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Abstract. Modality selection is an important step when designing mul-
timodal systems, especially in the case of cross-domain activity recogni-
tion as certain modalities are more robust to domain shift than others.
However, selecting only the modalities which have a positive contribution
requires a systematic approach. We tackle this problem by proposing an
unsupervised modality selection method (ModSelect), which does not re-
quire any ground-truth labels. We determine the correlation between the
predictions of multiple unimodal classifiers and the domain discrepancy
between their embeddings. Then, we systematically compute modality
selection thresholds, which select only modalities with a high correla-
tion and low domain discrepancy. We show in our experiments that our
method ModSelect chooses only modalities with positive contributions
and consistently improves the performance on a Synthetic→Real do-
main adaptation benchmark, narrowing the domain gap.

Keywords: Modality selection, domain generalization, action recogni-
tion, robust vision, synthetic-to-real, cross-domain

1 Introduction

Human activity analysis is vital for intuitive human-machine interaction, with
applications ranging from driver assistance [55] to smart homes and assistive
robotics [71]. Domain shifts, such as appearance changes, constitute a signifi-
cant bottleneck for deploying such models in real-life. For example, while simu-
lations are an excellent way of economical data collection, a Synthetic→Real
domain shift leads to > 60% drop in accuracy when recognizing daily living
activities [70]. Multimodality is a way of mitigating this effect, since different
types of data, such as RGB videos, optical flow and body poses, exhibit individ-
ual strengths and weaknesses. For example, models operating on body poses are
less affected by appearance changes, as the relations between different joints are
more stable given a good skeleton detector [23,22]. RGB videos, in contrast, are
more sensitive to domain shifts [72,57] but also convenient since they cover the
complete scene and video is the most ubiquitous modality [14,26,73,75].

Given the complementary nature of different data types (see Figure 2), we
believe, that multimodality has a strong potential for improving domain gener-
alization of activity recognition models, but which modalities to select and how
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to fuse the information become important questions. Despite its high relevance
for applications, the question of modality selection has been often overlooked in
this field. The main goal of our work is to develop a systematic framework for
studying the contribution of individual modalities in cross-domain human activ-
ity recognition. We specifically focus on the Synthetic→Real distributional
shift [70], which opens new doors for economical data acquisition but comes with
an especially large domain gap. We study five different modalities and examine
how the prediction outcomes of multiple unimodal classifiers correlate as well as
the domain discrepancy between their embeddings. We hope that our study will
provide guidance for a better modality selection process in the future.

Contributions and Summary.We aim to make a step towards effective use
of multimodality in the context of cross-domain activity recognition, which has
been studied mostly for RGB videos in the past [14,26,73,75]. This work devel-
ops the modality selection framework ModSelect for quantifying the importance
of individual data streams and can be summarized in two major contributions.
(1) We propose a metric for quantifying the contribution of each modality for
the specific task by calculating how the performance changes when the modality
is included in the late fusion. Our new metric can be used by future research
to justify decisions in modality selection. However, to estimate these perfor-
mance changes, we use the ground-truth labels from the test data. (2) To detach
ourselves from supervised labels, we propose to study the domain discrepancy
between the embeddings and the correlation between the predictions of the uni-
modal classifiers of each modality. We use the discrepancy and the correlation
to compute modality selection thresholds and show that these thresholds can
be used to select only modalities with positive contributions w.r.t. our proposed
metric in (1). Our unsupervised modality selection ModSelect can be applied in
settings where no labels are present, e.g., in a multi-sensor setup deployed in
unseen environments, where ModSelect would identify which sensors to trust.

2 Related Work

2.1 Multimodal Action Recognition

The usage of multimodal data represents a common technique in the field of
action recognition, and is applied for both: increasing performance in supervised
learning as well as unsupervised representation learning. Multimodal methods
for action recognition include approaches which make use of video and audio
[50,4,64,62,3], optical flow [39,64], text [52] or pose information [23,22,65]. Such
methods can be divided into lower level early / feature fusion which is based on
merging latent space information from multiple modality streams [43,94,56,1,2,63,34,84]
and late / score fusion which combines the predictions of individual classifiers
or representation encoders either with learned fusion modules [77,76,1,93,47,61]
or with rule-based algorithms.

For this work, we focus on the latter, since the variety of early fusion tech-
niques and learned late fusion impedes a systematic comparison, while rule-based
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late fusion builds on few basic but successful techniques such as averaging single-
modal scores [89,42,7,5,24,13,27,12,28], the max rule [45,5,27,67], product rule
[42,78,45,48,25,91,81,27,67] or median rule. Ranking based solutions [30,31,66,20]
like Borda count are less commonly used for action recognition but recognised
in other fields of computer vision.

2.2 Modality Contribution Quantification

While the performance contribution of modalities has been analyzed in multiple
previous works, e.g., by measuring the signal-to-noise ratio between modalities
[83], determining class-wise modality contribution by learning an optimal lin-
ear modality combination [46,6] or extracting modality relations with threshold-
based rules [80], in-depth analysis of modality contributions in the field of action
recognition remains sparse and mostly limited to small ablation studies. Met-
rics to measure data distribution distances like Maximuim Mean Discrepancy
(MMD) or Mean Pairwise Distance (MPD) have been applied in fields like do-
main adaptation. MMD is commonly used to estimate and to reduce domain
shift [60,54,35,79] and can be adapted to be robust against class bias, e.g. in
the form of weighted MMD [87], Mean Pairwise Distance (MPD) was applied
to analyze semantic similarities of word embeddings, e.g., in [29]. In this work,
we introduce a systematic approach for analyzing modality contributions in the
context of cross-domain activity recognition, which, to the best of out knowledge,
has not been addressed in the past.

2.3 Domain Generalization and Adaptation

Both domain generalization and domain adaptation present strategies to learn
knowledge from a source domain which is transferable to a given target domain.
While domain adaptation allows access to data from the target domain to ful-
fill this task, either paired with labels [69,16,59] or in the form of unsupervised
domain adaptation [10,15,69,16,59,19,18,74], domain generalization assumes an
unknown target domain and builds upon methods which condition a neural net-
work to make use of features which are found to be more generalizable [88], apply
heavy augmentations to increase robustness [90] or explore different methods of
leveraging temporal data [90].

3 Approach

Our approach consists of three main steps. (1) We extract multiple modalities
and train a unimodal action recognition classifier on each modality. Afterwards,
we evaluate all possible combinations of the modalities with different late fusion
methods. We define the action recognition task in Section 3.1, the datasets we
use in Section 3.2, and the modality extraction and training in Section 3.3. (2)
In Section 3.4, we determine which modalities lead to a performance gain based
on our evaluation results from (1). This establishes a baseline for the (3) third
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Fig. 1. ModSelect: out approach for unsupervised modality selection which uses pre-
dictions correlations and domain discrepancy.

step (Section 3.5), where we show how to systematically select these beneficial
modalities in an unsupervised way with our framework ModSelect - without the
need of labels nor evaluation results. We offer an optional notation table in the
Supplementary for a better understanding of all of our equations.

We intentionally do not make use of learned late fusion techniques, such as
[77,76,1,93,47], since such methods do not allow for comparing the contribution
of individual modalities. Instead, a specific learned late fusion architecture could
be better suited to some modalities in contrast to others, overshadowing a neutral
evaluation. However, our work can be used to select modalities upon which such
learned late fusion techniques can be designed.

3.1 Action Recognition Task

Our goal is to produce a systematic method for unsupervised modality selection
in multimodal action recognition. More specifically, we focus on Synthetic→Real
domain generalization to show the need for a modality selection approach when
a large domain gap is present. In this scenario an action classifier is trained only
on samples from a Synthetic source domain xs ∈ Xs with action labels y ∈ Y .
In domain generalization, the goal is to generalize to an unseen target domain
Xt, without using any samples xt ∈ Xt from it during training. In our case,
the target domain Xt consists of Real data and the source and target data
originate from distinct probability distributions xs ∼ psynthetic and xt ∼ preal.
The goal is to classify each instance xt from the Real target test domain Xt,
which has a shared action label set Y with the training set. To achieve this,
we use the synthetic Sims4Action dataset [70] for training and the real Toyota
Smarthome (Toyota) [21] and ETRI-Activity3D-LivingLab (ETRI) [44] as two
separate target test sets. We also evaluate our models on the Sims4Action official
test split [70] in our additional Synthetic→Synthetic experiments.

3.2 Datasets

We focus on Synthetic→Real domain generalization between the synthetic
Sims4Action [70] as a training dataset and the real Toyota Smarthome [21] and
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ETRI [44] as test datasets. Sims4Action consists of ten hours of video mate-
rial recorded from the computer game Sims 4, covering 10 activities of daily
living which have direct correspondences in the two Real datasets. Toyota
Smarthome [21] contains videos of 18 subjects performing 31 different every-
day actions within a single apartment, and ETRI [44] consists of 50 subjects
performing 55 actions recorded from perspectives of home service robots in var-
ious residential spaces. However, we use only the 10 action correspondences to
Sims4Action from the Real datasets for our evaluation.

3.3 Modality Extraction and Training

We leverage the multimodal nature of actions to extract additional modalities
for our training data, such as body pose, movement dynamics, and object detec-
tions. To this end, we utilize the RGB videos from the synthetic Sims4Action [70]
to produce four new modalities - heatmaps, limbs, optical flow, and object de-
tections. An overview of all modalities can be seen in Figure 2.

Heatmaps and Limbs. The heatmaps and limbs (H and L) are extracted
via AlphaPose [32,51,86], which infers 17 joint locations of the human body. The
heatmaps modality h(x, y) at pixel (x, y) is obtained by stacking 2D Gaussian
maps, which are centered at each joint location (xi, yi) and each map is weighted
by its detection confidence ci as shown in Equation 1, where σ = 6.

h(x, y) := exp

(
−((x− xi)

2 + (y − yi)
2)

2σ2

)
· ci (1)

The limbs modality is produced by connecting the joints with white lines and
weighting each line by the smaller confidence of its endpoints. We weight both
modalities by the detection confidences ci so that uncertain and occluded body
parts are dimmer and have a smaller contribution.

Optical Flow. The optical flow modality (OF) is estimated via the Gunnar-
Farneback method [33]. The optical flow of(x, y) at pixel (x, y) encodes the
magnitude and angle of the pixel intensity changes between two frames in the
value and hue components of the HSV color space. The saturation is used to
adjust the visibility and we set it to its maximum value. The heatmaps, limbs,
and optical flow are all image-based and are used as an input to models which
usually utilize RGB images.

Object Detections.Our last modality (YOLO) consists of object detections
obtained by YOLOv3 [68], which detects 80 different objects. Unlike the other

RGB Heatmaps (H) Limbs (L) Optical Flow (OF) YOLO

Fig. 2. Examples of all extracted modalities. Note: the YOLO modality is represented
as a vector v, which encodes distances to the person’s detection (see Section 3.3).
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modalities, we represent the detections as a vector, instead of an image. We
show that such a simple representation achieves good domain generalization
in our experiments. The YOLO modality for an image sample consists of a k-
dimensional vector v, where v[i] corresponds to the reciprocal Euclidean distance
between the person’s and the ith object’s bounding box centers, and k = 80 is the
number of detection classes. This way, objects closer to the person have a larger
weight in v than ones which are further away. After computing the distances, v
is normalized by its norm: v ← v/||v||. We denote the set of all modalities as
M := {H, L, OF, RGB, YOLO} and use the termM in our equations.

Training. We train unimodal classifiers on each modality and evaluate all
possible modality combinations with different late fusion methods. We utilize
3D-CNN models with the S3D backbone [85] for each one of the RGB, H, L, and
OF modalities. The YOLO modality utilizes an MLP model as it is not image-
based. We train all 5 action recognition models end-to-end on Sims4Action [70].

Evaluation. For our late fusion experiments, we combine the predictions
of all unimodal classifiers at the class score level and obtain results for all∑5

i=1

(
i
5

)
= 31 modality combinations. We investigate 6 late fusion strategies -

Sum, Squared Sum, Product, Maximum, Median, and Borda Count [40,8], which
all operate on the class probability scores. Borda Count also uses the ranking of
the class scores. For brevity, we refer to a late fusion of unimodal classifiers as a
multimodal classifier and present our late fusion results in Section 4.1.

3.4 Quantification Study: Modality Contributions

In this section, we propose how to quantify the contributions of each modality
based on the performance of the models on the target test sets. To this end, we
propose a with-without metric, which computes the average difference f(m) of
the performance of a multimodal classifier with a modality m to the performance
without it. Formally the contribution f(m) of a modality m is defined as:

f(m) := E
C∈C

[acc(C ∪ {m})− acc(C)] (2)

where C is the set of all modality combinations, acc(C) is the test accuracy of
the multimodal classifier with the modality combination C, and m ∈ M. We
compute f(m) for all modalities based on the late fusion results listed in Section
4.1. The contribution of each modality can be used to determine the modalities,
which positively influence the performance on the test datasetM+ ⊆M.

3.5 ModSelect: Unsupervised Modality Selection

In this section, we introduce our method ModSelect for unsupervised modality
selection. In this setting, we assume that we do not have any labels in the target
test domain Xt. This is exactly the case for Synthetic→Real domain gen-
eralization, where a model trained on simulated data is deployed in real-world
conditions. In this case, the contribution of each modality cannot be estimated
with Equation 2 as acc(C) cannot be computed without ground-truth labels.
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Note that we do have labels in our test sets but we only use them in our quan-
tification study and ignore them for our unsupervised experiments.

We propose ModSelect - a method for unsupervised modality selection based
on the consensus of two metrics: (1) the correlation between the unimodal classi-
fiers’ predictions ρ and (2) the MaximumMean Discrepancy (MMD) [36] between
the classifiers’ embeddings. We compute both metrics with our unimodal classi-
fiers and propose how to systematically estimate modality selection thresholds.
We show that the thresholds select the same modalities with positive contribu-
tionsM+ as our quantification study in Section 3.4.

Correlation Metric. We define the predictions correlation vector ρmn be-
tween modalities m and n as:

ρmn :=
E[(zm − µm)⊙ (zn − µn)]

σm ⊙ σn
(3)

where zm, zn are the softmax class scores of the action classifiers trained on
modalities m and n respectively, (µm,σm), (µn,σn) are the mean and standard
deviation vectors of zm, zn, and ⊙ is the element-wise multiplication operator.
We define the predictions correlation ρ(m,n) between two modalities m, n as:

ρ(m,n) :=
1

N

N∑
i=1

ρmn[i] (4)

where N = 10 is the number of action classes.
MMD Metric. We show that the distance between the distributions of the

embeddings of two unimodal classifiers can also be used to compute a modality
selection threshold. The MMD metric [36] between two distributions P and Q
over a set X is formally defined as:

MMD(P,Q) := ||EX∼P [φ(X)]− EY∼Q[φ(Y )]||H (5)

where φ : X 7→ H is a feature map, and H is a reproducing kernel Hilbert
space (RKHS) [37,9,36]. For our empirical calculation of MMD between the
embeddings hm,hn of two modalities m,n we set X = H = Rd and φ(x) = x:

MMD(m,n) := ||E[hm]− E[hn]|| (6)

where hm,hn are the embeddings from the second-to-last linear layer of the
action classifiers for modalities m and n respectively, and d is the embedding
size. Note that using a linear feature map φ(x) = x lets us determine only the
discrepancy between the distributions’ means. A linear mapping is sufficient to
produce a good modality selection threshold, but one could also consider more
complex alternatives, such as φ(x) = (x, x2) or a Gaussian kernel [38].

We make the following observations regarding both metrics for modality se-
lection. Firstly, a high correlation between correct predictions is statistically
more likely than a high correlation between wrong predictions, since there is only
1 correct class andN−1 possibilities for error. We believe that a stronger correla-
tion between the predictions results in a higher performance. Secondly, unimodal
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classifiers should have a high agreement on easy samples and a disagreement on
difficult cases [40]. A higher domain discrepancy between the classifiers’ embed-
dings has been shown to indicate a lower agreement on their predictions [53,92],
and hence, a decline in performance when fused. We therefore believe that good
modalities are characterized by a low discrepancy and high correlation.

Modality Selection Thresholds.After computing ρ(m,n) andMMD(m,n)
for all pairs (m,n) ∈M2, we systematically calculate modality selection thresh-
olds for each metric ρ and MMD. We consider two types of thresholds: (1) an ag-
gregated threshold δagg, which selects a set of individual modalities Magg ⊆M,
and (2) a pairs-threshold δpair, which selects a set of modality pairs Cpair ⊆M2.

Aggregated Threshold δagg. For the first threshold, we aggregate the ρ
and MMD values for a modality m by averaging over all of its pairs:

ρ(m) :=
1

|M|
∑
n∈M

ρ(m,n) MMD(m) :=
1

|M|
∑
n∈M

MMD(m,n) (7)

Thus, we produce the setsAρ := {ρ(m)|m ∈M} andAMMD := {MMD(m)|m ∈
M}. A simple approach would be to use the mean or median as a threshold for
Aρ and AMMD. However, such thresholds are sensitive to outliers (mean) or do
not use all the information from the values (median). Additionally, one cannot
tune the threshold with prior knowledge. To mitigate these issues, we propose
to use the Winsorized Mean [41,82] µλ(A) for both sets, which is defined as:

µλ(A) := λaλ + (1− 2λ)āλ + λa1−λ (8)

where aλ is the λ-percentile of A, āλ is the λ-trimmed mean of A, and λ ∈
[0, 0.5] is a “trust” hyperparameter. A higher λ results in a lower contribution
of edge values in A and a bigger trust in values near the center. Therefore, we
set λ = 0.2 as we have 5 modalities and expect to trust at least 3. We compute
two separate thresholds δρagg := µ0.2(Aρ) and δMMD

agg := µ0.2(AMMD) and select
the modalitiesMagg as a consensus between the two metrics as:

Magg := {m ∈M|ρ(m) ≥ δρagg ∨MMD(m) ≤ δMMD
agg } (9)

Pairs-Threshold δpair. The second type of selection threshold skips the
aggregation step of δagg and directly computes the Winsorized Means µ0.2(·)
over the sets of all ρ(m,n) and MMD(m,n) values to obtain δρpair and δMMD

pair

respectively. This results in a selection of modality pairs, rather than individual
modalities as in Equation 9. In other words, the δpair thresholds are suitable
when one is searching for the best pairs of modalities, and δagg for the best
individual modalities. The selected modality pairs Cpair with this method are:

Cpair := {(m,n) ∈M2|ρ(m,n) ≥ δρpair ∨MMD(m,n) ≤ δMMD
pair } (10)

Summary of our Approach. A summary of our unsupervised modality
selection method ModSelect is illustrated in Figure 1. We use the embeddings of
unimodal action classifiers to compute the Maximum Mean Discrepancy (MMD)
between all pairs of modalities. We also compute the correlation ρ between the
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predictions of all pairs of classifiers. We systematically estimate thresholds for
MMD and ρ which discard certain modalities and select only modalities on
which both metrics have a consensus. In the following Experiments 4 we show
that the selected modalities m ∈ M with our method ModSelect are exactly
the modalities with a positive contribution f(m) > 0 according to Equation 2,
although our unsupervised selection does not utilize any ground-truth labels.

4 Experiments

4.1 Late Fusion: Results

We evaluate our late fusion multimodal classifiers following the cross-subject
protocol from [21] for Toyota, the inter-dataset protocol from [49] for ETRI,
and the official test split for Sims4Action from [70]. We follow the original
Sims4Action→Toyota evaluation protocol of [70] and utilize the mean-per-
class accuracy (mPCA) as the number of samples per class are imbalanced in the
Real test sets. The mPCA metric avoids bias towards overrepresented classes
and is often used in unbalanced activity recognition datasets [21,11,55,70].

The results from our evaluation are displayed in Table 1. The domain gap
of transferring to Real data is apparent in the drastically lower performance,
especially on the ETRI dataset. Combinations including the H, L, or RGBmodal-
ities exhibit the best performance on the Sims4Action dataset, whereas OF and
YOLO are weaker. However, combinations including the RGB modality seem
to have an overall lower performance on the Real datasets, perhaps due to
the large appearance change. Combinations with the YOLO modality show the
best performance for both Real test sets. Inspecting the results in Table 1 is
tedious and prone to misinterpretation or confirmation bias [58]. It is also pos-
sible to overlook important tendencies. Hence, we show in Section 4.2 how our
quantification study tackles these problems by systematically disentangling the
modalities with a positive contributionM+ from the restM−.

4.2 Quantification Study: Results

We use the results from Table 1 for the acc(·) term in Equation 2 and compute the
contribution of each modality f(m). We do this for all late fusion strategies and
all three test datasets and plot the results in Figure 3. The Synthetic→Real
domain gap is clearly seen in the substantial difference in the height of the bars
in the test split of Sims4Action [70] compared to the Real test datasets. The
limbs and RGB modalities have the largest contribution on Sims4Action [70],
followed by the heatmaps. The only modalities with negative contributions are
the optical flow and YOLO, where YOLO reaches a drastic drop of over (−10%)
for the Squared Sum and Maximum late fusion methods. We conclude that
YOLO and optical flow have a negative contribution on Sims4Action [70].

The results on the Real test datasets Toyota [21] and ETRI [44] show differ-
ent tendencies. The contributions are smaller due to the domain shift, especially
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Table 1. Results for the action classifiers trained on Sims4Action [70] in the mPCA
metric. The late fusion results are averaged over the 6 fusion strategies discussed in
Section 3.3. H: Heatmaps, L: Limbs, OF: Optical Flow.

mPCA [%]
Synthetic Real Synthetic Real

Test Set Sims4Action [70] Toyota [21] ETRI [44] Test Set Sims4Action [70] Toyota [21] ETRI [44]

Modalities Modalities

H 71.38 20.23 12.12 H L OF RGB 96.95 26.00 16.22
L 75.09 22.00 12.88 H L OF YOLO 90.05 28.98 20.27
OF 44.50 21.34 9.28 H L RGB YOLO 92.88 25.36 18.55
RGB 61.79 13.74 9.37 H OF RGB YOLO 91.14 26.10 17.20
YOLO 50.54 26.08 38.25 L OF RGB YOLO 92.56 26.12 18.56

H L 91.48 23.44 16.95 H L OF 94.03 26.70 17.26
H OF 89.86 25.97 15.10 H L RGB 95.72 23.25 15.78
H RGB 94.44 21.38 13.91 H OF RGB 95.41 23.73 13.79
L OF 90.84 25.60 15.90 L OF RGB 95.61 24.09 15.49
L RGB 94.42 20.58 15.46 H L YOLO 86.57 25.80 20.46
OF RGB 86.15 18.50 12.85 H OF YOLO 82.97 29.48 19.91
H YOLO 74.86 25.51 20.55 H RGB YOLO 88.79 23.27 17.77
L YOLO 80.25 24.77 19.91 L OF YOLO 86.31 28.51 20.68
OF YOLO 62.21 27.56 20.34 L RGB YOLO 90.59 23.29 19.09
RGB YOLO 76.23 17.29 19.41 OF RGB YOLO 82.37 21.15 16.92

H L OF RGB YOLO 94.27 27.52 18.53

on the ETRI dataset. The RGB modality has explicitly negative contributions
on both Real datasets. We hypothesize that this is due to the appearance
changes when transitioning from synthetic to real data. Apart from RGB, opti-
cal flow also has a consistently negative contribution on the ETRI dataset. An
interesting observation is that the domain gap is much larger on ETRI than on
Toyota. A reason for this might be that Roitberg et al. [70] design Sims4Action
specifically as a Synthetic→Real domain adaptation benchmark to Toyota
Smarthome [21], e.g., in Sims4Action the rooms are furnished the same way as
in Toyota Smarthome. Our results indicate that optical flow has a negative con-
tribution in ETRI, whereas RGB is negative in both Real datasets. The average
contribution of each modality over the 6 fusion methods is in Table 2(a).

4.3 Results from ModSelect: Unsupervised Modality Selection

Table 2(a) shows which modalities have a negative contribution on each target
test dataset. However, to estimate these values we needed the performance, and
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Fig. 3. Quantification Study: Quantification of the contribution of each modality for 6
late fusion methods and on three different test sets. The height of each bar corresponds
to the contribution value f(m) which is computed with Equation 2.
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endpoint modalities m and n. Each value is computed according to Equation 4.

hence, the labels for the target test sets. In this section, we show how to select
only the modalities with a positive contribution without using any labels.

Predictions Correlation. We utilize the predictions correlation metric
ρ(m,n) and compute it for all modality pairs using Equation 4. The results
for all datasets are illustrated in the chord diagrams in Figure 4. The chord
diagrams allow us to identify the same tendencies, which we observed in our
quantification study. Each arch connects two modalities (m,n) and its thickness
corresponds to the value ρ(m,n). The YOLO modality has the weakest correla-
tions on Sims4Action [70], depicted in the thinner green arches. Optical flow also
exhibits weaker correlations compared to the heatmaps, limbs, and RGB. We see
significantly thinner arches for the RGB modality in both Real test datasets,
and for optical flow in ETRI, which matches our results in Table 2(a).

However, simply inspecting the chord plots is not a systematic method for
modality selection. Hence, we first compute the aggregated correlations ρ(m)
with Equation 7, which constitute the set Aρ. Then, we compute the aggregated
threshold δρagg := µ0.2(Aρ) using the 0.2-Winsorized Mean [82] from Equation 8.
We compute these terms for each test dataset and obtain three thresholds. The
aggregated correlations ρ(m) and their thresholds δρagg for each test dataset are

Table 2. (a) Average contribution f(m) over the 6 late fusion methods of each modal-
ity m. Negative contributions are colored in red. (b) Aggregated prediction correlation
ρ(m) values for each modality m on the three test datasets and the aggregated thresh-
olds δρagg. Values below the threshold are colored in red. (c) Aggregated MMD(m)
values for each modality m on the three test datasets and the aggregated thresholds
δMMD
agg . Values above the threshold are colored in red.

Test Dataset (a) Contribution f(m) (b) Aggregated ρ(m) (c) Aggregated MMD(m)

H L OF RGB YOLO H L OF RGB YOLO δρagg H L OF RGB δMMD
agg

Sims4Action [70] 4.37 8.86 -0.74 6.98 -2.57 0.57 0.55 0.38 0.50 0.37 0.40 9.49 8.12 13.07 9.92 10.15
Toyota [21] 2.14 2.46 2.90 -1.86 2.13 0.23 0.21 0.14 0.08 0.14 0.10 11.93 11.47 13.34 20.79 14.38
ETRI [44] 0.76 1.60 -0.13 -1.17 2.02 0.14 0.14 0.06 0.05 0.13 0.08 17.84 17.76 22.04 24.91 20.64
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illustrated in Table 2(b). The modalities underneath the thresholds are exactly
the ones with negative contributions from Table 2(a).

We also show that applying the pairs-threshold δρpair leads to the same results.
We skip the aggregation step of δρagg and compose the Aρ set out of the ρ(m,n)
values, i.e. we focus on modality pairs instead of individual modalities. We com-
pute the threshold δρpair := µ0.2(Aρ) again with the 0.2-Winsorized Mean [82]
from Equation 8. The correlation values ρ(m,n) as well as the accuracies of all bi-
modal action classifiers from Table 1 are shown in Figure 5. The pairs-thresholds
δρpair for each test set are drawn as dashed lines and divide the modality pairs
into two groups. The modality pairs below the thresholds are marked with an
× so that it is possible to identify which pairs are selected.

For Sims4Action [70], optical flow (OF) and RGB show a negative f(m) in
Table 2(a) and are also discarded by δρagg. Figure 5 shows that all modality
pairs containing either OF or RGB are below the threshold, i.e. δρpair discards
the same modalities as δρagg for Sims4Action. The same is true for the Real test
datasets, where all models containing RGB are discarded in Toyota and ETRI,
as well as OF for ETRI. Another observation is that the majority of ”peaks” in
the yellow accuracy lines coincide with the peaks in the blue correlation lines.
This result is in agreement with our theory that a high correlation between
correct predictions is statistically more likely than a high correlation between
wrong predictions, since there is one only correct class and multiple incorrect
ones. Moreover, while we do achieve the same results with both thresholds, we
recommend using δρagg when discarding an entire input modality, e.g. a faulty
sensor in a multi-sensor setup, and δρpair when searching for the best synergies
from all modality combinations.

Domain Discrepancy. The second metric we use to discern the contribut-
ing modalities from the rest is the Maximum Mean Discrepancy (MMD) [36]
between the embeddings of the action classifiers. Note that the YOLO modal-
ity is not included in this experiment as its MLP model’s embedding size is
different that the other 4 image-based modalities. While MMD is widely used
as a loss term for minimizing the domain gap between source and target do-
mains [79,87,17], a large MMD is also associated with a decline in performance
in fusion methods [53,92]. To utilize the MMD metrics to separate the modal-
ities, we first compute MMD(m,n) for all modality pairs and the aggregated
discrepancies MMD(m) with Equations 6 and 7. We then compute the pairs-
δMMD
pair and aggregated δMMD

agg thresholds with the 0.2-Winsorized Mean [82] from
Equation 8 the same way as we did for the predictions’ correlations ρ.

The MMD(m,n) values for all modality pairs in the three test datasets are
illustrated in Figure 6. The higher discrepancy values are clearly apparent by
their bright colors and contrast to the rest of the values. Optical flow has the
largest values on Sims4Action, and RGB has the highest discrepancy on Toyota
and ETRI. Optical flow also exhibits a high discrepancy on ETRI. Once again, we
can see that the domain gap to the ETRI dataset is much larger, which is mani-
fested in drastically higher MMD(m,n) values. The pairs-thresholds δMMD

pair for
the three datasets are {13.68, 19.18, 27.50} and separate exactly the same modal-
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Fig. 5. Prediction correlations ρ(m,n) between all modality pairs and the late fusion
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dashed lines. Pairs under the thresholds are crossed out with an × in the yellow line.

ity pairs as our quantification study and the δρpair thresholds, with the exception
of the (H,OF) pair in ETRI. The aggregated discrepancies MMD(m) for each
modality and the aggregated thresholds are listed in Table 2(c), where the val-
ues above the thresholds are colored in red. The red values coincide exactly with
the negative contributions f(m) from our quantification study in Table 2(a).

ModSelect: Unsupervised Modality Selection. Finally, we select the
modalities with either the aggregated δagg or the pairs-thresholds δpair, by con-
structing the consensus between our two metrics ρ and MMD (see Equations 9
and 10). The selected modalitiesMagg with our aggregated thresholds δagg and
selected modality pairs Cpair with our pairs-thresholds δpair are listed in Table 3.
The selected modalitiesMagg from our aggregated thresholds δagg are exactly
the ones with a positive contribution M+ in Table 2(a) from our quantifica-
tion study in Section 4.2. The pairs-thresholds δpair have selected only modality
pairs Cpair which are constituted out of modalities fromM+, which means that
Cpair contains only pairs of modalities (m,n) with positive contributions, i.e.
f(m), f(n) > 0. In other words, our proposed unsupervised modality selection is
able to select only the modalities with positive contributions by utilizing the pre-
dictions correlation and MMD between the embeddings of the unimodal action
classifiers, without the need of any ground-truth labels on the test datasets.

Impact on the multimodal accuracy. The impact of the unsupervised
modality selection on the mean multimodal accuracy can be seen in Table 3. Se-
lecting the modalities with our proposed thresholds leads to an average improve-
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Fig. 6. Maximum Mean Discrepancy values MMD(m,n) computed with Equation 6
for all modality pairs (m,n). Warmer colors correspond to a higher discrepancy.
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Table 3. Results from ModSelect: Selected modalities Magg with δagg and selected
modality pairs Cpair with δpair computed with Equations 9 and 10.

Average multimodal accuracy

Test Dataset Magg Cpair All Modalities M Ours: Magg

Sims4Action [70] {H, L, RGB}
{(m,n) ∈ M2|m ∈ M+ ∧ n ∈ M+}

85.7% 90.9% (+5.2%)
Toyota [21] {H, L, OF, YOLO} 22.9% 26.5% (+3.6%)
ETRI [44] {H, L, YOLO} 17.7% 22.0% (+4.3%)

ment of 5.2%, 3.6%, and 4.3% for Sims4Action [70], Toyota [21], and ETRI [44]
respectively. This is a substantial improvement, given the low accuracies on the
Real test datasets due to the synthetic-to-real domain gap. These results con-
firm that our modality selection approach is able to discern between good and
bad sources of information, even in the case of a large distributional shift.

5 Limitations and Conclusion

Limitations. A limitation of our work is that the contributions quantification
metric relies on the evaluation results on the test datasets, i.e., the ground-truth
labels are needed to calculate the metric. Moreover, the with-without metric
f(m) in Equation 2 requires O(M ∗2M−1) computations, where M is the number
of modalities. However, one should note that in practice M is not too large,
e.g., M ≤ 10. Additionally, since our method is novel, it has only been tested
on the task of cross-domain action recognition. To safely apply our method to
other multimodal tasks, e.g., object recognition, future investigations are needed.
Moreover, the overall accuracy is still relatively low for cross-domain activity
recognition (< 30%) and more research is needed for deployment-ready systems.

Conclusion. This is the first systematic study of modality selection in the
context of cross-domain activity recognition, aimed at providing guidance for
future work in multimodal domain generalization. Our experiments validate our
assumption, that cross-domain activity recognition clearly benefits from multi-
modality, but not all modalities improve the recognition and a systematic modal-
ity selection is vital for achieving good results. We proposed a way to measure
the contribution of each modality when it is included in a late fusion workflow.
The contribution can be used to quantify the importance of each modality and
to justify which sources of information are included in a multimodal framework.
Our experiments indicate that the correlation between the predictions of uni-
modal classifiers and the MaximumMean Discrepancy between their embeddings
are both suitable metrics for unsupervised modality selection. The metrics allow
to compute thresholds which select only modalities with positive contributions,
which opens the possibility to automatically discard bad or uncertain sources of
information and to improve the performance on unseen domains. We hope that
our findings will provide guidance for a better modality selection process in the
future, which is based on more structured and justified decisions.
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