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Non-collocated Proprioceptive Sensing for
Lightweight Flexible Robotic Manipulators

Xavier Garant, Clément Gosselin Fellow, IEEE

Abstract—This paper presents the design of a non-collocated
feedback system for flexible serial manipulators. The device is a
passive serial chain of encoders and lightweight links, mounted
in parallel with the manipulator. This measuring arm effectively
decouples the manipulator’s proprioception from its actuators by
providing information on the actual end effector pose, accounting
for both joint and link flexibility. The kinematic redundancy of
the measuring chain allows for safe operation in the context of
human-robot interaction. A simple yet effective error model is
introduced to assess the suitability of the proposed sensor system
in the context of robotic control. The practicality of the device is
first demonstrated by building a physical joint-encoder assembly
and a simplified planar measuring arm prototype. With this
additional feedback, a task-space position controller is devised
and tested in simulation. Finally, the simulation results are
validated with an experimental 3-DoF lightweight manipulator
prototype equipped with a five-joint measuring arm.

Index Terms—Physical Human-Robot Interaction, Collabora-
tive Robotics, Sensors, Lightweight Robots.

I. INTRODUCTION

IT is a well known fact that the classical manipulator
architecture, with collocated proprioceptive sensors and

actuators, rapidly faces serious challenges as soon as flexible
components are introduced in its structure [1]. This appears as
a considerable inconvenience in the context of modern robotic
applications. Notably, for the purpose of physical human-
robot interaction (pHRI), lightweight (and flexible) robots are
desirable for safety reasons.

Indeed, a typical manipulator’s only means of measuring its
own end effector pose is through the feedback of its actuators’
displacement. The pose can theoretically be reconstructed from
sensory input, assuming both rigid links and joints. While
benign in appearance, this assumption has been guiding robot
design for decades. In order for the physical manipulator to
conform to this principle, stiffness is one of the prime design
criteria. In consequence, the robot must carry additional mass
whose sole purpose is to ensure adequate link stiffness. Yet,
in the context of interactive applications with humans, mobile
mass has been known for some time to carry considerable
drawbacks [2]–[4].

To move this mass with precision, stiff actuators with high
transmission ratios are required. This comes at the cost of a
very high reflected inertia [5] and low bandwidth. One possible
improvement is to relocate the motors (which make up a major
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Fig. 1. Schematic representation of a flexible manipulator in a theoretical
configuration (dashed white), deformed configuration under load (solid grey)
and measuring arm (solid white).

part of the total mass) at the base of the robot [6]. In recent
years, there has also been much research interest in reducing
transmission ratios to direct-drive [7] or quasi-direct drive
levels [8] to improve the inherent safety of manipulators. At
the same time, others have looked into introducing compliance
in the manipulator structure to reduce the reflected inertia and
reflected stiffness [9].

In general, control strategies for flexible manipulators can
be divided in two main categories: open-loop model-based
control, or closed-loop sensor-based control [1]. In this case,
the terms open-loop or closed-loop implicitly refer to whether
deflection feedback is used or not. Open-loop control of
flexible manipulators has been largely studied and is known to
be a complex problem, owing to the very nonlinear and non-
minimum phase dynamics [10]–[12]. Thus, this paper focuses
on feedback-based approaches to flexible manipulator control.

Common feedback options for deflection sensing in ma-
nipulators include strain gauges, accelerometers, and vision
systems or range sensors. Strain gauges provide direct infor-
mation on link deformation, but commonly face challenges
related to noise and thermal sensitivity [13]. In addition, strain
gauges only measure the local deformation of single links, and
cannot compensate alone for flexible joints. Accelerometers,
on the other hand, can provide ‘total’ deformation information
by measuring the acceleration at various points along the
manipulator [14]. However, as it is well known, these sensors
are also prone to noise and biases, complicating the extraction
of position and velocity signals [15]. Finally, vision systems
and range sensors can provide precise deflection measurements
of both flexible link and flexible joint manipulators [16].
They however come at the cost of additional delays in the
control loop and reduced bandwidth, while also requiring
more involved calibration methods [17]. Moreover, vision-
based control involves additional abstraction layers dedicated
to image processing and feature extraction [18].
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In this paper, a sensor system in the form of a passive
measuring arm (as illustrated schematically in Fig. 1) is further
developed, with a focus on pHRI applications. The proposed
system only relies on encoder signals and therefore does not
require computer vision, strain gauges or inertial measurement
units. The intent of this system is to provide fast and reliable
end effector deflection information, with minimal interference
in the interaction between the manipulator and human op-
erator. Using terminology from the closely related field of
soft robotics, the proposed sensor system could therefore be
considered a ‘soft sensor’, according to the definition in [19].

Some patents have conceptually explored the idea of adding
a measuring arm in parallel between manipulator links [20]–
[22], but fall short in regard to the practicality of such an
undertaking. One such practical consideration lies in assessing
the precision that can be expected from the sensor system. This
problem was first tackled mathematically in [23], which found
that a simulated measuring arm could theoretically return
nanometre level measurements, given very high precision joint
encoders. These results were however never experimentally
validated and therefore also minimised potential practical
pitfalls such as interference between the manipulator and mea-
suring arm, or the combined singularity loci of the integrated
robotic unit.

To the best of the author’s knowledge, the first and only
practical implementation of a measuring arm in the literature
was in [24]. Merckaert et al. introduced the idea of using tip
deflection sensing with the intent to design the manipulator
based on strength rather than stiffness. They aptly proved
that the deformation can be compensated for, at least in the
direction of gravity. They also made a strong case for the
safety improvements that this method could yield by reducing
the mass of the manipulator. In its current state, however,
their sensor system can only tolerate and detect in-plane (2D)
tip deflection, thus ignoring out-of-plane forces or torsion
inducing moments.

In light of the scarce literature, this paper aims to bring the
state of the art on this concept closer to a fully functional and
practical sensor system. To this end:
• A basic kinematic structure is proposed for the integrated

manipulator-measuring arm unit. Kinematic constraints
specific to this application are outlined and design guide-
lines are provided.

• Kinematic redundancy is leveraged to circumvent other-
wise challenging kinematic problems, while also making
the device inherently safe for human interaction.

• With its higher degree of freedom (DoF) count, the sensor
system is intended to measure the deviation of the robot’s
end effector pose in all directions.

• A mathematical framework based on differential kine-
matics is proposed in order to characterise the device’s
precision. This assessment proves that the pursuit of this
design is relevant considering the current technological
means and expected orders of magnitude of manipulator
reach and payload.

This paper is structured as follows. Section II introduces
the proposed kinematic structure of the integrated robotic unit
comprising the manipulator and measuring arm. Section III

then briefly outlines the forward kinematics of the measuring
arm. In Section IV, a mathematical model based on differential
kinematics is proposed to assess the precision of the device.
Section V discusses the practical requirements and constraints
that guide the design process of the physical sensor unit. In
Section VI, a practical method is devised to simultaneously
assemble and calibrate the unit. A working planar measuring
arm prototype is then experimentally validated in Section VII.
A position control scheme that takes advantage of the sensor
device’s feedback is introduced in Section VIII. Section IX
then shows simulation results using this controller on a virtual
flexible manipulator. Section X presents the design of an inte-
grated robotic unit prototype consisting of a 3-DoF lightweight
manipulator equipped with a measuring arm. The experimental
validation of this proof of concept is finally discussed in
Section XI. Conclusions are drawn in Section XII.

II. KINEMATIC ARCHITECTURE

As observed in the literature, in its simplest form, the
proposed integrated robotic unit comprises a serial manipulator
and a measuring arm extending from the fixed base to the end
effector of the manipulator, in parallel.

Let us define A and B, the workspace domains of the
manipulator and the measuring arm, respectively. Then, in
order for the integrated unit to operate freely, the following
condition must be met:

B ⊃ A (1)

which is more restrictive than what is proposed in [23]. Indeed,
in this application, A and B cannot be equal. Practically, the
outer limits of B correspond to a singular configuration where
the measuring arm is completely extended. Theoretically, in
this configuration, external forces would exceptionally be
able to generate undesirable internal efforts in the passive
measuring arm.

If condition (1) is met, the workspace domain C of the
integrated unit is then

C = A ∩B ⇒ A. (2)

However, in order to determine the real usable workspace, the
singular domain of the integrated unit must be subtracted from
C. The singular domain, noted C, is given as

C = A ∪B (3)

where A and B are the singular domains of the manipulator
and measuring arm, respectively.

Additionally, one must also consider the workspace regions
that cannot be reached due to interference between the ma-
nipulator and measuring arm. Mathematically characterising
these interference regions is not trivial.

Concretely, condition (1) also implies that the Cartesian DoF
count of the measuring arm must be greater than or equal to the
number of DoFs of the manipulator’s end effector. However,
while this is true in the rigid case, additional conditions
apply when considering a flexible manipulator. Indeed, with
any number of flexible links and joints, every link along the
manipulator can move in six spatial dimensions relative to the
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base. Therefore, the number of joints m of the measuring arm
must meet the following condition:

m ≥ 6− k (4)

where k is the number of DoFs allowed by the connection
between the tip of the measuring arm and the manipulator’s
end effector. For instance, a rigid connection would mini-
mally require a 6-joint measuring arm, while a spherical joint
connection would minimally require a 3-joint measuring arm,
irrespective of the manipulator’s architecture. Of course, in this
case a spherical connection would only allow the measurement
of position deviations, ignoring orientation error.

It is the authors’ belief that the aforementioned non-trivial
kinematic constraints are one of the main reasons holding back
the development of such a sensor system dedicated to flexible
manipulators. Therefore, it is proposed to circumvent these
issues with the following relaxations:

• In the context of pHRI, minimising moving mass is
critical while stationary mass generally does not pose any
risk. Therefore, the fixed base link l0 and first joint j1 of
the manipulator can be made arbitrarily massive, ergo
arbitrarily rigid.

• In accordance with the preceding statement, the base of
the measuring chain can be attached to the first moving
link l1 of the robot, as close as possible to joint j1,
without compromising accuracy or precision.

The resulting kinematic structure proposed for the integrated
robotic unit is graphically represented in Fig. 2. The benefit
of this architecture is that it greatly reduces the risk of
interference between the manipulator and measuring arm.
Indeed, in this case the measuring arm does not span the first
joint of the manipulator, which is generally responsible for the
largest amplitude movements of the end effector.

To further mitigate the risk of interference, it is also
proposed to take advantage of kinematic redundancy. Thus,
condition (4) becomes

m > 6− k. (5)

This allows the measuring arm to conform to the manipulator
in a situation where interference would typically occur. It also
virtually prevents the measuring arm from reaching singular
configurations, by providing alternative joint arrangements
for every Cartesian pose. Moreover and perhaps even more
importantly, this grants compliance to the measuring arm when
interacting with humans and thus greatly reduces pinching or
squeezing risks. The more redundant joints there are, the safer
pHRI becomes with the integrated unit, the ideal case being a
measuring arm that behaves somewhat like a chain or cable.

III. FORWARD KINEMATICS

This section details the forward kinematics of the measuring
chain. It is worth noting that for the purpose of controlling
a robotic manipulator, the inverse kinematics of the passive
measuring arm are irrelevant. Therefore, the inverse kinematics
are omitted in this paper.
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Fig. 2. Graph of the proposed kinematic structure for the robotic unit
comprising a manipulator and a measuring arm. Bodies li are represented
by nodes. Joints ji are represented by edges.

As a result of the assumptions presented in Section II, the
measuring chain’s end point position in the fixed reference
frame, noted x, can be written as

x = fk(θ,φ) (6)

x = c1 +

m∑
i=1

a′i (7)

where fk(θ,φ) represents the forward kinematics, θ is the
array of joint positions and φ stands for the Denavit-
Hartenberg (D-H) parameters. Vector c1 is a slight modifi-
cation of the classical D-H method and defines the position
of the origin of frame 1′ with respect to frame 1, expressed
in the base reference frame (frame 1). Then, following D-H
conventions, vector a′i defines the position of the origin of
frame i′ + 1 with respect to frame i′, expressed in frame 1.

IV. KINEMATIC SENSITIVITY ERROR MODEL

Establishing the error model of a sensor is crucial in
assessing its suitability as a feedback device to be used in a
control system. In this section, a simple but effective error
model is derived, based on well-known serial manipulator
equations.

In [23], the following first order Taylor expansion is intro-
duced to model the kinematic error of the measuring arm:

δx =
∂fk(θ,φ)

∂θ
δθ +

∂fk(θ,φ)

∂φ
δφ (8)

where δx is the Cartesian position error and δθ and δφ are the
errors on joint coordinates and D-H parameters, respectively.
The method in [23] relies on deriving an analytic expression
for δx by symbolically differentiating the terms in (8). This
process can be tedious and increases in complexity with the
number of DoFs, which are expected to be high in the case
of the measuring arm.

Joint Error

Clearly, considering the serial architecture of the measuring
arm, it can be observed that the first term on the right hand
side of (8) is simply equivalent to the product of the Jacobian
matrix J of the measuring arm, and a small joint displacement
∆θ. Here, J is defined in the usual sense such that

ẋ = Jθ̇ (9)
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or
∆x ' J∆θ (10)

for small values of joint displacements ∆θ yielding small
Cartesian displacements ∆x.

Moreover, by delving further into differential kinematics,
the notion of kinematic sensitivity can be introduced to sim-
plify the error analysis of the measuring arm. Many indices
have been proposed in the literature in order to compare
the performance of manipulator architectures. However, the
kinematic sensitivity index, presented in [25], is of particular
interest in the present case because it directly relates to the
Cartesian resolution of the measuring chain.

The idea behind this index is to find compatible joint dis-
placements ∆θ of unit ∞-norm that yield a global extremum
of ∆x, given equation (10). Writing this problem in terms of
dimensionally homogeneous arrays leads to

σω,∞ = max
‖∆θ‖∞=1

‖Jω∆θ‖∞ = ‖Jω‖∞ (11)

σx,∞ = max
‖∆θ‖∞=1

‖Jx∆θ‖∞ = ‖Jx‖∞ (12)

where σω,∞ and σx,∞ are the maximum magnitude rotation
and displacement, respectively, and

J ≡
[
Jω
Jx

]
. (13)

Here, Jω and Jx are the Jacobian sub-matrices respectively
associated with the rotational and translational coordinates.
These matrices can be numerically computed for any given
configuration of the measuring arm.

In fact, any p-norm can be used with this index. However,
the ∞-norm is a direct consequence of the common assump-
tion that in any given configuration, the joint displacements
∆θ can take any value in an interval bounded by ±∆θmax.
This statement is then directly equivalent to

‖∆θ‖∞ ≤ ∆θmax (14)

or
‖∆θ‖∞ ≤ 1 (15)

with normalised units. Thus, if we consider

∆θmax = σθ (16)

where σθ is the encoder resolution in radians, we can extract
physical meaning from (11) and (12). Indeed, when multiply-
ing σx,∞ or σω,∞ with ∆θmax, one finds the actual physical
maximum rotation and position displacement, respectively Σω
and Σx, in coherent units:

Σω = σθ‖Jω‖∞ (17)
Σx = σθ‖Jx‖∞ (18)

This result is effectively equivalent to an upper bound on the
Cartesian resolution of the system in a given configuration,
since its physical interpretation is the maximum allowable end
point displacement before any movement is registered by the
proprioceptive sensors.

This information can then be used for instance, as a thresh-
old to discriminate significant tip deflections from random

noise when operating the robotic unit. Indeed, this method
has the advantage that (17) and (18) can easily be numerically
computed in real-time. This is also true for more complex
kinematic architectures, whereas the method in [23] progres-
sively becomes more involved with a higher DoF count.

While this is considered out of the scope of this paper, if
necessary, various approaches can be taken to determine an
average or global Cartesian resolution of the measuring arm.
For instance, one can discretise the entire joint space or a
subset of it, and loop over each array of joint values in either
a predetermined or randomised fashion. This method however
faces the limitation of a rapidly increasing computational cost,
with the total number of arrays equal to dn, where d is
the number of discretisations and n is the number of joints.
A perhaps more interesting avenue consists in taking into
account the fact that the workspace of the measuring arm is
constrained by the workspace of the robotic manipulator, plus
any significant deformation of the manipulator. Thus, one can
discretise the resulting subset of the original measuring arm
workspace and compute the inverse kinematics for an arbitrary
number of configurations at every selected point.

D-H Parameter Error

To avoid the derivation of the second term in (8), it is possi-
ble to measure the actual values of the D-H parameters. Thus,
instead of defining manufacturing and assembly tolerances on
these dimensions, we can assume their values to either be
virtually exact, or having such small error that the second
term in (8) is negligible in relation to the first term [23]. One
practical method for doing so is presented in Section VI.

V. SENSOR SYSTEM DESIGN

In the following section, the principles guiding the the
mechanical and electronic design of the measuring arm are
presented.

First and foremost, it is crucial to minimise the mass of the
system. This ensures that the measuring arm has a negligible
impact on the dynamics of the manipulator.

Second, the form factor of both the encoders and the links
of the measuring arm must be small enough to allow adequate
mobility. To limit the bulkiness of the system, the size of the
joints was limited to a maximum diameter of 30 mm.

Third, the encoders must provide absolute positions. Indeed,
because the measuring chain is redundant and its joints are not
actuated, the usual process of zeroing incremental encoders by
returning to a known configuration is impractical. Furthermore,
the sensors must be carefully selected according to their
resolution and accuracy. As discussed in Section IV, one can
rely on differential kinematics in order to define the required
joint resolution as a function of a desired Cartesian resolution.

Fourth, in order to avoid the introduction of delays in the
control system, the sampling rate of the measuring arm as a
whole must be equal to or greater than 1 kHz. From experi-
ence, the authors determined that such a rate is sufficient in
the context of real-time control for most robotic applications.

The resulting design, which takes into account all of the
above design constraints, is shown in Fig. 3. The joints are
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Fig. 3. Design of the joint-encoder assembly. 3D model (left) and section
view (right).

made of ABS eyelets sandwiched between radial and axial
ball bearings. A small aluminium shaft runs axially through
the assembly. The shaft is threaded at one end to pre-constrain
the bearings and ensure minimal axial play. The links between
the joint assemblies are made of carbon fibre tubes that are
bonded to the plastic eyelets. The joint assembly has a mass of
35 g. The carbon fibre tubes have a linear mass of 0.13 g/cm.

Finding commercially available sensors (encoders) that pro-
vide sufficient resolution while satisfying the desired form
factor is not trivial. The sensors mounted on the joints
are CUI AMT-21 14-bit absolute encoders. These encoders
provide a good commercial solution with a high resolution
relative to their small size. They have a short 100 µs position
update time and a fast 2 Mbps communication speed. The
encoders communicate over an RS-485 bus. This simplifies
cable routing (the bus is comprised of only four wires, power
included) and provides basic protection against noise, through
differential signalling. The data from all the encoders are
collected and processed on the fly through one microcontroller
and forwarded to the main CPU in under 300 µs end-to-end,
which is fast enough for real-time control.

VI. BUILD AND CALIBRATION

The absolute encoders at each joint of the measuring arm
must be calibrated at least once before they can return relevant
information. To accomplish this, one practical method is to
build an assembly and calibration jig. An example of such
a jig is presented in Fig. 4. The jig consists of a metal
plate with precisely machined holes into which pegs (precision
dowel pins) are inserted. The joints of the measuring arm have
through holes centred on their rotation axis with a diameter
that matches the pegs. Thus, the joint assemblies can be fitted
on the jig with minimal play, in the order of a few microns.
Prior to assembly, the relative position of each hole in the jig
is measured via a coordinate measuring machine (CMM). This
directly translates to precise actual values of D-H parameters.
Once the joints are assembled on the jig, carbon fibre tubes,
which are used as the links of the measuring arm, are fitted
and bonded in place. This completes the building process.

Since the relative position of each joint is known through
the CMM measurements, the actual angular position of each
joint can be computed. This allows the assembly jig to
simultaneously serve as a calibration jig. Indeed, with the
measuring arm assembled on the jig in a known configuration,
each joint can be zeroed to a known value. This can also prove

Carbon Fiber LinkJoint Assembly

Calibration Jig

Fig. 4. Example of a 5-joint measuring arm prototype mounted on an
assembly and calibration jig.

Base

Fifth joint unused Dial indicator

Precision square

Fig. 5. Experimental setup with functional 4-DoF planar measuring arm (fifth
joint unused). The end point is fixed to an aluminium block. The block slides
along the precision square, constraining the movement of the end point.

useful in case of a potential failure after which the measuring
arm must be recalibrated.

VII. EXPERIMENTAL VALIDATION OF THE MEASURING
ARM

In order to validate the practicality of the proposed sensor
system concept and construction method, the prototype shown
in Fig. 4 was tested against ground truth measurements. Only
the first four joints of the prototype were used to measure 2D
positions. Thus, with four joints dedicated to a 2D position
measuring task, this device has two redundant degrees of
freedom. The link lengths of this prototype (in millimetres) are
{l′1 l′2 l′3 l′4} = {340 80 80 300}. These geometric
parameters were chosen to match the dimensional order of
magnitude of typical manipulators in the 5-7 kg payload range.

The experimental setup is shown in Fig. 5. Concretely, the
intent of this setup is to validate that the sensor system can
accurately measure position variations. When taking measure-
ments, the displacement of the end point of the kinematic chain
is constrained to remain parallel to either the X or Y axis in
the base reference frame. To ensure this constraint, the base
of the kinematic chain is kept fixed to one edge of a precisely
ground machinist square, while the end point is slid by hand
along the other edge. During the tests, the redundant DoFs of
the measuring arm are unconstrained and the links are free
to move on the work surface. The ground truth displacement
measurement is given by a plunger type dial indicator, which is
also aligned on the precision square. The precision square has
a maximum deviation of 0.003 mm, while the dial indicator
has a rated accuracy of ±0.03 mm.

The Cartesian position of the measuring arm’s end point
is computed using the sensor values and forward kinematics.
After each test run, the difference between the final and
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TABLE I
EXPERIMENTAL VALIDATION OF THE 4-DOF PLANAR MEASURING ARM

Resolution [mm] Displacement ∆x [mm] Error Norm [mm]

Initial Configuration [deg] Computed (Max) Ground Truth Measured Absolute Relative

θ = [ −7.18 31.23 −122.10 −81.19]T 0.42 [−15.26 0]T [−15.4 0.4]T 0.42 0.94%
θ = [ 9.58 104.51 67.04 −151.60]T 0.38 [ 22.88 0]T [ 23.1 0.2]T 0.30 0.96%

θ = [−77.41 −48.31 −53.39 −90.56]T 0.41 [ 0 12.70]T [ 0.1 12.8]T 0.14 0.78%

θ = [−93.42 16.95 −116.04 −76.93]T 0.42 [ 0 12.70]T [ 0.2 12.7]T 0.20 0.12%
θ = [−92.92 14.13 −114.32 −76.56]T 0.42 [ 0 2.54]T [ −0.3 2.4]T 0.33 5.02%

initial positions is calculated, yielding the measured end point
displacement.

The results are shown in Table I. Five configurations were
tested with the indicated measured displacements. The maxi-
mum resolution was computed in the initial configuration with
the method shown in Section IV. It is worth restating that
this number is an upper bound only achievable by considering
an extreme case where every joint rotates by up to a full
encoder resolution tick, moving the end point in an arbitrary
direction. In the actual direction of movement, the precision
of the measuring arm is in practice much higher. Still, the
maximum resolution remained close to 0.4 mm in each con-
figuration. This sub-millimetre resolution is adequate in the
context of pHRI with a flexible manipulator, with expected
displacements on the order of a few millimetres to a few
centimetres. The measuring arm also proved to be accurate at
measuring displacements in the centimetre range, with relative
errors under 1%. A small displacement of 2-3 mm showed a
slightly higher relative error. This is expected, as a constant
uncertainty, such as a resolution error, yields a greater relative
difference on a small measurement.

VIII. MODEL-FREE TRAJECTORY TRACKING IN TASK
SPACE

With the practicality of the sensor device demonstrated, the
next step towards a fully functional robotic unit is the design of
a position control scheme. This control scheme must naturally
take advantage of the non-collocated feedback of the actual
end effector pose provided by the measuring arm.

Consider the general dynamic model of a flexible robotic
manipulator:

M(qr,qf )

[
q̈r
q̈f

]
+ h(qr,qf , q̇r, q̇f )

+ g(qr,qf ) + K(qr,qf )

[
qr
qf

]
=

[
τm
0

]
(19)

where qr is the vector of joint variables (‘rigid’ coordinates),
qf is the vector of deformation variables, M is the generalised
inertia matrix, h is the vector of Coriolis and centrifugal terms,
g is the vector of gravitational terms, K is the stiffness matrix
of the system, and τm is the vector of actuator torques applied
at the joints.

The objective is to find a time-varying torque input τm such
that the actual pose of the manipulator, noted xf , converges to
the desired task space pose xd. However, while the values of
qr and q̇r are given by the motor encoders, the values of qf

are unknown. Thus, the actual end effector pose of the flexible
manipulator, given by

xf = f(qr,qf ) (20)

cannot be computed. Instead, the pose of the flexible manip-
ulator is measured, such that

xf = x (21)

where x is given by the measuring arm according to (7).
The proposed trajectory tracking control is a simple mod-

ification of a typical collocated proportional-derivative (PD)
controller where the desired task space poses and their time
derivatives are mapped to joint coordinates. Thus, the con-
troller equation is given by

τm = GPJ
−1
r (qr)[xd − xf ]

+ GD[J−1
r (qr)ẋd − q̇r] + gr(qr) (22)

where GP and GD are, respectively, the proportional and
derivative gain matrices and Jr(qr) and gr(qr) are, respec-
tively, the Jacobian matrix and the vector of gravity compen-
sation torques, both associated with the rigid body model of
the flexible manipulator. As such, the controller does not rely
on prior knowledge of the dynamic model of the manipulator,
nor its stiffness matrix.

Alternatively, if velocity control is used instead of torque
or current control, a close equivalent to (22) can be achieved
with

q̇r,c = J−1
r (qr)[ẋd + λ(xd − xf )] (23)

where q̇r,c is the actuator velocity command sent to the
controller and λ is a tuning parameter matrix.

As expected with this type of Cartesian controller, extra
caution is required in the vicinity of the singular configurations
of the manipulator, due to the bad conditioning of the Jacobian
matrix. Nevertheless, there exist many methods that circum-
vent this issue, with a notable example being the damped least
squares method [26].

IX. SIMULATION

As a first step towards demonstrating the effectiveness of
the proposed solution, a dynamic simulation was carried out
in MATLAB. The simulated robot is a 2-DoF planar serial
manipulator with flexible rotary joints subject to gravity. The
parameters of the simulated manipulator are shown in Table II.

This simulation is a three step process. First, a trajectory
planner generates the next desired pose according to the
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TABLE II
SIMULATED MANIPULATOR PARAMETERS

Parameter Value

Link 1 Length [m] 0.45
Link 2 Length [m] 0.45
Link 1 Mass [kg] 1.44
Link 2 Mass [kg] 0.50
Payload Mass [kg] 2
Joint 1 Reduction ratio 121:1
Joint 2 Reduction ratio 90:1
Joint 1 Moment of inertia* [kgm2] 2.5× 10−3

Joint 2 Moment of inertia* [kgm2] 1.0× 10−3

Joint 1 Stiffness [Nm/rad] 2000
Joint 2 Stiffness [Nm/rad] 1000

* At reducer input.
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Fig. 6. Desired reference trajectories in task space and tracking error of three
different controllers applied to the simulated flexible manipulator. Payload is
2 kg and gravity is in the negative Y direction.

specified trajectory. Second, the time-varying torque inputs
are computed according to the controller equation and using
the manipulator’s current kinematic states. Third, the dynamic
model in (19) is numerically solved, yielding the next kine-
matic states.

The task consists in moving up 0.5 meters in the Y direction
(against gravity) following a fifth order interpolation, while
keeping the X coordinate fixed. The trajectory is executed in
2 seconds. The graphs in Fig. 6 show the desired reference
trajectory and the resulting tracking error of three different
controllers applied to this task. The relevant error values for
quantitative analysis are presented in Table III.

The first case illustrates the results of a traditional PD con-
troller which ignores the robot’s flexibility. In other words, this
controller relies on the rigid model, forward kinematics and
actuator positions of the manipulator to track its end effector

TABLE III
SIMULATION TRACKING ERROR RESULTS

Error Norm [mm]

Controller Initial Final Min Max RMS

PD 7.0 28.7 7.0 28.8 24.8
PD + g 7.0 10.0 6.4 10.3 8.9
Pose Feedback 0 0 0 3.0 1.6

pose. As expected, there is a non-negligible initial error in the
direction of gravity, due to flexibility, which worsens as the
manipulator reaches a more extended configuration. Because
of the coupled nature of the serial manipulator, a notable error
in the X direction is also observed. Practically, the actual
manipulator stands lower than predicted by the rigid model,
deformed under the weight of its own links and its payload.
This static error, expected with PD control, is worsened by
the flexibility of the manipulator. Thus, the trajectory is not
accurately tracked and its end point is never reached.

The second case shows the effect of including a feedforward
gravity compensation term, based on the rigid static model,
in the PD control scheme (‘PD + g’ control). As expected,
although every error metric is improved compared to the
PD controller, a large static error of 10 mm remains in the
final configuration. Gravity compensation cannot adequately
eliminate the static error of the PD controller without the
stiffness model of the manipulator. Indeed, in this case, once
the forward kinematics –based on the actuator positions–
have converged to the desired pose, the controller lacks the
necessary information to further adjust the actual pose of the
manipulator. In this sense, including an integrator term in this
controller would also be useless.

The third case illustrates the behaviour of the proposed
controller with actual pose feedback, as defined in (22). This
additional feedback is considered available at each time step
of the simulation, since the real sensor system allows sampling
rates higher than 1 kHz. The results clearly show that the actual
pose of the flexible manipulator converges to the desired value,
both statically and dynamically. The static error tends to zero
in the final configuration. In this example, the maximal error
magnitude, which occurs during the most dynamic phases of
the trajectory, is 3 mm. This is lower than the overall minimum
error achieved with the other controllers. Thus, the end effector
effectively tracks the prescribed Cartesian trajectory.

The simulation results indicate that, in theory, the deforma-
tion of a flexible manipulator can be compensated by feeding
back the measurement of the end effector pose. Moreover,
with this type of feedback, the controller does not require a
detailed dynamic model of the robot. Of course, this simulation
represents an idealized model of a flexible joint manipulator
and ignores practical considerations such as noise, delays,
friction, or bending of the links. Therefore, the next sections
are aimed at introducing and detailing an experimental setup to
fully validate the proposed solution in real-world conditions.

X. PROOF OF CONCEPT

As discussed in the Introduction, the proposed sensor system
can shift the design paradigm of robotic manipulators for
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Fig. 7. CAD model of the 3-DoF lightweight serial manipulator prototype.
Joint axes are indicated with red arrows.

certain applications such as pHRI. Indeed, with proprioception
decoupled from actuation, the design can be based on strength,
rather than stiffness. To substantiate this claim, a serial ma-
nipulator prototype (shown in Fig. 7) was built. With three
rotary joints, this manipulator was designed for 3D positioning
tasks, with a maximum payload of 5 kg and a reach of 0.9 m.
The prototype was deliberately made flexible, for practical and
demonstration purposes.

Practically, positioning the distal actuator at the base of
the robot rather than at the joint requires a means of power
transmission. Again, moving the actuators to the base has
the advantage of drastically reducing the moving mass and
inertia of the robot. However, due to the manipulator links
being flexible, ‘rigid’ power transmission methods such as
drive shafts or gear trains are inadequate. Indeed, the method
must accommodate some degree of deflection in the links.
With such constraints, synchronous pulleys and belts are a
natural lightweight and low-backlash solution. These belts
are inherently flexible and this property is generally only
negligible for short belt lengths or very stiff materials. In
consequence, the rotational stiffness of the affected joint is
effectively reduced.

For demonstration purposes, the second and third manip-
ulator links were designed as slender as possible. With this
methodology, the links can still withstand the static and
dynamic efforts induced by the payload, but are more flexible
than links whose mass would be distributed away from the
centroid of their cross-section. Moreover, a flexible coupling
was chosen to transmit power to the second joint, rather than
rigidly attaching the second link to the actuator. Finally, per
the reasoning detailed in Section II, the first mobile link and
the first joint were designed to be rigid.

The rotational stiffness of the second joint is mainly deter-
mined by the flexible coupling between the actuator and the
link. The selected coupling is specified at a static torsional
stiffness of 2600 Nm/rad. The stiffness of the third joint is
governed by the type of belt, its section properties, and its total
length. Computing and transforming the linear stiffness of the
belt to a static torsional stiffness yields a value in the order
of 1300 Nm/rad at the distal joint (joint 3). For comparison,

TABLE IV
MASS PROPERTIES OF THE PROTOTYPE VERSUS A UR5 ROBOT

Property Link Prototype UR5 Robot

Mass [kg] l1 9.90 3.70
l2 1.44 8.39
l3 0.50 2.33

Moment of inertia* [kgm2] l1 0.182 0.008
l2 0.077 0.597
l3 0.014 0.101

* Moment of inertia of link li is given about joint ji.

values around 105 Nm/rad represent a minimum level of
elasticity that can be neglected in practice [27]. Finally, the
second and third links were designed to each allow a deflection
of up to two centimetres in the direction of gravity when in
the least favourable (horizontal, fully extended) configuration.

This manipulator is not equipped with link side encoders.
Thus, with flexible links and flexible joints, the manipulator
alone cannot accurately estimate its actual pose. The encoders
are integrated into the actuators for joint control purposes. The
first actuator is a Maxon EC-90 direct drive motor coupled to
a 4.54:1 synchronous belt reducer. The second actuator is a
Harmonic Drive SHA-25 with a 121:1 integrated gearbox. The
third actuator is a Harmonic Drive SHA-20 with a 81:1 built-in
reducer coupled to a synchronous belt transmission, yielding
an effective ratio of 90:1 at the third joint.

The resulting mass properties of the prototype, given by
the CAD model, are shown in Table IV, along with values
from the Universal Robots UR5 manipulator for comparison.
The UR5 cobot is ubiquitous in industry and in the literature
and was thus chosen for comparison. Its parameters are also
typical of manipulators in the 5 kg payload range. As expected,
for a similar payload and reach, the proposed design allows
the moving mass (links 2 and 3) to be drastically reduced.
When combined with the lower moment of inertia of the
links, a much lower reflected inertia at the end-effector can be
expected. For instance, the total moment of inertia of the robot
about joint 1 in a completely extended horizontal configuration
is 0.446 kgm2 for the proposed prototype and 1.846 kgm2

for the UR5. Moreover, while the mass of the first link is
naturally greater, the total mass is notably reduced. Of course,
when comparing values, it should be considered that a UR5
is designed to carry the weight of 3 other links and actuators
further down the kinematic chain. This however only further
supports the idea that these actuators should ideally be moved
as close to the base as possible.

Along with the manipulator prototype, an associated mea-
suring arm was also designed and built, according to the
methods in Section V and Section VI. The actual device and a
schematic representation of its kinematic model are shown in
Fig. 8. The complete robotic unit is also shown in a working
configuration in Fig. 9. As it can be observed, this measuring
arm is different from the planar model that was introduced in
Section VII for testing purposes. For simplicity, the number
of joints was limited to five. Along the kinematic chain, each
joint axis is perpendicular to the previous joint, yielding a
potential of five Cartesian DoFs. However, the end point of
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Fig. 8. (Left) Parallel measuring arm mounted on serial manipulator proto-
type. (Right) Schematic representation of the manipulator (dashed lines) and
measuring arm (solid lines).

TABLE V
STATIC DEFLECTION OF THE MANIPULATOR AT THE END EFFECTOR

WHEN ADDING A 2 KG PAYLOAD WITH BRAKES APPLIED

Joint Configuration [deg] Deviation [mm]

q = [0 0 90]T 10.0
q = [0 40 80]T 14.5
q = [0 80 5]T 15.0

the measuring chain is connected to the end effector of the
manipulator by a spherical joint, restricting the number of
Cartesian DoFs to three. Thus, this specific model of the
proposed sensor system is designed to only measure the 3D
position (not the orientation) of the end effector. As a result, as
explained in Section II, this measuring arm has two redundant
joints which allow link movements without affecting the mea-
sured value. Due to this relatively low degree of redundancy,
elastic elements are used to maintain the measuring arm in a
favourable configuration close to the manipulator.

In order to provide a better picture of the overall flexibility
of the robot, Table V shows the measured deflection at the end-
effector in three typical configurations with a 2 kg payload.
To collect the data, the manipulator is first put into the desired
configuration with the actuator brakes applied and without
a payload. This initial unloaded position is recorded by the
measuring arm. The payload is then added and the new static
equilibrium position is recorded by the measuring arm. With
the brakes applied, the motor side of the joints cannot move
and the deflection can only be a result of the flexibility
of the joints and links. It is worth noting that this method
only measures the deflection caused by the payload. Indeed,
before adding the payload, the manipulator is already slightly
deformed under its own weight. The first configuration has the
second and third link respectively vertical and horizontal. The
second configuration has both links at an angle in a typical
working configuration, where the work surface would be at
base height. The third configuration has the manipulator almost
completely extended horizontally.

XI. EXPERIMENTAL VALIDATION

The final step in validating the proposed sensor system
consists in testing it on an actual robotic task. To this end,

Measuring Arm

X

Z

Fig. 9. Robotic unit prototype in working configuration with 2 kg payload.

two trajectory tracking tasks are carried out in real-world
conditions with the physical integrated robotic unit described
in Section X. Both trajectories require active error compensa-
tion in every coordinate. The actual Cartesian position of the
manipulator is tracked by the measuring arm.

The relevant experimental results for both trajectories are
summarised in Table VI. The reported uncertainty in the table
is computed by converting the resolution of the encoders to
standard uncertainty and using the method shown in Sec-
tion IV.

Fig. 10 shows the test results for the same trajectory as in
Section IX. Practically, the manipulator must move a 2 kg
payload 500 mm up in the Z direction (against gravity)
in 2 seconds. It is interesting to note that with traditional
PD control, unintuitive out-of-plane deflections (in the Y
direction) can not only be observed in the initial configuration,
but become larger in the less favourable (more extended) final
configuration. This phenomenon was not observable in the 2D
simulation. Still, as expected, the main components of the
position error are caused by the very large in-plane (XZ)
deflections, which reach their maximum value around the point
of maximum velocity. The results with the proposed sensor
system show a drastic reduction in both static and dynamic
errors. Indeed, even in the unfavourable final configuration, the
out-of-plane static error is virtually eliminated with respect to
the precision of the prototype sensor, and the in-plane static
errors are reduced to under 0.4 mm, for a total error norm
of 0.5 mm. The maximum dynamic error in this example
trajectory is reduced by 58% compared to the traditional
PD approach. The remaining dynamic error could be further
reduced by including inertia feedforward terms (computed
torque method) in the controller or, naturally, by considering
trajectories with lower dynamics.

Fig. 11 shows the time graphs of the second trajectory. This
trajectory requires coordinated motion of the three actuators
and illustrates the behaviour of the robot when moving perpen-
dicularly to gravity. Practically, the manipulator must move a
2 kg payload 400 mm sideways in the Y direction (side to side
and not front to back) in 2 seconds. All three coordinates show
very low error when using pose feedback compared to the
traditional PD controller. While the final configuration differs
from the first experiment, the static error is again reduced to



10

TABLE VI
EXPERIMENTAL TRACKING ERROR RESULTS

Error Norm [mm] ±1σ Uncertainty [mm]

Trajectory Controller Initial Final Min Max RMS Initial Final Average

Vertical Pose Feedback 0.3 0.5 0.2 8.4 4.3 ±0.13 ±0.16 ±0.15PD + g 9.2 17.4 9.0 20.0 16.8

Horizontal Pose Feedback 0.3 0.5 0 2.9 1.2 ±0.14 ±0.14 ±0.14PD + g 11.5 11.2 9.1 11.6 10.8
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Fig. 10. (Top) Prescribed vertical trajectory in task space, where
xd = −0.5 m and yd = 0.03 m are constant. (Bottom) Position error during
the trajectory tracking task, with the proposed control and with a PD control
with gravity compensation (PD + g). Payload is 2 kg and gravity is in the
negative Z direction.

0.5 mm, a notable improvement over the 11.2 mm error with
PD control.

To conclude, these results indicate that:
1) The proposed sensor system and controller effectively

compensate the static deflection of a flexible manipula-
tor. These results align with what is reported in [24],
where a similar vertical static error component of
0.3 mm was achieved (with a simpler 2-DoF flexible
manipulator with a 45% smaller reach) and shown to be
better than a commercial KUKA robot arm.

2) While doing so, we have also effectively expanded the
concept to non-trivial multi-DoF error measurement and
compensation, along with dynamic trajectory tracking.

XII. CONCLUSION

In this paper, a non-collocated sensor system consisting of
a serial chain of lightweight links and instrumented passive
joints was developed. This device is mounted in parallel to
a flexible robotic manipulator to form an integrated robotic
unit that can measure its own deflection at the end effector.
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Fig. 11. (Top) Prescribed horizontal trajectory in task space, where
xd = −0.3 m and zd = 0.4 m are constant. (Bottom) Position error during
the trajectory tracking task, with the proposed control and with a PD control
with gravity compensation (PD + g). Payload is 2 kg and gravity is in the
negative Z direction.

The kinematic constraints associated with the device were
detailed and shown to be considerable design obstacles. To
avoid these obstacles, a basic kinematic structure was proposed
where the measuring arm spans all but the first link and joint
of the manipulator. It was also proposed to take advantage
of kinematic redundancy in the measuring arm to prevent
any interference with the manipulator, while also ensuring
the safety of human operators. To assess the precision of
this sensor system, an error model was developed based on
a kinematic sensitivity index. This method gives an upper
bound on the Cartesian resolution of the device in a given
configuration. A simple mechanical and electronic design,
which allows the device to be easily assembled and calibrated,
was presented. The practicality of the measuring arm was
first demonstrated by comparing actual measurements from a
simplified planar prototype against ground truth values. Then,
with feedback on the actual end effector pose readily available,
a position control scheme was devised. The controller allows a
flexible manipulator to track trajectories in task space without
a dynamic model or a stiffness model, as shown by simulation
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results. Finally, a complete integrated robotic unit was built
as an experimental setup. The unit comprises a lightweight
3-DoF manipulator and a 5-DoF redundant measuring arm.
The experimental results indicate that the robot can effectively
compensate position errors and accurately track trajectories
even with flexible links and joints.

Such a sensor system introduces new possibilities for ap-
plications related to pHRI. Concretely, the detection of user-
induced deviations at the end effector will be investigated in
future works. This could lead to new control possibilities based
on intuitive physical interactions between the human operator
and the robot.
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