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ABSTRACT

Chronic kidney disease (CKD) will become the fifth global case of death by 2040. Its largest impact is on premature
mortality but the number of persons with kidney failure requiring renal replacement therapy (RRT) is also increasing
dramatically. Current RRT is suboptimal due to the shortage of kidney donors and dismal outcomes associated with both
hemodialysis and peritoneal dialysis. Kidney care needs a revolution. In this review, we provide an update on emerging
knowledge and technologies that will allow an earlier diagnosis of CKD, addressing the current so-called blind spot (e.g.
imaging and biomarkers), and improve renal replacement therapies (wearable artificial kidneys, xenotransplantation,
stem cell-derived therapies, bioengineered and bio-artificial kidneys).

Keywords: artificial kidney, bioengineering, chronic kidney disease, induced pluripotent stem cells, xenotransplantation

INTRODUCTION

There are currently 850 million persons in the world with
chronic kidney disease (CKD), and CKD is predicted to become
the fifth global cause of death by 2040 and the second cause of
death in counties with long life expectancy by 2100 [1].Moreover,
CKD is the leading chronic condition with increased incidence,
prevalence and overall health impact. The terminal stage of CKD,
referred as end-stage renal disease (ESRD) or kidney failure, is
defined by an estimated glomerular filtration rate (eGFR) be-
low 15 mL/min/1.73 m2 by the Kidney Disease: Improving Global
Outcomes (KDIGO), affecting approximately 800 000 patients in

the USA (71% on dialysis and 29% with a kidney transplant) [2],
whereas, in Europe the estimated ESRD population is over 1 mil-
lion people,with considerable variations across individual coun-
tries [3, 4].

Kidney transplantation was first performed in 1954 by Dr
Joseph Murray and is the current gold standard for treatment.
However, there are still fewer donors than the relentlessly in-
creasing waiting list [5]. Chronic hemodialysis was introduced
in 1960 by Dr Belding Scribner, and despite being themajor form
of renal replacement therapy (RRT) it is associated with numer-
ous short- and long-term complications. Importantly, the life
expectancy of patients in dialysis in their twenties is 40 years
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Novel strategies in nephrology 231

Figure 1: General overview of the novel strategies in nephrology. (Diagnostics will be further elaborated in detail in Fig. 2.)

shorter than for the general population [6]. Peritoneal dialy-
sis is less frequently utilized, and beside specific complications
(peritonitis, cellulitis, metabolic disturbances) it is limited by al-
most inexorable membrane failure [7].

Thus, overall, the treatment of ESRD patients remains sub-
optimal, due to a shortage of kidney donors and multiple sig-
nificant complications associated with both dialysis modalities,
although multiple alternatives have been considered over the
years. Some of the recent developments have the potential to
revolutionize the field of nephrology in the upcoming decades.
In addition, a large proportion of patients with CKD, especially
those with stage 2 and stage 3 CKD, are older individuals who
will never require any form of renal replacement therapymainly
since these patients die earlier of cardiovascular diseases. Thus,
the real increase in the need of RRT is much less. The main
benefits of new drugs such as sodium–glucose cotransporter 2
(SGLT2) inhibitors and mineralocorticoid receptor antagonists
(MRAs) are in this group of kidney disease patients.

In this review, we aim to describe the novel diagnostic meth-
ods in nephrology such as the advancements in kidney imag-
ing and modalities utilized to estimate renal function as well
as the novel therapeutic approaches in kidney disease includ-
ing wearable artificial kidneys, xenotransplantation, stem cell-
derived therapies, bioengineering models and medications on
the rise (Fig. 1).

NOVEL DIAGNOSTIC METHODS

Novel diagnostic methods that would allow an earlier diagnosis
of CKD are an unmet clinical need. Reliance on the current eGFR
threshold to diagnose CKD means that by the time CKD is diag-
nosed, over 50% of the functional kidneymass has been lost and
the combined risk of CKD progression and premature death is
already increased by around 2- to 7-fold, while current interven-
tions decrease the risk of adverse outcomes by 20%–40% [8, 9]; in
other words, diagnosis is too late. While CKD may be diagnosed
earlier based onhigh albuminuria values,most patients progress
to CKD category G3 while having physiological albuminuria, as
evidenced by epidemiological data that show that G3 is themost
common category of CKD [10], i.e. albuminuria did not allow an
earlier diagnosis (i.e. G1 or G2) for most patients that progressed
to G3. This subclinical stage of CKD progression, potentially last-
ing decades, as evidenced by those forms of CKD in which we
have a tool that allows an earlier diagnosis (e.g. sonography for
autosomal dominant polycystic kidney disease) is in fact the
blind spot for CKD diagnosis [11–13]. Several approaches are un-
der study to address the blind spot in CKD,mainly using imaging
and assessment of biomarkers in biological fluids (Fig. 2).

Imaging: assessing nephron number as a determinant
of kidney disease and kidney fibrosis

Imaging techniques have the advantage of being non-invasive
and, thus, may be safely repeated to evaluate changes, provid-
ing information for both kidneys and potentially combining
functional with morphological information. The most interest-
ing advances relate to estimation of nephron number, overall
kidney functions, fibrosis and new functional magnetic reso-
nance imaging (MRI), as well as ultrasound techniques such as
diffusion-weighted MRI (DWI or DW-MRI), blood oxygenation
level–dependent MRI (BOLD-MRI), perfusion MRI, hyperpo-
larized (HP) carbon 13 MRI (13C MRI) and contrast-enhanced
ultrasound (CEUS).

Functional nephron number is considered an important de-
terminant of kidney health and disease susceptibility through-
out life [14, 15]. In humans, nephron number varies widely and
a low nephron endowment at birth and/or a loss of nephrons
throughout life is strongly associated with kidney disease [15].
Novel technologies to measure nephron number are under de-
velopment, and functional nephron number has the potential to
be used as a clinical biomarker [14].Nephronnumber,whenused
as a biomarker, could provide important information regarding
the progression of kidney disease and provide early detection of
CKD onset or assessment of recovery after acute kidney injury,
improve the evaluation and assessment of donor organs, predict
graft survival times, predict the risk of drug-induced nephrotox-
icity, and help develop strategies for dosing and toxicity testing
for a wide range of therapeutic drugs [14].

New methods have been suggested to measure nephron
number ex vivo in the intact kidney: cationized ferritin-enhanced
MRI (CFE-MRI) [16], light sheet microscopy after optical clearing
[17] and computed tomography (CT) [18]. However, the utiliza-
tion of these tools in vivo and in the clinics necessitates them
being non-destructive and relatively non-invasive, and thus far
only CFE-MRI has been used in vivo [14].

CFE-MRI uses ferritin filled with an iron oxide [14]. Following
intravenous injection, the ferritin is cationized and bound to
the glomerular basement membrane. The accumulation of
ferritin in the glomeruli allows its detection, mapping of the
entire kidney in vivo and co-localization of glomeruli with other
structures such as the microvasculature. To support the use of
nephron number as a clinical parameter, the cationized ferritin
molecule of CFE-MRI has been modified to form radiolabeled
cationic ferritin (RadioCF), a radiotracer used in positron emis-
sion tomography (PET) to map functioning glomeruli in vivo
in the kidney [19]. RadioCF-PET accurately quantifies nephron
mass in animals and had the potential for clinical transla-
tion [19]. Radio-CF is formed by integration of a radioisotope,

D
ow

nloaded from
 https://academ

ic.oup.com
/ckj/article/16/2/230/6706856 by guest on 14 M

arch 2023



232 S. Copur et al.

Figure 2: Novel diagnostic methods in nephrology. CFE-MRI: cationized ferritin-enhanced MRI; RadioCF-PET: radiolabeled cationic ferritin-positron emission tomog-

raphy; CKD: chronic kidney disease; AKI: acute kidney injury; GBM: glomerular basement membrane; KRIS: Kidney Risk Inflammatory Signature; THSD7A: throm-
bospondin type-1 domain–containing 7A antibodies; NAD: nicotinamide adenine dinucleotide; FAT1: glomerular antigen-protocadherin FAT1; ESRD: end-stage renal
disease; DKD: diabetic kidney disease; HST: hematopoietic stem cell transplantation; PCX: podocalyxin; KIM-1: kidney injury molecule 1; TNF-α: tumor necrosis factor-
α; 8-OHdG: 8-oxo-7,8-dihydro- 2′-deoxyguanosine; L-FABP: liver-type fatty acid binding protein; IGFBP-7: insulin-like growth factor-binding protein-7; TIMP-2: tissue

inhibitor of metalloprotease-2; DIKI: drug-induced kidney injury; CNA35-CT: collagen-binding adhesion protein-35 CT; ESMA-basedMRI: elastin-specific contrast agent
MRI; DW-MRI: diffusion-weighted MRI; BOLD-MRI: blood oxygen level–dependent MRI; HP-13C MRI: hyperpolarized carbon 13 MRI; plus sign: advantages; minus sign:
disadvantages/limitations (indicated in red color).

Cu-64, to the cationic ferritin (CF) and has been shown to bind
functional glomeruli when given intravenously [19]. RadioCF-
PET can map and measure the areas of functional nephron
loss making it a diagnostic tool that can also predict CKD
progression [14].

MRI has been used to assess the functional status of both kid-
neys. Multiparametric MRI may evaluate diverse aspects of kid-
ney function and vascularization [20]. A novel imaging modality
is sodium MRI. Compared with “normal MRI,” which is a map
of hydrogen atoms in the body, sodium MRI is a map of sodium
atoms in the body. The kidney has a baseline gradient of sodium
concentrations from the cortex to themedulla (corticomedullary
sodium gradient) [21, 22]. The first study of sodium MRI on hu-
man kidneys demonstrated that the sodium gradient increases
linearly from cortex to medulla which is followed by linear de-
crease until renal pelvis [23, 24]. Although alterations in the
sodium gradient have been demonstrated on multiple clinical
and pre-clinical trials, the sodium MRI technique is far from be-

ing integrated into clinical practice [25–27] mainly due to the
cost and technical factors involved in MRI recalibration and op-
eration. An additional major setback of this technique for now
is the lack of adequate characterization of findings in different
CKD stages and in various kidney diseases.

Specific techniques have been designed to assess kidney fi-
brosis and its dynamics in both kidneys simultaneously in vivo
[28]. These include fluorescent CNA35 CT, which takes advan-
tage of a collagen binding peptide, and elastin-specific contrast
agent MRI (ESMA)-based molecular MRI of elastin [28]. For in-
stance, collagen-binding adhesion protein (CNA35) which has
high affinity for type I and III collagen molecules has been uti-
lized as a tool to visualize collagen deposition in mouse sub-
jects and has a potential to be utilized in human subjects as
a non-invasive method of fibrosis assessment [29, 30]. On the
other hand, ESMA-based MRI, which is a small peptide specific
to elastin, component of extracellular matrix, has been shown
to demonstrate kidney fibrosis in mouse models as well as the
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efficiency of anti-fibrotic therapies [31]. These techniques will
eventually also test a potential impact of anti-fibrotic therapies,
a current unmet need.

In addition, novel MRI techniques allow to generate imaging
biomarkers that can improve themanagement of kidney disease
[20].MRI enables tomeasure kidney volumes, blood flow in renal
arteries, renal water content and tissue oxygenation [20].DWI, or
DW-MRI, can detect the displacement of water molecules within
the tissue architecture [20]. This technique can inform about any
changes in the renal microstructure such as renal fibrosis, cel-
lular infiltration (inflammatory or tumorous) or edema as well
as changes in renal perfusion and in the water handling in the
tubular compartment [20]. BOLD-MRI, whichmeasures renal tis-
sue deoxyhaemoglobin levels voxel by voxel, is a promising tech-
nique to monitor renal tissue oxygenation in humans [32]. It al-
lows themonitoring of changes in renal oxygenation or changes
in the capillary bed microstructure. In addition, T2 is altered by
several other factors such as hydration status, dietary sodium
and susceptibility effects [20]. In addition,HP 13CMRI is a poten-
tial tool, not currently used in the clinic, for the non-invasive as-
sessment of oxidative stress and mitochondrial pyruvate dehy-
drogenase activity following renal ischemia–reperfusion injury
[33].

Furthermore, CEUS has been a promising imaging modality
for renal lesions. CEUS lacks nephrotoxicity, ionizing radiation,
and has the ability to evaluate the enhancement pattern of renal
lesions quickly and in real time [34]. Some of thewell-defined ap-
plications of CEUS are the differentiation of solid tumors, pseu-
dolesions and complex cysts; characterization of complex cysts
with different malignant potential; and evaluation of tumor ab-
lation [34]. Microbubble contrast agents are safe with rare ad-
verse reactions [34].

These approaches are promising tools to assess nephron
number, diverse kidney functions and kidney fibrosis and may
be transitioned to clinical use if their safety, efficacy and regula-
tory requirements are established.

Biological fluid biomarkers

Proteomics and metabolomics have recently been tested in the
field of nephrology with intriguing and promising results. In
some cases, proteomic or metabolomic signatures themselves
are used as biomarkers. In others, they are tools that are used
to identify individual biomarkers that are then assessed using
more conventional techniques. Additionally, both RNA and DNA
in biological fluids may serve as biomarkers. These biomarkers
should correlate well with kidney disease, histopathology, pro-
gression, outcomes or early disease, and allow for rapid, non-
invasive and specific measurements with high sensitivity and
specificity.

Proteomic and metabolomic analysis for the detection
of biomarkers

Pontillo and Mischak identified 273 urinary peptides that dif-
fer between patients with CKD and healthy subjects, namely
the marker CKD273 which includes fragments of collagen and
of proteins involved in inflammation and tissue repair, by us-
ing capillary electrophoresis-mass spectroscopy (CE-MS) on 230
CKD patients and 379 control subjects [35, 36]. Further studies
have implicated the potential superiority of CKD73 in the pre-
diction and diagnosis of CKD over traditional markers leading
to a letter of support of the US Food and Drug Administration
(FDA). According to a cross-sectional study conducted on 1990

participants, CKD273 performed better than traditional mark-
ers and correlated better than albuminuria with eGFR and bet-
ter predicted rapid CKD progression [37]. Similar findings were
observed in another study conducted on 2087 participants, in
which CKD273 added to the prediction of CKD G3 after account-
ing for baseline eGFR, albuminuria and covariables [38]. In a ran-
domized controlled trial in diabetic patients without albumin-
uria, CKD273 predicted the development of albuminuria [39].
Furthermore, the same CE-MS analysis of a single urine sam-
ple may be used to derive other peptidomics markers that pre-
dict the rapid loss of eGFR better than albuminuria in patients
who do not fulfill current eGFR criteria for CKD (i.e.may allow an
earlier diagnosis of CKD than albuminuria) [40], or correlate with
kidney fibrosis as detected in kidney biopsy [41] or provide infor-
mation on the underlying cause of CKD and its prognosis [42, 43].

The Kidney Risk Inflammatory Signature (KRIS) includes 17
proteins directly involved in inflammation and correlated with
the 10-year risk of ESRD in diabetic kidney disease [44]. In this
study 194 circulating inflammatory proteins have been evalu-
ated in three different cohorts comprised of type 1 and 2 dia-
betic patients, revealing that 17 novel proteins enriched for TNF
Receptor Superfamily members are linked to early and late re-
nal function decline leading to ESRD in diabetic subjects. Even
though the major source, hypothesized to be white blood cells,
of those KRIS proteins is yet to be determined, their appear-
ance years prior to the onset of ESRD appears to be related to
overproduction rather that disrupted renal clearance. In addi-
tion to their predictive role in ESRD, KRIS proteins provide a po-
tential therapeutic intervention point as evidenced by a clinical
trial conducted in one of those three cohorts demonstrating de-
cline in albuminuria consistent with the decline in KRIS proteins
in response to 24-week trial with 4 mg of baricitinib, a JAK-1/2
inhibitor [45]. Additionally, certain metabolites of nicotinamide
adenine dinucleotide (NAD) have recently been correlated with
acute kidney injury (AKI) risk [46].

There are multiple ongoing clinical trials (NCT01550393,
NCT02743273, NCT00690586, NCT04851145) investigating the
role of proteomics and metabolomics in the field of nephrol-
ogy. However, these trials should demonstrate that proteomics
or metabolomics biomarkers offer additional information over
conventional biomarkers that are clinically relevant and may
change therapeutic decision-making in a cost-effective manner.
It is important to emphasize that studies investigating novel
biomarkers need not only a detection cohort but also an inde-
pendent (second) validation cohort.

In addition, multiple novel biomarkers have been identi-
fied recently, sometimes using proteomics, although they are
in diverse stages of translation to the clinic [47]. More than 40
potential biomarkers have emerged in recent years and most
can be sorted based on their association with features such as
glomerular injury [podocalyxin (PCX)], tubular injury [kidney in-
jury molecule 1 (KIM-1)], inflammation [tumor necrosis factor-α
(TNF-α), TNF receptors-1 and -2) [48]] and oxidative stress [8-oxo-
7,8-dihydro- 2′-deoxyguanosine (8-OHdG)] [47]. CKD biomarkers
can be identified by a variety of conventional methods such as
solid-phase fluorescent immunoassay, liquid chromatography–
mass spectrometry, liquid chromatography–mass spectrometry,
high-performance liquid chromatography (HPLC) and enzyme-
linked immunosorbent assay (ELISA) [47]. Additionally,microflu-
idics allow for short sample processing times along with a small
footprint, automated operation and a high degree of flexibility,
and may potentially offer a robust, cost-effective and simple-to-
operate instrument for early diagnosis of CKD and other patho-
logical events [47].
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Membranous nephropathy is the most common cause of
nephrotic syndrome in adults and in hematopoietic stem
cell transplant (HST) patients. A flurry of autoantigens has
been identified recently, following the description of anti-
phospholipase A2 receptor (PLA2R) antibodies, a biomarker that
according to guidelines can now replace kidney biopsy in pa-
tients with membranous nephropathy [49]. Anti-protocadherin
FAT1 antibodies are found in over 80% of cases of mem-
branous nephropathy following HST [50]. Patients with anti-
PLA2R antibody–negative primary membranous nephropathy
may have anti-thrombospondin type-1 domain–containing 7A
antibodies [51, 52]. Additionally, anti-nephrin antibodies have
been detected via serological and immunohistochemical studies
in a subset of biopsy-proven minimal change disease patients
[53].

The field of biomarkers of AKI is also very active; urinary
insulin-like growth factor-binding protein-7 (IGFBP-7) and
tissue inhibitor of metalloprotease-2 (TIMP-2) testing are now
in clinical use under the brand name Nephrocheck [47, 54].
Kidney tubular injury results in the release of blood and urine
biomarkers [55]. Urinary KIM-1, liver-type fatty acid binding
protein (L-FABP), IGFBP-7 and TIMP-2 are released from the
proximal tubule, whereas uromodulin (UMOD) is secreted from
the loop of Henle and neutrophil gelatinase-associated lipocalin
(NGAL) originates from distal tubules [55]. These biomarkers
could potentially localize specific segments of injured tubules.
Biomarkers involved in inflammation, repair and fibrosis [55]
could also predict the transition from AKI to CKD, help dis-
tinguish between kidney dysfunction and injury, guide AKI
management, and improve the diagnosis of diseases such as
acute interstitial nephritis [55]. Furthermore, some biomarkers
are ready for use in clinical trials of AKI and could guidemanage-
ment in certain clinical settings. The Kidney Precision Medicine
Project is an ongoing effort to build a kidney tissue atlas and
increase the use of biomarkers to evaluate nephron health [55].

RNA biomarkers

microRNAs (miRNA) are stable molecules and there are sev-
eral examples of their potential use in the context of kidney
injury, including drug-induced kidney injury (DIKI) [56]. A cross-
laboratory program to identify urinary miRNA patterns associ-
ated with cell- or cause-specific DIKI characterized biomarkers
of glomerular, proximal tubule, thick ascending limb (TAL) of the
loop of Henle or collecting duct (CD) injury in rats by exposing
them to cell-specific toxins and confirming the location of in-
creased expression by laser capture microdissection of nephron
segments [56]. Urinary miR-192-5p was identified as potentially
proximal tubule-specific. Urinary miR-221-3p, miR-222-3p and
miR-210-3p increased following exposure to TAL toxins, and
miR-23a-3p following the podocyte toxin doxorubicin. Thus,
urinary miRNA panels from different nephron regions may con-
tribute to the exploring the DIKI potential of novel drugs [56].

Cell-free DNA

Cell-free DNA methods have increasingly been used, along with
other methods, especially in the field of hematology and oncol-
ogy to detect malignancies and evaluate recurrences. Similarly,
they have potential for use in the detection of renal cell carci-
noma [57]. Though it is too early to draw conclusions, there is
potential for cell-free DNA to be used in the detection of acute re-
jection in kidney transplant recipients [58, 59]. Additionally, high
levels of cell-free DNA were associated with adverse outcomes

in one study of 131 CKD patients not on dialysis and in another
study conducted on 289 patients on hemodialysis [60, 61]. Ad-
ditionally, cell-free DNA was associated with AKI after cardiac
surgery or in patients with type 1 cardiorenal syndrome [62, 63].
However, these data should be validated in large scale multi-
center clinical studies that address the added benefit on patient
management of assessing cell-free DNA.

NOVEL THERAPEUTIC ALTERNATIVES

Novel therapeutic alternatives for ESRD include wearable artifi-
cial kidneys, xenotransplantation, stem cell–based therapy, and
bioengineered and bio-artificial kidneys.Of note, one of themain
objectives of these novel therapeutic approaches should be to
maintain patients at home and to avoid dialysis centers. Addi-
tionally, novel medications to prevent CKD progression or treat
CKD complications are at advanced stages of clinical develop-
ment or have already been approved for clinical use in some
countries (Fig. 3).

The main aim for the development of novel therapeutic
markers is to create a time frame for earlier treatment with pos-
sible reversal of disease or prevention of disease progression.
Even though current therapeutic alternatives are mostly unben-
eficial in this regard, novel therapeutic modalities have been de-
veloped and testes along with the diagnostic modalities in hope
of reach that goal.

Wearable artificial kidneys

Existing hemodialysis is an imperfect treatment. It is socially ob-
trusive to the patient, necessitating them to take several days
out of the week to undergo a long treatment using bulky equip-
ment requiring significant water and electricity supply. Also, be-
cause it only occurs 3 days a week, it is at best a very imperfect
approximation of the continuously functioning normal kidneys
[64]. Thus, current hemodialysis modalities cannot be consid-
ered green techniques and are associated with dismal outcomes
[6].

The wearable artificial kidney (WAK) is an innovative
approach to renal replacement therapy aiming to improve
patients’ quality of life by allowing mobility and continuous
clearance of toxins without accumulation during inter-dialysis
periods, with better hemodynamic stability, similar to healthy
kidneys. The minimum requirements for the dialysis system of
a WAK are pumping systems, a dialysate regeneration system,
dialysis membrane, batteries and a patient monitoring system
[65]. The initial effort for ambulation during hemodialysis
sessions consisted of a WAK system enabling ambulation for up
to one-third of the dialysis session [66]. Nevertheless, it lacked
enough sorbent for full time treatment and patients had to be
connected to a classical hemodialysis device for at least two-
thirds of the session duration. Next, another WAK system was
developed that had sorbent-containing minicartridges instead
of requiring large amounts of dialysate; however, this system
was limited by the requirement of minicartridges change four
times daily, and by high infection risk due to transcutaneous
arteriovenous shunts/fistula [67]. A few other WAK designs over
the years did not undergo clinical trials [66, 68, 69]. Current
WAK models weigh under 5 kg and have long-lasting small bat-
teries that avoid the need for continuous electrical connection,
improved permeability membranes and advanced filtration
materials that enable the reuse of dialysate solutions without
needing large quantities of water as in conventional hemodial-
ysis [70]. Among the five different WAK models currently under
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Figure 3: Novel therapeutic alternatives in nephrology. G-CSF: granulocyte colony stimulating factor. plus sign: advantages; minus sign: disadvantages/limitations
(indicated in red color).

development, three are based on peritoneal dialysis, one on
hemodialysis and one is a combined model [71, 72].

Only a single human clinical trial (prospective, non-
randomized) involving 10 subjects with a duration of 24 h
has been conducted regarding the efficiency and adverse ef-
fects of WAK [73]. No serious adverse events such as hemody-
namic instability were observed and overall toxin clearance was
achieved, but the trial was terminated because of the develop-
ment of excessive amounts of carbon dioxide air bubbles. The
targeted ultrafiltration rates were achieved with a mean blood
flow rate of 42 ± 24 mL/min and a mean dialysate flow rate
of 43 ± 20 mL/min. Additionally, self-reported treatment satis-
faction and treatment-related quality of life were higher than
for traditional hemodialysis sessions. Major limitations in addi-
tion to carbon dioxide bubbles were the considerable variations
in blood and dialysate flow rates and in toxin clearance. Addi-
tionally, a pilot study with eight patients demonstrated similar
outcomes [74]. Targeted ultrafiltration rates were achieved with
a mean blood flow of 58.6 ± 11.7 mL/min and mean dialysate
flow of 47.1 ± 7.8 mL/min without significant hemodynamic ad-
verse effects. Two patients experienced clotting at the vascular
access despite the use of heparin similar to hemodialysis ses-
sions. In summary, WAK systems are promising but their qual-

ity should be improved and confirmed in longer and larger scale
studies.

Xenotransplantation: an old concept revisited

Xenotransplantation was first postulated in 1667. However,
clinical trials in the early 20th century were marred by limited
success due to high rates of rejection, thrombotic complications
and infection [75–77]. Given the ever-expanding waiting lists
for kidney transplantation, which is now over 100 000 patients
comparedwith amuch lower number (∼35 000) of annual kidney
transplantations performed in the USA, the concept of xeno-
transplantation has re-gained clinical and research attention
[78]. CRISPR/Cas9 and advances in the field of bioengineering
have allowed xenotransplantation across non-human species
with higher success and lower complication rates [79]. Pigs are
the common choice as a source for kidneys due to their short
maturation period, low risk of xenozoonosis, advancement in
bioengineering studies, and relative physiology and size simi-
larity to humans. Two 2022 clinical reports have been promising
[80, 81]. In a brain-dead patient, both kidneys were transplanted
from pigs with 10 genetic modifications aimed at preventing
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rejection. Despite the lack of hyperacute rejection and stable
urine output for 72 h until the termination of the trial, the
transplanted kidneys were unable to excrete creatinine at phys-
iological levels and histological examination revealed evidence
for thrombotic microangiopathy with no evidence of cellular re-
jection or deposition of antibody or complement proteins [80]. In
two further cases of genetically modified pig-to-human kidney
transplantations, GFR significantly improved within minutes
after transplantation [81]. Kidney biopsies performed at the 6th,
24th, 48th and 54th hours post-transplantation revealed no signs
of a hyperacute or antibody-mediated rejection reaction. How-
ever, the follow-up period was limited to 54 h [81]. Overall, these
cases indicate that prevention of antibody-mediated hyperacute
rejection is feasible. However, the recent death of the recipient
of the first ever heart transplant from genetically modified pigs,
likely from a porcine virus and after initial apparent success of
the procedure, adds a note of caution to the current limitations
of our understanding of the procedure and its complications.

An alternative strategywould entail human organ generation
in animals whose organ size, anatomy and physiology are closer
to humans (e.g. in pigs) [82].With the demonstration of potential
interspecies organ generationwith the use of xenogenic pluripo-
tent stem cells, as shown by rat pluripotent stem cell-derived
on organogenesis-disabled mice via blastocyst complementa-
tion method, the potential role for of xenotransplantation has
been questioned for human subjects without any clinical or pre-
clinical study in that field. In any case, the ethical issues posed
by xenotransplantation remain controversial.

Stem cell-based therapy: an alternative approach
on the rise

Stem-cell based therapies became popular after the discovery of
induced pluripotent stem cells by Yamanaka and colleagues in
2006 [83]. Pluripotent stem cells have the potential to differen-
tiate into almost all cell types in the body and are derived from
somatic cells by the introduction of Yamanaka factors (four spe-
cific genes encoding transcription factors, namely Oct3/4, Klf4,
Sox2 and Myc) [84]. Stem-cell–based therapies have been on the
rise in the last few decades. Multipotent stromal cells are the
choice so far and are derived from bonemarrow (BM-MSCs), am-
niotic fluid (AFSCs), urine (USCs) or umbilical cord (UC-MSCs)
[85]. Mesenchymal stem cells have been shown to differentiate
intomesangial cells when they are culturedwith injuredmesan-
gial cells in vitro [86]. The main mechanisms of stem cell ther-
apy in kidney diseases include upregulation of autophagy, anti-
apoptotic properties, paracrine signaling and anti-inflammatory
properties. Extracellular vesicles secreted from stem cells may
prevent high phosphorus-induced vascular calcification in CKD
patients and may prevent fibrosis and the resultant CKD in uni-
lateral ureteral obstruction through paracrine mechanisms [87,
88]. Stem cell therapy protects from cisplatin-induced nephro-
toxicity, AKI, diabetic nephropathy and oxidative stress through
the activation of autophagy [89, 90]. Anti-apoptotic and anti-
inflammatory properties of stem cells are beneficial for the treat-
ment of rhabdomyolysis or chromium- or adriamycin-induced
AKI, diabetic nephropathy, renal artery stenosis, cardiorenal
syndrome, lupus nephritis and obesity-induced AKI [91–100].
Few clinical trials are yet to investigate the safety, efficiency
and applicability of stem cell therapy in human subjects with
CKD, though results appear promising as shown by a placebo-
controlled clinical trial conducted on 200 Chinese patients with
CKD and eGFR below 60 mL/min/1.73 m2 demonstrating effi-
ciency of bone marrow-derived mesenchymal stem cell therapy

as intravenous infusion in terms of serum creatinine, cystatine
C and reactive oxygen species after 8 weeks of therapy [101].

Kidney organoids may be produced from pluripotent stem
cells. Efficient bioengineering protocols differentiate human
pluripotent stem cells into multipotent nephron progenitors
and, hopefully in the end, functional kidneys. Kidney organoids
formed in this procedure are organized into nephron-like struc-
tures and express markers for podocytes, proximal tubules,
loops of Henle and distal tubules [102–104]. Organoids may also
be considered to develop kidney disease models. For now, they
are not able to mature beyond the second trimester stage. Even-
tually, progress in this field is aimed at contributing to renal re-
placement therapies in the future.

Finally, kidney rejuvenation strategies have been envisioned
using Yamanaka factors in vivo (e.g. through kidney artery
catheterization) or ex vivo (e.g. for kidneys from older transplant
donors) [105].

Bioengineered and bio-artificial kidneys

The concept of bioengineering an artificial kidney has been stud-
ied for at least three decades [106]. The bio-artificial Renal As-
sist Device (RAD) was a hybrid systemwhere a multi-fiber biore-
actor consisting of the synthetic hollow fibers of a high-flux
hemofiltration cartridge combined with porcine primary tubu-
lar epithelial cells [107]. The RAD conducted active transport
(differential reabsorption and secretion) as well as metabolic
and endocrine functions [108], and improved hemodialysis per-
formance in acutely uremic dogs [109]. In two clinical trials in the
intensive care unit setting, the RAD maintained viability, dura-
bility and functionality in the clinical setting, and performed
metabolic and endocrinologic activity [108]. All but one treated
patient improved 1–7 days following therapy, and 6 of the 10 pa-
tients survived past 30 days. One patient died within 12 h of RAD
because of voluntary withdrawal from ventilatory life support
and three other patients expired due to complications of comor-
bidities unrelated to AKI or RAD therapy. Treatment with RAD
decreased granulocyte colony stimulating factor (G-CSF), inter-
leukin (IL)-6, IL-10 and IL-6/IL-10 ratios [108]. A second study
compared continuous venovenous hemofiltration together with
RAD in 40 patients versus conventional continuous renal re-
placement therapy (CRRT) alone in 18 patients, observing amor-
tality rate of 33% in the RAD group and 61% in the CRRT group
at Day 28 [110]. Furthermore, survival through Day 180 was sig-
nificantly higher in the RAD group and the risk for death was
approximately 50% of that in the CRRT group [110].

The RAD is the only bio-artificial kidney device tested in hu-
mans. There were limitations to its widespread use for kidney
disease such as cell sourcing, times and costs of devicemanufac-
turing, storage requirements and distribution related problems
[107]. The Bioartificial Renal Epithelial Cell System (BRECS) is
an alternative technology, based on niobium-coated carbon and
cryopreservable polycarbonate seeded with human renal tubu-
lar epithelial cells derived from adult progenitor cells [111–113].
BRECS showed promising results in a porcine septic shockmodel
[113] and in an anephric sheep model [114]. However, BRECS is
yet to be tested in human trials but there are no publications
since 2017.

Implantable bioartificial kidneys (iBKs) combine the pre-
vious experiences with RAD bioengineering and the new
developments in miniaturization technology [115]. Similar to
wearable artificial kidneys, iBK is potentially capable of pro-
viding continuous dialysis throughout the day [116]. The iBK is
composed of a mechanical blood filter made with a silicon
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membrane and a bioreactor containing engineered renal
tubular epithelial cells making it a hybrid device capable of
increased toxin clearance with improved cardiovascular sta-
bility and a higher quality of life. The bioreactor is responsible
for electrolyte balance as well as metabolic functions and the
silicon membrane provides glomerulus-like filtration. The iBK
is intended to connect into the patient’s systemic circulation
allowing the filtered waste to be removed directly into the
bladder, thus eliminating the need for electrical pumps [116].
The iBK is currently in preclinical testing. The silicon cartridge
was patent without an electrical pump or anticoagulants for
up to 1 month in canine models [116, 117]. One of the major
drawbacks of iBK could be the durability and clotting of the
blood filter, requiring patients to undergo frequent surgeries to
manipulate or change the device. In addition, the tubular cells
would need to maintain stability and viability against the high
blood shear force that would be encountered in clinical use
[115]. The bioengineered artificial kidney, despite its limitations
and drawbacks, could become a potential alternative to renal
replacement therapy and transplantation.

An organ-on-a-chip is a microfluidic cell culture platform
that mimics the activities, mechanics and physiology of living
human organs. The microfluidics system offers a physiologi-
cal cell microenvironment allowing long-term culturing while
maintaining cell phenotypes [116]. The organ-on-a-chip tech-
nology has provided the development of more advanced three-
dimensional (3D) organ-level structures in vitro and the incorpo-
ration of dynamic mechanical and chemical signals [107]. It has
been used to replicate tubular or glomerular structures. Various
glomerulus-on-a-chip and tubule-on-a-chip models have been
utilized for disease modeling, drug screening assays and in vivo
regenerative medicine applications [116]. The glomerulus-on-a-
chip models the glomerular filtration barrier as both physical
forces and chemical stimuli influencing glomerular cell func-
tions can be modulated [107]. In the tubule-on-a-chip, tubular
cells that are cultured in a 3D channel that represent the mi-
croenvironment of human kidney tubules and their functions of
reabsorption and secretion [107].

The chip-based technology has helped conduct experiments
to better understand glomerular and tubular functions. Fu-
ture studies to produce next-generation chips combining both
glomerular and tubular elements to generate a functional
nephron that incorporates both filtration and reabsorption are
necessary [116].

A further bioengineering technology aims to generate a
whole-kidney scaffoldwith a 3D geometry and vasculature [118].
After the decellularization of a kidney gathered from a patient
with CKD, the recellularization of the scaffold with patient-
specific progenitor cells would potentially result in the gener-
ation of a new transplantable organ [118]. Kidney-derived scaf-
folds are obtained by a process called ‘decellularization’ inwhich
detergents and enzymes remove the cellular components with-
out affecting the extracellular matrix (ECM) [107, 119, 120]. The
re-cellularization of the acellular matrix of the kidney is then
performed via different cell seeding processes [107]. Biological
scaffolds allow signal exchange between thematrix and the cells
resulting in the induction of migration, proliferation and differ-
entiation [107]. However, the number of donor cells is limited,
and proper tissue/organ function requires advancements in the
re-cellularization technology [107]. Therefore, the correct repop-
ulation and alignment of billions of cells for proper kidney func-
tion is still in its early stages of development.

The use of either epithelial cells in combination with en-
dothelial cells or pluripotent stem cells that have the potential

to differentiate into every other cell type has yielded the most
promising results for kidney re-cellularization [107]. Song et al.
reported that the infusion of human umbilical venous endothe-
lial cells and rat neonatal kidney cells in a rat kidney scaffold
showed promising results [96]. After the decellularization of rat,
porcine and human kidneys by detergents the authors seeded
rat kidney scaffoldswith epithelial and endothelial cells and per-
fused these constructs in a whole-organ bioreactor to regener-
ate functional tissue. This novel structure produced rudimen-
tary urine both in vitro and in vivo following transplantation into
rats [121].

Even though Song et al. and several other authors [122, 123]
have reported promising findings, the translation of kidney-
derived scaffolds into the clinics still requires further techno-
logical advancements such as improvements in decellulariza-
tion methods to avoid the disruption of the remaining matrix
and strategies to prevent the host immunological response to
the decellularized scaffold [107].

Medications on the rise

In addition to the kidney and cardioprotective effects of SGLT2
inhibitors and GLP1 receptor agonists, novel drugs have been
recently approved or have provided promising results in clin-
ical trials for kidney protection (nonsteroidal MRAs, endothe-
lin receptor antagonists), treatment of consequences of CKD
[hypoxia-inducible factor (HIF) stabilizers] or specific causes of
CKD, such as voclosporin for lupus nephritis (Table 1).

Nonsteroidal MRA

Finerenone is a non-steroidal selective MRA that has emerged
as a kidney and cardiovascular protectivemedication in patients
with diabetic kidney disease on angiotensin-converting enzyme
inhibitors (ACEi)/angiotensin receptor blockers (ARB) that may
also add protection to that offered by SGLT2 inhibitors [124]. A
double-blind clinical trial with a median follow-up period of 3.4
years and conducted on 7437 subjectswith type 2 diabetesmelli-
tus and CKDwith eGFR of 25–90mL/min/1.73m2 andmicroalbu-
minuria demonstrates that finerenone improved cardiovascular
outcomes including hospitalization for heart failure,myocardial
infarction, stroke and death from cardiovascular cause [125]. Ad-
ditionally, the risk for CKD progression has been reduced with
finerenone [126, 127]. Further analyses confirmed a beneficial
impact of finerenone on proteinuria, CKD progression and car-
diovascular outcomes [128, 129]. Indeed, finerenone has been
approved by the US FDA and the European Medicines Agency
(EMA) for the treatment of CKD G3 and G4 with albuminuria in
type 2 diabetes in adults [130]. Given the mechanism of action
of finerenone, its beneficial impact is expected to extend beyond
diabetic kidney disease to other forms of CKD. In addition, other
non-steroidal selective MRAs, such as apararenone (MT-3995),
KBP-5074 andAZD9977, are undergoing clinical trialswhile esax-
erenone (CS3150) is approved in Japan for the treatment of hy-
pertension [131]. Of note, as with other agents which antago-
nize the renin–angiotensin–aldosterone system hyperkalemia is
a risk and should be kept in mind while utilizing these medica-
tions.

Aldosterone synthase inhibitors, mainly the inhibitor of al-
dosterone synthase enzyme or CYP11B2, have been investigated
for their potential role in the treatment of heart failure, hyper-
tension and kidney diseases [132, 133]. LCI699, the first orally
administered aldosterone synthase inhibitor (ASI), has shown
to lead a reduction in plasma aldosterone concentration along
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Table 1: Medications that can be potentially used in nephrology.

Medication Mechanism of action Advantages

Finerenone Non-steroidal selective MRA • Better cardiovascular outcomes:
• Decreases hospitalization for HF, MI, stroke and
death risk

• Reduces CKD progression
• Declines proteinuria

LCI699, fadrozole, RO6836191 Aldosterone synthase/CYP11B2
inhibitors

• Lead to reduction in plasma aldosterone
concentration along with an increase in plasma
renin and deoxycortisol concentration

• Beneficial in the treatment of primary
hypertension

Sparsentan, sitaxentan, zibotentan Endothelin receptor antagonists • Can be used to decrease proteinuria and kidney
progression in CKD, FSGS, patients with
scleroderma

Daprodustat HIF prolyl hydroxylase inhibitor
(HIF stabilizer)

• Similar efficiency and cardiovascular event risk
with darbepoetin alfa or epoetin alfa in anemia
treatment

• Can be administrated orally

Voclosporin Calcineurin inhibitor • Voclosporin with MMF and low-dose steroids
shows better kidney outcomes versus MMF and
low-dose steroids

HF: heart failure; MI: myocardial infarction; MMF: mycophenolate mofetil; FSGS: focal segmental glomerulosclerosis.

with an increase in plasma renin and deoxycortisol concen-
tration [134]. Additionally, it has shown to be beneficial in the
treatment of primary hypertension. Similar effects have been
observed with others ASIs such as fadrozole and RO6836191 in
phase 1 and 2 clinical trials [135, 136]. Future large-scale human
randomized clinical trials are required for better understanding
of the clinical effects of ASIs and potential integration into clin-
ical practice.

Endothelin receptor antagonists

Endothelin receptor antagonists (ERAs) have a kidney protec-
tive effect on CKD and proteinuria but are marred by sodium
retention and volume overload as a key safety issue. Bosentan
and atrasentan are older ERA drugs that displayed some kidney
protective actions in patients with CKD [137–139]. However, the
pivotal phase 3 trial of atrasentan for diabetic kidney disease
was terminated and despite kidney protection, it did not offer
the cardiovascular protection associated to SGLT2 inhibition
even though patients were carefully selected to minimize the
adverse impact of sodium retention [139, 140]. Sparsentan is
both an endothelin receptor-A inhibitor and an angiotensin
receptor blocker and was superior to irbesartan in reducing
proteinuria in patients with focal segmental glomerular sclero-
sis, without any significant adverse effect [141]. A clinical trial
in immunoglobulin A nephropathy is ongoing (NCT03762850).
Sitaxentan reduced proteinuria and pulse wave velocity com-
pared with placebo in non-diabetic patients with proteinuria
[142]. Another clinical trial investigating zibotentan in patients
with scleroderma demonstrated beneficial effects on kidney dis-
ease progression [143]. Since themain concern for ERA is sodium
retention, it may be hypothesized that co-administration with
SGLT2 inhibitors may improve the safety profile and potentially
enhance kidney protection. Indeed, a phase 2 clinical trial of
zibotentan and dapagliflozin for the treatment of CKD (ZENITH-
CKD Trial) is ongoing (NCT04724837). Sodium retention is a

major problem in ERA, however patients on these medications
are reported to respond well to diuretic therapy. It is important
to understand that the observed sodium—and water—retention
using ERA is attributed to the effect of ERA-B blockade and that
selective ERA-A blockers are non-selective at the peak levels.
[144, 145] More selective ERA-A blockade might be the future
and is currently under investigation.

HIF stabilizers

HIF prolyl hydroxylase inhibitors, also termedHIF stabilizers, are
oral agents to treat CKD-associated anemia. Indeed, their ma-
jor advantage over erythropoietin (EPO) analogs is the oral route
of administration instead of subcutaneous injections. Some of
them are in clinical use in China and Japan, and roxadustat
was recently approved by the EMA. However, the FDA recently
rejected roxadustat and vadadustat based on safety concerns.
HIF stabilizers do not appear to preserve kidney function and
their cardiovascular safety record has been inconclusive regard-
ing blood pressure effects and cardiac hypertrophy. Although
it was initially hypothesized that by providing more stable and
lower EPO levels, theymay be safer than current EPO derivatives,
the cardiovascular safety appears to depend on the population
being studied and the type of HIF stabilizer being utilized for as
yet unclear reasons. Thus, roxadustat may even be safer than
EPO derivatives in non-dialysis and incident dialysis patients
[hazard ratio (95% confidence interval) 0.79 (0.61, 1.02), 0.78 (0.62,
0.98) and 0.78 (0.57, 1.05) formajor adverse cardiovascular events
(MACE),MACE+ and all-causemortality, respectively] [146] while
the most recent phase 3 clinical trials in dialysis and non-
dialysis patients randomized to either daprodustat or injectable
erythropoiesis-stimulating agents (ESA) treatment evidenced
an influence of the geographic region regarding cardiovascu-
lar safety: daprodustat was safer than ESA in Western Europe
and Asia [147, 148]. The dialysis trial randomized 2964 dialysis
patients to either daprodustat or injectable ESA treatment and
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showed that daprodustat was non-inferior to either darbepoetin
alfa or epoetin alfa from an efficacy point of view [147]. Simi-
lar findings have also been established over the course of few
other large scale clinical trials [149–152]. In 3872 CKD patients
not undergoing dialysis, a randomized clinical trial with a me-
dian follow-up of 1.9 years demonstrated that daprodustat was
also non-inferior to darbepoetin alfa for the treatment of anemia
without any overall change in major cardiovascular event risk
[148]. Such finding has been validated in another clinical trial
[153]. HIF stabilizers are novel agents that require further inves-
tigation with large-scale studies covering different populations.

Voclosporin

A randomized double-blind and placebo-controlled phase
3 clinical trial randomized 357 subjects with biopsy-proven
class III-IV-V active lupus nephritis to receive either placebo
or voclosporin, a novel calcineurin inhibitor, with background
mycophenolate mofetil (MMF) and rapidly tapered low-dose
corticosteroids. Voclosporin provided better kidney outcomes
including urine protein to creatinine ratio and eGFR without
additional adverse effects [154]. Another clinical trial validated
the superior kidney outcomes (complete renal remission) both
in low and high dose (23.7 mg or 39.5 mg, each twice daily,
respectively) voclosporin plus MMF (2 g/day) groups as com-
pared with placebo plus MMF, while demonstrating a higher
risk for adverse events including deaths [155]. Surprisingly,
more deaths were observed in the low-dose than in the placebo
or high-dose groups (11.2%, 1.1% and 2.3%, respectively). Vo-
closporin recently became the first drug approved by the FDA
with an indication for active lupus nephritis.

CONCLUSION

In conclusion, multiple advances in several fronts of the fight
against kidney disease are likely to result in earlier diagnosis
and intervention, increasing the chances of long-term success,
more sustainable and patient-friendly modes of kidney replace-
ment therapy, and novel interventions to delay CKD progression
and improve the management of CKD complications. Up until
the development of new models for diagnostics and therapeu-
tics it is crucial to define and identify the target groups and the
patients at those groups. We believe that with the development
and clinical use of diagnostics markers patients may get diag-
nosed earlier in the disease course, potentially at a reversible
state. Furthermore, novel therapeutic alternatives have a poten-
tial to slow the progression of certain disease, reduce the com-
plications of CKD and need for RRT or kidney transplantation.
However, further large-scale clinical studies with credible out-
comes are required before clinical use of such therapeutic and
diagnostic modalities and it is difficult to pinpoint a timeline for
such developments.
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