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Graphene is of great fundamental interest and has potential applications in dis-

ruptive novel technologies. In order to study the novel phenomena in graphene, it is

essential to understand its electron transport properties and in particular the main

factors limiting its transport mobility. In this dissertation, we study the transport

properties of graphene in the presence of electron-hole puddles induced by charged

impurities which are invariably present in the graphene environment. We calculate

the graphene conductivity by taking into account the non-mean-field two-component

nature of transport in the highly inhomogeneous density and potential landscape,

where activated transport across the potential fluctuations in the puddle regimes co-

exists with regular metallic diffusive transport. Our theoretical calculation explains

the non-monotonic feature of the temperature dependent transport, which is exper-

imentally generically observed in low mobility graphene samples. Our theory also

predicts the existence of an intriguing “disorder by order” phenomenon in graphene

transport where higher-quality (and thus more ordered) samples, while having higher

mobility at high carrier density, will manifest more strongly insulating (and thus ef-



fectively more disordered) behavior as the carrier density is lowered compared with

lower quality samples (with higher disorder), which exhibit an approximate resis-

tivity saturation phenomenon at low carrier density near the Dirac point. This

predicted behavior, simulating a metal-insulator transition, arises from the suppres-

sion of Coulomb disorder induced inhomogeneous puddles near the charge neutrality

point in high quality graphene samples. We then study carrier transport through

graphene on SrTiO3 substrates by considering the relative contributions of Coulomb

and resonant impurity scattering to graphene resistivity. We establish that the non-

universal high-density behavior of 𝜎(𝑛) in different graphene samples on various

substrates arises from the competition among different scattering mechanisms, and

it is entirely possible for graphene transport to be dominated by qualitatively dif-

ferent scattering mechanisms at high and low carrier densities. Finally, we calculate

the graphene conductivity as a function of carrier density, taking into account pos-

sible correlations in the spatial distribution of the Coulomb impurity disorder in the

environment. We find that the conductivity could increase with increasing impurity

density if there is sufficient inter-impurity correlation present in the system.
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Chapter 1

Introduction

Graphene, as a novel gapless two dimensional (2D) chiral electron-hole system,

has attracted great interest in recent years, both experimentally and theoretically[1,

2, 3, 4, 5]. Its transport properties have been at the center of key fundamental and

technological efforts with vast potential for applications in future nanotechnology[6].

For monolayer graphene (MLG), the fundamental interest arises from its unique lin-

ear chiral Dirac carrier dispersion with a zero energy gap between conduction and

valence band[7, 8]. One of the most studied properties of graphene is its electrical

conductivity as a function of the applied gate voltage which translates directly into

the carrier density (𝑛) dependent conductivity 𝜎(𝑛) [1]. The functional dependence

of 𝜎(𝑛) at low temperatures contains information [1] about the nature of disorder

in the graphene environment giving rise to the dominant resistive carrier scatter-

ing mechanism. The purpose of the this chapter is to give a brief review of the

fundamental aspects of carrier transport in graphene.

The most important features of the experimentally observed 𝜎(𝑛) [7, 8, 9, 10,

11, 12, 13] in graphene are: (1) a nonuniversal sample-dependent minimum conduc-

tivity 𝜎(𝑛 ≈ 0) ≡ 𝜎𝑚𝑖𝑛 at the charge neutrality point (CNP) where the average

carrier density vanishes; (2) a linearly increasing, 𝜎(𝑛) ∝ 𝑛 , conductivity with in-
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creasing carrier density on both sides of the CNP up to some sample dependent

characteristic carrier density; (3) a sublinear 𝜎(𝑛) for high carrier density, making

it appear that the very high density 𝜎(𝑛) may be saturating.

In the remainder of this chapter, we will discuss the graphene transport at

high and low carrier density separately.

1.1 Transport at high carrier density

Figure 1.1: The conductivity versus gate voltage for the pristine sample and three
different doping concentrations taken at 20 K in ultrahigh vacuum. Adapted from
Fig. 2 of Ref. [10].

The experiments (Fig. 1.1) showed that the density dependence of conductivity

is roughly linear away from the Dirac point. In addition, the density dependent con-

ductivity shows a sublinear behavior when the carrier density is further increased.

For lower mobility samples, the carrier density dependent conductivity is more lin-

ear.
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1.1.1 Boltzmann transport theory

These features are well described by the Boltzmann transport theory, which

involves an interplay between long-range charged impurity and short-range disor-

der scattering. From the Boltzmann transport theory, within the “relaxation time

approximation”, the electronic conductivity 𝜎 is given by the following equation[1]:

𝜎(𝑛, 𝑇 ) =
𝑒2

2

∫
𝑑𝜖𝐷(𝜖)𝑣2𝐹 𝜏(𝜖, 𝑇 )

(
−∂𝑓(𝜖)

∂𝜖

)
(1.1)

where 𝑒 is the electron charge, 𝐷(𝜖) = 2𝜖/(𝜋ℏ2𝑣2𝐹 ) the density of states of MLG at

energy 𝜖, 𝑣𝐹 = 106 m/s the Fermi velocity, 𝑓(𝜖) = 1/(1 + 𝑒𝛽(𝜖−𝜇)) the Fermi-Dirac

distribution, 𝛽 = 1/(𝑘𝐵𝑇 ), 𝜇 the chemical potential, and 𝜏 the total transport mean

free time due to the electron scattering off quenched disorder. One thing that we

must emphasize is that Eq. (1.1) is valid as long as the system is homogeneous (i.e.

spatial density fluctuations effects are small enough so that the average density 𝑛 is

a meaningful quantity, an approximation which would break down for low 𝑛).

The energy dependent scattering time 𝜏(𝜖) due to quenched disorder is given

by

ℏ
𝜏(𝜖𝑝k)

= 2𝜋𝑛𝑑𝑖𝑠

∫
𝑑2𝑘′

(2𝜋)2
∣⟨𝑉𝑝k,𝑝k′⟩∣2𝑔(𝜃kk′)

× [1− cos 𝜃kk′ ] 𝛿(𝜖𝑝k′ − 𝜖𝑝k) (1.2)

where 𝜖𝑝k = 𝑝ℏ𝑣𝐹𝑘 is the carrier energy for the pseudospin state “𝑝” and k is the

2D wave vector, ⟨𝑉𝑝k,𝑝k′⟩ is the matrix element of the impurity disorder potential

in the system environment, 𝜃kk′ is the scattering angle between in- and out- wave

vectors k and k′, 𝑔(𝜃kk′) = [1 + cos 𝜃kk′ ] /2 is a wave function form factor associated

3



with the chiral nature of MLG (and is determined by its band structure). 𝑛𝑑𝑖𝑠 is

the appropriate 2D areal concentration of the impurity centers giving rise to the

random disorder potential[14]. We consider two different kinds of disorder scat-

tering mechanisms: (i) randomly distributed screened Coulomb disorder for which

𝑛𝑑𝑖𝑠∣⟨𝑉𝑝k,𝑝k′⟩∣2 = 𝑛𝑖𝑚𝑝∣𝑉 (𝑞)/𝜀(𝑞)∣2, where 𝑉 (𝑞) = 2𝜋𝑒2/(𝜅𝑞) is the Fourier transform

of the 2D Coulomb potential in an effective background lattice dielectric constant 𝜅

and 𝜀(𝑞) ≡ 𝜀(𝑞, 𝑇 ) = 1+𝑉 (𝑞)Π(𝑞, 𝑇 ) is the 2D finite temperature static RPA dielec-

tric function[15, 16, 17]. Π(𝑞, 𝑇 ) is the irreducible finite temperature polarizability

function, which is given by the bare bubble diagram[17]:

Π(𝑞, 𝑇 ) = − 4

𝐿2

∑
k,𝑠,𝑠′

𝑓𝑠,k − 𝑓𝑠′,k′

𝜖𝑠,k − 𝜖𝑠′,k′
𝑔(𝜃kk′) (1.3)

with 𝑠, 𝑠′ = ±1. Note that we use 𝑛𝑖𝑚𝑝 to denote the charged impurity density; (ii)

short-range disorder for which 𝑛𝑑𝑖𝑠∣⟨𝑉𝑝k,𝑝k′⟩∣2 = 𝑛𝑑𝑉
2
0 where 𝑛𝑑 is the 2D impurity

density and 𝑉0 is a constant short-range (i.e. a 𝛿-function in real space) potential

strength. Note that the use of the Born approximation for short-range disorder

requires weak scattering condition[18], which is verified by the disorder parameters

we use in our calculation.

To minimize the number of parameters entering the theory we have assumed

that the impurities are randomly distributed in a 2D plane located at an effective

distance 𝑑 from graphene. It is straightforward to include in the theory a more

complex three-dimensional distribution of quenched impurities, but given the lack

of experimental information about the distribution of unintentional and unknown

quenched impurity disorder in the system, it is theoretically more meaningful to use

4



a minimal model with just two unknown parameters 𝑛𝑑𝑖𝑠 and 𝑑, which can simulate

essentially any realistic disorder distribution in an approximate manner– we note

that 𝑑 = 0 implies that the charged impurities are simply located on the graphene

surface.

At zero temperature, the long-range Coulomb disorder leads to the linear

density dependent conductivity, [1].

𝜎𝑖𝑚𝑝 =
𝑒2

ℎ

𝑛

2𝑛𝑖𝑚𝑝𝑟2𝑠𝐺1(𝑟𝑠)
(1.4)

where 𝑟𝑠 = 𝑒2/(ℏ𝑣𝐹𝜅) is the graphene fine structure constant and 𝐺1(𝑥) = 𝜋
4
+

6𝑥 − 6𝜋𝑥2 + 4𝑥(6𝑥2 − 1)𝑔(𝑥) with 𝑔(𝑥) = sech−1(2𝑥)/
√
1− 4𝑥2 for 𝑥 < 1

2
and

sec−1(2𝑥)/
√
4𝑥2 − 1 for 𝑥 > 1

2
.

On the other hand, the short-range disorder scattering time 𝜏𝑠𝑑 is given by[1]

ℏ
𝜏𝑠𝑑(𝜖k)

=
𝑘

4ℏ𝑣𝐹
𝑛𝑠𝑑𝑉

2
0 (1.5)

where 𝑛𝑠𝑑 is the 2D short-range impurity density and 𝑉0 is a constant short-range (i.e.

a 𝛿-function in real space) potential strength. The conductivity at low temperature

induced by this short-range impurity has the following form,

𝜎𝑠𝑑 =
8𝑒2

ℎ

(ℏ𝑣𝐹 )2

𝑛𝑠𝑑𝑉 2
0

(1.6)

which is independent of carrier density (𝜎(𝑛) ∼ constant).

1.2 Transport at low carrier density

Close to the Dirac point, the random charged impurity induced disorder po-

tential causes the carrier density landscape to become strongly inhomogeneous, a

5



Figure 1.2: Carrier density profile map at the CNP with a scalable single-electron
transistor. Adapted from Fig. 3(a) of Ref. [19].

fact that has been observed in Ref. [19]. Fig. 1.2 shows the experimental observation

of electron-hole puddles in graphene using scanning single-electron transistor. The

inhomogeneous puddles control transport properties of graphene at low density.

1.2.1 Self-consistent theory

Two theories have been proposed to explain the transport properties of graphene

close to the Dirac point. The first one is called the self-consistent theory. The self-

consistent theory is needed because the increased charged impurity density will

increase the induced potential fluctuations and the induced carrier density. An

increased carrier density screens more effectively which decreases the potential fluc-

tuations and decreases the induced carrier density. Within the random phase ap-

proximation, the potential fluctuation can be calculated as[20]:

𝑠2 = 2𝜋𝑛𝑖𝑚𝑝

(
𝑒2

𝜅

)2

𝐶0(𝑟𝑠, 𝑎 = 4𝑘𝐹𝑑) (1.7)

where

𝐶0(𝑟𝑠, 𝑎) = −1 +
2𝑒−𝑎𝑟𝑠
1 + 2𝑟𝑠

+
4𝐸1[𝑎]

(2 + 𝜋𝑟𝑠)2
(1.8)

+ 𝑒2𝑟𝑠𝑎(1 + 2𝑟𝑠𝑎)(𝐸1[2𝑟𝑠𝑎]− 𝐸1[𝑎+ 2𝑟𝑠𝑎]),

6



and 𝐸1[𝑧] =
∫∞
𝑧

𝑡−1𝑒−𝑡𝑑𝑡 is the exponential integral function. The difficulty arises

from the fact that the function 𝐶0 depends on the density via the Fermi wavevector

𝑘𝐹 that, in the presence of disorder, at the Dirac point cannot, because of fluctua-

tions, be taken to be simply zero. In the self-consistent approximation one assumes

that at the Dirac point the system can be approximated by a homogeneous system

having an effective carrier density 𝑘2
𝐹 = 𝜋𝑛̂ such that 𝐸̂2

𝐹 = 𝑠2. Using this relation

and Eq. (1.7) we obtain the following self-consistent equation for the carrier density

at the CNP:

𝑛∗

𝑛𝑖𝑚𝑝

= 2𝑟2𝑠𝐶0(𝑟𝑠, 𝑎 = 4𝑑
√
𝜋𝑛∗). (1.9)

By solving Eq. (1.9) self-consistently, we obtain the value of 𝑛∗, leading to an ap-

proximately constant minimum conductivity by putting 𝑛∗ in to Eq. 1.4. This simple

self-consistent theory has been found to be in good agreement with experimental

measurement at low temperatures[10]. However, this theory did not include the

highly heterogeneous structure near the charge neutrality point and the thermally

activation effects at finite temperatures, which then cannot explain the observed

nonmonotonic temperature-dependent transport in low mobility graphene samples

[21].

1.2.2 Thomas-Fermi-Dirac theory

A more elaborate approach to consider the density inhomogeneity effects is the

Thomas-Fermi-Dirac-Theory (TFDT) first introduced in Ref. [22]. In the TFDT,

similarly to the Density Functional Theory (DFT), the energy of the system is given
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Figure 1.3: TFDT Results at the Dirac point for a disorder realization with 𝑛𝑖𝑚𝑝 =
1012 cm−2, 𝑑 = 1 nm, and 𝜅 = 2.5. (a) Color plot of 𝑛(r). (b) Density distribution
for 𝑛(r) shown in (a). Adapted from Ref. [22].

by a functional of the density profile 𝑛(r), which can be calculated by minimizing

the following energy functional 𝐸[𝑛][22].

𝐸[𝑛] = ℏ𝑣𝐹
[2√𝜋

3

∫
𝑑2𝑟𝑠𝑔𝑛(𝑛)∣𝑛∣3/2 + 𝑟𝑠

2

∫
𝑑2𝑟

∫
𝑑2𝑟′

𝑛(r)𝑛(r′)
∣r− r′∣

+
𝐸𝑥𝑐[𝑛]

ℏ𝑣𝐹
+ 𝑟𝑠

∫
𝑑2𝑟𝑉𝐷(r)𝑛(r)− 𝜇

ℏ𝑣𝐹

∫
𝑑2𝑟𝑛(r)

]
(1.10)

The energy functional 𝐸[𝑛] includes the charged impurity induced disorder potential,

exchange effects and non-linear screening effects. By minimizing the Thomas-Fermi

energy functional, we can obtain the density profile and potential distribution func-

tion. Fig. 1.3 shows the density profile at the Dirac point, where electron and hole

puddles are almost equally distributed. The results of TFDT are visually very sim-

ilar to the ones observed in experiments [19, 23], but a quantitative comparison can

be achieved by calculating the disorder-averaged statistical properties.

The great advantage of a functional formalism is that it is not perturbative

with respect to the spatial fluctuations of the carrier density and therefore can

take into account nonlinear screening effects that dominate close to the Dirac point.
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TFDT is just well-suited to describe the situation with large disorder-induced spatial

density inhomogeneity as in the low carrier density case whereas in the high-density

situation, it simply gives the homogeneous density result with small fluctuations

around the average density. In the TFDT, in contrast to DFT, also the kinetic en-

ergy term is replaced by a density functional. This simplification makes the TFDT

very efficient computationally and therefore able to obtain disorder averaged quan-

tities, a task that cannot be accomplished using DFT. As long as the characteristic

length-scale over which the density varies is larger than the local Fermi wavelength

𝜆𝐹 , i.e. ∣∇𝑛/𝑛∣−1 ≫ 𝜆𝐹 , [22, 24, 25] the TFDT returns reliable results [22, 26, 27].

It has been showed that the condition ∣∇𝑛/𝑛∣−1 ≫ 𝜆𝐹 is satisfied in typical exper-

imental conditions [22] . Close to the charge neutrality point (CNP) the density

inside the electron-hole puddles is always different from zero (so that 𝜆𝐹 is always

finite) and of the order of 𝑛𝑟𝑚𝑠 (root-mean-square of the density fluctuation). The

great advantage of TFDT over DFT (to which TFDT is an approximation, as it

uses the non-interacting kinetic energy functional) is that its relative numerical and

computational ease enables one to use it for the calculation of transport proper-

ties using the computed ground state inhomogeneous spatial density profile, which

would be completely computationally impossible for DFT to do.

Using the TFDT we can characterize completely the carrier density profile in

the presence of a disorder potential. We can obtain the typical length scale 𝐿𝐷 and

root mean square fluctuation 𝑛rms of the disorder-induced carrier density inhomo-

geneities. Using the Boltzmann theory we obtain the relation between the mean free

path and the doping, ℓ(𝑛) = 𝑣𝐹 𝜏(𝑛), valid in the homogeneous limit. In the limit
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in which ℓ(𝑛rms) ≪ 𝐿𝐷 the number of scattering events inside a single homogeneous

region, puddle, of the inhomogeneous landscape is large enough that the Boltz-

mann theory is valid locally. In addition, due to Klein tunneling, as in graphene

[28, 29, 30, 31, 32, 33, 34], the resistance due to the boundaries between the pud-

dles can be neglected in comparison to the resistance arising from scattering events

inside the puddles [24]. Under these conditions, due to the random distribution of

the puddles, graphene transport can be described by the effective medium theory

(EMT) [35, 36, 37, 24, 38, 1]. In the EMT, which is extensively used in science and

engineering to quantitatively describe properties of highly inhomogeneous systems,

the conductivity of the inhomogeneous system is obtained as the conductivity 𝜎𝐸𝑀𝑇

of an equivalent homogeneous effective medium by averaging over disorder realiza-

tions the local values 𝜎(𝑛(r)) given by the Boltzmann theory. The resulting implicit

equation for 𝜎𝐸𝑀𝑇 is: ∫
𝑑𝑛

𝜎(𝑛)− 𝜎𝐸𝑀𝑇

𝜎(𝑛) + 𝜎𝐸𝑀𝑇

𝑃 [𝑛] = 0 (1.11)

where 𝑃 [𝑛] is the disorder-averaged carrier density probability distribution that we

obtain using the TFDT. This integral equation is derived by using the fact that the

spatial average of the electric field fluctuations is zero. A solution of the implicit

EMT integral equation defined by Eq. 1.11 provides the effective conductivity of the

inhomogeneous system. In graphene the TFDT+EMT method has been shown to

give results in remarkable agreement with experiments [1] even in the highly inho-

mogeneous situation very close to the Dirac point and with full quantum transport

analysis [39, 34].
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The TFD-EMT technique, described above, successfully explains the graphene

transport properties in the theoretically difficult inhomogeneity-dominant regime

near the charge neutral point, but this approach fails to explain the temperature

dependence of the conductivity for a wide range of temperatures.

1.3 Outline of the thesis

In this thesis, we theoretically study in a comprehensive manner the temper-

ature and carrier density dependence of graphene transport properties.

In Chapter 2, We calculate the graphene conductivity by taking into account

the non-mean-field two-component nature of transport in the highly inhomogeneous

density and potential landscape, where activated transport across the potential fluc-

tuations in the puddle regimes coexists with regular metallic diffusive transport. The

existence of puddles allows the local activation at low carrier densities, giving rise

to an insulating temperature dependence in the conductivity of both monolayer and

bilayer graphene systems. We also critically study the qualitative similarity and

the quantitative difference between monolayer and bilayer graphene transport in

the presence of puddles. Our theoretical calculation explains the non-monotonic

feature of the temperature dependent transport, which is experimentally generically

observed in low mobility graphene samples. We establish the 2-component nature

(i.e., both activated and diffusive) of graphene transport arising from the existence

of potential fluctuation induced inhomogeneous density puddles. The temperature

dependence of the graphene conductivity arises from many competing mechanisms,
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even without considering any phonon effects, such as thermal excitation of carriers

from the valence band to the conduction band, temperature dependent screening,

thermal activation across the potential fluctuations associated with the electron-hole

puddles induced by the random charged impurities in the environment, leading to

very complex temperature dependence which depends both on the carrier density

and the temperature range of interest. The work in this chapter has led to the

publication of Ref. [40].

In Chapter 3, we consider an intriguing “disorder by order” phenomenon in

graphene transport where higher-quality (and thus more ordered) samples, while

having higher mobility at high carrier density, will manifest more strongly insulat-

ing (and thus effectively more disordered) behavior as the carrier density is lowered

compared with lower quality samples (with higher disorder) which exhibit an ap-

proximate resistivity saturation phenomenon at low carrier density near the Dirac

point. This behavior simulating a metal-insulator transition, which we believe to

have recently been observed in an experiment at Manchester University [41], arises

from the suppression of Coulomb disorder induced inhomogeneous puddles near the

charge neutrality point in high quality graphene samples. The work in this chapter

has led to the publication of Ref. [42].

In Chapter 4, we study carrier transport through graphene on SrTiO3 sub-

strates by considering relative contributions of Coulomb and resonant impurity

scattering to graphene resistivity. We establish that charged impurity scattering

must dominate graphene transport as the charge neutrality point is approached by

lowering the carrier density, and in the higher density regime away from the neutral-
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ity point a dual model including both charged impurities and resonant defects gives

an excellent description of graphene transport on SrTiO3 substrates. We further

establish that the non-universal high-density behavior of 𝜎(𝑛) in different graphene

samples on various substrates arises from the competition among different scatter-

ing mechanisms, and it is in principle entirely possible for graphene transport to be

dominated by qualitatively different scattering mechanisms at high and low carrier

densities. The work in this chapter has led to the publication of Ref. [43].

In Chapter 5, We study both monolayer and bilayer graphene transport prop-

erties taking into account the presence of correlations in the spatial distribution of

charged impurities. In particular we find that the experimentally observed sublin-

ear scaling of the graphene conductivity can be naturally explained as arising from

impurity correlation effects in the Coulomb disorder. We find that also in bilayer

graphene correlations among impurities induce a crossover of the scaling of the con-

ductivity at higher carrier densities. We show that in the presence of correlation

among charged impurities the conductivity depends nonlinearly on the impurity

density 𝑛𝑖 and can even increase with 𝑛𝑖. The work in this chapter has led to the

publication of Ref. [44, 45].

In Chapter 6, we present our conclusions.
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Chapter 2

Disorder-induced temperature-dependent

transport in graphene: Puddles, impurities,

activation, and diffusion

Much of the early work on graphene transport focused on the density-dependent

(i.e., gate voltage tuned)[1, 7, 8, 9, 10, 13, 46] and temperature-dependent [1, 47, 48,

49, 50] conductivity in homogeneous MLG and BLG systems. The basic graphene

transport properties, particularly at high densities far from the charge neutral Dirac

point, are now reasonably well-understood[1].

However, unintended charged impurities, which are invariably present in the

graphene environment, (e.g., the substrate-graphene interface), lead to the forma-

tion of inhomogeneous electron-hole puddles in the system [16, 24], which have been

confirmed by experiments[19, 51, 52, 53] using the techniques of scanning potential

and tunneling microscopies. Although MLG samples show a metallic behavior at

high densities a weak “insulating” temperature-dependent conductivity 𝜎(𝑇 ) has

been measured at low carrier density and at the charge neutrality point (CNP)

[47]. (We define insulating/metallic temperature dependence of conductivity 𝜎(𝑇 )

as 𝑑𝜎(𝑇 )/𝑑𝑇 being positive/negative at fixed gate voltage.) In addition, a recent
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experiment[21] on low mobility MLG grown by chemical vapor deposition (CVD)

shows a strong “insulating” behavior at low temperatures and a metallic feature

at high temperatures manifesting a non-monotonic temperature dependence in the

measured electrical conductivity. Figs. 2.1(a) and (b) show the temperature depen-

dence of resistivity with reference to 𝜌(4.2𝐾) at carrier densities near the charge

neutrality point for device A and B, respectively [21]. The characteristic observed

feature of carrier transport in low mobility sample A [Fig. 2.1(a)] is a strong insu-

lating behavior at low temperatures (𝑇 < 200 K) for all densities (up to 7.2× 1011

cm−2). For carrier density larger than 2.9 × 1011 cm−2) a nonmonotonicity in the

temperature-dependent resistivity develops. The observed insulating behavior and

nonmonotonicity at high density in low mobility samples is not observed in high

mobility samples B [Fig. 2.1(b)], where the measured resistivity shows a metallic

temperature dependence at higher densities even though the experimental conduc-

tivity manifests an insulating behavior at very low carrier density (up to 2.0× 1011

cm−2) [21]. The negative 𝑑𝜌/𝑑𝑇 at the Dirac point is about 40% for both samples

independent of sample mobility [21]. These observed effects are consistent with the

predictions of our theory developed in this chapter.

In BLG samples [54, 12, 55, 56] the strong insulating behavior in the tem-

perature dependent conductivity has been observed not only near CNP but also at

carrier densities as high as 1012cm−2 or higher. To be more specific, in Ref. [54],

𝜎(𝑇 ) in BLG increases by 20 − 40% as temperature 𝑇 increases from 4 − 300 K

for carrier density in the range 3.19 × 1012 − 7.16 × 1012 cm−2. Fig. 2.2 presents

the temperature dependence of the hole mobility at various carrier densities for bi-
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Figure 2.1: Transport measurement in monolayer graphene. (a) and (b) Resistivity
at different gate voltages near the charge neutrality point. (a) device A, (b) device
B;(c) and (d) Resistivity at higher gate voltages. (c) device A, (d) device B. Adapted
from Figs. 2 and 3 of Ref. [21].

layer graphene devices, where the mobility increases with temperature. Fig. 2.2 also

shows that the minimum conductance increases dramatically as the temperature

increases.

To understand this anomalous temperature dependence in 𝜎(𝑇 ), both MLG

and BLG, it is essential to know the role of disorder in graphene transport. We note

that phonon scattering (Ref. [57, 58]), although being weak in graphene, always con-

tributes an increasing resistivity with increasing temperature and thus always leads

to metallic behavior, and thus cannot be the mechanism for the intriguing insulating

temperature dependence often observed in graphene transport at lower carrier densi-

ties – in fact, at very high temperatures (> 300 K) graphene should always manifest

metallic temperature dependence in its conductivity due to phonon scattering effects

which we ignore. Our goal in this chapter is to theoretically study in a comprehen-

sive manner the temperature dependence of graphene transport properties arising

entirely from the disorder effects.
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Figure 2.2: Transport measurement in bilayer graphene. (a) Hall mobility for holes
as a function of temperature at various carrier densities; (b) Minimum conductance
as a function of temperature. Adapted from Figs. 2 and 6 of Ref. [54].

In this chapter, we apply an analytic statistical theory to MLG systems and

explain the intriguing coexistence of both metallic and insulating features of MLG

𝜎(𝑇 ). In the presence of large fluctuating potentials 𝑉 (r) associated with micro-

scopic configurations of Coulomb disorder in the system, the local Fermi level,

𝜇(r) = 𝐸𝐹 − 𝑉 (r), would necessarily have large spatial fluctuations. We carry

out an analytical theory implementing this physical idea by assuming that the value

of the potential at any given point follows a Gaussian distribution, parametrized by

𝑠 = 𝑉𝑟𝑚𝑠 (the root-mean-square fluctuations or the standard deviation in 𝑉 (r) about

the average potential). This distribution can then be used to average the local den-

sity of states to obtain effective carrier densities, which can then be used to compute

the physical quantities of interest[59]. The observed anomalous temperature depen-

dent 𝜎(𝑇 ) is then understood as the competition between the thermal activation of

carrier density and temperature-dependent screening effects. Our theory explains
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the suppression of the insulating behavior in higher mobility samples with lower

disorder, which is consistent with experimental observations. We also provide the

similarity and the quantitative difference between monolayer and bilayer graphene

transport in the presence of puddles.

The motivation of our theory comes from the observation that the electron-

hole puddles, which dominate the low-density graphene landscape, allow for a 2-

component semiclassical transport behavior, where the usual metallic diffusive car-

rier transport is accompanied by transport by activated carriers which have been

locally thermally excited above the potential fluctuations imposed by the static dis-

order. This naturally allows for both insulating and metallic transport behavior

occurring preferentially, respectively, at lower and higher carrier densities since the

puddles disappear with increasing carrier density due to screening. At zero temper-

ature (where no activation is allowed) or at very high carrier density (where puddles

are suppressed), only diffusive transport is possible. But at any finite tempera-

tures and at not too high densities, there would always be a 2-component transport

with both activated and diffusive carriers contributing to conductivity. Our theory

develops this idea into a concrete description. We emphasize that our theory explic-

itly takes into account the inhomogeneous nature of the graphene landscape and is

non-mean-field as a matter of principle.

We first introduce the analytical statistical theory to describe random elec-

tronic potential fluctuations created by charged impurities in the environment. We

also calculate the modified density of states and the corresponding temperature-

dependent effective carrier density in monolayer graphene. Then, we describe the
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calculations and the main features of the temperature-dependent conductivity of

MLG in the presence of density inhomogeneity. We elaborate and extend our earlier

results for the interplay between density inhomogeneity and temperature in bilayer

graphene (BLG) transport. We further discuss the connection of our theory to

earlier theories. We discuss the similarities and quantitative differences among the

effects of inhomogeneity (i.e., the puddles) on MLG and BLG transport and sum-

marize our results. In Appendix A, we discuss a microscopic theory to calculate the

effects of potential fluctuation on graphene systems, providing a self-consistent for-

mulation of graphene density of states in the presence of random charged impurities

near graphene/substrate interface, showing in the process that this microscopically

calculated density of states agrees well with the model density of states obtained

from the Gaussian fluctuations.

2.1 Temperature dependent carrier density for inhomoge-

neous MLG

It is well known that MLG breaks up into an inhomogeneous landscape of

electron-hole puddles, especially around the charge neutral point (CNP) [19, 22, 51,

52, 53]. Below we derive an analytic statistical theory taking account of the effects of

inhomogeneous density in monolayer graphene (MLG) to explain the nonmonotonic

temperature dependent transport observed in MLG [47, 21]. We start by assuming

that charged impurities, located in the substrate or near the graphene, create a local

electrostatic potential, which fluctuates randomly about its average value across the
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surface of the graphene sheet. The potential fluctuations themselves are assumed

to be described by a statistical distribution function 𝑃 (𝑉 ) where 𝑉 = 𝑉 (r) is the

fluctuating potential energy at the point r ≡ (𝑥, 𝑦) in the 2D MLG plane. We

approximate the probability 𝑃 (𝑉 )𝑑𝑉 of finding the local electronic potential energy

within a range 𝑑𝑉 about 𝑉 to be a Gaussian form, i.e.,

𝑃 (𝑉 ) =
1√
2𝜋𝑠2

exp(−𝑉 2/2𝑠2), (2.1)

where 𝑠 is the standard deviation (or equivalently, the strength of the potential

fluctuation), which is used as an adjustable parameter to tune the tail-width[60].

In the Appendix, we provide a microscopic approach to self-consistently solve the

strength of potential fluctuations in the presence of charged impurities. Due to the

electron-hole symmetry in the problem, we only provide the formalism and equations

for electron like carriers and the hole part can be obtained simply by changing 𝐸 to

−𝐸.

The potential fluctuations given by Eq. (2.1) affect the overall electronic den-

sity of states (DOS) in MLG. In our model we do not assume that the size of

the puddles to be identical, but we take the puddle sizes to be completely random

controlled by the distribution function given in Eq. 2.1. We emphasize that our

assumption of a Gaussian distribution for the potential fluctuations, equivalently

implying a Gaussian distribution for the density fluctuations associated with the

puddles, is known to be an excellent quantitative approximation to the actual nu-

merically calculated puddle structures in graphene[1, 22]. The characteristics of the

puddles are determined by both the sign and the magnitude of 𝑉 −𝐸𝐹 , i.e., a neg-
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ative (positive) 𝑉 − 𝐸𝐹 indicates an electron (hole) region. A different approach

utilizing equal size puddles with a certain potential 𝑉 has been used to calculate

transport coefficients using a numerical transfer matrix technique [61, 62, 63]. Then

in the presence of electron-hole puddles the density of states is increased by the

allowed electron region fraction and given by [64, 65, 60]

𝐷𝑒(𝐸) =
∫ 𝐸

−∞
𝑔𝑠𝑔𝑣(𝐸 − 𝑉 )

2𝜋(ℏ𝑣𝐹 )2
𝑃 (𝑉 )𝑑𝑉

= 𝐷1

[𝐸
2
erfc(− 𝐸√

2𝑠
) +

𝑠√
2𝜋

exp(−𝐸2

2𝑠2
)
]
,

(2.2)

where erfc(𝑥) is the complementary error function,

erfc(𝑥) =
2√
𝜋

∫ ∞

𝑥

𝑒−𝑡2𝑑𝑡, (2.3)

and 𝐷1 =
𝑔𝑠𝑔𝑣

2𝜋(ℏ𝑣𝐹 )2
, where 𝑣𝐹 is the graphene Fermi velocity, 𝑔𝑠 = 2 and 𝑔𝑣 = 2 are

the spin and valley degeneracies, respectively. We have 𝐷1 = 1.5× 108 cm−2/meV2

with the Fermi velocity 𝑣𝐹 = 106 m/s. Note that the tail of the DOS is determined

by the potential fluctuation strength 𝑠. For the case 𝑠 = 0, the system becomes

homogeneous and 𝐷𝑒(𝐸) = 𝐷1𝐸. In this case there is no carrier density at Dirac

point (𝐸 = 0) at zero temperature. It is apparent that in the presence of potential

fluctuations, the 𝐷𝑒(𝐸) starts at finite value 𝐷1𝑠√
2𝜋

at 𝐸 = 0 and approaches 𝐷1𝐸 in

high energy limit. For high-energy limit, the carrier is essentially free since nearly

every point of the system is accessible. In Fig. 2.3, we show the normalized density

of states as a function of energy for both electrons and holes in MLG. We mention

that the self-consistent microscopic theory gives the same structure for the density

of states of graphene systems (see Appendix A).

Since monolayer graphene is a semi-metal or zero-gap semiconductor, the elec-
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Figure 2.3: Normalized density of states for both electron and hole in MLG. The
solid and dashed lines are for the DOS in inhomogeneous and homogeneous systems,
respectively. The electron (hole) band tail locates at 𝐸 < 0 (𝐸 > 0), which gives
rise to electron (hole) puddles at 𝐸 < 0 and 𝐸 > 0.

tron density at finite temperatures increases due to the direct thermal excitation

from valence band to conduction band, which is one of the important sources of

temperature dependent transport at low carrier densities. Therefore, we first con-

sider the temperature dependence of thermally excited electron density. The total

electron density is given by

𝑛𝑒 =

∫ ∞

−∞
𝐷𝑒(𝐸)

𝑑𝐸

𝑒𝛽(𝐸−𝜇) + 1
, (2.4)

where 𝛽 = 1/𝑘𝐵𝑇 and 𝜇 is the chemical potential. At 𝑇 = 0, 𝜇 becomes the Fermi

energy 𝜇(𝑇 = 0) = 𝐸𝐹 .

2.1.1 𝑛𝑒(𝑇 ) of MLG at CNP (𝐸𝐹 = 0)

When the Fermi energy is zero (or at CNP) all electrons are located in the

band tail at 𝑇 = 0 and the electron and hole densities in the band tail are given by

𝑛0 = 𝑛𝑒(𝐸𝐹 = 0) = 𝑛ℎ(𝐸𝐹 = 0) = 𝐷1
𝑠2

4
. (2.5)
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Note that the electron (or hole) density in the band tails increases quadratically

with the standard deviation 𝑠. At finite temperatures the behavior of 𝑛𝑒(𝑇 ) at CNP

becomes

𝑛𝑒(𝑇 ) = 𝑛0

[
1 +

𝜋2

3

(
𝑘𝐵𝑇

𝑠

)2
]
. (2.6)

The leading order temperature dependence in 𝑛𝑒(𝑇 ) is quadratic. For homogeneous

MLG (𝑠 = 0) with the linear-in-energy behavior of the DOS, the electron density is

given by 𝑛𝑒(𝑇 ) =
𝐷1𝜋

2

12
𝑘2
𝐵𝑇

2. In particular, in the ballistic regime the number of

propagating channels increases due to the thermal smearing of the Fermi surface,

which leads to the observation of an insulating behavior in 𝜎(𝑇 ) at CNP for high

mobility suspended graphene samples[66, 67, 68]. The presence of the band tail

does not change the quadratic temperature dependence in the thermal excitation

when the system is at the charge neutral point (𝐸𝐹 = 0). But the inhomogeneous

MLG has 𝑛0 electrons in the band tails. In Fig. 2.4(a) we show the temperature

dependent electron density at CNP for different values of standard deviation 𝑠.
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Figure 2.4: (a) The electron density of MLG at CNP as a function of temperature
for different 𝑠. At 𝑇 = 0 the density is given by 𝑛0 = 𝐷1𝑠

2/4. (b) The temperature
dependent electron density of MLG at finite 𝐸𝐹 for different 𝑠. For 𝑠/𝐸𝐹 ∕= 0 the
leading order behavior is quadratic. (c) Total electron densities (solid lines) and hole
densities (dashed lines) of MLG as a function of 𝐸𝐹 for two different 𝑠 = 30 meV
and 70 meV. The densities at the band tails are given by 𝑛𝑒(𝐸𝐹 = 0) = 𝑛ℎ(𝐸𝐹 =
0) = 𝐷1𝑠

2/4.
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2.1.2 𝑛𝑒(𝑇 ) of MLG at finite doping (𝐸𝐹 > 0)

In the case of finite doping (or gate voltage), i.e., 𝐸𝐹 ∕= 0, the electron density

of the homogeneous MLG (i.e., 𝑠 = 0) is given by

𝑛0𝑒(𝑇 ) = 𝐷1

∫∞
0

𝐸𝑑𝐸

exp(𝛽(𝐸 − 𝜇0)) + 1

= −𝐷1
𝐹1(𝜇0𝛽)

𝛽2

(2.7)

where 𝐹1(𝑥) =
∫∞
0

𝑡 𝑑𝑡

1 + exp(𝑡− 𝑥)
, and 𝜇0 is the chemical potential of homogeneous

MLG and is determined by the conservation of the total electron density. Then the

chemical potential is given by the following relation,
𝐸2

𝐹𝛽
2

2
= 𝐹1(𝛽𝜇0)− 𝐹1(−𝛽𝜇0).

Using the asymptotic forms [49] of the function 𝐹1(𝑥) for 𝑥 ≪ 1 and 𝑥 ≫ 1, i.e.,

𝐹1(𝑥) ≈ 𝜋2

12
+ 𝑥ln2 +

𝑥2

4
for ∣𝑥∣ ≪ 1

𝐹1(𝑥) ≈
[
𝑥2

2
+

𝜋2

6

]
𝜃(𝑥) + 𝑥ln(1 + 𝑒−∣𝑥∣) for ∣𝑥∣ ≫ 1,

(2.8)

we have the asymptotic formula for the chemical potential in both low- and high-

temperature limits for homogeneous MLG

𝜇0(𝑇 ) ≃ 𝐸𝐹

[
1− 𝜋2

6
(
𝑇

𝑇𝐹

)2
]

for 𝑇 ≪ 𝑇𝐹

𝜇0(𝑇 ) ≃ 𝐸𝐹

4 ln 2

𝑇𝐹

𝑇
for 𝑇 ≫ 𝑇𝐹 .

(2.9)

Then the corresponding asymptotic formula of the electron density (Eq. 2.7) are

given by

𝑛0𝑒(𝑇 ) ≃ 𝐷1𝐸
2
𝐹

2

(
1 +

𝜋4

36

𝑇 4

𝑇 4
𝐹

)
for 𝑇 ≪ 𝑇𝐹

𝑛0𝑒(𝑇 ) ≃ 𝐷1𝐸
2
𝐹𝜋

2

12

𝑇 2

𝑇 2
𝐹

for 𝑇 ≫ 𝑇𝐹

(2.10)
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Since the direct thermal excitation is suppressed due to the finite Fermi energy, the

excited electron density at low temperatures (𝑇 ≪ 𝑇𝐹 ) increases quartically rather

than quadratically. But at high temperatures (𝑇 ≫ 𝑇𝐹 ), the total electron density

becomes a quadratic function of temperature as shown for an undoped MLG.

Next, we derive the temperature dependence of thermally excited electron

density in the presence of electron-hole puddles (𝑠 ∕= 0) at finite doping (𝐸𝐹 ∕= 0).

At zero temperature the electron density for the inhomogeneous MLG can be written

as:

𝑛𝑒(0) =
𝐷1𝐸

2
𝐹

4

[
(1 + 𝑠2)erfc(− 1√

2𝑠
) +

√
2

𝜋
𝑠 exp(− 1

2𝑠2
)
]

𝑛ℎ(0) =
𝐷1𝐸

2
𝐹

4

[
(1 + 𝑠2)erfc(

1√
2𝑠

)−
√

2

𝜋
𝑠 exp(− 1

2𝑠2
)
] (2.11)

where 𝑠 = 𝑠/𝐸𝐹 . The presence of electron-hole puddles does not induce any ad-

ditional charge in the MLG system, so that the net carrier density 𝑛 = 𝑛𝑒 − 𝑛ℎ

should be conserved. Then, the finite temperature chemical potential 𝜇(𝑇 ) changes

as a function of both temperature and the strength of potential fluctuation 𝑠, and

it should satisfy the following relation:

∫ 𝐸𝐹

−∞ 𝐷𝑒(𝐸)𝑑𝐸 − ∫∞
𝐸𝐹

𝐷ℎ(𝐸)𝑑𝐸

=
∫∞
−∞

𝐷𝑒(𝐸)𝑑𝐸

1 + exp(𝛽(𝐸 − 𝜇))
− ∫∞

−∞
𝐷ℎ(𝐸)𝑑𝐸

1 + exp(𝛽(𝜇− 𝐸))
,

(2.12)

where 𝐷𝑒(𝐸) is the electronic density of states given by Eq. 2.2 and 𝐷ℎ(𝐸) =

𝐷𝑒(−𝐸) is the density of states for holes. The asymptotic analytical formula of the
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chemical potential 𝜇(𝑇 ) for inhomogeneous MLG is obtained as:

𝜇(𝑇 ) ≃ 𝐸𝐹

[
1− 𝜋2

6
(
𝑇

𝑇𝐹

)2𝐴(𝑠)
]

for 𝑇 ≪ 𝑇𝐹

𝜇(𝑇 ) ≃ 𝐸𝐹𝐵(𝑠, 𝑡) for 𝑇 ≫ 𝑇𝐹

(2.13)

where functions 𝐴(𝑠) and 𝐵(𝑠) are given as follows:

𝐴(𝑠) = 𝑒
1

2𝑠2 erf
[ 1√

2𝑠

]/(√ 2

𝜋
𝑠+ 𝑒

1
2𝑠2 erf

[ 1√
2𝑠

])

𝐵(𝑠, 𝑡) =
(𝑒− 1

2𝑠2 𝑠√
2𝜋

+
1

2
(𝑠2 + 1)erf

[ 1√
2𝑠

])/(
2 ln 2 𝑡+

𝑠2

4𝑡

)
(2.14)

where 𝑡 = 𝑇/𝑇𝐹 and erf(𝑥) = 2√
𝜋

∫ 𝑥

0
𝑒−𝑡2𝑑𝑡 is the error function.

Combining Eqs. 2.2, 2.4 and 2.13, we obtain the asymptotic analytical formula

of the electron density for inhomogeneous MLG at low- and high-temperature limits

as:

𝑛𝑒(𝑇 ) ≃ 𝑛𝑒(0) +𝐷1𝐸
2
𝐹

𝜋2

12

𝑇 2

𝑇 2
𝐹

(1− 𝐴(𝑠)) for 𝑇 ≪ 𝑇𝐹

𝑛𝑒(𝑇 ) ≃ 𝑛0𝑒(𝑇 ) + 𝑛𝑒(0)− 𝐷1𝐸
2
𝐹

4
for 𝑇 ≫ 𝑇𝐹

(2.15)

In the low temperature limit (𝑇 ≪ 𝑇𝐹 ), the leading order term for the electron

density has the same quadratic behavior as in undoped homogeneous MLG (𝐸𝐹 =

0), but the coefficient is strongly suppressed by fluctuation for the case of 𝑠 < 𝐸𝐹 ,

i.e., the high carrier density sample. While in the case of 𝑠 > 𝐸𝐹 , i.e., the low

carrier density sample, the existence of electron-hole puddles gives rise to a notable

quadratic behavior for electron density 𝑛𝑒(𝑇 ) [see Fig. 2.4(b)].
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2.2 Conductivity of inhomogeneous MLG

In this section, we calculate the finite temperature conductivity for inhomoge-

neous MLG with the temperature-dependent effective carrier density derived above.

The existence of electron-hole puddles allows the current to flow through “perco-

lation channels”, and the transport properties of the inhomogeneous MLG system

can be derived using the self-consistent effective medium theory of conductance in

composite mixtures[69], where the number of electrons per puddle is not an im-

portant issue for our theory. The percolation assumption is valid as long as the

potential fluctuation is larger than the thermal energy of the carriers. Otherwise

transport due to disorder scattering dominates. We emphasize that in our formalism

the crossover from the percolation transport to ordinary scattering-dominated dif-

fusive transport is guaranteed as the temperature is increased since we are explicitly

taking into account both diffusive transport of free carriers and activated transport

of the classically-localized carriers in our theory. The only effects we neglect are

quantum tunneling through the potential barriers and quantum interference since

ours is a semiclassical theory. We also do not consider Klein tunneling explicitly

because the Klein tunneling occurs at zero temperature for normal incident carri-

ers at the electron-hole puddle boundary. We also apply the Boltzmann transport

theory, where we include the scattering mechanism with screened Coulomb impuri-

ties and short-range disorder[49]. Note that the application of Boltzmann transport

theory is justifiable because quantum interference effects are not experimentally ob-

served in the temperature regime of interest to us. It is conceivable that quantum
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interference and localization play some roles in graphene transport at very low tem-

peratures. We also neglect all phonon effects since electron-phonon coupling is weak

in graphene. Phonon effects are relevant at high temperatures (> 100 K) and have

been considered in the literature[57, 58].

At CNP (𝐸𝐹 = 0) electrons and holes are equally occupied. As the Fermi

energy increases, more electrons occupy increasingly larger proportion of space. As

the Fermi energy increases to 𝐸𝐹 ≫ 𝑠, nearly all space is populated by the electrons

[see Fig. 2.4(c)] and the conductivity of the system approaches the characteristic

of the homogeneous material. Thus, there is a possible coexistence of metallic

and thermally-activated transport in the presence of electron-hole puddles. When

electron puddles occupy more space than hole puddles, most electrons follow the

continuous metallic paths extended throughout the system, but it is possible at

finite temperatures that the thermally activated transport of electrons persists above

the hole puddles. On the other hand, holes in hole puddles propagate freely, but

when they meet electron puddles, activated holes conduct over the electron puddles.

Carrier transport in each puddle is characterized by propagation of weak scattering

transport theory[69]. The activated carrier transport of prohibited regions, where

the local potential energy 𝑉 is less (greater) than Fermi energy for electrons (holes),

is proportional to the Fermi factor. If 𝜎𝑒 and 𝜎ℎ are the average conductivity of

electron and hole puddles, respectively, then the activated conductivities are given
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by

𝜎(𝑎)
𝑒 (𝑉 ) = 𝜎𝑒 exp[𝛽(𝐸𝐹 − 𝑉 )], (2.16a)

𝜎
(𝑎)
ℎ (𝑉 ) = 𝜎ℎ exp[𝛽(𝑉 − 𝐸𝐹 )], (2.16b)

where the density and temperature dependent average conductivities (𝜎𝑒 and 𝜎ℎ)

are given within the Boltzmann transport theory [1] by 𝜎𝑒 ∝ 𝑛𝑒⟨𝜏⟩ and 𝜎ℎ ∝ 𝑛ℎ⟨𝜏⟩,

where 𝑛𝑒 and 𝑛ℎ are average electron and hole densities, respectively, and ⟨𝜏⟩ is the

average transport relaxation time which includes the thermal smearing effects and

depends explicitly on the scattering mechanism [1] and it is given by,

⟨𝜏⟩ = 𝐸𝐹

∫
𝑑𝜖𝐷𝑒(𝜖)𝜏(𝜖)(−∂𝑓/∂𝜖)∫

𝑑𝜖𝐷𝑒(𝜖)𝑓(𝜖)
(2.17)

where 𝜏(𝜖) and 𝑓 = 1/(1+𝑒𝛽(𝜖−𝜇)) are, respectively, the energy-dependent transport

scattering time and the finite temperature Fermi distribution function. Because the

density inhomogeneity effects already been considered in the variation of effective

carrier density, we use the DOS of homogeneous MLG 𝐷𝑒(𝜖) = 𝐷1𝜖 in Eq. 2.17 to

avoid double counting. 𝜏(𝜖) is given by Eq. 5.10.

Now we denote the electron (hole) puddle as region ‘1’ (‘2’). In region 1

electrons occupy more space than holes when 𝐸𝐹 > 0. The fraction of the total area

occupied by electrons with Fermi energy 𝐸𝐹 is given by 𝑝 =
∫ 𝐸𝐹

−∞ 𝑃 (𝑉 )𝑑𝑉 . Then

the total conductivity of region 1 can be calculated,

𝜎1 =
1

𝑝

∫ 𝐸𝐹

−∞
(𝜎𝑒 + 𝜎

(𝑎)
ℎ )𝑃 (𝑉 )𝑑𝑉,

= 𝜎𝑒 +
𝜎ℎ

2𝑝
𝑒

𝛽2𝑠2

2
−𝛽𝐸𝐹 erfc

(
− 𝐸𝐹√

2𝑠
+

𝛽𝑠√
2

)
. (2.18)
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At the same time the holes occupy the area with a fraction 𝑞 = 1− 𝑝 and the total

conductivity of region 2 becomes

𝜎2 =
1

𝑞

∫ ∞

𝐸𝐹

(𝜎(𝑎)
𝑒 + 𝜎ℎ)𝑃 (𝑉 )𝑑𝑉

= 𝜎ℎ +
𝜎𝑒

2𝑞
𝑒

𝛽2𝑠2

2
+𝛽𝐸𝐹 erfc

(
𝐸𝐹√
2𝑠

+
𝛽𝑠√
2

)
. (2.19)

The 𝜎1 and 𝜎2 are distributed according to the binary distribution. The conduc-

tivity of binary system can be calculated by using the effective medium theory of

conductance in mixtures[69]. The result for a 2D binary mixture of components

with conductivity 𝜎1 and 𝜎2 is given by [69]

𝜎𝑡 = (𝑝− 1

2
)

[
(𝜎1 − 𝜎2) +

√
(𝜎1 − 𝜎2)2 +

4𝜎1𝜎2

(2𝑝− 1)2

]
. (2.20)

This result can be applied for all Fermi energy. For a large doping case, in which

the hole puddles disappear, we have 𝑝 = 1 and 𝜎2 = 0, then Eq. (2.20) becomes

𝜎 = 𝜎1, i.e., the conductivity of electrons in the homogeneous system.
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Figure 2.5: 𝜎𝑡(𝑇 ) of MLG at charge neutral point for different 𝑠 (Eq. 2.21a and 𝑛𝑒

as given in Eq. 2.6). Inset shows the thermally activated conductivity of MLG as a
function of temperature, where 𝜎𝑎(𝑇 )/𝜎𝑎(0) = 1 + 𝑒𝛽

2𝑠2/2erfc(𝛽𝑠/
√
2).
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2.2.1 𝜎(𝑇 ) of MLG at CNP (𝐸𝐹 = 0)

We first consider the conductivity at CNP (𝐸𝐹 = 0). The conductivities in

each region are given by

𝜎1 = 𝜎𝑒

[
1 +

𝜂

2𝑝
𝑒𝛽

2𝑠2/2erfc(𝛽𝑠/
√
2)

]
, (2.21a)

𝜎2 = 𝜎ℎ

[
1 +

1

2𝑞𝜂
𝑒𝛽

2𝑠2/2erfc(𝛽𝑠/
√
2)

]
, (2.21b)

where 𝜂 = 𝑛ℎ/𝑛𝑒 is the ratio of the hole density to the electron density. Since the

electrons and holes are equally populated, we have 𝑝 = 𝑞 = 1/2 and 𝜎𝑒 = 𝜎ℎ, then

the total conductivity becomes 𝜎𝑡 =
√
𝜎1𝜎2 = 𝜎1. The asymptotic behavior of the

conductivity at low temperatures (𝑘𝐵𝑇 ≪ 𝑠) becomes

𝜎𝑡(𝑇 ) = 𝜎𝑒

[
1 +

√
2

𝜋

𝑘𝐵𝑇

𝑠
− 2√

𝜋

(𝑘𝐵𝑇 )
3

𝑠3

]
. (2.22)

The activated conductivity increases linearly with a slope
√

2/𝜋𝑘𝐵/𝑠 as tempera-

ture increases. Typically 𝑠 is smaller in higher mobility samples, which gives rise to

stronger insulating behavior at low temperatures. The next order temperature cor-

rection to conductivity arises from the thermal excitation given in Eq. (2.6) which

gives quadratic (𝑇 2) temperature corrections. Thus, in the low temperature limit

the total conductivity at the CNP is given by:

𝜎𝑡 = 𝜎(0)

[
1 +

√
2

𝜋

𝑘𝐵𝑇

𝑠
+

𝜋2

3

(
𝑘𝐵𝑇

𝑠

)2
]
. (2.23)

At high temperatures (𝑘𝐵𝑇 ≫ 𝑠) we have

𝜎𝑡 = 𝜎𝑒

[
2−

√
2

𝜋

𝑠

𝑘𝐵𝑇
+

𝑠2

2(𝑘𝐵𝑇 )2

]
. (2.24)
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where the temperature dependence of 𝜎𝑒 has been given in Eq. (2.6). The total

conductivity due to the activation behavior approaches a limiting value and all

temperature dependence comes from the thermal excitation through the change of

the effective carrier density in the presence of the inhomogeneity given in Eq. (2.6).

Thus at very high temperatures (𝑇 ≫ 𝑠/𝑘𝐵) the MLG conductivity at the charge

neutral point increases quadratically regardless of the sample quality. In Fig. 2.5

the temperature dependent conductivity has been calculated at the charge neutral

point, where the temperature dependent scattering mechanism can be neglected. In

Ref. [21], about 60% increase of conductivity is observed as the temperature increases

from 4 K to 300 K. We estimate the potential fluctuation parameter 𝑠 ∼ 80 meV

for this sample based on our theoretical analysis as compared with the data.

2.2.2 𝜎(𝑇 ) of MLG at finite doping (𝐸𝐹 > 0)

At finite doping (𝐸𝐹 > 0) the temperature dependent conductivities are very

complex because three energies (𝐸𝐹 , 𝑠, and 𝑘𝐵𝑇 ) are competing among them. Es-

pecially when 𝑘𝐵𝑇 ≪ 𝑠, regardless of 𝐸𝐹 , we have the asymptotic behavior of

conductivities in region 1 and 2 from Eqs. (5.1) and (2.19), respectively,

𝜎1 = 𝜎𝑒

[
1 +

𝜂

2𝑝
𝑒−1/2𝑠2

√
2

𝜋

1

𝑠/𝑡− 1/𝑠

]
, (2.25a)

𝜎2 = 𝜎ℎ

[
1 +

1

2𝑞𝜂
𝑒−1/2𝑠2

√
2

𝜋

1

𝑠/𝑡+ 1/𝑠

]
, (2.25b)

where 𝑠 = 𝑠/𝐸𝐹 and 𝑡 = 𝑇/𝑇𝐹 . The leading order correction is linear but the co-

efficient is exponentially suppressed by the term exp(−𝐸2
𝐹/2𝑠

2). This fact indicates

that in the high mobility sample with small 𝑠, the activated conductivity is weakly
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temperature dependent except at low density regimes, i.e. 𝐸𝐹 < 𝑠. Since the density

increase by thermal excitation is also suppressed exponentially by the same factor

[see Eq. (2.15)], the dominant temperature dependent conductivity arises from the

scattering time [1], which manifests metallic behavior. On the other hand, for a low

mobility sample with a large 𝑠, the linear temperature dependence due to thermal

activation can be observed even at high carrier densities 𝐸𝐹 ≳ 𝑠.
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Figure 2.6: Calculated total conductivity 𝜎𝑡(𝑇 )/𝜎𝑡(0) of MLG with the following
parameters: 𝑛𝑖 = 1012 cm−2 and 𝑛𝑑𝑉

2
0 = 2 (eV Å)2. (a) 𝜎𝑡(𝑇 ) for 𝐸𝐹 = 120 meV

and for different 𝑠. (b) 𝜎𝑡(𝑇 ) of MLG for 𝑠 = 80 meV and for several 𝐸𝐹 = 80, 100,
120, 160 meV, which correspond to the net carrier densities 𝑛 = 𝑛𝑒−𝑛ℎ ≃ 0.9×1012,
1.2× 1012, 1.5× 1012, and 2.3× 1012 cm−2.

In Fig. 2.6 we present the total conductivities of inhomogeneous MLG as a

function of temperature (a) for a fixed Fermi energy and several 𝑠 and (b) for a fixed 𝑠

and several Fermi energies. The calculations for Fig. 2.6 are all carried out for MLG

on SiO2 substrate (corresponding to dielectric constant 𝜅 ≈ 2.5), charged impurity

density 𝑛𝑖 = 1012 cm−2 and short-ranged disorder strength 𝑛𝑑𝑉
2
0 = 2 (eV Å)2. For

total conductivity, the thermally activated insulting behavior competes with the

temperature-dependent screening effects, where the latter always give the metallic

behavior in conductivity for MLG samples. When 𝑠 is small, the activated behavior
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is suppressed and the total conductivity shows metallic behavior. While for large

value of 𝑠, i.e., low mobility samples, the thermal activation overwhelms the metallic

temperature dependence and the system manifests insulating behavior. For 𝑠 ∼ 𝐸𝐹

the situation becomes much complex. At low temperatures, the leading order of

the temperature dependence is linear (the second term in Eq. (2.25)) and the total

conductivity starts at weakly insulating behavior. As the temperature increases,

screening effects begin to dominant, leading to metallic behavior. As a result, the

temperature evolution of the conductivity becomes non-monotonic and for large 𝑠

(or low mobility samples) the nonmonotonic behavior can be more pronounced as

shown in experiments [21]. Note that electron-phonon will always lead to a metallic

temperature dependence with conductivity decreasing with temperature. At high

enough temperature 𝑇 > 200 K, phonons will eventually dominate, and all graphene

samples should eventually exhibit metallic transport properties.

2.3 Temperature dependent carrier density of inhomoge-

neous BLG

In the following of this chapter, we extend our previous study[70] on insulat-

ing behavior in metallic bilayer graphene and compare it with the MLG situation.

The most important difference between MLG and BLG comes from the fact that,

in BLG, the two layers are weakly coupled by interlayer tunneling, leading to an

approximately parabolic band dispersion with an effective mass about 𝑚 ≃ 0.033𝑚𝑒

(𝑚𝑒 corresponds to the bare electron mass) in contrast to linear-dispersion Dirac
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carrier system for MLG. As done for MLG, we assume the electronic potential fluc-

tuations in BLG system to be a Gaussian form given in Eq. 2.1 and this potential

is felt equally by both layers[59].
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Figure 2.7: Normalized density of states for both electron and hole in BLG. The
solid and dashed lines are for the DOS in inhomogeneous and homogeneous systems,
respectively. The electron (hole) band tail locates at 𝐸 < 0 (𝐸 > 0), which gives
rise to electron (hole) puddles at 𝐸 < 0 and 𝐸 > 0.

In the presence of potential fluctuations the density of states (DOS) for dis-

ordered BLG is given by 𝐷𝑒(𝐸) =
∫ 𝐸

−∞𝐷0𝑃 (𝑉 )𝑑𝑉 = 𝐷0erfc(−𝐸/
√
2𝑠)/2, where

𝐷0 = 𝑔𝑠𝑔𝑣𝑚/(2𝜋ℏ2) is the DOS in a homogeneous BLG system, where 𝑔𝑠 = 2 and

𝑔𝑣 = 2 are the spin and valley degeneracies, respectively. We have 𝐷0 = 2.8× 1010

cm−2/meV assuming 𝑚 = 0.033𝑚𝑒. The DOS of holes can be calculated from the

following relation: 𝐷ℎ(𝐸) = 𝐷𝑒(−𝐸). In Fig. 2.7, the density of states of both

electron and hole are shown for the inhomogeneous BLG system. In the presence

of potential fluctuations, the electron and hole coexist for certain amount of regions

near CNP and their DOS approach to the homogeneous case as the carrier energy

further increases.

Because BLG is also a gapless semiconductor like MLG, the direct thermal

35



excitation from valence band to conduction band at finite temperatures composes

an important source of temperature dependent transport in BLG. Thus, the tem-

perature dependence of thermally excited electron density is first to be considered.

2.3.1 𝑛𝑒(𝑇 ) of BLG at CNP (𝐸𝐹 = 0)

With the help of Eq. 2.4, we could get the total electron density for BLG

in the presence of electron-hole puddles. We first consider the situation at CNP,

where all electrons are located in the band tail at 𝑇 = 0 and the electron density

in the band tail is given by 𝑛0 = 𝑛𝑒(𝐸𝐹 = 0) = 𝐷0𝑠/
√
2𝜋[59]. In contrast to the

quadratic dependence of 𝑠 in MLG, the electron density in the band tail for BLG is

linearly proportional to the standard deviation 𝑠. Unlike MLG, which has the exact

formula for 𝑛0(𝑇 ) (i.e., Eq. (2.6)), we could only find the asymptotic behavior of

𝑛0(𝑇 ) at finite temperatures for BLG. The low temperature (𝑘𝐵𝑇/𝑠 ≪ 1) behavior

of electron density at CNP becomes

𝑛𝑒(𝑇 ) = 𝑛0

[
1 +

𝜋2

6

(
𝑘𝐵𝑇

𝑠

)2
]
. (2.26)

Thus, the electron density increases quadratically in the low temperature limit. For

homogeneous BLG with the constant DOS the electron density at finite tempera-

tures is given by 𝑛𝑒(𝑇 ) = 𝐷0 ln(2)𝑘𝐵𝑇 , which has the universal slope 𝐷0 ln(2)𝑘𝐵.

The presence of the band tail suppresses the thermal excitation of electrons and gives

rise to the quadratic behavior. However, in the high temperature limit, the density

increases linearly with the same slope approaching to the homogeneous system, i.e.,

𝑛(𝑇 ) ∼ 𝐷0

[
ln(2)𝑘𝐵𝑇 +

1

8

𝑠2

(𝑘𝐵𝑇 )2

]
. (2.27)
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In Fig. 2.8(a) we show the temperature dependent electron density at CNP for

different standard deviations. Compared with the inset of Fig. 2.5, it is apparent

that, even for the same strength of potential fluctuation 𝑠, the effects of thermal

excitation of carrier density are much stronger in BLG than in MLG sample, which

leads to more easily observed insulating behavior in BLG samples.
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Figure 2.8: (a) The electron density of BLG at CNP as a function of temperature for
different 𝑠. At 𝑇 = 0 the density is given by 𝑛0 = 𝐷0𝑠/

√
2𝜋. (b) The temperature

dependent electron density of BLG at finite 𝐸𝐹 for different 𝑠. For 𝑠/𝐸𝐹 ∕= 0
the leading order behavior is quadratic while at 𝑠 = 0 the density is exponentially
suppressed. (c) Total electron densities (solid lines) and hole densities (dashed lines)
of BLG as a function of 𝐸𝐹 for two different 𝑠 = 30 meV and 70 meV. The linear
line represents the density difference 𝑛 = 𝑛𝑒 − 𝑛ℎ = 𝐷0𝐸𝐹 , which linearly depends
on the Fermi energy. The densities at the band tails are given by 𝑛𝑒(𝐸𝐹 = 0) =
𝑛ℎ(𝐸𝐹 = 0) = 𝐷0𝑠/

√
2𝜋.

2.3.2 𝑛𝑒(𝑇 ) of BLG at finite doping (𝐸𝐹 > 0)

In this subsection, we derived the total electron density at finite temperatures

for inhomogeneous BLG away from CNP. Contrary to MLG, we need to calculate the

finite temperature chemical potential (i.e., Eqs. 2.9 and 2.13). The charge conserva-

tion relation in both homogeneous and inhomogeneous BLG gives the temperature

independent chemical potential 𝜇 ≡ 𝐸𝐹 , allowing us to directly calculate the total

effective electron (hole) density. In the case of finite gate voltage, i.e., 𝐸𝐹 ∕= 0, the
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electron density of the homogeneous BLG for 𝑠 = 0 is given by

𝑛0𝑒(𝑇 ) = 𝐷0𝐸𝐹

[
1 + 𝑡 ln

(
1 + 𝑒−1/𝑡

)]
, (2.28)

where 𝑡 = 𝑇/𝑇𝐹 and 𝑇𝐹 = 𝐸𝐹/𝑘𝐵. The thermal excitation is exponentially sup-

pressed due to the Fermi function at low temperatures (𝑇 ≪ 𝑇𝐹 ), while at high

temperatures (𝑇 ≫ 𝑇𝐹 ) it increases linearly. In the presence of finite potential

fluctuations (𝑠 ∕= 0), the electron and hole density at zero temperature for the

inhomogeneous system are given by:

𝑛𝑒(0) = 𝐷0𝐸𝐹

[
1

2
erfc

( −1√
2𝑠

)
+

𝑠√
2𝜋

𝑒−1/2𝑠2
]
,

𝑛ℎ(0) = 𝐷0𝐸𝐹

[
−1

2
erfc

(
1√
2𝑠

)
+

𝑠√
2𝜋

𝑒−1/2𝑠2
] (2.29)

where 𝑠 = 𝑠/𝐸𝐹 and the difference of electron and hole density (𝑛 = 𝑛𝑒−𝑛ℎ = 𝐷0𝐸𝐹 )

is independent of the strength of potential fluctuation 𝑠 (see Fig. 2.8(c)). At low

temperatures (𝑇 ≪ 𝑇𝐹 ) the asymptotic behavior of the electron density is given by

𝑛𝑒(𝑇 ) = 𝑛𝑒(0) +𝐷0𝐸𝐹
𝜋2

12
√
2

𝑒−1/2𝑠2

𝑠

(
𝑇

𝑇𝐹

)2

. (2.30)

The leading order quadratic behavior of 𝑛𝑒(𝑇 ) as in undoped BLG (𝐸𝐹 = 0) is

strongly suppressed by potential fluctuation. For the situation 𝑠 > 𝐸𝐹 , the existence

of electron-hole puddles gives rise to a notable quadratic behavior [see Fig. 2.8(b)].

At high temperatures (𝑇 ≫ 𝑇𝐹 ) we find

𝑛𝑒(𝑇 ) = 𝑛0𝑒(𝑇 ) +
𝐷0𝐸𝐹

(1 + 𝑒𝛽𝐸𝐹 )2
𝑠2

2

𝑇𝐹

𝑇
. (2.31)

where the linear temperature dependence of electron density is dominant as the

homogeneous system.
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2.4 Conductivity of inhomogeneous BLG

With the help of total electron and hole density calculated above, we will derive

the temperature dependent conductivity for BLG in the presence of electron-hole

puddles. We will apply both Boltzmann theory[14] and effective medium theory[69]

to interpret the intriguingly insulating behavior observed in BLG samples[54, 12, 56].

The density and temperature dependent average conductivities in BLG, de-

noted as 𝜎𝑒 and 𝜎ℎ, are given within the Boltzmann transport theory:

𝜎𝑒 =
𝑛𝑒𝑒

2⟨𝜏⟩
𝑚

𝜎ℎ =
𝑛ℎ𝑒

2⟨𝜏⟩
𝑚

(2.32)

where 𝑛𝑒 and 𝑛ℎ are average electron and hole densities, respectively. ⟨𝜏⟩ is the

transport relaxation time for bilayer graphene:

⟨𝜏⟩ =
∫
𝑑𝜖𝐷𝑒(𝜖)𝜖𝜏(𝜖)(−∂𝑓/∂𝜖)∫

𝑑𝜖𝐷𝑒(𝜖)𝑓(𝜖)
(2.33)

and 𝜏(𝜖) is calculated with Eq. 5.10. But for BLG systems, one needs to use the

parabolic dispersion relation 𝜖𝑝k = 𝑝ℏ2𝑘2/2𝑚 for the pseudo-spin state “𝑝” and the

static dielectric screening function derived in Ref. [71]. The wave function form fac-

tor associated with the chiral nature of BLG is also different from the case in MLG,

which is given by 𝑔(𝜃kk′) = [1 + cos 2𝜃kk′ ] /2. To determine the average scattering

time in BLG, we take into account the long-range charged impurity scattering and

short-range defect scattering, which has been established that both contribute sig-

nificantly to bilayer graphene transport properties[14]. The activated conductivities

should also be included in the presence of density inhomogeneity in the BLG, which
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follow the same relation as given for MLG :

𝜎(𝑎)
𝑒 (𝑉 ) = 𝜎𝑒 exp[𝛽(𝐸𝐹 − 𝑉 )], (2.34a)

𝜎
(𝑎)
ℎ (𝑉 ) = 𝜎ℎ exp[𝛽(𝑉 − 𝐸𝐹 )], (2.34b)

2.4.1 𝜎(𝑇 ) of BLG at CNP

When electron-hole puddles form in the BLG samples (denote the electron

(hole) puddle as region ‘1’ (‘2’)), the transport properties can be treated with ef-

fective medium theory as described in Sec. 2.2. And Eqs. 5.1-2.22 for the inhomo-

geneous MLG also apply to the inhomogeneous BLG system. We will first discuss

the total conductivity of BLG at CNP (𝐸𝐹 = 0). In this case, the electron and hole

are equally occupied and the total conductivity 𝜎𝑡 = 𝜎1 (see Eq. 2.21a and 2.22).

At low temperature limit (𝑇 ≪ 𝑠/𝑘𝐵), the activated conductivities increase linearly

with a slope
√

2/𝜋𝑘𝐵/𝑠 as the temperature increases. The next order temperature

correction to the conductivity is quadratic 𝑇 2, which arises from the thermal activa-

tion (see Eq. 2.26). Thus, at low temperature limit the total conductivity at CNP

is given by

𝜎𝑡(𝑇 ) = 𝜎(0)

[
1 +

√
2

𝜋

𝑘𝐵𝑇

𝑠
+

𝜋2

6

(
𝑘𝐵𝑇

𝑠

)2
]
. (2.35)

At high temperatures (𝑘𝐵𝑇 ≫ 𝑠), the total conductivity is given by:

𝜎𝑡 = 𝜎𝑒

[
2−

√
2

𝜋

𝑠

𝑘𝐵𝑇
+

𝑠2

2(𝑘𝐵𝑇 )2

]
. (2.36)

It is apparent that the activation behavior approaches a limiting value in the high

temperature limit (𝑇 ≫ 𝑠/𝑘𝐵) while the thermally activated electron density be-

comes dominant, which increases linearly with a universal slope ln(2) regardless
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of the sample quality. Thus, all temperature dependence of the total conductivity

comes from the thermal excitation through the change of the carrier density given in

Eq. (2.27). In Fig. 2.9 we show the calculated temperature dependent conductivity

at charge neutral point. The inset present the activated conductivity versus the

temperature. In Ref. [54], 𝜎𝑡(𝑇 ) at the CNP of the BLG sample increases almost

two times as temperature 𝑇 varies from 4 K to 300 K. Our theoretical analysis using

a potential fluctuation parameter 𝑠 ∼ 40 meV gives reasonable agreement with the

experimental data.
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Figure 2.9: 𝜎𝑡(𝑇 ) of BLG at charge neutral point for different 𝑠 (Eq. 2.21a with 𝑛𝑒

for BLG). Inset shows the thermally activated conductivity in BLG as a function of
temperature, where 𝜎𝑎(𝑇 )/𝜎𝑎(0) = 1+𝑒𝛽

2𝑠2/2erfc(𝛽𝑠/
√
2), the same as for the MLG

case.

2.4.2 𝜎(𝑇 ) of BLG at finite doping (𝐸𝐹 > 0)

The temperature dependent conductivities at finite doping (𝐸𝐹 > 0) are very

complex because three energies (𝐸𝐹 , 𝑠, and 𝑘𝐵𝑇 ) are competing. Regardless of 𝐸𝐹 ,

when 𝑘𝐵𝑇 ≪ 𝑠, we have the asymptotic behavior of conductivities in region 1 and

2 the same as MLG situation, given in Eq. (2.25). But the average electron and
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hole conductivities (𝜎𝑒 and 𝜎ℎ) are quite different from the MLG case, which is

determined by the specific band dispersion relation and also the dielectric function

𝜖(𝑞, 𝑇 ). Thus, the leading order correction to 𝜎𝑡 in BLG is also linear, which comes

from the activated conductivity, but the coefficient is exponentially suppressed by

the term exp(−𝐸2
𝐹/2𝑠

2). In the high mobility sample with small 𝑠, the activated

conductivity is weakly temperature dependent except around CNP, i.e. 𝐸𝐹 < 𝑠.

Since the density increase by thermal excitation is also suppressed exponentially by

the same factor [see Eq. (2.30)] the dominant temperature dependent conductivity

arises from the scattering mechanism[1]. On the other hand, in the low mobility

sample with large value of 𝑠, the linear temperature dependence due to thermal

activation can be observed even at high carrier densities 𝐸𝐹 ≳ 𝑠.
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Figure 2.10: Calculated total conductivity 𝜎𝑡(𝑇 )/𝜎𝑡(0) of BLG with the following
parameters: 𝑛𝑖 = 1012 cm−2 and 𝑛𝑑𝑉

2
0 = 2 (eV Å)2. (a) 𝜎𝑡(𝑇 ) for 𝐸𝐹 = 60 meV and

for different 𝑠. (b) 𝜎𝑡(𝑇 ) for 𝑠 = 40 meV and for several 𝐸𝐹 = 20, 40, 60, 80 meV,
which correspond to the net carrier densities 𝑛 = 𝑛𝑒 − 𝑛ℎ = 0.55× 1012, 1.1× 1012,
1.6× 1012, and 2.2× 1012 cm−2.

In Fig. 2.10 we calculate the total conductivities (a) for a fixed 𝐸𝐹 and several

𝑠 and (b) for a fixed 𝑠 and several 𝐸𝐹 . Even for homogeneous BLG, there are two
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scattering mechanism competing with each other. The short-range disorder in BLG

contributes to a strong insulating transport behavior for all temperature, whereas

screened Coulomb scattering always leads to a metallic behavior for 𝑇 ≪ 𝑇𝐹 [14].

At low temperature limit, the total conductivity 𝜎𝑡(𝑇 ) decreases with increasing

temperature, but at higher temperatures, the short-range disorder contribution be-

comes quite big and leads to a 𝜎𝑡(𝑇 ) increasing with 𝑇 . Therefore, when 𝑠 is small,

the scattering mechanism is dominant and the total conductivity displays a non-

monotonic temperature dependence (see Fig. 2.10(a)). However, for large 𝑠 the

activated temperature dependence behavior overwhelms the metallic temperature

dependence, and the system shows insulating behavior (see Fig. 2.10(b)). It clearly

shows that the insulating behavior in the BLG sample appears at carrier densities

as high as 1012 cm−2 or higher. We mention that in bilayer graphene, the transport

property is dominated by Coulomb scattering even at room-temperature because

phonons are effectively screened by the additional graphene layers[54]. Our analytic

theory appears to be in excellent qualitative agreement with the existing experimen-

tal results[54].

2.5 Connection to earlier theories

We have demonstrated theoretically that the observed insulating behavior in

temperature-dependent monolayer and bilayer graphene conductivity can be ex-

plained by the thermal activation between puddles. There are also other theo-

ries which have been elaborated to explain low carrier density graphene transport
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[20, 24, 14]. In this section, we establish the bridge to connect our current theory

and earlier theories on graphene transport due to the formation of inhomogeneous

electron-hole puddles near the charge neutrality point.

The key qualitative difference between our theory and all earlier graphene

transport theories is the introduction of the 2-component transport model where

regular diffusive metallic carrier transport coexists with local activated transport

due to activation across potential fluctuations in the puddles. Our theory just ex-

plicitly accounts for the inhomogeneous landscape in the system, which earlier the-

ories ignored. This 2-component nature of graphene transport, where both metallic

and insulating behavior coexist because of the existence of puddles, produces the

experimentally observed complex temperature dependence with the low-density be-

havior being primarily insulating-like and the high-density behavior being primarily

metallic-like.

Two different theories have been developed to study the low-density transport

in graphene, where the strong density inhomogeneity is dominated. In Ref. [20]

Adam et al. qualitatively explained the plateau-like approximate nonuniversal min-

imum conductivity at low carrier density observed in monolayer graphene samples.

The basic idea is to introduce an approximate pinning of the carrier density at

𝑛 = 𝑛∗ ≈ 𝑛𝑖 at low carrier density limits ∣𝑛∣ < ∣𝑛𝑖∣, where 𝑛𝑖 is an impurity den-

sity. The constant minimum conductivity is then given by 𝜎𝑚𝑖𝑛 ∼ 𝜎(𝑛 = 𝑛𝑖) for

𝑛 < 𝑛𝑖. This simple theory for monolayer graphene transport qualitatively ex-

plained the existence of conductivity minimum plateau and the extent to which

the minimum conductivity is not universal, which was in good agreement with
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the observed density-dependent conductivity over a wide range of charged impurity

densities[9, 10]. However, this theory did not take account of the highly heteroge-

neous structure near charge neutrality point and the thermally activated conductiv-

ity at finite temperatures, which then can not explain the observed non-monotonic

temperature dependent transport in low mobility graphene samples[21].

A more elaborate Thomas-Fermi-Dirac (TFD) theory and an effective medium

approximation (EMT) have been introduced in Refs. [22] and [24] to study the elec-

trical transport properties of disordered monolayer graphene. The ground state-

density landscape 𝑛(r) can be obtained within this TFD approach and the resul-

tant electrical transport can be calculated by averaging over disorder realizations

and the effective medium theory. This theory gives a finite minimum conductivity

and is able to explain the crossover of the density-dependent conductivity from the

minimum value at the Dirac point to its linear behavior at higher doping. Later,

this TFD-EMT theory is also applied to calculate the conductivity of disordered

bilayer graphene in Ref. [14]. The TFD-EMT technique successfully explains the

graphene, both MLG and BLG, transport properties in the theoretically difficult

inhomogeneity-dominant regime near the charge neutral point, but this approach

fails to explain the temperature dependence of the conductivity for a wide range of

temperatures.

In our current model discussed above, we include three effects, the electron-

hole structure formation, the thermal activated conductivities and the temperature

dependence of screening effects, to explain the temperature-dependent conductivity

in both monolayer and bilayer graphene systems. The nonmonotonic temperature-
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dependent conductivity in graphene systems is then naturally understood from the

competition between the thermal activation of charge carriers and the temperature-

dependent screening effects. Our transport theory qualitatively explains the ob-

served coexisting metallic and insulating transport behavior in both MLG and BLG

systems. For low mobility MLG samples, the dominant role on graphene conductiv-

ity switches from the thermally activated transport of inhomogeneous electron-hole

puddles to metallic temperature-dependent screening effects, which gives rise to a

nonmonotonic behavior from the strong insulating behavior at low temperatures

to metallic behavior at high temperatures. On the other hand, another nonmono-

tonic temperature-dependent transport can be observed in very high mobility bilayer

graphene devices, i.e., from metallic behavior at low temperatures due to the screen-

ing effects of Coulomb scattering to insulating behavior at high temperatures due

to the short-range disorder. The merit of our model is that it is so simple that

we could get the asymptotic behavior at low and high temperature limits analyti-

cally. Moreover, it provides a clear physical picture of the dominant mechanisms at

different regimes as discussed above.

2.6 Discussions

We first discuss the similarity and the difference between MLG and BLG

transport from the perspective of our transport-theory considerations. We find

that both manifest an insulating behavior in 𝜎𝑡(𝑇 ) for low mobility samples. We

also find that both systems could exhibit a non-monotonic temperature dependent
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conductivity for low mobility samples. However, the physical origin for the non-

monotonic temperature dependence is quite different in the two systems: in the MLG

the non-monotonic feature comes from the competition between thermal activation

and the metallic screening effects, which leads to 𝜎𝑡(𝑇 ) first increasing and then

decreasing with increasing temperature (see Fig. 2.6(a)). For BLG, the competition

between short-range insulating scattering and metallic Coulomb screening effects

leads to 𝜎𝑡(𝑇 ) first decreasing and then increasing as temperature increases (see

Fig. 2.10(a)). Most important quantitative difference between MLG and BLG

transport comes from their band dispersions, which leads to much weaker effects

of density inhomogeneity in MLG so that the anomalous insulating temperature

dependence of 𝜎(𝑇 ) is typically not observed in MLG away from the CNP although

the gate voltage dependence of MLG and BLG conductivities are similar[72, 73].

The linear Dirac carrier system for MLG leads to linear DOS, which goes to zero

at CNP, but the parabolic band dispersion relation in BLG leads to a constant

DOS. Due to the difference in the density of states between homogeneous MLG

and BLG, the modified DOS in inhomogeneous MLG is increased (see Fig. 2.3)

rather than decreased in inhomogeneous BLG (see Fig. 2.7). The dimensionless

potential fluctuation strength 𝑠 (≡ 𝑠/𝐸𝐹 ) is much weaker in MLG than in BLG

from simple estimates: 𝑠𝐵𝐿𝐺/𝑠𝑀𝐿𝐺 ∼ 32/
√
𝑛̃ where 𝑛̃ = 𝑛/1010, and 𝑠𝐵𝐿𝐺 ≫ 𝑠𝑀𝐿𝐺

upto 𝑛 = 1013 cm−2. Direct calculations [1] show that the self-consistent values

of 𝑠 tend to be much larger in BLG than in MLG for identical impurity disorder.

In addition, the qualitatively different DOS leads to much stronger effective short-

range scattering in BLG compared with MLG even for the same bare scattering
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strength. Thus, the insulating behavior in 𝜎𝑡(𝑇 ) will show up at high temperatures

even for relatively higher mobility BLG samples (i.e., small 𝑠). In contrast, only in

very low mobility MLG samples, where 𝑠 is very large, can the insulating behavior

of temperature dependent resistivity be observed[47, 21]. No simple picture would

apply to a gapped (Δ𝑔) BLG system, since four distinct energy scales (𝑠, 𝐸𝐹 , 𝑘𝐵𝑇 ,

and Δ𝑔) will compete and the conceivable temperature dependence depends on their

relative values[2, 74, 75]. Our assumption of BLG quadratic band dispersion is valid

only at low (≲ 5× 1012 cm−2) carrier densities, where most of the current transport

experiments are carried out. At higher densities the band dispersion is effectively

linear and the disorder effects on 𝜎𝑡(𝑇 ) are weaker.

We emphasize that our theory is physically motivated since puddles are exper-

imental facts in all graphene samples. Puddles automatically imply a 2-component

nature of transport since both diffusive carriers and activated carriers can, in prin-

ciple, contribute to transport in the presence of puddles. Of course, the effect of

puddles is much stronger at low carrier densities, explaining why insulating (metal-

lic) temperature dependence is more generic at low (high) graphene carrier densities.

We emphasize that local carrier activation in puddles is just one of (at least) four

different independent transport mechanisms contributing to the temperature depen-

dent conductivity. The other three are temperature dependent screening (Ref. [49]),

phonons (Refs. [57, 58]), and Fermi surface thermal averaging (Refs. [49, 68]). Our

theory presented here includes the three electronic mechanisms for temperature de-

pendence: screening, Fermi surface averaging, and puddle activation. We leave out

phonons, which have been considered elsewhere (Ref. [57, 58]) and will simply add to
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the temperature dependent resistivity. The weak phonon contribution to graphene

resistivity makes it possible for the electronic mechanisms to dominate even at room

temperatures, but obviously at high enough temperatures, the system will, except

perhaps at the lowest densities around the CNP, manifest metallic temperature de-

pendence with the resistivity increasing with temperature because of phonon scatter-

ing. Similarly, the puddle effects dominate low densities and therefore, the insulating

behavior will persist to very high temperatures around the zero-density CNP since

activation across potential fluctuations are dominant at the CNP. It is gratifying

to note that these are precisely the experimental observations. We note that in

general the temperature dependent conductivity of graphene could be very complex

since many distinct mechanisms could in principle contribute to the temperature

dependence depending on the carrier density, temperature range, and disorder in

the system. Inclusion of phonons (at high temperatures) and quantum localization

(at low temperatures) effects, which are both neglected in our theory, can only com-

plicate things further. What we have shown is that the low-density conductivity

near the CNP is preferentially dominated by density inhomogeneity and thermal

carrier activation effects leading to an insulating temperature dependence in the

conductivity whereas the high-density conductivity, where the puddles are screened

out, is dominated by a metallic conductivity due to temperature-dependent screen-

ing effects. This general conclusion is consistent with all experimental observations

in both MLG and BLG systems to the best of our knowledge except at very high

temperatures where phonon effects would eventually lead to metallic behavior at all

densities.
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Chapter 3

Disorder by order in graphene

An electronic material, metal or doped semiconductor, typically exhibits higher

low-temperature conductivity as the amount of quenched random disorder is de-

creased in the system, i.e., as the system becomes more ordered. It is therefore

a universal expectation that a purer metal with lower impurity disorder would al-

ways exhibit higher low-temperature conductivity than a dirtier metal with higher

disorder.

In this chapter, we theoretically establish a counter-intuitive possibility in

graphene which is in sharp contrast to the universal scenario of increasing con-

ductivity with increasing order. We show that in monolayer graphene, with its

gapless chiral linear 2D electron-hole Dirac band dispersion, the resistivity (conduc-

tivity) will increase (decrease) monotonically with decreasing carrier density near

the charge neutrality (Dirac) point provided the system is sufficiently pure, i.e.,

ordered, with very little residual background charged impurity disorder. Not only

will the Dirac point resistivity be anomalously large in high-purity graphene, the

transport behavior itself will be insulating-like at the charge neutrality point with

the resistivity increasing monotonically with decreasing temperature! On the other

hand, as the carrier density increases, the resistivity will decrease with the eventual
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restoration of the metallic behavior manifesting a weakly temperature dependent

resistivity above a non-universal crossover density which would depend on the resid-

ual background charged impurity disorder and the temperature. At high density,

far away from the charge neutrality point with vanishing average charge density, the

high-purity graphene sample would behave in a perfectly normal manner manifest-

ing very high mobility (and very long mean free path) consistent with the highly

ordered nature of the system with very little residual Coulomb impurity scattering.

We dub this strange dichotomy where decreasing disorder drives the graphene layer

into an effective insulating state at low carrier density near the charge neutrality

point, while maintaining very high mobility at high carrier density consistent with

its low disorder, the phenomenon of “disorder by order”. We emphasize that our

predicted disorder by order phenomenon is not a 𝑇 = 0 quantum phase transi-

tion as in an Anderson or Mott transition, it is a transport crossover phenomenon

manifesting itself as an effective density-tuned metal-insulator transition. In partic-

ular, quantum localization plays no role in our theory which is developed entirely

within the semiclassical Boltzmann transport model neglecting all quantum inter-

ference corrections. The disorder by order phenomenon arises from an interplay

among charged impurity disorder, density inhomogeneity (the so-called “electron-

hole” puddles[20, 76, 19, 52, 51, 1]), and the peculiar gapless linear chiral band dis-

persion of graphene. Our predicted novel semiclassical phenomenon would dominate

low-density transport in ultrapure graphene samples as long as quantum interfer-

ence induced localization corrections are small, i.e., in the effective high-temperature

semiclassical regime where the inelastic phase breaking length is comparable to or
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Figure 3.1: Electron transport measured in graphene-boron nitride heterostructures.
(a) Schematic diagram of graphene-boron nitride heterostructure devices and mea-
surement geometry. (b) and (c) Resistivity 𝜌 as a function of carrier density 𝑛
in the studied graphene layer for different doping 𝑛𝑐 of the control layer at two
temperatures. The device has a 4 nm BN spacer. Adapted from Fig. 1 of Ref. [41].

smaller than the elastic transport mean free path.

We believe that our predicted graphene “disorder by order” phenomenon has

recently been experimentally observed by Ponomarenko et al. [41], who, however,

interpret their observation as the manifestation of a density-tuned metal-insulator

localization transition. The experiment studied a double-layer electronic system

made of two closely-spaced but electrically isolated graphene monolayers sandwiched

in boron nitride [41] (see Fig. 3.1(a)). The top and the bottom layer are referred

to as the studied and control layers. When the carrier density 𝑛𝑐 is low in the

control layer, the studied layer exhibits the standard behavior with a minimum

metallic conductivity. However, for 𝑛𝑐 > 1011 cm−2, the resistivity of the studied

layer diverges near the neutrality point (NP) at 𝑇 < 70𝐾 (see Figs. 3.1 (b) and

(c)). In addition, it has been found that charge fluctuations in the studied layer
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Figure 3.2: Simulated e-h puddles in the studied graphene layer for carrier densities
𝑛𝑐 = 0 and 5×1011 cm−2 of the control layer (top and bottom panels, respectively).
Adapted from Fig. S4 in the Supplementary Information of Ref. [41].

are strongly suppressed for highly doped control layer (see Fig. 3.2). All aspects

of the experimental data reported in Ref. [41], in particular the density and the

temperature dependence of the measured conductivity, agree spectacularly well with

our predictions, and we therefore contend that the observation in Ref. [41] is a

direct experimental verification of our predicted “disorder by order” phenomenon.

Particularly germane in this context is the fact that the transport data of Ref. [41]

were taken in the relatively high-temperature (10− 100 K) regime where quantum

interference effects are not important, and our semiclassical transport theory should

apply.

In this chapter, the basic transport theory and the numerical results are pre-

sented. Then, we discuss the results compared to experimental data.

3.1 Theory and Numerical results

We first provide a simple physical picture underlying the “disorder by order”

phenomenon. Let us assume that the graphene sample is pristine with essentially no

53



background random charged impurities so that the effective transport relaxation or

scattering time 𝜏 is very long, leading to very high (low) conductivity (resistivity) at

an electron density of 𝑛. The conductivity is given (at 𝑇 = 0) within the Boltzmann

transport theory[1, 16] by 𝜎 =
𝑒2𝑣2𝐹
2

𝐷(𝐸𝐹 )𝜏(𝐸𝐹 ), where 𝑣𝐹 is the constant graphene

Fermi velocity defining its linear band dispersion, 𝐷(𝐸𝐹 ) ∝
√
𝑛/𝑣𝐹 is the graphene

density of states at the Fermi energy 𝐸𝐹 ∝ 𝑣𝐹
√
𝑛. The scattering time 𝜏(𝐸𝐹 ) for

the screened Coulomb scattering due to random background charged impurities has

been calculated [1, 16, 77, 15] in the literature, giving 𝜏 ∝ √
𝑛, which leads to

the now-well-known formula [16] for graphene conductivity due to random charged

impurity scattering given by

𝜎(𝑛) = 𝐴
𝑛

𝑛𝑖

𝑒2

ℎ
(3.1)

where 𝑛𝑖 is the effective background 2D concentration of the random charged impu-

rities (including its location and strength) whereas 𝐴 is a constant which depends

on the dielectric environment of the system (e.g., substrate)–for graphene on SiO2

(h-BN), 𝐴 ≈ 20 (26). The result given in Eq. 3.1 and the underlying general

theory for graphene carrier transport have been well-verified experimentally in the

literature[10, 9, 78, 54, 79, 80, 21]. An immediate consequence of Eq. 3.1, inter-

preted naively, is that the graphene resistivity 𝜌(≡ 1/𝜎) diverges as 𝑛−1 at the Dirac

point where the carrier density vanishes by virtue of the vanishing density of states

at the Dirac point.

In reality, however, this divergent Dirac point resistivity (or equivalently, van-

ishing conductivity) is not observed experimentally in real graphene samples, which
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manifest a conductivity saturation phenomenon at low carrier density (∣𝑛∣ ≲ 𝑛∗[20])

with an approximate minimum conductivity plateau 𝜎𝑚𝑖𝑛 ∼ 𝐴𝑛∗/𝑛𝑖, where 𝑛∗ is a

characteristic disorder-dependent density[20, 1]. This conductivity minimum phe-

nomenon was already apparent in the pioneering graphene experiments by Novoselov

and Geim[81, 7, 8], and was later studied extensively quantitatively[10, 9, 78, 54,

79, 80], and is now accepted as arising from the charged impurity disorder in-

duced inhomogeneous electron-hole density puddles which dominate the graphene

landscape[19, 52, 51] at low carrier density. These puddles of strong real-space

density inhomogeneities arise from the low-density failure of screening of the in-

dividual charged impurities with electrons/holes preferably accumulating near/far

from individual discrete impurities depending on the sign of the impurity charge[22].

Thus, as the gate voltage decreases, the average density decreases, but electron-hole

puddle formation leads to an effective saturation of the conductivity at some low

sample-dependent minimum value. The inhomogeneous puddles simply cut off the

𝜌 ∼ 1/𝑛 behavior of graphene resistivity for 𝑛 ≲ 𝑛∗ since the real 2D density across

the graphene sample never vanishes although the average density does, allowing

for percolating transport through the electron-hole puddles at the charge neutrality

point[20].

What would happen if the electron-hole puddles are somehow eliminated or

suppressed in the system? Within the semiclassical Boltzmann picture, the resis-

tivity will become very large as the average density is decreased by lowering the

gate voltage since the puddles leading to the low-density conductivity saturation

phenomenon no longer exist! This is a direct (and dramatic) manifestation of the
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gaplessness of graphene, and cannot happen in the semiconductors with band gaps.

The easiest way to eliminate (or suppress) the puddles is, of course, to reduce

the environmental charged impurity density (𝑛𝑖) which induces the puddles to start

with. But such a low-disorder system will necessarily manifest very low resistivity

(since 𝜌 ∝ 𝑛𝑖) at high carrier density (𝜌 ∝ 1/𝑛), but very high resistivity near the

Dirac point since 𝑛 → 0. If the puddles disappear completely, the resistivity will

diverge as 1/𝑛 as the carrier density decreases. Therefore, the disorder-by-order

phenomenon is peculiar to gapless graphene with its linear dispersion. It is obvious

from the above physically-motivated discussion based on a qualitative extension of

existing results in the literature[20, 1, 16, 22] that this counter-intuitive “disorder-

by-order” phenomenon would be more apparent if the inhomogeneous electron-hole

puddles could be further suppressed around the Dirac point by applying an external

screening potential through a gate which would screen out the puddles, as has been

successfully done in Ref. [41].

The above-discussed semiclassical “disorder-by-order” phenomenon has re-

cently been observed in the experiment of Ponomarenko et al. [41], who reported

monotonic increase of the graphene resistivity with decreasing carrier density in

an ultrapure sample on h-BN substrate. This remarkable resistivity enhancement

with decreasing density occurs only in the presence of a second nearby high-density

graphene layer which screens out the puddles, thus avoiding the “minimum-conductivity”

saturation phenomenon around the Dirac point.

In Fig. 4.3 we present our theoretically calculated transport results as a

function of average carrier density for the experimental situation studied by Pono-
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marenko et al. [41]. The different colors in Fig. 4.3 correspond to different tempera-

tures whereas different panels correspond to different electron-hole puddle configura-

tions characterized by the disorder induced potential fluctuation parameter ‘𝑠’ where

‘𝑠’ corresponds to the root mean square potential fluctuations in the probability dis-

tribution function 𝑃 (𝑉 ) for the impurity-induced disorder, 𝑃 (𝑉 ) ∼ 𝑒−𝑉 2/2𝑠2/
√
2𝜋𝑠2,

assumed to be Gaussian for simplicity – the Gaussian approximation is very accurate

compared with the realistic numerical calculations[22, 1] of 𝑃 (𝑉 ). The inhomogene-

ity parameter ‘𝑠’, which depends on the impurity disorder in the system, is directly

connected to the root-mean-square density fluctuation 𝑛𝑟𝑚𝑠 in the inhomogeneous

electron-hole puddles. The precise relationship between 𝑠 and 𝑛𝑟𝑚𝑠 can only be ob-

tained through a full numerical self-consistent calculation[22, 1], but within a simple

mean-field theory 𝑛𝑟𝑚𝑠 ∝ 𝑠2. We note that 𝑛𝑟𝑚𝑠 ∼ 𝑛∗ defines the cut-off for the

minimum conductivity 𝜎𝑚𝑖𝑛 ∼ 𝑛𝑟𝑚𝑠 ∼ 𝑠2 around the Dirac point as discussed above.

As 𝑠 → 0, 𝜌𝐶𝑁𝑃 = 1/𝜎𝑚𝑖𝑛 diverges as 𝑠−2 in mean field theory. We note that the

potential fluctuation 𝑠 (or equivalently, the root mean square density fluctuation

in the puddles) is being controlled by external gating through the second graphene

layer in Ref. [41], and the new feature of Ref. [41], not achieved before, is that 𝑠

could be made very small.

For the sake of comparison, we have reproduced in Fig. 4.3(f) the correspond-

ing experimental results from Ref. [41]. The agreement between our calculated

theoretical results and the experimental data is striking: In the presence of sub-

stantial (vanishing) electron-hole puddles characterized by larger (smaller) values of

the disorder fluctuation parameter 𝑠, the calculated 𝜌(𝑛) saturates (increases mono-
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Figure 3.3: Calculated 𝜌(𝑛) at different temperatures 𝑇 for 𝑛𝑖 = 16×1010 cm−2. (a)
The potential fluctuation parameter 𝑠 = 22 meV. (b) 𝑠 = 10 meV. (c) 𝑠 = 6.0 meV.
(d) 𝑠 = 1.0 meV. (e) 𝑠 = 0.1 meV. (f) Experimental data as shown in Ref. [41].
Comparison between (b) and (f) indicates a potential fluctuation parameter 𝑠 ∼ 10
mev in the experimental sample[41].
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tonically) at lower average carrier density exactly as observed experimentally in the

presence (absence) of the puddles. We emphasize that the theoretical results ob-

tained in Fig. 4.3 use exactly the same parameters for all cases except for varying

the value of the potential fluctuation parameter ‘𝑠’ as given in the figure (which

mimics the effect of the suppression of 𝑠 through screening by the second graphene

layer in Ref. [41]). One interesting prediction of our theory is that 𝜌(𝑛) never truly

diverges as 1/𝑛 in our theory as 𝑛 → 0 (unless 𝑠 = 0 exactly, which is unphysical)

since there is always a low-density cut-off 𝑛∗ defining the conductivity minimum

regime with 𝑛∗ decreasing with decreasing 𝑠. This low-density cut-off (and the cor-

responding “maximum resistivity” 𝜌𝑚𝑎𝑥) depends strongly on the puddle parameter

‘𝑠’ – the suppression of ‘𝑠’ dramatically increases (decreases) 𝜌𝑚𝑎𝑥(𝑛
∗).

Before discussing our results for the temperature dependence of the resistivity

𝜌(𝑇 ), we briefly discuss our transport theory [20, 1, 16, 22, 70, 40] for graphene

conductivity in the presence of electron-hole puddle induced strong density inhomo-

geneity. The conductivity is obtained by using the effective medium theory (EMT)

by solving the integral equation

∫
𝑑𝑛

𝜎(𝑛)− 𝜎𝐸𝑀𝑇

𝜎(𝑛) + 𝜎𝐸𝑀𝑇

𝑃 [𝑛] = 0 (3.2)

where 𝜎𝐸𝑀𝑇 is the effective conductivity of the sample and 𝜎(𝑛) is the density

𝑛(𝒓) dependent local conductivity with the carrier density 𝑛 having the distribution

𝑃 (𝑛) = exp[−(𝑛 − 𝑛0)
2/2𝑛2

𝑟𝑚𝑠]/
√

2𝜋𝑛2
𝑟𝑚𝑠 defining the electron-hole puddles – here

𝑛0 is the average density defined by the external gate voltage (i.e., 𝑛0 = 0 at the

charge neutral Dirac point) and 𝑛𝑟𝑚𝑠 is the root-mean-square density fluctuation
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due to the existence of density inhomogeneity associated with the puddles. We

calculate 𝜎(𝑛) using the finite-temperature Boltzmann-RPA transport theory using

screened random quenched charged impurity centers (of 2D concentration 𝑛𝑖) in

the environment as the resistive scattering mechanism. The Boltzmann transport

theory, which has been described in details elsewhere[1, 16, 70, 49, 68, 40] , in-

cludes five distinct temperature-dependent contributions: (1) thermal activation of

electron-hole occupancy (i.e. thermal excitation of electrons from the valence band

to the conduction band); (2) finite temperature thermal averaging around the Fermi

surface according to the Fermi distribution function; (3) the thermal activation of

carriers over the potential fluctuations associated with the electron-hole puddles; (4)

finite temperature screening by the carriers themselves; (5) phonon effects (which

are straightforward to include[57, 58], but are neglected here since electron-phonon

coupling is weak in graphene). The thermal effects (1)-(3) above produce ‘insulating’

temperature dependence, i.e., the temperature-dependent resistivity 𝜌(𝑇 ) increases

with decreasing 𝑇 , whereas the last two effects lead to a ‘metallic’ 𝜌(𝑇 ) decreasing

with decreasing temperature. All the thermal effects are suppressed with increasing

carrier density (or more precisely, increasing 𝐸𝐹 ), and they are the strongest at the

charge neutral Dirac point (where the nominal 𝐸𝐹 vanishes). We note that in our

figures, 𝜌 ≡ 𝜎−1
𝐸𝑀𝑇 whereas the density 𝑛 ≡ 𝑛0, i.e., the average density.

In Fig. 3.4 we depict our calculated 𝜌(𝑇 ) at fixed 𝑛 including puddle effects

(characterized by the parameter 𝑠) within the Boltzmann transport theory as de-

scribed above (and elsewhere[70, 49, 68, 40]). The calculated temperature dependent

resistivity is identical to the experimental observations of Ref. [41], as reproduced
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in our Fig. 4.3(f), with the Dirac point resistivity increasing strongly with lowering

temperature for smaller values of 𝑠 (i.e., when the potential fluctuations associated

with the electron-hole puddles are strongly suppressed) whereas the resistivity at

high carrier density manifesting almost temperature-independent behavior. We em-

phasize, however, that within our semiclassical transport theory, in spite of the very

strong increase of the Dirac point 𝜌(𝑇 ) with lowering 𝑇 for small 𝑠, eventually 𝜌(𝑇 )

saturates at some large 𝑠-dependent (and 𝑛𝑖-dependent) value at low enough 𝑇 ≪ 𝑠

even at the Dirac point – empirically we find that 𝜌(𝑇 ) at the Dirac point saturates

for 𝑇 ≲ 𝑠/5. Then, the Dirac point behavior of 𝜌(𝑇 ) for different values of 𝑠 is qual-

itatively similar if plotted as a function of 𝑘𝐵𝑇/𝑠. Therefore, one clear prediction

of our semiclassical theory is that at low enough temperatures the experimentally

measured 𝜌(𝑇 ) will always saturate even at the Dirac point, but the crossover tem-

perature for this saturation would be very low when the electron-hole puddles are

strongly suppressed. Thus, 𝜌(𝑛, 𝑇 ) in our theory would behave very much like a

density-tuned metal-insulator transition, as observed in Ref. [41], for all practical

purposes except that the temperature dependence would be a power law (and not

an exponential as in a strongly localized system), exactly as seen in Ref. [41].

3.2 Discussion

One point we should make clear here about the “disorder by order” phe-

nomenon is that it arises from the suppression of the electron-hole puddles associ-

ated with the density inhomogeneity around the Dirac point induced by Coulomb
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disorder, and not simply from an impurity-induced collisional broadening effect in

the graphene density of states. In particular, one may wonder whether the impurity

broadening effect leading to a finite carrier density of states at the Dirac point could

by itself lead to the disorder by order phenomenon since this would imply that a

cleaner system would have a lower density of states at the Dirac point and hence a

higher resistivity. While this is certainly true in general, i.e. when a material ex-

hibits a density of states minimum, addition of disorder leads to an increased density

of states near this minimum due to smearing which then leads to a higher Drude

conductivity, this is not the primary operational mechanism for the disorder by or-

der phenomenon. As we show in Appendix B, such an enhanced disorder-broadened

density of states indeed leads to higher conductivity near the Dirac point for more

disordered graphene samples, but the conductivity always vanishes at the Dirac

point (𝑛 = 0) in this situation as long as Coulomb disorder (i.e. random charged

impurities in the environment) is present in the system independent of whether

the density of states is zero or finite at the Dirac point. In our proposed order

by disorder mechanism, by contrast, the conductivity is always finite at the Dirac

point because of the disorder-induced inhomogeneous puddles except that this finite

minimum Dirac point conductivity arising from the puddles is much lower for the

more ordered systems than it is for the more disordered systems while the reverse is

true at high density. Thus, the presence (suppression) of puddles is the important

physics in our disorder by order mechanism, not the disorder-induced smearing of

the graphene density of states around the Dirac point. We discuss the issue of the

density of states smearing effect on the graphene conductivity in Appendix B.
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We now provide a critical discussion of our theory as applied to the experi-

mental observations of Ref. [41]. First, our results provide an excellent description

of the experimental observations with respect to the dependence of the measured

resistivity as a function of carrier density, temperature, and disorder associated with

the electron-hole puddles. Indeed, the agreement between our theory and the ex-

perimental data is striking, lending credence to our claim that the observation of

Ref. [41] is an experimental verification of our predicted “disorder by order” phe-

nomenon in monolayer graphene. A compelling point in this context is that the

analytical prediction of our theory at the Dirac point, 𝜌(𝑇 ) ∼ 𝑇−2 for 𝑇 > 𝑠, is

obeyed well both by our numerical results and by the experimental data of Ref. [41],

arguing in favor of the disorder by order phenomenon being operational in the exper-

imental observation in contrast to some other mechanism, e.g. localization, which

typically leads to exponential 𝑇 -dependence in the resistivity. In Ref. [41], the po-

tential fluctuations associated with electron-hole puddles in the graphene layer were

suppressed by a second close-by graphene layer with a very high carrier concen-

tration. We have verified by direct numerical simulations that such a suppression

can indeed be caused by the second high-density graphene layer separated by a

distance 𝑑 acting as a gate which screens the potential fluctuations reducing them

substantially below their pristine value arising from the random charged impurity

distribution. A simple electrostatic analytic calculation shows that the suppression

of 𝑠 would be approximately by a factor 1/(𝑘𝐹𝑑) when 𝑘𝐹𝑑 ≪ 1. For 𝑛 ∼ 1010 cm−1

and 𝑑 ∼ 1 nm, 𝑠 could thus be suppressed by a factor as large as 50! Thus our

basic picture of the suppression of the potential fluctuation parameter ‘𝑠’ leading to
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the disorder by order phenomenon at the Dirac point is applicable to Ref. [41]. In

Ref. [41], it is also found that the disorder-by-order phenomenon is itself suppressed

by the application of a weak magnetic field 𝐵 ∼ 10 mT. We mention that a magnetic

field 𝐵 ∼ 10 mT corresponds to a minimum Landau level energy separation ∼ 4

meV which is comparable to 𝐸𝐹 for 𝑛 ∼ 109 cm−2. Thus, a 10 mT magnetic field

is not a weak field at the Dirac point, which would nonperturbatively modify the

physics, considerably suppressing the disorder by order phenomenon.

We believe that the disorder by order phenomenon should occur in any Dirac

material with chiral gapless linear energy spectrum as long as quantum interference

effects are negligible, and as such, we predict the existence of the same phenomenon

in the 2D surface transport[82, 83] in 3D topological insulators provided that the

surface puddles are suppressed in the system and the temperature is not too low. In

fact, all gapless semiconductors will manifest the disorder by order phenomenon if

impurity-induced potential fluctuations can be suppressed in the low carrier density

regime. Indeed, we believe that some earlier graphene experiments [67, 66] observ-

ing anomalous temperature dependence of the Dirac point resistivity are observing

exactly the same disorder-by-order phenomenon as reported in Ref. [41] except that

the authors of Ref. [67, 66] interpret their observations as ballistic transport whereas

Ponomarenko et al. [41] invoke Anderson localization!
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Chapter 4

Graphene on SrTiO3

The substrate material has significant influence on graphene transport prop-

erties, which has been confirmed by many different experimental groups[9, 10, 46,

54, 13, 55, 21, 84, 78, 66, 85, 80]. The extensively used model [1, 16, 20, 24, 40] of

Coulomb disorder in the environment has earlier been found to provide a reason-

able theoretical description for graphene transport on SiO2 substrates from many

different groups [9, 10, 46, 54, 13, 55, 21, 84] as well as on several other substrates

[86, 80, 87]. In a recent paper [88], however, Couto et al. claim that the long-range

Coulomb impurities do not play an important role based on their measured conduc-

tivity, 𝜎(𝑛), of graphene at high carrier densities on SrTiO3 substrates. In addition,

they argued that their transport data can be explained quantitatively by a so-called

“resonant scattering” model [89, 18], which gives the following expression for the car-

rier density (𝑛) dependence of the conductivity 𝜎: 𝜎(𝑛) = 2𝑒2

𝜋ℎ
𝑛
𝑛𝑖
ln2(

√
𝑛𝜋𝑅2), where

𝑛𝑖, 𝑅 are respectively the concentration and the range of the resonant scattering

defects in graphene (see Fig. 4.1). Fig. 4.1(a) shows that the Dirac peaks measured

at all different temperatures overlap nearly perfectly despite the large change in

the background dielectric constant of the substrate [88] as shown in Fig. 4.2. The

measured dielectric constant 𝜀 is approximately 200 at room temperature and it
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Figure 4.1: (a) Resistance of graphene on SrTiO3 measured at different temperatures
between 250 mK and 50 K, as a function of carrier density. (b) Conductivity of
graphene on SrTiO3 as a function of 𝑛 (in log scale) at different temperatures. (c)
Fitting the experimental data by taking into account resonant scattering focusing
on high carrier density regime. Adapted from Fig. 2 of Ref. [88].

increases monotonically with lowering temperature, reaching 7000 at 4K [88]. In

addition, the value of 𝜀 strongly depends on the precise concentration of impurities

in the SrTiO3 crystals [88].

Motivated by this experiment[88], we revisit the question of the role of var-

ious types of disorder on different substrates in controlling the density-dependent

conductivity of graphene, comparing, in particular, the low- and high-density con-

ductivity limited by distinct scattering mechanisms. In particular, the low-density

graphene transport behavior on SrTiO3 (or for that matter, on any other substrate)

is likely to be always dominated by long-range Coulomb disorder, independent of the

other scattering mechanisms (e.g. short-range disorder, resonant scattering) which

may be operational at high carrier density. One important finding of this work is to

show that it is indeed possible for graphene transport to be determined by different

scattering mechanisms at low and high carrier densities, a result which has been
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Figure 4.2: Experimentally measured SrTiO3 substrates dielectric constant as a
function of temperature. Adapted from Fig. S1 in the Supplementary Information
of Ref. [88].

implicit in earlier works in this subject.

First, we note that a conductivity formula with 𝜎 ∼ 𝑛
𝑛𝑖
ln2(

√
𝑛/𝑛0) cannot, by

definition, qualitatively account for the most important aspect of graphene trans-

port, namely, the existence of the low-density minimum conductivity for a finite

range of density around the Dirac (i.e. charge neutrality) point. Thus, the res-

onant scattering model, even in the most favorable circumstances, can only be a

rather phenomenological data-fitting scheme for 𝜎(𝑛) in an intermediate density

range 𝑛𝑐 < 𝑛 < 𝑛0 where 𝑛𝑐 defines the density regime for the graphene minimum

conductivity plateau around the Dirac point (taken to be at 𝑛 = 0 in this comment)

and 𝑛0 ≡ (𝜋𝑅2)−1. Second, as no physical evidence for the existence of these “reso-

nant scattering” short-range atomic defects (with 𝑛𝑖 ∼ 3× 1011 cm−2) is presented

in Ref. [88] except for providing an intermediate-density phenomenological fit to

their conductivity data, it is not clear whether the resonant scattering is the only

scattering mechanism for graphene on SrTiO3.
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One interesting observation in Ref. [88] is the apparent absence of much tem-

perature dependence in the graphene conductivity while the substrate dielectric

constant 𝜅(𝑇 ) is changing substantially as a function of temperature as the sub-

strate material, i.e. SrTiO3 undergoes a paraelectric to ferroelectric transition with

the lowering of temperature. One possibility that cannot be ruled out in this con-

text is that the substrate impurity density is also changing substantially during this

temperature-induced substrate structural ferroelectric transition. In this work, we

explicitly incorporate such a possibility in the theory for disorder limited graphene

conductivity to compare with the data of Ref. [88]. We believe that the presence of

some background Coulomb disorder is essential for understanding the low-density

minimum conductivity behavior near the charge neutrality point in graphene on any

substrate.

In this chapter, we show our best theoretical fits to the data of Ref. [88] in

Fig. 4.3, finding that a dual model involving both Coulomb and resonant scattering

disorder can well explain the data of Ref. [88] with the single assumption of a variable

background charged impurity density with varying temperature. The assumption of

a temperature-dependent charged impurity density for SrTiO3 substrates is not an

arbitrary data fitting ploy because the complicated lattice ferroelectric properties

of SrTiO3 leading to the strong functional dependence of the dielectric constant on

temperature may very well also produce a temperature dependent charged impurity

density increasing strongly with decreasing temperature just as the actual carrier

density in graphene on SrTiO3 increases rapidly with decreasing temperature at a

fixed gate voltage (see Fig. 2 in the Supplementary Information of Ref. [88]).
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In the remainder of this chapter, we demonstrate that resonant scattering by

itself can never explain the experimental data in the whole carrier density range

for any substrate since the low-density minimum conductivity behavior cannot be

understood based on a model which includes only resonant scattering. We present

our best theoretical fits to the experimental data in Ref. [88] for SrTiO3 using the

new theory of long-range Coulomb disorder and the resonant scattering defects. We

establish that a simple model of a single type of scattering mechanism can not de-

scribe the transport data both at low and high carrier density for complex oxide

substrates. We also compare three different models to explain transport properties

of graphene on different substrates, finding that different behaviors of 𝜎(𝑛) for differ-

ent samples on different substrates are attributed to the competition among different

scattering sources. The main message of this chapter illustrated through concrete

calculations, but not emphasized explicitly in earlier works (although it might have

been implicit), is that the high-density transport in graphene is nonuniversal and

reflects the combination of various scattering processes arising from the substrate

whereas the low-density transport is always dominated by long-range Coulomb dis-

order. In addition to the SrTiO3 substrates used in Ref. [88], we also consider

graphene transport on several other common substrates (e.g. SiO2, h-BN, and vac-

uum) to make our point about the universality (nonuniversality) of the transport

behavior at low(high) densities.
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Figure 4.3: Fits to the experimental data of graphene on SrTiO3 (Fig. 2 of Ref. [88])
including Coulomb impurity 𝑛𝑖𝑚𝑝 and resonant impurity 𝑛𝑖. (a) Resistance 𝜌 as
a function of carrier density 𝑛. (b) Conductance 𝜎 as a function of 𝑛 (in semi-
logarithmic scale). (c) Conductance 𝜎 as a function of 𝑛 (in linear scale). The
solid (dashed) line is for the temperature 𝑇 = 0.25 (50) K, 𝜅 = 3500 (500) and
𝑛𝑖𝑚𝑝 = 3× 1014 (2× 1013 cm−2). Note that we use the theory presented in Ref. [40],
𝑠 denotes the potential fluctuation associated with the puddles induced by Coulomb
disorder [19, 22, 51, 53], the average distance of the charged impurity from the
graphene sheet used in (a), (b) and (c) is 𝑑 = 1 Å and the range of the resonant
scattering defects 𝑅 = 0.22 nm. Solid (red) dots represent the experimental data
extracted from Ref. [88].
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4.1 Theoretical formalism

In this section, we first discuss the effects of various scattering mechanisms

on the electronic transport of graphene. We will analyze four different sources of

disorder covering the various realistic possibilities for resistive disorder scattering

in graphene (a) randomly distributed long-range screened Coulomb impurity[1, 16,

20, 24], (b) short-range point defects[1], (c) resonant disorder[89, 18], and (d) corre-

lated long-range Coulomb impurity[44, 45] in the following. The inverse of the total

scattering time 1/𝜏𝑡𝑜𝑡 is the sum of different inverse scattering times due to various

scattering mechanisms at low temperatures. We further discuss three different mod-

els leading to the sub-linear behavior of 𝜎(𝑛) of graphene on various substrates: (1)

the standard model including randomly distributed Coulomb impurities and short-

range scattering mechanism; (2) the resonant scattering mechanism; (3) the recently

proposed correlated charged impurity model[44, 45]. We note that at densities above

the puddle-dominated density regime, the conductivity is strictly linear in carrier

density for scattering by long-range Coulomb disorder.

First, the scattering time due to randomly distributed charged impurity, de-

noted as 𝜏𝑖𝑚𝑝, is given by[1],

ℏ
𝜏𝑖𝑚𝑝(𝜖𝑝k)

= 2𝜋𝑛𝑖𝑚𝑝

∫
𝑑2𝑘′

(2𝜋)2

∣∣∣∣𝑣𝑖(𝑞)𝜀(𝑞)

∣∣∣∣2 𝑔(𝜃kk′)

× [1− cos 𝜃kk′ ] 𝛿(𝜖𝑝k′ − 𝜖𝑝k) (4.1)

where 𝜖𝑝k = 𝑝ℏ𝑣𝐹𝑘 is the energy of non-interacting Dirac fermion with the Fermi ve-

locity 𝑣𝐹 for the pseudospin state “𝑝” and 2D wave vector k, 𝜃kk′ is the scattering an-

gle between in- and out- wave vectors k and k′, q = k− k′, 𝑔(𝜃kk′) = [1 + cos 𝜃kk′ ] /2
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is a wave function form factor associated with the chiral matrix of monolayer

graphene (and is determined by its band dispersion relation). 𝑛𝑖𝑚𝑝 is the 2D density

of the randomly distributed screened Coulomb impurity[14]. 𝑣𝑖(𝑞) = 2𝜋𝑒2/(𝜅𝑞) is

the Fourier transform of the two-dimensional (2D) Coulomb potential in an effective

background dielectric constant 𝜅, 𝜀(𝑞) is the static dielectric function of graphene

within random-phase approximation (RPA)[17]. This long-range Coulomb disorder

leads to the linear density dependent conductivity at low temperatures, [1].

𝜎𝑖𝑚𝑝 =
𝑒2

ℎ

𝑛

2𝑛𝑖𝑚𝑝𝑟2𝑠𝐺1(𝑟𝑠)
(4.2)

where 𝑟𝑠 = 𝑒2/(ℏ𝑣𝐹𝜅) is graphene fine structure constant and 𝐺1(𝑥) = 𝜋
4
+ 6𝑥 −

6𝜋𝑥2+4𝑥(6𝑥2−1)𝑔(𝑥) with 𝑔(𝑥) = sech−1(2𝑥)/
√
1− 4𝑥2 for 𝑥 < 1

2
and sec−1(2𝑥)/

√
4𝑥2 − 1

for 𝑥 > 1
2
.

We then provide the short-range disorder scattering time 𝜏𝑠𝑑, given by[1]

ℏ
𝜏𝑠𝑑(𝜖k)

=
𝑘

4ℏ𝑣𝐹
𝑛𝑠𝑑𝑉

2
0 (4.3)

where 𝑛𝑠𝑑 is the 2D short-range impurity density and 𝑉0 is a constant short-range (i.e.

a 𝛿-function in real space) potential strength. The conductivity at low temperature

induced by this short-range impurity has the following form,

𝜎𝑠𝑑 =
8𝑒2

ℎ

(ℏ𝑣𝐹 )2

𝑛𝑠𝑑𝑉 2
0

(4.4)

which is independent of carrier density (𝜎(𝑛) ∼ constant).

The scattering time due to resonant defects 𝜏𝑖 has been shown to have the

following form[89, 18]

1

𝜏𝑖(𝜖k)
=

𝜋2𝑣𝐹𝑛𝑖

𝑘(ln 𝑘𝑅)2
(4.5)
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where 𝑛𝑖 is the concentration of the resonant defects and 𝑅 is the potential range

of the resonant scattering defects. The logarithmic term in the scattering time of

resonant defects gives rise to the sublinear density dependent conductivity[89, 18],

𝜎𝑖 =
2𝑒2

𝜋ℎ

𝑛

𝑛𝑖

ln2(
√
𝑛𝜋𝑅2) (4.6)

We now turn to the discussion of the scattering time due to the spatially

correlated charged impurity 𝜏𝑐 is given by[44, 45]

ℏ
𝜏𝑐(𝜖𝑝k)

= 2𝜋𝑛𝑖𝑚𝑝

∫
𝑑2𝑘′

(2𝜋)2

∣∣∣∣𝑣𝑖(𝑞)𝜀(𝑞)

∣∣∣∣2 𝑆(𝑞)
× 𝑔(𝜃kk′) [1− cos 𝜃kk′ ] 𝛿(𝜖𝑝k′ − 𝜖𝑝k) (4.7)

where 𝑆(𝑞) = 1 − 2𝜋𝑛𝑖𝑚𝑝
𝑟0
𝑞
𝐽1(𝑞𝑟0) is the structure factor using the simple contin-

uum analytic model[44, 45], 𝐽1(𝑥) is the Bessel function of the first kind and the

correlation effects is defined by the length scale 𝑟0 < 𝑟𝑖 ≡ (𝜋𝑛𝑖𝑚𝑝)
−1/2, the so-called

correlation length. The asymptotic form of conductivity at low “𝑘𝐹” arising from

correlated long-range Coulomb disorder is found to be[44, 45],

𝜎𝑐 =
𝑒2

ℎ

𝑛

2𝑛𝑖𝑚𝑝𝑟2𝑠𝐺1(𝑟𝑠)

1

1− 𝑎+𝐵𝑎2𝑛/𝑛𝑖𝑚𝑝

(4.8)

where 𝑎 = 𝜋𝑛𝑖𝑚𝑝𝑟
2
0 and 𝐵 = 𝐺2(𝑟𝑠)/[2𝐺1(𝑟𝑠)] with 𝐺2(𝑦) =

𝜋
16
− 4𝑦

3
+3𝜋𝑦2+40𝑦3[1−

𝜋𝑦 + 4
5
(5𝑦2 − 1)]𝑔(𝑦). The correlated Coulomb disorder also leads to a sub-linear

density-dependent conductivity, which was adopted to explain the enhancement of

both sublinearity of 𝜎(𝑛) and mobility reported in Ref. [90].

Comparing different scattering mechanisms discussed above, it is obvious that

the long-range Coulomb disorder dominates 𝜎(𝑛) at low carrier density since the

corresponding scattering rate is asymptotically the largest in the vanishing density
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Figure 4.4: Theoretical fits to 𝜎(𝑛) for graphene on other substrates. The solid line
is the fit including Coulomb impurity 𝑛𝑖𝑚𝑝 and short-range point defect 𝑛𝑠𝑑𝑉

2
0 . The

dashed line is the fit including Coulomb impurity 𝑛𝑖𝑚𝑝 and resonant impurity 𝑛𝑖.
(a) Fits to the 𝜎(𝑛) data for graphene on SiO2 (Fig. 2 of Ref. [78]). The potential
fluctuation 𝑠 = 55 meV, the effective dielectric constant 𝜅 = 2.45, and the average
distance of the charged impurity from the graphene sheet is 𝑑 = 1 Å. (b) Fits to the
𝜎(𝑛) data of suspended graphene (Fig. 3(c) of Ref. [11]). The potential fluctuation
𝑠 = 10 meV, the temperature 𝑇 = 5 K, the dielectric constant 𝜅 = 1.0, and the
average distance of the charged impurity from the graphene sheet is 𝑑 = 1 Å.

limit, implying that as the density decreases, only Coulomb disorder would matter

near the Dirac point. The long-range Coulomb disorder is also essential in order to

explain the electron-hole puddle induced low-density minimum conductivity[1]. In

addition to the resonant and correlated long-range Coulomb scattering, we note that

a standard model involving both long-range (𝜎(𝑛) ∼ 𝑛) and short-range scatterers

can explain the sublinearity of 𝜎(𝑛) at higher carrier density, which has successfully

explain the conductivity of graphene on boron nitride substrates[87]. We argue

that the sample dependent 𝜎(𝑛) at high carrier density may well arise from the

competition between different scattering mechanisms.
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4.2 Numerical results

In this section, we show our theoretical fits to some representative 𝜎(𝑛) data for

graphene on four different substrates. The analytical formula for 𝜎(𝑛) shown in the

last section are calculated for homogeneous systems. To capture the inhomogeneous

nature of the graphene landscape close to the charge neutrality point (CNP), we

assume a Gaussian form of potential fluctuation, parametrized by “𝑠” and apply

the effective medium theory of conductance with binary mixture of component,

i.e., electron-hole puddles, the details of which have been given in Ref. [40]. The

minimum conductivity plateau of the puddle dominated regime in graphene around

the charge neutrality point is just well-captured in our theory.

In Fig. 4.3, we show our best theoretical fits to graphene transport data of

Ref. [88], using a dual scattering models: the new theory of long-range Coulomb

disorder and the resonant scattering defects, which give 𝜎(𝑛) ∼ 𝑛 ln2(
√
𝑛𝜋𝑅2). The

Coulomb disorder theory of transport follows Ref. [40] and includes the effect of

Coulomb disorder-induced electron-hole puddles through the potential fluctuation

parameter “s”. The new model explains the conductivity of graphene on SrTiO3 in

the whole range of carrier density. Couto et al. in Ref. [88] pointed out that at fixed

value of external gate voltage, the carrier density 𝑛 and the dielectric constant of

SrTiO3 substrate would increase by approximately one order of magnitude as the

temperature is lowered from 50 K down to 250 mK, which may also lead to the

temperature-dependent charged impurity density. Resonant scattering may account

for the conductivity of graphene on SrTiO3 away from the Dirac point. Note, how-
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ever, that Coulomb disorder induced electron-hole puddles, which give rise to the

existence of minimum conductivity, dominate the transport properties of graphene

on SrTiO3 close to the Dirac point and thus some charged impurity scattering must

be present in the samples of Ref. [88].

In Fig. 4.4, we present the comparison of the 𝜎(𝑛) results between the standard

model and the new model for graphene on SiO2 substrate [78] and the suspended

graphene[67, 11]. Both models can fit the experimental data very well. Fig. 4.4

shows that the above mentioned two distinct dual scattering models are equally

successful in describing the experimental data for both SiO2-based and suspended

graphene, and there is no particular reason, within the transport data fitting scheme

without additional information, to preferably choose one model over the other. We

mention that the parameters of the models (𝑛𝑖𝑚𝑝, 𝑛𝑠𝑑𝑉
2
0 in the standard model

and 𝑛𝑖𝑚𝑝, 𝑛𝑖 in the new model) are not absolutely unique, and it is possible to get

equivalent fits by adjusting the parameter sets somewhat. This is expected because

𝜎(𝑛) is a smooth function at higher density and somewhat different parameter sets

for disorder cannot be distinguished since the models have only qualitative and semi-

quantitative predictive power. We emphasize, however, that the resonant scattering

model by itself cannot explain the minimum conductivity phenomenon around the

charge neutrality point in graphene, existing all the way to the room temperature

and above, which is a generic observation for graphene on all substrates.

In Fig. 4.5(a), we compare the theoretical fits between the new model and

the correlated disorder model proposed in Ref. [44, 45] for suspended graphene.

Because the annealing procedure is routinely used in preparing suspended graphene

77



0.5 1 1.5 2

n (10
12

 cm
-2

)

0

50

100

150

200

σ 
(e

2 /h
)

1 2 3

n (10
12

 cm
-2

)

0

50

100

150

200

250

300

σ 
(e

2 /h
)

(a) (b)Suspended h-BN

T = 5 K T = 7.2 K
κ = 1 κ = 4

R = 0.22 nm
r0 = 16a0

ni = 1.0 × 1010 cm−2

nsdV
2

0 = 0.78 (eV·Å)2
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Figure 4.5: (a) Fits to the 𝜎(𝑛) data of suspended graphene (Fig. 3(c) of Ref. [11]).
The solid line is the fit including the Coulomb impurity 𝑛𝑖𝑚𝑝 = 0.15 × 1010 cm−2

and resonant scattering 𝑛𝑖. The dashed line is the fit including correlated Coulomb
impurity 𝑛𝑖𝑚𝑝 = 1.6 × 1010 cm−2 and correlation length 𝑟0 = 60𝑎0 with 𝑎0 = 4.92
Å. (b) Fits to the 𝜎(𝑛) data for graphene on boron nitride (Fig. 3(a) of Ref. [85]).
The solid line is the fit including Coulomb impurity 𝑛𝑖𝑚𝑝 = 1.4 × 1011 cm−2 and
short-range point defect 𝑛𝑠𝑑𝑉

2
0 , the potential fluctuation 𝑠 = 44 meV. The dashed

line is the fit including correlated Coulomb impurity 𝑛𝑖𝑚𝑝 = 3.7 × 1011 cm−2, and
the potential fluctuation 𝑠 = 38 meV. Note that the average distance of the charged
impurity from the graphene sheet used in (a) and (b) is 𝑑 = 0 Å.

samples, it is very likely to introduce some spatial correlation among the Coulomb

impurities. In Fig. 4.5(b), we compare the standard model with the correlated

disorder model for graphene on hexagonal boron nitride (h-BN) substrate. Graphene

on boron nitride may also induce some inter-impurity correlations imposed by the

similarity between boron nitride and graphene lattice structure. We know, from

Fig. 4.5, all of these three models can give reasonable fits to the experimental data

of the density-dependent conductivity. They capture the experimentally observed

strong-nonlinearity in the density-dependent conductivity 𝜎(𝑛). The long-range

Coulomb impurity leads to the density inhomogeneity in the graphene system, which

is essential in explaining the conductivity plateau close to the Dirac point.
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4.3 Discussion

We argue that the resonant scattering theory with 𝜎 ∼ 𝑛
𝑛𝑖
ln2(

√
𝑛/𝑛0) predicts

a vanishing of graphene conductivity as the carrier density approaches the Dirac

point (𝑛 = 0) which is not observed in the experiments of Ref. [88], where 𝜎(𝑛)

becomes an approximate constant at low density around the Dirac point in complete

contrast with the resonant scattering predictions and thus, the resonant scattering

theory cannot obviously be the complete story underlying the transport mechanisms

in Ref. [88]. We emphasize that the high-density behavior of 𝜎(𝑛) in graphene is, in

general, known [1] to be nonuniversal with different samples on different substrates

showing different behaviors [9, 10, 46, 54, 13, 55, 21, 84] arising from the competition

among Coulomb disorder, short-range disorder, ripples, and (perhaps even) resonant

scattering disorder. It is entirely possible that the transport data of Ref. [88] is best

described by a combination of Coulomb disorder and resonant scattering, where

the low-density minimum conductivity arises from the Coulomb disorder and the

intermediate (sublinear in) density conductivity arises from resonant scattering as

shown in Fig.4.3, assuming dual independent scattering by charged impurity and

resonant scattering centers. The fact that we get excellent agreement over the whole

density range of the experimental data indicates that our dual scattering model is

a more reasonable description than the pure resonant scattering model. We have

also obtained similar good theoretical fits to the existing graphene data as shown

in Fig. 4.4 and 4.5. Thus, the possibility that the resonant scattering mechanism is

operational at some level in graphene transport at higher densities on any substrate
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(not just SrTiO3) cannot definitively be ruled out as we show by considering several

different substrates. What can be stated rather definitively is that the low-density

transport must always be dominated in graphene by charged impurity scattering.
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Chapter 5

Effect of charged impurity correlations on

transport in monolayer and bilayer graphene

The scaling of the conductivity 𝜎 as a function of gate-voltage, proportional

to the average carrier density 𝑛, is invaluable in characterizing the properties of

graphene [81]. The functional dependence of 𝜎(𝑛) at low temperatures contains in-

formation [1, 4] about the nature of disorder in the graphene environment (i.e.,

quenched charged impurity centers, lattice defects[91], interface roughness [92],

ripples[93, 94], resonant scattering centers [89, 95, 96, 18], etc.) giving rise to the

dominant scattering mechanism. At finite temperatures electron-phonon scattering

contributes to the resistivity [97, 57, 58]. However, in graphene the electron-phonon

scattering is very weak and it becomes important only at relatively high temper-

atures (≳ 400𝐾), as evidence also from the fact that around room temperature

the temperature dependence of 𝜎 appears to be dominated by activation processes

[40, 21]. The quantitative weakness of the electron-phonon interaction in graphene

gives particular impetus to a thorough understanding of the disorder mechanisms

limiting graphene conductivity since this may enable substantial enhancement of

room temperature graphene-based device for technological applications. This is in

sharp contrast to other high-mobility 2D systems such as GaAs-based devices whose
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room-temperature mobility could be orders of magnitude lower than the correspond-

ing low-temperature disorder-limited mobility due to strong carrier scattering by

phonons[98]. Therefore, a complete understanding of the disorder mechanisms con-

trolling 𝜎(𝑛) in graphene at 𝑇 = 0 is of utmost importance both from a fundamental

and a technological prospective.

The experimental study of 𝜎(𝑛) in gated graphene goes back to the original

discovery of 2D graphene,[81, 8] and is a true landmark in the physics of electronic

materials. Essentially, all experimental work on graphene begins with a charac-

terization of 𝜎(𝑛) and the mobility, 𝜇 = 𝜎/(𝑛𝑒). A great deal is therefore known

[81, 8, 9, 10, 11, 12] about the experimental properties of 𝜎(𝑛) in graphene. The

most important features of the experimentally observed 𝜎(𝑛) [7, 8, 9, 10, 11, 12, 13]

in monolayer graphene (MLG) are: (1) a non-universal sample-dependent minimum

conductivity 𝜎(𝑛 ≈ 0) ≡ 𝜎𝑚𝑖𝑛 at the charge neutrality point (CNP) where the aver-

age carrier density vanishes; (2) a linearly increasing, 𝜎(𝑛) ∝ 𝑛 , conductivity with

increasing carrier density on both sides of the CNP upto some sample dependent

characteristic carrier density; (3) a sublinear 𝜎(𝑛) for high carrier density, making

it appear that the very high density 𝜎(𝑛) may be saturating.

To explain the above features of 𝜎(𝑛) a model has been proposed [1, 20, 24, 16,

15, 77] with two distinct scattering mechanisms: the long-range Coulomb disorder

due to random background charged impurities and static zero-range (often called

“short-range”) disorder. The net graphene conductivity with these two scattering

sources is then given by 𝜎 ≡ 𝜌−1 = (𝜌𝑐 + 𝜌𝑠)
−1, where 𝜌𝑐 and 𝜌𝑠 are resistivities

arising respectively from charged impurity and short-range disorder. It has been
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shown that [1, 20, 24, 16, 15, 77] 𝜌𝑐 ∼ 1/𝑛 and 𝜌𝑠 ∼ constant in graphene, leading

to 𝜎(𝑛) going as

𝜎(𝑛) =
𝑛

𝐴+ 𝐶𝑛
, (5.1)

where the density independent constants 𝐴 and 𝐶 are known [1] as functions of disor-

der parameters; 𝐴, arising from Coulomb disorder, depends on the impurity density

(𝑛𝑖) (and also weakly on their locations in space) and the background dielectric

constant (𝜅) whereas the constant 𝐶, arising from the short-range disorder [1, 16],

depends on the strength of the white-noise disorder characterizing the zero-range

scattering. Eq. (5.1) clearly manifests the observed 𝜎(𝑛) behavior of graphene for

𝑛 ∕= 0 since 𝜎(𝑛 ≪ 𝐴/𝐶) ∼ 𝑛, and 𝜎(𝑛 ≫ 𝐴/𝐶) ∼ 1/𝐶 with 𝜎(𝑛) showing sublinear

(𝐶 + 𝐴/𝑛)−1 behavior for 𝑛 ∼ 𝐴/𝐶.

The above-discussed scenario for disorder-limited graphene conductivity, with

both long-range and short-range disorder playing important qualitative roles at in-

termediate (𝑛𝑖 ≲ 𝑛 ⩽ 𝐴/𝐶) and high (𝑛 > 𝐴/𝐶) carrier densities respectively, has

been experimentally verified by several groups [9, 10, 11, 12, 13]. There have been

occasional puzzling conductivity measurements [e.g., Ref. [99, 100] reported in the

literature which do not appear to be explained by the standard model of independent

dual scattering by long- and short-range disorder playing equivalent roles.

Recently, we propose a novel theoretical model in Ref. [44] that is able to

semiquantitatively explain all the major features of 𝜎(𝑛) observed experimentally

assuming only the presence of charged impurities. The key insight on which the

model relies is the fact that in experiments, in which the samples are prepared at
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room temperature and are often also current annealed, it is very likely that spatial

correlations are present among the charged impurities. In particular this model is

able to explain the linear (sublinear) scaling of 𝜎(𝑛) in MLG at low (high) 𝑛 without

assuming the presence of short-range scattering centers.

In this work, we theoretically revisit graphene transport properties as a func-

tion of carrier density, taking into account possible correlations in the spatial distri-

bution of the Coulomb impurity disorder in the environment. We then extend it to

the case of BLG. We find that the presence of spatial-correlations among impurities

is able to explain a crossover of the scaling of 𝜎(𝑛) from low 𝑛 to high 𝑛 in both MLG

and BLG, as observed in experiments, and that, because of the spatial correlations,

𝜎 depends non-monotonically on the impurity density 𝑛𝑖.

In this chapter, we first present the model and the results for the structure

factor 𝑆(q) that characterizes the impurity correlations. With the structure factor

calculated in Sec. 5.1 we provide the transport theory in Section 5.2 and Section

5.3. We study the density-dependent conductivity 𝜎(𝑛) of monolayer graphene in

the presence of correlated charged impurities. We calculate 𝜎(𝑛) at higher carrier

density using the Boltzmann transport theory. We also evaluate 𝜎(𝑛) applying both

Thomas-Fermi-Dirac theory [22] and effective medium theory [24] to characterize

the strong carrier density inhomogeneities close to the charge neutrality point. In

Section 5.3, we apply the Boltzmann transport theory and the effective medium

theory for correlated disorder to bilayer graphene and discuss the qualitative sim-

ilarities and the quantitative differences between monolayer and bilayer graphene.

We briefly discuss the experimental situation at the end of this chapter.
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5.1 Structure factor 𝑆(q) of Correlated disorder

In this section we describe the model used to calculate the structure factor

𝑆(q) for the charged impurities. We then present results for 𝑆(q) obtained using

this model via Monte Carlo simulations. The Monte Carlo results are then used to

build a simple continuum approximation for 𝑆(q), which captures all the features

of 𝑆(q) that are relevant for the calculation of 𝜎(𝑛).

5.1.1 Model for the structure factor 𝑆(q)

To calculate 𝑆(q) we follow the procedure presented in Ref. [101], adapted

to the case of a honeycomb structure. The approach was applied to study the

effects of impurity scattering in GaAs heterojunctions and successfully explained

the experimental observation of high-mobilities (e.g. greater than 107 cm2/(V⋅s)) in

modulation-doped GaAs heterostructures. The possible charged impurity positions

on graphene form a triangular lattice specified by r𝐿𝑀 = a𝐿 + b𝑀 . The vectors

a = (1, 0)𝑎0 and b = (
√
3/2, 1/2)𝑎0 defined in the x-y plane, with 𝑎0 = 4.92Å, which

is two times the graphene lattice constant since the most densely packed phase of

impurity atoms (e.g. K as in Ref. [10]) on graphene is likely to be an 𝑚×𝑚 phase

with 𝑚 = 2 for K [102]. The structure factor, including the Bragg scattering term,

is given by the following equation:

𝑆(q) =
1

𝑁𝑖

⟨
∑
𝑖,𝑗

𝑒𝑖q⋅(r𝑖−r𝑗⟩ (5.2)

where r𝑖, r𝑗 are the random positions on the lattice rLM of the charged impurities

and the angle brackets denote averages over disorder realizations. Introducing the
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fractional occupation 𝑓 ≡ 𝑁𝑖/𝑁 of the total number of available lattice sites 𝑁 by

the number of charged impurities 𝑁𝑖, and the site occupation factor 𝜖𝐿𝑀 equal to 1

if site r𝑙 is occupied or zero if unoccupied, we can rewrite Eq. (5.2) as

𝑆(q) =
1

𝑓

∑
𝐿𝑀

⟨𝜖𝐿𝑀𝜖0⟩𝑒𝑖q⋅r𝐿𝑀 (5.3)

in which the sum is now over all the available lattice sites (not only the ones occupied

by the impurities). By letting 𝐶𝐿𝑀 ≡ ⟨𝜖𝐿𝑀𝜖0⟩/𝑓2 we can rewrite Eq. (5.3) as:

𝑆(q) = 𝑓
∑
𝐿𝑀

𝐶𝐿𝑀𝑒𝑖q⋅r𝐿𝑀 . (5.4)

We then subtract the Bragg scattering term from this expression considering that

it does not contribute to the resistivity obtaining

𝑆(q) = 𝑓
∑
𝐿𝑀

(𝐶𝐿𝑀 − 1)𝑒𝑖q⋅r𝐿𝑀 . (5.5)

It is straightforward to see that for the totally random case, the structure factor

is given by 𝑆(q) = 1 − 𝑓 and 𝑛𝑖 ≃ 4.8𝑓 × 1014cm−2. For the correlated case we

assume that two impurities cannot be closer than a given length 𝑟0 < 𝑟𝑖 ≡ (𝜋𝑛𝑖)
−1/2

defined as the correlation length. This model is motivated by the fact that two

charged impurities cannot be arbitrarily close to each other because the Coulomb

repulsion among the impurities during device growth and there must be a minimum

separation between them.

5.1.2 Monte Carlo results for 𝑆(q)

Using Monte Carlo simulations carried out on a 200 × 200 triangular lattice

with 106 averaging runs and periodic boundary conditions we have calculated the
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Figure 5.1: (a) Density plot of the structure factor 𝑆(q) obtained from Monte
Carlo simulations for 𝑎0 = 4.92 𝐴̊ and 𝑟0 = 5𝑎0. (a) 𝑛𝑖 = 0.95 × 1012 cm−2; (b)
𝑛𝑖 = 4.8× 1012 cm−2.

structure factor given by Eq. (5.5). In the Monte Carlo calculation a lattice site is

chosen randomly and becomes occupied only if it is initially unoccupied and has no

nearest neighbors within the correlation length 𝑟0. This process is repeated until the

required fractional occupation for a given impurity density is obtained. Once the

configuration is generated, the 𝐶𝐿𝑀 can be numerically determined after doing the

ensemble average. In the numerical calculations, we use only statistically significant

𝐶𝐿𝑀 , i.e., ∣r𝐿𝑀 − r00∣ ≤ 3𝑟0, since 𝐶𝐿𝑀 is essential unity for ∣r𝐿𝑀 − r00∣ > 3𝑟0.

In Fig. 5.1, we present a contour plot of the structure factor 𝑆(q) obtained

from the Monte Carlo simulations for two different values of the impurity density.

For 𝑟0 ∕= 0 the structure factor is suppressed at small momenta. Moreover the

suppression of 𝑆(q) at small momenta is more pronounced, for fixed 𝑟0, as 𝑛𝑖 is

increased as can be seen comparing the two panels of Fig. 5.1. The magnitude of

𝑆(q) at small q mostly determines the d.c. conductivity and therefore, from the

results of Fig. 5.1, is evident that the presence of spatial correlations among the

charged impurities will strongly affect the value of the conductivity.

87



5.1.3 Continuum model for 𝑆(q)

Given that the value of the d.c. conductivity depends almost entirely on the

value of 𝑆(q) at small momenta, as discussed in Sections 5.2 and 5.3, it is convenient

to introduce a simple continuum model, which is able to reproduce for small q the

structure factor obtained via Monte Carlo simulations. A reasonable continuum

approximation to the above discrete lattice model is given by the following pair

distribution function 𝑔(r) (r is a 2D vector in the graphene plane),

𝑔(r) =

⎧⎨⎩
0 ∣r∣ ≤ 𝑟0

1 ∣r∣ > 𝑟0

. (5.6)

for the impurity density distribution. In terms of the pair correlation function 𝑔(r)

the structure factor is given by:

𝑆(q) = 1 + 𝑛𝑖

∫
𝑑2𝑟𝑒𝑖q⋅r[𝑔(r)− 1] (5.7)

For uncorrelated random impurity scattering, as in the standard theory, 𝑔(r) = 1

always, and 𝑆(q) ≡ 1. With Eqs. (5.6) and (5.7), we have

𝑆(𝑞) = 1− 2𝜋𝑛𝑖
𝑟0
𝑞
𝐽1(𝑞𝑟0) (5.8)

where 𝐽1(𝑥) is the Bessel function of the first kind. Fig. 5.2 shows 𝑆(q) obtained

both via Monte Carlo simulations and by using the simple continuum analytic model

[Eq. (5.8)] for a few values of 𝑟0 and 𝑛𝑖. We can see that the continuum model

reproduces extremely well the dependence of the structure factor on q for small

momenta, i.e. the region in momentum space that is relevant for the calculation of

𝜎.
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Figure 5.2: (a) and (b) show the calculated structure factor 𝑆(q) for two values of
impurity density 𝑛𝑖. (a) 𝑛𝑖 = 0.95× 1012 cm−2; (b) 𝑛𝑖 = 4.8× 1012 cm−2. The solid
lines show 𝑆(q) using Eq. (5.8). Dot-dashed and dashed lines show the Monte Carlo
results for two different directions of q from 𝑥-axis, 𝜃 = 0 and 𝜃 = 30∘, respectively.

5.2 Monolayer graphene conductivity

In this section, we explore how the spatial correlations among charged impu-

rities affect monolayer graphene transport properties. To minimize the parameters

entering the model we assume the charged impurities to be in a 2D plane placed at

an effective distance 𝑑 from the graphene sheet (and parallel to it).

We first study the density-dependent conductivity in monolayer graphene

transport for large carrier densities (𝑛 ≫ 𝑛𝑖) using the Boltzmann transport theory,

where the density fluctuations of the system can be ignored. We then discuss 𝜎(𝑛)

close to the charge neutrality point, where the graphene landscape breaks up into

puddles [19, 22, 51, 52, 103, 53] of electrons and holes due to the effect of the charged

impurities using the effective medium theory developed in Ref. [24].
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5.2.1 High density: Boltzmann transport theory

Using the Boltzmann theory for the carrier conductivity at temperature 𝑇 = 0

we have

𝜎 =
𝑒2

ℎ

𝑔𝐸𝐹 𝜏(𝐸𝐹 )

2ℏ
, (5.9)

where 𝐸𝐹 is the Fermi energy, 𝑔 = 4 is the total degeneracy of graphene, and

𝜏 is the transport relaxation time at the Fermi energy obtained using the Born

approximation. The scattering time at 𝑇 = 0 due to the disorder potential created

by charged impurities taking into account the spatial correlations among impurities

is given by [17, 40]:

ℏ
𝜏(𝜖𝑝k)

= 2𝜋𝑛𝑖

∫
𝑑2𝑘′

(2𝜋)2

[
𝑉 (∣k− k′∣)
𝜀(∣k− k′∣)

]2
𝑆(k− k′)

× 𝑔(𝜃kk′) [1− cos 𝜃kk′ ] 𝛿(𝜖𝑝k′ − 𝜖𝑝k) (5.10)

where 𝑉 (𝑞) = 2𝜋𝑒2/𝜅𝑞𝑒−𝑞𝑑 is the Fourier transformation of the 2D Coulomb po-

tential created by a single charged impurity in an effective background dielectric

constant 𝜅, 𝜀(𝑞) is the static dielectric function, 𝜖𝑠k = 𝑠ℏ𝑣𝐹𝑘 is the carrier en-

ergy for the pseudospin state “𝑠”, 𝑣𝐹 is graphene Fermi velocity, k is the 2D wave

vector, 𝜃kk′ is the scattering angle between in- and out- wave vectors k and k′,

𝑔(𝜃kk′) = [1 + cos 𝜃kk′ ] /2 is a wave function form-factor associated with the chiral

nature of MLG (and is determined by its band structure). The two dimensional

static dielectric function 𝜀(𝑞) is calculated within the random phase approximation
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(RPA) [17], and given by

𝜀(𝑞) =

⎧⎨⎩
1 +

4𝑘𝐹 𝑟𝑠
𝑞

if 𝑞 < 2𝑘𝐹

1 +
𝜋𝑟𝑠
2

if 𝑞 > 2𝑘𝐹

(5.11)

After simplifying Eq. 5.10, the relaxation time in the presence of correlated

disorder is given by:

ℏ
𝜏
=

(
𝜋𝑛𝑖ℏ𝑣𝐹
4𝑘𝐹

)
𝑟2𝑠

∫
𝑑𝜃 (1− cos2 𝜃)(
sin 𝜃

2
+ 2𝑟𝑠

)2 𝑆(2𝑘𝐹 sin
𝜃

2
), (5.12)

where 𝑘𝐹 is the Fermi wavevector (𝑘𝐹 = 𝐸𝐹/(ℏ𝑣𝐹 )), and 𝑟𝑠 is the graphene fine

structure constant (𝑟𝑠 = 𝑒2/(ℏ𝑣𝐹𝜅) ≃ 0.8 for graphene on a SiO2 substrate). For

uncorrelated random impurity scattering (i.e., 𝑟0 = 0, 𝑔(r) = 1, and 𝑆(q) ≡ 1)

we recover the standard formula for Boltzmann conductivity by screened random

charged impurity centers [16, 15, 77], where the conductivity is a linear function of

carrier density.

By approximating the structure factor 𝑆(2𝑘𝐹 sin 𝜃/2) that appears in (5.12)

by a Taylor expansion around 𝑘𝐹 sin 𝜃/2 = 0 it is possible to obtain an analytical

expression for 𝜎(𝑛) that allows us to gain some insight on how the spatial correlation

among charged impurities affect the conductivity in MLG. Expanding 𝐽1(𝑥) in Eq.

5.8 around 𝑥 ∼ 0 to third order

𝐽1(𝑥) ≃ 𝑥

2
− 𝑥3

16
. (5.13)

from Eq. (5.12) we obtain:

ℏ
𝜏
≃ 4𝜋𝑛𝑖ℏ𝑣𝐹

𝑘𝐹
𝑟2𝑠

[
𝐺1(𝑟𝑠)

(
1− 𝜋𝑛𝑖𝑟

2
0

)
+𝐺2(𝑟𝑠)

𝜋𝑛𝑖𝑘
2
𝐹 𝑟

4
0

2

]
, (5.14)
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where the dimensionless functions 𝐺1(𝑥) and 𝐺2(𝑥) are given by, [104]

𝐺1(𝑥) =
𝜋

4
+ 6𝑥− 6𝜋𝑥2 + 4𝑥(6𝑥2 − 1)𝑔1(𝑥),

𝐺2(𝑥) =
𝜋

16
− 4𝑥

3
+ 3𝜋𝑥2 + 40𝑥3[1− 𝜋𝑥+

4

5
(5𝑥2 − 1)𝑔1(𝑥)],

(5.15)

where

𝑔1(𝑥) =

⎧⎨⎩

sech−1(2𝑥)√
1− 4𝑥2

if 𝑥 < 1
2
,

sec−1(2𝑥)√
4𝑥2 − 1

if 𝑥 > 1
2
.

(5.16)

Using Eq. (5.9), (5.14), and recalling that 𝑘𝐹 =
√
𝜋𝑛, we find:

𝜎(𝑛) =
𝐴𝑛

1− 𝑎+𝐵𝑎2𝑛/𝑛𝑖

, (5.17)

where

𝐴 =
𝑒2

ℎ

1

2𝑛𝑖𝑟2𝑠𝐺1(𝑟𝑠)

𝑎 = 𝜋𝑛𝑖𝑟
2
0 (5.18)

𝐵 =
𝐺2(𝑟𝑠)

2𝐺1(𝑟𝑠)
.

Note 𝑎 < 1 in our model because the correlation length can not exceed the average

impurity distance, i.e., 𝑟0 < 𝑟𝑖 = (𝜋𝑛𝑖)
−1/2. Eq. (5.17) indicates that at low carrier

densities the conductivity increases linearly with 𝑛 at a rate that increases with 𝑟0

𝜎(𝑛) ∼ 𝐴𝑛

(1− 𝑎)
; (5.19)

whereas at large carrier densities the dependence of 𝜎 on 𝑛 becomes sublinear:

𝜎(𝑛) ∼ 1− 𝑛𝑐

𝑛
, (5.20)
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where 𝑛𝑐 = (1 − 𝑎)𝑛𝑖/(𝐵𝑎2) ∼ 𝑂(1/𝑛𝑖𝑟
4
0). Note that the above equation is valid

for
√
𝜋𝑛𝑟0 ≪ 1, where we expand the structure factor as a power series of

√
𝜋𝑛𝑟0.

The crossover density 𝑛𝑐, where the sublinearity (𝑛 > 𝑛𝑐) manifests itself, increases

strongly with decreasing 𝑟0. This generally implies that the higher mobility an-

nealed samples should manifest stronger nonlinearity in 𝜎(𝑛), since annealing leads

to stronger impurity correlations (and hence larger 𝑟0). This behavior has been

observed recently in experiments in which the correlation among charged impurities

was controlled via thermal annealing [90]. Contrary to the standard-model with

no spatial correlation among charged impurities in which the resistivity increases

linearly in 𝑛𝑖, Eq. (5.17) indicates that the resistivity could decrease with increasing

impurity density if there are sufficient inter-impurity correlations. This is due to the

fact that, for fixed 𝑟0, higher density of impurities are more correlated causing 𝑆(q)

to be more strongly suppressed at low 𝑞 as shown in Fig. 5.1 and 5.2. In the extreme

case, i.e., 𝑟0 = 𝑎0 and 𝑟𝑖 = 𝑟0, the charged impurity distribution would be strongly

correlated, indeed perfectly periodic, and the resistance, neglecting other scatter-

ing sources, would be zero. From Eq. (5.17) we find that the resistivity reaches a

maximum when the condition

𝑟𝑖/𝑟0 =
√

2(1− 𝜋𝐵𝑛𝑟20). (5.21)

is satisfied. Equation (5.21) can be used as a guide to improve the mobility of

graphene samples in which charged impurities are the dominant source of disorder.

Figs. 5.3(a) and (b) present the results for 𝜎(𝑛) obtained integrating numer-

ically the r.h.s. of Eq. (5.12) and keeping the full momentum dependence of the
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Figure 5.3: Calculated 𝜎(𝑛) in monolayer graphene with 𝑆(q) obtained from the
Monte Carlo simulations, symbols, and 𝑆(q) given by Eq. 5.8, solid lines for (a)
𝑛𝑖 = 0.95× 1012 cm−2, and (b) 𝑛𝑖 = 4.8× 1012 cm−2. The different lines correspond
to different values of 𝑟0, from top to bottom 𝑟0 = 10𝑎0, 8𝑎0, 7𝑎0, 5𝑎0, 0 in (a) and
𝑟0 = 5𝑎0, 4𝑎0, 3𝑎0, 0 in (b).

structure factor. The solid lines show the results obtained using the 𝑆(q) given

by the continuum model, Eq. (5.8), the symbols show the results obtained using

the 𝑆(q) obtained via Monte Carlo simulations. The comparison between the two

results shows that the analytic continuum correlation model is qualitatively and

quantitatively reliable. It is clear that, for the same value of 𝑟0, the dirtier (cleaner)

system shows stronger nonlinearity (linearity) in a fixed density range consistent

with the experimental observations [90] since the correlation effects are stronger for

larger values of 𝑛𝑖.

Fig. 5.4(a) presents that the resistivity 𝜌 = 1/𝜎 in monolayer graphene as a

function of impurity density 𝑛𝑖 with correlation length 𝑟0 = 5𝑎0 for different values

of carrier density. It is clear that the impurity correlations cause a highly nonlinear

resistivity as a function of impurity density and that this nonlinearity in 𝜌(𝑛𝑖) is

much stronger for lower carrier density. In Fig. 5.4(b) we show the value of the

ratio 𝑟𝑖/𝑟0 for which 𝜌 is maximum as a function of
√
𝑛𝑟0 The analytical expression
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Figure 5.4: (a) Calculated resistivity 𝜌 in monolayer graphene as a function of
impurity density 𝑛𝑖 for different carrier densities with 𝑟0 = 5𝑎0. (b) The relationship
between 𝑟𝑖/𝑟0 and

√
𝑛𝑟0 in monolayer graphene, where the conductivity is minimum.

The dashed line is obtained using Eq. 5.21.

of Eq. 5.21 is in very good agreement with the result obtained numerically using

the full momentum dependence of 𝑆(q).

5.2.2 Low density: Effective medium theory

Due to the gapless nature of the band structure, the presence of charged impu-

rities induce strong carrier density inhomogeneities in MLG and BLG. Around the

Dirac point, the 2D graphene layer becomes a spatially inhomogeneous semi-metal

with electron-hole puddles randomly located in the system. To characterize these

inhomogeneities we use the Thomas-Fermi-Dirac (TFD) theory [22]. Ref. [24] has

shown that the TFD theory coupled with the Boltzmann transport theory provides

an excellent description of the minimum conductivity around the Dirac point with

randomly distributed Coulomb impurities. We further improve this technique to cal-

culate the density landscape and the minimum conductivity of monolayer graphene

in the presence of correlated charged impurities. To model the disorder, we have

assumed that the impurities are placed in a 2D plane at a distance 𝑑 = 1 nm from
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Figure 5.5: The carrier density in monolayer graphene for a single disorder realiza-
tion obtained from the TFD theory (a) for the uncorrelated case and (b) 𝑟0 = 10 𝑎0
with 𝑛𝑖 = 0.95 × 1012 cm−2. Carrier probability distribution function 𝑃 (𝑛) are
shown in (c), (d), (e) for ⟨𝑛⟩ = 0, 1.78, 7.7×1012 cm−2, respectively. In (f) the ratio
𝑛rms/𝑛𝑖 is shown as a function of 𝑟0/𝑟𝑖 for 𝑛𝑖 = 0.95 × 1012 cm−2, solid lines, and
𝑛𝑖 = 4.8× 1012 cm−2, dashed lines. We use ⟨𝑛⟩ = 7.7, 3.14, 0.94, 0× 1012 cm−2 for
the solid lines (from top to bottom) and ⟨𝑛⟩ = 8.34, 4.10, 1.7, 0× 1012 cm−2 for the
dashed lines.
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the graphene layer. Fig. 5.5(a), (b) show the carrier density profile for a single

disorder realization for the uncorrelated case and correlated case (𝑟0 = 10 𝑎0) for

𝑛𝑖 = 0.95 × 1012 cm−2. We can see that in the correlated case the amplitude of

the density fluctuations is much smaller than in the uncorrelated case. The TFD

approach is very efficient and allows the calculation of disorder averaged quantities

such as the density root mean square, 𝑛rms, and the density probability distribution

𝑃 (𝑛). Figs. 5.5(c), (d), (e) show 𝑃 (𝑛) at the CNP, and away from the Dirac point

(𝑛𝑖 = 0.95 × 1012 cm−2). In each figure both the results for the uncorrelated case

and the one for the correlated case are shown. 𝑃 (𝑛) for the correlated case is in

general narrower than 𝑃 (𝑛) for the uncorrelated case resulting in smaller values of

𝑛rms as shown in Fig. 5.5(f) in which 𝑛rms/𝑛𝑖 as a function of 𝑟0/𝑟𝑖 is plotted for

different values of the average density, ⟨𝑛⟩, and two different values of the impu-

rity density, 𝑛𝑖 = 0.95 × 1012 cm−2 (“low impurity density”) for the solid lines,

and 𝑛𝑖 = 4.8 × 1012 cm−2 (“high impurity density”) for the dashed lines. To de-

scribe the transport properties close to the CNP and take into account the strong

disorder-induced carrier density inhomogeneities we use the effective medium theory

(EMT), where the conductivity is found by solving the following integral equation

[35, 36, 105, 1, 24, 38, 42]:

∫
𝑑𝑛

𝜎(𝑛)− 𝜎𝐸𝑀𝑇

𝜎(𝑛) + 𝜎𝐸𝑀𝑇

𝑃 (𝑛) = 0 (5.22)

where 𝜎(𝑛) is the local Boltzmann conductivity obtained in Section 5.2.1. Fig. 5.6(a)

and (b) show the EMT results for 𝜎(𝑛). The EMT results give similar behavior of

𝜎(𝑛) at high carrier density as shown in Fig. 5.3, where the density fluctuations are
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Figure 5.6: (a) and (b) show the results for 𝜎(⟨𝑛⟩) in monolayer graphene obtained
from the EMT for 𝑛𝑖 = 0.95 × 1012 cm−2 and 𝑛𝑖 = 4.8 × 1012 cm−2 respectively.
The different lines correspond to different values of 𝑟0, from top to bottom 𝑟0 =
10𝑎0, 8𝑎0, 7𝑎0, 5𝑎0, 0 in (a) and 𝑟0 = 5𝑎0, 4𝑎0, 3𝑎0, 0 in (b). (c) and (d) show the
value of 𝜎𝑚𝑖𝑛 in monolayer graphene as a function of 𝑟0/𝑟𝑖.
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strongly suppressed. However, close to the Dirac point, the graphene conductivity

obtained using TFD-EMT approach is approximately a constant, with this con-

stant minimum conductivity plateau strongly depending on the correlation length

𝑟0. Fig. 5.6(c) and (d) show the dependence of 𝜎𝑚𝑖𝑛 on the size of the correla-

tion length 𝑟0. 𝜎𝑚𝑖𝑛 increases slowly with 𝑟0 for 𝑟0/𝑟𝑖 < 0.5, but quite rapidly for

𝑟0/𝑟𝑖 > 0.5. The results in Fig. 5.6(c) and (d) are in qualitative agreement with the

scaling of 𝜎𝑚𝑖𝑛 with temperature, proportional to 𝑟0, observed in experiments [90].

5.3 Bilayer graphene conductivity

In this section we extend the theory presented in the previous section for

monolayer graphene to bilayer graphene. The most important difference between

MLG and BLG comes from the fact that, in BLG, at low energies, the band dis-

persion is approximately parabolic with effective mass 𝑚 ≃ 0.033𝑚𝑒 (𝑚𝑒 being the

bare electron mass) [106] rather than linear as in MLG. As a consequence in BLG

the scaling of the conductivity with doping, at high density, differs from the one

in MLG. We restrict ourselves to the case in which no perpendicular electric field

is present so that no gap is present between the conduction and the valence band

[2, 74, 75, 55, 27].

To characterize the spatial correlation among charged impurities we use the

same model that we used for MLG.
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5.3.1 High density: Boltzmann transport theory

Within the two-band approximation, the BLG conductivity at zero tempera-

ture 𝑇 = 0 is given by:

𝜎 =
𝑒2𝑛𝜏

𝑚
(5.23)

where 𝜏 is the relaxation time in BLG for the case in which the charged impurities

are spatially correlated. 𝜏 is given by Eq. 5.10 with 𝜖𝑠k = 𝑠ℏ2𝑘2/2𝑚 for the pseudo-

spin state “𝑠”, 𝜖(∣k− k′∣) the static dielectric screening function of BLG Ref. [71]],

and 𝑔(𝜃kk′) = [1 + cos 2𝜃kk′ ] /2 the chiral factor for states on the lowest energy bands

of BLG.

The full static dielectric constant of gapless BLG at 𝑇 = 0 is given by [71]

𝜀(𝑞) = [1 + 𝑉 (𝑞)Π(𝑞)]−1

= [1 + 𝑉 (𝑞)𝐷0 [𝑔2(𝑞)− 𝑓(𝑞)𝜃(𝑞 − 2𝑘𝐹 )]]
−1

(5.24)

where Π(𝑞) is the BLG static polarizability, 𝐷0 =
2𝑚

𝜋ℏ2
the density of states, and

𝑓(𝑞) =
2𝑘2

𝐹 + 𝑞2

2𝑘2
𝐹 𝑞

√
𝑞2 − 4𝑘2

𝐹 + ln
𝑞 −√𝑞2 − 4𝑘2

𝐹

𝑞 +
√

𝑞2 − 4𝑘2
𝐹

𝑔2(𝑞) =
1

2𝑘2
𝐹

√
𝑞4 + 4𝑘4

𝐹 − ln

[
𝑘2
𝐹 +

√
𝑘4
𝐹 + 𝑞4/4

2𝑘2
𝐹

] (5.25)

To make analytical progress, we calculate the density-dependent conductivity using

the dielectric function of BLG within the Thomas-Fermi approximation:

𝜀(𝑞) = 1 +
𝑞𝑇𝐹

𝑞
(5.26)

where 𝑞𝑇𝐹 =
4𝑚𝑒2

𝜅ℏ2
≃ 1.0 × 109m−1 for bilayer graphene on SiO2 substrate, which

is a density independent constant and is larger than 2𝑘𝐹 for carrier density 𝑛 <
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8 × 1012cm−2. The relaxation time including correlated disorder is then simplified

as:

ℏ
𝜏
=

𝑛𝑖𝜋ℏ2𝑞20
𝑚

∫ 1

0

𝑑𝑥

[
1

𝑥+ 𝑞0

]2
𝑥2 (1− 2𝑥2)

2

√
1− 𝑥2

𝑆(2𝑘𝐹𝑥) (5.27)

where 𝑞0 = 𝑞𝑇𝐹/(2𝑘𝐹 ). To incorporate analytically the correlation effects of charged

impurities, we again expand 𝑆(𝑥) around 𝑥 ∼ 0:

𝑆(2𝑘𝐹𝑥) ≃ 1− 𝑎+
1

2

𝑛

𝑛𝑖

𝑎2𝑥2 − 1

12

𝑛2

𝑛2
𝑖

𝑎3𝑥4 (5.28)

Combining Eqs. (5.23), (5.27), and (5.28) we obtain for 𝜎(𝑛) at 𝑇 = 0 in the

presence of correlated disorder

𝜎 =
𝑒2

ℎ

2𝑛

𝑛𝑖

1[
(1− 𝑎)𝐺3[𝑞0] +

𝑛
2𝑛𝑖

𝑎2𝐺4[𝑞0]− 𝑛2

12𝑛2
𝑖
𝑎3𝐺5[𝑞0]

] , (5.29)

where

𝐺3(𝑞0) = 𝑞20
∫ 1

0

1

(𝑥+ 𝑞0)2
𝑥2 (1− 2𝑥2)

2

√
1− 𝑥2

𝑑𝑥

𝐺4(𝑞0) = 𝑞20
∫ 1

0

1

(𝑥+ 𝑞0)2
𝑥4 (1− 2𝑥2)

2

√
1− 𝑥2

𝑑𝑥

𝐺5(𝑞0) = 𝑞20
∫ 1

0

1

(𝑥+ 𝑞0)2
𝑥6 (1− 2𝑥2)

2

√
1− 𝑥2

𝑑𝑥

(5.30)

For each value of 𝑟0 and carrier density 𝑛, the resistivity of BLG for correlated

disorder is also not a linear function of impurity density, and its behavior is close to

that in MLG. The maximum resistivity of BLG is found to be at

𝑟𝑖/𝑟0 =
√

2(1− 𝜋𝐵𝐵𝜋𝑛𝑟20 − 𝐶𝐵𝜋2𝑛2𝑟40). (5.31)

with 𝐵𝐵 = 𝐺4[𝑞0]/(2𝐺3[𝑞0]) and 𝐶𝐵 = −𝐺5[𝑞0]/(12𝐺3[𝑞0]), which are functions

weakly depending on carrier density 𝑛.

It is straightforward to calculate the asymptotic density dependence of BLG

conductivity from the above formula. We will discuss 𝜎(𝑛) in the strong (𝑞0 ≫ 1)

and weak 𝑞0 ≪ 1 screening limits separately.
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In the strong screening limit 𝑞0 ≫ 1, 𝐺3[𝑞0] ≃ 𝜋/8, 𝐺4[𝑞0] ≃ 7𝜋/64 and

𝐺5[𝑞0] ≃ 13𝜋/128. For randomly distributed charged impurity, we can express the

conductivity as a linear function of carrier density 𝜎(𝑛) ∼ 𝑛 [14]. In the presence of

correlated charged impurity we find:

𝜎(𝑛) =
𝐴𝐵𝑛

1− 𝑎+ 𝑎2
7𝑛

16𝑛𝑖

+ 𝑎3
13𝑛2

192𝑛2
𝑖

, (5.32)

where 𝑎 = 𝜋𝑛𝑖𝑟
2
0, and 𝐴𝐵 ≃ 𝑒2

ℎ

16

𝜋𝑛𝑖

. In the strong screening limit 𝑞0 ≫ 1 ⇒ 𝑛 ≪ 𝑛𝑖

from (5.32) we obtain 𝜎(𝑛) ∼ 𝐴𝐵𝑛/(1−𝑎). With the increase of carrier density, the

calculated conductivity in BLG also shows the sublinear behavior as in MLG due

to the third and fourth terms in the denominator of Eq. 5.32.

In the weak screening limit, 𝑞0 ≪ 1, we have 𝐺3[𝑞0] ≃ 𝜋𝑞20/4, 𝐺4[𝑞0] ≃ 𝜋𝑞20/8

and 𝐺5[𝑞0] ≃ 7𝜋𝑞20/64. The conductivity of BLG in the limit 𝑞0 ≪ 1 is a quadratic

function of carrier density for randomly distributed Coulomb disorder:

𝜎(𝑛) =
𝑒2

ℎ

32𝑛2

𝑛𝑖𝑞2𝑇𝐹

(5.33)

For the correlated disorder, the calculated conductivity of BLG shows the sub-

quadratic behavior:

𝜎(𝑛) =
𝐴𝑏𝑛

2

1− 𝑎+ 𝑎2
𝑛

4𝑛𝑖

− 𝑎3
7𝑛2

192𝑛2
𝑖

, (5.34)

with 𝐴𝑏 =
𝑒2

ℎ

32

𝑛𝑖𝑞2𝑇𝐹

.

In Figs. 5.7(a) and (b), we show the 𝜎(𝑛) within Boltzmann transport the-

ory obtained numerically taking into account the screening via the static dielectric

function given by Eq. 5.24. We show the results for several different correlation
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Figure 5.7: Calculated 𝜎(𝑛) in bilayer graphene with 𝑆(q) obtained from the Monte
Carlo simulations (symbols) and 𝑆(q) given by Eq. (5.8) (solid lines) for two dif-
ferent impurity densities (a) 𝑛𝑖 = 0.95 × 1012 cm−2 and (b) 𝑛𝑖 = 4.8 × 1012

cm−2. The different lines correspond to different values of 𝑟0. In (a) we use
𝑟0 = 10𝑎0, 8𝑎0, 7𝑎0, 5𝑎0, 0 (from top to bottom), and in (b) 𝑟0 = 5𝑎0, 4𝑎0, 3𝑎0, 0
(from top to bottom).

lengths 𝑟0 and two different charged impurity densities, (a) 𝑛𝑖 = 0.95 × 1012 cm−2

and (b) 𝑛𝑖 = 4.8 × 1012 cm−2. From Figs. 5.7(a), (b) we see that the conductivity

increases with 𝑟0 as in MLG. However the details of the scaling of 𝜎 with doping

differ between MLG and BLG. In BLG 𝜎(𝑛) ≈ 𝑛𝛼 where 1 < 𝛼 < 2 also depends

on 𝑛. The effect of spatial correlations among impurities in BLG is to increase 𝛼 at

low densities and reduce it at high densities.

In Fig. 5.8(a), we present the resistivity of BLG as a function of impurity

density for various carrier density with 𝑟0 = 5𝑎0. The spatial correlation of charged

impurity leads to a highly non-linear function of 𝜌(𝑛𝑖) as in MLG. We also present

the relation between 𝑟𝑖/𝑟0 and
√
𝑛𝑟0 where the maximum resistivity of BLG occurs

in Fig. 5.8(b). The results are quite close to those of MLG shown in Fig. 5.4.
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Figure 5.8: (a) The resistivity 𝜌 in bilayer graphene is shown as a function of impurity
density 𝑛𝑖 for different carrier densities with 𝑟0 = 5𝑎0. (b) The relationship between
𝑟𝑖/𝑟0 and

√
𝑛𝑟0 in bilayer graphene, where the conductivity is minimum. The dashed

lines are obtained using Eq. 5.31.

5.3.2 Low density: Effective medium theory

As in MLG, also in BLG, because of the gapless nature of the dispersion the

presence of charged impurities induces large carrier density fluctuations [107, 108,

14, 27] that strongly affect the transport properties of BLG.

Fig. 5.9(a) shows the calculated density landscape for BLG for a single disor-

der realization, and Fig. 5.9(a) a comparison of the probability distribution function

𝑃 (𝑛) for BLG and MLG [14]. Within the Thomas-Fermi approximation, approx-

imating the low energy bands as parabolic, in BLG, with no spatial correlation

between charged impurities, 𝑃 (𝑛) is a Gaussian whose root mean square is indepen-

dent of the doping and is given by the following equation [27]:

𝑛rms =

√
𝑛𝑖

𝑟sc

[
2

𝜋
𝑓2(𝑑/𝑟sc)

]1/2
(5.35)

where 𝑓2(𝑑/𝑟sc) = 𝑒2𝑑/𝑟sc(1 + 2𝑑/𝑟sc)Γ(0, 2𝑑/𝑟sc) − 1 is a dimensionless function,

𝑟sc ≡ [(2𝑒2𝑚∗)/(𝜅ℏ2)]−1 ≈ 2 nm is the screening length, and Γ(𝑎, 𝑥) is the incomplete

gamma function. For small 𝑑/𝑟sc, 𝑓2 = −1− 𝛾 − log(2𝑑/𝑟sc) +𝑂(𝑑/𝑟sc) (where 𝛾 =
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Figure 5.9: (a) 𝑛(r) of BLG at the CNP for a single disorder realization with 𝑛𝑖 =
1011cm−2 and 𝑑 = 1 nm. (b) Disorder averaged 𝑃 (𝑛), at the CNP for BLG (MLG)
red (blue) for 𝑛𝑖 = 1011cm−2 and 𝑑 = 1 nm. For MLG 𝑃 (𝑛 = 0) ≈ 0.1, out of scale.
The corresponding 𝑛rms is 5.5× 1011cm−2 for BLG and 1.2× 1011cm−2 for MLG.

0.577216 is the Euler constant), whereas for 𝑑 ≫ 𝑟sc 𝑓2 = 1/(2𝑑/𝑟sc)
2+𝑂((𝑑/𝑟sc)

−3).

As for MLG, also for BLG we find that the presence of spatial correlations among

impurities has only a minor quantitative effect on 𝑃 (𝑛). For this reason, and the

fact that with no correlation between the impurities, 𝑃 (𝑛) has a particularly simple

analytical expression, for BLG we neglect the effect of impurity spatial correlations

on 𝑃 (𝑛).

As in MLG the effect of the strong carrier density inhomogeneities on transport

can be effectively taken into account using the effective medium theory. Using

Eq. (5.22), 𝜎(𝑛) given by the Boltzmann theory, and 𝑃 (𝑛) as described in the

previous paragraph, the effective conductivity 𝜎𝐸𝑀𝑇 for BLG can be calculated

taking into account the presence of strong carrier density fluctuations. Fig. 5.10(a)

shows the scaling of 𝜎 with doping obtained using the EMT for several values of 𝑟0

and 𝑛𝑖 = 4.8×1012 cm−2. Taking account of the carrier density inhomogeneities that

dominate close to the charge neutrality point, the EMT returns a non-zero value of

the conductivity 𝜎min for zero average density, a value that depends on the impurity
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Figure 5.10: (a) BLG conductivity as a function of 𝑛 obtained using the EMT for
𝑛𝑖 = 4.8× 1012 cm−2 for 𝑟0 = (4, 3, 2, 1, 0)× 𝑎0 from top to bottom. (b) BLG 𝜎min

as a function of 𝑟0/𝑟𝑖 for 𝑛𝑖 = 4.8× 1012 cm−2.

density and their spatial correlations. In particular, as shown in Fig. 5.10(b), in

analogy to the MLG case 𝜎min grows with 𝑟0.

5.4 Discussion of experiments

Although the sublinearity of 𝜎(𝑛) can be explained by including both long- and

short-range scatterers (or resonant scatterers) in the Boltzmann transport theory

[87], it can not explain the observed enhancement of conductivity with increasing

annealing temperatures as observed in Ref. [90]. Annealing leads to stronger corre-

lations among the impurities since the impurities can move around to equilibrium

sites. Our results show that by increasing 𝑟0, at low densities, both the conductivity

and the mobility of MLG and BLG increase. Moreover, our results for MLG [44]

show that as 𝑟0 increases the crossover density, at which 𝜎(𝑛) from linear becomes

sublinear, decreases. All these features have been observed experimentally for MLG

[90]. In Ref. [90], Jun et al. studied the influence of thermal annealing on the elec-

tronic transport properties of a graphene device with adsorbed potassium atoms.
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Figure 5.11: Carrier-density dependence of graphene conductivity at various anneal-
ing temperatures for three different potassium doping levels. (a) The temperatures
are 21.8, 42.5, 100, 116.5, 130.1, 146.3, 156.6, and 162.6 K. (b) The temperatures
are 19.4, 50.1, 94.9, 112.8, 126.8, 141.9, and 158.5 K. (c) The temperatures are
20.7, 132.7, 141.9, 150.4, 162, and 177.2 K. The lowest and highest temperatures
are indicated in each panel. Adapted from Fig. 2 of Ref. [90].

Fig. 5.11 presents the measured 𝜎(𝑛) at different temperatures for three different

potassium doping levels. At all potassium doping levels, 𝜎 increases with tem-

perature, more rapidly at higher temperatures 𝑇 > 100 K. In addition to mobility

improvements, 𝜎(𝑛) also becomes significantly sublinear at higher annealing temper-

atures, in contrast to the linear 𝜎(𝑛) observed for quenched disorder [10]. Fig. 5.11

also showed that the mobility improvement and nonlinearity are most pronounced

for the largest potassium doping. Their experimental data are well described by

Eq. 5.17. Our theory also enables the experimentalists to quantitatively extract the

temperature dependence of the correlation length (see Fig. 5.12).

In addition, our transport theory based on the correlated impurity model also

gives a possible explanation for the observed strong nonlinear 𝜎(𝑛) in suspended

graphene [11, 12] where the thermal/current annealing is used routinely. Fig. 5.13

shows the experimentally observed strongly sublinear dependence of the conductivity
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Figure 5.12: Fitting parameters for data in Fig. 5.11 to our correlated disorder
theory. The figure shows the correlation length 𝑟0as a function of annealing temper-
ature for the seven sets of data at different potassium densities reflected in the shift
of the minimum conductivity point indicated in the legend. Adapted from Fig. 3 of
Ref. [90].

as a function of carrier density in suspended graphene samples[11, 12]. Fig. 5.13(a)

and (b) are for suspended monolayer and bilayer graphene samples, respectively.

Although we have used a minimal model for impurity correlations, using a

single correlation length parameter 𝑟0, which captures the essential physics of cor-

related impurity scattering, it should be straightforward to improve the model with

more sophisticated correlation models if experimental information on impurity cor-

relations becomes available [90]. Intentional control of spatial charged impurity

distributions or by rapid thermal annealing and quenching, should be a powerful

tool to further increase mobility in monolayer and bilayer graphene devices[90].
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Figure 5.13: (a) Conductivity as a function of carrier density for suspended mono-
layer graphene. Adapted from Fig. 3(c) of Ref. [11]. (b) 𝜎(𝑛) in suspended bilayer
graphene. Adapted from Fig. 1(f) of Ref. [12].
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Chapter 6

Conclusion

In this Chapter, we summarize our findings as a conclusion to the dissertation.

In the first Chapter, we discussed the basic physics of carrier transport in

graphene. In particular, we considered graphene transport for large carrier densi-

ties, where the system is homogeneous. We then discussed the graphene minimum

conductivity problem and the physical puddle picture at low carrier densities. We

also described a self-consistent theory and TFD-EMT theory to calculate graphene

transport properties at low carrier densities.

In Chapter 2, we investigated both MLG and BLG transport in the presence

of electron-hole puddles within an analytic statistical theory. Our theory explains

the experimentally measured insulating behavior at low temperatures and the con-

sequent nonmonotonic behavior for low mobility samples [21, 56, 55]. Reasonable

quantitative agreement with the experimental data can be obtained by choosing

appropriate disorder parameters in our theory (i.e. potential fluctuation and im-

purity strength) for different samples. We find that the puddle parameter 𝑠, defin-

ing typical potential fluctuations, to be around 10 − 80 meV in typical graphene

samples as extracted by fitting our theory to existing experimental transport data

near the charge neutrality point. These values of potential fluctuations characteriz-
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ing the graphene charge neutrality point are very consistent with direct numerical

calculations of graphene electronic structure in the presence of quenched charged

impurities[1, 24, 22, 14]. We also relate our current model to earlier theories using

the picture of diffusive transport through disorder-induced electron-hole puddles.

Finally, we show the similarity and the quantitative difference between MLG and

BLG transport in the presence of puddles.

By using the theoretical formalism developed in Chapter 2, we establish that

the recently observed intriguing phenomenon [41] of monotonically increasing graphene

resistivity with decreasing carrier density in graphene samples of very high purity

(with very high mobilities at high carrier densities) most likely arises not from An-

derson localization, but from the semiclassical “disorder by order” phenomenon in

Chapter 3. This phenomenon arises from the suppression of electron-hole puddles

in the system by a near-by screening layer which then induces the system to show

its intrinsic Drude behavior of the resistivity being inversely proportional to the

carrier density down to much lower carrier densities without being cut off by the

puddle-induced (and well-known [20, 1, 22, 70, 40]) “graphene conductivity min-

imum” mechanism. The qualitative difference between our “disorder by order”

mechanism and localization is that in our case, the conductivity is always finite,

eventually being cut off by remnant puddles in the system at much lower carrier

densities determined by the details of disorder and screening by the second layer

whereas in for localization the conductivity is truly zero at 𝑇 = 0. The other quali-

tative difference is that the predicted temperature dependence of the resistivity at

a fixed low carrier density near the Dirac point in our mechanism is a power law
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whereas it must be exponential in the case of Anderson localization. The observed

temperature and density dependence of the low-density resistivity in Ref. [41] is

consistent with our predictions, and hence we believe that Ref. [41] is manifesting

the “disorder by order” phenomenon, not Anderson localization. We believe that

the experimental temperature range must be much lower than that used (20− 100

K) in Ref. [41] to see any quantum interference induced localization effects since

the inelastic phase coherence length is simply too short for localization effects to

manifest at higher temperatures. We urge transport experiments in high quality

graphene at very low temperatures (< 1 K) to discern localization/antilocalization

versus semiclassical “disorder by order” puddle effects.

The main point of Chapter 4 is that the understanding of the graphene min-

imum conductivity phenomenon necessarily requires the inclusion of scattering by

random charged impurities in the environment. We emphasize that since 𝜎𝑟/𝜎𝑐 ∼

ln2(
√

𝑛/𝑛0), where 𝜎𝑟,𝑐 are the resonant scattering and Coulomb scattering induced

conductivity respectively, Coulomb disorder[1], with 𝜎𝑐 ∼ 𝑛 , must necessarily dom-

inate graphene resistivity as one approaches the 𝑛 → 0 charge neutrality point,

not just in SrTiO3, but in all systems. The high density graphene transport is in

general, however, nonuniversal where many scattering mechanisms may contribute

depending on the density range.

In Chapter 5, we provide a novel physically motivated explanation for the ob-

served sublinear scaling of the graphene conductivity with density at high dopings

by showing that the inclusion of spatial correlations among the charged impurity

locations leads to a significant sublinear density dependence in the conductivity of
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MLG in contrast to the strictly linear-in-density graphene conductivity for uncorre-

lated random charged impurity scattering. We also show that the spatial correlation

of charged impurities will also enhance the mobility of BLG. Our theoretical results

are confirmed qualitatively by the experimental measurements presented in Ref. [90]

in which the spatial correlations among charged impurities were modified via ther-

mal annealing with no change of the impurity density. Our results, combined with

the experimental observation of Ref. [90], demonstrate that in monolayer and bilayer

graphene samples in which charged impurities are the dominant source of scattering

the mobility can be greatly enhanced by thermal/current annealing processes that

increase the spatial correlations among the impurities.

We now discuss some open problems as possible extensions of the work in this

dissertation. First, we have neglected effects of quantum tunneling through the po-

tential barriers in our analytic theory. It would be desirable to include the tunneling

effects at the electron-hole boundaries in our 2-component transport model devel-

oped in Chapter 2. Second, in the absence of intervalley scattering, graphene should

manifest antilocalization [109, 110] behavior for which there is some experimental

evidence in some situations [111, 112]. The presence of intervalley scattering would

restore the usual localization behavior [113]. When and how graphene can manifest

strong Anderson localization phenomenon is an interesting question for the future.

It will also be desirable for the measurements of Ref. [41] to be performed at a very

low mK range of temperatures, where the necessary condition for quantum interfer-

ence to be operational. One can then study the deviations of the experimental data

from our semi-classical theory in this low temperature regime so as to learn about
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the nature of graphene localization. Finally, we can also consider a more accurate

spatial pair distribution function other than a step function. Then, our impurity

correlation model can be improved to give a more accurate account of inter-impurity

correlation effects on graphene devices.
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Appendix A

A self-consistent formulation of graphene density

of states in the presence of inhomogeneity

Below we provide a microscopic theory to calculate self-consistently the elec-

tronic density of states in the presence of the potential fluctuations caused by ran-

dom charged impurities located near graphene/substrate interface, which has been

applied to two dimensional semiconductor based electron gas systems[114]. This

self-consistent approach mainly addresses two problems with the presence of random

charged impurities. One is the screening of the long-range Coulomb interactions be-

tween the carriers and the charged impurities. The other is the real-space potential

fluctuations produced by the random array of charged impurities.

The motivation for this appendix is two-fold: (1) providing a microscopic

self-consistent theory of graphene density of states in the presence of puddles; (2)

showing that our approximate physically-motivated density of states (Eq. 2.2) is an

excellent approximation to the self-consistent density of states.

A.0.1 Monolayer graphene

First, we apply the self-consistent consideration of random charged impurities

on the density of states in monolayer graphene.
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Figure A.1: Standard deviation of potential fluctuation 𝑠 versus the screening con-
stant 𝑞𝑇𝐹 (loglog plot) in MLG by varying the Fermi level. The dotted blue line is
for 𝑛𝑖𝑚𝑝 = 1.0 × 1012 cm−2, 𝑧0 = 1 nm and 𝑑 = 100 nm. The solid red line is for
𝑛𝑖𝑚𝑝 = 0.5 × 1012 cm−2, 𝑧0 = 1 nm and 𝑑 = 200 nm. The dashed green line is for
𝑛𝑖𝑚𝑝 = 0.5× 1012 cm−2, 𝑧0 = 1 nm and 𝑑 = 100 nm. The dotdashed black line is for
𝑛𝑖𝑚𝑝 = 0.5× 1012 cm−2, 𝑧0 = 2 nm and 𝑑 = 100 nm.
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Figure A.2: Calculated the density of states of electron 𝐷𝑒(𝐸𝐹 ) in MLG versus
electron density using the following parameters: the insulator thickness 𝑑 = 100
nm, the impurity distance from the interface 𝑧0 = 1 nm. The solid red line is for
unperturbed density of states. The dashed green, dotted blue and dotdashed black
lines are corresponding to 𝑛𝑖𝑚𝑝 = 0.5, 1.0 and 2.0× 1012 cm−2, respectively.
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The simple theory of linear screening gives[114]:

𝑞𝑇𝐹 =
2𝜋𝑒2

𝜅
𝐷𝑒(𝐸𝐹 ) (A.1)

where 𝑞𝑇𝐹 is the Thomas-Fermi screening wavevector, 𝐷𝑒(𝐸𝐹 ) is the density of states

at the Fermi level and 𝜅 is the dielectric constant (𝜅 ≃ 2.5 for graphene on SiO2

substrate).

The screening constant shown in Eq. A.1 enters Poisson’s equation for the

potential change 𝜙(𝑟, 𝑧) produced by a charge density 𝜌𝑒𝑥𝑡 (associated with the

charged impurities in the graphene/substrate environment). For a charge 𝑍𝑒 (we

use 𝑍 ≡ 1 in the calculation) located at 𝑟 ≡√𝑥2 + 𝑦2 = 0 and 𝑧 = 𝑧0 > 0 (on top

of the graphene layer), the additional Coulomb potential satisfies:

∇2𝜙(𝑟, 𝑧)− 2𝑞𝑇𝐹𝑔(𝑧)𝜙0(𝑟) = −4𝜋𝑍𝑒𝛿(𝑥)𝛿(𝑦)𝛿(𝑧 − 𝑧0)

𝜅0

(A.2)

where 𝜅0 = 𝜅𝑣 = 1.0 in the vacuum (𝑧 > 0), 𝜅0 = 𝜅𝑖𝑛𝑠 = 3.9 in SiO2 (𝑧 < 0) and

𝜅 = 𝜅𝑖𝑛𝑠+𝜅𝑣

2
. For graphene, 𝑔(𝑧) = 𝛿(𝑧) is the carrier density distribution normal to

the interface and 𝜙0(𝑟) =
∫
𝜙(𝑟, 𝑧)𝑔(𝑧)𝑑𝑧 = 𝜙(𝑟, 0).

To solve Eq. A.2 we take advantage of the cylindrical symmetry to write[115]

:

𝜙(𝑟, 𝑧) =

∫ ∞

0

𝐽0(𝑘
′𝑟)𝐴𝑘′(𝑧)𝑘

′𝑑𝑘′ (A.3)

The potential will satisfy Eq. A.2 if

𝑑2𝐴𝑘

𝑑𝑧2
− 𝑘2𝐴𝑘 − 2𝑞𝑇𝐹𝐴𝑘(0)𝑔(𝑧) = −2𝑍𝑒𝛿(𝑧 − 𝑧0)

𝜅0

(A.4)

At the interface 𝑧 = 0, 𝐴𝑘(𝑧) must be continuous and satisfy 𝜅𝑣(𝑑𝐴𝑘/𝑑𝑧)−𝜅𝑖𝑛𝑠(𝑑𝐴𝑘/𝑑𝑧) =

2𝑞𝑇𝐹𝐴𝑘(0)𝜅. 𝐴𝑘(𝑧) should also satisfies the boundary condition 𝐴𝑘(𝑧) → 0 as
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𝑧 → ∞. In addition, the impurity potential 𝜙 will go to zero at the metallic contact

below the SiO2 (i.e., 𝐴𝑘(−𝑑) ≡ 0 and 𝑑 is the thickness of the SiO2 layer). Such

screening effects are absent in the SiO2. After some algebra, the explicit expression of

𝐴𝑘(𝑘, 0) for insulator thickness 𝑑 and the impurity distance from graphene/substrate

interface 𝑧0 is given by:

𝐴𝑘(𝑘, 0) =
2𝑒−𝑘𝑧0𝑍𝑒 sinh(𝑑𝑘)

𝑘𝜅𝑖𝑛𝑠cosh(𝑑𝑘) + (𝑘𝜅𝑣 + 2𝑞𝑇𝐹𝜅)sinh(𝑑𝑘)
(A.5)

For the thickness of insulator in the limit 𝑑 → ∞, we have 𝐴𝑘(𝑘, 0) =
𝑒−𝑘𝑧0𝑍𝑒

(𝑘 + 𝑞𝑇𝐹 )𝜅
,

which has been given in the Appendix B of Ref. [115]. The potential fluctuations

with an array of point charges at random positions in the plane 𝑧 = 𝑧0 have a

mean-square variation about the average potential [114]:

𝑉 2
𝑟𝑚𝑠 = 2𝜋𝑛𝑖𝑚𝑝𝑒

2

∫
[𝐴𝑘(0)]

2𝑘𝑑𝑘 (A.6)

To obtain specific results for the electronic density of states and the screen-

ing constant we use the simple Gaussian broadening approximation for the density

of states[60]. The disorder-induced potential energy fluctuations is described by

𝑃 (𝑉 ) = 1√
2𝜋𝑠2

exp(−𝑉 2/2𝑠2) (Eq. A.6). Then the density of states becomes

𝐷𝑒(𝐸) =
∫ 𝐸

−∞
𝑔𝑠𝑔𝑣(𝐸 − 𝑉 )

2𝜋(ℏ𝑣𝐹 )2
𝑃 (𝑉 )𝑑𝑉

= 𝐷1

[𝐸
2
erfc(− 𝐸√

2𝑠
) +

𝑠√
2𝜋

exp(−𝐸2

2𝑠2
)
] (A.7)

where erfc(𝑥) is the complementary error function, 𝑠 = 𝑉𝑟𝑚𝑠, 𝐷1 =
𝑔𝑠𝑔𝑣

2𝜋(ℏ𝑣𝐹 )2
, 𝑣𝐹 is

the graphene (Fermi) velocity, 𝑔𝑠 = 2 and 𝑔𝑣 = 2 are the spin and valley degeneracies,

respectively.
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Figure A.3: Calculated density of states of electron 𝐷𝑒(𝐸) of MLG versus energy 𝐸
for different impurity configurations and carrier densities 𝑛. The solid red lines are
for the non-interacting MLG system. (a) Calculated𝐷𝑒(𝐸) in MLG for the insulator
thickness 𝑑 = 100 nm, the impurity distance from the interface 𝑧0 = 1 nm and
carrier density 𝑛 = 2.0× 1012 cm−2. The dashed green, dotted blue and dotdashed
black lines are corresponding to 𝑛𝑖𝑚𝑝 = 0.5, 1.0, 2.0 × 1012 cm−2, respectively. (b)
Calculated𝐷𝑒(𝐸) in MLG for 𝑑 = 100 nm, 𝑛𝑖𝑚𝑝 = 0.5×1012 cm−2 and 𝑛 = 2.0×1012

cm−2. The dashed green, dotted blue and dotdashed black lines are corresponding to
𝑧0 = 1, 2, 3 nm, respectively. (c) Calculated 𝐷𝑒(𝐸) in MLG for 𝑑 = 100 nm, 𝑧0 = 1
nm and 𝑛𝑖𝑚𝑝 = 0.5×1012 cm−2. The dashed green, dotted blue and dotdashed black
lines are corresponding to 𝑛 = 0.5, 1.0, 2.0× 1012 cm−2, respectively.

By choosing the chemical potential 𝐸𝐹 as a tuning parameter we have the

following coupled equations:

𝑞𝑇𝐹 =
2𝜋𝑒2

𝜅
𝐷𝑒(𝐸𝐹 )

𝑠2 = 2𝜋𝑛𝑖𝑚𝑝𝑒
2
∫
[𝐴𝑘(0)]

2𝑘𝑑𝑘

(A.8)

For fixed values of 𝐸𝐹 , 𝑛𝑖𝑚𝑝, 𝑑 and 𝑧0, we get the self consistent results for 𝑠, 𝑞𝑇𝐹

by solving the above two coupled equations. The electron density could be gotten

from the formula:

𝑛𝑒 =

∫ ∞

−∞
𝐷𝑒(𝜖)𝑓(𝜖)𝑑𝜖 (A.9)

where 𝑓(𝜖) is the Fermi-Dirac distribution function. The electron density in the

presence of disorder-induced electron-hole puddles has been discussed in Sec. 2.1,

where we use the potential fluctuation 𝑠 as a fixed parameter. And here we self-

consistently solve the parameter 𝑠 from a microscopic point of view, which is in

119



good agreement with the results shown in Sec. 2.1. The potential fluctuation in

Eq. A.6 affects the electronic density of states. But the fluctuations depend on the

screening via Eq. A.4 while the screening depends on the density of states via Eq.

A.1. Therefore, we have a coupled problem which must be solved self-consistently.

In Fig. A.1, the standard deviation of the potential fluctuation 𝑠 and the

screening constant 𝑞𝑇𝐹 are plotted for different values of the Fermi level. The self-

consistently solved parameters (𝑠, 𝑞𝑇𝐹 ) depend on the fixed charged impurity density

𝑛𝑖𝑚𝑝, the SiO2 thickness 𝑑, the location of the fixed charged impurity 𝑧0, and the

Fermi level 𝐸𝐹 (i.e. the carrier density 𝑛). All these four effects can be understood

from physical intuition. The reduction of the SiO2 thickness weakens the potential

fluctuations when the screening length is small even though there is a little effect

for strong screening. As the charged impurities go away from the graphene layer

the potential fluctuations is also reduced, while the potential fluctuations becomes

stronger with the higher impurity density. Increasing the carrier density 𝑛 gives rise

to the stronger screening effects, and leads to weaker potential fluctuations.

In Fig. A.2, the density of states of monolayer graphene is given with the

parameters of SiO2 thickness 𝑑 = 100 nm and the distance of fixed charged impurities

𝑧0 = 1 nm for different impurity densities 𝑛𝑖𝑚𝑝. In Fig. A.3, we present the electronic

density of states for different carrier densities and impurity configurations. The

self-consistent calculation of the density of states verifies the results presented in

Sec.2.1 as shown in Fig. 2.3, where we choose the potential fluctuation 𝑠 as an

adjustable parameter. For monolayer graphene, the presence of spatially random

charged impurities increases the electronic density of states in the whole range of
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energy. The corresponding hole density of states can be obtained by changing the

sign of energy 𝐷ℎ(𝐸) = 𝐷𝑒(−𝐸).

A.0.2 Bilayer graphene
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Figure A.4: Standard deviation of potential fluctuation 𝑠 versus the screening con-
stant 𝑞𝑇𝐹 (loglog plot) in BLG by varying the Fermi level. The dotted blue line is
for 𝑛𝑖𝑚𝑝 = 1.0 × 1012 cm−2, 𝑧0 = 1 nm and 𝑑 = 100 nm. The solid red line is for
𝑛𝑖𝑚𝑝 = 0.5 × 1012 cm−2, 𝑧0 = 1 nm and 𝑑 = 200 nm. The dashed green line is for
𝑛𝑖𝑚𝑝 = 0.5× 1012 cm−2, 𝑧0 = 1 nm and 𝑑 = 100 nm. The dotdashed black line is for
𝑛𝑖𝑚𝑝 = 0.5× 1012 cm−2, 𝑧0 = 2 nm and 𝑑 = 100 nm.

In this subsection, we provide the density of states in bilayer graphene in the

presence of potential fluctuations. As shown for monolayer graphene, we use the

linear screening written as[114]:

𝑞𝑇𝐹 =
2𝜋𝑒2

𝜅
𝐷𝑒(𝐸𝐹 ) (A.10)

where𝐷𝑒(𝐸𝐹 ) is the density of states of BLG at the Fermi level and 𝜅 is the dielectric

constant and for BLG on SiO2, 𝜅 ≃ 2.5.

Following the same procedure discussed for MLG, the disorder-induced poten-

tial fluctuation is described by the Gaussian form 𝑃 (𝑉 ) = 1√
2𝜋𝑠2

exp(−𝑉 2/2𝑠2) and
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Figure A.5: Calculated density of states of electron 𝐷𝑒(𝐸𝐹 ) of BLG versus electron
density using the following parameters: the insulator thickness 𝑑 = 100 nm, the
impurity distance from the interface 𝑧0 = 1 nm. The solid red line is for unperturbed
density of states. The dashed green, dotted blue and dotdashed black lines are
corresponding to 𝑛𝑖𝑚𝑝 = 0.5, 1.0 and 2.0× 1012 cm−2, respectively.
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Figure A.6: Calculated density of states of electron 𝐷𝑒(𝐸) of BLG versus energy 𝐸
for different impurity configuration and carrier densities 𝑛. The solid red lines are
for the non-interacting BLG system. (a) Calculated 𝐷𝑒(𝐸) in BLG for the insulator
thickness 𝑑 = 100 nm, the impurity distance from the interface 𝑧0 = 1 nm and
carrier density 𝑛 = 2.0× 1012 cm−2. The dashed green, dotted blue and dotdashed
black lines are corresponding to 𝑛𝑖𝑚𝑝 = 0.5, 1.0, 2.0 × 1012 cm−2, respectively. (b)
Calculated 𝐷𝑒(𝐸) in BLG for 𝑑 = 100 nm, 𝑛𝑖𝑚𝑝 = 0.5×1012 cm−2 and 𝑛 = 2.0×1012

cm−2. The dashed green, dotted blue and dotdashed black lines are corresponding to
𝑧0 = 1, 2, 3 nm, respectively. (c) Calculated 𝐷𝑒(𝐸) in BLG for 𝑑 = 100 nm, 𝑧0 = 1
nm and 𝑛𝑖𝑚𝑝 = 0.5×1012 cm−2. The dashed green, dotted blue and dotdashed black
lines are corresponding to 𝑛 = 0.5, 1.0, 2.0× 1012 cm−2, respectively.
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the corresponding density of states can be written as (also see Sec. 2.3):

𝐷𝑒(𝐸) =
∫ 𝐸

−∞
𝑔𝑠𝑔𝑣𝑚

2𝜋ℏ2
𝑃 (𝑉 )𝑑𝑉

=
𝐷0

2
erfc(− 𝐸√

2𝑠
)

(A.11)

where erfc(𝑥) is the complementary error function, 𝑠 = 𝑉𝑟𝑚𝑠 (as given in Eq. A.6),

𝐷0 =
𝑔𝑠𝑔𝑣𝑚

2𝜋ℏ2
, 𝑔𝑠 = 2 and 𝑔𝑣 = 2 are the spin and valley degeneracies, respec-

tively. The main difference between MLG and BLG is in their density of states

of non-interacting systems. The homogeneous MLG system has the linear energy-

dependent density of states while the density of states of the homogeneous BLG is

independent of energy, which leads to different Thomas-Fermi screening wavevec-

tors. The potential fluctuation in Eq. A.6 affects the electronic density of states in

BLG. But the fluctuations depend on the screening via Eq. A.4 while the screening

depends on the density of states via Eq. A.10. Therefore, we have a coupled problem

which must be solved self-consistently.

In Fig. A.4, the broadening parameter 𝑠 and the screening constant 𝑞𝑇𝐹 are

plotted for various Fermi levels (i.e. the carrier density 𝑛). As shown for MLG, the

BLG parameters (𝑠, 𝑞𝑇𝐹 ) are also non-trivial function of the fixed charge density

𝑛𝑖𝑚𝑝, the SiO2 thickness 𝑑, the location of the fixed charged impurity 𝑧0, and the

Fermi level. The different charged impurity configurations and carrier densities

have similar effects on potential fluctuations of bilayer graphene as we discussed for

monolayer graphene. The results for 𝑠(𝑞𝑇𝐹 ) are also quite similar to that of MLG

(in Fig. A.1) only with small numerical difference.

In Fig. A.5, the self-consistent electronic density of states of BLG has been
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calculated using SiO2 thickness 𝑑 = 100 nm and distance of fixed charged impurities

𝑧0 = 1 nm for different impurity densities. The higher impurity density changes

the density of states more dramatically. In Fig. A.6, we show the electronic density

of states of BLG for different charged impurity configurations and carrier densities.

The existence of random charged impurities reduces the electronic density of states

for 𝐸 > 0 but creates a band tail for 𝐸 < 0.
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Appendix B

The density of states smearing effect on the

graphene conductivity

The density of states (DOS) of disordered graphene is calculated within the

self-consistent Born approximation (SCBA). In calculating the DOS only a short

range disorder potential is considered. The 𝑇 = 0 conductivity is calculated with a

simple formula

𝜎(𝑛) =
𝑒2𝑣2𝐹
2

𝐷(𝐸𝐹 )𝜏(𝐸𝐹 ), (B.1)

where 𝐷(𝐸𝐹 ) is the DOS at Fermi level, and 𝜏(𝐸𝐹 ) is the transport scattering time.

Note that the scattering time is calculated with the DOS of the bare band and with

two different disorders, short range potential and long range Coulomb potential.

Thus, the scattering time is given by

1

𝜏
=

1

𝜏𝐶
+

1

𝜏0
, (B.2)

where 𝜏𝐶 (𝜏0) is the scattering time due to the long-range Coulomb impurities (short

range impurities) and they are given by in the Boltzmann transport approach

1

𝜏𝐶
∝ 𝐷𝑏(𝐸𝐹 )∣𝑉𝑐(𝑘𝐹 )∣2 ∝ 𝐸−1

𝐹 ,

1

𝜏0
∝ 𝐷𝑏(𝐸𝐹 )∣𝑉0(𝑘𝐹 )∣2 ∝ 𝐸𝐹 , (B.3)
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where 𝐷𝑏(𝐸) ∝ 𝐸 is the DOS of bare band. In low density limit, 𝐸𝐹 → 0, the scat-

tering rate by Coulomb impurities dominates and the total scattering time behaves

as 𝜏(𝐸𝐹 ) ∝ 𝐸𝐹 , i.e., 𝜏(𝐸𝐹 ) ∝ 𝑛1/2. Thus, even though the DOS is finite at 𝜔 = 0

the conductivity, 𝜎(𝑛) ∝ 𝐷(𝐸𝐹 )𝜏(𝐸𝐹 ) ∝
√
𝑛 as 𝑛 → 0.

We calculate the disorder-broadened DOS for graphene following Refs. [116,

117, 118], and then calculate the conductivity following Eqs. (B.1)–(B.3) above. Our

results for the broadened DOS and the resulting conductivity are shown in Figs. B.1

and B.2. The important points to note are :(1) the disorder-broadened DOS leads to

an enhanced (suppressed) conductivity at low (high) carrier densities for more (less)

disordered systems in agreement with Ref. [41]; (2) but the Dirac point conductivity

is always zero independent of whether the DOS is smeared by disorder or not and

thus the smearing of the DOS by itself cannot be the explanation for the existence

of the minimum conductivity plateau in graphene which necessitates the existence

of electron-hole puddles in the system.

We can consider the DOS of disordered graphene (rather than the DOS of the

bare graphene as done above) to calculate the scattering time. Now we have a finite

DOS as 𝐸 → 0. Then with the same approach as Eq. (B.3) we have the scattering

times as 𝐸𝐹 → 0

1

𝜏𝐶
∝ 𝐷(𝐸𝐹 )∣𝑉𝑐(𝑘𝐹 )∣2 ∝ 𝐸−2

𝐹 ,

1

𝜏0
∝ 𝐷(𝐸𝐹 )∣𝑉0(𝑘𝐹 )∣2 ∝ 𝐸0

𝐹 . (B.4)

Similarly we have 𝜏 ∝ 𝐸2
𝐹 ∝ 𝑛, and 𝜎(𝑛) ∝ 𝑛 as 𝑛 → 0.

Thus, the DOS smearing by disorder always produces zero conductivity at the
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Figure B.1: Calculated the density of states within SCBA for different strengths of
𝛿-range disorder potential 𝑉0, 𝑛𝑑𝑉

2
0 = 0, 10, 50, 100 (eVÅ)2, where 𝑛𝑑 is the short

range impurity density. Here 𝐸𝑐 = ℏ𝑣𝐹𝑘𝑐 is the cut-off energy with 𝑘𝑐 ∼ 1/𝑎 where
𝑎 = 1.42Å is the lattice constant. 𝐷0 = 𝑔𝑠𝑔𝑣𝐸𝑐/(2𝜋(ℏ𝑣𝐹 )2). (b) shows the same
results of (a) at low energy regime. The DOS at 𝜔 = 0 is given by the formula,
𝐷(0)/𝐷0 = ln𝐸0/(2𝜋𝐸0), where 𝐸0 = 𝐸𝑐/

√
𝑒2𝜋/𝛾 − 1 and 𝛾 = 𝑛𝑑𝑉

2
0 /(2(ℏ𝑣𝐹 )2).

Dirac point (𝑛 = 0) in graphene although close to the Dirac point the smearing

of the DOS does indeed lead to an enhanced conductivity as shown in the figures.

Although our results are shown within the SCBA theory of the DOS smearing,

the qualitative findings are the same within the simpler Born approximation where

the disorder broadening of the DOS does not lead to a finite DOS at zero density.

Thus, the DOS smearing by disorder cannot be an explanation for the graphene

finite minimum conductivity around the Dirac point which arises from the Coulomb

disorder induced density inhomogeneity and electron-hole puddles in the system.
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Figure B.2: Calculated conductivity as a function carrier density. Parameters of
graphene on h-BN are used. The conductivity is calculated with Eq. B.1, 𝜎 =
𝑒2𝑣2𝐹
2

𝐷(𝐸𝐹 )𝜏(𝐸𝐹 ), where 𝐷(𝐸𝐹 ) is the DOS at Fermi level which is given in Fig. B.1,
and 𝜏(𝐸𝐹 ) is the transport scattering time calculated with DOS for the bare band.
The conductivity is calculated for a fixed long range charged impurity 𝑛𝑖 = 1011

cm−2 , but for different short range disorder potentials as given in the figure. Both
the DOS and conductivity are calculated with the same short range disorders. Note
that the conductivity approaches zero as the carrier density goes to zero. (b) shows
the resistivity 𝜌 = 1/𝜎 calculated with the same parameters of (a) as a function
carrier density in log-log scale.
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