changes depending on its sign. If
c − c > 0 then γ = 1; otherwise c − c < 0 and γ = 0. The denominator is then distributed accordingly in
b b+1 b b b+1 b
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Fig. 3. An example of piecewise linear (PWL) function fitting with four linear segments (and five breakpoints) on the DebrisFlow data set.

onstraints (3f)-(ei). In particular, depending on the value of the binary variable γb, either δ+

i,b or δ−

i,b is set to 1. If γb = 1
by constraint (3d)), then δ+

i,b = 1 and constraints (3f)–(3g) are activated, implying that the gradient decreases between
he two consecutive linear segments. Alternatively, if γb = 0 (by constraint (3e)), then δ−

i,b = 1 and constraints (3h)–(3i)
re activated, implying the gradient increases. Note that if all of the γb variables take the same value, then the given PWL
unction is either convex or concave. In the case of fitting convex functions, formulation (3) reduces exactly to the model
resented by Toriello and Vielma [48].
A similar MILP model to formulation (3) was recently presented by Kong and Maravelias [27], which includes binary

ariables denoting the first and last data point in each segment, and a novel formulation to ensure the continuity of
he segments. A thorough comparison of the two MILP models showed that across three different distance metrics
nd a series of data sets with differing landscapes, the MILP formulation presented by Rebennack and Krasko [42]
formulation (3) ) was faster to find the global optimum in the majority of cases, with fewer constraints and complicating
inary variables [52]. Hence, we refer to formulation (3) as the canonical formulation for (continuous) PWLR within our
ramework.

Fig. 3 shows the result of applying formulation (3) for PWLR (using the sum of absolute differences metric) to the
ebrisFlow data set.
The DebrisFlow data set has appeared often in the PWLR literature, as it is modelled very well by a PWL function. The

reakpoint locations can allow us to identify where the relationship between the dependent and independent variables
hanges, in contrast to a polynomial function. In this particular example, the breakpoints represent volumes where the
low of debris starts damaging certain structures such as houses (e.g., as the volume increases past ∼190,000 cubic metres),
r where the debris enters large open areas (e.g., as the volume increases past ∼250,000 cubic metres) [28].

. Clusterwise piecewise linear regression

For the majority of clustering problems, the information returned simply classifies the data into clusters, and gives no
urther information about the data in each cluster (other than that they share some degree of similarity, and dissimilarity
o other clusters). Hence, the CLR problem, which simultaneously fits a linear regression function to each cluster, is
referable, as it provides information that data in different clusters share different relationships. For clustered data which
oes not necessarily adhere to a strict linear relationship, performing PWLR on the clustered data can provide even more
nformation about the trends in the data. The clusterwise piecewise linear regression (CPWLR) problem aims at classifying
nd performing PWLR on sets of data, to provide more detailed information about data which can cover various different
rends and patterns.

In this section, we present the first MILP model for CPWLR. This model simultaneously clusters the data and fits
ach cluster with an optimal PWL function, depending on the given objective function. The MILP model builds upon the
ramework of formulations (1)–(3) and allows for more accurate modelling of the relationship of the data for the provided
lusters. The aim of the model is to distribute B breakpoints between K clusters, such that the objective function (e.g., sum
f absolute differences, where the absolute distance between each data point and its associated PWL function is summed)
s minimised. This results in a total of B − K linear segments distributed amongst the clusters.

For the following formulation, we are assuming that the number of clusters K (and the total number of breakpoints B)
s given in advance. Furthermore, we assume no overlap between the clusters (that is, the clusters are separated by the
ariable on the x-axis). We leave work on removing these assumptions for future research.
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We introduce the following variable:

Binary variables
• Zb, set to 1 if breakpoint b is the last breakpoint in its cluster.

This formulation reuses many of the constraints seen in formulations (1)–(3). Since the presentation and implemen-
tation of this formulation is one of the main contributions of this paper, we present the full model.

(4) CPWLR : min
I∑

i=1

ξi (4a)

s.t. Yi − (cbXi + db) ≤ ξi + Ma
i (1 − δi,b) ∀ i ∈ [I]; b ∈ [B − K ] (4b)

(cbXi + db) − Yi ≤ ξi + Ma
i (1 − δi,b) ∀ i ∈ [I]; b ∈ [B − K ] (4c)

B−K∑
b=1

δi,b = 1 ∀ i ∈ [I] (4d)

δi+1,b+1 ≤ δi,b + δi,b+1 ∀ i ∈ [I − 1]; b ∈ [B − K − 1] (4e)

δi+1,1 ≤ δi,1 ∀ i ∈ [I − 1] (4f)

δi,B−K ≤ δi+1,B−K ∀ i ∈ [I − 1] (4g)
B−K−1∑
b=1

Zb = K − 1 (4h)

δi,b + δi+1,b+1 + γb − 2 ≤ δ+

i,b + Zb ∀ i ∈ [I − 1]; b ∈ [B − K − 1] (4i)

δi,b + δi+1,b+1 + (1 − γb) − 2 ≤ δ−

i,b + Zb ∀ i ∈ [I − 1]; b ∈ [B − K − 1] (4j)

db+1 − db ≥ Xi(cb − cb+1) − M2
i (1 − δ+

i,b) ∀ i ∈ [I − 1]; b ∈ [B − K − 1] (4k)

db+1 − db ≤ Xi+1(cb − cb+1) + M2
i+1(1 − δ+

i,b) ∀ i ∈ [I − 1]; b ∈ [B − K − 1] (4l)

db+1 − db ≤ Xi(cb − cb+1) + M2
i (1 − δ−

i,b) ∀ i ∈ [I − 1]; b ∈ [B − K − 1] (4m)

db+1 − db ≥ Xi+1(cb − cb+1) − M2
i+1(1 − δ−

i,b) ∀ i ∈ [I − 1]; b ∈ [B − K − 1] (4n)

ξi ≥ 0 ∀ i ∈ [I] (4o)

cb ∈ [Cb, Cb] ∀ b ∈ [B − K ] (4p)

db ∈ [Db,Db] ∀ b ∈ [B − K ] (4q)

δi,b ∈ {0, 1} ∀ i ∈ [I]; b ∈ [B − K ] (4r)

γb, Zb ∈ {0, 1} ∀ b ∈ [B − K − 1] (4s)

δ+

i,b, δ
−

i,b ∈ [0, 1] ∀ i ∈ [I − 1]; b ∈ [B − K − 1] (4t)

Constraints (4a)-(4g) remain the same as in formulation (3) (for PWLR). Constraints (4h)–(4j) ensure that the continuity
equirement given by constraints (4k)–(4n) is not implemented between clusters. If Zb = 1, this implies breakpoint
∈ [B − K ] is the last in the given cluster. Hence, from constraints (4i)–(4j), it is not necessary to set either δ+

i,b or
−

i,b to 1 and active the continuity constraints (4k)–(4n). Constraint (4h) ensures that the continuity requirement is only
nvalid K − 1 times (only between adjacent clusters). Finally, constraints (4o)–(4t) give the domains of the continuous
nd binary variables.
The final breakpoint does not require an associated binary variable Zb (since we know it is the last in its cluster), and

e require that each cluster must contain at least two breakpoints to ensure that each cluster is modelled with at least
linear function. Currently, this is imposed by the choice of B and K by the user, where we require that B ≥ 2K .
Fig. 4 shows the result of applying formulation (4) (using the sum of absolute differences metric) to the DebrisFlow

ata set, with the setting B = 6 and K = 2 (resulting in four linear segments). Although the fit is similar to that displayed
y the PWL function in Fig. 3, we note that the data has also been separated into two distinct clusters. The first cluster is
odelled by a simple linear regression function, while the second is modelled by a continuous PWL function, reflecting

he staggered relationship between the variables. Any future variables which fall in between the clusters can be assigned
o a certain cluster by extending the closest linear segments (to see which gives the most natural fit). However, due
o the analytical nature of the presented CPWLR model, any variables lying outside the defined clusters are difficult to
ssign. For those falling between two clusters, comparing the fits can be done somewhat easily through analytical methods
e.g., comparing the distances to each cluster). Alternatively, the model can be re-run to account for new data points.

Compared to the models for fitting non-necessarily continuous (NNC) functions presented by Ngueveu [37] and Codsi
t al. [9], formulation (4) does not require the breaks in continuity to occur instantaneously. This allows a distinct
23
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Fig. 4. An example of clusterwise piecewise linear regression with six breakpoints distributed over two clusters on the DebrisFlow data set. Different
clusters are marked by different shapes.

Table 1
A comparison of the four MILP formulations for CLR [40], oCLR, PWLR [42] and CPWLR.
Model name (1) CLR (2) oCLR (3) PWLR (4) CPWLR

Reference Park et al. [40] This paper Rebennack and Krasko [42] This paper
Constraints (1a)–(1h) (2a)–(2f) (3a)–(3l) (4a)–(4t)
Model type MILP MILP MILP MILP
# Constraints 2BI + I B(3I − 1) + 2I − 1 B(9I − 7) − 13I + 12 B(9I − 7) − I(9 + 4K ) + 7K + 6
# Continuous variables 2B + I 2B + I 2BI − 3I + 2 2BI − I(1 + 2K ) + 2
# Binary variables BI BI B(I + 1) − I − 2 B(I + 2) − K (2 + I) − 2
# Big-M Constraints 2BI 2BI B(6I − 4) − 10I + 8 B(6I − 4) − I(6 + 4K ) + 4K + 4

separation between clusters (i.e., heterogeneity), which is sought after in clustering applications. Furthermore, we have
seen that a number of distance metrics can be utilised by the model (see Section 2.2 for a discussion on the benefits
of the different metrics), as opposed to the formulations for NNC functions requiring the use of the maximum absolute
difference metric.

3.1. Model comparison

In Table 1, we compare the four models seen so far: formulations (1) for CLR, formulation (2) for oCLR, formulation (3)
or PWLR, and formulation (4) for CPWLR. We consider the total number of functional constraints, big-M constraints, and
ontinuous and binary variables.
Typically, we have that I ≫ B and I ≫ K . For all formulations, an increase in the number of breakpoints and data points

esults in the increase of the number of constraints and variables (for realistic values of B and I; typically we consider
≤ B ≤ 10 and I ≥ 40).
While the model for oCLR contains the same number of continuous and binary variables as the model for CLR, it also

ontains more constraints which limit the assignment of binary variables to clusters. However, this results in reduced
olve times as many solutions for the binary variables are now infeasible.
For the model for CPWLR, we require B ≥ 2K . For a large number of breakpoints (i.e., B > 2K ), an increase in the

number of clusters (for K > 1) results in a decrease in the number of constraints and variables. Hence, for a fixed number
of breakpoints B, as the number of clusters increases (and as long as B ≥ 2K holds), formulation (4) results in fewer
constraints and variables than formulation (3) for PWLR. This results in faster programs as the MILP model has fewer
decisions to make (there are fewer complicating continuity requirements and more infeasible settings for the binary
variables Zb).

4. Improvements to the mixed-integer linear models

We have presented four mixed-integer linear models in formulations (1)–(4) for the modelling and clustering of
bivariate discrete data. These four formulations share a special structure and many similar variables throughout (see
Table 1). In particular, these structures include the large number of binary variables and logical implications modelled
through big-M constraints. We can take advantage of this structure and use special MILP formulation techniques from
the literature to improve the models [50]. In this section, we consider the implementation of outlier detection and the use
of combinatorial Benders decomposition to improve the models. We use formulation (4) (for CPWLR) as the benchmark,
yet we note that the implementations described here apply to each of the four formulations (CLR, oCLR and PWLR).
24



J.A. Warwicker and S. Rebennack Discrete Applied Mathematics 336 (2023) 15–36

4

W
i
O
e
w
r
l
t
r

[
s
p
r

.1. Outlier detection

Aside from the maximum absolute difference metrics, formulations (1)–(4) are largely robust to outliers on the y-axis.
ith regard to outliers on the x-axis (i.e., leverage points), it is possible that the clustering models assign each outlier to

ts own separate cluster (or to a cluster with the nearest data point, consisting of a linear function connecting the two).
ne methodology to avoid such small clusters is to include the constraint suggested by Park et al. [40], which requires
ach cluster to have a minimum number of associated data points (see Section 2.1). Alternatively, we can remove clusters
hich contain fewer than a given number of data points after the model has been completed. Other post-processing outlier
emoval methods, such as the removal of a given number of data points with the furthest distance to their associated
inear segment (the value of ξi), can also be implemented. However, it is likely that the model has to be re-solved once
he outliers are removed in order to provide a better fit to the remaining data points. Furthermore, this may not always
esult in optimal clusters or regression functions.

It is also possible to identify sets of possible outlier points before the model is solved. Sudermann-Merx and Rebennack
47] suggested to use statistical models to identify sets of possible outlier points before the model is solved, and then
olve the model such that a subset of the possible outlier points is excluded from the final solution. The removed outlier
oints are found in tandem with the solution of the model. This implementation can be contained within formulation (4),
equiring the use of |O| < I new binary variables:

Binary variables
• ρi, set to 1 if data point Xi is included in the fit and hence not an outlier.

Let O be the set of possible outlier points, and let Q be the total number of outliers to be excluded. The objective function
is presented as:

min
∑

i∈[I]\O

ξi +
∑
i∈O

ξi · ρi,

with the added constraint∑
i∈O

ρi = |O| − Q.

In this instance, the objective function is non-linear and leads to increased solve times.
As opposed to these pre- and post-processing methods, we can also implement outlier detection within the MILP

model. This strategy is often used in linear regression models using non-linear constraints [21,26,43]. Recent approaches
have considered bounded loss functions, where the convexity of the model is sacrificed for scalability [10]. However,
we wish to preserve the linearity of the model, and use the implementation presented by Warwicker and Rebennack
[53] (similar models have been presented by Bertsimas and Shioda [6]). To this end, we adjust the constraints (4b)–(4c)
(and the equivalent constraints in the other models) to calculate the contribution of the given data point only if it is
a non-outlier point. We use the same binary variable (ρi) to state that the data point Xi is included in the model, and
not an outlier point. The implementation we present in formulation (5) can be considered as a linearised version of the
constraints introduced by Sudermann-Merx and Rebennack [47], where the set of possible outlier points O consists of
the entire data set (i.e., O = I).

min
I∑

i=1

ξi (5a)

s.t. Yi − (cbXi + db) ≤ ξi + M1
i (2 − δi,b − ρi) ∀ i ∈ [I]; b ∈ [B − K ] (5b)

(cbXi + db) − Yi ≤ ξi + M1
i (2 − δi,b − ρi) ∀ i ∈ [I]; b ∈ [B − K ] (5c)

I∑
i=1

ρi = I − Q (5d)

ρi ∈ {0, 1} ∀ i ∈ [I] (5e)

(4d)–(4t) (5f)

The objective function (5a) calculates the objective function as normal. However, constraints (5b)–(5c) have been
adjusted to only calculate the value ξi if the data point Xi (i ∈ [I]) is not an outlier and associated with the linear segment
b ∈ [B−K ] (i.e., when ρi = 1 and δi,b = 1, respectively). Otherwise, the value of ξi is not calculated (i.e., the constraint does
not affect the calculation of ξi for the objective function). Constraint (5d) ensures that only Q data points are considered as
outliers (i.e., ρi = 0 holds for only Q data points), and constraint (5e) gives the domains of the new binary variables. The
remaining constraints match exactly that of formulation (4) (or the respective formulation). In particular, constraints (5b)–
(5e) would replace constraints (1b)–(1c) in formulations (1)–(3), and constraints (4b)–(4c) in formulation (4), in order to

implement inbuilt outlier detection.
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Table 2
A comparison of the four MILP formulations for CLR [40], oCLR, PWLR [42] and CPWLR, with embedded outlier detection.
Model name CLRo oCLRo PWLRo CPWLRo

Reference This paper This paper Warwicker and Rebennack [53] This paper
# Constraints 2BI + I + 1 B(3I − 1) + 2I B(9I − 7) − 13I + 13 B(9I − 7) − I(9 + 4K ) + 7K + 7
# Continuous variables 2B + I 2B + I 3BI + 2 − 4I 2BI − I(1 + 2K ) + 2
# Binary variables BI + I BI + I B(I + 1) − 2 B(I + 2) − K (2 + I) + I − 2
# Big-M Constraints 2BI 2BI B(6I − 4) − 10I + 8 B(6I − 4) − I(6 + 4K ) + 4K + 4
Model type MILP MILP MILP MILP

Regarding the selection of the value for Q, we note that as Q increases, the objective value will decrease, and lead
o models that fit the non-outlier data points better. However, if Q is set too large, this can lead to loss of information.
ence, testing a number of different values and choosing that which yields a good compromise is advised for practical
mplementations. Alternatively, adjusting the objective function to account for loss of information if Q is set too high
ould lead to balanced solutions; however, identifying such an objective function is a difficult task (see e.g., [47]).
Furthermore, by implementing statistical models to identify possible sets of outliers, it would also be possible

o implement formulation (5) using fewer than I new binary variables, and fewer constraints. Sudermann-Merx and
ebennack [47] suggested to consider possible outlier leverage points which are outside the interquartile range of
he independent variable; a technique which extends for higher-dimension problems. Further statistical tests could be
mplemented after an initial estimation of the regression functions to identify possible outlier points with higher accuracy;
e leave this problem for future work.
In Table 2, we summarise the current implementation of outlier detection (presented in formulation (5) ) for the four

ILP formulations within our framework. These models retain their linearity. Each implementation contains an additional
inary variable for each data point and an additional constraint. Naturally, the increased number of variables leads to
onger solve times, while the removal of outlier data points leads to solutions that better fit the remaining non-outlier
ata points. The identification of possible sets of outlier points before the model is solved would lead to the addition of
ewer variables, yet remove the absolute guarantee of globally optimal solutions.

.2. Combinatorial Benders decomposition

Combinatorial Benders decomposition (CBD) was introduced by Codato and Fischetti [8] as a tool to remove the
ependency of MILPs on logical constraints modelled by big-M inequalities and complicating binary variables. By
eparating monolithic MILPs into a master problem consisting of the constraints containing the complicating binary
ariables, and a sub problem consisting of continuous variables, the goal is that information can be shared between the
wo decomposed problems. Solutions of the master problem are fed as fixed binary variables into the sub problem, in
hich an infeasibility is either present or induced. An irreducible infeasible subsystem (IIS) of this sub problem is then
sed to identify which of the fixed binary variables are causing the infeasibility. In order to find an improving solution,
t least one of these fixed binary variables (whose values were present in the constraints appearing in the IIS) must be
hanged. This information is added back to the master problem in the form of a combinatorial cut, which is then resolved.
his process continues until the master problem is infeasible (or the optimality gap is closed), at which point the optimal
olution has been found.
Combinatorial Benders cuts are typically added within a branch-and-cut framework [8]. This is a natural choice for a

arge problem and is much more efficient than repeatedly solving the complicated master problem containing the binary
ariables in a cyclical framework. At each node of the decision tree, the incumbent solution to the master problem is fed
nto the sub problem, which is solved to optimality. If the sub problem is infeasible, combinatorial cuts are added into
he master problem and the branching continues until more feasible solutions are found. The master problem is never
ully solved — once it becomes infeasible, the best upper bound for the sub problem relates to the optimal solution of the
verall problem. The advantage of this approach is that all feasible solutions to the binary master problem encountered
uring the search are verified; however, this means the linear sub problem may be required to be solved many times
this is usually solved quickly by state-of-the-art solvers).

Formulations (1)–(5) contain many complicating binary variables and big-M constraints. Hence, we can apply CBD to
each of the monolithic formulations in order to find speedups and take advantage of their special structure. CBD works
best when the objective function contains only few of the inherent continuous variables, so we present the application
of CBD for the maximum absolute difference metric only.

The application of CBD on formulation (3) for PWLR (with embedded outlier detection) was shown by Warwicker
and Rebennack [53] to be very effective. In particular, it was able to find speedups of up to more than 10,000 times in
comparison to the monolithic MILP model. Their implementation benefitted from problem-specific implementations, such
as a special branching rule, smart initialisation strategies and the inclusion of strong combinatorial cuts. Formulation (4)
(and the inclusion of outlier detection embedded within formulation (5) ) contains many of the same constraints and fits
within the same framework. Therefore, we expect that CBD is effective also for the CPWLR problem. Formulation (2) for

ordered CLR also contains many of the same ordering constraints, so we expect CBD also to be effective on this problem.
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owever, formulation (1) lacks the ordering constraints on the binary variables, so we expect it to be less effective here.
evertheless, there may be some improvements due to the removal of the dependency on the big-M constraints.
To demonstrate how CBD is applied within our framework, we present the reformulation of formulation (4) (for

PWLR), which has been decomposed into a master problem and a sub problem. The master problem consists of
onstraints which contain only the complicating binary variables. Since none of the binary variables appear in the objective
roblem, the master problem is a feasibility problem.

Master: min X ∈ R+ (6a)

s.t.
B−K∑
b=1

δi,b = 1 ∀ i ∈ [I] (6b)

δi+1,b+1 ≤ δi,b + δi,b+1 ∀ i ∈ [I − 1]; b ∈ [B − K − 1] (6c)

δi+1,1 ≤ δi,1 ∀ i ∈ [I − 1] (6d)

δi,B−K ≤ δi+1,B−K ∀ i ∈ [I − 1] (6e)
B−K−1∑
b=1

Zb = K − 1 (6f)

Combinatorial Benders cuts (8) (6g)

δi,b ∈ {0, 1} ∀ i ∈ [I]; b ∈ [B − K ] (6h)

γb, Zb, ∈ {0, 1} ∀ b ∈ [B − K − 1] (6i)

Since the monolithic formulation does not contain any binary variables in the objective function, we instead look to
ptimise some real-valued variable X , which is an auxiliary variable used to estimate the true value of the objective
unction through cuts. Initially, we set its value to 0 as an initial lower bound on the true objective function value (since
e know that the true objective function value is always nonnegative in a feasible solution). Constraint (6g) contains the
ombinatorial Benders cuts, which provide combinatorial information on infeasible solutions to the master problem.
After the master problem is solved (i.e., a feasible solution has been identified), it provides fixed binary variables to

eed into the sub problem (δ̂i,b, γ̂b and Ẑb). If the sub problem is solved to optimality, infeasibility is then induced by
n added constraint based on the current upper bound on the newly found optimal solution (UB); otherwise, the sub
roblem is infeasible based on the current fixed binary variables. In either case, the infeasibility provides combinatorial
nformation on which of the binary variables should be altered.

We now present the sub problem, in which the constraints have been rearranged such that the right hand side contains
nly constant values (and no variables).

Sub(δ̂, γ̂ , Ẑ): min ξ (7a)

s.t. ξ ≤ UB − ϵ (7b)

ξ + (cbXi + db) ≥ −Yi − M1
i (1 − δ̂i,b) ∀ i ∈ [I]; b ∈ [B − K ] (7c)

ξ − (cbXi + db) ≥ Yi − M1
i (1 − δ̂i,b) ∀ i ∈ [I]; b ∈ [B − K ] (7d)

δ+

i,b ≥ δ̂i,b + δ̂i+1,b+1 + γ̂b − Ẑb − 2 ∀ i ∈ [I − 1]; b ∈ [B − K − 1] (7e)

δ−

i,b ≥ δ̂i,b + δ̂i+1,b+1 + (1 − γ̂b) − Ẑb − 2 ∀ i ∈ [I − 1]; b ∈ [B − K − 1] (7f)

(db+1 − db) − Xi(cb − cb+1) − M2
i δ

+

i,b ≥ −M2
i ∀ i ∈ [I − 1]; b ∈ [B − K − 1] (7g)

Xi+1(cb − cb+1) − (db+1 − db) − M2
i+1δ

+

i,b ≥ −M2
i+1 ∀ i ∈ [I − 1]; b ∈ [B − K − 1] (7h)

Xi(cb − cb+1) − (db+1 − db) − M2
i δ

−

i,b ≥ −M2
i ∀ i ∈ [I − 1]; b ∈ [B − K − 1] (7i)

(db+1 − db) − Xi+1(cb − cb+1) − M2
i+1δ

−

i,b ≥ −M2
i+1 ∀ i ∈ [I − 1]; b ∈ [B − K − 1] (7j)

ξ ≥ 0 (7k)

db ∈ [Db,Db] ∀ b ∈ [B − K ] (7l)

cb ∈ [Cb, Cb] ∀ b ∈ [B − K ] (7m)

δ+

i,b, δ
−

i,b ∈ [0, 1] ∀ i ∈ [I − 1]; b ∈ [B − K − 1] (7n)

Constraint (7b) induces infeasibility into the model if the solution to the objective function is not improved (if it
s improved, the model is run again with the new value of UB until infeasibility is induced). The value of ε should be
ufficiently small, but greater than 0 (in experimental results in Section 5, we use a value of 0.001). This is to ensure that
strictly improving solution is sought in each sub problem. An IIS of the continuous sub problem is then sought which
rovides combinatorial information regarding the fixed binary variables. In order to find IISs for the experimental results
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e present, we used the conflict refined inbuilt within CPLEX, which allows us to identify the constraints that are causing
he infeasibility. We discuss this in more detail in Section 5.4.

In particular, the (fixed) binary variables appearing in the IIS are known to lead to an infeasible solution, so it is
ecessary for at least one of them to change in order to find a new improving solution. The combinatorial cuts (constraint
6g)) take the following form. Let R denote the set of binary variables appearing in the constraints of the IIS (that is, the
fixed binary variables with non-zero coefficients appearing in at least one constraint of the IIS).∑

δi,b∈R:δ̂i,b=1

(1 − δi,b) +

∑
Zb∈R:Ẑb=0

Zb +

∑
γb∈R:γ̂b=1

(1 − γb) +

∑
γb∈R:γ̂b=0

γb ≥ 1. (8)

The knapsack-style constraints on the δi,b variables (constraint (6b)), as well as constraints (7c)–(7d) which ensure that
infeasibility is only possible when δ̂i,b = 1, imply that changing any of these variables that are fixed to 1 will result in
a new structure of δi,b values, and a new solution. Further, the knapsack-style constraints on the Zb variables (constraint
(6f)), alongside constraints (7e)–(7f) which ensure that infeasibility is only possible when Ẑb = 0, imply that changing
any of these variables that are fixed to 0 will result in a new structure of Zb variables, and a new solution. There are no
such limitations on the γb variables, and so any γb variables appearing in the IIS should be changed.

When the master problem becomes infeasible (due to the combinatorial cuts), the solution pertaining to the current
upper bound (UB) is the ϵ-optimal solution. A full pseudocode of the CBD approach for CPWLR is presented in Section C
of the Appendix.

Tailored improvements taking advantage of problem-specific knowledge can also be implemented into each of the
CBD models to find speedups [53]. Firstly, for each infeasible sub problem, there can exist multiple different IISs, which
each give rise to a different combinatorial cut (of the form of constraint (8)). Finding each of these IISs, and engineering
them such that stronger cuts are found, leads to more stronger cuts in each iteration, eliminating many more infeasible
solutions and speeding up the optimisation process. For example, if a constraint of the form (7b)–(7c) occurs in the IIS,
this means that one δi,b variable is causing infeasibility, and should be changed in the resulting combinatorial cut. On the
other hand, if a constraint of the form (7g)–(7j) occurs in the IIS, this means one of two δi,b variables, or a γb variable,
or a Zb variable is causing the infeasibility (implicitly through constraints (7e)–(7f)), and at least one of them should be
changed in the resulting combinatorial cut. The former cuts are stronger, since they state one particular variable should
change, which impacts the solution through the constraints (6b)–(6e). However, the latter cuts do not give such precise
information. Hence, prioritising the removal of weaker cuts from the IIS first will lead to stronger cuts being found.

Secondly, smart initialisation techniques based on results from previous solutions (or heuristic approximations),
which give approximate values for the starting value of UB, have been shown to lead to faster runtimes. For example,
approximating the clusters beforehand and running simple linear regression on each cluster would lead to a valid initial
upper bound. Finally, tailored branching rules, which take advantage of the special structure of the δi,b variables, have
also been shown to lead to faster runtimes and can save memory during the optimisation process [53].

For CLR, the master problem only consists of constraint (1d) and the combinatorial cuts, while the sub problem contains
constraints (1b)–(1c) with the fixed values of the δ variables. For oCLR, the ordering constraints (2c)–(2e) are also present
in the master problem, which immediately eliminates many possible infeasible solutions. The implementation of CBD for
PWLR has been discussed in detail by Warwicker and Rebennack [53].

5. Computational results

In order to assess the effectiveness of each of the formulations (1)–(4) and the improvements presented in Section 4, we
implemented each of the models in C++ embedded within IBM ILOG-Cplex version 20.0.1., using standard solver settings
(unless explicitly stated otherwise). The experiments in this section were run on an Intel 3.00 GHz machine with 16 GB
of RAM and 6 cores.

5.1. Data sets

We ran computational experiments on five bivariate data sets, each taken from real world data and presenting a
variety of different function landscapes. These data sets are often used for data fitting analyses, including CLR, PWLR
and clustering.

1. DebrisFlow (Figs. 1–4) - Data showing the expected economic damage of a real world location as a function of the
volume of the debris flow (I = 44) [28,34].

2. Medication (Fig. 5(a)) — Data showing the mean number of monthly prescriptions of a certain medicine, before and
after a policy change (I = 48) [51].

3. DailyDemand (Fig. 5(b)) — Data showing the number of non-urgent daily orders for a logistics company (I = 60) [16].
4. NHTemp (Fig. 5(c)) — Data showing the mean annual temperature in New Haven, a city in the USA (I = 60) [35].
5. Paperweight (Fig. 5(d)) — A large data set showing a measure of paper density over time from a large paper

manufacturer (I = 231) [31].
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Fig. 5. Bivariate data sets modelling using the Sum of Absolute Differences metric. Different clusters are marked by different shapes.

.2. Runtime results for the monolithic formulations

We first present runtime results for the monolithic formulations (1)–(4) without inbuilt outlier detection or the use of
ombinatorial Benders decomposition.

LR and oCLR
In Table 3, we present runtime results for CLR (formulation (1)) over the five data sets, using the maximum absolute

ifferences metric (noting that similar results hold for the other distance metrics discussed in Section 2.1). We present,
or each result, the runtime (in seconds) and the optimal solution found by the model.

From Table 3, we see how the runtime increases dramatically as the number of linear segments increases. Due to
he lack of restrictions on the binary variables, there are a large number of feasible solutions. Naturally, as the number
f segments increases, so does the accuracy of the model. We believe that heuristic approaches may be preferable for
inding sufficiently good solutions for CLR models with a large number of segments.

In Table 4, we present comparative results for CLR with its ordered variant (oCLR). In particular, we present the number
f segments required by oCLR in order to match the objective function value found by the CLR model (presented in Table 3).
e further present the runtime required to find such a solution, and the speedup (as a ratio of CLR:oCLR).
Notably, from Table 4, we note that the structure of the data can lead to vastly different results. For data sets which

resent an ordered pattern (such as the DebrisFlow and Medication data sets), oCLR is able to improve upon (or match) the
runtime required by CLR in every case. For CLR fitting 7 segments across these two data sets, oCLR is respectively over
11,000 and over 14,000 times faster to find a solution of the same (or better) objective function value, despite requiring
more linear segments.

For the data sets which do not present a noticeable ordered pattern (such as the DailyDemand, NHTemp and Paperweight
ata sets), oCLR requires significantly more linear segments to find a solution of similar quality as CLR. Although these
olutions may be found faster (for CLR with larger numbers of segments), the large amount of segments required by oCLR
uggests that the fitting is somewhat random (and can be classed as overfitting).
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Table 3
Runtime results for CLR — Maximum absolute difference.
CLR: Linear segments 2 3 4 5 6 7 8

Debris flow Runtime 0.1 0.1 0.5 8.4 71.7 15,351.5 a

(I = 44) Solution 2.18 0.78 0.41 0.27 0.19 0.12 a

Medication Runtime 0.1 0.2 3.3 23.2 362.0 76,599.1 a

(I = 48) Solution 0.57 0.41 0.23 0.16 0.11 0.09 a

DailyDemand Runtime 0.1 0.3 13.3 79.9 393.1 a

(I = 60) Solution 87.23 47.27 35.14 25.29 17.11 a

NHTemp Runtime 0.1 0.7 16.3 26.2 87.2 50,192.2 a

(I = 60) Solution 1.21 0.82 0.54 0.40 0.30 0.24 a

Paperweight Runtime 0.2 16.2 115.9 4074.9 a

(I = 231) Solution 1.08 0.71 0.51 0.38 a

aIndicates the 86 400 s time limit has been exceeded.

Table 4
Runtime results for oCLR to match the results from Table 3 — Maximum absolute difference.
oCLR: Linear segments 2 3 4 5 6 7

Segments required 2 3 6 8 8 12
Debris flow Solution 2.18 0.78 0.33 0.19 0.19 0.079
(I = 44) Runtime 0.1 0.1 0.1 0.3 0.3 1.3

Improvement 1.00 1.00 5.00 28.00 239.00 11,808.85

Segments required 2 5 10 12 17 18
Medication Solution 0.57 0.39 0.19 0.16 0.11 0.083
(I = 48) Runtime 0.1 0.2 1.0 1.3 7.5 5.3

Improvement 1.00 1.00 3.30 17.85 48.27 14,452.66

Segments required 5 13 17 21 23
DailyDemand Solution 86.6 44.8 33.2 23.3 16.1
(I = 60) Runtime 0.2 3.0 21.1 13.9 11.1

Improvement 0.50 0.10 0.63 5.75 35.41

Segments required 10 16 19 20 24 28
NHTemp Solution 1.15 0.73 0.53 0.37 0.28 0.23
(I = 60) Runtime 1.6 8.1 31.7 26.5 22.9 23.0

Improvement 0.06 0.09 0.51 0.99 3.81 2182.27

Segments required 13 19 33 48
Paperweight Solution 0.96 0.71 0.50 0.37
(I = 231) Runtime 31.2 131.3 2560.0 10,117.8

Improvement 0.01 0.12 0.05 0.40

While the performance difference is dependent on the objective function itself (which does not explicitly measure
the suitability of the presented model), we note that oCLR is much faster due to the enforced structure on the binary
variables. However, this can come at a loss of problem information, especially when the data set does not provide an
ordered pattern. In general, we suggest that practitioners should only implement oCLR if the data set being modelled has
such an ordering (or if such a pattern can be quantified), due to the significant speedups presented by the model.

PWLR and CPWLR
We now compare the solution quality and runtime of the formulations for PWLR (formulation (3)) and CPWLR

(formulation (4)). Although the overall aims of PWLR and CPWLR are different, we can still compare the quality of the
formulations, as they are both assigning data to linear segments. Naturally, while PWLR does not attempt to cluster the
data, and ensures continuity of the linear segments throughout, it takes longer to find a solution for a given number of
linear segments. CPWLR, however, must decide on the locations of the clusters and how to optimally assign piecewise
linear segments to the clusters. PWLR acts exactly as the CPWLR model for fitting one cluster.

Firstly, in Table 5, we present the runtime results and the optimal solutions found by the PWLR model (formulation (3)),
in order to benchmark the quality of the solutions and the efficiency of the model. We use the sum of absolute differences
metric. Note that the number of linear segments is one fewer than the number of breakpoints in the final PWLR function.

As the number of linear segments increases, so does the complexity of the model and the runtime required to find the
optimal solution. PWLR can be considered as a variant of CPWLR, where only one cluster is sought. If a clustering model is
not required, PWLR is advantageous over standard linear regression models, as it can model the change in the relationship
between the variables. Further experimental results benchmarking the performance of formulation (3) across different
distance metrics have been presented by Rebennack and Krasko [42],Warwicker and Rebennack [52] and Warwicker and
Rebennack [53].
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Table 5
Runtime results for PWLR — Sum of absolute differences.
PWLR: Linear segments 4 5 6 7 8 9 10 11 12 13 14

DebrisFlow Runtime 0.3 0.9 6.5 144.7 1938.9 263.6 1084.0 1635.9 4621.4 43,620.6 a

(I = 44) Solution 10.75 8.85 7.20 6.20 4.55 3.90 2.71 2.05 1.73 1.40 a

Medication Runtime 0.9 5.2 20.0 414.9 835.5 5799.3 56,526.7 a

(I = 48) Solution 8.79 7.86 7.03 6.69 6.04 5.70 5.30 a

DailyDemand Runtime 3.1 22.8 727.9 1829.0 51,874.8 a

(I = 60) Solution 2295 2166 2003 1828 1713 a

NHTemp Runtime 5.0 58.1 1660.0 11,419.3 a

(I = 60) Solution 41.92 40.66 38.80 36.88 a

Paperweight Runtime 945.7 43,201.6 a

(I = 231) Solution 110.77 107.77 a

aIndicates the 86 400 s time limit has been exceeded.

Table 6a
Runtime results for CPWLR — Sum of absolute differences.
CPWLR: Linear segments 4 5 6 7

Clusters 2 3 4 2 3 4 2 3 4 2 3 4

DebrisFlow Runtime 0.3 0.2 0.1 0.5 0.6 0.6 6.2 3.2 0.8 42.2 7.2 4.0
(I = 44) Solution 9.12 8.87 8.72 7.21 6.48 6.41 6.21 4.56 4.44 4.55 3.93 3.31

Medication Runtime 0.6 0.4 0.2 3.7 3.3 0.7 18.1 8.0 11.0 76.6 37.4 21.8
(I = 48) Solution 7.86 6.76 6.65 6.76 6.42 6.02 6.42 5.77 5.67 5.77 5.43 5.03

DailyDemand Runtime 4.0 1.3 0.4 15.0 7.1 5.8 39.8 44.2 32.2 560.0 142.5 105.6
(I = 60) Solution 2201 2078 2078 2016 1925 1865 1846 1786 1691 1734 1612 1589

NHTemp Runtime 4.2 3.1 0.7 27.0 21.6 9.7 283.6 82.2 69.4 2926.1 1247.8 861.7
(I = 60) Solution 40.81 39.87 38.70 39.35 37.94 36.44 37.24 35.89 34.33 35.39 33.83 32.87

Paperweight Runtime 144.7 75.0 21.7 15,836.4 2239.6 812.9 a 17,807.9 29,264.1 a a a

(I = 231) Solution 108.71 106.37 105.24 104.49 102.23 101.35 a 99.13 97.21 a a a

aIndicates the 86 400 s time limit has been exceeded.

Table 6b
Runtime results for CPWLR — Sum of absolute differences.
CPWLR: Linear segments 8 9 10 11

Clusters 2 3 4 2 3 4 2 3 4 2 3 4

DebrisFlow Runtime 184.1 25.4 21.6 114.2 125.2 72.0 304.6 104.7 337.2 1574.9 950.8 966.4
(I = 44) Solution 3.91 2.72 2.65 2.71 2.31 2.07 2.07 1.84 1.77 1.80 1.68 1.47

Medication Runtime 610.5 305.5 134.5 4751.3 1564.7 1376.8 54,532.3 22,185.3 9093.1 a a 50,128.4
(I = 48) Solution 5.43 5.03 4.76 5.03 4.76 4.43 4.76 4.43 4.16 a a 3.90

DailyDemand Runtime 4641.7 563.8 383.6 31,091.5 5515.3 4537.6 77,189.8 36,088.6 52,246.2
(I = 60) Solution 1602 1531 1478 1521 1424 1358 1414 1343 1277

NHTemp Runtime 64,460.2 14,406.4 8235.2 a a 42,838.6
(I = 60) Solution 33.47 32.37 31.23 a a 29.36

aIndicates the 86 400 s time limit has been exceeded.

In Table 6a–6b, we present the respective runtime results and optimal solutions for the CPWLR model (formulation (4)).
or each number of linear segments, we present results for the model selecting between two and four clusters. Note that
he respective results for one cluster can be taken from Table 5.

We can see that as the number of linear segments increases, so does the complexity of the model and hence, the
untime required to find the optimal solution. Counterintuitively, perhaps, is that for a given number of linear segments,
ncreasing the number of clusters required by the model decreases the complexity of the model as well as improving the
olution. We have seen in Table 1 that as the number of clusters K increases, the number of constraints and variables
ecreases.
As a general guide, we believe that CPWLR can be more effective than PWLR, since it removes some of the complicating

ontinuity requirements, while still modelling the change in the relationship between the variables of the data. Naturally,
f the number of clusters is too large, this can lead to overfitted data. The model for CPWLR requires the number of
reakpoints and clusters as input. If such information is available, or able to be calculated efficiently through heuristic or
ierarchical techniques (see e.g., [36]), then CPWLR can be very effective.
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Table 7
Runtime results for CPWLR with outliers – Sum of absolute differences – 2 Clusters.
CPWLR: Linear segments 4 5 6 7

Outliers 1 2 3 1 2 3 1 2 3 1 2 3

DebrisFlow Runtime 2.6 6.7 27.8 7.1 73.4 171.8 48.0 250.1 3083.8 169.1 2021.4 12,942.4
(I = 44) Solution 7.79 6.81 6.11 5.87 4.89 4.31 5.07 3.91 3.54 3.91 3.05 2.47

Medication Runtime 10.3 42.8 480.5 120.0 958.3 7163.4 563.3 7017.8 43,405.1 2434.3 84,364.1 a

(I = 48) Solution 6.65 6.11 5.65 6.20 5.75 5.31 5.67 5.12 4.69 5.21 4.78 a

DailyDemand Runtime 41.0 596.8 2813.8 332.6 2234.7 10,381.0 646.6 12,374.3 67,044.6 13,128.2 54,055.8 a

(I = 60) Solution 1935 1747 1613 1777 1584 1446 1667 1470 1327 1539 1373 a

NHTemp Runtime 99.2 1435.8 11,132.7 1619.4 20,566.7 a 6954.0 a a a a a

(I = 60) Solution 38.29 35.94 33.54 36.59 34.38 a 34.69 a a a a a

Paperweight Runtime a

(I = 231) Solution a

aIndicates the 86 400 s time limit has been exceeded.

Fig. 6. Illustration on the DebrisFlow data set using the sum of absolute differences metric showing the removal of an outlier point can affect the
objective function value by more than the inclusion of an additional linear segment. Different clusters (and outlier points) are marked by different
shapes.

5.3. Outlier detection

We now analyse the effect of the implementation of inbuilt outlier detection (formulation (5)) into the MILP model for
CPWLR (formulation (4)). Due to the increase in the number of binary variables, as the number of outliers increases, so does
the runtime required to find the optimal solution. We note that the results presented here also reflect the performance
of the implementation of outlier detection into formulations (1)–(3).

Table 7 shows the effect of including between 1 and 3 outliers into the model for CPWLR (Table 6a shows the respective
results with 0 outliers). We analyse over the five data sets, each modelled with two clusters, using the sum of absolute
differences metric. We note that similar results hold for the other distance metrics.

We can see that the complexity and runtime increases as the number of outliers increases. However, increasing the
number of outliers in the formulation can dramatically improve the solution quality (with regards to the chosen objective
function). In many cases, for each extra outlier included, the value of the objective function decreases by more than the
maximum absolute difference (i.e., maxi{ξi}). That is, not taking the outlier points into account when fitting the remaining
data points leads to models that fit the remaining data points better, as opposed to solving for all data points and removing
those contributing the most to the objective function.

Although these data sets do not necessarily contain outliers, the decrease in objective function value is noticeable for
increased numbers of outliers, and can have a greater impact on the solution quality than the inclusion of more linear
segments. We illustrate an example of this phenomenon in Fig. 6. Regarding the selection of the number of outlier points
to remove, we advise testing for a number of different values, and choosing that with the best tradeoff between solution
quality and potential loss of information. Of course, testing for many values can lead to longer solution times; hence,
decomposition approaches can also be implemented in tandem with inbuilt outlier detection.

5.4. Combinatorial Benders decomposition

We now analyse the effect of the implementation of combinatorial Benders decomposition (formulations (6)–(7)) on
the MILP model for CPWLR, to see if speedups can be found. Combinatorial Benders decomposition has already been shown
32



J.A. Warwicker and S. Rebennack Discrete Applied Mathematics 336 (2023) 15–36

s

o

o
e

i
t
s
o
i

t
t
f

Table 8a
Runtime results for CPWLR with combinatorial Benders decomposition — Maximum absolute difference.
CPWLR: Linear segments 6 7 8 9

Clusters 2 3 4 2 3 4 2 3 4 2 3 4

DebrisFlow Monolith 0.8 0.6 0.4 2.1 1.0 0.8 2.6 2.1 2.3 7.4 4.2 2.0
(I = 44) CBD 2.1 2.3 2.0 4.9 3.7 3.3 3.8 6.8 5.1 6.7 7.5 5.3

Speedup 0.38 0.26 0.20 0.43 0.27 0.24 0.68 0.31 0.45 1.10 0.56 0.38

Solution 0.42 0.39 0.33 0.39 0.30 0.29 0.30 0.26 0.19 0.26 0.19 0.16

Medication Monolith 1.8 0.8 0.6 5.0 5.2 1.3 13.6 2.9 2.0 8.1 8.1 11.0
(I = 48) CBD 1.5 1.9 1.6 1.9 3.8 1.9 4.8 4.7 4.5 4.1 5.5 5.6

Speedup 1.20 0.42 0.38 2.63 1.37 0.68 2.83 0.62 0.44 1.98 1.47 1.96

Solution 0.39 0.37 0.33 0.37 0.33 0.27 0.33 0.27 0.27 0.27 0.27 0.25

DailyDemand Monolith 1.6 2.1 1.2 3.6 3.4 2.8 14.3 13.0 10.9 91.2 25.9 21.4
(I = 60) CBD 2.3 3.3 2.6 2.7 3.6 3.3 4.6 4.4 10.0 9.0 19.4 8.3

Speedup 0.70 0.64 0.46 1.33 0.94 0.85 3.11 2.95 1.09 10.13 1.34 2.58

Solution 86.6 80.1 78.8 80.1 78.8 75.3 78.8 75.3 71.1 75.3 71.1 66.5

NHTemp Monolith 31.2 5.1 1.0 28.4 7.4 3.3 80.4 29.3 13.9 147.5 327.3 222.0
(I = 60) CBD 83.3 8.3 2.3 34.6 8.8 5.2 14.8 11.3 7.0 14.6 15.5 14.9

Speedup 0.37 0.61 0.43 0.82 0.84 0.63 5.43 2.59 1.99 10.10 21.12 14.90

Solution 1.89 1.43 1.40 1.43 1.40 1.38 1.40 1.38 1.36 1.38 1.36 1.33

Paperweight Monolith 56.7 25.2 9.0 1195.2 3383.4 301.3 a 49,324.4 34,047.3
(I = 231) CBD 115.2 33.4 8.0 406.8 141.0 242.9 * 2732.1 1156.9

Speedup 0.49 0.75 1.13 2.94 24.00 1.24 18.05 29.43

Solution 1.65 1.61 1.55 1.60 1.54 1.53 1.52 1.49

aIndicates the 86 400 s time limit has been exceeded.
*Appears for the Paperweight data set, CBD, 8 segments, 2 clusters.

to be effective for formulation (3) for PWLR [53], when using the maximum absolute difference metric. We implement CBD
in the model within the same way, using lazy callbacks and the conflict refiner within CPLEX to calculate multiple IISs. In
particular, the conflict refiner works by assigning preferences to each constraint within the sub problem. All preferences
are initially set to 1 (meaning the given constraint should be considered for the IIS). In order to find multiple IISs for a
given sub problem (leading to multiple cuts), we set the preference of one of the constraints appearing in the initial IIS
to −1 (meaning it should no longer be considered when finding further IISs) and find a new IIS. Once no more IISs of the
sub problem can be generated, the process ends, and the combinatorial cuts relating to each IIS are added to the master
problem.

Within CPLEX, we further removed the presolve for the master problem and set the number of threads to 1 (enforcing
equential operation).
Note that, in contrast to the monolithic formulation, the CBD approach does not currently yield similar results for the

ther metrics — we leave this problem for future work.
Table 8a–8b shows a comparison between the monolithic MILP for CPWLR (formulation (4)) and the implementation

f CBD (formulation (6)–(7)), over the five data sets. We use the maximum absolute difference metric, and consider the
ffect for varying numbers of linear segments and clusters.
We firstly note that the runtime required by the monolithic approach using the maximum absolute difference metric

s much faster in comparison to using the sum of absolute differences metric (shown in Table 6a–6b). Hence, we are able
o analyse models with a much larger number of linear segments within the presented time limit. However, since only
maller data sets are considered, the solution quality does not increase too much when considering such a large number
f segments. In particular, we see only small improvements in the objective function value for each further segment
ncluded, while the increase in runtime is noticeable.

We can further see that combinatorial Benders decomposition can have a pronounced effect on the runtime required
o find an optimal solution to the CPWLR problem. In particular, as the problem complexity increases (by increasing the
otal number of linear segments), the time required by the monolithic CPWLR model (formulation (4)) increases at a much
aster rate than that of the CBD model. While the MILP model is faster for smaller problems (such as DebrisFlow with fewer
than 10 segments) — this changes as the number of linear segments increases. For 11 of the presented cases, we see that
implementing CBD can lead to speedups of over 100 times that of the original formulation, up to a maximum speedup of
over 780.

Fig. 7 presents the fraction of instances from Table 8a–8b that are solved within a given time limit, for between 2 and
4 clusters. The CBD approach is able to solve more instances within a time limit of 4 s, 8 s and 6 s for modelling the data
with 2, 3, and 4 clusters respectively. In each case, it is clear that CBD presents a considerable advantage for any time
33
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Table 8b
Runtime results for CPWLR with combinatorial Benders decomposition — Maximum absolute difference.
CPWLR: Linear segments 10 11 12 13

Clusters 2 3 4 2 3 4 2 3 4 2 3 4

DebrisFlow Monolith 13.0 3.2 4.3 18.0 12.1 13.5 72.2 67.9 11.5 39.6 23.3 49.1
(I = 44) CBD 9.2 6.1 4.5 11.1 6.7 8.5 8.7 11.3 7.2 9.1 14.6 13.6

Speedup 1.41 0.52 0.96 1.62 1.81 1.59 8.30 6.01 1.60 4.35 1.60 3.61

Solution 0.19 0.16 0.16 0.16 0.16 0.14 0.16 0.14 0.12 0.14 0.10 0.089

Medication Monolith 29.9 54.0 13.9 93.0 120.6 443.4 246.2 876.5 817.5 1705.3 2571.8 4527.6
(I = 48) CBD 6.0 6.6 5.4 9.5 10.5 18.2 12.0 15.7 16.3 14.8 17.5 23.0

Speedup 4.98 8.18 2.57 9.79 11.49 24.36 20.52 55.83 50.15 115.22 146.96 196.85

Solution 0.27 0.25 0.24 0.25 0.24 0.24 0.24 0.24 0.24 0.24 0.24 0.21

DailyDemand Monolith 94.2 110.6 49.9 425.6 257.5 363.4 1916.4 2346.3 7775.3 1995.5 7023.7 8239.2
(I = 60) CBD 23.0 43.8 19.0 39.8 27.9 24.9 31.6 27.9 30.9 35.1 42.3 71.0

Speedup 4.10 2.53 2.63 10.69 9.23 14.59 60.65 84.10 251.63 56.85 166.04 116.05

Solution 71.1 66.5 65.4 66.5 65.4 64.0 65.4 64.0 63.0 64.0 62.9 61.6

NHTemp Monolith 958.3 2213.0 313.7 8033.7 9939.8 1304.4 31,531.6 9444.8 157.4 75,944.1 11,618.6 1644.2
(I = 60) CBD 16.2 17.3 28.6 28.1 39.7 79.5 40.0 101.0 36.5 96.3 132.3 36.0

Speedup 59.15 127.92 10.97 285.90 250.37 16.41 788.29 93.51 4.31 788.62 87.82 45.67

Solution 1.35 1.33 1.31 1.33 1.31 1.29 1.31 1.29 1.17 1.29 1.17 1.15

Fig. 7. η refers to the fraction of instances solved to optimality within the given time.

imit above 10 s. In particular, as the problem being solved becomes harder (in terms of complexity), the advantages of
he CBD approach become more evident.

. Conclusion

Fitting discrete data using regression functions allows users to predict and identify patterns and trends within the
ata. Furthermore, clustering allows the data to be classified such that different clusters present different information.
We have presented an innovative framework of mixed-integer linear models for regression and clustering problems,

ncluding two models from the literature and two original formulations. The four formulations, for clusterwise linear
egression (CLR), ordered clusterwise linear regression (oCLR), piecewise linear regression (PWLR) and clusterwise
iecewise linear regression (CPWLR) serve different purposes. All four problems can be modelled with a mixed-integer
inear program, making use of binary variables and logical implications modelled by big-M constraints. Hence, each of the
our models shares a special structure, which can be enhanced. We have shown that outlier detection can be implemented
nto the models, eliminating the need for pre- or post-processing. Furthermore, we have shown that combinatorial Benders
ecomposition can be used to speed up the models by up to 800 times.
34
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For future work, we aim to improve the formulation for CPWLR by removing the ordering of the clusters and
allowing them to overlap. This involves a large reformulation, yet we hope this first work on the topic allows for
further developments and understanding of the models we have presented. We further plan to extend the application
of combinatorial Benders decomposition to the sum of absolute differences metric, allowing speedups to be found for
more accurate data analyses.
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