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Network and complex system models are useful for studying a wide range of

phenomena, from disease spread to traffic flow. Because of the broad applicability

of the framework it is important to develop effective simulations and algorithms for

complex networks. This dissertation presents contributions to two applied problems

in this area

First, we study an electro-optical, nonlinear, and time-delayed feedback loop

commonly used in applications that require a broad range of chaotic behavior. For

this system we detail a discrete-time simulation model, exploring the model’s syn-

chronization behavior under specific coupling conditions. Expanding upon already

published results that investigated changes in feedback strength, we explore how

both time-delay and nonlinear sensitivity impact synchronization. We also relax



the requirement of strictly identical systems components to study how synchro-

nization regions are affected when coupled systems have non-identical components

(parameters). Last, we allow wider variance in coupling strengths, including unique

strengths to each system, to identify a rich synchronization region not previously

seen.

In our second application, we take a complex networks approach to improving

genome assembly algorithms. One key part of sequencing a genome is solving the

orientation problem. The orientation problem is finding the relative orientations

for each data fragment generated during sequencing. By viewing the genomic data

as a network we can apply standard analysis techniques for community finding

and utilize the significantly modular structure of the data. This structure informs

development and application of two new heuristics based on (A) genetic algorithms

and (B) hierarchical clustering for solving the orientation problem.

Genetic algorithms allow us to preserve some internal structure while quickly

exploring a large solution space. We present studies using a multi-scale genetic

algorithm to solve the orientation problem. We show that this approach can be

used in conjunction with currently used methods to identify a better solution to the

orientation problem.

Our hierarchical algorithm further utilizes the modular structure of the data.

By progressively solving and merging sub-problems together we pick optimal ‘local’

solutions while allowing more global corrections to occur later. Our results show

significant improvements over current techniques for both generated data and real

assembly data.
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Preface

In Rama Revealed science fiction authors Arthur C. Clarke and Gentry Lee

paint a vivid picture of human kind’s first interaction with alien cultures [11].

Through the use of adaptive algorithms one culture can control and manipulate

weather patterns. Another uses genetically engineered biological creatures and in-

tentional symbiosis in place of advanced technology such as video recording. Even

though Rama Revealed was written almost 20 years ago (1994) [11] these science

fiction concepts are still well ahead of us.

Controlling weather, a well-known chaotic system, requires adaptive synchro-

nization and control in a very large network, something that is beginning to be

explored by researchers like Sorrentino and Ott [66]. Methods that underlie these

adaptive techniques and other applications like secure communication [3, 28] or flight

control [10] are based on the (preferably broad) synchronization regimes that chaotic

systems exhibit. It is therefore important to understand and identify the regions of

synchronization for typical nonlinear systems upon which these techniques can be

implemented.

What about genetically engineering biological technology to perform tasks

equivalent to our electronic technology? Designing and manipulating the genomic

code to achieve everything we might want requires a bit more science than we

currently have available [46]. We may not be able to whole-sale engineer biological

technology but we have done some limited engineering and already know a few of

the ecological dangers [75]. We have already fully sequenced the DNA of many
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organisms through these endeavours but more challenges still remain in the field of

genomic sequencing as technology and data continue to change [61].

At our current scientific level it would be preposterous to present algorithms

to control the weather or manipulate genetic code to produce video recording flies.

Instead, this dissertation develops new scientific cogs to continue building our un-

derstanding of complex systems and networks. These take the form of detailed

synchronization regions for a nonlinear, time-delayed feedback system and two algo-

rithms which improve genome assembly. Perhaps, one day, these will be the building

blocks for such ‘science fiction’ as Clarke and Lee envisioned.

iii



Acknowledgments

I can not thank enough all the people who have helped make both my path

through graduate school and this dissertation possible.

I would like to thank the several advisors I have had over the years. Both

Professor Rajarshi Roy and Professor Michelle Girvan especially stand out among

them. Raj has been a role-model in both his scientific acumen, superb mentoring,

and outstanding faith life. Michelle has been a mentor and guided me upward to

stand as an equal on the ground of academia.

Thanks must go to Allison Waite, my patient (soon to be) wife. While only

joining me in the last two years, she has been the most instrumental in helping me

envision a successful, exciting future in academics and science, not to mention the

joys we shall experience travelling life together.

Without all my friends, especially Kristen Burson, William Bruner, Paul Lar-

son, Nathaniel Brown and Michael Wiederoder, my time at UMD would not have

been nearly as pleasurable, nor would I have stuck with it through the end. I have

had many wonderful scientific, faith, and life discussions with them all, and I will

treasure those memories.

I also wish to thank the 2011-2012 Graduate Lilly Teaching Fellows, and the

staff and directors at the Center for Teaching Excellence, most especially Sabrina

Kramer for their invaluable time, career advice, and guidance into a more full aca-

demic future with both teaching and research.

Without my former colleagues at the nonlinear optics laboratory, Professor

iv



Thomas Murphy, Caitlin Williams and (the now) Drs. Adam Cohen and Bhargava

Ravoori, Chapter 2 of this dissertation would not have happened.

Graditude also goes to Professor James Yorke who helped fund me through

my time here, and who, along with Dr. Aleksey Zimin, provided the fascinating

problem in Chapter 3 and 4, and guidance in solving it.

My immediate, and extended family have always been supportive of my path

and choices, encouraging me in this pursuit and I would certainly not be here without

them.

I am sure someone important has been forgotten, but fear not! This could

never have happened without support from far more than I can mention. Thank

you.

Finally, and most importantly, praise and thanks be to God who has never

ceased to provide me with wonderful experiences and opportunities, or trials to go

through. Through faith and God, all things are possible.

v



Table of Contents

List of Figures viii

List of Abbreviations x

1 Introduction 1
1.1 What are complex systems and networks? . . . . . . . . . . . . . . . 1
1.2 Motivation for the applications presented . . . . . . . . . . . . . . . . 3

1.2.1 Simulation of Mach-Zehnder loops . . . . . . . . . . . . . . . . 3
1.2.2 Genome Assembly . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Simulation of complex dynamics and synchronization with delayed-feedback
nonlinear oscillators 5
2.1 Introduction & Background . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1.2 Brief background on the experimental opto-electronic system . 8
2.1.3 Motivation for digital signal processing and discrete time . . . 10

2.2 A discrete-time model for time-delayed nonlinear feedback loops . . . 10
2.2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.2 The model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.3 Comparison of the single-loop simulation to analytic results . 13
2.2.4 Comparison of simulated to experimental single-loop results . 16

2.3 Coupling two nonlinear, time-delayed feedback systems . . . . . . . . 18
2.3.1 Synchronization in coupled Lorenz equations . . . . . . . . . . 19
2.3.2 Coupled equations for two feedback loops . . . . . . . . . . . . 20
2.3.3 Reproducing basic results . . . . . . . . . . . . . . . . . . . . 22
2.3.4 Synchronization regions for β, k, & ϕ . . . . . . . . . . . . . . 25

2.3.4.1 Investigations in β . . . . . . . . . . . . . . . . . . . 25
2.3.4.2 Investigations in k and ϕ . . . . . . . . . . . . . . . . 28

2.4 Synchronization of non-identical oscillators . . . . . . . . . . . . . . . 29
2.4.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.4.2 Revision of model . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.4.3 Mismatches in β, k, and ϕ . . . . . . . . . . . . . . . . . . . . 31

2.4.3.1 Non-identical β . . . . . . . . . . . . . . . . . . . . . 31
2.4.3.2 Non-identical k . . . . . . . . . . . . . . . . . . . . . 33
2.4.3.3 Non-identical ϕ . . . . . . . . . . . . . . . . . . . . . 34

2.4.4 Exact matching of simulation and experiment . . . . . . . . . 35
2.4.5 Comprehensive coupling exploration . . . . . . . . . . . . . . 36

2.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

vi



3 Designing genetic algorithms to solve the orientation problem in genome
assembly 39
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.2.1 Properties of partially processed genome sequence data . . . . 44
3.2.2 Introduction to genetic algorithms . . . . . . . . . . . . . . . . 47
3.2.3 Introduction to community structure in networks . . . . . . . 49

3.3 The orientation problem and a simple heuristic for its solution . . . . 51
3.4 Developing genetic algorithms for genome orientation . . . . . . . . . 53

3.4.1 Motivation & basic application of genetic algorithms . . . . . 54
3.4.2 Innovations on genetic algorithms . . . . . . . . . . . . . . . . 55

3.5 Genetic algorithm results . . . . . . . . . . . . . . . . . . . . . . . . . 58
3.5.1 Basic results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
3.5.2 An existing solution . . . . . . . . . . . . . . . . . . . . . . . 60
3.5.3 Comparison of solutions . . . . . . . . . . . . . . . . . . . . . 61

3.6 Implementation details . . . . . . . . . . . . . . . . . . . . . . . . . . 64
3.6.1 Implementation of genetic survival . . . . . . . . . . . . . . . 64
3.6.2 Tuning mutation & crossover parameters for the basic GA . . 65
3.6.3 Tuning of mutation and crossover for group parameters . . . . 69

3.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4 Hierarchical methods for solving the genome orientation problem 73
4.1 Revisiting the orientation problem . . . . . . . . . . . . . . . . . . . . 74

4.1.1 A brief recap . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.1.2 Other approaches for solving the genome orientation problem . 77

4.2 Our hierarchical method . . . . . . . . . . . . . . . . . . . . . . . . . 80
4.2.1 Algorithm details . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.3 Results from hierarchical method . . . . . . . . . . . . . . . . . . . . 86
4.3.1 On Rhodobacter Sphaeroides bacteria . . . . . . . . . . . . . . 87
4.3.2 Faux data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

A Alternative weighting and linking functions 94
A.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
A.2 Linkage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
A.3 Weighting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

A.3.1 Difference-squared and absolute-difference . . . . . . . . . . . 96
A.3.2 Total-Mate Sum . . . . . . . . . . . . . . . . . . . . . . . . . . 96
A.3.3 Satisfaction Difference . . . . . . . . . . . . . . . . . . . . . . 98

A.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

Bibliography 100

vii



List of Figures

2.1 Chaotic opto-electronic oscillator: (a) experimental setup and (b)
corresponding mathematical block diagram. Reproduced from [47] . . 9

2.2 Simulated bifurcation for positive β. . . . . . . . . . . . . . . . . . . . 15
2.3 Experimental and simulated time series for three values of β (-1.4,

-2.1, -2.8) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.4 A comparison between experimental and simulated bifurcation diagrams 17
2.5 Time and difference traces from a pair of coupled Lorenz systems . . 20
2.6 Mathematical block diagram of diffusive coupling for two systems . . 21
2.7 Plots from a uni-directionally coupled system. . . . . . . . . . . . . . 24
2.8 The synchronization error for β . . . . . . . . . . . . . . . . . . . . . 26
2.9 Comparison of simulated and experimental synchronization for β . . . 27
2.10 Synchronization regions for ϕ . . . . . . . . . . . . . . . . . . . . . . 28
2.11 Synchronization regions under mis-matched β values. (a) change by

increasing mismatch (b) positive vs. negative mismatch . . . . . . . . 32
2.12 Synchronization regions under mis-matched k values . . . . . . . . . . 33
2.13 Synchronization regions under mis-matched ϕ values . . . . . . . . . . 34
2.14 Experimental, simulated, and matched synchronization regions . . . . 35
2.15 Regions of synchronization for independent coupling strengths . . . . 37

3.1 Simple cartoon of genome sequencing process. . . . . . . . . . . . . . 45
3.2 Several examples detailing mate-pairs. . . . . . . . . . . . . . . . . . 46
3.3 Basic genetic algorithm operations. . . . . . . . . . . . . . . . . . . . 48
3.4 Inner vs. Outer fitness for unmodified chromosome 3 of turkey genome. 57
3.5 The number of unsatisfied mate-pairs for several original solutions

using GAs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
3.6 Averaged Inner vs. Outer fitness for communities from several solu-

tion methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.7 Inner vs. Outer fitness using node-centric for chromosome 3 of turkey

genome . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.8 The number of unsatisfied mate-pairs for all solution methods using

GAs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.9 Averaged Inner vs. Outer fitness for communities from all solution

methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
3.10 A comparison of mutation rates in GAs . . . . . . . . . . . . . . . . . 66
3.11 A comparison of fixed vs. adjusting mutation rates in GAs . . . . . . 67
3.12 A comparison of crossover rates in GAs . . . . . . . . . . . . . . . . . 69
3.13 A comparison of crossover rates in GAs for group granularity . . . . . 70
3.14 A comparison of mutation rates in GAs for group granularity . . . . . 71

4.1 A small sample graph which node-centric incorrectly orients . . . . . 78
4.2 A small sample graph which articulation with node-centric incorrectly

orients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
4.3 An example of hierarchical greedy on a small sample graph . . . . . . 84

viii



4.4 Small problem graph for hierarchical (a) and two potential merges for
it (b & c) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.5 Four sample orientations of Rhodobacter sphaeroides using node-
centric and hierarchical. . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.6 Examples of errors introduced in faux data. . . . . . . . . . . . . . . 90
4.7 Comparison of node-centric and hierarchical methods on faux data . . 92

A.1 A comparison of three weighting schemes . . . . . . . . . . . . . . . . 97

ix



List of Abbreviations

β beta
ϕ phi
γ gamma
τ tau

IREAP Institute for Research in Electronics and Applied Physics
DSP Digital Signal Processing
MZM Mach-Zehnder modulator
GA Genetic Algorithm
SA Simulated Annealing

x



Chapter 1

Introduction

1.1 What are complex systems and networks?

One basic building block of scientific discovery has been the idea that the

world is reducible to more understandable components. If we can isolate one par-

ticular change or element, then we can build our understanding of the whole from

understanding that element. As the general body of science grows however, we are

encountering a broad range of problems within disciplines that are best understood

not by looking at only a single component, but rather looking at the collective be-

havior of many elements. Within psychology and sociology, the legendary ‘bystander

affect’ looks at the collective behavior of humans [43]. In biology, swarming behavior

of fish and birds shows complex group behavior, but requires individual decisions

[30]. Even something as common as the weather is really several less complicated

things (like humidity or wind) interacting and forming collectively unpredictable

behavior [42]. While thousands of papers could be cited here, instead let us try to

understand how to study this collective behavior better.

Bar-yam describes a complex system as any system in which components, and

the relationship between components, give rise to a collective behavior which is non-

evident from individual elements (or their behavior) [5]. This description poses a

rather daunting task. It basically says that the system(s) we want to examine cannot

1



be examined on an individual component basis to understand the whole because it

requires the interaction of the individuals to create the whole.

Complexity in systems behavior can arise from a few different mechanisms.

Some systems can be modeled with simple rules in which elements are homogeneous

in traits and interactions. An example of this is swarm optimization [30]. Another

way is to have heterogeneous elements which interact differently with each other.

An example of this might networks which model gene regulation [27]. We could

also have heterogeneity in what elements can interact with each other, defining

different topologies of connections. These different topologies are usually referred to

as graphs or networks and form a sub-field of complex systems: complex networks.

When we have a complex network however, the first two mechanisms for generating

complexity are not ruled out either. We can have a network which interacts in either

a homo- or hetero- geneous way.

These complex networks pose a significant challenge for study. In particular,

the networks which exhibit heterogeneous interactions on unique topologies can be

incredibly challenging to study analytically. An alternative is to study such networks

in a more ‘experimental’ manner through computational methods. Developing sim-

ulations, heuristic algorithms, and measures to quantify such systems is quickly

growing in importance as science continues to take more systemic viewpoints and

studies the interactions between diverse organisms or mechanisms.
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1.2 Motivation for the applications presented

1.2.1 Simulation of Mach-Zehnder loops

Chaotic systems have been under study for many years, and several fascinat-

ing applications using their properties ranging from secure communication schemes

[3, 28] to sensor networks [66]. Systems utilizing Mach-Zehnder modulators (MZM)

provide an excellent basis for such applications as they are already well understood

on an individual basis [9], and have already been used to demonstrate communica-

tion applications [3]. However, an underlying requirement for many such applica-

tions is either synchronization of connected components (for communication) or an

understanding of when synchronization occurs and is broken (for sensors). While

the dynamics of an individual MZM system are well understood from Kouomou [9],

the work in this dissertation uses a computational approach to complement related

experimental work ([47]) in order to build an understanding of how multiple units

coupled in a network synchronize and behave.

1.2.2 Genome Assembly

While genome sequencing has made significant advances in recent years we are

now faced with the problem of sequencing more complex genomes [61]. These more

complex genomes introduce new challenges themselves, but the advancement of tech-

nology to reduce the cost of sequencing genomes has also dramatically changed the

nature of the sequencing problem[22, 56, 61]. One problem that has continued to be

part of the sequencing process is finding the orientation of sequenced pieces of DNA.
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This is known as the ‘orientation problem’. As a key link in the assembly process

several previous solutions already exist [6, 16, 20, 26, 32, 37, 55, 77]. However, the

most commonly used algorithm has not been updated in over 15 years and faults can

be found with each of these techniques including examples of incorrectly optimized

answers. The work in this dissertation will develop heuristic techniques based off

of genetic algorithms [23, 45] and hierarchical clustering [48, 65] with appropriate

modifications to genome assembly.
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Chapter 2

Simulation of complex dynamics and synchronization with

delayed-feedback nonlinear oscillators
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Abstract

We develop the simulation of a flexible and modular delayed-feedback nonlinear

oscillator that is capable of generating a variety of behaviors. These dynamical

behaviors range from periodic oscillations to high-dimensional chaos. The simulation

models an oscillator which uses electro-optic modulation and fibre-optic transmission

with feedback. The filtering and delay are implemented through real-time digital

signal processing. After validating the simulation against experimental data, we

consider two such oscillators that are coupled to one another. Via simulation we

identify a wide region for synchronization, and investigate how these regions change

for several system parameters.



Published Work

This chapter is taken partly from [47] (see below for full citation). In [47] I

contributed primarily to the portions on synchronization regions (section 3 and 4),

and, in a lesser capacity, earlier sections on model development. The work in this

chapter slightly expands that model development and presents several simulated re-

sults not found in the paper. Some experimental data is reproduced for verification

purposes. Thanks goes primarily to Drs. Adam Cohen and Bhargava Ravoori for

that experimental data.

Murphy, T. E., Cohen, A. B., Ravoori, B., Schmitt, K. R., Setty, A. V.,

Sorrentino, F., Williams, C. R., Ott, E., and Roy, R. Complex dynamics

and synchronization of delayed-feedback nonlinear oscillators. Philosophical Trans-

actions of the Royal Society A: Mathematical, Physical and Engineering Sciences

368, 1911 (2010), 343–366

2.1 Introduction & Background

2.1.1 Introduction

The current generation of internet security algorithms are based on the high

computational difficulty to factor large numbers (it is, in practice, impossible).

Quantum computing however is threatening to significantly reduce that difficulty
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with a simple procedure [7] and therefore make the algorithms insecure. One re-

sponse might be the communications schemes using chaotic properties which have

already been proposed with the ability to be unbreakable [28]. We also know of

many security systems which can detect intruders, but can they also learn about

the characteristics of that intruder easily? The nonlinear sensor system in Sorrentino

and Ott [66] can.

These concerns and new methods are not science fiction, but rather what

understanding and exploring chaotic dynamical systems may unveil in the future.

Chaotic dynamical systems are integral for many application areas like private com-

munications [3, 28, 34, 35, 71], random number generation [59], and sensor networks

[66]. Several chaotic systems appropriate for use in these applications have been

studied. Our focus will be on a delayed-feedback nonlinear oscillator constructed

with modular opto-electronic components as used in [13, 9, 47, 58] and other works.

While the core of this work is published in [47], a significant expansion of the results,

simulation development and validation is worthwhile.

We are concerned with the accurate simulation of an appropriate model for the

experimental system as a vital component to determining future research directions.

In the remainder of this section we will introduce the experimental system we are

simulating and the continuous-time equations generally used explore their dynamics

[13, 9]. Included here is the experimental motivation for using both the digital signal

processing and re-deriving the equations in a discrete-time form.

Section 2.2 will then begin by walking through the actual construction of a

discrete-time, state-space model. Following that we will validate the alternative
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formulation by comparing the simulated results to the experimental results for a

single oscillator. For that validation both analytic results for the continuous time

model [9] as well as time series and bifurcation diagrams for variations in feedback

strength are compared.

With the single oscillator model validated, we expand to a coupled pair of os-

cillators in Section 2.3 . First, with an introduction to coupling with Lorenz systems

[2], then by comparing to results in Argyris et al. [3] and Peil et al. [53] we show

that the discrete-time model synchronizes in a similar manner to the continuous-time

system. This coupled oscillator is then used to explore regions of synchronization

in Section 2.3.4 by showing how the regions change with respect to changes in the

system parameters β, ϕ, and k.

These explorations inform the study of parameter mismatching between two

oscillators, presented in Section 2.4. There we identify why the experimental syn-

chronization region does not match the predicted region. While not precisely a

mismatch, a space where our coupling is allowed to be non-identical, and thereby

providing a more comprehensive synchronization picture, is also shown. Finally, in

Section 2.5 we offer some concluding remarks and future directions for the work.

2.1.2 Brief background on the experimental opto-electronic system

Originally introduced by Neyer & Voges [51], the experimental system shown

in Figure 2.1(a), has subsequently been studied by several authors (see for example

[13, 9, 58]), in addition to the more summary article by Murphy et al. [47]. The
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system is comprised of a laser, Mach-Zehnder modulator (MZM), electrical filters,

and a time-delayed feedback loop. We refer the reader to [47] or [8] for a summary

or detailed (respectively) description of the physical system. For this work we are

more concerned with the equivalent mathematical block diagram in Figure 2.1(b).

V(t)

Bias

MZM

Laser

Diode Photoreceiver
Ampli�er

Low-pass

Delay (t)

High-pass gain

delay

�lter(s)

H(s)

cos2( )+ o
ϕ

β

τ

nonlinearity

(a) (b)

Figure 2.1 – Chaotic opto-electronic oscillator: (a) experimental setup
and (b) corresponding mathematical block diagram. Reproduced from
[47]

This mathematical diagram, with the inclusion of standard mathematical rep-

resentations for filters (derivatives and integrals), can be combined to form the

time-delayed integro-differential equation defined by Kouomou [9]:

x(t) + τH
d

dt
x(t) +

1

θ

∫
x(s)ds = β cos2[x(t− T ) + ϕ] (2.1)

In equation (2.1) x(t) is a dimensionless variable and the function has pa-

rameters of the normalized feedback gain β, the normalized bias offset ϕ, the high-

frequency cut-off filter time constant τH , and the low frequency cut-off filter time

constant θ. Standard numerical integration methods can be applied to this, and as

the work in [9] shows, it models the experimental system quite well.
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2.1.3 Motivation for digital signal processing and discrete time

Why do we want to develop a new model then? We wish to facilitate a slight

change for the experimentalists in the physical system shown in Figure 2.1(a): dig-

ital signal processing (DSP). There are several reasons to introduce DSP. First,

achieving long delays physically are impractical due to the significant amount of

cabling required or degradation of the signal. Second, to match the filtering it is far

easier (and cheaper) to implement two identical digital filters than find two physical

filters that match exactly. This can be important as much of the work on nonlinear

synchronization has shown systems which are only nominally identical have diffi-

culty synchronizing e.g. [53]. Finally, the primary reason experimentalists want to

introduce DSP into the system is for real-time control of the gain, delay, and filter

coefficients [47]. These types of parameters are easily scanned and adjusted during

simulations, but without DSP as part of the system, actually experimenting in new

parameter spaces or regimes can sometimes be extremely difficult.

2.2 A discrete-time model for time-delayed nonlinear feedback loops

2.2.1 Overview

In this section we will develop our discrete-time model for a time-delayed non-

linear feedback loop. This will progressively build through several stages, mirroring

those in [47]. First we will introduce a discrete, state-space model for filters [64].

Second we will modify our equations for self-feedback. Third we will introduce the
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non-linearity into the model. With the model in hand, we will perform several

validations against both analytic results [9] and experimental results [13, 9, 47].

2.2.2 The model

2.2.2.1 A state-space filter

The approach taken by Kouomou [9] was to model the two single-pole filters

(low-pass and high-pass) individually using integration and differentiation. An al-

ternative to this is using a state-space representation [64] which allows both filters to

be described at once. A filter in state-space is typically described by the equations:

u̇(t) = Au(t) +Bx(t) (2.2a)

y(t) = Cu(t) +Dx(t) (2.2b)

Here x(t) represents the input to a filter, y(t) the output from the filter, u(t)

an variable internal to the filters and A, B, C and D are constant matrices related

to the specific filters used. State-space has the convenient feature of being easily

discretized, and therefore implemented on a DSP board. As mentioned previously

the experiments related to this work are actually utilizing DSP, which is discrete in

time, in their feedback loop. Therefore, we will present and build on a discretized

version of Equations (2.2):

u[n+ 1] = Au[n] +Bx[n] (2.3a)

y[n] = Cu[n] +Dx[n] (2.3b)
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2.2.2.2 Incorporation of time-delayed feedback

A simple initial approach would be to introduce direct feedback where x[n] =

y[n] in Equations. (2.3). However, this does not allow dynamics beyond the inherent

filter response. Therefore we (for now) will include a generic function f(y) applied

to the filter output giving us: x[n] = f(y[n]). We are not quite done yet with our

feedback term though; we also want a time-delay k from the output. This gives us

a final feedback substitution of:

x[n] = f(y[n− k]) (2.4)

We substitute this into Equation (2.3) and get:

u[n+ 1] = Au[n] +Bf(y[n− k]) (2.5a)

y[n] = Cu[n] +Df(y[n− k]) (2.5b)

Last, by carefully choosing our state-space in the canonical form which are

derived from the z-transform of the discrete-time filters we are modeling (which

conveniently leaves D=0), we can combine the separate parts of Equations (2.5)

and simplify. This gives us a new iterative map in the form of:

u[n+ 1] = Au[n] +Bf(Cu[n− k]) (2.6)

2.2.2.3 The nonlinearity

The system developed so far will not actually produce much that is relevant

to this study. In order to have chaotic dynamics, and thereby interesting behaviors

in synchronization, we need to include a nonlinear term. Experimentally this is
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achieved through the Mach-Zehnder modulator (MZM) which changes the output

optical power from the laser based on an input voltage. The modulator is detailed

in [21] but for our sake it is sufficient to understand it can be modeled as:

f(x) = cos2(x(t) + ϕ) (2.7)

Which includes x(t) as an input to the MZM, and ϕ as a normalized offset

bias. Last, we need to include amplification to appropriately scale the output for

feedback. This is accomplished by including a normalized gain term, β into f(y):

f(x) = β cos2(x(t) + ϕ) (2.8)

Then, by substituting this feedback term into Equation (2.6) we get our final model:

u[n+ 1] = Au[n] +Bβ cos2(Cu[n− k] + ϕ) (2.9)

2.2.3 Comparison of the single-loop simulation to analytic results

We will first compare out discrete-time, state-space model to the analytic

results published by Kouomou [9]. He identifies the bifurcation control parameter:

γm = β sin(2ϕ) (2.10)

Recall that β was the normalized feedback gain and ϕ the normalized offset

bias for the MZM. While Kouomou defines γ as the control parameter, we will

actually be using β. β is linearly related to Kouomou’s γ in Equation (2.10) given a

fixed ϕ and is directly (and easily) adjustable experimentally. The comparisons for

the rest of this section (and most of the chapter) will therefore present results with
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β as the independent variable. Through analysis of the continuous-time equations

(2.1) Kouomou derived solutions for bifurcation points and the frequencies that

these bifurcations should appear at. He indicates that we can calculate bifurcations

according to:

γm = (−1)m+1[1 +
(ϵR2 −m2π2)2

2m2π2R2
] (2.11a)

ωm = m
π

R
(2.11b)

For these equations R = T
τ

and ϵ = τ
θ
from Equations (2.1). Additionally, the

calculations for the first bifurcation pointm = 0 are slightly different and calculated:

γ0 = −1− ϵR

2
(2.12a)

ω0 =

√
ϵ

R
(2.12b)

It is worth noting that these are only approximate solutions, so exact agreement to

experimental or simulated results may not occur.

Having these equations we can proceed to calculate the first few bifurcation

points, and then simulate the single loop system to compare. Since the bifurcations

using a positive β exhibit extremely consistent and periodic behavior it is easier to

observe them. Figure 2.2 is a graph that includes the first four positive bifurcation

points, plotted according to both their expected frequency and β value. The time

traces for negative β the other hand are far more complicated. Those results do also

show some correspondence and are noted in the bifurcation comparison in Figure

2.4.
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Figure 2.2 – Simulated bifurcation for positive β.

The first four calculated analytic bifurcation points are marked. The
green match predicted values and the magenta fail to match the predicted
values.

Marked on Figure 2.2 are two successes and two failures of the simulations

to match the analytical results. For higher values of β we see similar results to

the 3rd and 4th points where the correct frequency is predicted but generally to the

right (a higher β value) than the analytical results expect. However, examining

approximate analytical results provides only an initial validation. Since this work

aims to simulate a physical system it is equally important to compare the simulation

to experimental results.

15



2.2.4 Comparison of simulated to experimental single-loop results

The simplest, most easily understood comparison is between time series that

are generated in both the simulation and experiment. We show a sampling of these

time series in Figure 2.3.
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Figure 2.3 – Experimental and simulated time series for three values of
β (-1.4, -2.1, -2.8)

The top row (blue) are from the experimental system while the bottom
row (red) are from simulation. This figure also appeared in [47]

In this figure we can see that the simulated time series exhibit nearly identical

behavior as the experimental data. Variances are a slight amplitude difference (the

simulation is ≈ 80% of the experimental) and a slight frequency mismatch. The

amplitude difference is most likely caused by an incorrect scaling factor in converting

the experimental data to displayable data. However, the frequency mismatch is more

of a concern, and deserves further examination. Inspection of the experimental

components suggests the likely cause is additional filtering occurring in the physical
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Figure 2.4 – A comparison between experimental and simulated bifur-
cation diagrams

The top bifurcation is measured from the experimental system. The bot-
tom is generated from the simulated system. The dots on the simulated
bifurcation diagram indicate where Eqn (2.11) predicts bifurcations. A
version of this figure also appeared (without bifurcation points) in [47].

system (from various electronic parts such as the digital signal processing board

and photo-detector) that is unaccounted for in the model (we are only modeling the

directly implemented filtering).

Ignoring these slight mismatches, the model gives very good qualitative agree-

ment (and nearly quantitative) for most simulations. We can see this by looking

at a very large spectrum of β values and taking the histogram of the time series

(histograms of many traces like those presented in Figure 2.3). This provides what

might be considered a ‘value’ bifurcation diagram shown in Figure 2.4.
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Here there is a very visible discrepancy at β ≈ 3, which requires further inves-

tigation between the simulation and experiment. Possibilities are stray behavior in

the experiment, histrionic behavior, or a significant failure of the model. However,

given its ability to accurately reproduce a significant portion of the experimental

data, the simulation can still be qualified as an over-all success. Also indicated on

this diagram are the values of β that bifurcations are predicted at (green dots on

bottom section). Worth noting is that many of the calculated bifurcation points do

not align with any visible system alterations on either the experimental or simulated

plots. This suggests that the analytic results are not precisely applicable to the ex-

perimental system, and likewise the simulation we have created of the experimental

system (recall the failures in Figure 2.2) possibly due to the use of negative β.

Given this mismatch, the reader might question the use of negative β. Com-

pare briefly Figures 2.2 (positive β) and 2.4 (negative β). Notice the very periodic

behavior in Figure 2.2. However, the applications we began this chapter discussing

require robust chaotic regimes, not periodic behavior. In order to achieve that we

need bifurcations like those in Figure 2.4 which uses negative β.

2.3 Coupling two nonlinear, time-delayed feedback systems

Our introduction mentioned several applications of chaotic systems. What was

glossed over was that most of those require a fascinating property of two coupled

chaotic systems: synchronization. This has been studied extensively (see for example

[38, 47, 52, 76]) and in fact, many of the applications listed [3, 28, 66] and elsewhere,
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are developed around this property. Therefore the second stage of our work is to

implement a coupled system that can achieve synchronization. We first prototype

the coupling scheme with a pair of Lorenz models [2]. Using commonly studied

parameters of the system (σ = 10, r1 = 28.8, r2 = 28, b=8/3) we can demonstrate

identical synchronization. Following the same coupling scheme, we couple two of

the nonlinear, time-delayed feedback equations we developed in Section 2.2. Since

some literature exist already on these coupled systems, we first want to reproduce

the published behavior seen in Argysis et al. [3] and Peil et al. [53]. These lead

into a more thorough exploration via simulation of the regions of synchronization

for a variety of system parameters (β, k, ϕ). For reference, unless otherwise specified

(like exploring values) we will use β = −5, k = 22, and ϕ = π
4
as our system’s base

values.

2.3.1 Synchronization in coupled Lorenz equations

Two Lorenz systems bi-directionally coupled as described by Anishchenko et

al. [2] are given by the equations:

ẋ1 = σ(y1 − x1) + γ(x2 − x1) ẋ2 = σ(y2 − x2) + γ(x1 − x2) (2.13)

ẏ1 = r1x1 − x1z1 − y1 ẏ2 = r2x2 − x2z2 − y2 (2.14)

ż1 = x1y1 − z1b ż2 = x2y2 − z2b (2.15)

The type of coupling demonstrated in Equations 2.15 is called diffusive, mean-

ing that when they are synchronized identically, the term through which coupling

occurs goes to zero (e.g. γ(x2 − x1) → 0). These coupled Lorenz equations will
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be used as an example on which to base the coupling of our nonlinear system (see

the following sections). The equations can be integrated using basic ODE solvers.

When we integrate these coupled equations we find time series like those in Figure

2.5(a). The second plot shows the L2 norm of X, Y, and Z for the time traces
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Figure 2.5 – Time and difference traces from a pair of coupled Lorenz
systems

(a) time traces of the two systems (b) The L2 norm between the two
systems.

shown. We can see that with the simple coupling outlined above it is possible to

achieve isochronal synchronization (identical behavior in both systems at the same

time). This has been demonstrated many times, but does encourage us that a similar

implementation for coupling our systems is appropriate.

2.3.2 Coupled equations for two feedback loops

The same diffusive coupling technique can be applied to two copies of our

state-space representation. Figure 2.6 shows this in diagram form. If we take a step
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Figure 2.6 – Mathematical block diagram of diffusive coupling for two
systems

back and consider how Equations (2.3) had both an input and output term (x[n] and

y[n]) we can see how to implement diffusive coupling as in the Lorenz example. In

this case we could also couple the input term x[n]. However, recall that we replaced

the x[n] term with the f(y[n − k]) term (Equation (2.4)), so, our coupling would

then look like:

u1[n+ 1] = Au1[n] +Bf(y1[n− k]) +Bγ(f(y2[n− k])− f(y1[n− k])) (2.16a)

y1[n] = Cu1[n] +Df(y1[n− k]) (2.16b)

u2[n+ 1] = Au2[n] +Bf(y2[n− k]) +Bγ(f(y1[n− k])− f(y2[n− k])) (2.16c)

y2[n] = Cu2[n] +Df(y2[n− k]) (2.16d)

Now we perform the same simplifications and substitutions that we did earlier

to generate Equations (2.6) and (2.9). We will also multiply out the coupling
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terms. Recombining (a & b) and (c & d) give us a simplified pair of equations:

u1[n+ 1] = Au1[n] +Bβ{(1− γ) cos2(Cu1[n− k] + ϕ) + γ cos2(Cu2[n− k] + ϕ)}

(2.17a)

u2[n+ 1] = Au2[n] +Bβ{(1− γ) cos2(Cu2[n− k] + ϕ) + γ cos2(Cu1[n− k] + ϕ)}

(2.17b)

This is the final set of equations we will implement to actually model our

coupled systems.

2.3.3 Reproducing basic results

2.3.3.1 Background in published work

A small body of literature exists on coupled MZM systems. We will compare

our initial results against two specific papers. First, Argyris et. al. [3] has published

work where a set of oscillators coupled in an open loop configuration (γ = 0 for sys-

tem (2.17a) and γ = 1 for system (2.17b)) synchronize and exhibit unique behaviors.

Second, in a slightly more complicated case Peil et al. [53] have demonstrated syn-

chronization under very specific circumstances which involve bi-directional passing

of information. This bi-directional coupling requires both systems to have γ = 0.5

for the systems to synchronize identically, and conversely, the system does not syn-

chronize when these conditions are not met .
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2.3.3.2 Comparison results

In the preceding sections we developed equations for coupled Mach-Zehnder

loops and now seek to simulate them in order to find regimes under which synchro-

nization can occur. As mentioned, Argysis et al. & Peil et al. [3, 53] published

results for synchronization of a master loop (the standard Mach-Zehnder loop as

shown in Figure 2.1) to an open loop (a loop without self-feedback) as well as at

the specific γ value of 0.5 (50%) (in Equations (2.17)). To replicate these experi-

ments the simulation has been implemented to allow individual specification of γ

for each system and for each interaction between systems. Specifically we re-define

Equations (2.17) in the following way:

u1[n+ 1] = Au1[n] +Bβ{γ11 cos2(Cu1[n− k] + ϕ) + γ12 cos
2(Cu2[n− k] + ϕ)}

(2.18a)

u2[n+ 1] = Au2[n] +Bβ{γ22 cos2(Cu2[n− k] + ϕ) + γ21 cos
2(Cu1[n− k] + ϕ)}

(2.18b)

One can see that the initially defined equations are just a special sub-set of

these where: γ11 = γ22 = 1− γ12. Argysis et al. in [3] has demonstrated (and used

for communication) synchronization under a very specific regime of these equations

where γ11 = γ21 = 1 and γ12 = γ22 = 0. That is, open-loop unidirectional coupling.

He explores this coupling scheme under a variety of system delays.

For the simplest case of the delay between systems being zero we do not need

to dramatically change the above equations (merely impose those conditions).
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We generate time series that look very similar in behavior to the coupled Lorenz

equations (previously shown in Figure 2.5) which are shown in Figure 2.7.
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Figure 2.7 – Plots from a uni-directionally coupled system.

(a) trace of x-value at the time coupling is turned on
(b) trace of x-value after system has stabilized
(c) the difference in x-value over the activation of coupling and synchro-
nization stabilization

In Figure 2.7 we can see that the two systems synchronize identically soon after

the coupling has been turned on (near t = 0.52075). It is also worth noting that

rather than finding a mutual, but unique, synchronization state the second (red)

system actually synchronizes to the original (blue) which acts as a driver to the

second, a slave. Rather than confirming Peil et al.’s results for systems mutually

coupled with γ11 = γ22 = γ12 = γ21 = 0.5 (in Equations (2.18)) directly we will
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examine in the next section a more comprehensive coupling range which includes

their result.

2.3.4 Synchronization regions for β, k, & ϕ

The end goal of this work is effective simulation of the system(s) in question.

Therefore we shall skip the proof that a synchronized solution exists, and the con-

ditions under which it can be achieve. For an analytic treatment, see Section 4

of [47]. Furthermore, though we have developed more specific equations (2.18) to

verify against published work, we will return to using Equations (2.17). While our

simulation work allows for a variety of coupling configurations, when this work was

originally generated no comprehensive exploration of bi-directional symmetric cou-

pling (γ11 = γ12 = γ22 = γ21 = γ) was available. There exist several novel results to

be presented, and a broadening of the work published in [47]. We will however relax

this requirement slightly in Section 2.4 to present a broad vision for future work.

2.3.4.1 Investigations in β

Peil et al. examined only one specific case of γ [53]. We can actually take the

simulations a step further and explore whether synchronization occurs for a variety

of coupling strengths. But before that we need to define a measure to compare the

time-traces in two systems. For that we use a normalized root mean square (RMS)

synchronization error defined as:

σx ≡
(
⟨(x1[n]− x2[n])

2⟩
⟨x2

1[n] + x2
2[n]⟩

)1/2

⟨•⟩ = indicates time average (2.19)
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With this measure in hand, we can examine the time series for several values of

β. Shown in Figure 2.8 is the synchronization error (averaged over 20 runs) between

the last 104 data points (for the time averaging) of our simulated time series.
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Figure 2.8 – The synchronization error for β

This figure shows the synchronization error between two coupled systems
for four values of β (-5,-6,-7,-8) over a range of γ values (0-1).

The x-axis indicates for what coupling strength this synchronization error

occurred. We can see on the plot that identical synchronization occurs not only at

50% coupling (0.5), but also at a wider variety of coupling strengths. To be certain

that this is a real phenomenon and not just an artifact of simulation we can compare

our synchronization results to experimental traces of the synchronization.
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Figure 2.9 – Comparison of simulated and experimental synchronization
for β

This figure shows how synchronization regions only qualitatively match
between simulated and experimental results for β = −6 & β = −8. A
similar figure appeared in [47]

Figure 2.9 shows that for two experimental systems at 50% coupling identical

synchronization does occur (indicated with the arrow) while only nearly identical

synchronization occurs at more locations. However the regions of dramatic change

from semi-synchronization to complete desynchronization qualitatively agree. This

suggests that we have indeed captured the overall qualitative behavior of the system

quite well. Before investigating the quantitative mismatch between the simulation

and experiment let us take a small detour to understand how other system param-

eters can determine synchronization.
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2.3.4.2 Investigations in k and ϕ
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Figure 2.10 – Synchronization regions for ϕ

This figure compares the synchronization regions from four values of ϕ
(0, π

2
, π
4
, 3π

4
). For these β = −5 and k = 22.

So far we have presented results for the synchronization regions (values of γ)

of the model based solely on different β. However, β is not the only parameter

that affects the dynamics of the system. Kouomou’s control parameter (Equations

(2.10)) specifies γ as affecting bifurcation and the calculations for the bifurcation

points included T, time, (for our system k) as an adjustable parameter. Therefore it

is important to investigate the synchronization regimes of these variables as well. We

can see a similar trend to β, that is a decreasing span of γ in which synchronization

occurs, for an increase in k (not shown). However, the system is significantly less

28



sensitive to changes in k. When we examine the synchronization regime for different

values of ϕ, which is the offset in the nonlinearity, we find a very different behavior

from both β and k. Rather than a linear relationship, here we see the periodic

nature of cos2 reflected. The smallest regimes corresponds to a biasing about the

most sensitive points (at the maximum and minimum) in cos2 – π
4
+mpi

2
, while the

largest are related to the least sensitive sections (the zeroes) in cos2 – mπ
2
, where

for both m is an integer. This periodic shifting of the regimes is shown in Figure

2.10. Note that there are overlaps of ϕ = 0 = π
2
as well as ϕ = π

4
= 3π

4
.

2.4 Synchronization of non-identical oscillators

2.4.1 Motivation

Investigating differences between experimental and simulated results is im-

portant for understanding whether there is an error in the model, mistakes in the

experiment, or something more interesting to discover. Since the analysis of basic

synchronization regimes revealed noticeable differences in the simulation and exper-

imental results it is important to investigate potential sources for this discrepancy.

Most of the analysis that finds synchronization is based on the concept that the

non-linear systems can be replicated exactly in its coupled pairing. This however is

not the case for real systems. By expanding the potential simulation variables it is

possible to investigate small mismatches in parameters for the experimental system.
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2.4.2 Revision of model

To increase simulation detail we allowed the individual specification of param-

eters for both of the coupled systems. In terms of the Equations (2.17) we have

essentially introduced subscripts onto many of the important system parameters

and allowed them to actually take on different values for each loop. Specifically,

in addition to the expansion introduced in Section 2.3.3 (individualized γ) we now

define our system in the following way:

u1[n+ 1] = Au1[n] +Bβ1{γ11 cos2(Cu1[n− k1] + ϕ1) + γ12 cos
2(Cu2[n− k2] + ϕ2)}

(2.20a)

u2[n+ 1] = Au2[n] +Bβ2{γ22 cos2(Cu2[n− k2] + ϕ2) + γ21 cos
2(Cu1[n− k2] + ϕ1)}

(2.20b)

A second improvement that was required in the simulation was the ability

to do interpolation between points in the history. While a digital signal processing

board will implement discrete time filters, there is still an analog component of prop-

agation through both the board and the system which can introduce a non-integer

delay. To account for this we introduce an intermediate step on each iteration to

calculate values of u[n − k]. For our purposes it is sufficient to simply introduce

a linear interpolation scheme for non-integer ks. More complicated interpolation

schemes were tested but did not provide significant improvement. With the interpo-

lation scheme and the introduced subscripts on (β, k, ϕ) in place we can investigate

mismatches in each of these parameters.
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2.4.3 Mismatches in β, k, and ϕ

In our numerical experiments with variation we explored both negative and

positive mismatches. The means that we chose a base value for the parameter

and decreased (negative) or increased (positive) the parameter for the mismatched

system from that point. In the shown cases before mismatching our base values

were:

β1 = β2 = −6 k1 = k2 = 22 ϕ1 = ϕ2 =
π

4
(2.21)

2.4.3.1 Non-identical β

Figure 2.11 (a&b) show various mismatches in β. Notice here that the floor

(lowest values) for synchronization error between systems grows steadily across γ

with increasing mismatch. There is a slightly greater difference for positive vs.

negative ∆β which can be seen in (b). This trait fits with our finding above since an

increase in β decreased the synchronization region. Therefore, when we introduce

a positive mismatch one system has a larger β and therefore an inherently smaller

region.
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Figure 2.11 – Synchronization regions under mis-matched β values. (a)
change by increasing mismatch (b) positive vs. negative mismatch
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2.4.3.2 Non-identical k
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Figure 2.12 – Synchronization regions under mis-matched k values

For variations in k, as shown in Figure 2.12, we see that for a small (< 10%)

mismatch the region of synchronization largely disappears except for the 50% cou-

pling location. The desynchronization is also symmetric as regards either a positive

or negative change in value. E.g. the differences at ∆k = 0.25 are the same as

at ∆k = −0.25 (not shown). This likely stems from the fact that the general syn-

chronization regime changes very little (if at all) over a delay change of 1. Further

examination of smaller mismatches reveals that a ∆k = −0.25 between systems

caused a large shift towards desynchronization even though a very large change in

k did not significantly affect the general synchronization regime (as discussed in the

previous section). With a base delay of 22, this ∆0.25 difference represents a mis-

match of only 1.1%. This raises a fairly large concern since in the discrete digital
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system only integer time steps can effectively implemented. Adjustments to cor-

rect for fractional delay differences would require either significantly more complex

filtering or unrealistic lengths of physical cabling.

2.4.3.3 Non-identical ϕ
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Figure 2.13 – Synchronization regions under mis-matched ϕ values

Lastly, shown in Figure 2.13, for variations in ϕ we find that synchronization

error is significantly less sensitive to mismatches. Here a 10% difference only raises

the floor slightly. Just as with k it shows symmetric increases with respect to positive

and negative mismatches.
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2.4.4 Exact matching of simulation and experiment

When combined these investigations allow us to improve on the comparison

between simulation and experiment presented earlier. We can now generate a syn-

chronization plot adjusted for a range of experimental error in the simulation. The

end result, shown in Figure 2.14, is nearly identical to the experimental data.
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Figure 2.14 – Experimental, simulated, and matched synchronization
regions
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2.4.5 Comprehensive coupling exploration

There remains one variable we introduced subscripts for which we have not

investigated (beyond a few simple values), γ. While we previously introduced fully

independent labeling of γ in Section 2.3.3 we will restrict our further investigations

a bit still. We want to maintain:

γ11 = γ12 with γ11 + γ12 = 1 (2.22a)

γ22 = γ21 with γ22 + γ21 = 1 (2.22b)

Alternatively, we can think of specifying only one coupling strength per system

(say γ1 and γ2). Then we find the second coupling strength in each loop by:

γ12 = 1− γ1 and γ21 = 1− γ2 (2.23)

This still provides us with ample room for producing the coupling demonstrated in

both literature and our previous results. The entire realm of synchronization for

two freely coupled systems is presented in Figure 2.15.

The dotted lines represent the two regions we have swept in the previously

presented results. The vertical is for uni-directional coupling. The diagonal is for

fully symmetric coupling. Lastly the dot represents the location of uni-directional,

open loop synchronization. This is referenced fairly frequently in the literature and

is often used for communication schemes.
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2.5 Conclusions

In this chapter we have developed an alternative model for the behavior of a

nonlinear feedback loop based off of a Mach-Zehnder modulator, laser, and filters.

By diffusely coupling two of these systems we have shown via simulation that a

variety of synchronization regimes can be found. We have further demonstrated the

usefulness of the model to predict actual errors in experimental work by categorizing

how mismatches in system parameters can affect the synchronization floor. Finally,
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we have presented a more comprehensive exploration of coupling strengths, identi-

fying the inherent symmetry of the system. Knowing that there is a broad range of

independent coupling strengths that allow synchronization permit schemes such as

the adaptive synchronization in Ravoori et al. [58] to be implemented successfully.

More importantly, it provides the groundwork for larger network synchronization as

in [14, 74]. Together this work provides an important background for the experi-

ments to build large networks for chaotic communication and sensing.
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Chapter 3

Designing genetic algorithms to solve the orientation problem in

genome assembly
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Abstract

Genomic research is a thriving field that drives many cutting edge medical and bi-

ological investigations. Underlying this research is the need to determine the DNA

sequence of different organisms and/or individuals. In the last decade, genome

sequencing technology has improved dramatically [44]. These improvements have

drastically changed the cost, methodology and challenges involved [22]. The cur-

rent techniques process several different types of data to create the final sequenced

genome [61]. This chapter explores the use of genetic algorithms to solve an enduring

challenge in genome assembly − the orientation problem. We first define the orienta-

tion problem in a rigorous manner and provide an overview of the assembly process,

including details about the raw data. Our results show that a standard genetic algo-

rithm approach for the orientation problem produces only minor improvements over

traditional techniques. However, by leveraging the modular structure of the data to

build a more sophisticated genetic algorithm approach, we are able to significantly

improve the accuracy of the genome orientations produced. We demonstrate our

results on Meleagris gallopavo (common turkey) chromosome 3 [15].



3.1 Introduction

In the late 1990’s and early 2000’s, the Human Genome Project made headlines

worldwide. The goal of the project was to determine the sequence of chemical base

pairs in human DNA [25]. The process, like the object of the study, was complex,

many layered, and full of errors. It involved significant human ingenuity and the de-

velopment of chemical technologies, biological advances in splicing and cloning, new

computer algorithms, enhanced storage capacities and improved processing power

[40]. The impacts from the associated advances are still being realized [39]. In the

era of the Human Genome Project, it took years to completely sequence an individ-

ual organism’s DNA structure. Now, with a new generation of genome sequencers

that recombine different types of data using revised algorithms [56], it is possible

to sequence a genome in several weeks [61]. However, despite these improvements,

current technologies for genome sequencing still involve significant errors. In this

chapter we contribute an improvement on current sequencing algorithms.

At the most basic level sequencing a genome is a step by step method for solv-

ing a puzzle. Since technological limitations prohibit sequencing an entire chromo-

some one base-pair at a time, current sequencing technologies involve breaking the

DNA into many small fragments which are partially sequenced. Various algorithms

are then used to put these sequenced pieces of DNA back together [56, 61]. We have

progressed from sequencing small organisms such as the Rhodobacter sphaeroides

with 4.42 × 106 base-pairs [57] to humans with 3.3 × 109 base-pairs [40] to even

larger, more recent projects such as conifers with 2.4×1010 base-pairs [54]. As state
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of the art sequencing has changed the computational challenges have grown im-

mensely [22, 61]. The important sequencing challenges of interest are now far too

large for errors to be quickly and easily found via human inspection. As a result, we

need efficient, accurate computational solutions to problems that previously could

be approached with simple, easily implemented solutions [61]. There are a number

of different steps in the genome sequencing process that could be examined and

tested for improvement. These include identifying errors in the base-pair reads eg.

[41, 70], determining which pieces are repeat DNA eg. [60, 77] or overlap eg. [1],

deciding the order in which pieces should be placed [6, 16, 20], or finally, our focus,

determining the relative orientation of pieces in the assembly process [26, 29].

We will provide a formal definition of the orientation problem in Section 3.3

and the data that generates it in Section 3.2.1, but first here is a simple analogy for

the problem to keep in mind. Imagine opening a new jigsaw puzzle (representing

DNA) that has an image on each side, call them side A and side B. When you dump

the puzzle out, in order to properly assemble it, the pieces must all have either the

A side up or the B side up. Sequencing an entire genome is like putting together

a puzzle of the short sequenced reads. Since DNA is double stranded, for each

sequenced read, we have to figure out if it comes from the “top” or “bottom” strand.

Hence, the orientation problem in genome assembly is analogous to determining

which side is up for all of the puzzle pieces. If we have correctly fit together two pieces

of the jigsaw puzzle, then we know that both pieces must have the same side facing

up. Similarly, sequencing data includes information (called linking-pairs, which we

will describe later), that indicate the relative orientation between individual pieces.
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In our approach to genome assembly, we encode this sequencing data into a network

of interactions. In this network, nodes are the sequenced pieces of DNA and each

edge encodes information about the appropriate relative orientation for the node

pair it connects.

Let us continue with our puzzle analogy, but now imagine that we have already

fit together small groups of puzzle pieces and we want to join these groups together

into larger regions. We know that all the pieces within each small group have either

side A up or side B up (because their pieces fit together), but some groups could

have side A up and others side B. When we fit together the small groups into larger

regions, we will sometimes have to flip the orientation of an entire group to get the

pieces to fit together. In the assembly process, we can perform a similar grouping

procedure. We can first solve the orientation problem for small groups of sequenced

pieces about which we have a large amount of mutual orientation information. Then

we try to figure out the mutual orientation of the assembled groups. In order to

accomplish this task, we utilize community finding algorithms developed for network

data.

While the concept of orienting pieces is easily grasped, errors in real data

can lead to a high level of conflicting information and turn solving the orientation

problem into a hard computational challenge. (The problem has been show to be

NP-Complete [26, 29].) Because of this, we must use a heuristic method to find a

good overall orientation. We propose using genetic algorithms (GAs) for the task.

GAs are a biologically inspired computational approach for finding a good solution

to a hard optimization problem. One strength of using a GA is its ability to maintain
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large portions of good solutions during attempts to improve the solutions. For the

orientation problem, this lets a GA leverage the fact that it is easy to find the

appropriate relative orientations for certain subsets of the data (like solving a small

region of the jigsaw puzzle). Additionally, GAs perform a broad search of nearby

solutions which is important to fine tuning each potential orientation to a more

exact answer.

Section 3.2 provides an introduction to our genome sequencing data, describes

how GAs work, and discusses community finding in networks. This is followed by

our formal definition of the orientation problem in Section 3.3. Section 3.4 then

discusses the genetic algorithms that we develop to solve the orientation problem.

This is followed by our results from using the GA in Section 3.5. Finally we present

more details on our algorithm including tuning of vital parameters in Section 3.6,

concluding with a summary in Section 3.7.

3.2 Background

Before we can address the orientation problem, we need to gain a little insight

into features of the raw genomic data that we want to process. We also intro-

duce background for two computational tools that are key to our approach: genetic

algorithms and community finding in networks.
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3.2.1 Properties of partially processed genome sequence data

In order to better understand the computation problem we face, let us examine

the current DNA sequencing process. That is, the process by which a series of DNA

base-pairs are determined. The leading approach for generating genome sequence

data is Whole Genome Shotgun sequencing (WGS). Our explanation here is a para-

phrase of material from several review articles: [22, 56, 61]. In WGS, many nearly

identical copies of DNA from a large number of cells get shredded randomly into

fragments of 200-20000 bases long. The fragments are then size selected to obtain a

library of fragments with certain size mean and standard deviation. Then 100-400

bases on both ends of the fragments are sequenced, forming the basic data unit a

mate pair of reads. Various methods are available for sequencing ends of fragments;

to help illustrate how the data is generated we provide a simple cartoon in Figure

3.1. Especially notice how the mate-pairs are generated by reading inward from two

ends, and thereby getting an inherent relative orientation.

By design, we know the mean base-pair length and the standard deviation of

these lengths for the fragment as well as the mutual orientation of the two reads.

The assembly process then identifies overlapping reads which can be merged into

larger contiguous segments (contigs). The process of building the contigs is usually

followed by a ‘scaffolding’ process in which the contigs are ordered and oriented into

larger components (called scaffolds). During scaffolding the mate-pairs for which

the two mates ended up in two different contigs are used to determine the correct

order and orientation. We call such mate-pairs linking mates. A linking mate-pair
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ends of each fragment are sequenced:

fragments are overlapped, oriented and reassembled:
original

DNA

overlapped

fragments

contigs

Figure 3.1 – Simple cartoon of genome sequencing process.

This steps through the process of sequencing a genome: First we split
the genome, then we sequence the ends. These sequenced ends are over-
lapped, and reassembled into contigs then full genomes. The mate-pair
information is vital in this reassembly process to determine orientation
and placement.

specifies the relative orientation and approximate relative position of two contigs. A

set of contigs connected by linking mates can be used to form a contig graph. Our

goal here is to develop a method that finds a good orientation for all the contigs.

When mate-pair reads are originally generated the two reads have opposite

orientations since they are read from opposing directions on the same fragment of

DNA (as shown in the bottom of Figure 3.1). A linking mate is therefore satisfied if
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the orientations of the two contigs where the reads are placed and the orientations

of the two mates within these contigs imply that the linking mates are oppositely

oriented. A linking mate is unsatisfied if the implied orientations of the two reads

are the same. These two situations are shown in Figure 3.2 (a). In general some

linking mates could be conflicting due to errors in generating or reporting the mates,

repeated genomic sequence that may lead to incorrect read placement, etc. This

conflict from a combination of the satisfied and unsatisfied links occurring in an

assembled contig is shown in Figure 3.2(b). We informally define the orientation

problem as finding an orientation for each contig that minimizes the total number

of unsatisfied mate-pairs. A formal definition is found in Section 3.3.

overlapped

fragments

contigs have:

2 satis!ed

1 unsatis!ed

linking mates

original

DNA

contigs

satis!ed 

mate-pairs

unsatis!ed 

mate-pairs

(a)

(b)

Figure 3.2 – Several examples detailing mate-pairs.

(a) Shows two pairs of examples. The top are two ways reads can be
oriented (opposite directions) so that the mate-pair is satisfied. The
bottom are two ways that reads can be oriented (same direction) which
makes them unsatisfied.
(b) Shows how satisfied and unsatisfied mate-pairs combine to form con-
flicting data in a contig.
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3.2.2 Introduction to genetic algorithms

Genetic algorithms have been in use for some time as a means of doing a

heuristic search over large problem spaces. Since finding a genome orientation is

NP-Complete [26], making use of an algorithm that effectively, but not exhaustively

searches the space is important. To get a sense of why GAs fulfill this role, consider

the inspiration for the method. Biological evolution has one DNA strand, with four

different types of elements (nucleotides). These elements combine in different ways

to give organisms their traits. Nature had to search through different combinations

of long tongues, short hair, wings, four legs, and others features to find the right

combination to make a frog or bird that fills a specific niche in the environment.

Even just a small subset of the physical characteristics of animals would yield an

incredibly diverse set of possible combinations, yet through evolution some more

optimal, niche filling combinations have emerged. A GA applies these ideas to more

abstract combinatorial optimization problems.

There are four basic components to a GA, the genotype, crossover function,

mutation function, and fitness function [45]. The genotype must be able to efficiently

describe all possible solutions (or at least all those we wish to search). It must also

allow a complete exploration of those solutions via crossovers and mutations. A

specific instance of a genotype, or single solution, is usually referred to as a ‘gene’,

and the collection of instances as the gene-pool. To reduce confusion however, we

will refer to specific instances simply as solutions. The crossover and mutation

functions are the workhorses for a GA [23, 45]. It is in these functions that the
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(a) Sample of two-point crossover (b) Sample of mutation

Figure 3.3 – Basic genetic algorithm operations.

(a) shows a generic, two-point crossover which generates two children
solutions with the central sections swapped from the parents.
(b) shows a generic, one-element mutation where the highlighted (purple)
point changes from a 1 → -1
Modified from wiki-commons[73].

evolution of a solution occurs. Crossover is the process through which two solutions

will split and recombine into two new (children) solutions, of which one or both will

hopefully be a better solution. A simple diagram of this process is given in Figure

3.3a without the genotypes fully specified. Mutation is even simpler in that it only

changes a portion (or element) of a solution at random to produce another possible

solution (Figure 3.3b). Finally, just as nature would sends its genetic experiments

into the world for testing, we must test the fitness of each solution we generate.

For comparison, a GA with mutation but without crossover is similar to a

simulated annealing algorithm [33] in that it randomly searches the entire space via

small changes in the solution. However, unlike in simulated annealing, GAs might

never accept mutated solutions that have a lower fitness than the original. One

advantage of a GA over simulated annealing is that it maintains a number of possi-

ble solutions, allowing different solutions to be explored simultaneously. The basic

genetic algorithm runs as follows [45]:
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Basic Genetic Algorithm

1. Start with a randomly generated population
of candidate solutions to a problem

2. Calculate the fitness of each solution in the population

3. Apply selection and genetic operators (crossover and mutation)
to the population to create a new population

4. Return to Step 2 until satisfactory solution found

There are many factors involved in effectively solving an optimization problem

using a GA. Issues can arise from improper tuning of parameters, such as the rates

for mutation and crossover, or more advanced concepts like gene-pool evolution

[36]. These two factors, parameter tuning and gene-pool evolution clearly affect our

solutions. In addition to describing our genetic algorithm approach to the orientation

problem in Section 3.4 , we also discuss the details of how we deal with these tuning

issues in Section 3.6.

3.2.3 Introduction to community structure in networks

In Section 3.1 we made the analogy between assembling a jigsaw puzzle and

assembling genome sequencing data. We said that it often makes sense to assemble

small groups of pieces first. But what does that mean in terms of the data that we

have for the orientation problem? It means that we want to look at how the data,

viewed as a network, might be broken down into modular structures or groups.

In this section we discuss the general problem of finding community structure in

networks[19]. In the following sections we will also discuss how to leverage the

49



modular structure identified in the network to improve the way in which our genetic

algorithms search the solution space.

A simple introduction to network community structure will help inform our

later discussions. In general, identifying the community structure in a network in-

volves partitioning the nodes into densely connected subsets[50]. One way to do

this is to look for a partition that maximizes the so-called modularity function in-

troduced by Newman and Girvan [50]. We can determine the value of the modularity

function by first creating a community adjacency matrix (e) must first be created.

This is a C × C matrix where C is the number of communities in the partition

whose modularity we want to calculate. Entry eij is 1
2
the fraction of edges that

run between communities i and j, with the exception that each diagonal entry, eii

is equal to exactly the fraction of edges that are inside community i. The row sum,

ai =
∑
j

eij, then accounts for the totally connectivity of community i. The modu-

larity Q is then defined as Q ≡
∑
i

(eii− a2i ). Essentially this functions measures, for

a given partition, the fraction of edges that lie within the communities compared to

the fraction one would expect from a randomized version of the network. A more

extensive explanation can be found in [50].

A large number of algorithms have been developed for finding structure using

the modularity function for evaluating the strength of community structure. Such

algorithms include the Girvan-Newman algorithm [19], the fast-greedy algorithm of

Clauset, Newman and Moore [12], extremal optimization by Duch and Arenas [18],

and even genetic algorithms − one by Tasgin et. al. and another by Shi et. al.

50



[69, 63]. See Shi et al. [63] for a quantitative comparisons between the Girvan-

Newman algorithm (GN), the Girvan-Newman-Fast algorithm (GN-Fast), and the

two genetic algorithms. In our work, we use the fast greedy algorithm from Clauset,

Newman and Moore [12].

3.3 The orientation problem and a simple heuristic for its solution

Now that we have a grasp on the biological source and nature of the orien-

tation problem we need a way to examine the full scope of the data and perform

optimization of the orientation. With this in mind, we formally define our problem:

Definition 1 (The Orientation Problem) Given a collection of contigs (C) and

the mate-pairs connecting them, we define a coupling strength between two contigs i

and j, denoted cij, as the difference between the number of satisfied and unsatisfied

mate-pairs between them when the two contigs are initially assembled. We denote the

orientation of a contig i as σi and use the values of ±1 to represent the two possible

orientations. Without loss of generality, we set the initial orientation (when the

coupling strength is defined) of all contigs to +1. The orientation problem then is

to identify the set of orientations that maximize the sum:

S =
∑
i,j∈C

cijσiσj (3.1)

Note that the coupling strengths are fixed (after contig assembly) according to our

definition above.It is easier to understand how changes from finding new orienta-

tion solutions propagate by defining an additional variable representing the final

connection between two contigs.
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In order to better illustrate how the sum in 4.1 may be increased by flipping the

orientations of some of the contigs, we find it useful to introduce another variable,

xij(σi, σj), that measures how well the specified pair orientations, σi and σj, satisfy

the information encoded in the mate pair data:

xij(σi, σj) = cijσiσj = sij(σi, σj)− uij(σi, σj) (3.2)

where sij(σi, σj) is the number of satisfied mate pairs connecting contigs i and j and

uij(σi, σj) is the number of unsatisfied mate pairs connecting them, for the specified

orientations σi and σj. We can then rewrite the sum in Equation (4.1) as

S =
∑
i,j∈C

xij (3.3)

Ideally in a final orientation solution, every xij would be positive. This would

occur either by having a positive cij and matching σi,j (both +1 or −1) or by

having a negative cij and different σi,j. As an example, a reversal in a single contig

i from 1 → −1, would change the sign of every xij. In terms of the data originally

defining the problem, reversing a contig’s orientation makes all the unsatisfied mate-

pairs connected to it become satisfied and all the satisfied mate-pairs connected to it

become unsatisfied. Thus, we can say that finding the maximum of the sum above is

equivalent to finding the set of orientations that minimizes the number of unsatisfied

mate pairs.

The notation here is reminiscent the spin-glass problem in physics. Alternative

formulations have been presented by Huson et al. [26] and Kececioglu and Myers

[29]. Both sets of authors map their definitions to NP-Complete problems. Also,
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Delorme and Poljak have shown a version of the Max-Cut problem analogous to our

formulation [17].

As a base-line we introduce the simple heuristic approach, which is still in

broad use, for solving the orientation problem introduced by Kececioglu and Myers[29].

We refer to this method as the node-centric greedy approach. The algorithm oper-

ates on the contig graph defined above in the following way:

Node-Centric Greedy Algorithm

1. Sum sij(σi, σj)− uij(σi, σj) for each i ∈ C (node in graph)

2. Choose the most negative (most unsatisfied) contig

3. Reorient that contig (and fix it)

4. Recalculate node-sums of all connected nodes

5. If any node has a negative sum return to step 2

This simple approach works well in many instances and we will provide a more

detailed discussion of the algorithm (and others) in Chapter 4. Using this as a base-

line however we will show that we can improve upon its performance considerably

by introducing a heuristic that leverages the modular structure of the data.

3.4 Developing genetic algorithms for genome orientation

Graphs presented in this section primarily are from runs onMeleagris gallopavo

(common turkey) chromosome 3 [15]. This data set was chosen because its size is

large enough to reflect the complexity of today’s sequencing data, but still small

enough for reasonably quick computations. The contig assembly we are using has
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14.528 contigs, with 25.832 connections between contigs and a total of 113.495 mate-

pairs. Our algorithms and results have been found to scale appropriately to larger

genomes.

3.4.1 Motivation & basic application of genetic algorithms

In the introduction we gave a brief motivation for using GAs to solve the orien-

tation problem. Now that we understand them a bit better we can elaborate. The

two major exploratory components of a GA provide different advantages. When

crossovers occur, large portions of good relative orientations are (hopefully) saved

and combined together to find new sets of possible orientations. Alternatively, muta-

tion allows exploration of local spaces around a solution and provides improvements

at the individual contig level.

In order to illustrate how we use GAs to solve the orientation problem, let us

go through each of the four elements of a genetic algorithm listed above: genotype,

crossover, mutation and fitness. The genotype for using a genetic algorithm to solve

the orientation problem is straightforward and follows the model introduced by Hol-

land [23]. We maintain an array of ±1 that records the individual orientations of all

the contigs. When we construct this array, the contigs are fixed into a random order

that has no special meaning. Then, when creating an initial population of solutions,

we simply generate a random sequence of 1 and -1 for each initial solution (orien-

tation). We take the number of satisfied mate-pairs divided by the total number of

mate-pairs to be the “fitness” of the solution. Maximizing fitness then corresponds
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to either maximizing the satisfied mate-pairs or to minimizing the number of unsat-

isfied mate pairs. For readability, and easier computations we report the number of

unsatisfied mate-pairs when referring to final solutions.

Mutations on our genotype flip the orientation of individual contigs from 1 →

−1 or −1 → 1. Here, the tuning of the mutation rate is important. When tuning

the mutation rate, we are affecting the probability that a contig’s orientation in the

new, or child, solution will be opposite from its orientation in the original, or parent,

solution. We present some details on the tuning in Section 3.6.2.

The crossovers for genome orientation swap large sections of solutions between

parents. Since it is possible to swap in an element with an identical orientation (i.e.

swap an orient of 1 with an orient of 1), we get a very different sort of mixing from

mutation. Because there is no information stored in the ordering of our orientations,

crossovers swap random individual elements until the desired percentage (random

for each crossover performed) of the solution is swapped. Again, we can tune how

much crossover we do. In this case, the crossover rate represents the probability

a pair of solutions will be crossed over (rather than mutated). Tuning for this

parameter is also presented in Section 3.6.2.

3.4.2 Innovations on genetic algorithms

We know that the network data exhibits very strong community structure, for

example Turkey Chromosome 3 has 173 communities (average size of 84 contigs) at

maximum modularity of 0.974, which is unusually high compared to many of the
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other networks reported in [49]. This strong modular structure motivates our use

of GAs for solving the orientation problem. In GAs, crossovers maintain subsets of

good solutions by keeping large sections of parent solutions during each iteration of

the search process. By keeping these subsets, we hope that data within groups will

be largely maintained. That is, during a crossover, rather than randomly changing

a solution, we take a partial solution, perhaps from a well solved group, and mix it

into another solution. As we examine this, it is important to remember that since

we are solving the contig orientation problem, not the fragment problem, the data

has already been partially processed (to create contigs). This partial processing

imparts some initial orientations to the data, so that rather than starting from a

random initial orientation, we start from a partial solution. Figure 3.4 gives us

some insights about the features of this initial solution by plotting two measures

for each community (color-coded by size). Inner fitness refers to the fitness over all

the edges entirely interior to a community. Outer fitness refers respectively to the

fitness over all the edges that connect nodes inside the community to nodes in other

communities. The communities were found using Clauset’s fast-greedy algorithm

for community finding[12]. Notice that most groups neither have good inner fitness

nor outer fitness, however both fitnesses are better than being centered around 0.5

fitness as would be expected of fully randomized data.

Figure 3.4 motivates our primary innovation in genetic algorithms for genome

assembly: a multi-stage improvement method. We run our genetic algorithm on

both the identified communities and individual elements, providing optimization at

different scales of the data. Ideally this will improve both the inner and outer fitness
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Figure 3.4 – Inner vs. Outer fitness for unmodified chromosome 3 of
turkey genome.

This figure plots the communities identified by Clauset’s algorithm and
plots them by their inner (x-axis) vs. outer (y-axis) fitness. The groups
are color-coded by the number of nodes (contigs) within the group. This
data is post Celera assembly of contigs, so the orientation of some data
has already been decided, but no additional algorithm has been applied
to this data.

scores in the process.

Our multi-stage approach to solving the orientation problem with a genetic

algorithm has two stages: 1) GA on entire problem, 2) GA with communities col-

lapsed into single elements. Mitchell and Holland[45, 23] both observe that GAs

perform significantly better if partially successful solutions can be fed into the al-

gorithm as initial conditions. By acknowledging that, at least in part, communities

are internally more fit than they are externally it is reasonable to attempt improve-

ments only on the external connections. This is implemented similar to the GA we

used on the entire problem but with a collapsing and remapping step introduced.
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3.5 Genetic algorithm results

3.5.1 Basic results

Implementing the two-stage GA provides a clear improvement in our solution.

We can examine this on two fronts, overall unsatisfied mate-pair count and the

communities inner and outer fitness. The overall count is shown in Figure 3.5. Here

we see two things: first that implementing the two stages dramatically improves

performance. Second we can also see that by re-running the algorithm several times

(GAGRPx3), using the end best solution as a seed, we can further improve our

results.
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Figure 3.5 – The number of unsatisfied mate-pairs for several original solutions using
GAs

The four points plotted are the averages of 5 trial runs with each algorithm.
The arrow indicates the original data’s unsatisfied mate-pair count would be
far off the display. The x-axis is the average iteration count at convergence
and the y-axis is the average unsatisfied mate-pair count for the 5 solutions.
GA = Basic genetic algorithm
GAGRP = Basic genetic algorithm followed by a run of GA at the group granularity
GRPGA = Run of the GA at group granularity first, followed by a run of the basic genetic algorithm

GAGRPx3 = Three iterations of GAGRP, on after the other.
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We implemented a group-based stage however because we saw a significant gap

in the outer fitness, not just inner fitness in Figure 3.4. Therefore, we wanted to see

movement in both the X and Y. Figure 3.6 shows the same four types of runs shown

in Figure 3.5, with a dot in the center of the distribution of all the communities

fitness with the bars indicating the spread in the X and Y axes. There is a very

clear progression in the solutions of both a right-ward and up-ward movement.

Introducing the community-based improvement stage we dramatically improve the

outer fitness found with the mean increasing by at least 0.05 on each of the multi-

stage methods.
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Figure 3.6 – Averaged Inner vs. Outer fitness for communities from several solution
methods

In this figure the crosses show the spread of data for each type of solution
and indicate one standard deviation from the mean in each direction. The 5
combinations of solutions from the previous plot are shown:
Original Data = Data from the assembler, pre additional orienting
GA = Basic genetic algorithm
GAGRP = Basic genetic algorithm followed by a run of GA at the group granularity
GRPGA = Run of the GA at group granularity first, followed by a run of the basic
genetic algorithm

GAGRPx3 = Three iterations of GAGRP, on after the other.
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3.5.2 An existing solution

Approximate solutions to the genome orientation problem are a well studied

area, as evidenced by the literature cited in Section 3.1. One successful method, still

in common use in Bambus and Bambus 2, is an algorithm that “greedily assign[s]

orientations to contigs ignoring an edge if it conflicts with a previously oriented

contig” [55, 37]. This method is based on a technique proposed by Kececioglu and

Myers [29]. The algorithm is a greedy, node-centric method, which has been found to

succeed at finding reasonable solutions. A more in-depth discussion of this and other

currently proposed algorithms, with their advantages and disadvantages, appears in

4.1.2. For the remainder of this chapter the node-centric algorithm will provide a

solid base-line for initial comparisons. The node-centric algorithm does an excellent

job with interior fitness as shown in Figure 3.7 (note the change of scale on the

x-axis).

However, there is still a very large spread in the outer fitness (y-axis), which

we have demonstrated our multi-stage algorithm can improve significantly on. How

does their solution compare to our solutions? And what happens if we use this as

a starting seed for our algorithm, again working under the principle that GAs work

best with a good initial solution.
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Figure 3.7 – Inner vs. Outer fitness using node-centric for chromosome
3 of turkey genome

This figure plots the groups identified at the highest modularity by
Clauset’s algorithm and plots them by their inner (x-axis) vs. outer
(y-axis) fitness. The groups are color-coded by the number of nodes
(contigs) within the group. The data for this plot is after node-centric
greedy algorithm has been applied at the individual element level (not
group level).

3.5.3 Comparison of solutions

Figures 3.8 & 3.9 show two previous plots (Figures 3.5 & 3.7) with two new

data points: the node-centric algorithm and the multi-stage GA using the node-

centric as a starting point. We can now see that while the GA, and more markedly

the multi-stage GA, produce improved outer-fitness over the node-centric algorithm

(Figure 3.9), their overall performance is inferior (Figure 3.8). However, by starting

from the node-centric solution we can achieve a significant improvement on 1) outer

fitness and 2) unsatisfied mate-pairs over the original algorithm. There is also a
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small improvement on the inner fitness (Figure 3.9). Further improvements can be

expected under repeated iterations of the two-stage method based on the dark blue

points.
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Figure 3.8 – The number of unsatisfied mate-pairs for all solution methods using
GAs

The five points plotted are the averages of 5 trial runs with each al-
gorithm. The arrow indicates the original data’s unsatisfied mate-pair
count. The red line indicates where node-centric falls on the y-axis (it-
eration count << 1× 105). The x-axis is the average iteration count at
convergence and the y-axis is the average unsatisfied mate-pair count.

GA = Basic genetic algorithm
GAGRP = Basic genetic algorithm followed by a run of GA at the group granularity
GRPGA = Run of the GA at group granularity first, followed by a run of the basic
genetic algorithm
GAGRPx3 = Three iterations of GAGRP, on after the other.

GAGRP from Node-centric = Basic genetic algorithm followed by a run of GA at

the group granularity starting from the solution produced by node-centric.
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Figure 3.9 – Averaged Inner vs. Outer fitness for communities from all
solution methods

In this figure the crosses show the spread of data for each type of solu-
tion. The lines represent one standard deviation from the mean in each
direction.

GA = Basic genetic algorithm

GAGRP = Basic genetic algorithm followed by a run of GA at the group granularity

GRPGA = Run of the GA at group granularity first, followed by a run of the basic

genetic algorithm

GAGRPx3 = Three iterations of GAGRP, on after the other.

GAGRP from Node-centric = Basic genetic algorithm followed by a run of GA at

the group granularity starting from the solution produced by node-centric.
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3.6 Implementation details

This section describes in detail our tuning experiments as well as the specific

implementation (non-standard) of genetic survival we used.

3.6.1 Implementation of genetic survival

In addition to the tuning of both our crossover and mutation rates there re-

main several implementation choices related to the evolution of the gene-pool. We

must set selection criteria, as well as determine how surviving chromosomes are

paired up for evolution. For our pairing to mutate or crossover, we randomly select

two solutions from our pool. Then, based on the probability to crossover rate we

either perform a crossover between the two solutions, or perform mutations on each

individual solution. That is, for a 10% crossover, 1 out of every 10 pairs of solutions

will have a crossover performed. This is not necessarily standard practice for GAs,

but should not affect the effectiveness, only perhaps the run-time. Up to 50% of the

solution may be swapped with the exact percentage determined randomly for each

crossover. While the diagrams above describing GAs (Figure 3.3) show crossovers

being performed with a series of contiguous elements, our implementation does not

preserve that, instead swapping random elements (but none twice). This is actually

more effective since the linear ordering within our genotype does not have a direct

meaning. When swapping contiguous chunk we achieved far less mixing of solutions.

The swapping does however still swap the same element in both solutions (e.g. con-

tig A gets swapped with contig A). For any remaining pairs that did not perform a
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crossover, the two solution chromosomes are mutated independently. Mutation for

us means: cycle through each element in a potential solution and with a probability

equal to the mutation rate (the 0.1% or 10% found in the next sections) change the

orientation of that element.

Our survival criteria are slightly different from many other genetic algorithms.

We model our criteria off the work by Kohmoto [36] on applying genetic algorithms

to graph partitioning, a generalization of our problem. Instead of selecting the top

X number (or top percent, usually 50%) of solutions in our population as in [23], we

instead keep the two best out of a given evolutionary step. Meaning that for each pair

of solutions, after either a crossover or pair of mutations, the resulting children (new

solutions) are compared to their parent solutions. The two best solutions are kept

out of those four solutions. We also implement a small probability (set at 5% for us)

to accept a child if neither child is an improvement. This is to occasionally encourage

new solutions which might be near a different local minimum, but temporarily worse.

3.6.2 Tuning mutation & crossover parameters for the basic GA

We mentioned earlier in Section 3.2.2 that both the mutation and crossover

rates can significantly affect both the speed of convergence and the quality of solu-

tion. It is therefore important to properly tune each GA parameter for the solution

space we are searching. We explore mutation rates in Figure 3.10 by fixing the

crossover rate and varying the mutation rate. In the figure we can see that a mu-

tation rate of 0.1% is optimal since it both converges faster and reaches a lower
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Figure 3.10 – A comparison of mutation rates in GAs

Four mutation rates are compared in this figure. We show the number
of iterations to convergence (x-axis) vs. the number of unsatisfied mate
pairs at that iteration (y-axis). The error bars are generated from 5
trials at each mutation rate and show one standard deviation from the
mean.

unsatisfied mate-pair count. In the figure, the error bars are from the averages of

five trial runs.

Experiments were also performed with a changing (reduced over time) muta-

tion rate. One reason to reduce the mutation rate as iterations progress is that if

the population of solutions is nearing an optimal answer we want to explore the

local space more carefully. If too many mutations are introduced during each mu-

tation stage, while parts of the solution might improve, we reduce the chance that

the overall solution will improve. This is because we are increasing our chances of

introducing new errors.
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Figure 3.11 shows a comparison of three runs with a changing mutation rate

and three without a changing rate. We have plotted the percent of children accepted

(x-axis) versus the percentage of iterations or steps where we accepted that percent

(y-axis). For example, the first point indicates that ≈10% of iterations accepted

≈3% of the children created through mutation. It is clear that for the largest

percentage of iterations, introducing a changing mutation rate does not actually

affect the acceptance of solutions. There are some differences in the percent of

iterations accepting 25%-45% of the mutations, however, those differences are only

on the order of 104-105. While the method does takes around 105-106 iterations to
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Figure 3.11 – A comparison of fixed vs. adjusting mutation rates in
GAs

Shown in this figure are 6 different runs of the genetic algorithm. Three
runs (GA 0-2)–the open shapes– are with a standard, fixed mutation
rate. Three runs (GA Reduce 0-2)–the solid dots– are for when the
mutation rate is progressively reduced if no mutations are accepted in a
sufficient number of iterations. The x-axis is the % of mutated children
excepted in a given iteration. The y-axis is the % of iterations that had
that % of mutated children accepted.
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converge (see previous figure), this is still only a difference of 1-100 iterations each.

In-fact, the low count of iterations with a higher acceptance rate lend support to

fixing the rate, since the iterations with higher acceptance rates should only occur

early in the search and seek to more fully explore the initial solution space.

With a well-tuned mutation rate exploring local regions, it is equally impor-

tant to have a correctly tuned crossover function for exploring the global space.

Recall that the crossover ideally preserves some of our group-structure or chunks of

orientations while building a more optimal solution. Also important to remember in

interpreting this tuning is that the crossover percentage measures the probability of

performing a crossover at all. That means a 20% crossover rate conversely implies

that 80% of the solution pairs will have mutations performed on them instead. This

is slightly different than the tuning of the mutation rate, which was the probability

of mutation for any given element of a solution which we had already decided to

mutate. In one sense then you can think of tuning the crossover rate as also tuning

the (global) mutation rate. Similar to the mutation convergence, we can see how

different crossover rates converged in Figure 3.12.

Most of the crossovers we tested did not have a huge difference in performance.

Most noticeable though is that with a lower crossover of 15% (and to a lesser extent

18%) we have a significantly slower convergence time. This seems to indicate a

minimum amount of crossover to explore the global space. On the higher side, the

figure shows that a 45% crossover rate converges quickly, but to a higher unsatisfied

mate-pair count. Finer tuned explorations were carried out (not shown) which

determined that a crossover rate of 22% worked best.
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Figure 3.12 – A comparison of crossover rates in GAs

This figures shows the iteration number (x-axis) vs. the number of
unsatisfied mate-pairs (y-axis) at that iteration for four values of the
crossover parameter. The error bars are generated from 5 trials at each
mutation rate and show one standard deviation from the mean.

3.6.3 Tuning of mutation and crossover for group parameters

Just as the parameters for the general genetic algorithm must be tuned, we

need to tune the parameters for the genetic algorithm running on groups. Figures

3.13 and 3.14 demonstrate the search for parameters in crossover and mutation

respectively. Notice that compared to non-grouped data the best mutation rate

(10%) is much higher while the cross-over rate (5%) is much lower. This reflects

the fact that our linkage data is much sparser on groups so a mutation has a higher

chance of improving any given solution, and therefore has a higher payoff.
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An alternative way to think about it is that we chose GAs because of their

ability to preserve partial solutions, like those interior to a group. Since we have

abstracted away the groups, the crossover function (which preserves associations)

is less important. Another thing that stands out is the very different scale the

unsatisfied mate-pairs are plotted on. This different scale is because a majority of

the improvements possible lie within communities, even though we do see a distinct

overall improvement by using the GA at the community level.
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Figure 3.13 – A comparison of crossover rates in GAs for group granu-
larity

The average number of iterations to convergence vs. the average unsatis-
fied mate-pair count are show for a wide-variety of crossover percentages.
All these runs were done with a mutation rate of 10% at the group-
granularity level. Take note of the much higher unsatisfied mate-pair
count compared to non-group granularity.
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Figure 3.14 – A comparison of mutation rates in GAs for group granu-
larity

The average number of iterations to convergence vs. the average un-
satisfied mate-pair count are show for a wide-variety of mutation per-
centages. All these runs were done with a crossover rate of 5% at the
group-granularity level. Take note of the much higher unsatisfied mate-
pair count compared to non-group granularity.

3.7 Summary

This chapter describes the development of a genetic algorithm approach to

genome orientation. There is currently no evidence in the literature that a GA has

been applied to this problem. There is clear motivation for the attempt, as it is a

well-studied and generally effective heuristic search. Additionally, since one impor-

tant trait of GAs is the persistence of partially good solutions they lend themselves

well to the genome orientation problem. Included with this was an introduction of

community finding as a partial step in solving the orientation problem.
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While graph based work on genome assembly exists, see the discussion on

overlap graphs and de Bruijn graphs in [61] for several references, communities are a

new addition which based on the results shown provide a useful tool for breaking the

problem into smaller computational pieces. Equally valuable, we find that by using

the current node-centric algorithm as an initial seed we can make large improvements

in several measures. Some further work is possible with the inclusion of additional

optimization for each group individually, either with the node-centric algorithm or

another method.
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Chapter 4

Hierarchical methods for solving the genome orientation problem
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Abstract

Chapter 3 introduced the genome orientation problem and presented a potential

approach for solving it using genetic algorithms. This chapter will present an alter-

native method that further leverages the highly structured nature of genomic data

and is simultaneously more computationally efficient. A significant body of work

has shown that hierarchical clustering methods can be an effective way to process

graph data and accent grouping tendencies [48]. We build a hierarachical-based

method for solving the genome assembly problem and show that it performs signif-

icantly better than the simple algorithms that are currently used. To demonstrate

this improvement, we show results from both Rhodobacter sphaeroides bactera and

generated data.



4.1 Revisiting the orientation problem

In this chapter we return to the genome orientation problem, developing an

alternative way of leveraging the modular structure of the data. In Chapter 3, we

showed how genetic algorithms that attack the problem on two different levels of

granularity can provide improvements over the simple algorithms that are currently

used. At the coarser level of granularity, our genetic algorithm divides the network

nodes (contigs) into a single set of non-overlapping groups (determined by maximiz-

ing the modularity function [50]) and explores the effects of flipping the orientations

of whole groups. At the finer level of granularity, it explores the effects of flipping

the orientations of individual nodes. Here, instead of considering the structure at

just two scales, we process the data in a tree-like fashion in which each branch can

be broken into smaller and smaller pieces. This leads to an ordered, hierarchical

approach for finding a solution to the orientation problem. To understand a bit

more how this approach is different from other techniques, we first review in de-

tail two current methods of solving the orientation problem in Section 4.1.2. This

is followed by the development of our hierarchical-based orientation algorithm in

Section 4.2. We then test our algorithm on both experimental data (Rhodobac-

ter sphaeroides bacteria) and generated faux data in Section 4.3 and show that it

provides a substantial improvement over traditional techniques.
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4.1.1 A brief recap

We previously defined our problem as follows:

Definition 1 (The Orientation Problem) Given a collection of contigs (C) and

the mate-pairs connecting them, we define a coupling strength between two contigs i

and j, denoted cij, as the difference between the number of satisfied and unsatisfied

mate-pairs between them when the two contigs are initially assembled. We denote the

orientation of a contig i as σi and use the values of ±1 to represent the two possible

orientations. Without loss of generality, we set the initial orientation (when the

coupling strength is defined) of all contigs to +1. The orientation problem then is

to identify the set of orientations that maximize the sum:

S =
∑
i,j∈C

cijσiσj (4.1)

Note that the coupling strengths are fixed (after contig assembly) according to

our definition above. It is easier to understand how changes from finding new

orientation solutions propagate by defining an additional variable representing the

final connection between two contigs.

In order to better illustrate how the sum in 4.1 may be increased by flipping the

orientations of some of the contigs, we find it useful to introduce another variable,

xij(σi, σj), that measures how well the specified pair orientations, σi and σj, satisfy

the information encoded in the mate pair data:

xij(σi, σj) = cijσiσj = Sij(σi, σj)− Uij(σi, σj) (4.2)
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where Sij(σi, σj) is the number of satisfied mate pairs connecting contigs i and j and

Uij(σi, σj) is the number of unsatisfied mate pairs connecting them, for the specified

orientations σi and σj. We can then rewrite the sum in Equation (4.1) as

S =
∑
i,j∈C

xij (4.3)

Ideally in a final orientation solution, every xij would be positive. This would

occur either by having a positive cij and matching σi,j (both +1 or −1) or by

having a negative cij and different σi,j. As an example, a reversal in a single contig

i from 1 → −1, would change the sign of every xij. In terms of the data originally

defining the problem, reversing a contig’s orientation makes all the unsatisfied mate-

pairs connected to it become satisfied and all the satisfied mate-pairs connected to it

become unsatisfied. Thus, we can say that finding the maximum of the sum above is

equivalent to finding the set of orientations that minimizes the number of unsatisfied

mate pairs.

We state two additional details that are important to realize when stating

the problem in this manner. First, that many cij = 0. That is, we are working

with a sparse connection matrix, where most contigs are not connected to each

other. Additionally, finding a maximum of S does not guarantee a correct biological

solution. Degenerate mathematical solutions may exist, or errors in the data may

suggest incorrect solutions.
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4.1.2 Other approaches for solving the genome orientation problem

Let us now examine in greater detail a few of the existing methods. First, let’s

remind ourselves of the method of Kececioglu and Myers [29] presented in Chapter

3. Their work is one of the first to mention the orientation problem explicitly and

begin a discussion of various methods for solving it. Generally, the orientation prob-

lem has been solved in conjunction with other components of the assembly process.

In-fact, nearly all the other major methods we find (with the exception of Huson

et al. [26] who describe the method used in Celera) describe their orientation algo-

rithm as part of a larger scaffolding program [6, 16, 20, 55]. Two methods are of

particular interest are the one used by Bambus [55] and the one used by SOPRA

[16]. Bambus ’s method, which we call “node-centric greedy”, is what we use as our

baseline method. However, while it provides a reliably good solution in many cases,

there are some easily found small graphs for which the method breaks down. The

node-centric greedy works on the contig graph in the following way:

Node-Centric Greedy Algorithm

1. Sum sij(σi, σj)− uij(σi, σj) for each i ∈ C (node in graph)

2. Choose the most negative (most unsatisfied) contig

3. Reorient that contig (and fix it)

4. Recalculate node-sums of all connected nodes

5. If any node has a negative sum return to step 2

To elaborate a little, step one adds up the information from all of the mate-pairs

that are incident on a contig. From our definition above this is finding all the zi

where zi =
∑
j∈C

cijσiσj. By keeping a master-list of all these sums, the algorithm
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can pick the most unsatisfied contig (the one with the most negative z value) and

reorient that contig. This has a trickle down effect of changing the contig sum for

any connected contigs.

Overall this method is fairly effective, fixing the biggest problems first, and

continuing to fix problems until there do not appear to be any problems remaining.

However, the method suffers from the flaw of data agglomeration. What we mean is

that by examining the sum, and only orienting those contigs with a negative sum,

it becomes possible to ‘bury’ some of the information in unsatisfied mate pairs. The

small graph shown in Figure 4.1 illustrates this point, and shows a case in which

node-centric greedy can return an incorrect orientation.
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C
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3

-2

Problem Graph for Node-Centric:

Sum of all edge values incident to 

each node is positive (Σ(3)+(−2)=1),

so no nodes are reoriented

using node-centric

The optimal orientation would be:

A & B oppositely oriented to C & D

E.g. :  A (+)  B (+)  C(-)  D(-)

CD

-2

3

3

-2 22

Node-Centric Correct

A
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D

B A

Net satis!ed mates: 2 Net satis!ed mates: 10

Figure 4.1 – A small sample graph which node-centric incorrectly orients

This figure shows two versions of a small graph. Values on the edges
represent the xij as defined from Eqn. 4.2. The left version demonstrates
how the node-centric greedy will not impose any orientation change while
the right shows an optimal final orientation.

While the node-centric method is demonstratively flawed, the method pre-

sented in by Dayarian et al. in [16] is a bit more robust. The method in [16] is

really two different ideas combined. The first part of the method finds articulation
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points that break the graph into smaller components. By breaking the graph into

components in this manner they produce several significantly smaller sub-graphs (see

[4, 24, 31] and others for details on articulation points and components). Solving the

orientation problem exactly on many of these sub-graphs can often be accomplished

in reasonable time. In fact, it can be mathematically proven that if the sub-parts

can be solved exactly, then breaking the problem into pieces that are then subse-

quently reassembled does not produce a worse orientation than solving the whole

problem directly.

The second part of their method, however, leaves significant room for improve-

ment. While breaking the graph allows most subgraphs to be solved exactly, some

are still too large, therefore Dayarian et al. utilize a heuristic method to solve them.

They chose to implement a standard Ising model approach to properly orient their

remaining large graphs. As the authors themselves state, the Ising model approach

they use may not give optimal solutions if “there are highly-connected components

of moderate or large size” [16]. Our investigations in Chapter 3 have shown that

mammalian (or at least the turkey) genomes exhibit exactly this trait.

Basically, their approach to problem reduction is a good idea, but is fully

dependent on the quality of the actual method to find orientations in the subgraphs.

As a demonstration, we present a slightly modified version of Figure 4.1 that shows

one additional node added on. If we perform articulation on the graph (basically

just breaking that node back off), and then use node-centric greedy as our ‘base’

method, we are again left with an incorrect solution. Figure 4.2 shows this process.
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Figure 4.2 – A small sample graph which articulation with node-centric
incorrectly orients

This figure shows a 5-node graph which the articulation method can
break apart (left breaks into the right). However, the resulting sub-
graphs will not be oriented correctly if the node-centric algorithm is used
as the ‘base’ method. This means when recombined, even though node
A will be reoriented, the whole graph will be non-optimally oriented.

4.2 Our hierarchical method

We propose a new algorithm for solving the orientation problem based on

hierarchical clustering. Hierarchical clustering was originally proposed and used

for phylogenetic studies [65] and now methods related to the idea are utilized in

many different areas such as information retrieval, multi-variate data analysis and

community finding in networks [67, 68, 62]. The central idea is to build a tree-like

structure, called a dendrogram, which is an ordering of merges for the nodes that

creates progressively larger and larger sets upon which we can continue to make

merging decisions [72]. Given a matrix of interaction data, there are two important
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elements to finding an ordering of merges, a weighting (or distance) metric and

linking criterion. We have chosen to use average linkage clustering [48, 65] as the

merging method to determine the weight, wAB between two clusters, A and B, given

the weights, wij, between individual nodes:

wAB =
1

|A| |B|
∑
i∈A

∑
j∈B

wij (4.4)

This formula defines how the effective weight edge between two clusters, A,B is

found.

The denominator |A| |B| multiplies the total number of nodes in each cluster,

or in-other words represents the maximum possible number of edges between clusters

A and B. This divides the sum of the individual weights connecting nodes in cluster

A with nodes in cluster B. This calculation for an edge weight between clusters

is performed every time we create a new cluster (by merging singleton nodes, or

previous clusters), thus defining the ‘new’ weight from that cluster to every other

cluster.

Other standard linking criteria, such as minimum or maximum weight, do not

preserve all the relevant connection information for our purposes (see Appendix A

for more discussion). As a result, choosing the method for link merging is reasonably

straight forward. Choosing an underlying weight metric to initially label edges in

our graph is somewhat more complicated since there are many different ways we

might want to interpret the information about the connection between contig pairs.

Since traditional hierarchical clustering approaches require that all the weights are

non-negative, we want to choose a weighting scheme that meets this requirement.
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(We deal with the signs in the mate-pair interaction data in what follows.) A simple

weighting scheme for contig pairs is just the absolute value of the edge satisfiction

(Equation (4.2)) as follows:

wij = |xij| = |Sij(σi, σj)− Uij(σi, σj)| (4.5)

Alternately, we might want to consider not only the net mate pair information

but also the total number of connections, relative to the agreement of those connec-

tions. We can introduce this comparison information as a scaling factor for the edge

satisfaction. With this in mind, we propose the following method for determining

the weight between contigs:

Definition 2 (Contig Link Weight) For each edge between contigs i and j we

first compute the net edge satisfaction (as in Equation 4.2), which we define as

the difference between the number of satisfied (Sij) and unsatisfied (Uij) mate-pairs

(for given orientations of the two contigs). We then define a scaling factor as the

magnitude of this satisfaction (difference) divided by the total number of the linking

mates:

fij =

∣∣∣∣Sij(σi, σj)− Uij(σi, σj)

Sij + Uij

∣∣∣∣ (4.6)

Then the actual weight on an edge is the simple weight above, scaled by this factor:

wij = |(Sij − Uij)| ∗ fij = |(Sij − Uij)| ∗
∣∣∣∣Sij(σi, σj)− Uij(σi, σj)

Sij + Uij

∣∣∣∣ (4.7)
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The rationale behind Definition 2’s metric is as follows:

• If there is no conflicting information for a node pair, the metric should equal

number of the mate pairs connecting the pair.

• If there are any conflicts, we should have less “trust” in that information.

• Conflicts should reduce the link weight proportional to the number of conflict-

ing mate pairs.

An important feature that distinguishes our approach from traditional uses of

hierarchical clustering is that the edge weight between two clusters, which is based

on the assigned orientations, depends on the history of joins that formed the clus-

ters. In the following discussions we will use the term ‘cluster’ to refer to both

unmerged (singleton) and combined contigs. Having defined a linking criteria and

weighting metric our algorithm is as follows:

Hierarchical Greedy Algorithm

1. Choose the edge with the maximum weight using the given metric
and identify the two clusters on either side.*

2. Determine if either cluster should be flipped If yes:
• Determine the best cluster to flip, based on the effect on the remaining graph
• Flip identified cluster

3. Merge the two clusters into a new cluster.

4. Zero out the edge merged on (now an internal edge)

5. Recompute the edge weights to the new cluster according to average linkage

6. Repeat steps 1-5 until no edges remain (this may leave more than one cluster)

* See Section 4.2.1 for a more in-depth discussion of this choice.

As stated in step 6, the merging process is repeated until each connected

component in the graph has been merged into a single cluster. Figure 4.3 illustrates
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the step-by-step application of our method to the small sample graph (from Fig.

4.2) for which articulation and the node-centric methods fail.
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Figure 4.3 – An example of hierarchical greedy on a small sample graph

This figure steps through orienting via our hierarchical method the same
graph that caused trouble for the other methods. We start with an all +
graph (upper left), cycle through each merge and redefinition of weights
until we have merged all the nodes together (lower right). This gives us
a final solution shown in the upper right.
Note: To improve readability, the magnitudes of the edge values shown
are computed using average linkage on the weighting scheme from Eqn
(4.5) rather than Eqn (4.7). The signs on each edge indicate whether
the mate pair information suggests that one member of the cluster pair
should be flipped.

This iterative process of merging and reorienting is where the novelty of our

procedure arises. By merging previously oriented elements and revising their ba-

sic weight relative to other nodes (which depends on the orientations), it becomes

impossible to precompute all the joins as in many standard hierarchical clustering

methods. Furthermore, the merging into orientable groups introduces an important
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and novel approach to genome orientation. The merging forces the algorithm to fix

relative orientations between elements, maintaining correctness while allowing any

connection which has not been evaluated to be correctly oriented later.

4.2.1 Algorithm details

The algorithm described above works well in nearly all cases. However, due to

the nature of assembly data we are not working with a broad distribution of edge

weights in the graph. This means that in many cases, step 1 of the algorithm will

actually find two (or more) edges with equal weights to merge. An example of this

situation can be seen in Figure 4.4(a), where both edge B→C and C→D have weight

5. The two potential merges are given in parts (b) and (c) of the figure.

C D

A B
4

-3-3
5

5

Two Equal Weight 

Choices

D

A BC
0.5

1

CD

A B
4

-1.5 1

Potential

Merge 1

Potential

Merge 2

(a) (b) (c)

Figure 4.4 – Small problem graph for hierarchical (a) and two potential
merges for it (b & c)

This figure shows a graph (a) that is challenging for hierarchical to merge
properly. Two different potential merges (b & c) are shown. (b) is worse
because it loses more potential edge information by combining in two
sets of negative and positive edges while (c) only merges one negative
and positive edge.
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A simple initial solution to this issue is to randomly choose among all equally

weighted edges at any iteration. This can produce a distribution of final solutions.

An alternative is to perform all equally weighted merges in a parallel fashion. We

have found this second option to actually produce solutions 1-2 standard deviations

above the mean (with a higher unsatisified count) of the random choice method.

Ideally we want a deterministic way of deciding which edge to select, for this we

introduce a ‘Fewest Options Discarded’ (FOD) measure.

The FOD measure tracks how many mate-pairs are fixed as unsatisfied if we

orient an edge. Utilizing this method nearly all equal choices can be given a relative

ordering. While it is still possible to find two edges with equal weight and equal

options discarded, the occurrences are far less frequent. This low collision rate

occurs due to the sparse nature of our graph, and, in practice, arbitrarily choosing

between them has not been shown any affect on the other edge or the final solution.

Look again at Figure 4.4. Using FOD we would choose the merge shown in

(c). We can see that in part (c) less unsatisfied edges (one, B ↔ D, instead of two,

B ↔ D and A ↔ C) have been merged into other edges. This also has the effect of

maintaining the largest absolute weight on the edges, indicating that further choices

will be able to make larger changes.

4.3 Results from hierarchical method

We examine the performance of our method on two sets of data. First we apply

the method to contigs of Rhodobacter sphaeroides bacteria, produced by MaSuRCA
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assembler and show that the resulting orientation agrees with the finished sequence

for that bacteria. We then use a faux genome assembly we generated for which the

true answer is known before any errors are introduced. We study the performance

and stability of our algorithm and compare it to the node-centric greedy approach

varying the initial conditions (initial designations for the contig orientations) and

introducing noise (conflicting mate pairs) into the assembly.

4.3.1 On Rhodobacter Sphaeroides bacteria

We used the MSR-CA assembler version 1.8.3 to produce contigs and scaf-

folds from Illumina data for Rhodobacter sphaeroides bacteria. The data has been

downloaded from the NCBI Short Read Archive. The data consisted of (1) a paired

end library (PE), in which reads were generated from both ends of 180-bp DNA

fragments (SRA accession SRR081522); and (2) a “jumping” library (SJ) in which

paired ends were sequenced from 3600-bp fragments, (SRA accession SRR034528).

We down-sampled both libraries to 45x genome coverage. The available finished

sequence for the organism allowed us to evaluate the correctness of the assembly

and our orientation solution.

Since MSR-CA assembler reports read positions in the final assembled contigs

it was easy to convert the contigs into a graph. We ignored single (weight 1) mate

pair links between the contigs, and excluded mate-pairs that are interior to the

contigs or whose read placements indicate that they cannot plausibly (within five

standard deviations) link contigs in a non-overlapping fashion. We performed our
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orientation studies on the biggest chromosome of the R. sphaeroides, 3.2Mb long.

The MSR-CA assembler created a single scaffold for that chromosome and, according

to the mapping of contigs in the scaffold to the finished sequence, all contigs in the

scaffold were assembled and oriented correctly.

The scaffold that we were using contained 260 contigs connected with 8829

mate pair links. This is approximately 34 mate-pairs per contig. This is a real

sequencing data set and it is expected that some portion of the data is in chimeric or

misoriented pairs, and the orientation algorithm must have enough skill to correctly

resolve the conflicting data.

50 100 150 200 2500

Contig Position on Sca�old 

(irrespective of length/distance)

Relative Orientation of Contigs on Largest Sca�old

Rhodobacter Bacteria

Node-Centric
Random Initial Conditions (1)

Random Initial Conditions (any)

Node-Centric
Random Initial Conditions (2)

Node-Centric
Random Initial Conditions (3)

Hierarchical Algorithm

Figure 4.5 – Four sample orientations of Rhodobacter sphaeroides using
node-centric and hierarchical.

This figures shows orientations generated from random initial conditions. The
three node-centric orientations are from different random initial conditions,
and show high variance in the solutions. The hierarchical method always
generates the same (perfect) solution. Red/Green represent orientations of
1 & -1 respectively while the 3 vertical black lines represent contigs without
information required to orient them.
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Using this data set, we performed two experiments. We first used the ori-

entations of contigs in the scaffold from the raw initial condition and computed

the orientations using the node-centric and hierarchical methods. Both methods

achieved a solution in complete agreement with the known solution and did correct

several initially incorrect contig orientations. The second experiment, shown in Fig-

ure 4.5, was to randomize the initial contig orientations. With this experiment, the

node-centric greedy algorithm is unable to find the correct solution. Figure 4.5 shows

three examples of final solutions from the node-centric and one from hierarchical.

A horizontal plot that matches the known solution would have all green (all

same) or red (all reversed, matching within an overall flip). The three vertical strips

are contigs for which there was no mate-pair information available, and therefore

are unoriented for all solutions. All randomized initial conditions led to the same

correct solution for the hierarchical method, while the node-centric method produced

a variety of different solutions, all incorrect (three of which are shown as an example).

4.3.2 Faux data

We produced a faux contig (and related mate-pair) data set using the same

base length and library distributions for the constructing fragments as those in

Rhodobacter sphaeroides bacteria. Our initial dataset began without any conflicting

mate-pairs (a ‘perfect’ assembly). We modified the data in two ways, 1) by varying

the initial conditions and 2) introducing noise into the data. These are demonstrated

in Figure 4.6.
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In order to introduce modifications in the initial conditions we start with the

initial dataset and (randomly) flip the orientation of some fraction of the contigs.

This initial change in orientation forces all the mate-pairs within the contig to

be unsatisfied. This means that a final (correct) solution should still have zero

unsatisfied mate-pairs if the solution indicates that any initially flipped contig should

be flipped again. This type of modification is shown in Figure 4.6(c).
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Figure 4.6 – Examples of errors introduced in faux data.

(a) shows an initially perfect graph which we can introduce errors into
(b) shows the sample graph used earlier with the changes required to
generate it from the perfect graph shown
(c) shows how swapping an initial orientation of node D would change
the perfect graph
(d) shows how introducing noise on edges B ↔ D and C ↔ E would
change the perfect graph
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For the other modification to the dataset we introduce noise by switching the

orientations for one (or more) of the reads in some linking mate-pairs. This creates

a subset of mate-pairs which have conflicts. The conflicts make a perfect solution no

longer possible in most cases as shown in Figure 4.6(d). For the results shown below

we introduced this noise randomly into each of the 20 trials, so the best possible

solution, in terms of satisfied mate-pairs, does vary.

When these modifications are combined, we get more complicated situations

such as that seen in our earlier example, and reproduced here in Figure 4.6(b).

To summarize: Any orientation algorithm that is working well should produce a

perfect solution regardless of any changes in the initial conditions (of type 1) from

the perfect mate pair data (we have not introduced conflicting data). However,

when we introduce noise (modification 2), the original solution may no longer be

optimal and we should expect that a different solution from the original may better

satisfy the new mate pair data.

Figure 4.7 shows a comparison between the hierarchical (open circles) and

node-centric (filled squares) algorithms. For both (a) and (b) the x-axis shows an

increasing noise rate in the data, i.e. more mate-pairs which will be impossible to

satisfy. The colors differentiate between 10% distance (black) and 15% distance

(red) from perfect initial conditions (type 1 modifications). Figure 4.7a shows the

count of unsatisfied mate-pairs on the y-axis, for which hierarchical always ties or

out-performs the node-centric method. On this figure, we would expect a straight

line with slope=1 through the origin if the method is correcting all possible swapped

orientations ([c] in Figure 4.6). We can see that the hierarchical method achieves
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this, while the node-centric method does not. Node-centric does achieve a slope

of approximately 1, however it does not correctly orient all the mate-pairs even

with 0% frustration. Figure 4.7b on the y-axis shows the percentage of incorrectly

oriented contigs in the final solution, based on the original perfect solution.
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(b) Noise vs. incorrectly oriented mate-pairs for node-centric and hierarchical
methods

Figure 4.7 – Comparison of node-centric and hierarchical methods on faux data
In both (a) & (b) two pairs of lines are shown. The solid, square points show average solutions for
the node-centric algorithm. The empty circles show average solutions for the hierarchical method
(difference-squared weighting). The two colors (black & red) represent starting with 10% and 15%
randomized initial orienations (like (c) in Fig 4.6). The x-axis shows increasing noise (from (d) in
Fig 4.6). In (a) the y-axis is the percent of unsatisfied mate-pairs. In (b) the y-axis is the percent
incorrectly oriented compared to the original, expected solution.
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4.4 Conclusions

Our results clearly show that a node-centric greedy algorithm performs poorly

under noisy or poor initial data. One regular trade-off that sequencers make is

more noise for more data, or more noise for faster throughput. As attempts to

sequence larger genomes begin, the need to maintain reasonable sequencing times,

and reasonable coverage on large data sets will increase. Our new approach provides

several advantages that can address these concerns. First, by focusing on edges, we

can capitalize on the fact that some areas of the genome are easier to sequence

correctly. These correctly sequenced regions will have a high agreement, and high

coverage. Second, by joining based on edges we only lock in correct relative solutions,

rather than a potential mix of good and bad solutions. Finally, our technique can

be incorporated into any assembly program to provide partial or complete solutions

to the orientation problem at several different stages since it does not depend on

placement of contigs in a scaffold or contig assembly (if applied to orienting read

fragments) to produce an orientation.
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Appendix A

Alternative weighting and linking functions

A.1 Overview

In Chapter 4 we detailed an algorithm for genome orientation based on hier-

archical clustering. The hierarchical clustering process is built upon two important

components: the edge weighting method, and the linkage or merging method. In

Chapter 4 we exclusively used average linkage clustering and our own defined weight-

ing (we’ll refer to it as difference-squared or D2). While the two component methods

presented provide the best solutions of all the variants we tested, other options do

exist for both of these functions and deserve some consideration. Just as in Chapter

4 when we use ‘cluster’ we can be referring to both singleton and merged nodes.

A.2 Linkage

Let us discuss linkage first, since the other theoretical functions are not partic-

ularly viable. The other two most commonly used linkage functions are ‘maximum

linkage’ and ‘minimum linkage’. For maximum linkage when two clusters are merged,

all the out-going edges to an adjacent cluster are grouped together. Then the highest

(maximum) weight edge in that group is kept while the rest are discarded. Simi-

larly, for minimum linkage the lowest (minimum) weight edge is kept. It should be
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quickly apparent that both of these methods are inappropriate for genomic data.

While these methods work well for finding spanning trees or paths, when we want

to use all the data contained in the graph for decision making (and at the end of the

algorithm all the data contributes to the fitness) discarding data from edges in this

manner is detrimental to finding an optimum solution to the orientation problem.

A.3 Weighting

Choosing an appropriate edge weighting is significantly trickier. There are

several ways to utilize the information in the mate-pair data we are using. Recall

that the summary of this data consists of two counts for each connection between

contigs i and j, the satisfied mate-pairs (Sij) and unsatisified mate-pairs (Uij). We

suggest four possible edge weighting equations utilizing these counts:

Difference-Squared: ⟨wij⟩ =
(Sij − Uij)

2

Sij + Uij

(A.1)

Absolute Difference: ⟨wij⟩ = |(Sij − Uij)| (A.2)

Total-Mate Sum: ⟨Dij⟩ = Sij + Uij (A.3)

Satisfaction Difference: ⟨Dij⟩ = Sij − Uij (A.4)

Let us now examine the value in each of these weightings.
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A.3.1 Difference-squared and absolute-difference

Difference-squared (D2) and absolute-difference are nearly identical, and ba-

sically show similar results. The major difference is the reweighting by the sum in

D2. This reweighting allows us to include a bit more relative information (the total

mate-pairs). By including these compared to absolute difference we penalize more

strongly those contigs which have a high mate-pair count, but do not agree well.

In terms of biological data, this is can be very important. One source that might

generate data like this is a repeat region which was not properly separated. That is,

the DNA in the region is identical, but the surrounding data is different. This can

lead to mate-pairs that link to two very different regions of the genome, and thereby

create conflicting data. On the other-hand if there are only a few unsatisfied mate-

pairs, we still reduce the node’s weight (compared to perfectly satisfied nodes) but

not nearly as much. Figure A.1 shows one of the same comparison plot as Chapter

4 based off of our generated data, but with three weighting schemes. As can be seen

there is almost no difference between D2 and absolute difference in terms of results.

In particular notice the y-axis is all < 0.5%, that is, there is almost no difference

between all three methods shown.

A.3.2 Total-Mate Sum

Total-Mate Sum can be seen to give results that are slightly different from

absolute-difference. We would expect that this small difference would grow as we

run the algorithm on data larger than the bacteria. While not the optimal use of
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Figure A.1 – A comparison of three weighting schemes

the data, it does accent a slightly different piece of information: the total mate-pairs

for a contig. While we certainly need to consider the conflict between mate-pairs,

using the total-mate sum has the advantage of being a fixed value. That is, we

can calculate it once at the beginning of our algorithm and the weighting does not

change (with respect to edges). We will still have to do some extra calculations to

average links together for merging, but we do not actually need to recalculate the

underlying weight of edges. This could be particularly important if we want to use

hierarchical clustering as an initial solution to something like the genetic algorithm

in Chapter 3, since it should speed up computation time. One thing to consider also
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is that the ‘fewest options discarded’ method will still work as a deciding mechanism

between two equal weight choices, but we now must turn to the concept of maximum

edge sum, since all negative values have essentially been lost from our contig graph.

A.3.3 Satisfaction Difference

The last edge weighting we gave ( A.4 ) was a difference in satisfactions. With

a difference weighting we retain a sign indicating if the edge between clusters is more

satisfied or unsatisfied. While this is an important piece of information, as an actual

weighting for an edge it is problematic. If we do not later apply an absolute value

in our decision making we either will orient all of the contigs on an at least partially

satisfied edges before any mostly unsatisfied ones, or vice versa (negative first). This

is actually a major problem since it is quite possible that some edges with a very

high negative weight should be done earlier. A fragment or contig that was reversed

initially and assembled early in the overlapping process could be later merged with

subsequent pieces which are then added in the same reversed orientation. At the

end of the process the contig would have a high negative count and clearly need

to be flipped early, but by using difference would end up being pushed later in the

process after the situation has been muddied by earlier flips. For these reasons, raw

difference has been cleanly discarded from our solution attempts.

98



A.4 Summary

While there exist other linking and weighting methods, nearly all of them

are either very poor choices (minimum linkage for example), or really do not add

anything to the process (absolute difference) over the choices presented in Chapter

4. The sole exception to this is total-mate sum which has some attraction for its

speed increase. However, as shown in Figure A.1 the weighting does not really

improve our results, and practically speaking, computation is still reasonably quick

even with the extra calculations for D2. Most likely on larger data sets there would

be a greater difference in speed, but then the difference between the quality of the

solution might increase as well.

A final comment on the weighting function is necessary though. While we

have presented here several weighting functions which use the number of satisfied

and unsatisfied mate-pairs there is no reason other information should not be used.

Generally speaking there is significantly more information about the mate-pair links

available, for example the reliability in terms of the data acquisition. Furthermore,

other genomic data about links between contigs may also be available from sequenc-

ing output. All these data inputs could be worked into a far more complicated, but

hopefully effective, weighting function for edges.
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