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Abstract. Environmental perception obtained via object detectors have
no predictable safety layer encoded into their model schema, which cre-
ates the question of trustworthiness about the system’s prediction. As
can be seen from recent adversarial attacks, most of the current object
detection networks are vulnerable to input tampering, which in the real
world could compromise the safety of autonomous vehicles. The prob-
lem would be amplified even more when uncertainty errors could not
propagate into the submodules, if these are not a part of the end-to-end
system design. To address these concerns, a parallel module which ver-
ifies the predictions of the object proposals coming out of Deep Neural
Networks are required. This work aims to verify 3D object proposals from
MonoRUn model by proposing a plausibility framework that leverages
cross sensor streams to reduce false positives. The verification metric be-
ing proposed uses prior knowledge in the form of four different energy
functions, each utilizing a certain prior to output an energy value leading
to a plausibility justification for the hypothesis under consideration. We
also employ a novel two-step schema to improve the optimization of the
composite energy function representing the energy model.
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1 Introduction

Adversarial attacks on object detection networks are making the real-world de-
ployment of Neural Networks (NN) susceptible to safety violations, hindering
the approval and conformance of vehicles to SOTIF standards. This is attributed
mainly to the black box nature of NN themselves. Often the perception module,
with the object detector at its core, plays a key part in situations where these
errors occur. An object detector’s (OD) failure to perceive an object (e.g., an-
other car or a pedestrian crossing the street) can immediately result in an unsafe
situation both for the vehicle’s passengers and other traffic participants.
However, detections which are misclassified or falsely proposed by the OD also
constitutes considerable risk under the Operational Design Domain (ODD) of
an automated vehicle. These artifacts are called as ghost detections or false pos-
itives often appear due to perception gaps or sensor noises. False positives not
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only cause sudden jerks, contributing to an uncomfortable driving experience,
but could also lead to rear end collisions when braking is applied without the
need for it. Motivated by the dangers and risk posed, we propose to develop
a parallel checker module following the architecture design of Run-Time Assur-
ance (RTA) [6] tests. Through experiments, we extensively show that our module
checks for the plausibility of an object (in this work we chose the category car)
using combinations of energy functions, thereby significantly reducing the num-
ber of False Positives relative to the base NN. The energy functions are made up
of simple priors, which conforms to our definition of world knowledge [23][25].
The base network under consideration is MonoRUn [5] which uses RGB images
to predict 3D Bounding Boxes defining the position and orientation of an object,
forming an initial hypothesis which needs to be checked for. As shown in Fig. 1,
the checker modules (marked through dashed rectangle boxes) uses raw LiDAR
point clouds and Camera streams with the assumption that the sensors are syn-
chronized accurately to provide valuable environmental information to different
parts of the module.
In summary, we: 1) Design a parallel checker module for plausibility checks
for the outputs of a 3D-OD network. 2) Propose a novel two-step optimization
schema for composite energy function, which depends on 3D shape priors. 3)
Developed computationally light rendering module to obtain 2D segmentation
masks from the optimized 3D shape priors represented through the notation
(y∗, z∗). 4) Finally, we propose a simple empirically evaluated threshold based
False Positive filter with the help of an energy-based model.

2 Related work

Several works aim to verify the detected objects’ existence in a fusion system.
Often, the Dempster–Shafer theory of evidence (DST) [22] is used to implement
and combine plausibility features on various system levels. In [1], authors gener-
ate object existence probability using a high-level architecture defining different
sensor fusion for their autonomous test vehicle. Each individual sensor assigns
existence probabilities to the objects it detects. By following the DST rules of
combination, existence probabilities of each sensor are merged by constructing
basic belief assignments. In their work [9], the authors present a similar fusion
system applied to the detection of cars from a roadside sensor infrastructure
at a highway section consisting of various radar sensors. Different plausibility
checks for individual sensors are encoded as basic belief assignments through a
priori assumptions on geometric constraints (such as a cameras’ field of view or
occlusions) and parameters such as the trust into a sensors’ performance, which
yields a Bayesian like probability of an object’s existence. The authors from [14]
present a different approach for plausibility evaluation about an object’s exis-
tence by employing a serial implementation checks for the consensus between
two detectors from different sensor streams. A simple measurement of Latency-
based threshold against a pre-defined distance threshold checks for implausibility.
Works from [16,21], propose False Negatives and False positive reduction algo-
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rithm on semantic segmentation tasks. Energy-based models (EBM) have played
an important part throughout the history of pre-modern machine learning. In
[15], LeCun et al. gives an extensive tutorial and introduction to energy-based
learning methods. They describe the concept of EBMs as capturing dependen-
cies between variables by associating a scalar valued energy to each configuration
of the variable. Energy functions are a way to encode certain priors over a set
of variable states (defined through properties and entities of a system), which
yields a net-zero energy value for a perfect compatibility between variables dur-
ing inference and high-energy value for incompatible variables. In [18], for the
discriminative task of object detection, the pose is modelled as a latent variable,
and all parameters are obtained by training with a contrastive loss function from
a facial pose dataset by minimizing an energy function.
Engelmann et al. [7] used a set of hand designed energy functions together with
their proposed shape manifold for object segmentation task as well as pose and
shape estimation. For the energy functions, they combine a Chamfer-Distance
Energy, measuring the distance from the stereo points to the object’s surface
with some prior constraints, punishing deviations of the shape from the mean
pose and the object’s height over ground. From the works of [19], [20], [24], they
apply latent shape space approaches to recover 3D shapes of a car using EBMs.

Differing from the previous presented data-driven approaches, Gustafsson et
al. [11] aim to refine 3D object detection without relying on shape priors. Their
work builds upon their previous work [10], in which confidence-based regression
is performed on 2D detection results using an energy-based model. In their more
recent work, they extend this idea by proposing to use a Deep Neural Network
(DNN) to train a conditional energy-based model for probabilistic regression of
3D bounding boxes on point cloud data.

In comparison to the presented approaches here, we propose a novel approach
of encoding priors into an energy-based system, from which we measure compat-
ibility by forming a decision rule through energy value thresholds ensuring the
plausibility of an object.

3 Concepts and Proposed method

The main idea is to encode prior knowledge into the energy function such that a
comparison could be made between the priors (XXX ∈ Xi) and the predictions from
the 3D object detector (yyy ∈ Y). The predictions from a 3D-OD from here on
would be expressed as a hypothesis, as we aim to justify whether there exists an
object inside the proposed space. Individual energy functions encode a specific
prior knowledge and map the observed compatibility to a single scalar value. In
mathematical terms, this can be expressed in a general definition of the energy
functions as, E : Xi × Y → R and E(XXX,yyy) ≥ 0 ∀XXX,yyy ∈ Xi × Y.
The energy functions output energy values which exhibit the property of com-
patibility. For a perfect compatibility, E = E∗ = 0; while for any deviations,
E > 0. In this paper, we use four different energy functions, where each of the
function constitutes a certain prior. The energy function ESil measures silhou-
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Fig. 1: General architecture describing the flow of energy values which are combined
to argue about an object’s presence. y0 represents the initial hypothesis. LiDAR and
Camera inputs are primarily used to provide cross sensor data streams. Top: ESil, com-
pares segmentation mask from MaskRCNN [12] and rendered segmentation mask from
the optimized outputs of CD energy function. Middle: ECD, compares and optimizes
a mean 3D shape prior with raw segmented point clouds within the hypothesis space.
Bottom: EHoG, ERot, compares ground estimates from a RANSAC regressor with the
height and rotation of an initial hypothesis

ette alignment; ECD, measures the alignment of a point cloud and the remaining
two, EHoG and ERot are based on ground estimates which measures the height
over ground and rotational consistency of the bounding boxes. The first two
energy functions depend on additional prior knowledge in the form of 3D shape
priors represented as a Truncated Signed Distance Function (TSDF) through
CAD models based on ShapeNet [4]. The two energy functions based on the
ground estimate do not depend on any additional input, and are referred to as
energy priors throughout this work. Each energy function can be interpreted as
an expert, having expertise about one aspect that contributes to the plausibility
measure. To be able to obtain feasible plausibility evaluations, the individual
energy functions can be combined into an energy-based model defined as:

E = α0ESil + α1ECD + α2EHoG + α3ERot (1)

The concatenation of such uncalibrated experts are called as product-of-experts
[13].

3.1 Chamfer Distance Energy Function

Inspired from the works of [7] and [20], we construct our first energy function
based on the Chamfer Distance (CD) to evaluate the alignment/compatibility
of the shape priors and acquired point cloud data through optimization. The
Chamfer Distance is the summation of the closest point distances between two
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sets of points. For two point clouds A and B ∈ R3:

CD(A,B) =
∑
a∈A

min
b∈B

∥a− b∥22+
∑
b∈B

min
a∈A

∥a− b∥22 (2)

This distance measure as such satisfies the requirements of an energy function.
However, [7] proposed further modification to the existing energy function to
better handle the robustness and to make it compatible with second order op-
timizations. To reduce the effect of outliers points during optimization and also
for a better signal-to-noise ratio; the Huber loss function ρ : R → R is applied
to the squared TSDF values. In order to make the function independent of the
point cloud size, we take the mean of all points (summed distance of the point’s
distance values are divided by the total number of points in the point cloud
N =| XPC |). With these considerations, the Chamfer distance energy function
measures the compatibility between a shape prior ΦΦΦ = ΦΦΦ(τττ ,zzz) (parameterized
by the 3D pose τττ and shape weights zzz) and the raw point clouds inside the
hypothesis space. Such a measure, throughout this work, is defined as:

ECD(XPC ,ΦΦΦ) =
1

N

∑
xxxi∈Xpc

ρ(Φ(xxxi, zzz)
2) ∋ ρ(x) =

{
x , x ≤ ε

2
√
x− ε , otherwise

(3)

As our main goal is to verify that an object of class car is present inside the
proposals from the 3D-OD, we fetch this information via a query (Fig. 1 black
solid arrows from Hypothesis Params block). A query contains pose parameters
representing the hypothesis’s bounding box coordinates along with the mean
shape manifold (Φmean, obtained from the set of objects from ShapeNet) forming
the initial hypothesis (yyy0).

3.2 Silhouette Alignment Energy function (SAEF)

The SAEF measures the consistency between the silhouette alignment of a given
segmentation mask and a rendered silhouette mask of an object hypothesis from
the projection function. While the matched segmentation mask of an object M
is obtained from the instance segmentation network (MaskRCNN), the object
hypothesis silhouette is obtained by projecting the optimized 3D TSDF shape
prior ΦΦΦ into the image space based on its current shape and pose estimate. As
shown in the Fig. 1, dotted red line from the optimized CD energy function going
into the segmentation mask creation block. This rendering of the shape prior is
expressed through the projection function π(ΦΦΦ, ppp) : ΦΦΦ, ppp 7→ (0, 1), assigning each
pixel ppp a value close to 1 inside the object and close to zero outside the object.

ESil(ΦΦΦ) =
1

| Ω |
∑
ppp∈Ω

rsil(ppp,ΦΦΦ) (4)

where Ω is the set of pixels (i.e., the region of interest in the image) and rSil is
the residual comparing the segmentation masks per pixel:

rSil(ppp,ΦΦΦ) = − ln(pfg(ppp)π(ΦΦΦ, ppp) + pbg(ppp)(1− π(ΦΦΦ, ppp)) (5)
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Here pfg and pbg are the foreground and background probabilities of each
pixel derived from the segmentation mask M . The residual function emits large
positive values if there exist inconsistencies between the segmentation mask and
object hypothesis silhouette mask. On the other hand, for consistencies’ between
the pixels, the ln() function becomes close to 1, resulting in a residual value close
to 0.

Differentiable Rendering, inspired from the works of [19] [20], about sil-
houette masking, we design our projection function π(ΦΦΦ, ppp) through the following
equation.

π(ΦΦΦ, ppp) = 1− argminΦ(xxxo
i )∀xxxo

i∈Xp
ray

1

expΦ(xxxo
i )ξ +1

(6)

where X p
ray are 3D points sampled along a ray that is cast from the camera

center through the pixel ppp in the pinhole camera model. The super-script o de-
notes the transformation from camera coordinate system into object coordinate
system for evaluation in the TSDF shape grid. The function inside the product is
the sigmoid function, where ξ controls the sharpness of the inflection, translating
to the smoothness of the projection contours.

The idea of this projection function is, that if a point sample along the ray
cast through a pixel falls into the object shape in the 3D space, the point will be
assigned a negative value through the shape’s TSDF. For negative values, the
sigmoid function, acting as a continuous and steadily differentiable approxima-
tion of the Heaviside step function, will take a value close to 0. Points falling
outside the shape will be assigned positive signed distance values, leading to
values close to 1 in the sigmoid function.

Through this definition of the projection function, the rendering process of
the shape prior silhouette masks becomes a fully differentiable function. This
allows to analytically calculate desired gradients and Jacobians that can be used
for optimizing the energy function. By taking into consideration only the point

(a) Differentiable rendering for a single pixel (b) Rendered Mask from optimized shape prior

Fig. 2: Schematic example for the differentiable rendering process obtained from the
modified projection function.

along each ray with the minimal signed distance value, the number of points
in the further evaluation is reduced significantly. This helps us to significantly
speed up the rendering process. A schematic of this process for one pixel is
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shown in Fig. 2a. The red-point is the sampled point along the cast ray that
is closest to the shape and therefore determines the pixel value. The example
rendered silhouette mask using this approach shown in Fig. 2b establishes how
through this modification, the purpose of the projection function is preserved
when compared with [20]. The point with the minimal TSDF value sampled along
the ray for a pixel containing the objects’ projection will still be a negative value,
such that the projection function returns a value close to 1 (green in Fig. 2b).
Similar, for those pixels that do not contain the object’s projection, the function
will still return a value close to 0.

3.3 Height over Ground Energy Function

One simple requirement for a plausible hypothesis is, for the object to be on the
ground. Especially for detections of the class Car, this is a strong requirement.
Through ground plane estimation (RANSAC regressor), the ground level of each
coordinate in the x-y plane of a scene can be approximated through the function:

g(ttt(x, y)) =
1

c
(d− ax− by) (7)

where ttt ∈ R3 is the pose of an object hypothesis in the ego-vehicle coordinate
system. This allows to calculate the height over ground of an object hypothesis
as

dHoG(ttt, h) = ttt(z)− h

2
− g(ttt(x, y)) (8)

where h denotes the hypothesis height, accounting for the offset in height of the
3D pose parametrization chosen as the 3D bounding box center of the object.
Using the height over ground distance, an energy function encoding this require-
ment can be formulated in a parabolic form as proposed in [24] and [7]:

EHoG(yyy) = (dHoG(ttt, h))
2 = (ttt(z)− h

2
− g(ttt(x, y)))2 (9)

For objects being close to the ground plane, the energy function will be close
to 0, while deviations are punished quadratically.

3.4 Rotation Consistent Energy Function

Similarly to the height-over-ground energy prior, another prior assumption for
the orientation of an object detection hypothesis based on a ground estimate can
be formulated as an energy prior. Following a similar line of reasoning for objects
of class Car to be able to touch the ground, this requirement specifies that they
should touch the ground with the wheels. This requirement of the hypothesis’s
orientation to align with the ground can be formulated as the hypothesis’s z-
axis being parallel to the ground normal vector nnng. Given the orientation of the
hypothesis w.r.t. the ego vehicle coordinate system through the rotation matrix
R and the estimated ground plane normal, n⃗0 = [a, b, c]T gives the scalar product
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that can be used to evaluate the alignment of the hypothesis axis and the normal
vector.
The scalar product of two vectors has the property of yielding values close to 0
for orthogonal vectors, while for two normal parallel vectors it evaluates to 1.
The rotation energy prior can be defined as:

Erot = (1− (R · (0, 0, 1)T )T · ng)
2 (10)

The dot product of the rotation matrix R and the vector (0, 0, 1)T is equal to
taking the last row of the rotation matrix as it is describing the object’s z-axis
rotated to the ego-vehicle coordinate system.

4 Method

The energy-based model now describes an energy surface, on which each point
in the object hypothesis space Y (parameterized by object 3D pose and shape
prior primary components) is assigned with a value E ≥ 0 that directly ex-
presses the compatibility of the hypothesis through the observed raw data under
the assumption of a certain shape prior. Optimal plausible hypotheses can be
understood as being close to a local minimum (considering noise, etc.) on the
energy surface defined by the energy-based model. The most difficult challenge
to using the energy value directly for plausibility evaluation is that the energy-
based model is a combination of uncalibrated individual experts. To search for
the local minimum, close to an initially proposed hypothesis, optimization can
be used. The goal of the optimization method is to find an optimal hypothesis
yyy∗ and a shape zzz∗ that minimizes the energy-surface defined through the cost
function:

argminyyy,zzz(α0ESil + α1ECD + α2EHoG + α3ERot) (11)

where αn is a scalar value which denotes the importance factor. For our evalua-
tion we choose two different sets of configurations for αn, where C1 = [0.5,10,5,5]
and C2 = [10,0.1,1,50,104]. This configuration hyperparameter controls the im-
pact of individual energy functions on the overall optimization time it takes to
find the local minima. An advantage of the chosen energy functions and formu-
lations is their disposition for optimization as the individual energy functions
are made differentiable. Inspired by the requirement to find the optimal value of
the hypothesis parameterized by the pose and a latent variable parameterizing
the shape, we propose a novel two-step optimization to find the minima which
reflects true compatibility with the observed priors.

The first optimization step, as can be seen from line 13 of Algorithm
[1] consists of solving a 3D rigid body pose combined with a search for the
optimal shape problem. The 3D rigid body pose of the object hypothesis can be
described through a translation and rotation of the object w.r.t. the ego vehicle
coordinate system. A minimal representation of such a problem is given through
6 parameters for the 6 possible degrees-of-freedom. However, a non-minimal
representation consisting of the 3 translational components and 4 quaternion
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Algorithm 1 Pseudocode for obtaining energy values

1: input: hypothesis’ pose params from the prediction of a base NN
2: output: energy value
3: for samples in hypothesisList: do
4: Apply Threshold filtering ▷ filter objects based on max distance from the

ego vehicle
5: if checkMinMaxPoseValid(samples): then
6: fetch validBB; ▷ Validate whether the BB is plausible or not derived from

ϕmean

7: for validBB: do
8: check removeRadiusOutlier ← minNbrPoints ▷ For a hypothesis space

there should exist a min number of points to satisfy further optimization criterias
9: Identify and match box from MaskRCNN scenes ▷ False Positive when

no segmentation mask is found
10: if (EHoG, ERot) ≤ minEnergyThreshold: then
11: init ϕmean ← (PoseStateV ector) ▷ From NN
12: costFunction(ESil, ECD, EHoG, ERot) ▷ apply config C1

13: run secondOrderOptim(costFunction, LBFGSB);
14: collect jointEnergyValue, (y∗, z∗);
15: costFunction(ESil, ECD, EHoG, ERot) ▷ apply config C2

16: run secondOrderOptim(costFunction, BFGS);
17: return energy value w.r.t ECD;
18: else
19: push up the energy value quadratically; ▷ False Positives

20: else
21: return sqrt(calculateDeltaBetweenBB) ▷ push up the energy value of

implausible bounding box
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parameters is chosen for the flat euclidean spaces following [2]. The pose state
vector is therefore given as:

τττ = τττEV
O = [tttEV

O , qqqEV
O ] =

[
tx ty tz qw qx qy qz

]
∈ R7 (12)

where, tttEV
O =

(
tx ty tz

)⊤
are the components of the translation vector describing

the shift of points from the object-centered coordinate system (O) to the ego-
vehicle-centered coordinate system (EV) and qqqEV

O = qw+qx⟩+qy|+qz∥ describes
the quaternion parameters of the transformation. For the shape parameters zn,
the 5 shape weights corresponding to the 5 first primary components of the shape
manifold are chosen. The state vector is therefore a concatenation of the pose
and shape parameters:

ξξξ = [τττEV
O ;zzz] = [tx ty tz qw qx qy qz z0 z1 z2 z3 z4] ∈ R12 (13)

Each shape weight is bounded to an interval of [−1, 1]. The bounded version
of the 2nd order quasi-newton optimization method, L-BFGSB [17], is chosen
for the current optimization step. A lightweight optimization method is chosen,
as the objective of this step is to find the optimal shape parameter which fits
the point cloud observation. The optimization step uses C1 configuration as a
design choice. The weight vector of the configuration expresses relatively a higher
weight towards ECD, as this pushes the energy function to find a better shape
to fit to the observed point cloud, which otherwise suffers from translation and
rotation errors. The ESil helps to attain a faster optimization by guiding the
energy function towards minima. The optimized (yyy∗,zzz∗) is the best fit to the
proposal from the NN. The resulting energy from this step is in itself sufficient
to argue against the plausibility of the object. But there exist cases similar to
Fig. 5 where a misclassification with objects from other classes could provide
a false fit, contributing to False Negatives situations. To mitigate such cases, a
second optimization is needed.

The second optimization step, as can be seen from line 16 of Algorithm
[1] uses C2 configuration parameters with BFGS optimization method. The goal
of this optimization step is to collect the energy values given the strong require-
ments for the object to be on the ground while the wheels touching the road
surface capture through EHoG and ERot. This design choice yields us an ad-
ditional check to monitor whether there exists a significant gradient change in
ECD while the overall function pushes the rest of the priors towards minima. For
TP detections, this optimization step would result in a non-significant gradient
change to the energy value, as the function has already attained local minima
on the energy surface. In case of an FP, arising out of misclassification, e.g., as
shown in Fig. 5 where a truck is classified with high probability of being a car,
the gradient change w.r.t to ECD should be positive indicating an incompatibil-
ity between the priors and the observed hypothesis. In both optimization steps,
the Jacobian, and the Hessian, are numerically approximated to obtain better
results.
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4.1 Metric

At the end of the optimization process, each proposal in the queue to be verified
receives an associated uncalibrated energy value. Due to the uncalibrated nature
of the energy values, a decision rule based on a threshold over the energy value
needs to be chosen. To search for the cutoff threshold, we created a synthetic
dataset from NuScenes Validation dataset [3]. The synthetic dataset contains a
balanced mix of TP and FP created by random perturbation to the bounding
boxes, including some boxes being pushed higher from the ground, simulating
an adversarial attack. The baseline has a probability value of 0.5 as our per-
turbed dataset is balanced. The red line on the ROC chart Fig. 3 represents the
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Fig. 3: Quantitative evaluation of the synthetic dataset to find an optimal energy thresh-
old to act as a decision rule-based filter.

amount of FP for different IOU thresholds. Each energy values contribute to the
plausibility pl(yyy) ∈ {1, 0} and is evaluated to be either plausible or implausible
based on an empirical threshold κ as defined by the following equation.

pl(yyy) =

{
1, E(yyy) ≤ κ

0, E(yyy) > κ
(14)

Our plausibility verification was then done for each of the samples on this per-
turbed dataset, and the results can be seen from the graph. The blue line from
the graph is obtained for different thresholds’ of energy values. Do note that the
energies defined are uncalibrated. TPR has the interesting property of captur-
ing the impact of TNs and FPs. When FPs are detected, this classification gets
converted to TNs leading to a shift towards the left side of the graph. An energy
threshold value of 0.5 is chosen, since this threshold converts most of the FPs
present within the synthetic dataset to TN.



12 Vivekanandan et al.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Recall

P
re
ci
si
o
n

MonoRUn MonoRUn+Ours

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Recall

P
re
ci
si
o
n

MonoRUn+LiDAR MonoRUn+Ours

Fig. 4: Quantitative evaluation of MonoRUn network and ours on KITTI easy evalua-
tion. The left chart shows the baseline for the network which uses no LiDAR supervision
when compared with the right

(a) Back View (b) Top View (c) Segmentation mask

Fig. 5: Quantitative evaluation of misclassification. In this case, the truck was misclas-
sified as a car and point cloud observations doesn’t fit the optimized shape leading to a
high-energy value. (a) and (b) shows the back view and top view of the sample. Green
BB, ground truth proposal. Blue BB = Optimized pose and shape vector (c) shows
the segmentation mask from MaskRCNN which was trained on cityscapes to exhibit
worst-case performance

5 Experiments

As our work focuses towards reducing false positives and acts as a parallel module
which verifies proposals from the NN we need to choose a model which suits the
evaluation criteria. Our module requires no training components besides the
MaskRCNN module, which needs to be retrained for the ODD. To justify the
capabilities of our parallel module, we choose MonoRUn as our base network
and measure its performance with the KITTI [8] test dataset. For each of the
hypothesis/proposals in the scene, we have an initial plausibility check against
Height-over-Ground and Rotation consistent priors. If the 3DOP produces a
high-energy value (E>0.5) we attribute the hypothesis as a false positive. In
addition to the height and rotation checks, we also filter the proposals based on
a distance threshold to limit our verification space and this is chosen as 30 m in
front and back, 15 m to the left and right of the ego vehicle’s camera position.
We also apply checks based on the number of points in the LiDAR space and
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(a) E = EHoG + ERot

= 4.81 + 3.4 = 8.21
(b) E = E∗

HoG + ERot

= 0 + 3.4 = 3.4
(c) E = EHoG + E∗

Rot
= 4.81 + 0 = 4.81

(d) E∗ = E∗
HoG + E∗

Rot
= 0

Fig. 6: Qualitative example of Height-over-Ground and Rotation energy prior-based
optimization for a given ground plane and a hypothesis (blue bounding box) with
random position and orientation, as shown in (a). The result of optimizing the priors
individually and jointly is shown in (b), (c) and (d).

(a) ESil(yyy0) = 0.6 (b) ESil(yyy1) = 0.4 (c) ESil(yyy2) = 0.2 (d) ESil(yyy3) = 0.01

Fig. 7: Depicted are the overlap (yellow) of a segmentation mask (red) obtained from
a NuScenes sample and a silhouette rendering (green) of the mean shape prior of an
initial hypothesis, the optimized hypothesis and intermediate steps of the optimization
process.

remove proposals which have implausible Bounding box shapes. These simple
checks negate the need to validate the hypothesis against further energy values,
saving valuable computation time. The implication stays consistent with our
world view (object belonging to class car can’t float in free space) about an
object’s position, w.r.t our prior knowledge.

In the Fig. 4 we qualitatively evaluated our energy-based threshold filter
against MonoRUn network with and without the LiDAR supervision. The AP
of our filter exceeds the base NN by a wide margin. From the plots, the preci-
sion, which measure the total positivity of the observed samples, seems to achieve
moderately high value which showcases that our method is effective in reduc-
ing the false positives while maintaining a significantly reduced False Negatives
relative to the base NN.

In Fig. 6 for a given ground estimate, the height-over-ground and rotation
energy prior can be calculated. Fig. 6 shows one of the samples which were ran-
domly shifted and rotated. Fig. 6a shows the initial hypothesis, floating above the
ground plane, with the orientation being not aligned with the ground plane.This
deviation from the requirements are encoded into the energy priors (e.g., a car
should touch the ground with its four wheels) and is reflected in the energy
values for the particular sample. Given a segmentation mask and a rendered sil-
houette mask of the optimal hypothesis, the ESil evaluates the compatibility of
the two. For this experiment, the differentiable renderer was set to a down sam-
ple factor of 8, meaning that only every 64th (82) pixel the projection function
was evaluated. This downsampling helps to reducing the computational inten-
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(a) Motion artifacts (b) Breaking Shape

Fig. 8: Failure cases: True positives are being misclassified as False positives due to
sensor noise. Green box represents the ground truth, blue box represents the optimized
shape while red represents the initial hypothesis

sity whilst preserving the silhouette details. Along each ray, points were sampled
every 0.3 m to a maximum distance of 30 m. The parameter ξ, controlling the
steepness of the sigmoid function in the projection function, was chosen to be
−25. Fig. 7 section (a) shows how the initial hypothesis (green mask) barely
coincides with the segmentation mask (obtained from MaskRCNN) leading to
an ESil(y0) = 0.6. As the energy is the mean over all the residual values of
each pixel, describing the agreement with values in the interval [0, 1], the energy
function is bounded ESil ∈ [0, 1]. During optimization, as shown in Fig. 7b and
7c, one can see that the energy decreases, leading to an optimal energy value in
Fig. 7d. During our experiments we found some failure cases as can be seen from
Fig. 8 being cause due to motion artifacts and sensor noise from the LiDAR.

Computation time required for the optimization schema as measured on Intel-
Core-i7 comes around at an average of 680ms per sample without any paralleliza-
tion. 70% of the compute time is spent for the optimization of the shape weights
in ECD. Since CD is a pointwise comparison between 2 different point clouds,
this computation time could significantly be reduced by pushing the distance
estimation to a GPU.

6 Conclusion

We propose a new schema which functions as a parallel checker module to verify
the predictions from a 3D Object Detector. The different energy function we
propose utilizes cross sensor data flows with simple priors to validate an ob-
ject. We also demonstrated the viability of a decision rule base threshold filter
through the synthetic dataset. From our experiments, we extensively showcase
the viability of the two-step optimization schema and modified renderer towards
effectively utilizing the priors in reducing the amount of false positives relative
to the proposals. In our future work, we are planning to use motion priors along
with map information to further argue about the validity of an object in space.
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