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Crop production systems were used to show the presence and propagation of 

uncertainty in emergy analyses and the effect of source variance on the variance of 

the yield unit emergy value (UEV). Data on energy/masses and UEVs for each source 

and yield were collected from the emergy literature and considered as inputs for the 

Monte Carlo simulation. The inputs were assumed to follow normal, lognormal, or 

uniform probability distributions. Using these inputs and a tabular method, two 

models ran Monte Carlo simulations to generate yield UEVs. Supplemental excel 

files elucidate the Monte Carlo simulations’ calculations. The nitrogen fertilizer UEV 

and net topsoil loss energy were the inputs with the largest impact on the variance of 

the yield’s UEV. These two sources also make the largest emergy contributions to the 

yield and should be the focus of a manager intent on reducing total system 

uncertainty. The selection of a statistical distribution had an impact on the yield UEV 

and thus these analyses may need to remain system- or even source- specific.  
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Chapter 1: Introduction 

Emergy introduced 

There is a growing global effort to quantify the value of our surrounding 

natural systems. Embodied energy (emergy) analyses place value on systems using an 

energy-based process that measures and compares different quality levels and flows 

of energy in systems. The main principle of emergy is that every type of energy in a 

system can be transformed into a unit of energy of a single kind (solar emjoule) to 

document on a common basis the total energy that was required directly and 

indirectly to make another form of energy, a product, or provide a service (Odum 

1996). A solar emjoule is equal to one joule of sunlight, and is the primary energy 

source that drives earth’s planetary systems, including ecosystems.  

Emergy is used in environmental accounting to specify performance 

indicators for systems. Table 1 defines popular indices such as EYR, ELR, percent 

renewability, and ESI, which respectively describe the yield, loading, reliance on 

renewable energy, and sustainability of a system. The appropriate index corresponds 

to the question of concern about the system.  
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Table 1: Terms defined for use in this paper. 

Term: Abbreviation: Definition: 

Solar Emergy Emergy The amount of available energy 

of one type (usually solar) that is 

directly or indirectly required to 

generate a given output flow or 

storage of energy or matter. 

Solar transformity Transformity Emergy investment required per 

unit process output of available 

energy 

Specific emergy  Specific Emergy Emergy investment required per 

unit process output of dry mass 

Unit Emergy Value UEV Emergy investment required per 

unit of product or service 

Emergy yield ratio EYR Emergy of the yield per unit of 

emergy invested or purchased 

from the economy 

Environmental loading ratio ELR Total nonrenewable and 

imported emergy released per 

unit of local renewable resource 

Emergy sustainability index ESI Emergy yield per unit of 

environmental loading 

Emergy investment ratio EIR Emergy investment needed to 

use one unit of local (renewable 

and nonrenewable) resource. 

(Odum 1996, Amponsah and Corre 2010, Ulgiati et al. 2010) 

In accounting for all the types of energy that run the system, the three basic 

steps required to estimate the emergy of a type of energy, a product, or service are 1) 

decide on which sources are required for the system, 2) estimate the energy or mass 

required for each source, and 3) estimate the emergy content of a source’s energy or 

mass (i.e. unit emergy value).  

Not all energy is created equal: a joule of light from an electric bulb can serve 

a variety of purposes. To account for this inequality, each energy/mass unit is 

multiplied by a unit of emergy value (UEV), a way of describing an energy/mass unit 

in terms of efficiency, or the emergy source per unit of available yield (e.g. sej/J, 

sej/g). Depending on the energy/mass unit, the unit emergy values in this study can be 
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labeled as ‘transformity’ (sej/J), or ‘specific emergy’ (sej/g) (Ulgiati et al. 2010). For 

example, sunlight has a transformity of 1 sej/J of sunlight.  

The emergy of a source is then the product of the energy/mass and its UEV. 

The emergy of the entire system is the sum of the emergy of the contributing sources. 

Therefore, there are three major pathways for uncertainty to enter the final estimate of 

how much emergy something required. First, the wrong model is used. For example, 

the list of sources required could exclude items that were actually required. Or rarely 

an item could be erroneously included. Second, the energy consumed by use of a 

source is often estimated using other models, but can be based on observed data. 

However, observed data will suffer from measurement error. Third, the UEV of the 

particular source may not be known so it is estimated using published UEVs for 

similar or identical items. This study aims to identify the significance of these three 

forms of uncertainty on the emergy estimate.  

Emergy evaluation 

Often, emergy analyses follow a tabular procedure where source flows of 

energy or mass are transformed to solar emergy and then summed to estimate the 

emergy of the yield (Table 2). In the example in Table 2 the source energy/mass for 

each item is multiplied by its corresponding solar transformity (sej/J) or specific solar 

emergy (sej/g) to estimate the solar emergy it contributes to the total solar emergy 

(sej) of the system. The emergy of the sources are summed to estimate the emergy of 

the yield. The solar transformity or specific solar emergy for the yield can then be 

estimated as the total solar emergy divided by the energy or mass of the yield.  
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Table 2: Tabular method for emergy accounting. 

Item Energy/Mass Units UEV (sej/unit) Emergy flow (sej) 

Source     
1 d1 J v1 m1 = d1 * v1 
2 d2 g v2 m2 = d2 * v2 

3 d3 J v3 m3 = d3 * v3 

… …  … … 

Yield dp J vp = mp / dp mp = m1 + m2 + m3 

Estimates of the source energy/mass are supported with further information in 

footnotes or endnotes that include equations and data sources. Footnotes should 

clearly explain how the source energy/mass was generated and its intellectual basis. 

For a given emergy analysis, UEVs of the sources are not typically estimated 

from mathematical modeling. Rather, UEVs for the sources are selected from other 

studies or databases such as www.emergydatabase.org (Tilley et al. 2012) to best 

reflect the sources. For example, rather than estimate the UEV of freshwater for every 

study, a global mean UEV of rainfall is often used. Therefore, thesource of all UEVs 

used in a study must be cited.  

One of the main reasons for selecting UEVs, rather than estimating new ones 

for each study, is the limited amount of time an analyst has to conduct the study. The 

solar emergy of any single source is the culmination of a complex web of energy 

transformations in its own right. Thus, the selection of UEVs is an accounting short-

cut that saves the analyst vast amounts of computational time. Of course, one of the 

drawbacks is that the selected UEV is only the best guess of how much solar emergy 

is actually embodied in the source. Another limitation is that only point estimates are 

typically available for the UEVs.    

Emergy analysts recognize that point estimates are a limitation (Odum 1996, 

Campbell 2001, Cohen 2001, Ingwersen 2010a, Ingwersen 2010b, Brown et al. 

http://www.emergydatabase.org/
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2011). Multiple emergy analyses of different systems that produce the same yield 

clearly show that multiple point estimates exist (Brandt-Williams 2002, Lefroy and 

Rydberg 2003, Rodrigues et al. 2003, Coppola et al. 2009, Franzese et al. 2009). 

Dynamic emergy accounting has shown that the UEV of a particular product can vary 

over a range and may follow a probabilistic distribution (PDF) like the normal or 

lognormal (Tilley and Brown 2006). Thus, the point estimates are samples drawn 

from a population of UEVs that likely can be modeled with PDFs.  

There is a growing demand by emergy practitioners to model the uncertainty 

of unit emergy values used or created (Hau and Bakshi 2004, Amponsah et al. 2010, 

Ulgiati et al. 2010). However, an important advantage of using point estimates for 

UEVs and specific emergies is that it offers a simplified method for completing 

emergy analyses quickly. Otherwise an emergy analysis could involve making 

hundreds of calculations and estimations. Thus, there is a need to determine the most 

appropriate PDFs for modeling the uncertainty of UEVs. Once the nature of UEV 

uncertainty is better understood, future steps would be to adjust the methodology 

(e.g., tabular emergy accounting in Table 2) to reduce overall levels of uncertainty 

and to provide the capability for estimating confidence intervals for key emergy 

indices like the emergy yield ratio.  

 In the related systems accounting field of life cycle assessment (LCA) 

uncertainty values are often required (Lloyd and Ries 2007, Ingwersen 2010a, 

Ingwersen 2010b). When LCA is used in a regulatory environment, the Federal 

Office of Management and Budget requires that LCAs include either a qualitative 
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discussion of the main uncertainties, a numerical sensitivity analysis, or a formal 

probabilistic analysis to communicate scientific uncertainty (Jaffe and Stavins 2007).  

For emergy analysis to be considered a formal policy analysis tool it too 

should include estimates of uncertainty and sensitivity. An emergy database was 

created in part to assist in the qualitative and quantitative assessment of UEV 

uncertainty (Tilley et al. 2012). There have been a few recent emergy publications 

that reported on UEV uncertainty (Campbell 2001, Cohen 2001, Tilley and Brown 

2006, Ingwersen 2010a, Ingwersen 2010b, Brown et al. 2011). Ingwersen’s (2010a) 

suggestion to standardize quantitative uncertainty propagation in emergy analyses 

was in part the impetus for this study. 

Incorporating uncertainty into emergy 

Before continuing on, it is important to clarify the terminology this study will 

use in discussing uncertainty in emergy evaluations. In statistics, uncertainty is 

defined as having limited knowledge about the value of a parameter, while variability 

is the variation of the individuals in the population studied (Rai and Krewski 1998). 

Monte Carlo methods used in multiplicative models have been unable to separate 

total uncertainty a) due to uncertainty and b) due to variability in and between 

systems. Previous studies employing Monte Carlo methods have therefore lumped 

these uncertainty and variance terms together under the term uncertainty when 

discussing Monte Carlo method generated results (Llyod and Reis 2007, Ingwersen 

2010a, Ingwersen 2010b). This study will be using both uncertainty and variance 

terms when they apply specifically, and uncertainty when addressing both cases.  
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LCA has many of the same data collection limitations as emergy analysis. 

LCA relies on models to estimate inventory items and intensity factors similar to 

emergy analysis. Therefore it could be useful to understand how the field of LCA has 

incorporated uncertainty characterization (Sonnemann et al. 2003). Ingwersen has 

taken LCA procedures on defining uncertainty and their conclusions on the 

effectiveness of uncertainty calculations, and applied them to emergy calculation 

methods, introduced below.  

The collection of data and modeling in emergy analyses incorporates many 

sources of uncertainty, classified by the EPA as parameter, model, and scenario 

uncertainty (Lloyd and Ries 2007, Ingwersen 2010b). Parameter uncertainty is the 

uncertainty in observed or measured values used in a model, i.e. the source UEV in an 

emergy analysis. Model uncertainty arises when there is more than one model 

available to use for appropriate estimations of UEV − differently representing the 

energy driving a system because of the structure and mathematical relationships of 

the models. Scenario uncertainty is the uncertainty of the fit of the model parameters 

to geographical, temporal, or technological contexts (Ingwersen 2010b). Scenario 

uncertainty is inherent in the types of systems selected for this study. Researchers will 

actively change levels of scenario uncertainty to examine how the output is affected. 

When scenario uncertainty is minimized, the interaction of parameter uncertainties 

and their effect on the yield will be emphasized. The original systems had slightly 

different sources that would change the interactions in their models. However, the 

manipulation of model uncertainty is outside the scope of this study. There is only 
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one type of model used- the traditional tabular-form emergy analysis with specified 

sources.  

To estimate UEV uncertainty, Ingwersen (2010a) presented an analytic model 

and a stochastic model. Analytic models are deterministic models used for formula-

type UEVs (calculating UEV of raw materials) while stochastic models are used for 

table-form UEVs (calculating UEV of products concerning the ecosystem and human 

activities). The analytic model is better for simpler systems because it follows 

mathematical formulae and requires knowing the system output distribution as well as 

the system inputs’ distributions. Stochastic models use random number generation to 

select input values from an assumed probability distribution function (PDF) that then 

interact with other randomly chosen input values to produce an output with its own 

PDF. In this study the stochastic modeling approach was used because the PDF of the 

output was not necessarily known, or even a defined distribution, but the PDFs of the 

inputs could be estimated from published studies.  

It is necessary to differentiate between system sources and inputs, as well as 

yield and output. An item that enters the crop system to interact with other items in a 

process that ‘yields’ grain will be referred to as a system ‘source’. This study has 

defined eleven sources for the crop production system. The values that are entered in 

to the Monte Carlo simulations will be referred to as ‘inputs’. Each source has an 

energy/mass input and a UEV input that is dependent on the distribution chosen. 

When these parameters are entered in to the Monte Carlo simulations they generate 

‘outputs’ such as the emergy value for each source.  
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Monte Carlo simulation 

The name Monte Carlo comes from the gambling scene at the Monte Carlo 

Casino, Monaco for the simulation’s random number generation feature. Monte Carlo 

simulation is a stochastic sampling method, where parameter values (e.g. inputs) are 

randomly generated from PDFs for multiple iterations. PDFs are often modeled on 

observed data, but can be developed from expert opinion (Winston 1991, Ayyub and 

Klir 2006). The Monte Carlo simulation method was used in this study to examine 

uncertainty propagation in a modeled system. 

An example of how the method can be employed is in determining the life 

expectancy of a population, where age, weight, eating habits, and exercising habits 

are important inputs into the system. These inputs all interact to form a life 

expectancy. These inputs all have assumed PDFs, for example, the ‘weight of a 

person’ input is assumed to follow a normal PDF (Figure 1). The points in green are 

the weights the researchers have measured on the study participants. Monte Carlo will 

follow this distribution characterized by the weight mean and standard deviation, and 

generate the points in red to obtain more sample weights for the study. 

 

 

Figure 1: Monte Carlo generation of weight. A population’s weight follows a 

normal distribution with a mean and standard deviation shown. The points in green 
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are the weights measured by researchers, while the red points are those generated by 

Monte Carlo to supplement the green. 

 

This will be repeated for each input. The many options or values the Monte Carlo 

generates for each input can interact in a black box to create an output life expectancy 

(Figure 2). After running this model for a certain number of iterations, a PDF of the 

population’s life expectancy can be determined. The generated data can be 

represented as probability distributions (or histograms) or converted to error bars, 

reliability predictions, tolerance zones, or confidence intervals.  

 

 

Figure 2: Stochastic uncertainty propagation. The input types are assumed to have 

a probability distribution (shown above the inputs in blue). The black box represents 

the interaction of the inputs to produce the outputs. The yields generated from the 

Monte Carlo simulation of the inputs are represented in a PDF and can be described 

using confidence intervals (i.e. the red lines intersecting the PDF). 
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Previous uses of Monte Carlo to simulate uncertainty in emergy have 

employed various types of PDFs (e.g. normal, lognormal, and uniform distributions) 

(Campbell 2001, Cohen 2001, Limpert et al. 2001, Sonnemann et al. 2003, Brown et 

al. 2011). Normal distributions are used when the available input data represents the 

mean of data collection efforts (used in Campbell 2001, Cohen 2001, and Sonnemann 

et al. 2003). Uniform implies an insufficient collection of data for a more specific 

distribution (used in Brown et al. 2011). Lognormal PDFs (Sonnemann et al. 2003) 

produce all positive values and are skewed to the right. Ingwersen (2010a) cites 

Limpert et al. (2001) and other studies in LCA that use a lognormal PDF for all 

source inputs for environmental disciplines. With case studies for lead, petroleum and 

more UEV calculations, Ingwersen (2010a and 2010b) suggests that a lognormal CI 

of the original data set is the closest to the Monte Carlo generated CI when inputs are 

assumed to have a lognormal PDF. In this study we did not have enough systems to 

determine the PDFs of sources with confidence. Therefore, we ran separate Monte 

Carlo simulations that assumed normal, lognormal, or uniform PDFs. 

Two types of models, each with a different type and amount of variation, were 

created for the Monte Carlo simulations. Model 1 (the energy/mass and UEV 

variance model) included the variance of the energy/mass input and the UEV input. 

Model 2 (the UEV only variance model) only included variance for the UEV input. 

Thus the models differed by the latter not including the variance of the energy/mass 

input. Simulations of the energy/mass and UEV variance model will reveal the total 

uncertainty due to uncertainty in both types of inputs, whereas the UEV only variance 

model will reveal uncertainty due to UEV inputs. Noting the differences in the output 
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means and variances generated by the two models will reveal the uncertainty due to 

energy/mass input estimates. 

The Monte Carlo simulation models 1 and 2 were made to break down the 

uncertainty of emergy analyses into energy/mass and UEV inputs. Ultimately, we will 

be able to say there is a 95% probability that a value within this range around the 

given yield UEV mean is returned. The uncertainty of the Energy/Mass and UEV 

inputs contributing to the total emergy of a system can be broken down by the source. 

After removing the variance of a source from the system, the resulting confidence 

interval about the yield UEV mean can indicate the magnitude of the source’s impact. 

This will aid in interpreting each source’s Energy/Mass and UEV contribution to the 

confidence interval surrounding the mean of the yield UEV. The goal of the 

researcher in this study is to minimize the range of the confidence interval associated 

with the yield UEV.  

Recent use of Monte Carlo simulation in emergy analyses has highlighted the 

potential for incorporating uncertainties into the field. For example, many previous 

studies made for petroleum had one estimate for its UEV, even though analysts 

recognized there could be more due to several factors like plant source, geologic 

cycles, and geological age. Brown et al. (2011) used Monte Carlo simulation to show 

the uncertainty of using a singular petroleum UEV. They performed an emergy 

analysis on the production of four types of fossil fuels: natural gas, crude oil, 

anthracite and bituminous coal, and sub-bituminous coal and lignite. The system 

sources were net primary productivity, preservation factors, and conversion 

efficiencies. The authors assumed a uniform distribution of the inputs based on the 
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minimum and maximums previously published for each input. A Monte Carlo 

simulation produced a mean and standard deviation for each type of fossil fuel UEV. 

The authors determined that the simulated UEVs were greater than fossil fuel UEVs 

provided in previous studies. The fossil fuel UEV increase from past calculations 

emphasized an increased importance of fossil fuels in human societies.  

The emergy community needs a transparent approach to document how 

uncertainty can be incorporated into an analysis to affect the estimate of a yield 

(specifically, the UEV of the yield). Many practitioners cite other studies in 

producing their own system’s source UEVs, without regard to the range of values 

each UEV has. The tabular method’s current practice is to provide singular values 

that actually represent a probability distribution around a mean value. The goals of 

this study are to present the benefits, opportunities, and necessity of incorporating 

uncertainty into an emergy analysis, along with a framework for obtaining and 

presenting uncertainty results in evaluations. The framework is based on using Monte 

Carlo stochastic modeling with Excel and will be applied to crop production, with 

each step well documented. There is a need to produce uncertainties for at least a few 

key sources because of how much these UEVs can vary between systems and change 

the yield. Researchers can then calculate which sources most impact the yield UEV in 

terms of variance and mean value, and place more emphasis and resources on 

minimizing those source uncertainties. Since source uncertainties are dependent on 

choosing a distribution for the Monte Carlo methodology, this study attempted to 

outline the effect of distribution type on the output UEV. The effect of uncertainty 

levels included in the model was also examined. A quantitative assessment of the 
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variability in emergy analyses of crop production systems was developed and 

discussed based on the model and distribution specific results. 
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Chapter 2: Objectives 

The objective of this study was to show how to utilize random number 

generation effectively in table-form emergy analyses of crop production systems to 

generate results for statistical review. This overarching objective was broken in to 

three questions addressed in this study.  

1. Where does uncertainty originate in emergy analyses, and how much 

uncertainty is propagated in a source’s energy/mass and UEV 

components? 

2. Which sources are more likely to influence the variance of the yield’s 

UEV, and how much do energy/mass and UEV components of a source 

influence the yield UEV? 

3. How does the distribution assigned to the Monte Carlo inputs impact the 

yield UEV variance?  
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Chapter 3: Plan of study 

To achieve these objectives, this study investigated the emergy literature on 

corn and wheat production systems to find systems with similar sources that have 

generated their own UEVs for crop production. Two models were created with 

different levels of variation incorporated. For each model, it was assumed that the 

source’s energy/mass and UEV inputs follow one of the 3 distributions: normal, 

lognormal, or uniform. An additive system was created for each model and 

distribution that related the source emergy values to the yield emergy of crop systems. 

Emergy output was generated with the Monte Carlo simulation for each distribution. 

The UEV of the output was determined by dividing the emergy output by an energy 

constant, dependent on the distribution. Confidence intervals were constructed around 

the original systems’ mean yield UEV for each model. Sensitivity analyses were run 

for each distribution on the effect of each source’s variance level on the variance of 

the yield. Significant results were compared across the distributions and models. An 

increased knowledge of uncertainty propagation in crop production systems was 

created.  
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Chapter 4: Methodology 

Systems descriptions 

Original systems’ descriptions  

 Crop systems (Figure 3) are useful for elucidating the source and propagation 

of uncertainty because of their multiple interacting sources and straight forward yield. 

Corn and wheat production in particular have been heavily analyzed by emergy 

scientists. They contain all of the common categories of sources analyzed in emergy 

evaluations, including renewable, locally non-renewable and purchased.  

 

Figure 3: Simplified energy systems diagram showing the driving forces of crop 

production (Franzese et al. 2009) Renewable and non-renewable sources (seed, fuel 

and electricity, machinery, fertilizer, pesticides, farm assets, labor and services) all 

drive the crop production process. This production process creates a storage of crop 

biomass, part of which continues on to be an evaluated product. Another part of the 

biomass storage feeds into the soil and then into the crop production through a 

feedback loop. 
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Eight systems were identified in the emergy literature containing detailed 

analyses of wheat and corn crops that include calculations of their own output crop 

UEVs (Brandt-Williams 2002, Rodrigues et al. 2003, Lefroy and Rydberg 2003, 

Coppola et al. 2009, Franzese et al. 2009). Appendix i: Table 11 describes the specific 

systems chosen. Wheat and corn systems have similar types of sources that are used 

in comparable amounts. Analyzing both corn and wheat systems increased the sample 

size which improved the precision of probability distribution functions, while at the 

same time it increased the possible scenario uncertainty by adding to the locations 

and conditions of the harvested systems. Geographically, the systems span the globe 

to include the United States, Brazil, Italy, Australia, and Denmark. The temporal span 

covers only three years (2001 to 2004), which minimizes technological shifts in 

cropping practices. The studies included here as our original data set were studied to 

understand bioethanol production, agroforestry practices, harvesting techniques, or 

crop productivity in general. Three of the five papers compared two or more systems. 

Including more than one analysis from the same publication may have biased the 

Monte Carlo output obtained from those similar inputs. 

Conventional and organic farming are two methods of farming that had been 

reported in the emergy literature. Conventional (or traditional) farming included 

fertilizer and/or pesticides as sources while organic systems excluded them as 

sources. Organic systems were removed from the list of systems studied because of 

the need to choose systems that had similar types of sources and relatively similar 

source values. In addition, the conventional farming technique was chosen for this 

study because it was the majority of farming systems reported in the emergy 
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literature. Systems with similar source types will eliminate some model uncertainty. 

Even limiting systems to conventional farming, the source types varied across 

systems. The eleven sources that were chosen for inclusion in the study were most 

representative of corn and wheat cropping systems (Table 3).  

Table 3: Selected 

Sources of Corn and  

Wheat Cropping 

Systems 

Energy Sources: 

Sunlight 

Evapotranspiration 

Fuel 

Net topsoil loss 

Electricity 

Labor 

 

Material Sources: 

Seed 

Steel machinery 

Pesticides 

Phosphate (P) Fertilizer 

Nitrogen(N) Fertilizer 

 

The eight observed systems were assembled to form a database. Tables were 

constructed for the energy/mass (Table 4a), UEV (Table 4b), and emergy (Table 4c) 

of each source and yield. The actual values, along with means and standard deviations 

summarizing the original dataset’s characteristics are shown in the Appendix ii. 

Values are presented as hectare per year.  

Table 4a: Energy/mass collected from eight original systems for 

each source (1, 2, 3,…) and yield. 

Item Units System 

1 2 3 4 5 6 7 8 

1 J d11 d12 d13 d14 d15 d16 d17 d18 

2 g d21 d22 d23 d24 d25 d26 d27 d28 

3 J d31 d32 d33 d34 d35 d36 d37 d38 

Yield (p) J dP1 dP2 dP3 dP4 dP5 dP6 dP7 dP8 
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Table 4b: UEV collected from eight original systems for each 

source (1, 2, 3,…) and yield. 

Item Units 

 

System 

1 2 3 4 5 6 7 8 

1 sej/J v11 v12 v13 v14 v15 v16 v17 v18 

2 sej/g v21 v22 v23 v24 v25 v26 v27 v28 

3 sej/J v31 v32 v33 v34 v35 v36 v37 v38 

Yield (p) sej/J vP1 vP2 vP3 vP4 vP5 vP6 vP7 vP8 

 

 

Table 4c: Emergy found by multiplying corresponding cells in 

Table 4a and Table 4b. 

Item Units 

 

System 

1 2 3 4 5 6 7 8 

1 sej m11 m12 m13 m14 m15 m16 m17 m18 

2 sej m21 m22 m23 m24 m25 m26 m27 m28 

3 sej m31 m32 m33 m34 m35 m36 m37 m38 

Yield (p) sej mP1 mP2 mP3 mP4 mP5 mP6 mP7 mP8 

 

Partitioning of variance for the original systems 

The sum of squared standard deviations was calculated to determine the 

relative contribution of each source’s variance (vari) to both the system variance 

(varsys) and the total source variance (varsum).  

The emergy standard deviation for each source was squared, finding the 

emergy variance for each source (vari). These variances were summed to find the 

total variance of the sources (varsum). The total system variance is the uncertainty 

present in the entire system and is the square of the yield emergy standard deviation 

(varsys). Total source variance (varsum) is different from the system variance of the 

yield emergy (varsys) because of the added uncertainty in the yield energy and yield 

UEV that contribute to the system variance of the yield emergy (varsys). The percent 

difference between the total source variance and the total system variance ([varsys – 
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varsum] / varsys) is the uncertainty that is unexplained by the sources, (scenario 

uncertainty). The uncertainty explained by the sources (parameter uncertainty) was 

found by dividing the total source variance by the total system variance (varsum / 

varsys). 

The percentage that each source contributed to the total variance of the 

sources was recorded (vari / varsum). The percentage that each source contributed to 

the total system variance was also recorded (vari / varsys).   

The uncertainty of the yield energy was not included in the Monte Carlo 

models. Therefore the total source variance (varsum) was more representative of the 

uncertainty captured by the Monte Carlo models than the total system variance 

(varsys). To further understand the original systems and their sources, an emergy 

signature was created based on the UEV and emergy tables shown above. 

Emergy signature of original systems 

Emergy signatures are traditionally created to visualize a system in terms of 

the nature of the sources driving the system. The sources are ordered along the x-axis 

in increasing emergy per unit, with the emergy values shown on the y-axis. If the 

graph is weighted towards the left, the system relies more on renewable sources, 

versus a system whose sources’ emergy magnitudes are clustered to the right. 

Conventionally, emergy signature graphs are used to compare multiple systems and 

the nature of their sources.  

The emergy signature method was used in this study to compare the sources 

within the average crop production system. The current study combined the eight 

original systems to produce average emergy values for each source, along with their 
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standard deviations. The sources were broken in to energy and material sources and 

ordered by increasing transformity and specific emergy. For example, labor had the 

largest transformity and nitrogen fertilizer had the largest specific emergy. The 

emergy signature graph was analyzed based on the UEV, emergy mean, and emergy 

standard deviation of each source. These three features may influence the source’s 

effect on the yield UEV. The source with the largest of each characteristic was 

hypothesized to have the largest impact on the output UEV. The sources with the 

largest impact would have the largest transformity or specific emergy values, with the 

largest emergy values on the y axis and the largest standard deviations.  

Another emergy signature graph was made that placed the sources’ variances 

and emergy values in context with the eight original systems’ output. These graphs 

describing the original systems were later combined with the Monte Carlo generated 

systems for Model 1 and 2. Each distribution for the two models was compared to the 

original eight systems in an emergy signature graph to identify prominent 

discrepancies or tendencies.  

Monte Carlo simulations 

The values of the sources were related to the yield of crop production systems 

using a table-form analysis. There were assumed to be no interactions between 

sources in the production process. The Monte Carlo simulation generated emergy 

output values for multiple input values selected from a distribution (Figure 4). 



 

 23 

 

 

 

Figure 4: Stochastic uncertainty propagation in corn and wheat production. 

Assuming Model 1. For each of the n sources, Monte Carlo simulation has generated 

energy/mass (d) and UEV (v) inputs. There is an assumption that the inputs follow a 

normal distribution (shown above the energy/mass and UEVs in blue). Emergy is the 

product of the source’s energy/mass and UEV. The emergy values (m) are combined 

to produce the emergy of the output, for which a PDF is developed. The emergy 

values are then divided by an energy constant (in red) based on the normal 

distribution, to produce the PDF of the output UEV. 

 

In order to generate input values, the Monte Carlo method required defining 

characteristics of an input’s parent population. Two models were run in the Monte 

Carlo simulations for each input distribution. Model 1 included energy/mass variance 

(Figure 4), whereas Model 2 eliminated energy/mass variance. As such, there were 

different Monte Carlo inputs and generated outputs for each model and distribution. 
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Based on the type of distribution (normal, lognormal, or uniform) of the inputs’ 

characteristics and a random number representing a probability distribution, the 

Model 1 Monte Carlo simulation generated energy/mass and UEV for inputs. The 

Model 2 Monte Carlo simulation generated only UEVs. The emergy value for each 

source was found by multiplying together the source’s energy/mass and UEV. The 

emergy from each source was summed, giving the total emergy. The UEV of the 

output was found by dividing the total emergy by the energy yield, which was taken 

as a constant (i.e., non-random variable). By choosing a constant energy output 

instead of generating an estimate with Monte Carlo, the uncertainty of the model was 

isolated to the inputs. The energy output constant value was assumed to be a value 

that represented the majority of energy output studied in the original eight systems. 

Since each distribution shifts where the observations are clustered, the energy 

constant was determined to be dependent on the distribution type.  

The methodology of the Monte Carlo simulations that varied for each model 

and distribution are described below in more detail. They are broken up by 

distribution into Monte Carlo Inputs and Monte Carlo Outputs. 

Normal distribution 

The normal distribution was used in determining crop production systems’ 

uncertainty with the assumptions that there was a large enough sample size and the 

samples were distributed symmetrically about the mean of the samples.  

Model 1: Energy/Mass and UEV Variance 

• Monte Carlo Inputs-  
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There were 5 inputs that are fed in to the Monte Carlo simulation for the normal 

distribution. Equation 1.1 showed the arithmetic mean of the energy/mass input (dµi) 

for the i
th

 source given the original eight systems. 

1.      1.1 

N was the total number of original systems with that source. Not every system studied 

had a value for each input, so N varied between sources. Equation 1.2 showed the 

sample standard deviation of the energy/mass input (dσi) for the i
th

 source. 

2.     1.2 

k stood for the k
th

 original system with the value 1 to 8. Equation 1.3 showed the 

arithmetic mean of the UEV input (vµi) for the i
th

 source given the original eight 

systems. 

3.      1.3 

N was the total number of original systems with that source. Not every system studied 

had a value for each input, so N varied between sources. Equation 1.4 showed the 

sample standard deviation of the UEV input (vσi) for the i
th

 source. 

4.      1.4 

k stood for the k
th

 original system with the value 1 to 8.  
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5.  was a number from 0 to 1 that had been selected randomly, 

following a uniform distribution. The Excel code was 

. 

• Monte Carlo Outputs-  

The Monte Carlo simulation produced 4 outputs for the normal distribution. Equation 

2.1a returned the inverse of the normal cumulative distribution function of the 

energy/mass input for the i
th

 source. 

1.               2.1a 

Equation 2.2 returned the inverse of the normal cumulative distribution function of 

the UEV for the i
th

 source given the three parameters described (a random number j, 

the arithmetic mean of the UEV input vµi, and the sample standard deviation of the 

UEV input vσi). 

2.       2.2 

Equation 2.3 calculated the i
th

 source’s emergy (mi) and was found by multiplying the 

Monte Carlo generated energy/mass (di) by the Monte Carlo generated UEV (vi) for 

that source. 

3. = di*        2.3 

This was repeated for each of the 11 sources. Equation 2.4 calculated the emergy of 

the output (mp) and was the summation of the emergy of the 8 original systems for 

each source i. 



 

 27 

 

4.       2.4 

Equation 2.5 calculated the output UEV (vp) and was found by dividing the output 

emergy (mp) by the output energy (dp). 

5.        2.5 

Equation 2.5 calculated the output energy (dp) and was equal to the arithmetic mean 

of the energy of the original eight systems (dµp).   

                 2.6a 

dp  was thus a constant rather than a random variable in the Monte Carlo simulations. 

Model 2: Energy/Mass and UEV Variance 

• Monte Carlo Inputs- 

There were 4 inputs to the Monte Carlo simulation for Model 2 of the normal 

distribution. Model 1 included the variance of the energy/mass input (dσi) for each 

input, but Model 2 excluded this Monte Carlo simulation input. Equation 1.1 

calculated the arithmetic mean of the energy/mass input (dµi) for the i
th

 source given 

the original eight systems. 

1.      1.1 

 N was the total number of original systems with that source. Not every system 

studied had a value for each input, so N varied between sources. Equation 1.3 
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calculated the arithmetic mean of the input UEV (vµi) for the i
th

 source given the 

original eight systems. 

2.      1.3 

N was the total number of original systems with that input. Not every system studied 

had a value for each input, so N varied between inputs. Equation 1.4 calculated the 

sample standard deviation of the input UEV (vσi) for the i
th

 source. 

3.  
    1.4

 

k stood for the k
th

 original system with the value 1 to 8.  

4.  was a number from 0 to 1 that had been selected randomly, 

following a uniform distribution. The Excel code was 

. 

• Monte Carlo Outputs- 

There were 5 outputs that were produced by the Monte Carlo simulation for Model 2 

of the normal distribution. In Model 2 the energy/mass for each source (di) was the 

arithmetic average of the original systems for that source (dµi) and thus was a constant 

rather than a random variable in the Monte Carlo simulations. This was shown in 

equation 2.1b. 

1.                 2.1b 
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Equation 2.2 returned the inverse of the normal cumulative distribution function of 

the UEV for the i
th

 source given the three parameters described (a random number j, 

the arithmetic mean of the UEV input vµi, and the sample standard deviation of the 

UEV input vσi). 

2.       2.2 

Equation 2.3 calculated the i
th

 source’s emergy (mi) found by multiplying the Monte 

Carlo generated energy/mass (dµi) by the Monte Carlo generated UEV (vi) for that 

source. 

3. = *        2.3 

This was repeated for each of the 11 sources. Equation 2.4 calculated the emergy of 

the output (mp) as the summation of the emergy of the 8 original systems for each 

source i. 

4.       2.4 

Equation 2.5 calculated the output UEV (vp) by dividing the output emergy (mp) by 

the output energy (dp).  

5.        2.5 

                             2.6a 

The output energy (dp) was equal to the arithmetic mean of the energy of the original 

eight systems (dµp) and thus was a constant rather than a random variable in the Monte 

Carlo simulations.  
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When the Monte Carlo simulation generated negative values, the negative 

values were taken out of the sample, lowering the sample sizes. The normal 

distribution’s left tail extends to negative infinity, but it is impossible to have negative 

energy, mass, or unit emergy value. The normally distributed inputs and outputs had 

different sample sizes.  

Lognormal distribution 

The lognormal distribution was used to generate crop production systems’ 

uncertainty with the assumptions that there are only positive emergy values for each 

input, and these values are large.  

To run the Monte Carlo simulation for a lognormally distributed input, the 

inverse of the lognormal cumulative distribution function was needed. ln(B) was 

assumed to be normally distributed with parameters µ (the mean of ln(B)) and σ (the 

standard deviation of ln(B)). σ
2
 was the variance of ln(B). 

    ln(B) ~N(µ,σ)      3.1 

The mean (µB) and variance (σ
2

B) of B were then computed (Ayyub and Klir 2006) 

      3.2 

     3.3 

These functions were then inverted, solving for µ and σ
2 

     3.4 

     3.5 
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     3.6 

 In applying these formulas to the distinct generation of energy/mass and UEVs, 

equations 3.1-3.6 were modified. dB was used to symbolize energy/mass that was 

lognormally distributed, while vB was used to symbolize UEVs that are lognormally 

distributed. They have been substituted for B seen in equation 3.1 in the following 

equations.  

 and      4.1 

The symbols for the energy/mass mean dµ and the energy/mass standard deviation dσ 

signify the characteristics of a normal distribution. This was the same for the UEV 

symbols.  

         4.2 

The normally distributed energy/mass mean dµi and normally distributed energy/mass 

standard deviation dσi for each source i was distinguished from the lognormally 

distributed energy/mass mean dµBi and lognormally distributed energy/mass standard 

deviation dσBi for each source i. 

        4.3 

In this set of simulations, the inputs were assumed to follow a lognormal distribution. 

The dµBi and dσBi for each source were defined as the energy/mass mean and standard 

deviation for each source of the original eight systems. The inverses of dµBi and dσBi 

(dµi and dσi) were then the actual inputs used in the Monte Carlo simulations.  

         4.4 
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The normally distributed UEV mean vµi and normally distributed UEV standard 

deviation vσi for each source i was distinguished from the lognormally distributed 

UEV mean vµBi and lognormally distributed UEV standard deviation vσBi for each 

source i. 

        4.5 

The inputs were assumed to follow a lognormal distribution. The vµBi and vσBi for each 

source were defined as the UEV mean and standard deviation for each source of the 

original eight systems. The inverses of vµBi and vσBi (vµi and vσi) were then the actual 

inputs used in the Monte Carlo simulations.  

Model 1: Energy/Mass and UEV Variance 

• Monte Carlo Inputs 

There were 5 inputs that were fed in to the Monte Carlo simulation for Model 1’s 

lognormal distribution. Equation 5.1 calculated the energy/mass mean for each source 

i (dµi). 

1.      5.1 

Equation 5.2 calculated the energy/mass standard deviation for each source i (dσi). 

2.       

Equation 5.3 calculated the UEV mean for each source i (vµi).   

3.      5.3 

Equation 5.4 calculated the UEV standard deviation for each source i (vσi).      
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4.      5.4 

5.  was a number from 0 to 1 that had been selected randomly, 

following a uniform distribution. The Excel code was 

. 

• Monte Carlo Outputs 

There were 5 outputs that were produced by the Monte Carlo simulation for Model 2 

of the normal distribution. 

1.                         6.1a 

Equation 6.1a returned the inverse of the lognormal cumulative distribution function 

of the energy/mass input for the i
th

 source given the three parameters described above 

(a random number j, the arithmetic mean of the energy/mass input dµi, and the sample 

standard deviation of the energy/mass input dσi). 

2.     6.2 

Equation 6.2 returned the inverse of the lognormal cumulative distribution function of 

the UEV for the i
th

 source given the three parameters described above (a random 

number j, the arithmetic mean of the UEV vµi, and the sample standard deviation of 

the UEV vσi). In equation 2.3 the i
th

 source’s emergy (mi) was found by multiplying 

the Monte Carlo generated energy/mass (dµi) by the Monte Carlo generated UEV (vi) 

for that source. 
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3. = *        2.3 

This was repeated for each of the 11 sources. 

4.       2.4 

Equation 2.4 calculated the emergy of the output (mp) is the summation of the emergy 

of the 8 original systems for each source i. 

5.        2.5 

Equation 2.5 calculated the output UEV (vp) by dividing the output emergy (mp) by 

the output energy/mass (dp). 

• dp = geometric mean of the eight original system yields 

          2.6b 

The output energy/mass (dp) was equal to the geometric mean of the energy/mass of 

the original eight systems (dµgeoP) and thus was a constant rather than a random 

variable in the Monte Carlo simulations. 

Model 2: UEV Variance 

• Monte Carlo Inputs  

There were 5 inputs that were fed in to the Monte Carlo simulation for Model 2 of the 

lognormal distribution.  

1.      5.1 
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Equation 5.1 calculated the energy/mass mean for each source i (dµi).  

2.      5.2 

Equation 5.2 calculated the energy/mass standard deviation for each source i (dσi).   

3.      5.3 

Equation 5.3 calculated the UEV mean for each source i (vµi).    

4.      5.4 

Equation 5.4 calculated the UEV standard deviation for each source i (vσi).     

5.  was a number from 0 to 1 that had been selected randomly, following a uniform 

distribution. The Excel code was . 

• Monte Carlo Outputs  

1.  was defined in equation 6.1b as the geometric mean of the 

eight original systems for the i
th

 source. k represented one of 

the original eight systems. 

 

     6.1b 

 

2. Equation 6.2 generated for the i
th

 source 
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       6.2 

Equation 6.2 returned the inverse of the lognormal cumulative distribution function of 

the UEV for the i
th

 source given the three parameters described above (a random 

number j, the arithmetic mean of the UEV vµi, and the sample standard deviation of 

the UEV vσi). 

3. = *        2.3 

In equation 2.3 the i
th

 source’s emergy (mi) was found by multiplying the Monte 

Carlo generated energy/mass (dµi) by the Monte Carlo generated UEV (vi) for that 

source. This was repeated for each of the 11 sources. 

4.       2.4 

Equation 2.4 calculated the emergy of the output (mp) to be the summation of the 

emergy of the 8 original systems for each source i. 

5.        2.5 

Equation 2.5 calculated the output UEV (vp) by dividing the output emergy (mp) by 

the output energy/mass (dp). 

• 
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                     2.6b 

The output energy/mass (dp) was equal to the geometric mean of the energy/mass of 

the original eight systems (dµgeoP) and thus was a constant rather than a random 

variable in the Monte Carlo simulations. The geometric mean was used over the 

arithmetic mean because it is less influenced by the larger samples. 

Uniform distribution 

A uniform distribution was used to represent each input’s probability distribution that 

then interact to produce output uncertainty for crop systems.  

Model 1: Energy/Mass and UEV Variance 

• Monte Carlo Inputs  

There were 5 inputs that were fed in to the Monte Carlo simulation for Model 1 of the 

uniform distribution.  

1.         7.1 

Equation 7.1 calculated the minimum energy/mass value of the original eight systems 

for the i
th

 source. 

2.         7.2 

Equation 7.2 calculated the maximum energy/mass value of the original eight systems 

for the i
th

 source. 
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3.         7.3 

Equation 7.3 calculated the minimum UEV value of the original eight systems for the 

i
th

 source. 

4.         7.4 

Equation 7.4 calculated the maximum energy/mass value of the original eight systems 

for the i
th

 source. 

5.   

j was a number from 0 to 1 that had been selected randomly, following a uniform 

distribution. The Excel code was  

• Monte Carlo Outputs  

This study used an equation where a probability returned a value from the specified 

the uniform distribution. The uniform distribution used the minimum (a) and 

maximum (b) values of the 8 systems studied in addition to the randomly generated 

probability mentioned in the normal and lognormal distributions. Every sample (x) 

from a uniformly distributed population had an equal probability of occurrence (Px), 

which was equal to the difference between the sample and the minimum divided by 

the difference between the maximum and minimum.  

          8.1 

To generate that sample’s value, the equation was then solved for x: 

     8.2 



 

 39 

 

These variables were then transformed into the energy/mass and UEV terms 

previously employed and placed as outputs of the Monte Carlo simulation. There 

were a total of 5 outputs for Model 1 of the uniform distribution.  

1.               8.3a 

Equation 8.3a calculated the energy/mass value for the i
th

 source. 

2.     8.4 

Equation 8.4 calculated the UEV value for the i
th

 source. 

3. = *        2.3 

Equation 2.3 found the i
th

 source’s emergy (mi) by multiplying the Monte Carlo 

generated energy/mass (dµi) by the Monte Carlo generated UEV (vi) for that source. 

This was repeated for each of the 11 sources. 

4.       2.4 

Equation 2.4 calculated the emergy of the output (mp) as the summation of the 

emergy of the 8 original systems for each source i. 

5.        2.5 

Equation 2.5 found the output UEV (vp) by dividing the output emergy (mp) by the 

output energy/mass (dp). 

•     2.6c 
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Equation 2.6c found the uniform distribution’s energy output constant to be the 

arithmetic mean of the maximum and minimum of the eight original systems’ output. 

Model 2: UEV Variance 

• Monte Carlo Inputs  

There were 5 inputs that were fed in to the Monte Carlo simulation for Model 2 of the 

uniform distribution. These were the same inputs fed in to Model 1.  

1.         7.1 

Equation 7.1 calculated the minimum energy/mass value of the original eight systems 

for the i
th

 source. 

2.         7.2 

Equation 7.2 calculated the maximum energy/mass value of the original eight systems 

for the i
th

 source. 

3.         7.3 

Equation 7.3 calculated the minimum UEV value of the original eight systems for the 

i
th

 source. 

4.         7.4 

Equation 7.4 calculated the maximum energy/mass value of the original eight systems 

for the i
th

 source. 

5.   
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j was a number from 0 to 1 that has been selected randomly, following a uniform 

distribution. The Excel code was . 

• Monte Carlo Outputs  

There were 4 outputs that were fed in to the Monte Carlo simulation for Model 2 of 

the uniform distribution. These varied from Model 1 in that the energy/mass variance 

has been removed from the simulation.  

1.                8.3b 

Model 2 kept the energy/mass of the i
th

 source as the arithmetic mean of the 

maximum and minimum values for the original eight systems, shown in equation 

8.3b. 

2.     8.4 

Equation 8.4 calculated the UEV value for the i
th

 source. 

3. = *        2.3 

Equation 2.3 calculated the i
th

 source’s emergy (mi) by multiplying the Monte Carlo 

generated energy/mass (dµi) by the Monte Carlo generated UEV (vi) for that source. 

This was repeated for each of the 11 sources. 

4.       2.4 

Equation 2.4 calculated the emergy of the output (mp) as the summation of the 

emergy of the 8 original systems for each source i. 
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5.        2.5 

Equation 8.4 calculated the output UEV (vp) by dividing the output emergy (mp) by 

the output energy/mass (dp). 

•                2.6c 

Equation 2.6c calculated the uniform distribution’s energy output constant as the 

arithmetic mean of the maximum and minimum of the eight original systems’ output. 

Model Comparison 

Confidence intervals surrounding the yield UEV were constructed for 

different levels of uncertainty present in the models. These confidence intervals 

quantified how much removing different system sources of uncertainty could impact 

the yield UEV’s variance. The process began with partitioning the emergy variance 

using sums of squares for the normal PDF simulation as outlined in the previous 

methodology for the original systems. The coefficient of variation (COV) for the 

yield UEV was then calculated. By combining these methodologies, the sources of 

uncertainty were visible and were compared across the energy/mass + UEV variance, 

UEV only variance, and energy/mass only variance models.  

The Monte Carlo simulation generated an energy and a UEV value for each 

crop system source which were multiplied together to obtain an emergy value for 

each source. The standard deviations of the source emergy values were squared to 

find the variance. The variance of each source was then divided by the sum of the 

variances for all the sources.  
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      9.1 

Ci in Equation 9.1 showed what percent each i
th

 source contributed to the 

combined source variance. This is written in the previous section as vari / varsum 

The coefficient of variation (COV) of the emergy yield p was used to 

calculate the confidence interval. The COV was different dependent on the model. 

The coefficient of variation is a measure of dispersion of a normal probability 

distribution, equal to the standard deviation divided by the mean (Winston 1991). 

      9.2 

The emergy output COV was then multiplied by 2 because the mean plus and minus 2 

standard deviations covers 95% of the area under the normal probability distribution 

curve (Winston 1991).  

     9.3 

Equation 9.3 was then multiplied by equation 9.1 to produce equation 9.4.  

      9.4 

The yield emergy mean and variance is the same as the yield UEV mean and variance 

multiplied by a constant. It was then possible to use the percentage Yi from equation 

9.4 to construct 95% confidence intervals around the mean yield UEV. This 

methodology was conducted on the normal distribution for both models. Then Model 

2 was subtracted from Model 1 to obtain the energy/mass only variance model. The 

upper confidence interval was the mean output UEV plus Yi times the mean output 

UEV. The lower confidence interval was the mean output UEV minus Yi times the 

mean output UEV.  
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 The effect the greatest sources of variance in the system had on the confidence 

interval was also visualized. The greatest sources of uncertainty were determined 

from the magnitude of their percent contribution to the total uncertainty. The new 

confidence intervals were formed after removing the greatest sources of uncertainty 

from Yi.  

Visual summary of Monte Carlo simulations 

In determining where uncertainty originates in emergy analyses, frequency 

graphs were made using the Monte Carlo simulations to best visually show the 

resulting output distribution and each input’s distribution. The curvature of each 

source’s emergy PDF was dependent on the distribution of the input’s energy/mass 

and UEVs. Each simulation generated 100 iterations, which were grouped into bins. 

Bin selection methodology suggests that there are at least 1 to 5 values in each bin 

(Winston, 1991). Splitting the 100 iterations into 5 bins allowed for at least 5 values 

in each bin for the output UEV. With the bin number 5, frequency distributions were 

created by grouping values into 5 bins using the minimum and maximum output 

values and size steps of 1/5 the range.  

Once the bin number was selected and the methodology for splitting the 

iterations into bins conducted, a table for each source and yield was created, for a 

total of 12 tables. Each table showed graphs for models 1 and 2, the normal, 

lognormal, and uniform distributions, and the energy/mass, UEV and emergy, for a 

total of 18 graphs for each table. Placing the graphs in close proximity allowed for 

direct comparisons. The energy/mass differences were shown between models and 
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distributions. The UEV differences were shown between models and distributions. 

The emergy differences were shown between models and distributions.  

 The methodology for graphically representing each Monte Carlo input and 

output’s variance and curvature has been described. The generated graphs allowed for 

visual comparison between models and distributions. We will now focus on 

minimizing each source’s variance and measuring the impact on the output in terms 

of variance and mean shift, for each model and distribution. 

Sensitivity analysis 

 In emergy analyses, emphasis should be placed on the collection of data for 

the sources that have the largest impact on the output UEV mean and variance. A 

sensitivity analysis was conducted for each model and distribution to determine 

which sources influenced the mean and the variance of the output UEV. For Model 1, 

the variance of the energy/mass and the UEV of 1 source were minimized, while the 

other sources energy/mass and UEVs were allowed to fluctuate for 100 iterations. 

Monte Carlo simulation generated output, which was titled under the name of the 

source whose energy/mass and UEV variance had been minimized. A baseline output 

was generated that allowed each source’s energy/mass and UEV to fluctuate based on 

their variance. The baseline for Model 1 allowed every source’s energy/mass and 

UEV to fluctuate and the resulting output UEV was recorded. The new Monte Carlo 

output was then compared to the Model 1 baseline to test whether that source had a 

significant impact on the mean or variation of the output UEV. This was repeated for 

each source. A table was created showing the percent difference of each generated 

output to the baseline.  
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% difference = 100 * (the generated output value - the baseline value) / the baseline 

value           

           9.1 

Since the percent difference was found (partly) by subtracting the baseline value from 

the generated output value, the sign of the resulting percent difference indicated 

whether the generated output value was larger (+) or smaller (-) than the baseline 

value. This was useful in a speedy analysis of which sources lowered the variance of 

the output UEV. 

 Another baseline was created for Model 2. The baseline for Model 2 kept the 

energy/mass values of each source constant while the UEV values were allowed to 

fluctuate and the resulting output UEV was recorded. Since the energy/mass was set 

constant for each source, only the UEV was minimized for one source at a time while 

the other source’s UEVs were allowed to fluctuate.  

 The Student’s t-test and the f-test were used to test for significant differences 

in mean and variation for each source’s effect on the output for Models 1 and 2 and 

each distribution, respectively. The null hypothesis tested by the Student’s t-Test was 

that the output produced by each source’s variance being individually minimized was 

from the same underlying population, with the same mean, as the original Monte 

Carlo output. The test was set up as two samples with unequal variance 

(heteroscedastic) and a two-tailed distribution was used because if the source’s 

variance is minimized, the mean could possibly shift to the left or right. When 

reviewing the results for significance, the alpha value of 0.05 was selected because of 

the convention of reporting a 95% confidence interval (Campbell 2001; Sonnemann 
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et al. 2003). A significant p-value (α ≤ 0.05) showed that when the variance of a 

source is minimized on an individual basis, the mean of the generated output differs 

significantly from the original output. The null hypothesis the f-Test tested was that 

the output produced by each source being minimized in their variance was from the 

same population, with the same variance, as the original output. A significant p-value 

(α ≤ 0.05) implied that the lowered source variance changes the output’s variance.  

The effect of the baseline source PDFs on the mean and variance of the yield 

UEV was also determined using these tests. The baselines for each PDF were 

compared to each other for each model and then between models and p values were 

recorded. 
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Chapter 5: Results 

Systems Descriptions 

The systems descriptions section of the results was split into the original 

systems’ descriptions and the Monte Carlo simulation systems’ descriptions. Both sub 

sections were used to determine where uncertainty originates in emergy analyses, and 

how much uncertainty was propagated in a crop production source’s energy/mass and 

UEV components. The Monte Carlo simulations were conducted dependent on the 

distribution of the inputs, and determined how the distribution assigned to the Monte 

Carlo inputs impacted the crop yield UEV variance. 

Original systems’ descriptions 

The original systems energy/mass, UEV, and emergy values for each source 

and yield can be found in Appendix ii. The mean and standard deviations for the 

energy/mass, UEV, and emergy of the original systems were described in Table 5a. 

Table 5a is a reference to compare the Monte Carlo output simulations in later 

sections. 
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Table 5a: Original eight cropping systems. Energy/mass input, UEV input and emergy of sources 

given as arithmetic mean (mean) and standard deviation (stddev) for one hectare over a year. 

  Energy/Mass UEV Emergy 

(sej/unit) (sej) 

  Unit Mean Stddev Mean Stddev Mean Stddev 

Energy Sources   1E+06 1E+06     1E+12 1E+12 

Sunlight J 53,800,000 12,200,000 1 0 53.8 12.2 

Evapotranspiration J 43,100 17,200 25,900 5.83 1,120 445 

Fuel J 4,290 4,500 107,000 7,610 474 501 

Net topsoil loss J 13,800 15,200 119,000 9,270 1,650 1,890 

Electricity J 785 758 251,000 42,100 183 186 

Labor J 37.9 87.4 12,700,000 5,120,000 314 660 

  

Material Sources 1E+03 1E+03 1E+06 1E+06 1E+12 1E+12 

Seed g 84.2 78.6 666 595 84.8 109 

Steel machinery g 3.95 5.42 8,780 3,410 41.6 62.5 

Pesticides g 3.56 3.61 12,500 11,600 67.9 103 

P Fertilizer g 25.7 24.6 26,000 10,100 550 408 

N Fertilizer g 105 47.8 27,100 14,200 2,300 742 

  

Yield   1E+06 1E+06 1E+03 1E+03 1E+12 1E+12 

Grain J 59,200 46,500 249 403 8,840 8,590 

 

From Table 5a we see that nitrogen fertilizer (2.3E15 sej/ha/y) was the largest 

contributor to the yield emergy (i.e., 44% of the yield emergy) of the original 

systems, while net topsoil loss was the second largest contributor (1.65E15 sej/ha/y). 

These two major sources also had the first and second largest standard deviations 

(Table 5a).  
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Partitioning of variance in the original systems 

Table 5b: Emergy sum of squares partitioning for sources. Source 

variance (vari), total source variance (varsum), total system variance* 

(varsys) and percentages are shown.  

 
vari vari/varsum vari/varsys 

Energy Sources 1.0E25 (sej
2
)   

Sunlight               14.4 0.0% 0.0% 

Evapotranspiration 19,800  3.8% 0.3% 

Fuel 25,100  4.8% 0.3% 

Net topsoil loss 357,000  68.2% 4.8% 

Electricity 3,460  0.7% 0.0% 

Labor 4,360  8.3% 0.6% 

Material Sources    

Seed 1,190  0.2% 0.0% 

Steel machinery 397  0.1% 0.0% 

Pesticides 1,060  0.2% 0.0% 

P Fertilizer 16,600  3.2% 0.2% 

N Fertilizer 55,100  10.5% 0.7% 

varsum 523,000    

varsys * 7,380,000    

varsum/varsys 7.1%   

* System variance is the variance of the emergy yield of the original eight systems 

Table 5b shows that only 7% of the variability in yield emergy, across the 

original eight systems, could be explained by the sum of variability in the emergy of 

individual sources (varsum/varsys). In other words, uncertainty in the energy/mass and 

UEV parameters contributed only 7% to total uncertainty of the yield. The vast 

majority (93%) of variability in the emergy value of the crop yield was due to 

scenario differences, indicating that the original eight systems varied greatly in the 

combinations of sources used to achieve different yields. The original systems were 

spread throughout the world in different climates on lands with different soils, 

suggesting that geographic location should be a major source of variability. The yield 

of corn is closely tied to nitrogen fertilization, and fertilization is closely linked with 
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water availability and soil properties. It is this situational or scenario difference that 

explained most of the variability in the UEV of corn produced around the world.  

Of the 7% uncertainty contributed by the energy/mass and UEV parameters, 

by far the source that contributed the most variability (4.8%) was net topsoil loss, 

while no other source contributed more than 1% (Table 5b). Net topsoil loss rates 

varied greatly across the original eight systems with a standard deviation of 15.2E9 

J/ha/y that was greater than the mean of 13.8E9 J/ha/y (Table 5a); a ratio of 1.1. In 

contrast the ratio of standard deviation to mean for net topsoil loss’s UEV was only 

0.08. Thus, most of the variability in emergy of soil was due to uncertainty in net 

topsoil loss rates, not net topsoil loss UEV.  

The uncertainty of the yield energy was not included in the Monte Carlo 

models. Therefore the total source variance (varsum) was more representative of the 

uncertainty captured by the Monte Carlo models than the total system variance 

(varsys).   

Emergy signature of the original systems 

The emergy signature graphs were used to visually compare the magnitude of 

the uncertainty associated with each source (Figure 5a). By convention the spectra 

arranged the sources according to their UEV in ascending order. However, note that 

arrangement for the first six sources on the left were in units of sej/J while the 

remaining five on the right were in sej/g (Figure 5a). The crop output was also shown 

on the emergy signature to highlight the large amount of variance associated with the 

yield (Figure 5b). 
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Figure 5a: Emergy signature of the sources to the original crop systems without 

output. The original eight systems’ mean emergy values are shown for each source 

with the output to the right. The sources have been organized in order of increasing 

unit of emergy value. One standard deviation is shown in both 5 and 5b. In the case 

of labor, steel machinery, and pesticides, the lower standard deviation extends below 

the x-axis. Nitrogen fertilizer and net topsoil loss are the sources with the highest 

emergy means, and the largest variance. 
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Figure 5b: Emergy signature of the sources to the original crop systems with 

output. Showing the same information on emergy sources as in Figure 5a but within 

the context of the output emergy. The variance of the sources pales in comparison to 

the variance of the emergy output.  

Monte Carlo simulations 

Model 1: Energy/mass + UEV variance 

Comparison of emergy signature of the original and three simulated systems 

from Model 1 showed, at first glance, that each PDF assumption gave values similar 

to the original energy/mass (Figure 6a). However, there were small differences 

among the PDFs for a few of the emergy sources and the output (Figure 6a).  
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The variability predicted by each Monte Carlo simulation for the emergy 

output was much smaller than the original systems (Table 6a). Likely, this inability of 

the Monte Carlo simulations to replicate the total variability observed in the original 

eight systems is due to the lack of ability to model the scenario uncertainty. The 

Monte Carlo has no provisions for simulating the collinearity among the sources. 

That is, some sources will be highly correlated in real systems, like nitrogen 

fertilization rates and Evapotranspiration, but that correlation is ignored in the 

simulations. For example, nitrogen fertilization and Evapotranspiration rates are 

independently and randomly selected from their own PDFs. In the original systems, 

knowing the Evapotranspiration rate, and thus the approximate climatic conditions, 

would dictate how much nitrogen the farmer would add. 

Thus, Model 1 is appropriate understanding parameter uncertainty, but can tell 

us little about scenario uncertainty. Only when the simulated results are compared to 

the original systems could we deduce something about scenario uncertainty.  
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Figure 6a: Crop system emergy signatures: Model 1. The original eight systems’ 

mean emergy values are shown and compared with Model 1 of the Monte Carlo 

simulations for each source and output. The Monte Carlo simulation results for 

Normal (MC Normal), Lognormal, and Uniform distributions are shown. The sources 

have been organized in order of increasing unit of emergy value. One standard 

deviation is shown.  

In general, the simulations that assumed lognormal PDFs generated values 

most similar to the original systems for each source (Figure 6a). In addition, the 

lognormal PDF assumption was able to duplicate the negative value of the lower 

standard deviations observed for labor, steel machinery, and pesticides in the original 

systems, which no other PDF could do. However, since emergy values are positive, 
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the ability of the lognormal PDF to replicate a negative value may not be significant. 

Graphically, we see that the uniform PDF often overestimated the emergy of sources 

and the output when compared to the original systems (Figure 6a).  Similarly, the 

normal PDF overestimated most of the largest emergy sources, but underestimated 

the output (Figure 6a).  

The following tables showed the actual mean and standard deviation values 

for each source and output’s energy/mass, UEV, and emergy generated in Monte 

Carlo using Model 1. Table 6a covered the normal distribution, Table 6b the 

lognormal distribution, and Table 6c the uniform distribution. These tables allowed 

for a quantitative assessment of the emergy signature graphs. 

Table 6a: Monte Carlo output of Model 1 assuming normally distributed source 

energy/mass and UEVs  

  Energy/mass 

(unit/ha/year) 

UEV 

(sej/unit/ha/year) 

Emergy 

(sej/ha/year) 

  Unit Mean Stddev Mean Stddev Mean Stddev 

Energy Sources   1E+06 1E+06     1E+12 1E+12 

Sunlight J 51,600,000 13,600,000 1 0 51.6 13.6 

Evapotranspiration J 45,300 18,000 25,900 6 1,170 466 

Fuel J 5,120 2,930 108,000 7,520 556 327 

Net topsoil loss J 18,800 10,300 118,000 9,370 2,200 1,200 

Electricity J 891 690 254,000 58,900 224 175 

Labor J 80 53 12,500,000 4,160,000 1,010 766 

  

Material Sources  1E+03 1E+03 1E+06 1E+06 1E+12 1E+12 

Seed g 110 64.8 863 436 85.6 61.8 

Steel machinery g 21.3 18.4 30,900 24,700 206 181 

Pesticides g 4.46 2.81 14,900 9,870 62.4 59.1 

P Fertilizer g 30.7 19.5 26,500 10,300 823 637 

N Fertilizer g 99.9 44.3 29,600 14,300 2,850 1,720 

  

Yield  1E+06 1E+06 1E+03 1E+03 1E+12 1E+12 
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Grain J 59,200* 0 118 53.0 6,990 3,140 

*The energy arithmetic mean of the original eight systems’ yield 

The normally distributed Monte Carlo simulation of Model 1 showed that 

nitrogen fertilizer had the highest emergy value (2.85E15 sej/ha/y) and standard 

deviation (1.72E15sej/ha/y), while net topsoil loss had the second largest emergy 

value (2.20E15sej/ha/y) and standard deviation (1.20*10^15sej/ha/y) (Table 6a). 

While this ranking of these top two sources was similar to the original systems, the 

ranking of their variability was flipped. While the ratio of net topsoil loss’s standard 

deviation to its mean was 1.1 in the original systems (Table 5a), in Model 1 with the 

normal PDF assumption, the ratio was cut in half to 0.55 (Table 6a). In contrast the 

same ratio for the nitrogen fertilization source rose from 0.32 in the original system to 

0.60 in the simulation. Thus, Model 1 altered the relative sources of variability from 

the original systems, but it is not clear how that happened.  

 

 

 

 

 

 

 

 

 

 

 

 



 

 58 

 

 

Table 6b: Monte Carlo output of Model 1 assuming lognormally distributed source 

energy/mass and UEVs 

  Energy/mass 

(unit/ha/year) 

UEV 

(sej/unit/ha/year) 

Emergy 

(sej/ha/year) 

  Unit Mean Stddev Mean Stddev Mean Stddev 

Energy Sources   1E+06 1E+06     1E+12 1E+12 

Sunlight J 46,800,000 12,100,000 1 0 46.8 12.1 

Evapotranspiration J 44,000 20,100 25,900 6 1,140 521 

Fuel J 3,400 2,460 107,000 8,090 368 275 

Net topsoil loss J 10,500 13,700 119,000 9,720 1,250 1,750 

Electricity J 631 624 256,000 45,100 161 157 

Labor J 33 61 12,400,000 4,600,000 394 620 

  

Material Sources  1E+03 1E+03 1E+06 1E+06 1E+12 1E+12 

Seed g 63.7 67.4 608 526 36.7 56.8 

Steel machinery g 3.31 5.54 8,580 3,530 206 49.8 

Pesticides g 2.62 2.21 13,500 13,600 33.8 53.8 

P Fertilizer g 25.3 24.2 26,100 9,250 641 633 

N Fertilizer g 84.1 47.6 25,300 12,600 2,120 1,510 

  

Yield  1E+06 1E+06 1E+03 1E+03 1E+12 1E+12 

Grain J 41,500* 0 159 86.0 6,620 3,570 

*The energy geometric mean of the original eight systems’ output   

The lognormally distributed Monte Carlo generated systems showed that nitrogen fertilizer 

had the highest mean emergy value (2.12E15sej/ha/y) and second largest standard deviation 

(1.51E15sej/ha/y) while net topsoil loss had the second largest emergy value (1.25E15sej/ha/y) and 

the largest standard deviation (1.75E15sej/ha/y) (Table 6b). These rankings were identical to Model 

1 above when normality was assumed.  
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Table 6c: Monte Carlo output of Model 1 assuming uniformly distributed source 

energy/mass and UEVs 

  Energy/mass 

(unit/ha/year) 

UEV 

(sej/unit/ha/year) 

Emergy 

(sej/ha/year) 

  Unit Mean Stddev Mean Stddev Mean Stddev 

Energy Sources   1E+06 1E+06     1E+12 1E+12 

Sunlight J 52,900,000 9,590,000 1 0 52.9 9.59 

Evapotranspiration J 43,400 10,900 25,900 3 1,120 282 

Fuel J 6,000 3,730 102,000 4,510 611 377 

Net topsoil loss J 20,300 12,200 114,000 5,270 2,320 1,420 

Electricity J 1,110 574 244,000 27,400 271 146 

Labor J 119 72 13,800,000 3,460,000 1,650 1,120 

  

Material Sources  1E+03 1E+03 1E+06 1E+06 1E+12 1E+12 

Seed g 86.8 42.9 569 329 49.7 40.7 

Steel machinery g 7.12 3.73 8,260 1,840 206 34.6 

Pesticides g 7.08 2.67 14,500 7,060 98.9 62.4 

P Fertilizer g 45.8 21.8 22,500 8,460 1,030 652 

N Fertilizer g 113 34.1 23,700 10,900 2,680 1,510 

  

Yield  1E+06 1E+06 1E+03 1E+03 1E+12 1E+12 

Grain J 65,200* 0 154 39.1 10,000 2,550 

* The energy arithmetic mean found using the minimum and maximum of the original eight 

systems’ output 

 

The uniformly distributed Monte Carlo generated systems showed that 

nitrogen fertilizer had the highest emergy value (2.68E15sej/ha/y) and standard 

deviation (1.51E15sej/ha/y), while net topsoil loss had the second largest emergy 

value (2.32E15sej/ha/y) and std deviation (1.42E15sej/ha/y) (Table 6c). These 

rankings for the means were the same as the normal and lognormal assumptions for 

Model 1, but the standard deviation ranking was reversed. The mean emergy of the 
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yield (10.0E15 sej/ha/y) for the uniform assumption was larger than for the normal 

and lognormal. 

All three PDF assumptions for Model 1 and the original systems showed that 

nitrogen fertilizer and net topsoil loss were the sources that contributed the most 

emergy to the yield and had the largest variances (Tables 5a, 6a, 6b, and 6c).  

The normally and uniformly distributed Monte Carlo simulations of Model 1 

both showed that nitrogen fertilizer and net topsoil loss as having comparable 

standard deviations (Tables 6a and 6c), while the original systems and the 

lognormally distributed Monte Carlo systems had net topsoil loss as having a larger 

standard deviation than nitrogen fertilizer(Tables 5a and 6b).  

Model 2: UEV only variance 

In Model 2 we assumed zero variance for all the energy sources in order to 

isolate parameter uncertainty to UEV variability solely. An emergy signature was 

created to compare the three distributions used in the Model 2 Monte Carlo 

simulation to the original systems described earlier (Figure 5b). Like Model 1, in 

general, Model 2 often produced mean values similar to the original data (Figure 6b) 

with a few exceptions. Namely, the mean emergy of top soil loss, labor, phosphorus 

and nitrogen often differed from the original data, upon visual inspection.  
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Figure 6b: Crop system emergy signature: Model 2. The original eight systems’ 

mean emergy values are shown and compared with Model 2 of the Monte Carlo 

simulations for each source and output. The Monte Carlo simulation results for 

Normal (MC Normal), Lognormal, and Uniform distributions are shown. The 

variance of each source and output except for nitrogen fertilizer has obviously 

decreased from Model 1 in Figure 6a. This is somewhat expected since some 

uncertainty has been removed from the model. 

Since the variance of the energy/mass input had been eliminated in Model 2, 

the standard deviations of each source’s emergy contributions were smaller than in 

Model 1 and due completely to variance in the UEV.  
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In general the normal and lognormal PDF assumptions for Model 2 generated 

mean emergy values most similar to the original systems for each source (Figure 6b). 

The uniform distribution, on the other hand, often had larger values than the original 

systems (Figure 6b). Every distribution showed nitrogen fertilizer as the source with 

the highest mean emergy input and the largest variance.  

Similar to Model 1, the output for Model 2 had a much smaller standard 

deviation than the original systems. Also like Model 1, Model 2 did not represent any 

multicollinearity among the sources indicating that it could not represent scenario 

uncertainty. Nor did Model 2 have any uncertainty due to energy sources. Thus, 

Model 2 represented the fraction of uncertainty due solely to UEV uncertainty. 

The following tables show the mean and standard deviation values simulated 

in Model 2 for each source UEV and emergy. Table 7a covered the normal 

distribution, while Table 7b covered the lognormal distribution, and Table 7c covered 

the uniform distribution. These tables allowed for a quantitative assessment of the 

emergy signature graphs. 
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Table 7a: Monte Carlo output of Model 2 assuming normally distributed source UEVs 

  Energy/mass 

(unit/ha/year) 

UEV 

(sej/unit/ha/year) 

Emergy 

(sej/ha/year) 

  Unit Mean Stddev Mean Stddev Mean Stddev 

Energy Sources   1E+06      1E+12 1E+09 

Sunlight J 53,800,000* 0 1 0 53.8 0 

Evapotranspiration J 43,100* 0 25,900 6 1,120 243 

Fuel J 4,290* 0 108,000 7,470 463 32,100 

Net topsoil loss J 13,800* 0 120,000 10,500 1,650 145,000 

Electricity J 785* 0 257,000 47,500 202 37,300 

Labor J 38* 0 12,900,000 5,260,000 488 199,000 

  

Material Sources  1E+03   1E+06 1E+06 1E+12 1E+12 

Seed g 84.2* 0 841 456 70.8 38.4 

Steel machinery g 3.95* 0 8,320 3,330 206 13.2 

Pesticides g 3.56* 0 15,200 8,900 54.1 31.7 

P Fertilizer g 25.7* 0 26,000 10,600 669 273 

N Fertilizer g 105* 0 31,900 15,100 3,350 1,580 

  

Yield  1E+06  1E+03 1E+03 1E+12 1E+12 

Grain J 59,200* 0 129 25.5 7,630 1,510 

* The energy arithmetic mean of the respective source and yield of the original eight systems 

 

The normally distributed Monte Carlo simulation of Model 2 showed that nitrogen 

fertilizer had the highest emergy value (3.35E15 sej/ha/y) and standard deviation (1.58E15 

sej/ha/y), while net topsoil loss had the second largest emergy value (1.65E15 sej/ha/y) and the 

third largest standard deviation (1.45E14 sej/ha/y) (Table 7a). 
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Table 7b: Monte Carlo output of Model 2 assuming lognormally distributed source UEVs 

  Energy/mass 

(unit/ha/year) 

UEV 

(sej/unit/ha/year) 

Emergy 

(sej/ha/year) 

  Unit Mean Stddev Mean Stddev Mean Stddev 

Energy Sources   1E+06      1E+12 1E+09 

Sunlight J 52,500,000* 0 1 0 52.5 0 

Evapotranspiration J 40,200* 0 25,900 6 1,040 247 

Fuel J 1,700* 0 107,000 8,120 182 13,800 

Net topsoil loss J 7,160* 0 121,000 9,090 864 65,100 

Electricity J 157* 0 250,000 47,800 39.3 7,500 

Labor J 9* 0 13,600,000 5,700,000 118 49,700 

  

Material Sources  1E+03   1E+06 1E+06 1E+12 1E+12 

Seed g 54.8* 0 782 611 42.8 33.5 

Steel machinery g 2.28* 0 8,940 3,430 206 7.82 

Pesticides g 2.58* 0 11,700 10,600 30.1 27.3 

P Fertilizer g 19.6* 0 25,900 10,500 508 205 

N Fertilizer g 95.5* 0 28,000 15,500 2,670 1,480 

  

Yield  1E+06  1E+03 1E+03 1E+12 1E+12 

Grain J 41,500* 0 133  33.6  5,510 1,390 

*The energy geometric mean of each respective source and yield for the original eight 

systems  

 

The lognormally distributed Monte Carlo generated systems showed that nitrogen fertilizer 

had the highest mean emergy value (2.67E15 sej/ha/y) and the largest standard deviation (1.48E15 

sej/ha/y) while net topsoil loss has the third largest emergy value (8.64E14 sej/ha/y) and the third 

largest standard deviation (6.51E13 sej/J) (Table 7b). 
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Table 7c: Monte Carlo output of Model 2 assuming uniformly distributed source UEVs 

  Energy/mass 

(unit/ha/year) 

UEV 

(sej/unit/ha/year) 

Emergy 

(sej/ha/year) 

  Unit Mean Stddev Mean Stddev Mean Stddev 

Energy Sources   1E+06      1E+12 1E+09 

Sunlight J 53,100,000* 0 1 0 53.1 0 

Evapotranspiration J 42,500* 0 25,900 2.84 1,100 121 

Fuel J 6,320* 0 102,000 4,850 644 30,700 

Net topsoil loss J 21,600* 0 115,000 5,600 2,480 121,000 

Electricity J 1,000* 0 244,000 27,400 245 27,500 

Labor J 128* 0 13,200,000 3,980,000 1,700 511,000 

  

Material Sources  1E+03   1E+06 1E+06 1E+12 1E+12 

Seed g 93.1* 0 547 347 51.0 32.3 

Steel machinery g 7.30* 0 8,250 1,720 206 12.5 

Pesticides g 6.24* 0 13,100 6,480 81.6 40.5 

P Fertilizer g 46.5* 0 22,200 8,470 1,030 394 

N Fertilizer g 113* 0 24,600 8,680 2,780 981 

  

Yield  1E+06  1E+03 1E+03 1E+12 1E+12 

Grain J 65,200* 0 156 18.8 10,100 1,230 

* The energy arithmetic mean found using the minimum and maximum of the respective 

source and yield of the original eight systems 

 

The uniformly distributed Monte Carlo generated systems showed that 

nitrogen fertilizer had the highest emergy value (2.78E15 sej/ha/y) and standard 

deviation (9.81E14 sej/ha/y), while net topsoil loss had the second largest emergy 

value (2.48E15 sej/ha/y) and the fourth largest standard deviation (1.21E14 sej/ha/y) 

(Table 7c). 

All three PDFs and the original systems showed that nitrogen fertilizer was 

the source that contributed the most emergy to the total emergy and had the largest 

variability (Tables 5a, 7a, 7b, and 7c). Net topsoil loss was another source with large 

emergy and variance contributions to the output. Model 2, without the variance 
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associated with energy and mass inputs, had sources that contributed more emergy 

with larger variances than Model 1 (Tables 7a, 7b, and 7c) 

The energy/mass values in normal PDF Model 2 were chosen to be the 

arithmetic mean of the original systems with no standard deviation. Judging by the 

large differences in energy/mass means between the Models (Tables 6a and 7a), this 

approach may not have been appropriate for a few sources. Steel machinery’s and 

labor’s mean values, in particular, shifted the most when the variance of the 

energy/mass inputs was removed from the model, and both were lower than the mean 

values of Model 1.  

When variance of the energy/mass input was removed and only UEV 

uncertainty remained (Model 2), the emergy variance was lowered in every source for 

the normal distribution (compare Tables 6a and 7a). Nitrogen fertilizer was 

interesting because its emergy variance value was lowered the least (by ~8%) (Tables 

6a and 7a), indicating that more of its uncertainty was generated from its UEV than 

its energy/mass input. Focusing on the yield UEV, the removal of energy/mass 

variance lowered the yield UEV variance by ~52% (Tables 6a and 7a), indicating that 

more than half of the uncertainty for crop production came from the sources’ 

energy/mass inputs rather than the UEV inputs. 

The energy/mass values were chosen in lognormal distribution Model 2 to be 

the geometric mean of the original systems (Tables 6b and 7b). There were larger 

differences in means of the inputs between Models 1 and 2 for the lognormal 

distribution than there were for the normal distribution. Electricity and labor’s mean 

inputs in particular shifted the most, and both were lower in Model 2 than in Model 1. 
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Steel machinery had a much lower change in UEV variance between models in the 

lognormal distribution when compared to the normal distribution (comparing Tables 

6a and 7a to 6b and 7b).  

In removing energy/mass input variance, the variance of the emergy output is 

lowered in every source in the lognormal distribution (Tables 6b and 7b) as was the 

case in the normal distribution. Nitrogen fertilizer is interesting in that its variance 

was lowered the least. The output UEV variance changed by ~61% between models, 

supporting the previous conclusion that more than half of the uncertainty for crop 

production comes from the energy/mass input rather than the UEV inputs. 

The energy/mass values were chosen in uniform distribution Model 2 to be the 

arithmetic mean of the maximum and minimum of the original systems (Tables 6c 

and 7c). There were smaller differences in energy/mass, UEV, and emergy means 

between the Models for the uniform distribution compared to the normal and 

lognormal distributions. This suggested that the uniform distribution’s mean values 

were less dependent on the amount of uncertainty in the model when compared to the 

normal and lognormal distributions. While the normal and lognormal distributions 

had prominent shifts of the energy/mass means to the left on the number line, the 

uniform distribution shows energy/mass means scattered larger and smaller than their 

Model 1 counterparts.  

In removing energy/mass variance, the emergy variance was lowered in every 

source in the uniform distribution (Tables 6c and 7c) as in the normal and lognormal 

distributions, but much more evenly. Nitrogen fertilizer variance was the least 

lowered in both of the other distributions, but with a uniform distribution, seed’s 
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emergy variance was the least lowered and nitrogen fertilizer was the second least 

lowered. The yield UEV variance changed between models.  

Model Comparison 

 The model comparisons made below were all based on the normal PDF 

assumption for the Monte Carlo inputs. This section outlines the percent contribution 

of each source’s energy/mass and UEV component to the uncertainty of the emergy 

yield when considering the normal distribution of inputs. The larger percentages of 

uncertainty are contributed by the sources that most likely influence yield UEV 

variance, shown in this section by the confidence intervals produced by removing 

specific uncertainties. 

 Energy/mass + UEV variance model results showed the crop yield UEV as 

having a coefficient of variance of 45%. This was found by dividing the yield UEV 

standard deviation by its mean. The COV was a measure of total system uncertainty 

relative to the mean yield UEV. The crop yield emergy had the same COV of 45% 

because the yield UEV was a multiple of the yield emergy. The yield UEV COV of 

45% was partitioned among each source’s energy/mass variance and UEV variance 

(Table 8a). Of the 45%, 25% was from energy/mass variance and 20% was from 

UEV variance.  

Of all the sources of uncertainty, nitrogen fertilizer UEV variance was the 

largest (19%), followed by net topsoil loss energy (11%), nitrogen fertilizer mass 

(4%), and labor energy (5%). Out of 22 inputs (11 energy/mass inputs and 11 UEV 

inputs), 4 inputs contributed more than 86% of the uncertainty of the yield UEV. 

These 4 inputs were net topsoil loss energy, labor energy, nitrogen fertilizer UEV and 



 

 69 

 

nitrogen fertilizer mass data. As for uncertainty due to UEV variance, only two 

sources (labor and phosphorus fertilizer) other than nitrogen fertilizer contributed 

more than 0.5% (Table 8a). More often, the uncertainty associated with how much 

energy or mass was used in the system added more uncertainty than the UEV.  

Table 8a: The source partition of the emergy yield uncertainty into the 

Energy/Mass Variance Model and the UEV Variance Model. Normal PDF 

was assumed.  

 

Energy/Mass 

and UEV 

Variance 

(Model 1) 

UEV 

Variance  

(Model 2) 

Energy/Mass 

Variance 

(Model 1 

minus Model 

2) 

Energy Sources 

Sunlight 0% 0% 0% 

Evapotranspiration 1.69% 0% 1.69% 

Fuel 0.83% 0.01% 0.82% 

Net topsoil loss 11.18% 0.16% 11.02% 

Electricity 0.24% 0.01% 0.23% 

Labor 4.56% 0.30% 4.26% 

Mass Sources 

Seed 0.03% 0.01% 0.02% 

Steel machinery 0.25% 0% 0.25% 

Pesticides 0.03% 0.01% 0.02% 

P Fertilizer 3.15% 0.56% 2.59% 

N Fertilizer 22.97% 18.74% 4.23% 

 

Coefficient of Variance of 

yield UEV 44.92% 19.79% 25.13% 

 

Confidence intervals (95%) around the original systems’ mean crop yield 

UEV were estimated to demonstrate the effect of removing some of the sources of 

uncertainty (Table 8b). The total parameter coefficient of variance of 45% was 

multiplied by 2 to obtain 90%. The partitioned variances (vari / varsum) for the i
th

 

source were then multiplied by 90% to obtain for each source the percentage of the 



 

 70 

 

mean that when added to and subtracted from the mean, resulted in the 95% 

confidence interval.  

When the nitrogen UEV variance was removed from the model, the 95% 

confidence interval was reduced dramatically to 4% of the mean (Table 8b). This was 

much smaller than energy/mass + UEV only variance model, the energy/mass 

variance only model, and the UEV variance only model with the nitrogen variance 

included.  

Table 8b: The 95% confidence interval of the yield UEV. The confidence intervals (+/- 2σ) 

are surrounding the yield UEV mean of the original systems. The original systems’ yield UEV 

variance represents the scenario and parameter uncertainty in crop production. This is compared 

to the Monte Carlo models where only parameter uncertainty is present. The Monte Carlo 

models are shown below: energy/mass + UEV variance, UEV only variance, UEV only 

variance minus the variance of the nitrogen fertilizer source, and energy/mass only variance. 

 

 

Lower 

95% 

Confidence 

Interval 

Mean Upper 95% 

Confidence 

Interval 

Range of 

CI  

 Range/mean  

Original Systems’ yield 

UEV 

-557,000 249,000 1,060,000 1,610,000 647% 

Energy/Mass and UEV 

only variance (M1) 25,300  249,000  473,000  447,000  180% 

UEV only variance (M2)           

150,000  

       

249,000         348,000  

          

197,000  79% 

UEV only variance 

minus nitrogen fertilizer 

        

244,000  

     

249,000         254,000  

          

10,500  4% 

Energy/mass only 

variance (M1-M2) 

          

124,000 

       

249,000         374,000  

          

250,000  101% 

 

The visual summary section below focused on comparing the models 

qualitatively by source.  

Visual summary of Monte Carlo simulations 

The following figures were created to visualize where uncertainty originates 

in emergy analyses and applied in the current case of crop production systems. These 

figures focused on uncertainty originating at a specific point in the tabular procedure- 
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when the source’s energy/mass and UEV inputs were multiplied together to form the 

source’s emergy. The Monte Carlo simulation results for each source (n = 11) and 

yield were graphed below (Figure 7a-7l) using 5 bins. One standard deviation was 

shown about the mean providing context between the graphs. Model 2 was shown 

below Model 1 for each distribution for direct comparison vertically, with the x-axis 

showing the same scale. The axes were different between the energy/mass, UEV, and 

emergy values, so a visual comparison between them was not directly applicable. 

However, since the axes were still present, it was possible to make comparisons 

taking the axes of energy/mass, UEV, and emergy into consideration. 

The objective of determining where uncertainty originates in emergy analyses 

was broken down into 2 parts for the analysis of this section:  

1) visualize the shift in the emergy column from Model 1 to Model 2 rows, and 

2) visualize the effect of the energy/mass PDF and the UEV PDF (columns 1 and 2) 

on the emergy PDF (column 3). This part also partially addressed the objective of 

determining the impact of the PDF on the yield UEV. 

The shift between Model 1 and Model 2 showed the impact of the 

energy/mass input on the source’s emergy variance. If there was a large shift, there 

was a large amount of energy/mass input variance. If there was a smaller shift, there 

was a smaller amount of energy/mass input variance, meaning the UEV input 

variance contributed significantly to the source’s emergy variance. The sensitivity 

analysis will quantitate this shift between models. For now, the distance between the 

dashed red lines qualitatively showed the shift between models. 



 

 72 

 

 To visualize the effects of the multiplied PDF types on the emergy PDF, only 

the Model 1 rows were examined. The Model 2 rows multiplied the UEV PDF by a 

constant, so that the resulting emergy PDF was the same UEV PDF. 
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Figure 7a: Monte Carlo simulation graphs for sunlight source. The rows show 

the graphs specific for each distribution  (Normal, Lognormal, and Uniform) and 

model (M1 and M2). The columns show on the x-axis the energy/mass, UEV, and 

emergy for each graph, while the y-axis is the frequency of occurance. The arithmetic 

mean is shown in a solid red line with one standard deviation shown as dashed red 

lines. 

All of the variance in the sunlight solar emergy source was from the 

energy/mass estimate (Figure 7a). Assumption of the PDF for sunlight affected the 

PDF of the solar emergy contributed by sunlight directly, since the UEV of sunlight is 

1 (Figure 7a). Assuming a normal PDF for the sunlight energy produced a bell-shaped 

PDF for the sunlight solar emergy. Assuming a lognormal PDF for the sunlight 

energy produced a lognormal PDF with a right-skewed tail (Figure 7a).  Assuming a 

uniform PDF for the sunlight source’s energy/mass produced a uniform PDF with a 

similar probability for each value (Figure 7a). Regardless of which type of PDF was 

assumed, all of the variance originated from the estimate of the sunlight energy rather 

than its UEV (Figure 7a).  
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Figure 7b: Monte Carlo simulation graphs for evapotranspiration source. The 

rows show the graphs specific for each distribution  (Normal, Lognormal, and 

Uniform) and model (M1 and M2). The columns show on the x-axis the energy/mass, 

UEV, and emergy for each graph, while the y-axis is the frequency of occurance. The 

arithmetic mean is shown in a solid red line with one standard deviation shown as 

dashed red lines. 

The majority of the variance in the evapotranspiration solar emergy source 

was from the energy/mass estimate, while only a small amount was from the UEV of 

evapotranspiration (Figure 7b). Assumption of the PDFs for evapotranspiration 

energy and UEV affected the PDF of the solar emergy contributed by 

evapotranspiration (Figure 7b). Assuming normal PDFs for both the 

evapotranspiration energy and UEV produced a bell-shaped PDF for the 

evapotranspiration solar emergy. Assuming a log-normal for both the 

evapotranspiration energy and UEV produced a PDF that more closely resembled a 

log-normal distribution with its right-skewed tail (Figure 7b).  Assuming uniform 

PDFs for both evapotranspiration energy and UEV produced a PDF resembling a 

uniform distribution (Figure 7b). Regardless of which type of PDF was assumed, 

most of the variance originated from the estimate of the evapotranspiration energy 

rather than its UEV (Figure 7b). 
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Figure 7c: Monte Carlo simulation graphs for fuel source. The rows show the 

graphs specific for each distribution  (Normal, Lognormal, and Uniform) and model 

(M1 and M2). The columns show on the x-axis the energy/mass, UEV, and emergy 

for each graph, while the y-axis is the frequency of occurance. The arithmetic mean 

is shown in a solid red line with one standard deviation shown as dashed red lines. 

The majority of the variance in the fuel solar emergy source was from the 

energy/mass estimate, while only a small amount was from the UEV of fuel. This is 

seen by the similarities between the energy and emergy graphs (Figure 7c). 

Assumption of the PDFs for fuel energy and UEV affected the PDF of the solar 

emergy contributed by fuel (Figure 7c). Assuming normal PDFs for both the fuel 

energy and UEV produced a bell-shaped PDF for the fuel solar emergy. Assuming a 

log-normal for both the fuel energy and UEV produced a PDF that more closely 

resembled a log-normal distribution with its right-skewed tail (Figure 7c).  Assuming 

uniform PDFs for both fuel energy and UEV produced a PDF resembling a uniform 

distribution (Figure 7c). Regardless of which type of PDF was assumed, most of the 

variance originated from the estimate of the fuel energy rather than its UEV (Figure 

7c).  
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Figure 7d: Monte Carlo simulation graphs for net topsoil loss source. The rows 

show the graphs specific for each distribution  (Normal, Lognormal, and Uniform) 

and model (M1 and M2). The columns show on the x-axis the energy/mass, UEV, 

and emergy for each graph, while the y-axis is the frequency of occurance. The 

arithmetic mean is shown in a solid red line with one standard deviation shown as 

dashed red lines. 

The majority of the variance in the net topsoil loss solar emergy source was 

from the energy/mass estimate, while only a small amount was from the UEV of net 

topsoil loss. This is seen by the similarities between the energy and emergy graphs 

(Figure 7d), as well as the much lower variance of the emergy graphs in the Model 2 

rows compared to the Model 1 rows. Assumption of the PDFs for net topsoil loss 

energy and UEV affected the PDF of the solar emergy contributed by net topsoil loss 

(Figure 7d). Assuming normal PDFs for both the net topsoil loss energy and UEV 

produced a bell-shaped PDF for the net topsoil loss solar emergy. Assuming a log-

normal for both the net topsoil loss energy and UEV produced a PDF that more 

closely resembled a log-normal distribution with its right-skewed tail (Figure 7d).  

Assuming uniform PDFs for both net topsoil loss energy and UEV produced a PDF 

resembling a uniform distribution (Figure 7d). Regardless of which type of PDF was 

assumed, most of the variance originated from the estimate of the net topsoil loss 

energy rather than its UEV (Figure 7d).  
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Figure 7e: Monte Carlo simulation graphs for electricity source. The rows show 

the graphs specific for each distribution  (Normal, Lognormal, and Uniform) and 

model (M1 and M2). The columns show on the x-axis the energy/mass, UEV, and 

emergy for each graph, while the y-axis is the frequency of occurance. The arithmetic 

mean is shown in a solid red line with one standard deviation shown as dashed red 

lines. 

The majority of the variance in the electricity solar emergy source was from 

the energy/mass estimate, while a smaller amount was from the UEV of electricity. 

The variance of the electricity is larger than the other sources studied so far, and 

seems to affect the shape of the emergy curve (Figure 7e). Assumption of the PDFs 

for electricity energy and UEV affected the PDF of the solar emergy contributed by 

electricity (Figure 7e). Assuming normal PDFs for both the electricity energy and 

UEV produced a bell-shaped PDF for the electricity solar emergy. Assuming a log-

normal for both the electricity energy and UEV produced a PDF that more closely 

resembled a log-normal distribution with its right-skewed tail (Figure 7e).  Assuming 

uniform PDFs for both electricity energy and UEV produced a PDF resembling a 

uniform distribution (Figure 7e).  
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Figure 7f: Monte Carlo simulation graphs for labor source. The rows show the 

graphs specific for each distribution  (Normal, Lognormal, and Uniform) and model 

(M1 and M2). The columns show on the x-axis the energy/mass, UEV, and emergy 

for each graph, while the y-axis is the frequency of occurance. The arithmetic mean 

is shown in a solid red line with one standard deviation shown as dashed red lines. 

The majority of the variance in the labor solar emergy source was from the 

energy/mass estimate, while a smaller amount was from the UEV of labor (Figure 7f). 

Assumption of the PDFs for labor energy and UEV affected the PDF of the solar 

emergy contributed by labor (Figure 7f). Assuming normal PDFs for both the labor 

energy and UEV produced a skewed bell-shaped PDF for the labor solar emergy. The 

standard deviation of the original systems for labor was large, meaning that some 

values produced by the model were negative. These values were discarded, making a 

smaller left tail and skewed curve shape for the normal PDF. Assuming a log-normal 

for both the labor energy and UEV produced a PDF that more closely resembled a 

log-normal distribution with its right-skewed tail (Figure 7f).  Assuming uniform 

PDFs for both labor energy and UEV produced a PDF resembling a uniform 

distribution (Figure 7f). The uniform PDF shows less of energy/mass parameter 

variance than the other two distributions (Figure 7f).  
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Figure 7g: Monte Carlo simulation graphs for seed source. The rows show the 

graphs specific for each distribution  (Normal, Lognormal, and Uniform) and model 

(M1 and M2). The columns show on the x-axis the mass, UEV, and emergy for each 

graph, while the y-axis is the frequency of occurance. The arithmetic mean is shown 

in a solid red line with one standard deviation shown as dashed red lines. 

The variance in the seed solar emergy source was split somewhat evenly 

between the mass estimate and the UEV of seed (Figure 7g). When energy/mass 

variance is removed from the system (moving from Model 1 to Model 2), the distance 

of the red lines in the emergy graphs shorten slightly (Figure 7g). For sources such as 

evapotranspiration, the change from Model 1 to Model 2 in the emergy column has 

greatly decreased the distance of the red lines (Figure 7b).This implies that the energy 

variance is much more significant for evapotranspiration than seed. Assumption of 

the PDFs for seed mass and UEV affected the PDF of the solar emergy contributed by 

seed (Figure 7g). Assuming normal PDFs for both the seed mass and UEV produced 

a bell-shaped PDF for the seed solar emergy. Assuming a log-normal for both the 

seed mass and UEV produced a PDF that more closely resembled a log-normal 

distribution with its right-skewed tail (Figure 7g).  Assuming uniform PDFs for both 

seed mass and UEV produced a PDF resembling a uniform distribution (Figure 7g).  
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Figure 7h: Monte Carlo simulation graphs for steel machinery source. The rows 

show the graphs specific for each distribution  (Normal, Lognormal, and Uniform) 

and model (M1 and M2). The columns show on the x-axis the mass, UEV, and 

emergy for each graph, while the y-axis is the frequency of occurance. The arithmetic 

mean is shown in a solid red line with one standard deviation shown as dashed red 

lines. 

The majority of the variance in the steel machinery solar emergy source was 

from the mass estimate, while a smaller amount was from the UEV of steel 

machinery (Figure 7h). Assumption of the PDFs for steel machinery energy and UEV 

affected the PDF of the solar emergy contributed by steel machinery (Figure 7h). 

Assuming normal PDFs for both the steel machinery mass and UEV produced a PDF 

for the steel machinery solar emergy that was not quite bell shaped due to the need to 

take out negative values from the model. Assuming a log-normal for both the steel 

machinery mass and UEV produced a PDF that more closely resembled a log-normal 

distribution with its right-skewed tail (Figure 7h).  Assuming uniform PDFs for both 

steel machinery mass and UEV produced a PDF resembling a uniform distribution 

(Figure 7h). The normal PDF shows most of the variance originating from the 

estimate of the steel machinery mass rather than its UEV (Figure 7h). The lognormal 
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and uniform PDFs were also affected by the removal of the energy/mass variance, but 

to a lesser extent.   
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Figure 7i: Monte Carlo simulation graphs for pesticides source. The rows show 

the graphs specific for each distribution  (Normal, Lognormal, and Uniform) and 

model (M1 and M2). The columns show on the x-axis the mass, UEV, and emergy 

for each graph, while the y-axis is the frequency of occurance. The arithmetic mean 

is shown in a solid red line with one standard deviation shown as dashed red lines. 

The variance in the pesticides solar emergy source was split somewhat evenly 

between the mass estimate and the UEV of pesticides (Figure 7i). When energy 

variance is removed from the system (moving from Model 1 to Model 2), the distance 

of the red lines in the emergy graphs shorten slightly (Figure 7i). For sources such as 

evapotranspiration, the change from Model 1 to Model 2 in the emergy column has 

greatly decreased the distance of the red lines (Figure 7b). This implies that the 

energy/mass variance is much more significant for evapotranspiration than pesticides. 

Assumption of the PDFs for pesticides mass and UEV affected the PDF of the solar 

emergy contributed by pesticides (Figure 7i). Assuming normal PDFs for both the 

pesticides mass and UEV produced a skewed bell-shaped PDF for the pesticides solar 



 

 91 

 

emergy. The standard deviation of the original systems for pesticides was large, 

meaning that some values produced by the model were negative. These values were 

discarded, making a skewed curve shape for the normal PDF. Assuming a log-normal 

for both the pesticides mass and UEV produced a PDF that more closely resembled a 

log-normal distribution with its right-skewed tail (Figure 7i).  Assuming uniform 

PDFs for both pesticides mass and UEV produced a PDF resembling a uniform 

distribution (Figure 7i).  
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Figure 7j: Monte Carlo simulation graphs for phosphate fertilizer source. The 

rows show the graphs specific for each distribution  (Normal, Lognormal, and 

Uniform) and model (M1 and M2). The columns show on the x-axis the mass, UEV, 

and emergy for each graph, while the y-axis is the frequency of occurance. The 

arithmetic mean is shown in a solid red line with one standard deviation shown as 

dashed red lines. 

A smaller amount of the variance in the phosphate fertilizer solar emergy 

source was from the mass estimate. The UEV variance of phosphate fertilizer was a 

major component of uncertainty in solar emergy of the phosphate fertilizer source 

(Figure 7j). Assumption of the PDFs for phosphate fertilizer mass and UEV affected 

the PDF of the solar emergy contributed by phosphate fertilizer (Figure 7j). Assuming 
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normal PDFs for both the phosphate fertilizer mass and UEV produced a bell-shaped 

PDF for the phosphate fertilizer solar emergy. Assuming a log-normal for both the 

phosphate fertilizer mass and UEV produced a PDF that more closely resembled a 

log-normal distribution with its right-skewed tail (Figure 7j).  Assuming uniform 

PDFs for both the phosphate fertilizer mass and UEV produced a PDF resembling a 

uniform distribution (Figure 7j).  
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Figure 7k: Monte Carlo simulation graphs for nitrogen fertilizer source. The 

rows show the graphs specific for each distribution  (Normal, Lognormal, and 

Uniform) and model (M1 and M2). The columns show on the x-axis the mass, UEV, 

and emergy for each graph, while the y-axis is the frequency of occurance. The 

arithmetic mean is shown in a solid red line with one standard deviation shown as 

dashed red lines. 

The majority of the variance in the nitrogen fertilizer solar emergy source was 

from the UEV input (Figure 7k). There was barely any change in the distance 

between the red lines in the emergy graphs when energy/mass variance was removed 

from the system (moving from Model 1 to Model 2) (Figure 7k). For sources such as 

evapotranspiration, the change from Model 1 to Model 2 in the emergy column had 

greatly decreased the distance of the red lines (Figure 7b). This implies that the 

energy variance is much more significant for evapotranspiration than nitrogen 

fertilizer. Assumption of the PDFs for nitrogen fertilizer mass and UEV affected the 

PDF of the solar emergy contributed by nitrogen fertilizer (Figure 7k). Assuming 

normal PDFs for both the nitrogen fertilizer mass and its UEV produced a bell-shaped 

PDF for the nitrogen fertilizer solar emergy. Assuming a log-normal for both the 

nitrogen fertilizer mass and UEV produced a PDF that more closely resembled a log-

normal distribution with a right-skewed tail (Figure 7k).  Assuming uniform PDFs for 
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both nitrogen fertilizer mass and UEV produced a PDF that ended up resembling a 

lognormal PDF (Figure 7k). The Model 1 graphs of both the normal and uniform 

PDFs showed a slight lognormal tendency. 
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Figure 7l: Monte Carlo simulation graphs for the output. The rows show the 

graphs specific for each distribution  (Normal, Lognormal, and Uniform) and model 

(M1 and M2). The columns show on the x-axis the energy, UEV, and emergy for 

each graph, while the y-axis is the frequency of occurance. The arithmetic mean is 

shown in a solid red line with one standard deviation shown as dashed red lines. 

The variance in the output emergy was split somewhat evenly between the 

energy input energy estimate and the UEV of Seed (Figure 7l). There was some 

change in the distance between the red lines in the emergy graphs when energy/mass 

variance was removed from the system (moving from Model 1 to Model 2) (Figure 

7l). The shift was not as extreme as in the cases of sunlight and evapotranspiration, 

implying that the energy variance is much more significant for sunlight and 

evapotranspiration than the output. Assumption of the PDFs for the energy and UEV 

affected the PDF of the solar emergy of the output (Figure 7l). Assuming normal 

PDFs for both the energy and UEV produced a bell-shaped PDF. Assuming a log-

normal PDF for both the energy and UEV produced a PDF that resembled a log-

normal distribution with a right-skewed tail (Figure 7l).  Assuming a uniform PDF for 

the input energy and UEV produced a PDF resembling a uniform distribution (Figure 

7l).  
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 In summary, there were seven sources with a large energy/mass variance. 

These sources were sunlight, evapotranspiration, fuel, net topsoil loss, electricity, 

labor, and steel machinery. Energy/mass variance for the seeds, pesticides, phosphate 

and nitrogen fertilizer sources and the output seem to be less of a major influence on 

their emergy variance than the afore-mentioned sources. The emergy variance for 

nitrogen fertilizer in particular barely changed as energy/mass variance was removed 

from the model. This implies that nitrogen fertilizer had a UEV variance that 

contributed the majority of the variance to the emergy variance.  

For the most part, the PDFs assigned to the inputs matched the PDF of the 

resulting emergy output. However, some inputs with a normal or uniform PDF 

produced a lognormal PDF for the emergy output.  

Objectives 1 and 3 have been qualified in this section visually. In the previous 

Monte Carlo simulations’ model comparison section, the normal distribution was 

used to quantify the effect of specific sources on output UEV variance. Now we move 

on to quantify by each PDF for each source the energy/mass and UEV inputs’ impact 

on the variance of the output UEV. 

Sensitivity analysis 

Sensitivity analyses were conducted to determine which energy/mass and 

UEVs influenced the mean value of the yield UEV and its variance and by how much. 

Each probability distribution was tested in the sensitivity analysis to also determine 

the impact of the source’s PDF on the yield UEV variance.  

The first sensitivity analysis involved sequentially removing the variance of 

each source’s energy/mass and UEV inputs in the energy/mass and UEV variance 
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model, while the second analysis removed the UEV variance of each source 

sequentially. The sensitivity of yield UEV to the variance of each source was 

determined by comparing to baseline conditions. 

The yield UEV’s and their standard deviations for the baseline and each run of 

the sensitivity analysis are given in Table 8a for the Energy/Mass and UEV Model, 

while the same type of energy/mass for the UEV Only Model is given in Table 9a. 

Tables 8b and 9b show the percent difference between the baseline and the Monte 

Carlo generated output for each system input. 

Model 1: Energy/mass and UEV variance 

 The mean UEV for crop yield was 120,000 sej/J with a standard deviation of 

53,000 sej/J when all the variance of all energy/mass and UEV inputs were included 

in the simulations and the normal PDF was assumed (Table 9a). When the variance of 

each input was removed, only three energy/mass inputs were found to affect the mean 

UEV of crops (ET, machinery and phosphorus), but two different energy/mass inputs 

(soil loss and nitrogen fertilizer) affected the uncertainty in the UEV (Table 9a). 

Removing the variance due to ET, machinery and phosphorus increased the yield 

UEV by about 15% to 140,000 sej/J (Table 9a and 9b). Removing the variance due to 

net topsoil loss and nitrogen fertilizer reduced the standard deviation of the corn by 

about 23% to 41,000 sej/J. The mean shifts for the normal distribution hint that 

variance was lowered by eliminating values from a specific tail, which may be an 

interesting path to pursue. It is assumed that the variance would be removed from the 

left tail as it extends to negative infinity, since emergy can’t be expressed negatively. 

This is confirmed by seeing a shift in the means to the right, as all new means have 
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larger values than the original output with generally smaller standard deviations. 

While the natural variance of five of the eleven sources was large enough to affect the 

uncertainty of the output UEV, the simulation also indicated that six of eleven had no 

affect because their natural variance was too small.  

 The mean UEV for crop yield was 160,000 sej/J with a standard deviation of 

86,000 sej/J when all the variance of all energy/mass and UEV inputs were included 

in the simulations and the lognormal PDF was assumed (Table 9a). When the 

variance of each input was removed, only two energy/mass inputs were found to 

affect the mean UEV of corn (ET, and nitrogen fertilizer), but seven different 

energy/mass inputs (sunlight, et, fuel, soil loss, steel machinery, pesticides, and 

nitrogen fertilizer) affected the uncertainty in the UEV (Table 9a). Removing the 

variance due to ET, and nitrogen fertilizer decreased the mean yield UEV by about 

18% to 130,000 sej/J and 41% to 94,000 respectively (Table 9a and 9b). As variance 

is lowered, the lognormal distribution would have fewer values come from the right 

tail as it extends to positive infinity, explaining the shift of the mean to the left on the 

x-axis. Removing the variance due to sunlight, Evapotranspiration, fuel, net topsoil 

loss, steel machinery, and pesticides reduced the standard deviation of the corn by 

about 30% to 60,000 sej/J. When the variance due to nitrogen fertilizer is removed, 

the standard deviation was reduced by 57% to 37,000. While the natural variance of 

seven of the eleven sources was large enough to affect the uncertainty of the output 

UEV, the simulation also indicated that 4 of 11 had no affect because their natural 

variance was too small. 
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 The mean UEV for crop yield was 170,000 sej/J with a standard deviation of 

43,000 sej/J when all the variance of all energy/mass and UEV inputs were included 

in the simulations and the uniform PDF was assumed (Table 9a). When the variance 

of each input was removed, three energy inputs were found to affect the mean UEV 

of corn (fuel, net topsoil loss, and labor), and four different energy inputs (soil loss, 

labor, pesticides, and nitrogen fertilizer) affected the uncertainty in the UEV (Table 

9a). Removing the variance due to fuel and labor decreased the mean output UEV by 

about 10% to 150,000 sej/J. When the variance due to net topsoil loss was removed, 

the mean output UEV was reduced by 21% to 130,000 (Table 9a and 9b). Removing 

the variance due to soil loss, labor, pesticides, and nitrogen fertilizer reduced the 

standard deviation of the corn by about 23% to 60,000 sej/J. While the natural 

variance of seven of the eleven sources was large enough to affect the uncertainty of 

the output UEV, the simulation also indicated that four of eleven had no affect 

because their natural variance was too small. 
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Table 9a: Model 1 sensitivity results. The mean and standard 

deviation for the generated output UEV when minimizing the variance 

of a source, and its significance in comparison to the baseline.
ǂ
 (Values 

are shown below multiplied by 1E3) 

  Normal  Lognormal Uniform 

Mean Stddev Mean Stddev Mean Stddev 

  

Baseline output 118 53.0 159 85.9 170 43 

  

Sunlight 118 53.0 127 55.1** 174 39.7 

Evapo-

transpiration 135* 57.9 131** 64.4** 170 42.9 

Fuel 127 48.9 147 61** 154** 41.4 

Net topsoil loss 125 41.2** 139 63.8** 134** 33.4** 

Electricity 126 47.6 164 78.9 170 42.3 

Labor 122 46.2 148 73.9 146** 34.1* 

  

Seed 127 47.9 159 75.2 166 42.5 

Steel 

machinery 137* 51.7 158 63.8** 182 43.3 

Pesticides 132 50.4 159 63.1** 167 34.3** 

P Fertilizer 135* 46.5 153 74.0 166 40.1 

N Fertilizer 125 40.9** 93.3** 37.3** 161 32.3** 

ǂ Specific p values are provided in Appendix iii 

*Significance of p<0.05 

**Significance of p<0.01 

 We can see from Table 9a that nitrogen fertilizer and net topsoil loss were the 

only sources that had a significant impact on the output UEV variance across the 

distributions (p<0.01). Table 9b was created to quantify the mean and variance shift 

from the baseline when a source’s energy and UEV variances were removed from 

Model 1.  
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Table 9b: Model 1 % difference of each output from the baseline. 
ǂ
 

  Normal  Lognormal Uniform 

Mean Stddev Mean Stddev Mean Stddev 

  

Baseline output 0 0 0 0 0 0 

  

Sunlight 0 0 -20.1 -35.9** 2.35 -7.67 

Evapo-transpiration 14.4* 9.25 -17.6** -25.0** 0 -0.233 

Fuel 7.63 -7.74 -7.55 -29.0** -9.41** -3.72 

Net topsoil loss 5.93 -22.3** -12.6 -25.7** -21.2** -22.3** 

Electricity 6.78 -10.2 3.14 -8.15 0 -1.63 

Labor 3.39 -12.8 -6.92 -14.1 -14.1** -20.7* 

  

Seed 7.63 -9.62 0 -12.5 -2.35 -1.16 

Steel machinery 16.1* -2.45 -0.629 -25.7** 7.06 0.698 

Pesticides 11.9 -4.91 0 -26.5** -1.76 -20.2* 

P Fertilizer 14.4* -12.3 -3.77 -13.9 -2.35 -6.74 

N Fertilizer 5.93 -22.8** -41.3** -56.6** -5.29 -24.9** 

ǂ Specific p values are provided in Appendix iii 

*Significance of p<0.05 

**Significance of p<0.01 

 The nitrogen fertilizer and net topsoil loss sources had the most consistent 

impact on the output UEV across the distributions. Minimizing the variance of the 

nitrogen fertilizer source lowered the variance of the output UEV by ~23% for the 

normal distribution, ~57% for the lognormal distribution, and ~25% for the uniform 

distribution (Table 9b). Minimizing the variance of the net topsoil loss source 

lowered the variance of the output UEV by ~22% for the normal distribution, ~26% 

for the lognormal distribution, and ~22% for the uniform distribution (Table 9b). 

 Seed and electricity were the only sources that did not have a significant effect 

on the mean or variance of the output UEV, for any distribution according to the 

sensitivity analysis. Phosphate fertilizer had the next weakest showing, only 



 

 105 

 

significantly changing the mean of the output UEV in the normal distribution (~14%, 

p<0.05).  

 Sunlight and evapotranspiration were expected to have no real impact on the 

output UEV. The original eight systems had minimal variance in the UEV of 

evapotranspiration, and no variance for the UEV of sunlight (by definition). However, 

minimizing these source’s variances produced a significant difference in the output 

UEV’s variance and means for certain distributions. The evapotranspiration source 

showed a significant mean shift in the output for the normal (~14%, p<0.03) and 

lognormal (~18%, p<0.01) distributions. The lognormal distribution also produced a 

significant change in the variance of the output UEV when the Evapotranspiration 

source was minimized in variance (~25%, p<0.01). There are large amounts of 

uncertainty in Model 1 for sunlight and Evapotranspiration with the energy values 

being able to fluctuate. These unexpected results for the sunlight and 

evapotranspiration sources are indicators that Model 1 may include too much 

uncertainty to allow for an accurate depiction of an source’s effect on the output. 

Model 2: UEV variance 

 The mean UEV for crop yield was 124,000 sej/J with a standard deviation of 

26,400 sej/J when all the variance from UEVs were included in the simulations and 

the normal PDF was assumed (Table 10a). When the variance of each UEV was 

removed, three sources were found to affect the mean UEV of crops (fuel, labor and 

machinery), while only machinery and nitrogen fertilizer affected the variance (Table 

10a). Removing the variance due to fuel, labor, and machinery increased the UEV by 

5 to 10% to 131,000-137,000 sej/J (Table 10a and 10b). Removing the variance due 
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to machinery and nitrogen fertilizer reduced the standard deviation of the crops by 

19% to 21,400 sej/J and 76% to 6,300 sej/J respectively. 

 The mean UEV for crop yield was 136,000 sej/J with a standard deviation of 

33,800 sej/J when all the variance from UEVs were included in the simulations and 

the lognormal PDF was assumed (Table 10a). When the variance of each UEV was 

removed, only the nitrogen fertilizer source was found to affect the mean UEV of 

crops and the variance (Table 10a). Removing the variance due to nitrogen fertilizer 

lowered the mean UEV by 11% to 115,000 sej/J (Table 10a and 10b) and lowered the 

standard deviation of the crops by 85% to 5,070 sej/J. 

 The mean UEV for crop yield was 154,000 sej/J with a standard deviation of 

20,300 sej/J when all the variance from UEVs were included in the simulations and 

the uniform PDF was assumed (Table 10a). When the variance of each UEV was 

removed, no sources were found to affect the mean UEV of crops, while nitrogen 

fertilizer effected the variance (Table 10a). Removing the variance due to nitrogen 

fertilizer lowered the standard deviation of the crops by 55% to 9,140 sej/J. 

 When non-normal PDFs were assumed, the UEV of nitrogen fertilizer was the 

only system source that affected the UEV of the output (Table 10a). Thus, the effect 

of UEV uncertainty depends on which PDF is assumed. It is also worth noting that 

the non-normal PDFs produced larger UEVs for the output (136,000 and 154,000 

sej/J) than the normal PDF (124,000 sej/J) (Table 10a). 
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Table 10a: Model 2 sensitivity results. The mean and standard deviation for 

the generated output UEV when minimizing the variance of a source, and its 

significance in comparison to the baseline. 
ǂ 
(Values are shown below 

multiplied by 1E3) 

  Normal Lognormal Uniform 

Mean Stddev Mean Stddev Mean Stddev 

 

Baseline output 124 26.4 136 33.8 154 20.3 

 

Sunlight 128 26.9 130 27.6 155 19.4 

Evapo-

transpiration 128 27.1 132 29.5 157 20.7 

Fuel 137** 28 132 38.5 155 19.7 

Net topsoil loss 127 24.7 128 28.4 159 20.5 

Electricity 127 28.1 133 38 157 20.1 

Labor 132* 24.4 131 31.5 155 16.9 

 

Seed 125 25.7 131 35.6 154 20.7 

Steel machinery 131* 21.4* 130 29.4 156 21.2 

Pesticides 129 25.8 132 35.8 158 18.5 

P Fertilizer 129 25 132 34.8 151 19.9 

N Fertilizer 128 6.3** 120** 5.1** 155 9.1** 
ǂ Specific p values are provided in Appendix iii  

*Significance of p <0.05 

**Significance of p <0.01 

 

 We can see from Table 10a that nitrogen fertilizer was the only source that 

significantly lowers the output UEV variance across the distributions (p<0.01). Table 

10b was created to quantify the mean and variance shift from the baseline when a 

source’s energy/mass and UEV variances were removed from Model 1.  
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Table 10b: Model 2 % difference of each output from the baseline. ǂ 

  Normal  Lognormal Uniform 

Mean Stddev Mean Stddev Mean Stddev 

  

Baseline output 0 0 0 0 0 0 

  

Sunlight 3.23 1.89 -4.41 -18.3 0.649 -4.43 

Evapo-transpiration 3.23 2.65 -2.94 -12.7 1.95 1.97 

Fuel 10.5* 6.06 -2.94 13.9 0.649 -2.96 

Net topsoil loss 2.42 -6.44 -5.88 -16.0 3.25 0.990 

Electricity 2.42 6.44 -2.21 12.4 1.95 -0.990 

Labor 6.45* -7.58 -3.68 -6.80 0.650 -16.8 

  

Seed 0.810 -2.65 -3.68 5.33 0 1.97 

Steel machinery 5.65* -18.9* -4.41 -13.0 1.30 4.43 

Pesticides 4.03 -2.27 -2.94 5.92 2.60 -8.87 

P Fertilizer 4.03 -5.30 -2.94 2.96 -1.95 -1.97 

N Fertilizer 3.23 -76.1** -11.0** -84.9** 0.650 -55.0** 

ǂ Specific p values are provided in Appendix iii  

*Significance of p <0.05 

**Significance of p <0.01 

 

 Machinery and nitrogen fertilizer were the only two system sources whose 

UEV uncertainty had a significant effect on the uncertainty of the output UEV (Table 

10a). This was true for nitrogen fertilizer regardless of the PDF assumed. Examining 

Table 10b shows that minimizing the variance of the nitrogen fertilizer source has 

lowered the variance of the output UEV by ~76% for the normal distribution, ~85% 

for the lognormal distribution, and ~55% for the uniform distribution. Thus, the 

uncertainty in the UEV of nitrogen has a large impact on the uncertainty of crop 

production. In contrast, removing the uncertainty of each of the other system sources, 

with the exception of machinery, did not change the uncertainty in corn (output) UEV 

(Table 10a). When energy input data is known with high certainty, the uncertainty of 

input UEVs can affect the uncertainty of a crop’s UEV. During the practice of 
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conducting an emergy evaluation of a modern cropping system that employs sources 

similar to the crop system studied here, this indicates that care should be given to 

selecting the most appropriate UEV for nitrogen, but that using a point estimate for 

the UEV of the other system sources is sufficient. From a general perspective, the 

observation that the uncertainty of the UEV of only 2 of 11 system sources affected 

the output UEV indicates that uncertainty in emergy evaluations is likely 

concentrated in a few system sources rather than broadly based. 

Nitrogen fertilizer UEV was the only UEV input to have a significant effect 

on crop production output UEV across three input distributions. Crop system output 

has been known to correlate positively with nitrogen fertilizer use (Blumenthal et al. 

2008). The large emergy value of nitrogen fertilizer source is supported by the 

literature that suggests that nitrogen is usually the most limiting factor on crop (corn 

and wheat) output. An increase in nitrogen fertilizer source generally results in 

increased protein concentration in grain crops (Blumenthal et al. 2008). Concerning 

Florida corn for grain production, nitrogen is the largest primary energy source 

(43.5%) (Fluck 1992). An emergy analyst can use the information in the current 

literature that nitrogen fertilizer is important to crop production combined with the 

fact that it contributes a large portion of emergy to the total emergy. Add a large 

variance, and the nitrogen fertilizer source stood out in importance. Doing a 

preliminary analysis should further specify whether more energy/mass data was 

needed or whether a source UEV needed to be calculated to best lower output UEV. 
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Model Comparison 

The only two inputs that lowered the variance of the yield for all distributions 

were nitrogen fertilizer UEV and net topsoil loss energy/mass. 

Removing the sources that impacted the standard deviation of the output UEV 

according to both models 1 and 2 left the sources whose energy/mass impacted the 

standard deviation of the output UEV. These sources were sunlight, 

Evapotranspiration, fuel, net topsoil loss, labor, steel machinery, and pesticides. This 

is seven out of twenty two parameters in the Monte Carlo simulation that significantly 

impacted the output UEV variance. Combined with the two UEV parameters of 

nitrogen fertilizer and steel machinery, there were nine out of twenty two parameters 

in a Monte Carlo simulated emergy analysis that significantly impacted the output 

UEV for one of the three described distributions. Use of a specific distribution further 

narrowed down the list of inputs. Emergy analysts of crop production should focus 

lowering the uncertainty of these specified inputs, thereby saving resources.  

A trend was shown in comparing the two models conducted with different 

amounts of variance of energy/mass and the way distribution results differ between 

them. When more uncertainty was present in the system, the uniform distribution and 

the lognormal distribution had larger numbers of sources with significant differences 

in variance (uniform-4, lognormal-7) than the normal distribution (2 sources). There 

was a similar number of significantly different means between the distributions. 

When uncertainty was removed from the model (2), the lognormal and uniform 

distributions became much more conservative, with only one source having a 

significant variance shift. The normal distribution was much more consistent between 
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models in number of sources with significant differences in output. While the 

lognormal and uniform distributions converged to the case of the nitrogen fertilizer 

source providing the most significant effect on crop output, the normal distribution 

was only consistent with nitrogen fertilizer variance and steel machinery mean shift 

and changes the other 3 sources that significantly impacted the output.  

To test the impacts of the PDF on the yield UEV variance quantitatively, the 

sensitivity analysis baselines for each distribution and model were compared for 

statistical significance. The distribution assigned to the Monte Carlo inputs was 

determined to affect the mean and the variance of the yield UEV. For Model 1, 

differences between the yield UEV means and standard deviations of the uniform 

PDF and the normal PDF were significant (p<0.001). This was also the case for the 

lognormal and the normal PDFs (p<0.001). The uniform and the lognormal PDF had 

a similar mean (p=0.734) but the uniform PDF standard deviation was smaller 

(p<0.001). Even when the mean yield UEV is similar between PDFs, the standard 

deviation was still dependent on the PDF selected. For Model 2, differences between 

the means and standard deviations for each PDF were significant (p<0.001).  

The models were then compared to each other for each PDF. The variance of 

the output UEV was smaller in Model 2 for each PDF (p<0.001). The normal PDF 

and uniform PDF yield UEV means did not change significantly between models 

(p<0.362 and p<0.579). The lognormal PDF yield UEV mean was lowered when 

going from Model 1 to Model 2 (p<0.012). This was explained by the right tail 

holding most of the variance so that the removal of variance for the lognormal PDF 

would shift the mean to the right.  
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This study concluded that the crop production system did not promote one 

distribution over the other. While this study did not promote one distribution over the 

other, it was noted that the distribution of the input’s energy/mass and UEV often had 

an impact on the PDF shape of the source’s emergy. 

The sensitivity analysis section addressed two of the objectives of the study. 

The system sources that had a large impact on the variance of the yield UEV were 

determined and organized by distribution. The impact of each source’s energy/mass 

and UEV components on the yield UEV was quantified in this section. The impact of 

the source’s distribution on the yield UEV variance was also quantified in this 

section.  

  

The objectives outlined previously have been met. In the systems descriptions 

section, the origination of uncertainty in emergy analyses was shown tabularly and 

graphically by source and PDF. The normal distribution was used to partition the 

emergy of the yield uncertainty by each source’s energy/mass and UEV components. 

The sources that contributed the most uncertainty were then found for each PDF 

using the sensitivity analysis. The sensitivity analysis also showed the influence of 

the input PDF on the yield UEV variance. Limitations and future work for this study 

are discussed in the following chapter. 
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Chapter 6: Discussion 

In addressing the objective questions, this study has begun to identify and 

isolate sources of uncertainty in emergy analyses. Limitations to this study and ideas 

for future work are discussed below. 

One of the main limitations of this study was human error. Many crop 

production emergy analyses examined were poorly documented. In emergy analyses, 

typos or miscalculations are worth orders of magnitude and can entirely change the 

data set procured. When later emergy analyses reference this inaccurately represented 

data, the field is then further skewed. A standard format and model for presenting 

uncertainty may be a check for practitioners on their presented research that 

eliminates much of this human error (Ingwersen 2010). Current efforts of creating a 

hub of UEVs and methods to produce UEVs could also lower this human error and 

clarify the emergy process (Tilley et al. 2012).  

Model uncertainty was determined to be outside of the scope for this study as 

the same sources were selected from each system. It is understood that different 

models can be created to obtain the variance of a specific yield UEV. However, it 

should be noted that the confidence interval of a specific yield UEV using one model 

is not necessarily transferable to other models’ yield UEV. The analyst should 

therefore be wary of the models used to create UEVs and their variances when 

including them in the analyst’s own study.  

In standardizing uncertainty calculations found by modeled emergy analyses, 

it may be beneficial to have a proposed minimal number of runs. The Monte Carlo 

random number generator simulated uncertainty for modeled energy/mass, UEV, 
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yield emergy, and yield UEV. Literature has a large range (30-10,000) for defining 

what is conventionally ‘enough’ iterations for a simulation. This term is based on 

what the researchers are statistically able to say with their results. The current study 

ran Monte Carlo models 100 times. It would be interesting to note how much 

uncertainty is taken out of the output UEV when there are different amounts of runs 

conducted.  

To obtain the confidence intervals surrounding the yield UEV, only the 

normal PDF simulations were used in this study. The coefficient of variation method 

was not conducted on the other distributions due both to time constraints and the 

unknown dangers of using the COV on other distributions. There is a COV equation 

for the lognormal distribution. Future work can be done to modify this methodology 

to examine the Monte Carlo lognormal PDF output. Comparisons of the confidence 

intervals produced by normal and lognormal COV equations could influence the use 

of one distribution over the other. 

There is much future work to be conducted in exploring input distributions 

and interactions in forming output UEV values. When assuming probability 

distributions for the energy and UEV of each source, this study utilized PDFs that 

previous studies had assumed. This study assumed 1) independence among sources 

and 2) that source’s energy/mass and UEVs and the energy/mass output had the same 

distribution type. Based on these assumptions, the PDFs of the inputs were found to 

have a significant impact on the yield UEV variance. The difference between the 

Monte Carlo simulations’ output and the original systems might be lowered if instead 

of assuming that all input parent populations can be represented by a single 
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distribution, different distributions are implemented for different inputs. Another area 

of lowering the difference between the simulations and the original systems could be 

having energy follow one distribution while the UEV follows a different distribution. 

The distributions chosen for each energy and UEV value could be experimented with 

based on sensitivity analyses. The distribution combinations that produce the output 

that is a best fit to the original data are the optimal combinations.  

Distributions could also be chosen based on the advice of experts in the fields 

(Ayyub and Klir 2006). Ingwersen has suggested that the lognormal distribution is the 

most accurate when considering natural sources’ energy (Ingwersen 2010a) and UEV 

(Ingwersen 2010b) values. A possible optimal distribution of the natural sources of 

the crop production system for a stochastic model is a skewed version of the 

lognormal distribution that has the definitive endpoints of the uniform distribution. 

Since the PDFs of the inputs significantly impact the yield UEV, it is encouraged that 

future researchers document why input distributions were chosen.  

 The sources whose energy/mass inputs impacted the variance of the output 

UEV were found in this study by eliminating the inputs that overlapped between the 

Model 1 and 2. To confirm which energy/mass parameters emergy analysts should 

focus lowering the uncertainty of, a third model should be created that removes UEV 

parameter variance from the Monte Carlo simulation. This third model (‘energy/mass 

only variance’) will identify the sources that significantly lower the output UEV 

variance. Model 3 could serve as a check to the information obtained by subtracting 

Model 2 from Model 1. 
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Chapter 7: Summary 

The summary and generalizations this study suggests below are based on the 

normal distribution. The normal distribution for inputs was used to partition the total 

system uncertainty by input (Figure 8), and was not reproduced for the other two 

distributions. This study found that the input PDFs impacted the yield UEV variance 

and therefore the total system uncertainty as well. Conducting the same analysis for 

the lognormal and uniform distributions may provide other generalizations. However, 

the sensitivity analysis hints that all three input distributions support a positive 

relationship between the percent a source contributes to total solar emergy and the 

percent a source contributes to total system uncertainty. Both models for each 

distribution showed the nitrogen fertilizer source to have the largest significant 

impacts on the yield UEV variance of all the sources. Nitrogen fertilizer also 

contributed the most to total emergy for each model and distribution. Only the normal 

distribution for inputs is shown below, but future work on input distributions may 

provide more general statements regardless of distribution. 
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Figure 8a: Energy/mass and UEV variance 

 
Figure 8b: Energy/mass only variance 

 

 
Figure 8c: UEV only variance 

 

 
Figure 8d: UEV only variance minus nitrogen 

fertilizer 

Figure 8: Relationship between uncertainty and emergy input for each of the 11 

sources for crop production. U1, U2, U1-2, and U2-N are respectively a source’s 

contribution to uncertainty with total parameter variance, UEV only variance, 

energy/mass only variance, and UEV only variance with nitrogen removed, relative 

to each source’s contribution to the yield emergy. 

The amount of uncertainty that a source contributes to the yield UEV is 

strongly related to the relative amount of emergy it contributes to the yield emergy 

(Figure 8a). That is, for crop systems, sources like nitrogen fertilizer that contributed 

the largest amount of emergy to the yield also added the most variance to the yield 

UEV estimate (Figures 8a and 8c). Uncertainty came from both estimates of the rate 

of energy or material consumption and estimates of the UEV of the source. For UEV, 
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the largest contributor of uncertainty was nitrogen fertilizer (Figure 8c). While 

nitrogen fertilizer UEV contributed just under 20% to the total system uncertainty, no 

other source contributed more than 1% (Figure 8c and 8d). For energy/mass the 

largest source of uncertainty was the rate of net topsoil loss (more than 11%) (Figure 

8b), but nitrogen fertilizer and labor also added nearly 5% to the total source 

uncertainty. Evaluation of crop uncertainty revealed that only 2 of 11 sources are 

responsible for the vast majority (more than 75%) of the total source uncertainty.  

If the sources of uncertainty for crop systems are indicative of other emergy 

systems, then the sources of uncertainty reside with only a few of the system sources, 

and tend to be the sources that contribute the largest amount of emergy to the yield. 

Other energy transforming systems need to be evaluated in the manner described in 

this study to see where commonalities and differences in sources of uncertainty exist. 

From a practical perspective, the findings here indicate that uncertainty can be greatly 

reduced if analysts focus on reducing the uncertainty of the few system sources.    

To compete with other environmental accounting and valuation techniques, 

the emergy field must develop protocols for reliably characterizing, propagating, and 

analyzing uncertainty in models and output values. Since UEVs of outputs are cited 

by other emergy analyses, there is an emphasis placed on documenting their 

uncertainty. By following the Monte Carlo method given in this study, future tabular 

emergy analyses have a means for incorporating uncertainty into their output UEV 

calculation. Running a Monte Carlo simulation will provide the analyst with a 

ranking of each source that contributes to total uncertainty. Thus, the output from this 

form of sensitivity analyses can help the analyst reduce uncertainty. Steps in applying 
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these methods to more complex systems should be pursued, with the ultimate goal 

being to advance emergy in the realm of policy decision making. 
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Appendices 

Appendix i 

Table 11: A key of systems studied. The numbers used in this table describing a 

system correspond to the numbers used in following tables. 

System Title of study Specific system 

studied 

Citation 

1 Sustainability of bioethanol 

production from wheat with 

recycled residues as evaluated by 

Emergy assessment 

Sandy Danish soil, 

conventional crop 

management 

Coppola et 

al. 2009 

2 Sustainability of bioethanol 

production from wheat with 

recycled residues as evaluated by 

Emergy assessment 

Sandy loam Danish 

soil, conventional 

crop management 

Coppola et 

al. 2009 

3 Emergy evaluation of three 

cropping systems in  

southwestern Australia 

Lupin-wheat rotation 

system 

Lefroy and 

Rydberg 

2003 

4 Emergy evaluation of three 

cropping systems in  

southwestern Australia  

Alley system Lefroy and 

Rydberg 

2003 

5 Sustainable biomass  

production 

 Franzese et 

al. 2009 

6 Sustainability  

assessment of slash-and-burn and 

fire-free agriculture in 

Northeastern Para, Brazil 

Fire-free system Rodrigues et 

al. 2003 

7 Emergy of  

Florida Agriculture 

Sweet corn Brandt-

Williams 

2002 

8 Emergy of  

Florida Agriculture  

Grain corn Brandt-

Williams 

2002 
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Appendix ii 

Table 12a: Energy/mass data of original eight systems studied. This includes 

data minimums, maximums, means, and standard deviations. The yield is the 

amount of grain produced in Joules per hectare per year. The sources are split 

into those measured as energy (J/ha/yr) and those as a mass (converted to 

grams/ha/yr). 

Energy/Mass  System 

 Units 1 2 3 4 

     

Sunlight J/ha/yr 3.67E+13 3.73E+13 5.66E+13 4.81E+13 

Evapotranspiration J/ha/yr 2.80E+10 2.45E+10   

Net topsoil loss J/ha/yr 7.46E+08  1.58E+10 5.20E+09 

N Fertilizer gN/ha/yr 1.22E+05 1.18E+05   

P Fertilizer gP/ha/yr 1.23E+04 1.21E+04 1.29E+04 1.10E+04 

Pesticides g/ha/yr 1.38E+03 1.38E+03 2.00E+03 2.00E+03 

Seed g/ha/yr 1.70E+05 1.70E+05 3.25E+04 3.25E+04 

Fuel J/ha/yr 2.83E+09 3.16E+09 3.05E+08 2.59E+08 

Steel machinery g/ha/yr 1.98E+03 1.98E+03 1.17E+03 9.95E+02 

Electricity J/ha/yr 7.20E+08 1.20E+09 3.60E+06 3.06E+06 

Labor J/ha/yr 2.88E+06 2.88E+06 2.81E+06 2.81E+06 

       

Yield J/ha/yr 7.01E+10 1.17E+11 1.59E+10 1.36E+10 

Energy/Mass   

 Units 5 6 7 8 

     

Sunlight J/ha/yr 5.53E+13 6.94E+13 6.35E+13 6.35E+13 

Evapotranspiration J/ha/yr  4.19E+10 6.05E+10 6.05E+10 

Net topsoil loss J/ha/yr 3.24E+09 4.70E+09 2.44E+10 4.25E+10 

N Fertilizer gN/ha/yr 1.69E+05  5.71E+04 5.71E+04 

P Fertilizer gP/ha/yr 8.20E+04 1.50E+04 3.95E+04 2.11E+04 

Pesticides g/ha/yr 5.38E+03  1.11E+04 1.69E+03 

Seed g/ha/yr 1.62E+04    

Fuel J/ha/yr 6.97E+09 1.40E+08 1.25E+10 8.12E+09 

Steel machinery g/ha/yr 1.36E+04    

Electricity J/ha/yr 2.00E+09   7.85E+08 

Labor J/ha/yr 1.08E+07 1.40E+07 2.54E+08 1.32E+07 

      

Yield J/ha/yr 1.12E+11 2.35E+10 1.04E+11 1.81E+10 
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Energy/Mass  Min Max Mean Std Dev 

 Units     

     

Sunlight J/ha/yr 3.67E+13 6.94E+13 5.38E+13 1.22E+13 

Evapotranspiration J/ha/yr 2.45E+10 6.05E+10 4.31E+10 1.72E+10 

Net topsoil loss J/ha/yr 7.46E+08 4.25E+10 1.38E+10 1.52E+10 

N Fertilizer gN/ha/yr 5.71E+04 1.69E+05 1.05E+05 4.78E+04 

P Fertilizer gP/ha/yr 1.10E+04 8.20E+04 2.57E+04 2.46E+04 

Pesticides g/ha/yr 1.38E+03 1.11E+04 3.56E+03 3.61E+03 

Seed g/ha/yr 1.62E+04 1.70E+05 8.42E+04 7.86E+04 

Fuel J/ha/yr 1.40E+08 1.25E+10 4.29E+09 4.50E+09 

Steel machinery g/ha/yr 9.95E+02 1.36E+04 3.95E+03 5.42E+03 

Electricity J/ha/yr 3.06E+06 2.00E+09 7.85E+08 7.58E+08 

Labor J/ha/yr 2.81E+06 2.54E+08 3.79E+07 8.74E+07 

      

Yield J/ha/yr 1.36E+10 1.17E+11 5.92E+10 4.65E+10 
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Table 12b: UEV data of original eight systems studied. This includes data 

minimums, maximums, means, and standard deviations. The yield is the 

amount of grain produced in solar emjoules per Joules per hectare per year. 

The source UEVs are split into transformities (sej/J/ha/yr) and specific 

emergies (sej/g/ha/yr). 

UEV System 

 Units 

(ha/yr) 

1 2 3 4 

     

Sunlight sej/J 1.00E+00 1.00E+00 1.00E+00 1.00E+00 

Evapotranspiration sej/J 2.59E+04 2.59E+04   

Net topsoil loss sej/J 1.24E+05  1.05E+05 1.05E+05 

N Fertilizer sej/gN 2.41E+10 2.41E+10   

P Fertilizer sej/gP 2.02E+10 2.02E+10 2.86E+10 2.86E+10 

Pesticides sej/g 1.85E+09 1.85E+09 4.77E+09 4.77E+09 

Seed sej/g 1.20E+09 1.20E+09 3.10E+07 3.10E+07 

Fuel sej/J 1.10E+05 1.10E+05 9.42E+04 9.42E+04 

Steel machinery sej/g 1.13E+10 1.13E+10 5.04E+09 5.04E+09 

Electricity sej/J 2.00E+05 2.00E+05 2.92E+05 2.92E+05 

Labor sej/J 1.24E+07 1.24E+07 1.93E+07 1.99E+07 

       

Yield sej/J 8.80E+04 5.10E+04 1.17E+05 9.27E+04 

UEV System 

 Units 5 6 7 8 

      

Sunlight sej/J 1.00E+00 1.00E+00 1.00E+00 1.00E+00 

Evapotranspiration sej/J  2.59E+04 2.59E+04 2.59E+04 

Net topsoil loss sej/J 1.24E+05 1.24E+05 1.24E+05 1.24E+05 

N Fertilizer sej/gN 6.37E+09  4.05E+10 4.05E+10 

P Fertilizer sej/gP 6.54E+09 2.99E+10 3.70E+10 3.70E+10 

Pesticides sej/g 2.48E+10  2.49E+10 2.49E+10 

Seed sej/g 8.68E+08     

Fuel sej/J 1.11E+05 1.11E+05 1.11E+05 1.11E+05 

Steel machinery sej/g 1.12E+10    

Electricity sej/J 2.51E+05   2.69E+05 

Labor sej/J 7.10E+06 1.50E+07 7.64E+06 7.64E+06 

      

Yield sej/J 7.34E+04 1.20E+05 2.12E+05 1.24E+06 
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UEV  Min Max Mean Std Dev 

 Units     

     

Sunlight sej/J 1.00E+00 1.00E+00 1.00E+00 0.00E+00 

Evapotranspiration sej/J 2.59E+04 2.59E+04 2.59E+04 5.83E+00 

Net topsoil loss sej/J 1.05E+05 1.24E+05 1.19E+05 9.27E+03 

N Fertilizer sej/gN 6.37E+09 4.05E+10 2.71E+10 1.42E+10 

P Fertilizer sej/gP 6.54E+09 3.70E+10 2.60E+10 1.01E+10 

Pesticides sej/g 1.85E+09 2.49E+10 1.25E+10 1.16E+10 

Seed sej/g 3.10E+07 1.20E+09 6.66E+08 5.95E+08 

Fuel sej/J 9.42E+04 1.11E+05 1.07E+05 7.61E+03 

Steel machinery sej/g 5.04E+09 1.13E+10 8.78E+09 3.41E+09 

Electricity sej/J 2.00E+05 2.92E+05 2.51E+05 4.21E+04 

Labor sej/J 7.10E+06 1.99E+07 1.27E+07 5.12E+06 

      

Yield sej/J 5.10E+04 1.24E+06 2.49E+05 4.03E+05 

 

Appendix iii  

Table 13a: Sensitivity analysis for Model 1: Exact data and p values. Minimized 

the source energy/mass and UEV variance and then generated yield UEV. T tests’ and 

f tests’ p values were found by comparing the baseline to the minimized total variance 

of each source, and are recorded alongside the mean and standard deviation of the 

newly generated output. Significant p values (alpha<0.05) are bolded. 

 Normal    

 Mean p Stddev p 

  value  value 

Baseline 1.18E+05 1 5.30E+04 1 

 

Sunlight 1.18E+05 0.25 5.30E+04 0.42 

Evapotranspiration 1.35E+05 0.03 5.79E+04 0.38 

Fuel 1.27E+05 0.37 4.89E+04 0.80 

Net topsoil loss 1.25E+05 0.30 4.12E+04 0.01 

Electricity 1.26E+05 0.28 4.76E+04 0.29 

Labor 1.22E+05 0.57 4.62E+04 0.18 

 

Seed 1.27E+05 0.24 4.79E+04 0.32 

Steel machinery 1.37E+05 0.02 5.17E+04 0.97 

Pesticides 1.32E+05 0.10 5.04E+04 0.83 

P Fertilizer 1.35E+05 0.02 4.65E+04 0.20 

N Fertilizer 1.25E+05 0.28 4.09E+04 0.01 
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 Lognormal    

 Mean p Stddev p 

  value  value 

Baseline 1.59E+05 1 8.59E+04 1 

 

Sunlight 1.27E+05 0.34 5.51E+04 0.00 

Evapotranspiration 1.31E+05 0.01 6.44E+04 0.00 

Fuel 1.47E+05 0.26 6.10E+04 0.00 

Net topsoil loss 1.39E+05 0.06 6.38E+04 0.00 

Electricity 1.64E+05 0.66 7.89E+04 0.40 

Labor 1.48E+05 0.31 7.39E+04 0.13 

 

Seed 1.59E+05 0.99 7.52E+04 0.19 

Steel machinery 1.58E+05 0.89 6.38E+04 0.00 

Pesticides 1.59E+05 1.00 6.31E+04 0.00 

P Fertilizer 1.53E+05 0.58 7.40E+04 0.14 

N Fertilizer 9.33E+04 0.00 3.73E+04 0.00 

 

 Uniform    

 Mean p Stddev p 

  value  value 

Baseline 1.70E+05 1 4.30E+04 1 

 

Sunlight 1.74E+05 0.41 3.97E+04 0.42 

Evapotranspiration 1.70E+05 0.94 4.29E+04 0.99 

Fuel 1.54E+05 0.01 4.14E+04 0.70 

Net topsoil loss 1.34E+05 0.00 3.34E+04 0.01 

Electricity 1.70E+05 0.93 4.23E+04 0.87 

Labor 1.46E+05 0.00 3.41E+04 0.02 

 

Seed 1.66E+05 0.54 4.25E+04 0.90 

Steel machinery 1.82E+05 0.05 4.33E+04 0.94 

Pesticides 1.67E+05 0.66 3.43E+04 0.03 

P Fertilizer 1.66E+05 0.53 4.01E+04 0.49 

N Fertilizer 1.61E+05 0.10 3.23E+04 0.00 
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Table 13b: Sensitivity analysis for Model 2: Exact data and p values. Minimized 

the source UEV variance and then generated yield UEV. T tests’ and f tests’ p values 

were found by comparing the baseline to the minimized total variance of each source, 

and are recorded alongside the mean and standard deviation of the newly generated 

output. Significant p values (alpha<0.05) are bolded. 

 Normal    

 Mean p Stddev p 

  value  value 

Baseline 1.24E+05 1 2.64E+04 1 

 

Sunlight 1.28E+05 0.21 2.69E+04 0.84 

Evapotranspiration 1.28E+05 0.25 2.71E+04 0.79 

Fuel 1.37E+05 0.00 2.80E+04 0.57 

Net topsoil loss 1.27E+05 0.41 2.47E+04 0.52 

Electricity 1.27E+05 0.37 2.81E+04 0.54 

Labor 1.32E+05 0.03 2.44E+04 0.44 

 

Seed 1.25E+05 0.80 2.57E+04 0.78 

Steel machinery 1.31E+05 0.04 2.14E+04 0.04 

Pesticides 1.29E+05 0.16 2.58E+04 0.82 

P Fertilizer 1.29E+05 0.13 2.50E+04 0.60 

N Fertilizer 1.28E+05 0.07 6.31E+03 0.00 

 

 Lognormal    

 Mean p Stddev p 

  value  value 

Baseline 1.36E+05 1 3.38E+04 1 

 

Sunlight 1.30E+05 0.34 2.76E+04 0.78 

Evapotranspiration 1.32E+05 0.44 2.95E+04 0.18 

Fuel 1.32E+05 0.46 3.85E+04 0.19 

Net topsoil loss 1.28E+05 0.10 2.84E+04 0.09 

Electricity 1.33E+05 0.54 3.80E+04 0.25 

Labor 1.31E+05 0.31 3.15E+04 0.48 

 

Seed 1.31E+05 0.37 3.56E+04 0.60 

Steel machinery 1.30E+05 0.18 2.94E+04 0.16 

Pesticides 1.32E+05 0.51 3.58E+04 0.56 

P Fertilizer 1.32E+05 0.42 3.48E+04 0.78 

N Fertilizer 1.21E+05 0.00 5.09E+03 0.00 
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 Uniform    

 Mean p Stddev p 

  value  value 

Baseline 1.54E+05 1 2.03E+04 1 

 

Sunlight 1.55E+05 0.72 1.94E+04 0.66 

Evapotranspiration 1.57E+05 0.34 2.07E+04 0.83 

Fuel 1.55E+05 0.59 1.97E+04 0.78 

Net topsoil loss 1.59E+05 0.05 2.05E+04 0.92 

Electricity 1.57E+05 0.21 2.01E+04 0.91 

Labor 1.55E+05 0.66 1.69E+04 0.07 

 

Seed 1.54E+05 0.86 2.07E+04 0.84 

Steel machinery 1.56E+05 0.53 2.12E+04 0.66 

Pesticides 1.58E+05 0.14 1.85E+04 0.36 

P Fertilizer 1.51E+05 0.24 1.99E+04 0.83 

N Fertilizer 1.55E+05 0.50 9.13E+03 0.00 
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