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Using the unique properties of the interaction between intense, short-pulse

lasers and nanometer scale van-der-Waals bonded aggregates (or ‘clusters’), mod-

ulated waveguides in hydrogen, argon and nitrogen plasmas were produced and

extreme ultraviolet (EUV) light was generated in deeply ionized nitrogen plasmas.

A jet of clusters behaves as an array of mass-limited, solid-density targets with the

average density of a gas.

Two highly versatile experimental techniques are demonstrated for making

preformed plasma waveguides with periodic structure within a laser-ionized cluster

jet. The propagation of ultra-intense femtosecond laser pulses with intensities up

to 2× 1017 W/cm2 has been experimentally demonstrated in waveguides generated

using both methods, limited by available laser energy. The first uses a ‘ring grating’

to impose radial intensity modulations on the channel-generating laser pulse, which

leads to axial intensity modulations at the laser focus within the cluster jet target.

This creates a waveguide with axial modulations in diameter with a period between



35 µm and 2 mm, determined by the choice of ring grating. The second method

creates modulated waveguides by focusing a uniform laser pulse within a jet of

clusters with flow that has been modulated by periodically spaced wire obstructions.

These wires make sharp, stable voids as short as 50 µm with a period as small as 200

µm within waveguides of hydrogen, nitrogen, and argon plasma. The gaps persist as

the plasma expands for the full lifetime of the waveguide. This technique is useful

for quasi-phase matching applications where index-modulated guides are superior

to diameter modulated guides. Simulations show that these ‘slow wave’ guiding

structures could allow direct laser acceleration of electrons, achieving gradients of

80 MV/cm and 10 MV/cm for laser pulse powers of 1.9 TW and 30 GW, respectively.

Results are also presented from experiments in which a nitrogen cluster jet from

a cryogenically cooled gas valve was irradiated with relativistically intense (up to

2×1018 W/cm2) femtosecond laser pulses. The original purpose of these experiments

was to create a transient recombination-pumped nitrogen soft x-ray laser on the

2p3/2 → 1s1/2 (λ = 24.779 Å) and 2p1/2 → 1s1/2 (λ = 24.785 Å) transitions in

H-like nitrogen (N6+). Although no amplification was observed, trends in EUV

emission from H-like, He-like and Li-like nitrogen ions in the 15 – 150 Å spectral

range were measured as a function of laser intensity and cluster size. These results

were compared with calculations run in a 1-D fluid laser-cluster interaction code

to study the time-dependent ionization, recombination, and evolution of nitrogen

cluster plasmas.
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Chapter 1

Introduction to laser-cluster interactions

The interaction between light and matter is one of the most basic and im-

portant issues in physics. The invention of the laser in the early 1960’s [1] enabled

the production of light with levels of brightness and coherence that were previously

impossible, resulting in the birth of the field of nonlinear optics. It has since found

applications in almost every aspect of modern life, including communications, en-

tertainment, industrial manufacturing, metrology, and medicine. As the laser has

evolved into a tool capable of high average power (> 105 W) [2], ultrahigh intensities

(> 1022 W/cm2) [3] and generating ultrashort pulses (< 5 fs) [4] it has remained

a driver of cutting edge scientific research, capable of stimulating extreme nonlin-

ear responses in molecular, ionic and nuclear systems [5] and enabling the direct

observation of ultrafast atomic dynamics.

1.1 Pulsed lasers and intensity regimes

The first lasers were capable of kilowatt level peak power outputs and focused

peak intensities on the order of gigawatts per square centimeter (109 W/cm2) [6].

Modern continuous wave (CW) lasers are capable of megawatt order average powers

with peak intensities ∼ 1012 W/cm2 [2]. Although these high average power CW

systems are required for some applications such as industrial welding, cutting, and
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military weaponry, the linear relationship between CW intensity and average power

output imposes a fundamental limitation on intensity by the electrical or chemical

input energy available. This makes them unattractive and inefficient for applica-

tions that require high peak intensities but are indifferent to average power. For

comparison, the output of a nuclear power plant is ∼ 1 gigawatt, and the current

rate of electrical power consumption on earth is ∼ 15 terawatts.

The use of pulsed lasers breaks this limitation, decoupling the average and

peak power output of a system by allowing optical energy to be squeezed into short,

high-intensity bursts instead of being spread evenly in time over a continuous wave.

Improvements in pulsed laser systems have allowed the maximum attainable peak

intensity to be raised by more than 10 orders of magnitude in the last 50 years.

Q-switched [7] and mode-locked [8] lasers allowed the creation of nanosecond and

picosecond pulses, respectively, and chirped pulse amplification (CPA) [9], raised the

attainable intensities of femtosecond pulses by several more orders of magnitude.

This has enabled basic research and the development of applications in pre-

viously inaccessible regimes of light-matter interaction, the so-called strong field or

high intensity regime (≥ 1013 W/cm2) [10] and the relativistic or ultrahigh intensity

regime (≥ 1018 W/cm2) [11].

Direct field ionization of an atom in the high intensity regime can occur

through one of three mechanisms, determined by the relative strength of the laser

and Coulomb potential. As the laser intensity first reaches the high intensity regime,

high-order multiphoton ionization [12] can occur (Figure 1.1(a)). This occurs when

N photons of wavelength ω are absorbed by a bound electron simultaneously, provid-
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Figure 1.1: Mechanisms by which an electron within an atom can undergo field

ionization by a laser. Multiphoton ionization (a) occurs when multiple photons

strike the atom simultaneously, providing sufficient intensity to escape the Coulomb

potential (solid red line). Tunnel ionization (b) occurs when the instantaneous laser

potential (dashed blue line) is sufficient to modify the Coulomb potential and allow

tunneling through the barrier on the timescale of a laser field oscillation. Over-the-

barrier ionization (c) occurs when the laser field causes a large enough modification

to the Coulomb potential that the electron can ‘fall out’.
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ing sufficient energy E0 = N~ω to liberate an electron from the Coulomb potential

of the atomic nucleus. As the laser field intensity is increased further, the potential

comprised of the instantaneous sum of the oscillating field and Coulomb potential

can allow a bound electron to ‘tunnel’ through the potential barrier [12] (Figure

1.1(b)). In even larger fields, the potential barrier can be suppressed enough that

an electron can simply ‘fall out’ of the potential (over-the-barrier ionization) [12]

(Figure 1.1(c)). These interactions have been used to generate bright, tabletop EUV

sources via high-order harmonic generation [13] and used for applications such as

microscopy [14], protein crystallography [15], probing dense plasmas [16] and lithog-

raphy [17].

Once the reduced vector potential a0 = eE
meω

1
c

is greater than 0.1, the laser-

plasma interaction becomes relativistically nonlinear. For a laser wavelength of

λ = 800 nm, this corresponds to an intensity I0 > 2 × 1016 W/cm2. Electrons

quivering in the laser field can oscillate close to the speed of light, relativistically

increasing in mass and oscillating with modified trajectories, leading to corrections

in the plasma index of refraction [18]. Additionally, pressure from the ponderomotive

force can exceed gigabars [19] and drive highly nonlinear plasma waves [18]. At these

intensities applications such as plasma-wave driven tabletop particle accelerators

[20], inertial confinement fusion [21] and hard x-ray sources [22] become possible.
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1.2 Nonlinear laser-matter interaction

The intense pulses produced by modern lasers can exhibit a wide range of non-

linear effects as they interact with matter. The type and strength of the nonlinearity

depends primarily on the laser parameters (intensity, pulsewidth and wavelength)

and atom density of the target. Changing any one of these four parameters can

change which nonlinear effect is dominant; the specifics of all parameters must be

carefully considered in each experimental scenario to make an estimate of the non-

linear dynamics that will occur.

In practice, intense laser-matter interactions usually take place in gaseous

targets [23] (jets or static cells) at atomic densities < 1019 atoms/cm3 or on the

surface of bulk solids [24] at ∼ 1023 atoms/cm3 within a vacuum chamber, to stop

ionization-induced defocusing from preventing the laser from reaching the highest

focused intensities. More recently, mass-limited targets such as thin foils [25], nanos-

tructured surfaces on bulk solids [26] and cluster/droplet jets [27] have been used

as well. This dissertation is primarily focused on nonlinear ionization processes in

jets of atomic clusters and how they can be harnessed to generate extreme ultra-

violet light (EUV, approximately 1 – 100 nm wavelength) and modulated plasma

waveguides. However, to understand the benefits of clusters as a target medium, it

is helpful to first consider the dominant processes by which gaseous and bulk solid

targets undergo ionization.
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1.2.1 Ionization of gases

When a high intensity laser pulse irradiates a gaseous target, the ionization

process is usually dominated by the isolated response of each atom or molecule

to the field through multiphoton ionization, tunnel ionization or above threshold

ionization, depending on the laser intensity and ionization potential. The ionization

process in a gas is usually quite inefficient, resulting in little laser energy deposition

(< 5%) [28] and plasmas with an electron temperature of < 50 eV [28], incapable

of producing high energy x-ray photons.

Electron-ion collisional ionization can also occur after field ionization has cre-

ated a population of free electrons. This mostly occurs during the laser pulse,

while free electrons are quivering in the laser field. Additionally, elastic electron-ion

collisions can thermalize the momentum of electrons quivering in the laser field,

resulting in energy transfer from the laser and efficiently heating the plasma after

ionization has occured. However, very little collisional ionization or heating usually

occurs [28], because at the gas densities present in most jets (≤ 1019 atoms/cm3),

the electron-ion collision rates are small compared to the pulsewidths of most lasers

with sufficient intensity to cause initial field ionization (≤ 1 ps). These low col-

lisional ionization rates can be beneficial in applications such as high harmonic

generation [13] where high intensities are required but collisional ionization is unde-

sirable, but when dense, deeply ionized plasmas are needed for applications such as

in plasma waveguide generation [29], they can be problematic.
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1.2.2 Ionization of solids

In contrast with gases, the high local atomic densities present in bulk solids

(∼ 1023 atoms/cm3) facilitate high electron-ion collision rates, resulting in a laser-

matter interaction that is almost always dominated by collisional processes [28].

This leads to much more efficient ionization and heating than is possible in low-

density gas targets, but rapid conductive cooling by the adjacent bulk material can

prevent the creation of the extremely hot (> keV), deeply ionized plasmas required

for many applications [30].

Unfortunately, the high densities that allow solids to efficiently absorb laser

energy also impose extremely demanding temporal contrast requirements upon the

laser, requiring a prepulse to main pulse intensity ratio of better than 10−10 on a

nanosecond timescale for the most intense petawatt-class systems [31]. Otherwise a

prepulse with peak intensity as low as 1012 W/cm2 can be efficiently absorbed by

the surface of the solid, creating a low-density sheath of plasma that can reflect and

absorb the main pulse of the laser, preventing it from interacting through collisional

processes with a solid-density plasma [31].

The nanosecond-scale prepulses that are the source of this issue be can be

caused by amplified spontaneous emission (ASE) from amplifiers throughout the

laser amplifier chain or by leakage through polarization-based fast electro-optical

switches [31]. They can be eliminated by using laser systems without regenerative

amplifiers (which emit a more intense nanosecond plateau of ASE than multipass

amplfiers) and a combination of techniques such as plasma mirrors [32] and cross-
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polarized wave (XPW) filters [33]. These methods can prevent the formation of

preplasmas, but increase the complexity and cost of the laser system while reducing

the overall efficiency.

Target damage and ejected debris are also problems resulting from the use of

bulk solids as laser targets. Compared to gases, laser-solid interactions throw off a

large amount of material that can coat surfaces within the vacuum in which it takes

place, including laser optics, severely reducing their lifetime and efficiency. They

are also usually not renewable, resulting in single-shot experiments or requiring a

rastered target. As a result, experiments and applications using bulk solid targets

can be more time-consuming and expensive than those using gaseous targets.

However, conductive cooling of the newly formed plasma by the bulk mate-

rial is by far the most restrictive problem associated with solid targets for most

applications, as it puts a ceiling on the electron temperature and limits the energy

density of the interaction. This issue can be circumvented by using mass-limited

solid targets in a number of configurations, including thin foils [25], nanostructured

surfaces on bulk solids [26], and jets of clusters or droplets [27]. These methods re-

tain the high local atomic densities present in bulk solids that enable high collision

rates, but limit conductive cooling of the plasma by reducing the spatial degrees of

freedom through which it can occur. However, thin foils and nanostructured solids

can be difficult to prepare and still eject a large amount of debris. They must also

be rastered to expose an undamaged section of the surface, unlike jets of clusters

or droplets, which are renewed with each subsequent puff. The interaction between

intense laser pulses and jets of clusters is a topic rich in physics and applications
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and are the focus of this dissertation.

1.3 Van der Waals aggregate formation

1.3.1 Cluster formation

When high-pressure gas (> 50 PSI) is expelled into vacuum through the nozzle

of a solenoid-actuated valve, the random thermal momentum of atoms or molecules

becomes kinetically directed as it adiabatically expands, so cooling occurs. In cases

where the initial thermodynamic state of the pre-expansion gas is such that expan-

sion along an isentrope brings it to the gas-liquid phase transition, condensation can

occur. After the vapor pressure curve is crossed, interparticle attractions due to the

van der Waals forces are able to overcome the reduced thermal momentum of the

cooled gas, forming nanometer scale solid-density aggregates henceforth referred to

as ‘clusters’. This process was first observed when jets containing clusters of 2 to 104

atoms were created more than 60 years ago [34]. Jets of clusters can be thought of as

a hybrid medium, with low average densities similar to those usually found in gases

(≤ 1019 atoms/cm3) and the high local densities of solids (∼ 1023 atoms/cm3) [35].

Qualitatively, the cluster formation process occurs more efficiently when the

pre-expansion gas is held at colder temperatures and higher pressures, bringing the

gas closer to the vapor pressure curve [36]. Nozzle geometry and gas species are

also important; increasing the cross-sectional area of the nozzle adjacent to the gas

reservoir (henceforth referred to as the ‘orifice’, detailed in Figure 1.2) leads to more

efficient cluster formation [36], as does the use of gases with larger polarizabilites [36]
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Table 1.1: Examples of condensation constants for gases commonly used in the

creation of laser-produced plasmas [37].

Gas species He D2 H2 Ne N2 Ar Kr Xe

Condensation constant k 3.85 181 184 185 528 1650 2890 5500

(in atomic or molecular gases) or larger permanent dipole moments (only possible

in molecular gases) because interparticle dipole attractions are the basis of the van

der Waals force. The resulting mean cluster diameter within the jet depends on

this combination of parameters, and can range from a few Å at the onset of cluster

formation to ∼ 1000 Å, when the pre-expansion gas liquefies in the valve and droplet

formation occurs, resulting in different dynamics that will be described shortly.

The cluster formation process is not sufficiently well understood from a purely

theoretical standpoint to allow prediction from first principles of the size distribution

within a cluster jet given only the nozzle geometry and thermodynamic state of the

pre-expansion gas [38]. However, the scaling and relative strength the clustering

process has been empirically quantified, first by Hagena [39], who introduced the

dimensionless parameter:

Γ∗ = k
d0.85p0

T 2.29
0

(1.1)

where Γ∗ is the Hagena parameter, T0 is the pre-expansion gas temperature (K), p0

is the gas valve backing pressure (mbar), d is the diameter of the nozzle orifice for

sonic nozzles (µm) and k is a constant that quantifies the relative strength of the

condensation process for different gases. Some examples of condensation constants
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with these units for gases commonly used in the creation of laser-produced plasmas

are shown in Table 1.1. Conical nozzles are known to aid the clustering process, and

this effect is described by replacing the throat diameter d in the Hagena parameter

with an equivalent diameter deq = 0.74d/tan(α) [39], where d is the orifice diameter

of the conical nozzle and α is the half angle at which the nozzle expands (Figure

1.2).

The Hagena parameter is related to the mean number of atoms per cluster

〈ncluster〉 via the expression:

〈ncluster〉 = 33

(
Γ∗

1000

)2.35

(1.2)

A number of techniques have been used to experimentally verify this scaling for

Hagena parameter values spanning 102 < Γ∗ < 106 [40, 41], which corresponds to

the onset of cluster formation through the generation of clusters containing up to

∼ 107 particles [42].

1.3.2 Cluster characterization

The limitations imposed by diffraction make it impossible to directly image

the size distribution within a jet of nanoscale clusters using the visible or infrared

frequencies at which most lasers operate. However, a variety of indirect experimen-

tal techniques have been successfully used to measure the scaling of Γ∗ and 〈ncluster〉

with temperature, pressure, gas species and nozzle parameters. These methods

include Rayleigh scattering [37,42] or Mie scattering (for large clusters) [43] in con-

junction with neutral gas density measurements, Rayleigh scattering or absorption of
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Figure 1.2: Representations and photographs of the gas valve nozzle configurations

used in these experiments. The nozzles were attached to commercial gas valves

sealed with copper gaskets (Parker Hannifin, General Valve Division series 99). Two

conical nozzle configurations were used, with a throat diameter d of 0.5 or 1 mm

and an expansion half-angle α of 10◦ or 5◦, respectively. Elongated nozzles with an

orifice diameter d ranging from 0.5 to 1 mm and an exit length l of 15 mm were

used.
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EUV [44], time-of-flight mass spectroscopy (TOF-MS) of ions from Coulomb explod-

ing laser-irradiated clusters [45], diffraction of high-energy electrons [41, 46], atom

scattering [47] and fluorescence spectroscopy of small clusters [48]. More recently,

the percentage of condensed mass within a cluster jet was measured by observing

the time-dependent index of refraction of laser-irradiated exploding clusters [49]. A

measurement of the mean cluster size within the jet produced by the solenoid valves

used in this experiment was performed using the Rayleigh scattering technique in

conjunction with clustered gas interferograms [42]. This will be described in detail

in Chapter 2 (Experimental apparatus).

1.3.3 Droplet formation

Jets of droplets are formed when liquid instead of gas is ejected from a solenoid

valve into vacuum. While clusters and droplets are both van der Waals bonded

aggregates of near solid density, the difference between them lies in the dynamics by

which they are formed. Clusters are formed when a gas cools and condenses after

ejection into vacuum, while droplets are formed as a stream of liquid undergoes

fragmentation. In practice, clusters can be anywhere from a few Angstroms to

25 nm in diameter, while droplets are almost always > 1 µm [50]. The detailed

behavior of this fragmentation can be described by the Weber number We [51], an

expression of the ratio of kinetic energy of the liquid being ejected from an orifice

to the potential energy of its surface tension, expressed as:

We = v2dρ

σ
(1.3)
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where v is the velocity of the liquid flow as it leaves the nozzle (m/s), d is the

diameter of the nozzle orifice (m), ρ is the density of the liquid (kg/m3) and σ is

the surface tension (N/m).

In all cases where droplets are encountered in this experiment, the jet is in what

is known as the atomization regime, when the Weber number is ≥ 105 [52]. This is

known because our setup is similar to one used by our group in the past that was

characterized in detail [50]. There are several other breakup regimes encountered

in lower Weber number droplet jets [52], but they are beyond the scope of this

dissertation. This regime is characterized by the immediate breakup of the liquid

stream into a jet of droplets much smaller than the nozzle diameter as it leaves the

nozzle. However, the aggregate sizes in atomized jets of droplets are still much larger

than those that can be produced in cluster jets, with a mean diameter > 1µm.

1.4 Laser-cluster interaction models

Cluster jets first drew attention as a mass-limited target medium for intense

lasers almost 20 years ago, when McPherson et al. irradiated krypton clusters with

short (< 1 ps) high intensity (1016 to 1018 W/cm2) laser pulses and observed anoma-

lous emission of x-rays with photon energies higher than predicted by multiphoton

or tunneling gas ionization theory [53]. The authors attributed this emission to

high ion charge states arising due to collisions with Z coherently driven electrons,

behaving as a single quasiparticle with charge Ze and mass Zme, where e and me

are the charge and mass of an electron, respectively. This model predicts multiple
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ionization of inner shell electrons while the outer shells are still occupied. Although

there has been much debate about this ‘coherent electron motion model’ [54] in the

literature, these experiments brought clusters to the attention of the high intensity

physics community.

Since these initial studies there has been a large body of experimental, the-

oretical and computational research investigating intense laser-cluster interactions.

Experiments have shown that irradiating clusters containing up to 107 particles with

intensities of 1013 to 1019 W/cm2 results in strong absorption (> 95%) [55], hot elec-

trons with > keV energies [56], bright x-rays [27, 55, 57], ions with > MeV kinetic

energies [58,59], neutrons [60] and can allow control of beam propagation [61]. These

are properties usually associated with the high energy density plasmas created in

laser-solid interactions, indicating that the locally high densities found within in-

dividual clusters (∼ 1023 particles/cm3) allow them to behave as an ensemble of

mass-limited solid targets.

These clusters explode on an extremely rapid timescale of order 100 – 400 fs,

depending on the size [28,62,63], similar to the pulsewidth of the intense lasers typi-

cally used to drive these interactions. Therefore, the details of how the laser couples

to the cluster crucially depends upon the time-dependent density and temperature

of the plasma, requiring a detailed understanding of the cluster explosion dynamics.

The expansion of these clusters is driven by a combination of two mechanisms; hy-

drodynamic expansion via hot electron pressure and electrostatic repulsion between

ions that can occur as electrons escape the neighborhood of the cluster, leading to a

buildup of positive charge. Understanding how the relative importance of these two
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mechanisms is affected by the laser intensity, laser pulsewidth and cluster size is crit-

ical for optimization of the interaction for applications such as nuclear fusion [60],

high harmonic generation [13] and x-ray sources [27,55,57] for lithography [17] and

microscopy [14].

Theoretical approaches investigating the detailed underlying dynamics of the

laser-cluster interaction in the high-intensity (> 1013 W/cm2), large cluster (N >

102 particles) regime can be divided into two categories — rate equation models that

use averaged global variables, treating the particles as a fluid [28, 62] and classical

molecular dynamics (MD)/ Particle-in-cell (PIC) models that treat particles indi-

vidually [64–69]. The range of applicability of each particular calculation depends

on the details of the model used, but roughly speaking, fluid models are valid with

larger clusters (N > 104 particles) and lower intensities (< 1016 W/cm2) when the

explosion of a cluster plasma is primarily driven by hydrodynamic forces, and MD

simulations are required when more intense lasers (> 1016 W/cm2) irradiate smaller

clusters (N < 105 particles), resulting in expansion driven primarily by interionic

Coulomb repulsion [58,59].

1.4.1 Nanoplasma model

The first hydrodynamic model of how cluster plasmas undergo ionization and

expansion when irradiated by short (< 1 ps) intense (> 1014 W/cm2) laser pulses was

the ‘nanoplasma’ model developed by Ditmire et al. [28]. The results of simulations

using this model [28] indicated that initial ionization of the cluster takes place in
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the far leading edge of the laser pulse via multiphoton or optical field ionization,

followed by a rapid avalanche of electron-ion collisional ionization enabled by the

locally solid densities found in clusters.

This model assumes that as the cluster expands, the radial plasma density

profile remains uniform. This assumption results in each cluster responding to the

laser field as a uniform dielectric sphere, given by:

p = γE = a3

(
ε− 1

ε+ 2

)
E, (1.4)

where p is the dipole moment induced in the cluster, γ is the polarizability, E is the

electric field of the laser, a is the cluster radius and ε(ω) is the complex dielectric

function, which for a plasma is given by

ε(ω) = 1− 1

1 + i ν
ω

Ne

Ncr

= 1− ξ(1− i v
ω

), (1.5)

where ν is the electron-ion collision frequency, ω is the laser frequency and

ξ =
1

1 + ν2

ω2

Ne

Ncr

. (1.6)

Here Ne is the electron density, the critical density Ncr = meω
2/4πe2, me is the

electron mass and e is the electron charge. Once the cluster has expanded enough

that the electron density Ne drops to ∼ 3 ·Ncr, a resonant enhancement of the laser

field occurs within the entire volume of the cluster because ε+ 2 = 0. The spherical

geometry of the cluster is the physical reason that this prediction differs from the

Ne = Ncr resonance typically found in a bulk plasma. The predicted duration of

this resonance is

δtres ≈
2

3

ν

ω

(
Ne0

3Ncr

) 1
3 a0

cs
(1.7)
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Figure 1.3: Schematic representation of the 1D nanoplasma expansion model of

Milchberg et al. [62]. The initial state of the neutral cluster is shown at the far left.

Initial ionization by an intense laser pulse creates a dense, super-critical plasma

that expands layer-by-layer, resonantly coupling to the plasma in the region with

resonant density −ξEint/4π, where E is the electric field in the cluster and ξ =

(1 + ν2/ω2)−1Ne/Ncr.

where a0 is the initial cluster radius, cs is the speed of sound and Ne0 is the initial

electron density [62]. For the clusters with initial radii a0 from 10 – 60 nm this model

predicts δtres values from 6 – 40 fs, in disagreement with experimentally observed

resonant durations of hundreds of femtoseconds [63].

In an effort to achieve a more accurate quantitative understanding of the hy-

drodynamic laser-cluster interaction, Milchberg et al. [62] developed a model that

relaxes the assumption of uniform expansion by using a one-dimensional (1D) hydro-

dynamic laser-cluster interaction model. As was the case with the uniform density
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model of Ditmire et al. [28], this code self-consistently models the interaction of a

single cluster with a laser field in the near-field limit, requiring ka� 1, where k is

the wavenumber of the laser and a is the radius of the cluster.

This model provided additional physical insight to the cluster explosion process

and improved the quantitative agreement between theory and experiment. Whereas

the uniform density model predicts brief δtres resonant enhancement of the laser field

once a nanosphere of uniform density has expanded sufficiently to drop the electron

density Ne to ∼ 3·Ncr, the 1D model predicts that the cluster nonuniformly expands

‘layer-by-layer’, with resonant coupling occuring in a critical density region where

Ne = Ncr = meω
2/4πe2 that decreases in radius as the cluster expands (Figure 1.3).

Thus the 1D model predicts longer-lived resonant coupling that persists until the

critical density layer has receded to the core and the entire cluster is of subcritical

density. Depending on the initial size of the cluster this expansion time τcr is usually

100 – 400 fs [63]. The expansion timescales of this model were later experimentally

verified [63], and it was shown that coupling between the laser pulse and plasma

is more efficient when the pulsewidth of the laser is matched to this critical cluster

expansion time [63].

While these hydrodynamic models have been critical to the development of

a physical understanding of laser-cluster coupling dynamics, treating the ensemble

of electrons as a fluid neglects the escape of hot laser-heated electrons from the

neighborhood of the cluster. When this occurs, a buildup of positive charge drives

expansion via electrostatic repulsion between ions. In extreme cases this can lead

to a Coulomb explosion in which the majority of the electrons have been removed
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from the cluster before any hydrodynamic expansion has a chance to take place, and

Coulomb repulsion between the ions violently drives them apart. This process can

result in ions with > MeV kinetic energies [59]. Milchberg et al. calculated that the

explosion of argon clusters with radii larger than 25 Å is dominated by hydrodynamic

pressure until the intensity exceeds 1015 W/cm2 [62]. To investigate the dynamics of

exploding clusters in regimes where electrostatic forces are important, particle-based

models must be used.

1.4.2 Particle models

The first particle-based simulations of laser-irradiated clusters were molecu-

lar dynamics (MD) simulations using a classical Monte Carlo method performed

by Rose-Petruck et al. [64], but computational limitations prevented them from

studying systems of more than 55 atoms. Based on these results, they proposed

the ‘ionization ignition’ model of the laser cluster interaction, which theorized that

a combination of the laser field and DC Coulomb fields from inertially confined

ions were responsible for the deep charge states and absorption properties of clus-

ters [64,70]. Simulations that explicitly treated particle-particle electric forces were

done soon afterwards [65, 66], but a computational cost that scales ∝ N2
p limited

these simulations to clusters containing less than 60 atoms.

Since these initial studies, there has been a large body of work using particle-

based models to study the laser-cluster interaction, including classical MD simu-

lations with full interparticle treatment similar to the initial studies [64–66], MD

20



models implementing a fast-tree algorithm with a less severe computational scaling

∝ NplogNp [71] and 3-dimensional particle-in-cell (PIC) simulations that use a grid

to calculate the electric fields that drive particle dynamics [67].

3D PIC simulations by Taguchi et al. [68] corroborated the major features

of the 1D nonuniform nanoplasma model [62], and verified when expansion due to

electrostatic Coulomb repulsion could be neglected. These PIC simulations were

appropriate for interactions in the near field limit when ka � 1 at intensities <

5 × 1017 W/cm2, when the trajectories of quivering electrons begin to experience

modifications due to relativistic mass corrections and the Lorentz force.

More recently, MD simulations by Last and Jortner [69] applying a fully rela-

tivistic electromagnetic treatment have shown that laser pulses with extreme inten-

sities (I0 > 1020 W/cm2) can drive Coulomb explosions in larger clusters (Np > 108),

resulting in ion kinetic energies in the range of 1 – 10 MeV.

1.5 EUV and x-ray emission from nanoplasmas

The hot, deeply ionized plasmas created by laser-irradiated clusters and droplets

are bright sources of x-ray and EUV radiation. For example, strong K alpha emis-

sion from argon clusters was observed using laser intensities several orders of magni-

tude lower than the single-atom OFI threshold [72]. Previous experiments have also

studied x-ray and EUV emission from laser-irradiated clusters containing xenon [73],

krypton [27,57], argon [57,72], neon [28] and nitrogen [74].

These sources can be ultrafast — sub-picosecond x-ray [27,75,76] and nanosec-
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ond scale EUV pulses [27, 74, 76, 77] from cluster plasmas have been observed by

several groups using x-ray streak cameras. This x-ray and EUV emission can occur

through several channels over the wide range of plasma temperatures and densities

present throughout the process of nanoplasma generation and evolution, including

collisional excitation, collisional recombination (3-body), and radiative recombina-

tion (2-body).

1.5.1 Collisional excitation and spontaneous decay

One channel through which x-ray or EUV emission that can occur in cluster

plasmas is the spontaneous decay that follows collisional excitation of an ion that

has already experienced multiple previous collisional ionization events that resulted

in a tightly bound valence electron that is vulnerable to excitation but can resist

ionization. This process primarily occurs during and immediately following the laser

pulse, when electron temperatures (often > keV) and densities (> 1022 atoms/cm3)

are highest. After the departure of the laser pulse, nanoplasma expansion sharply re-

duces the electron temperature and density, reducing both the electron-ion collision

rate and the population of electrons with sufficient kinetic energy to collisionally

excite electrons that could emit EUV. These energetic excited states of multiply

ionized atoms can have very short lifetimes < 1 ps, resulting in prompt emission

following excitation.

Subpicosecond x-ray emission with photon energies greater than 1 keV has

been observed from laser-irradiated krypton [27], xenon [76] and argon clusters [75].
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This ultrafast x-ray emission has been attributed to collisional excitation as the

near solid-density nanoplasma is heated by the laser pulse, followed by spontaneous

emission.

1.5.2 Radiative recombination (2-body)

Radiative recombination occurs when a single free electron encounters an ion

and is captured, emitting a photon of energy equal to the potential energy of the

newly occupied bound state of the electron plus the kinetic energy of the newly cap-

tured electron (Figure 1.4). As the inverse of the photoionization process, radiative

recombination has the same electron-ion interaction cross section, which dictates

that electrons are preferentially captured directly into the innermost unoccupied

energy levels of the ion, which in a deeply ionized plasma can result in the im-

mediate emission of an EUV or x-ray photon. The overall 2-body recombination

rate scales ∝ neT
−2/3
e , where ne and Te are the electron density and temperature,

respectively.

1.5.3 Collisional recombination (3-body)

Collisional recombination occurs when two electrons collide with an ion simul-

taneously, one is captured by the ion and the second departs with the excess kinetic

and ionic potential energy released as the first recombined, thereby conserving the

energy of the 3-body system without the emission of any photons (Figure 1.4).

The 3-body recombination process preferentially captures electrons to outer excited
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Recombination pathways- 2-body (Radiative) or 3-body (Collisional) 
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Figure 1.4: Radiative (2-body) and collisional (3-body) recombination pathways and

scaling with electron temperature and density in a plasma. These processes are the

inverse processes of photoionization and collisional ionization, respectively.

states of the ion (with a rate ∝ n4, where n is the principal quantum number), which

can then decay via spontaneous emission, eventually reaching the ground state. 3-

body recombination favors excited states because they occupy a larger fraction of

the phase space of possible electron angular momentum configurations, as is the case

with the inverse process, electron collisional ionization. If the pre-recombination ion

had a sufficiently deep ground state vacancy, this eventually results in the emission

of an EUV or x-ray photon. This rate scales ∝ n2
eT
−9/2
e , so it is clear that while the

2 and 3 body rates both increase with higher densities and colder temperatures, in

dense, cold plasmas 3-body recombination will dominate, but as the density drops

and temperature rises the relative importance of the 2-body recombination mecha-

nism increases.
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After the individual clusters have dropped below critical density (100 – 400

fs) and merged (1 – 5 ps) to form a uniform plasma column, EUV attributed to

recombination has been observed as the uniform column undergoes further expansion

and cooling. Experiments in nitrogen clusters observed this EUV emission between

1 and 1.8 nanoseconds using an x-ray streak camera [74]. Other groups have also

observed nanosecond-scale pulses of EUV from xenon [76], krypton [27] and nitrogen

[77] clusters.

1.6 Dissertation outline

The unifying theme of this dissertation is the use of laser-cluster interactions to

facilitate the production of modulated plasma waveguides and EUV from plasmas

produced in laser-irradiated clusters. Having introduced the basics of the laser-

cluster interaction in Chapter 1, Chapter 2 provides a thorough description of the

experimental apparatus, starting with the specifications of our cryogenic cluster

source, followed by our 10 gigawatt Nd:YAG system and our 1 and 25 terawatt

Ti:sapphire laser systems. The vacuum system in which the interactions take place

is described in Appendix A.

Chapter 3 provides background on the generation of preformed plasma wave-

guides, then Chapter 4 presents the results of experiments in which modulated

plasma waveguides were generated using ‘ring gratings’ and a wire obstruction tech-

nique. The ring grating technique works by focusing a periodically modulated beam

on a uniform, elongated jet of clusters, resulting in periodic variations in heating that
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lead to modulations in diameter. The wire obstruction method works by focusing a

uniform beam on a target that has been periodically modulated by the placement of

thin wire (< 50µm diameter) obstructions in the flow of clusters, resulting in clean

vacuum gaps in the target.

The Chapter 5 describes experiments in which nitrogen clusters were irradiated

with intense (I0 > 1016 W/cm2) femtosecond laser pulses, creating a fully stripped

plasma. Emission lines from H-like, He-like and Li-like nitrogen in the 1.5 to 15 nm

spectral range were collected using a single-shot flat-field spectrometer (Appendix

B). Trends in this emission were investigated as a function of incident laser energy

and nitrogen cluster radius. These experiments were originally conceived in an

attempt to make a transient x-ray laser [78] on the 2p3/2 → 1s1/2 and 2p1/2 → 1s1/2

transitions in H-like nitrogen, but no amplification was observed.

Finally, in Chapter 6, the experimental results are briefly summarized and

future experiments are discussed.
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Chapter 2

Experimental apparatus

2.1 Overview

In this dissertation, a cryogenically cooled solenoid-actuated gas valve creates

a jet of clusters within a vacuum chamber to be used as a target for laser-cluster

interaction experiments. Different conical or elongated nozzle configurations were

used to control the geometry of this target, and changing the temperature and

backing pressure of the valve allowed control of the mean cluster size and average

atomic density.

Two distinct laser setups were used to perform laser-cluster interaction ex-

periments. In the first, a pair of custom laser systems are used together — in

Chapter 4, a 10 gigawatt peak power Nd:YAG (Neodymium doped Yttrium Alu-

minum Garnet)-based pulsed laser is synchronized with a 1 terawatt peak power

Ti:sapphire (Titanium doped Sapphire) system. The Nd:YAG is focused with an

axicon to generate a preformed, periodically modulated plasma waveguide in which

the Ti:sapphire pulse can be guided. In the second setup, a commercial (Coherent)

25 terawatt peak power Ti:sapphire system is focused upon a jet of nitrogen clusters

in vacuum to generate EUV. Details of this experiment can be found in Chapter 5.

Additionally, a custom flat-field EUV spectrometer (Appendix B) was constructed

to measure light emitted from the nitrogen plasma created by the 25 terawatt laser
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in the 1.5 – 20 nm spectral range.

2.2 Cryogenic cluster source

The cluster source used in all experiments presented in this dissertation is

capable of making jets of clusters with a mean diameter from 1 – 1000 Å [42] and

mean atomic density ranging from 1016 – 1021 atoms/cm3. This is accomplished

by precisely controlling the temperature and backing pressure of the gas reservoir

within a solenoid valve that expels a variety of gases into vacuum, including argon,

nitrogen, and hydrogen (Figure 2.1). By changing the operating point of the jet

in pressure-temperature phase space, the source can also be operated in regimes

in which it emits jets of unclustered monomers or a stream of liquid droplets with

mean diameter greater than 1 µm [50].

The core of this cluster source is a commercial stainless steel solenoid valve

(Parker Hannifin, General Valve Division series 99, Figure 2.2) capable of high

pressure cryogenic operation in vacuum. These valves use copper gaskets that are

capable of remaining sealed over a broad range of temperatures (−180◦ to 45◦ Cel-

sius) while backed at high pressure (up to 1000 PSI). In contrast, valves sealed

with elastomers (such as the General Valve Division Series 9) tend to develop leaks

below −100◦ Celsius. Additionally, leaks can result from the deep groove that is

eventually worn in the poppet where it seats and seals on the inner surface of the

orifice in the valve body, after many hundreds of thousands of opening cycles. To

extend the lifetime of the valve, a Kel-F poppet is used instead of the softer Teflon
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Figure 2.1: Photograph of the cryogenic cluster source used in these experiments,

shown with an 15 mm elongated nozzle installed on the solenoid valve and a plasma

column created by an axicon-focused Nd:YAG laser pulse.
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poppet that is standard. Eliminating leaks from the gas valve reduces the ambient

background pressure in the vacuum chamber, which is important for minimizing the

re-absorption of EUV generated in the laser-cluster interaction [79] and protecting

high voltage components such as photomultiplier tubes.

The solenoid in the valve was driven with a short-pulse high-voltage controller

(General Valve IOTA ONE) capable of opening the valve in as little as 200 microsec-

onds. The controller uses a 300 V high-voltage pulse to quickly open the valve, then

uses a 28 V holding pulse to keep it open. The pulsewidth and voltage of the opening

pulse as well as the voltage of the holding pulse can be modified using jumpers in

the IOTA ONE controller. If the background pressure in the chamber becomes too

high, the voltage intended for the solenoid can short at the electrical feedthrough in

the vacuum chamber, preventing the valve from operating.

Elongated or conical nozzles shape the flow after the gas passes the poppet,

optimizing the geometry of the jet for the application at hand. For example, elon-

gated cluster jets are ideal for waveguide formation, and shorter jets were used to

study EUV generation from clusters without obfuscation by propagation effects.

Additionally, when the gas flow is supersonic, there is a sharp boundary between

the jet and vacuum that helps minimize ionization-induced defocusing.

Releasing a jet of clusters with a duration of less than one millisecond from

the solenoid valve required careful initial assembly of the valve. If the stroke of the

poppet was too large or too short by even a few thousandths of an inch, the valve

did not fully open, resulting in sharply reduced mass output and diminished cluster

formation. The stroke could be coarsely modified by choosing different copper gasket
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Figure 2.2: Cross-sectional drawing of a Parker Hannifin Corporation, General Valve

Division, Series 99 solenoid valve with no nozzle attached.
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thicknesses (0.015” – 0.050” available in increments of 0.005”) and finely controlled

by the amount of compression applied to the gasket by the tightness of the valve

coil assembly with respect to the valve body (valve components labeled in Figure

2.2). This allowed the solenoid to apply sufficient force to the armature to be able

to quickly overcome the opposing forces of the spring and pressurized gas within

the reservoir. In practice, the stroke was optimized by listening to the sound made

by the gas jet as the valve body was slowly tightened while operating at 10 Hz in

atmosphere and optimal performance was then verified by monitoring the pressure

as it was run in vacuum. After the gas jet has been cycled many thousands of times

while backed at high pressure, a groove develops in the poppet and it is necessary to

re-tighten the valve body, slightly reducing the effective copper gasket thickness to

compensate for the lengthening of the armature stroke by the depth of the poppet

groove.

The degree of clustering that occurs within the jet of gas expelled from the

nozzle was controlled by regulating the pre-expansion pressure and temperature of

the gas within the solenoid valve reservoir. Reservoir pressure (50 – 800 PSI) was

controlled by simply using a commercial gas regulator. To adjust the tempera-

ture, the solenoid valve was mounted in a copper block that also contained a liquid

nitrogen line and heating element (Figure 2.1).

The solenoid valve was cryogenically cooled by forcing liquid nitrogen through

a stainless steel tube clamped into the same copper block in which the solenoid valve

was mounted. The cooling rate was controlled by partially restricting the flow of

liquid nitrogen to the copper block with a manually operated plug valve between
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the liquid nitrogen Dewar and insulated feedthrough on the vacuum chamber. The

liquid nitrogen flow rate could be held stable for many hours by maintaining a

constant internal pressure within the Dewar with a gas regulator fed by an external

supply of dry nitrogen gas at a chosen pressure between 5 and 8 PSI.

An electric cartridge heater (Omega Engineering CSS-10150, up to 55 watts)

was clamped in the copper block adjacent to the liquid nitrogen line, because control

of the liquid nitrogen flow rate alone was not sufficient to obtain the desired level

of temperature stability. The temperature was monitored by a type T thermo-

couple in the copper block and digitally displayed by an electronic controller (Omega

Engineering CN77324) which switched the heater on or off based upon whether the

temperature was below or above the chosen set point (−180◦ to 45◦ Celsius). Thus

the coil assembly of the solenoid valve was actively temperature-stabilized with

±0.5◦ Celsius stability [50] for the duration of experimental runs, in some cases >

8 hours.

To allow control of the cluster jet position with respect to the laser focus,

the copper cooling block was mounted on a 3-axis translational positioning stage

with encoded, USB-controlled motorized actuators. The copper block was thermally

insulated from the translation stage with a Delrin spacer and attached with nylon

screws. The liquid nitrogen supply and return as well as the high pressure gas

supply were both connected to the cluster source with flexible stainless steel bellows

to allow the translation stages freedom of motion.
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2.2.1 Cluster source operational procedures

The goal motivating control of the pressure and temperature in the cluster

source gas reservoir is independent control of the mean cluster size and mean atomic

density in the target. Roughly speaking, for a given gas species the pre-expansion

reservoir pressure is the main factor that influences the mean atomic density of the

jet and the mean cluster size is primarily determined by the temperature, as can be

seen in the Hagena parameter scaling [39].

Nonetheless, the degrees of freedom are coupled — changing the tempera-

ture affects the mean jet density as well, and the reservoir pressure also affects the

mean cluster size. Although the underlying dynamics of cluster jet formation are

extremely complicated, the scaling of the mean cluster diameter is well described

by the empirical Hagena parameter discussed in Chapter 1, ∝ T−5.38 and ∝ P 2.35
0 .

Additionally, the impedance of the solenoid in the valve changes significantly (from

75 Ω to ∼ 25 Ω) as it is cooled from room temperature to cryogenic temperatures,

affecting how the solenoid responds to a given electrical pulse from the IOTA ONE.

To compensate for this modified response, the settings can be changed on the IOTA

ONE to reduce the electrical pulsewidth as the jet is cooled, and the relative delay

between the laser and IOTA ONE trigger must then be decreased as well.

To scan the cluster size while holding the average atomic density of the jet

constant, temperature was used to change the cluster size, and the backing pressure

of the jet was then changed to compensate for any changes in mass output. The

average atomic density of the jet could be directly monitored by measuring the
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phase shift imparted on a probe pulse via neutral gas interferometry. However, the

procedure for acquiring and processing interferometric data is time-consuming and

disrupts the process of acquiring EUV spectral data.

It was found that the pressure in the vacuum chamber read using a baratron

with a digital readout (MKS Instruments Model 626A, 0 – 10 Torr with 0.001 Torr

resolution) scales linearly with the mass output of the cluster source. Therefore, by

calibrating chamber pressure readings with interfereometric measurements of the gas

jet density, we were able to use the vacuum chamber pressure to measure neutral gas

density. This pressure measurement was the primary means used for determining

the cluster jet density during these experiments because the instant digital readout

of this pressure measurement was more practical and less time-consuming than the

neutral gas measurement.

2.3 10 gigawatt 100 picosecond Nd:YAG laser

The custom Nd:YAG-based laser system used in the experiments in Chapter

4 to create plasma waveguides generates 100 ps pulses containing of up to 800 mJ

of energy per pulse at a center wavelength of 1064 nm, at a repetition rate of 10 Hz.

This level of energy is achieved by amplifying pulses from a mode-locked Nd:YAG

oscillator with three sequential stages of amplification. The first amplification stage

is a flashlamp-pumped regenerative amplifier (RGA), followed by a two pass am-

plifier in a ring configuration (Power Amplifier 1, or ‘PA1’) and then a final single

pass amplifier (Power Amplifier 2, or ‘PA2’). This system is described in detail

35



Mode-locked 

Nd:YAG 

oscillator 

Regenerative 

Amplifer  

(15 passes) 

Power 

Amplifer  

(1 pass) 
5 W 

100 ps 

@76.3 MHz 

10 mJ 

100 ps 

@10 Hz 

200 mJ 

100 ps 

@10 Hz 

Power 

Amplifer  

(2 passes) 
800 mJ 

100 ps 

@10 Hz 

Figure 2.3: The topology of the 1064 nm Nd:YAG laser system used in the plasma

waveguide experiments presented in Chapter 4. The oscillator, RGA and both

amplifier stages are pumped with flashlamps.

in Chapter 2 of the University of Maryland, College Park Ph.D. Thesis of Tom

Clark [80].

The commercial Nd:YAG oscillator (Coherent Antares) is mode-locked with an

acousto-optic modulator that produces a train of 100 ps pulses at a rate of 76.3 MHz

with an average power of up to 20 watts. However, because a 5 watt pulsetrain is all

that is required to seed the RGA, a half-wave plate (HWP) and thin-film polarizer

(TFP) are used to attenuate the beam to this level. The pulsetrain is then directed

into a pulse slicer composed of a Pockels cell and polarizing beamsplit cube that

selects 10 pulses per second by attenuating the majority of the pulses by a factor of

∼ 103. This pulsetrain is reflected into the RGA, which is thus seeded with ∼ 50 nJ

pulses at a rate of 10 Hz.

The regenerative amplifier (RGA) in this system consists of a flashlamp-

pumped Nd:YAG rod in a self-filtering unstable resonator configuration [81]. The

seed pulse from the oscillator is coupled into and out of the resonator by a two-step

Pockels cell (Thales Medox) and polarizing beamsplit cube, usually requiring ∼ 15

36



round trips to saturate the amplifier. The pulse self-filtered twice on each round trip

by a ∼ 1 mm diameter aluminum pinhole at the common focus of the two concave

cavity mirrors. This amplifies the ∼ 50 nJ seed pulses from the oscillator to ∼ 10

mJ.

After the amplified pulse is switched out of the RGA, it makes two passes

through the first power amplifier (PA1), after which it contains up to ∼ 200 mJ.

The beam travels through the rod in the same direction on both passes in a ring

configuration, which prevents feedback into the RGA. However, the beam clips on

the edge of the PA1 rod as it makes the second pass, so a vacuum spatial filter

(VSF) is needed to smooth out the beam profile. The VSF consists of a pair of

convex lenses on either side of a vacuum tube containing a pinhole with diameter

∼ 100 µm positioned at the focus of the first lens. This smooths out the beam

profile because the focal mode is the spatial Fourier transform of the input beam

profile; variations in the beam profile are contained in the wings of the focal spot,

which are blocked by the pinhole [80]. The VSF is necessary prior to passage into

PA2, which brings the pulse energy as high as ∼ 800 mJ with an intensity close to

the threshold for nonlinear self-focusing. Thus nonuniformities in the beam profile

could cause nonlinear self-focusing, damaging any optics encountered. After leaving

PA2, the beam is relay imaged to a vacuum chamber in which experiments take

place.
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Figure 2.4: The topology of the 2 terawatt peak power 800 nm Ti:sapphire laser

system used in the plasma waveguide experiments presented in Chapter 4.

2.4 2 terawatt 60 femtosecond Ti:sapphire laser

To verify the properties of modulated plasma waveguides, a custom Ti:sapphire-

based laser system was used. It emits 60 fs pulses at a repetition rate of 10 Hz, capa-

ble of up to 100 mJ of energy per pulse at a center wavelength of 800 nm, achieved

using the chirped pulse amplification (CPA) technique [82,83] to temporarily reduce

the intensity of the pulse while it undergoes amplification by temporally stretching

it beforehand and recompressing it to the original pulsewidth afterwards. A de-

tailed description of this laser system can be found in Chapter 3 of the dissertation

of Ki-Yong Kim [84].

First, a passively Kerr-lens mode-locked Ti:sapphire oscillator produces a 50

fs pulsetrain with a 76.3 MHz repetition rate and ∼ 4 nJ per pulse. The pulsetrain

is then stretched into a series of chirped pulses with a width of ∼ 300 ps by the pulse

stretcher, which uses a single diffraction grating design. 10 pulses per second then
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make ∼ 28 passes in a regenerative amplifier, increasing the energy to ∼ 2.5 mJ. A

pair of multi-pass amplifiers then increase the energy of each 2.5 mJ chirped pulse to

50, then 220 mJ. Finally, a dual-grating compressor re-compresses the pulse to nearly

the original duration produced by the oscillator, resulting in a 60 fs, 100 mJ, 10 Hz

pulsetrain. The phase and frequency of the optical pulsetrain was synchronized to

that of the Nd:YAG system described in the previous section using a piezo-driven

mirror in the Ti:sapphire oscillator, as described in Appendix H of Reference [84].

2.5 25 terawatt 36 femtosecond Ti:sapphire laser

A commercial (Coherent) Ti:sapphire laser system capable of a 25 terawatt

peak power output was used for the EUV generation experiments presented in Chap-

ter 6 (Figure 2.5). This peak power level is attained with 36 fs pulses containing up

to 800 mJ of energy, at a center wavelength of 800 nm and a repetition rate of 10 Hz.

The first component of this system is a commercial (Coherent Micra) mode-locked

Ti:sapphire oscillator that emits out a pulsetrain of < 20 fs, ∼ 6 nJ pulses with a

76.3 MHz repetition rate. These pulses are then stretched to ∼ 200 ps with a pulse

stretcher containing a single grating, then are directed into a commercial (Coherent

Legend) regenerative amplifier that generates a 1 kHz pulsetrain with 800 µJ per

pulse. A pockels cell then reduces the repetition rate to 10 Hz, and the remaining

pulses are amplified by a multipass amplifier to ∼ 1150 mJ. Finally, the pulses are

temporally compressed to a 36 fs pulsewidth containing as much as ∼ 800 mJ by a

grating pair in a vacuum chamber.
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Figure 2.5: The topology of the Coherent 25 TW Ti:sapphire laser system used for

the nitrogen EUV experiments presented in Chapter 5.

2.5.1 Coherent Micra oscillator

The Ti:sapphire oscillator used in this laser system is a passively Kerr-lens

modelocked Coherent Micra that emits a train of < 20 fs pulses at a repitition rate

of 76.3 MHz. These pulses have a center wavelength of 800 nm and > 65 nm of

bandwidth at FWHM. The phase and repetition rate of the pulsetrain are actively

stabilized to an RF reference by a Coherent Synchrolock via a mirror mounted to

a piezo-electric transducer (PZT) in the oscillator cavity. The cavity length can be

coarsely adjusted using a cavity mirror mounted on a translation stage controlled by

a motorized micrometer. To compensate for the group velocity dispersion (GVD)

and self-phase modulation experienced by laser pulses within the cavity, a pair of

prisms are mounted on positioning stages fitted with micrometers.

The Ti:sapphire crystal in the oscillator is pumped by a Coherent Verdi, which

uses a diode-pumped Nd:YVO4 (neodymium doped yttrium orthovanadate or ‘vana-

date’) gain medium that is frequency-doubled with an intracavity LBO (lithium
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triborate) crystal to generate up to a 532 nm CW beam with an average power of

up to 5 watts. The Verdi is enclosed within the Micra laser head, and the pump

beam is directed to the Ti:sapphire crystal within the oscillator with a PZT con-

trolled mirror, which allows the Verdi output beam pointing to be actively stabilized.

To maintain thermal stability, the Micra laser head uses a Coherent Super-InvarTM

baseplate with a coefficient of thermal expansion of zero at room temperature, which

is actively maintained with closed-loop chiller.

2.5.2 Coherent Legend kHz regenerative amplifier (RGA)

The 76.3 MHz oscillator output is steered directly into the Coherent Legend

KHz RGA enclosure. There, it first encounters the pulse stretcher that imparts a

positive chirp on the beam, stretching the pulsewidth to ∼ 200 ps in preparation for

amplification by the RGA and multipass amplifier. The pulse stretcher uses a single

concave gold grating which is struck four times by the beam as it is stretched.

The chirped 76.3 MHz pulsetrain is then coupled into the Legend kHz RGA by

reflection off the laser rod. The RGA cavity contains two Pockels cells, one which

actuates to trap a pulse within the cavity and another to expel the pulse after ∼ 10

– 15 passes when it has saturated at an energy of ∼ 800 mJ. The RGA is pumped by

a Coherent Evolution-15, which uses a diode-pumped Nd:YLF (neodymium doped

yttrium lithium flouride) gain medium that is frequency-doubled to 527 nm by an

intracavity LBO crystal. The cavity is acousto-optically Q-switched, emitting ∼ 15

mJ pulses a rate of 1 kHz.
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2.5.3 Multi-pass amplifier

After expulsion from the RGA cavity, the pulsetrain enters the multi-pass

amplifier enclosure. Here it first encounters Pockels cell and polarizer, which allow

pulses 10 per second through while attenuating all others by a factor of 103. The

pulses then make 4 passes through the final amplifier in a bow-tie configuration,

increasing in energy from ∼ 800 µJ to ∼ 1150 mJ. This stage is pumped by a pair of

commercial q-switched frequency-doubled Nd:YAG lasers that emit 532 nm pulses

with < 10 ns pulsewidth at 10 Hz, a Spectra-Physics GCR PRO-290 (1000 mJ per

pulse) and a Continuum Powerlite Plus (1600 mJ per pulse). The fully amplified

pulse is then transmitted through a HWP and TFP, which allows control of the

amount of energy being sent into the pulse compressor (with 70% efficiency), in

which a pair of gratings in vacuum compress the pulsewidth to ∼ 36 fs with up to

800 mJ of energy. The 10 Hz output has a nanosecond prepulse contrast ratio of

∼ 2× 106 (measured with a photodiode) resulting from leakage of other pulses from

the oscillator ∼ 10 ns prior to the main peak and a picosecond prepulse contrast

ratio of > 105 (measured with a 3rd order autocorrelator, Figure 2.6), restricted by

a prepulse 4 ps prior to the main pulse resulting from spectral phase modulation of

the chirped pulse during amplification.
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Figure 2.6: 3rd order autocorrelation trace showing that the ps contrast of the 25

terawatt laser system is > 105 within ±200 ps of the main pulse.
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Chapter 3

Review of high-intensity guiding and applications

3.1 Overview

Modern ultra-short pulse lasers attain extreme focused intensities by squeezing

a modest amount of energy into an extremely small temporal and spatial region,

enabling applications such as particle acceleration [20,85] and generation of coherent

electromagnetic radiation at frequencies ranging from the terahertz [86] to X-ray

region [87–92]. However, diffraction imposes a trade-off between the peak intensity

and focal volume of a beam in free space — focusing the laser more tightly causes

more rapid divergence to a larger beam of weaker intensity. This is a major practical

obstacle, as the simultaneous achievement of ultrahigh intensities and large focal

volumes is necessary for the most efficient and useful realization of these applications.

By definition, waveguides are the solution to this problem. However, ultra-

short pulsed laser systems now routinely exceed focused intensities of 1018 W/cm2,

far greater than the 1012 W/cm2 damage thresholds of even the most durable solids.

This limits the usefulness of standard metal or dielectric waveguides, since the dam-

age threshold of a solid is fundamentally determined by the ionization threshold of

its constituent atoms. Dielectric hollow core waveguides can make it possible to

guide intensities of up to 1017 W/cm2 [93] while containing sparse concentrations of

gas (≤ 1015 atoms/cm3), but at relativistic intensities (≥ 1018 W/cm2) only plasma
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can survive. At these intensities, nonlinear laser-plasma interactions such as pon-

deromotive charge separation [94] and changes in electron oscillation trajectory due

to relativistic mass increases [95] can make self-guiding possible, but this has proven

a less practical method for extending propagation distance at ultra-high intensities

than the generation of preformed plasma waveguides [29].

Over the last 20 years, many groups have developed and demonstrated plasma

micro-optics capable of guiding ultra-intense laser pulses with an effectively unlim-

ited damage threshold. This was first achieved using the radial hydrodynamic shock

expansion of gas plasma heated with an axicon-focused picosecond laser pulse [29],

and later demonstrated in capillaries using an electrical discharge [96–98], in other

variations of the hydrodynamic shock technique [99, 100], and most recently us-

ing laser-driven hydrodynamic shocks in cluster jet targets, both end-pumped [101]

and side-pumped [102]. The optical mode structure and dispersion properties of

plasma waveguides has been discussed in detail [103]. Additionally, self-guiding has

been demonstrated using ponderomotive charge displacement [94], relativistic non-

linearities [94, 95], and the transient nonlinear phase shift from exploding cluster

nanoplasmas [61].

3.2 Guiding in hollow capillaries

While low damage thresholds render solid-core fiber optics useless for this ap-

plication, hollow core-fibers can partially circumvent this limit by directly exposing

the fiber to only the less intense ‘wings’ of the guided laser pulse. This has been
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successfully used for single- [104] or multi-mode [105] guiding. When seeking to

guide the highest possible intensities, single-mode operation is preferable, because

all higher-order transverse modes confine the guided mode less tightly to the wave-

guide center and expose the fiber to higher intensities for a given beam energy.

Linear modal analysis of single-mode propagation in a hollow-core fiber [104] pre-

dicts that during matched single-mode propagation within a 100 µm inner diameter

fiber, the intensity experienced at the wall will be 10−4 times that of the peak in-

tensity. Therefore, the 1012 – 1013 W/cm2 damage threshold of the fiber wall for

femtosecond pulses implies a maximum guided intensity < 1017 W/cm2. Success-

fully attaining this theoretical maximum intensity within a given fiber requires high

mode purity and extremely precise alignment.

However, the presence of matter in the focus is required for all applications

considered in this dissertation. This can be accomplished by filling the fiber with

gas, but ionization-induced refraction limits the densities that can be used to less

than 1015 atoms/cm3. At higher densities, pulse energy can be refracted into the

capillary walls, causing breakdown and destruction of the fiber [104].

Ionization-induced refraction occurs when the transverse intensity gradient of

a beam drives different levels of ionization in a medium. In the case of a lowest-

order mode propagating within a gas-filled hollow-core fiber, the central intensity

peak can create plasma with a radial density gradient and an on-axis peak. This

functions as a concave lens that refracts any subsequent trailing section of the pulse

due to the larger negative index contribution of denser plasmas, as given by the
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plasma index

n =

√
1−

ω2
p

ω2
(3.1)

where n is the index of refraction, ω is the laser frequency, ωp = 4πne/me is the

plasma frequency and ne and me are the electron density and mass, respectively.

Thus hollow-core fibers severely restrict both the peak intensity of the guided pulse

and the density of the medium in which the interaction takes place, limiting their

usefulness for applications.

3.3 Self-guided propagation

Once the reduced vector potential a0 > 0.1, relativistic [106] and ponderomo-

tive [19] nonlinearities within plasmas can affect beam propagation. For the 800

nm Ti:sapphire laser used in these experiments, this corresponds to an intensity

> 2 × 1016 W/cm2. These effects can have a sufficiently substantial positive index

contribution to counterbalance the effects of ionization-induced refraction, allowing

self-focused propagation [94].

3.3.1 Ponderomotively driven charge displacement

The ponderomotive force [19] is a cycle-averaged effect experienced by charged

particles in an oscillating electromagnetic potential gradient U(r), described by

F = −∇U(r) ≡ − q2

4mqω2
∇|E(r)|2 (3.2)

where q and mq are the mass and charge of the particle, E(r) is the electric field

and ω is the laser frequency. This effective force is felt because electrons quivering
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in the laser experience different field amplitudes in different regions of the intensity

gradient, and can‘walk away’ from regions of higher intensity over many optical

cycles. This can reduce the electron density in regions of the highest intensity,

decreasing the phase front velocity and self-focusing the pulse [94, 107].

3.3.2 Relativistic electron motion

The relativistic nonlinearity is due to a mass increase that occurs as the peak

quiver velocity vosc of free electrons in a laser field approaches the speed of light,

modifying their oscillation trajectory. This effect was first predicted almost 40 years

ago [106], and is described by the addition of the Lorentz factor γ = (1−v2
osc/c

2)−1/2

to the plasma index of refraction n:

n =

√
1−

ω2
p

γω2
(3.3)

which has the effect upon the laser phase fronts in regions of higher γ as decreasing

the plasma density would.

Theoretical studies predicted that this index modification would be strong

enough to cause self-focusing above a critical power P [108, 109], later achieved

experimentally in jets of gas in vacuum [95].

While Raman instabilities [110, 111], self-modulation [112] and ionization-

induced refraction [113] are obstacles to relativistically self-guided propagation, they

can be overcome in the highly nonlinear ‘bubble regime’ [114], and self-guiding for

> 1cm has been demonstrated [115,116].

However, the high intensity onset of this effect means that this method of
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self-guiding cannot be used in applications where higher intensities are unnecessary

or undesired, such as high harmonic generation or X-ray lasers.

3.4 Preformed plasma channels

A different approach that can avoid the problems associated with self-guiding

processes is linear propagation within a preformed plasma waveguide. For any struc-

ture to counter the spreading of a beam due to diffraction, it must have a higher

on- than off-axis index of refraction, which in a plasma structure corresponds to an

on-axis electron density minimum. Two mechanisms have been demonstrated for

production of plasma structures fitting this description — the conductive cooling of

a plasma in a capillary structure and a radial shock wave within a hydrodynamically

expanding plasma column.

Assuming a plasma structure with an azimuthally symmetric, radially parabolic

electron density profile Ne(r), matched guiding of a lowest-order Gaussian mode is

supported when the difference in electron density ∆Ne between the axis of the

waveguide and the 1/e2 radius of the guided mode wch is

∆Ne = Ne(r = wch)−Ne(r = 0) ≥ 1

πrew2
ch

(3.4)

where re = 2.82×10−15 m is the classical electron radius [117]. Thus guiding a lowest-

order Gaussian spot with wch = 10 µm requires ∆Ne ' 1018 electrons/cm3 [117].

Modes with smaller radii need ‘deeper’ channels with a larger ∆Ne, which can con-

flict with the ideal electron densities for applications such as wakefield acceleration.

It should be noted that this condition is independent of the guided wavelength,
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which is especially beneficial for applications such as x-ray lasers and high-order

harmonic generation.

3.4.1 Laser-ionized preformed plasma channels

Guiding of high-intensity (≥ 1013 W/cm2) laser pulses was first demonstrated

by Durfee et al. [29] using an axicon-focused laser pulse in a chamber with < 1

ATM of gas backfill (Figure 3.1). An axicon is a conical lens with a J0(k⊥r) Bessel

beam focal intensity profile (shown in Figure 3.1), where k⊥ is the component of the

wavenumber perpendicular to the beam axis as the axicon-focused beam converges.

A line-focused 100 ps pulse creates a plasma waveguide via a multi-stage ion-

ization process followed by radial hydrodynamic expansion that creates an on-axis

density minimum. First, multi-photon ionization of neutral atoms by the laser cre-

ates ‘seed’ electrons which then rapidly oscillate, or ‘quiver’ at the frequency of the

laser field. These quivering electrons then collide with ions, resulting in heating (in-

verse bremsstrahlung) and an avalanche of ionization, because at gaseous densities

the duration of the 100 ps pulse is much longer than the mean electron-ion collision

time [117]. This plasma column is then hollowed out by a radial shock wave as it

undergoes hydrodynamic expansion over the course of several nanoseconds (Figure

3.2) [118]. This results in an electron density profile with an on-axis electron density

minimum sufficiently deep to enable the guiding of high-intensity pulses. The mode

structure of these waveguides has been characterized [103] and can be controlled by

varying the relative delay between the channel-creating and guided pulses.
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Figure 3.1: Schematic of the experimental setup first used to create a preformed

waveguide. A 100 ps Nd:YAG laser pulse with up to 300 mJ was brought to a

line focus with an axicon, ionizing ambient gas. As the plasma column radially

expands, a hydrodynamic shock wave forms a transient structure with an local on-

axis electron density minimum, allowing the guiding of high intensity pulses that are

synchronized to the channel-generating pulse with a delay of several nanoseconds.

The J0(k⊥r) Bessel beam axicon focal profile is shown.
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Figure 3.2: Experimental radial electron density profiles reproduced from Reference

[102], showing the hydrodynamic expansion of a radial shock wave in an argon

cluster jet driven by a Gaussian 100 ps FWHM 1064 nm laser pulse with 150 mJ

(a) and 230 mJ (b) of laser energy.
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However, ionization-induced defocusing at the waveguide entrance prevents the

efficient coupling of high-intensity laser pulses into plasma waveguides produced in

a gas backfill. To avoid this problem, plasma waveguides were subsequently demon-

strated using 1 cm long jets of gas in a vacuum, produced by a solenoid-actuated

gas valve with an elongated nozzle [119]. Guiding of high-intensity femtosecond

Ti:sapphire pulses with intensities > 1017 W/cm2 was successfully demonstrated in

this arrangement [120].

Since these initial experiments, other variations of this technique have been

developed. Volfbeyn et al. [99] used a similar configuration, but with the addition

of an axicon-focused femtosecond pulse prior to the picosecond pulse to aid the

generation of initial seed electrons via optical field ionization (OFI). Additionally,

plasma channels have been generated using pulses focused by cylindrical lenses onto

the side of an elongated gas jet [99], which eases constraints in the experimental setup

by allowing the guided pulse to approach the channel from a different direction than

the channel-generating pulse. However, these channels usually have oval modes that

are less tightly confined than the axicon-generated channels capable of single-mode

guiding. The plasma columns created by self-guided laser pulses have also been used

to generate shorter preformed plasma waveguides [121,122].

However, laser-driven waveguides generated in laser-ionized gas have signifi-

cant constraints, including high plasma densities (> 1019 electrons/cm3) and ineffi-

cient channel heating efficiency, which usually does not exceed 10 – 15%. This is a

due to the initial electron density growth rate of Ne(t) = Ne0 exp(SN0t), where Ne0

is the initial electron density, N0 is the gas density and S is the collisional ionization
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rate. The on-axis waveguide electron density lower limit cannot be circumvented by

auxiliary pre-ionization schemes, because increasing Ne0 does not increase the rate

of exponential ionization growth SN0.

3.4.2 Electrical discharge ionized preformed plasma channels

Preformed plasma waveguides have also been produced within capillaries, first

by Ehrlich et al. [96], who created a column of plasma by ablating the wall within an

initially evacuated polypropylene [(C3H6)N ] capillary (350 µm inner diameter) with

a slow electrical discharge (∼ 1 µs). Cooling of the plasma by the bulk capillary

wall material causes a radial electron temperature gradient, resulting in an approxi-

mately parabolic radial electron density profile appropriate for guiding, in this case

with a matched beam spot 1/e2 radius of w0 ' 28 µm. However, damage from

the ablation process results in a capillary lifetime on the order of several hundred

shots. Additionally, although the plasma is composed primarily of hydrogen that

can be fully ionized by the electrical discharge, the carbon portion can not, leaving

a sufficiently intense guided pulse vulnerable to ionization-induced defocusing [123].

To avoid these problems, gas-filled capillaries have been used. First, waveguide

formation by the imploding phase of a fast Z-pinch discharge within a He-filled

capillary was demonstrated [97]. Later, an electrical discharge was used to ionize

hydrogen gas within alumina capillaries [98, 124], with a capillary lifetime of > 106

shots. This method also removes the potential complication of ionization-induced

defocusing by carbon ions from the capillary wall that was present in the ablation
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scheme. This configuration was used to extend the length of a laser wakefield driven

by a 40 TW laser pulse to 3 cm, generating a GeV electron beam [125].

3.5 Guiding using cluster plasmas

More recently, the propagation of intense pulses has been extended beyond

the diffraction limit with several techniques that take advantage of different aspects

of the nonlinear laser-cluster interaction. Self-guided propagation has been demon-

strated in jets of exploding clusters [61], which also creates a plasma waveguide

after several nanoseconds of radial hydrodynamic expansion [101]. Additionally, by

placing jets of clustered gas in the line focus of a picosecond laser, the average gas

density can be decoupled from the initial electron density growth rate, enabling

the creation of waveguides with lower on-axis electron density and heating that is

up to an order of magnitude more efficient than is possible in unclustered gaseous

targets [102].

3.5.1 Self-guided propagation

As discussed in Chapter 1, when atomic clusters are irradiated with an intense

laser pulse, the real polarizability can be initially positive due to the super-critical

plasma density at the core of the exploding nanoplasma, shielding and excluding

the laser field. The magnitude of the net positive contribution to the index of

refraction is strongly nonlinear in the laser intensity, with a larger transient positive

value for larger intensities. As a result, a laser with a beam profile that peaks on-
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axis can experience self-focusing due to the transiently concave index of refraction

profile [61]. Additionally, during the expansion of the super-critical density region

in the cluster, there is a critical density layer in which the imaginary part of the

polarizability has peaked, resulting in efficient absorption. This effect has been used

to achieve self-guided propagation of up to 8 mm with only 25 mJ of laser energy

(Figure 3.3) [101].

As was the case with the plasma column left in the wake of relativistically self-

guided pulses, hydrodynamic expansion of this 8 mm column results in waveguide

formation after ∼ 1 ns of radial hydrodynamic expansion, and preformed guides

created in this fashion were used to guide pulses with a peak intensity of 3 × 1017

W/cm2, limited by the available laser energy [101].

3.5.2 Preformed waveguide formation

Clusters have proven a useful alternative medium to unclustered gases for the

generation of axicon-pumped preformed plasma channels, allowing lower density,

higher stability and more efficient laser-heating than is possible in gases of compa-

rable average density. When using a 100 ps laser pulse brought to a line focus within

an elongated jet of clusters, absorption efficiencies were shown to be > 35% [102],

compared to ∼ 10% in gas, despite the fact that clusters expand and drop below the

plasma critical density in less than a picosecond [63]. To explain the disparity be-

tween the laser pulsewidth and nanoplasma expansion timescale, it is helpful to view

the laser-cluster interaction as two-stage process. First, the far leading edge of the
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Figure 3.3: Schematic of the experimental setup used to create preformed plasma

waveguides using a self-guided femtosecond laser pulse in an elongated cluster jet

[101].
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100 ps pulse encounters clusters at near solid density, which are ionized extremely

efficiently through electron collisional ionization prior to the arrival of the majority

of the pulse energy. These dense, deeply ionized nanoplasmas then expand, cool

and merge over several picoseconds to form a uniform plasma that is then efficiently

heated by the majority of the pulse energy that then follows [102].

In a gas, the early initial ionization grows at an exponential rate∝ Ne0 exp(SN0t),

where S is the collisional ionization rate, Ne0 is the initial electron density and N0 is

the gas density. In most cases Ne0 � N0, the ‘memory’ of Ne0 does not persist once

the initial exponential growth phase of ionization ends and the final plasma density

is deterimined by the gas density N0. If the gas density is too low insufficient ioniza-

tion occurs for plasma channel formation. As a result, most preionization schemes

(such as those using femtosecond OFI [99]) which increase Ne0 but leave the initial

effective ionization Zeff � 1 are still incapable of producing waveguides with on-axis

plasma densities < 5× 1018 cm−3.

Clusters, on the other hand, can allow the creation of waveguides with on-

axis plasma densities ∼ 1018 cm−3 because the high initial local densities within

the clusters allow the far leading edge of a 100 ps pulse to create plasma with a

large average degree of ionization Zeff � 1 [102]. The remainder of the pulse, which

is much shorter than the timescale for recombination, can then efficiently heat the

merged cluster plasma [102].
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Figure 3.4: Photograph of the experimental setup used to create plasma waveguides

in elongated cluster jets using axicon-focused 100 ps pulses.
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3.6 Applications of plasma waveguides

Plasma waveguides can extend the interaction volume between high-intensity

focused laser pulses and matter, removing the diffraction-imposed trade-off between

focal intensity and volume. However, after guiding has maintained focused propa-

gation for many vacuum Rayleigh lengths, phase-matching between the laser pulse

and process can become a dominant limitation for applications such as acceleration

of charged particles [126–128] and the generation of coherent EUV [129] and tera-

hertz radiation [86]. Depending on the application, ‘phase matching’ refers to the

mismatch between either the phase or group velocity of the driving laser pulse and

the velocity of a relativistic particle beam or the phase velocity of newly generated

electromagnetic radiation.

3.6.1 High harmonic generation (HHG)

High-harmonic generation (HHG) is a prominent example of an application

in which phase matching is critical. HHG can produce bright, coherent EUV or

x-ray emission from the interaction between an intense laser pulse and an ensemble

of atoms or ions. The modulated waveguides developed in this dissertation could

be used to quasi-phase match this interaction in cases where phase matching is not

possible, such as in the presence of deeply ionized plasmas.

HHG is an extreme extension of low-order harmonic generation, which occurs

when a laser field of frequency ω with intensity > 107 W/cm2 drives anharmonic

oscillations of bound electrons about the nucleus of an atom or ion, leading to the
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emission of light at harmonics of the laser frequency (2ω, 3ω, etc.). Low-order har-

monic generation can be understood by perturbatively expanding the polarizability

P as a power series in the electric field E:

P(t) = χ(1)E(t) + χ(2)E2(t) + χ(3)E3(t) + ... (3.5)

where the strength of nth order processes, including nω harmonic generation, is

determined by the nth order susceptibility of the material χ(n).

However, once strength of the laser field becomes of the same order as the

atomic electric field in the ‘strong field’ regime (I0 ≥ 1013 W/cm2), the atomic

potential is severely distorted and perturbation theory is no longer valid. The high

harmonic generation that has been observed in this regime (greater than 700th

order [130]) can instead be understood using the semiclassical model developed by

Corkum [131], in which a laser pulse of frequency ω temporarily liberates an electron

from the nucleus of an atom, accelerates it away and then back over a half-cycle

of the laser field, where it re-collides with the nucleus, releasing the potential and

kinetic energy as a single photon with frequency qω. The maximum possible photon

energy that can be attained with this process, the so-called ‘cut off’ energy, is:

~ωc = Ip + 3.17Up (3.6)

where ωc is the ‘cutoff frequency’, Ip is the ionization potential of the electron and

Up is the ponderomotive potential of the electron within the laser field, given by

Up =
e2E2

4meω2
∝ Iλ2 (3.7)

where e is the charge of an electron, me is the electron mass, and E and ω are the
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Figure 3.5: Representation of the multi-stage ionization process. First, the electron

is ionized (a) at the peak of the laser field, then it is accelerated away from the

nucleus (b), then it recollides (c) emitting an EUV photon.

the amplitude and frequency of the driving laser electric field, respectively. This

semiclassical picture of the HHG process was corroborated soon afterwards using

fully quantum mechanical theory [90].

3.6.1.1 Phase-matching

To generate harmonics sufficiently bright for use in applications, a large en-

semble of atoms is required at the focus of the driving laser, in which macroscopic

factors, especially phase-matching, can have a large effect on conversion efficiency.

Phase matching refers to the relative difference in phase velocity between the fun-

damental and harmonic waves in the nonlinear medium, usually expressed as the

difference in propagation constant ∆k = qk0 − kq, where k0 is the fundamental
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wavenumber and kq is the wavenumber of the qth harmonic. When there is a

phase mismatch ∆k 6= 0, newly generated harmonics will be perfectly out of phase

with those previously generated after a coherence length Lc = π/∆k of propaga-

tion within the medium. This harmonic intensity then sinusoidally oscillates with

propagation distance, at a period of 2Lc. Thus when the goal is maximizing the

brightness of generated harmonics, extending the interaction length beyond Lc is

pointless and can even be counterproductive.

3.6.1.2 Quasi-phase matching

When an adequate phase matching is not possible, quasi-phase matching

(QPM) of the interaction then becomes necessary. QPM periodically modifies the

index mismatch as the pulse propagates to partially compensate for imperfect match-

ing. Quasi-phase matching has been most successfully implemented in low-order har-

monic generation, by using crystals with a periodically poled structure that reverses

after each coherence length, allowing extremely high efficiencies. This polarization

flip reverses the relative phase between the fundamental and harmonic fields just

as they have completely slipped out of phase, causing the pre-saturation harmonic

intensity to grow at a rate reduced by π/4 compared to what would be achieved

with perfect phase matching.

In HHG, quasi-phase matching cannot be implemented in periodically poled

crystals due to the lower damage threshold and high absorption of EUV in solids.

However, several other means for periodically correcting the phase mismatch in
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HHG have been successfully implemented by suppressing the HHG process every

other coherence length Lc, eliminating the out of phase harmonic production that

would otherwise cause destructive interference. Mathematically, this process can be

understood as adding an extra term ∆kQPM = π/Lc to the wavenumber mismatch

that compensates for the dispersion experienced in the un-matched HHG.

In waveguides, this was first achieved by adding diameter modulations to gas-

filled capillaries with an axial periodicity of [132, 133], and later via mode-beating

in straight pre-ionized plasma waveguide within a capillary [134]. These methods

modulate the intensity of the guided pulse, periodically reducing the efficiency of

the HHG process. Additionally, counterpropagating pulse trains [135] or a counter-

propagating infrared beam [136] were used to periodically interfere with the HHG

process in a capillary. In free space, evenly spaced jets of gas separated the coher-

ence length in vacuum [137] and specially designed gas jets with alternating zones

of different gas species [138] have also been demonstrated.

In this dissertation, we present a pair of techniques for generating periodi-

cally modulated plasma waveguides that could allow implementation of quasi-phase

matched HHG without the driving pulse intensity limitations of previous techniques.

In addition, these newly developed structured plasma waveguides could be used to

quasi-phase match the direct acceleration of charged particles [126].
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Figure 3.6: Overview of the direct laser acceleration scheme. When a relativistic

seed electron bunch and a radially polarized laser pulse are injected into a modulated

plasma waveguide with proper phasing, there is an axial component of the laser field

that causes the electron bunch to feel net acceleration over many cycles of the laser

field.

3.6.2 Direct acceleration of charged particles (DLA)

There is currently great interest in Laser Wakefield Acceleration (LWFA),

a laser-based particle acceleration scheme that may lead to a new generation of

compact, energetic and cost effective particle accelerators. LWFA uses an intense

ultrashort laser pulse to drive a plasma wave in its wake. The charge separation in

this plasma wave results in extremely strong electric fields > 1011 V/m, capable of

accelerating a co-propagating electron bunch [20]. This method has been successfully

implemented in a 3 cm long plasma waveguide to produce a GeV electron beam,

driven by a 40 TW peak power laser pulse [125].

However, while the multi-TW laser systems capable of ponderomotively driv-

ing the highly nonlinear plasma waves required for LWFA are smaller and less expen-
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sive than a conventional accelerator with similar capabilities, these systems begin

to approach the limits of what a smaller, university-scale lab can accommodate.

Additionally, the nonlinearity of the plasma wave used to couple energy from the

laser pulse to the electron bunch makes it difficult to attain the necessary pointing

and emittance stability required for the staging of several accelerators.

Direct acceleration of charged particles (DLA) [126] is currently being de-

veloped as an alternative laser-based particle acceleration scheme. The acceleration

gradient of this method scales linearly with the laser field intensity, and can therefore

be used with smaller lasers that cannot attain the intensities required to drive wake-

fields. The primary obstacles to directly accelerating charged particles with laser

light are the transverse and oscillatory nature of the laser electric field, and DLA

solves those problems with a radially polarized driving pulse and modulated plasma

waveguides presented in this dissertation, respectively. Simulations have shown that

relatively modest laser pulses from few-mJ femtosecond kHz regenerative amplifiers

could directly accelerate electrons with a gradient of ∼ 100 MV/cm [126].

The most obvious obstacle to using electromagnetic waves for direct particle

acceleration is the fact that the electric fields at the focus of the linearly polarized

output of most lasers is transverse, and the interaction between charged particles

and a laser in a cross-propagating geometry is too brief to facilitate efficient energy

transfer. Thus in an ideal scenario the electric field and wave vector of the laser

would point in the same direction, to allow an extended interaction between an

axially directed electric field component and a co-propagating electron bunch. This

can be accomplished using a radially polarized laser pulse, for these beams have an
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Figure 3.7: Schematic illustration of how a radially polarized laser pulse has an on-

axis electric field component in the propagation direction of the laser when focused.

axial component when focused (Figure 3.7). This can be seen because ∇ · E = 0,

where

∇ · E =
∂Er
∂r

+
1

r

∂Eθ
∂θ

+
∂Ez
∂z

= 0 (3.8)

and since ∂Eθ/∂θ = 0 for a radially polarized beam, ∂Er/∂r = −∂Ez/∂z and Ez 6=

0. However, like every component of any electromagnetic wave, Ez is oscillatory and

when focused in free space will give an equal and opposite backwards push for each

forwards push, with no net acceleration over many optical cycles.

To achieve perfectly phase-matched direct laser acceleration, the phase velocity

of the axial component of the laser field must be the same as the velocity of the

charged particle bunch. The Woodward-Lawson theorem [139] states that the net

energy gain of a relativistic electron interacting with an electromagnetic field in

vacuum is zero, because the strictly subluminal electron velocity can never match

the speed of light at which the laser phase travels. However, placing a gas in the

laser focus violates the assumption of vacuum in this theorem, slows the laser phase
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Figure 3.8: Schematic drawing illustrating how radially polarized light within a

modulated waveguide can do work on co-propagating electrons in spite of the oscil-

latory nature of the electric field. When the modulation period is Lc/2, the electron

bunch experiences one cycle of the laser field with each waveguide period, feeling

a backwards push when the mode is wider and a forwards push when the mode is

narrower and more intense, leading to a net gain in energy with each modulation

period.

68



velocity and makes it possible to achieve phase-matching by tuning the pressure of

the gas. This was demonstrated by Kimura et al. in an inverse Cherenkov geometry,

yielding an acceleration gradient of 310 keV/cm [140].

As was the situation with pressure-tuned phase matching in HHG, the ioniza-

tion threshold of the gas restricts the laser intensity due to the strictly superluminal

plasma phase velocity which cannot be matched with the subluminal particle ve-

locity. Thus at higher intensities, quasi-phase matching becomes necessary. The

modulated plasma waveguides presented in this dissertation [141,142] could accom-

plish this with a modulation period of 2Ld, emphasizing the in-phase accelerating

forces and de-emphasizing the out of phase decelerating forces in a structure with

an effectively unlimited damage threshold [126–128].

3.6.2.1 Slow waves

In addition to discussing the effects of channel modulations upon laser prop-

agation in the terminology of quasi-phase matching, we can view the modulated

plasma channel as a ’slow wave’ structure. This is especially relevant to DLA, as

this language is usually used to discuss the structured copper cavities used in RF

based particle accelerators. The direct laser acceleration scheme is analogous to

these conventional accelerators, using plasma structures instead of copper, driven

by infrared optical radiation instead of microwaves.

The phase velocity of a Gaussian beam in an unmodulated plasma channel is

vp
c

= 1 +
N̄e

2Ncr

+
λ2

0

2π2w2
ch

(3.9)
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where wch is the 1/e field radius of the guided mode, N̄e is the average electron

density on axis, Ncr is the critical density and λ0 = 2π/k0 is the laser vacuum

wavelength [126,127]. For the deeply ionized plasmas required in waveguides capable

of withstanding the propagation of ultra-high intensity pulses, the phase velocity in

a straight channel is strictly superluminal.

However, a modulated plasma waveguide adds a negative term to the right

hand side of the phase velocity equation,

vp mod
c

=
vp
c
− mλ0

d
= 1 +

N̄e

2Ncr

+
λ2

0

2π2w2
ch

− mλ0

d
(3.10)

where m is an integer and d is the axial modulation period of the waveguide. This

term from the modulation can balance the positive contribution of the plasma,

creating ‘slow wave’ components of the propagating beam at values of m that yield

a subluminal phase velocity. This occurs because the corrugations add additional

‘branches’ to the ω versus k dispersion diagram, where k = k(ω) is the axial wave

number of the guide and ω is the angular frequency. More specifically, adding axial

modulations allows a new set of solutions to satisfy Maxwell’s equations within the

waveguide, given by u(r⊥, z, ω) exp(ikz), where u(r⊥, z + d, ω) = u(r⊥, z, ω) and

k = kc(ω) + 2πm/d (from the Floquet-Bloch theorem), u is an electromagnetic field

component, r⊥ is transverse position and kc is the fundamental axial wave number

[143]. Direct acceleration becomes possible when the subluminal phase velocity

of one of the slow waves components m matches the velocity of co-propagating

relativistic charged particles.

For the experimentally measured parameters presented in Chapter 4, of wch =
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15 µm, N̄e/Ncr = 4 × 103 and l/d = 2.7 × 103, m ≥ 1 is required for a sub-

luminal phase velocity. If the dominant contribution to the generation of slow

spatial harmonics comes from the variation of the wave phase φ from sinusoidal

density modulations of relative amplitude δ, then dφ/dz = −k0α cos(2πz/d), where

α = δN̄e/(2Ncr) and the ratio of the amplitude of the mth spatial harmonic to

the local field amplitude is Em/|E| = Jm(αd/λ), where Jm is the ordinary Bessel

function. The magnitude of a given spatial harmonic can thus be maximized by

the appropriate choice of the density modulations and their period. In the case of

Figure 4.12(b)(ii), δ = 0.43 gives αd/λ = 0.32. Thus, the relative amplitude of the

first slow-wave harmonic is J1(0.32) ' 0.16, for which (1 − vp/c) = 5.2 × 10−4 and

relativistic γ ' 30.
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Chapter 4

Modulated Plasma Waveguides

Here we present two newly developed methods that add periodic modulations

to plasma waveguides generated using the hydrodynamic shock technique in a clus-

ter jet [141,142]. These structures enable the pursuit of several exciting lines of re-

search which require quasi-phase matching, including direct acceleration of charged

particles driven by guided, radially polarized femtosecond pulses [126–128], high

harmonic generation [132,133] and the creation of high-power terahertz pulses [86].

4.1 Experimental setup

Modulated waveguides were demonstrated using two methods, both of which

are modified versions of the setup used to make laser-produced unmodulated wave-

guides in cluster jets described in Chapter 3. In the first, a laser pulse with a radially

periodic intensity distribution is brought to a line focus on a uniform clustered target

using an axicon [141]. This creates and nonuniformly heats a plasma column, lead-

ing to axially periodic diameter modulations in what we refer to as a ‘corrugated’

structure. The second uses a uniform laser pulse and a nonuniform clustered target

with sharp discontinuous gaps at periodic intervals imposed by placing wire obstruc-

tions in the cluster flow [142]. These two techniques lead to periodically modulated

channels with distinct characteristics that are optimal for different applications.
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Figure 4.1: Experimental layout for generation of channels using the hydrodynamic

shock method. An axicon-focused Nd:YAG laser pulse (200 – 800 mJ, 100 ps,

1064 nm), which overfills an elongated cluster jet target making a 15 mm plasma

channel. Modulations can be imposed upon the plasma waveguide by either spatially

modulating the Nd:YAG pulse with a ring grating or obstructing the cluster jet at

periodic intervals with wires. Ti:sapphire laser pulses (70 mJ, 60 fs, 800 nm) were

guided after being focused to the entrance of the channel entrance through a hole

in the axis of the axicon.
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In both modulation methods, a 100 ps Nd:YAG laser pulse (10 Hz, 1064 nm,

up to 800 mJ) is focused by an axicon to a 25 mm line-focus positioned 2 to 3 mm

above a 15mm long elongated jet of clusters. The cluster jet is generated by the

cryogenically cooled source described in Chapter 2, using a solenoid actuated gas

valve with a 1 mm diameter orifice connected to an elongated nozzle with a 15 mm

long, 1 mm wide exit geometry. The mean cluster size and average atomic density

within the jet was controlled using valve temperature, backing pressure, gas species

and nozzle geometry as described in detail in Chapter 2. This line focus overfills

the length of the cluster jet, resulting in a 15 mm long plasma column (Figure 4.2).

After the arrival of the Nd:YAG laser pulse at time τ = 0, a radial hydrodynamic

shock wave in the plasma column drives expansion, resulting in a tubular plasma

profile with an on-axis electron density minimum when 0.1 . τ . 10 ns. This

profile supports guiding of low-order modes with reasonable coupling efficiency when

1 . τ . 3 ns. A Ti:sapphire laser pulse (70 mJ, 60 fs, 800 nm) then arrives and is

focused through a hole in the axis of the axicon and coupled into the entrance of

the waveguide.

The channel length can be extended by increasing the length of the cluster

jet and/or decreasing the base angle of the axicon. The use of a clustered target in

conjunction with an axicon-focused 100 ps pulse allows decoupling of the average

gas density from the degree of ionization within the plasma channel as discussed in

Chapter 1. This setup is used to generate both types of modulated plasma channels,

with the addition of either a transmissive diffractive optic (a ‘Ring Grating’, Figure

4.2(d)) to periodically modulate the laser intensity, or the addition of an array of
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Figure 4.2: Detail of the interaction region for generation of channels using the

hydrodynamic shock method. First, an axicon-focused Nd:YAG laser pulse (200 –

500 mJ, 100 ps, 1064 nm) that has been radially modulated by transmission through

a ring grating (d) creates a modulated plasma channel in an elongated cluster jet.

A Ti:sapphire laser pulse (70 mJ, 60 fs, 800 nm) arrives 1 – 3 ns later and is then

focused to the entrance of the guide through a hole in the axis of the axicon. The

radial plasma density of the channel (c) was directly measured by Abel inverting

the extracted phase from an interferogram (b) taken with a 60 fs probe pulse.
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wire obstructions to modulate the cluster jet.

Radial and axial profiles of the plasma density were obtained with the optical

interferometry setup shown in Figure 4.1. A small portion of the femtosecond pulse

(∼ 1 mJ) is sent transversely through the plasma column (Figure 4.2(a)), which

imparts a phase shift on a section of the probe. The probe pulse is then split,

spatially offset, and recombined in a folded wavefront interferometer. By using the

flat phase front at the edge of the beam as a reference, the phase shift imparted by

the plasma is encoded in the spatial phase of the fringes of an interferogram collected

by a CCD camera (Figure 4.2(b)). This image is processed by extracting the phase

and Abel-inverting the image about the axis to obtain radial density profiles (Figure

4.2(c)). A detailed description of the algorithm used to implement the Abel inversion

integral can be found in a prior dissertation from our group [144]. In addition, this

imaging system can collect ‘shadowgrams’ when an arm of the interferometer is

blocked, producing an image that shows how the probe pulse is refracted by the

plasma, used primarily as an alignment diagnostic.

4.1.1 Waveguide stability

Cluster-based plasma waveguides were generated at a repetition rate of 10 Hz

with extremely high stability, exhibited in the exit modes of the guided femtosecond

pulses. In sequences of 100 consecutive end mode images of guided femtosecond

pulses in hydrogen (argon) cluster plasmas, we observed RMS centroid jitter of 2.6

(3.5) µm with a mean FWHM of 15.4 (18.9) µm, as determined by a Gaussian
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fit to each spot profile [141]. The primary source of jitter is the pointing of the

femtosecond laser prior to coupling into the waveguide. By tuning the relative delay

between the channel generating 100 ps laser pulse and the guided femtosecond pulse,

we can achieve consistent single mode guiding. A sequence of 12 consecutive guided

end mode images from an unmodulated hydrogen plasma waveguide are shown in

Figure 4.3. The waveguide acts as a spatial filter for the guided pulse. Neither of

the modulation techniques presented here negatively affects waveguide stability.

4.2 Ring grating (RG) modulations

Our first method for imposing axial modulations upon a plasma channel re-

lies upon the use of a ‘ring grating’ (RG), a transmissive diffraction grating with

azimuthally symmetric rulings (shown in Figure 4.2(d)), which we fabricate by litho-

graphically etching concentric grooves on the surface of a 1” diameter, laser-grade

fused silica disc. By centering a RG in the path of the channel-generating 100 ps

laser pulse, the transmitted beam acquires radial intensity modulations as a result

of interference between multiple diffracted orders from the grating. Upon subse-

quent refraction and focusing by the axicon, the radial intensity modulations result

in axial intensity modulations in the J0(k⊥r) focal intensity profile at the line focus

(bottom right panel in Figure 4.4), leading to periodic variations in plasma heating

at the central on-axis intensity maximum. By carefully choosing the groove period,

depth and duty cycle (ratio etched to unetched area) of this pattern we can control

the properties of the waveguide modulations.
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Figure 4.3: A sequence of 12 consecutive end mode images of guided Ti:sapphire

pulses (20 mJ, 60 fs, 800 nm) in unmodulated hydrogen plasma waveguides with a

relative delay of 1 ns. The channels were generated by Nd:YAG laser pulses (500

mJ, 100 ps, 1064 nm) focused in a jet of hydrogen clusters released by a source that

was held at a temperature of −150◦ Celsius with 800 psi backing pressure. The

set of images from which this sequence was taken has an RMS jitter of 2.6 µm and

mean FWHM of 15.4 µm. The main source of jitter in these images pointing of the

femtosecond laser prior to coupling into the waveguide, the plasma structure itself

is extremely consistent.
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Figure 4.4: Sectional diagrams showing the radius vs propagation direction as a

beam travels through a ring grating and then an axicon, demonstrating how periodic

modulations are imposed. The lithographic etch depth of the grating was chosen to

maximize the efficiency of the n = ±1 diffracted orders, so only those are shown.

The n = −1(+1) diffracted order of the ring grating is an inwardly (outwardly)

traveling Bessel beam which converges towards the line focus of the axicon at a

sharper (shallower) angle than the n = 0 order beam, as shown in the first (second)

row. When both are focused together as shown in the third row, they interfere on-

axis, resulting in a time-averaged intensity profile with periodic axial modulations.
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The 100 ps pulse can be thought of as an impulse on the hydrodynamic time

scale (∼ 0.1 – 0.5 ns) of the heated bulk plasma column formed from merged cluster

explosions that remains after the pulse [102]. The merged cluster plasma then under-

goes radial hydrodynamic expansion, with a faster expansion shock wave occuring

in regions that underwent more intense heating, producing a diameter-modulated

corrugated plasma waveguide (Figure 4.2(c)).

The ring gratings were fabricated at the University of Maryland Laboratory

for Physical Sciences (LPS) by transferring the patterns from chrome-on-sodalime

masks (custom fabricated by Microtronics Inc.) with contact lithography, which

uses a layer of photoresist on 1” diameter fused silica discs followed by reactive ion

etching. The etch depth was chosen to be ∼ 1 µm to impose a ∼ π phase shift on

alternating radial zones of the 1064 nm Nd:YAG pulse, minimizing the intensity of

the zero-order transmitted beam. A ring grating is the Fresnel lens equivalent of an

axicon, creating Bessel beams with finite transverse extent.

When light of wavelength λ is incident upon the rulings with an angle θi from

the surface normal, light is diffracted according to the grating equation,

sin θi + sin θm =
mλ

d
(4.1)

where d is the groove period and mth order diffracted maxima occur at θm for integer

values of m = 0,±1,±2,±3, .... In these experiments, the ring gratings are used in

a normally incident geometry (with the beam incident on the ungrooved side of the

window), so θi = 0 and order m is diffracted with an angle θm = arcsin
(
mλ
d

)
. In

a grating with parallel grooves, the diffracted orders are plane waves, but in these

80



azimuthally symmetric gratings the mth diffracted orders form cones of rays that

converge or diverge at θm.

By placing a ring grating in series with an axicon, multiple diffracted orders

from the grating are brought to a common line focus, where they interfere and result

in periodic axial intensity modulations (Figure 4.4). The angles γm (with respect

to the beam axis) with which the mth Bessel beam approaches the line focus of an

axicon is determined by the initial angle θm (also with respect to the beam axis)

and the base angle of the axicon θbase (the angle between the conical and flat faces

of the axicon) by applying Snell’s law twice, as the beam enters and exits the axicon

as follows:

θmid = arcsin

(
n1

n2

sin θm

)
(4.2)

γm = arcsin

(
n2

n1

sin(θbase + θmid)

)
− θbase (4.3)

where n1 and n2 are the indicies of refraction of the medium of incidence (vacuum

in this case) and axicon, respectively, and θmid is the Bessel beam angle with respect

to the axis, within the axicon. In our setup, a fused silica axicon with an index of

refraction n2 = 1.4496 at 1064nm and a base angle of θbase = 28◦ was used.

As the Bessel beams that originated as the mth diffracted orders of a ring

grating converge through the line focus of the axicon at angles γm, they will interfere.

In the case of the m = ±1 orders, the time-averaged on-axis electric field amplitude

is

E(z) = eik cos γ1z + eik cos γ−1z (4.4)
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which has the on-axis (r = 0) intensity distribution

I(z) = |E(z)|2 = |eik cos γ1z + eik cos γ−1z|2 (4.5)

= 1 + eik(cos γ1−cos γ−1)z + e−ik(cos γ1−cos γ−1)z + 1 (4.6)

= 2(1 + cos(k(cos γ1 − cos γ−1)z)) (4.7)

so the on-axis intensity modulations from a pair of Bessel beams converging at angles

γ1 and γ−1 have a period Λm of

Λm =
2π

k(cos γ1 − cos γ−1)
(4.8)

which is half the period of the field modulations. In a given experimental configura-

tion, the values of γ1 and γ−1 are determined by the angles with which the diffracted

orders from the ring grating are refracted towards the line focus by the axicon. In

these experiments, ring gratings with periods d = 10, 40, 70, 100, and 300 were used,

which correspond tom = ±1 order diffracted angles of θ±1 = 6.10◦, 1.52◦, 0.87◦, 0.61◦

and 0.20◦ respectively.

4.2.1 ‘Beating’ of an odd number of diffracted orders

In practice, the transmitted m = 0 order of the ring grating was not completely

eliminated by our choosing etch depth to give a π phase shift, and the m = 0 order

was co-focused with the m = ±1 diffracted orders by the axicon. This added an

envelope of lower frequency axial periodicity (henceforth referred to as ‘beats’) to

the line focus of the axicon (Figures 4.5 and 4.6) in a way that could severely disrupt

quasi-phase matched processes. These ‘beats’ were observed in plasmas generated
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Figure 4.5: Diagram showing agreement between experimentally generated plasma

profiles and a calculated intensity profile for a 40 µm ring grating, for which θ±1 =

1.524◦. When used in conjunction with a θbase = 28◦ base angle fused silica axicon,

this corresponds to γ1, γ0 and γ−1 values of 16.742◦, 14.886◦ and 13.067◦, respectively.

Plot (a) and photograph (b) predict and demonstrate a ∼ 1.1 mm beat period, and

plot (c) and shadowgram (d) predict and show a modulation period of ∼ 130 µm.

The plasma shown in (b) and (d) was generated in atmosphere.
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Figure 4.6: Diagram showing agreement between experimentally generated plasmas

and a calculated intensity profile for the focal intensity of a 100 µm ring grating,

for which θ±1 = 0.610◦. When used in conjunction with a θbase = 28◦ base angle

fused silica axicon, this corresponds to γ1, γ0 and γ−1 values of 15.624◦, 14.886◦

and 14.155◦, respectively. Plot (a) and photograph (b) of a plasma generated in

atmosphere show agreement with a ∼ 5.5 mm beat period, and plot (c) and probe

phase image (d) (of a plasma created in an argon cluster jet) show a modulation

period of ∼ 330 µm.
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in atmosphere and cluster jets and could be eliminated by imaging the ring grating

and blocking the m = 0 order, which will be discussed in the following section. It

may also be possible to completely eliminate the m = 0 transmitted order by more

carefully fabricating the gratings closer to the ideal specification of an etch depth of

1064 nm and a duty cycle of 50/50.

To determine the details of this periodic behavior we consider three Bessel

beams approaching a line focus and at angles γ1, γ0 and γ−1 with equal intensity and

wave number magnitude k. Neglecting polarization, this results in a time-averaged

electric field at r = 0 with axial dependence of

E(z) = eik cos(γ1)z + eik cos(γ0)z + eik cos(γ−1)z (4.9)

which results in an intensity

I(z) = |E(z)|2 =
(
eik cos(γ1)z + eik cos(γ0)z + eik cos(γ−1)z

)
... (4.10)

×
(
e−ik cos(γ1)z + e−ik cos(γ0)z + e−ik cos(γ−1)z

)

= 1 + 2 cos[k(cos(γ1)− cos(γ0))z] + ... (4.11)

1 + 2 cos[k(cos(γ1)− cos(γ−1))z] + ...

1 + 2 cos[k(cos(γ0)− cos(γ−1))z].

To understand the behavior of this expression, the axial intensity profile I(z) is plot-

ted for two sets of γ1, γ0, γ−1 (Figures 4.5(a) and 4.6(a)) corresponding to those found

in experimentally tested ring grating and axicon pairs, at two levels of magnification,

along with images (photographic and probe pulse) of corresponding experimentally
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generated channels. Ring gratings with a ruling period of 100 and 40 µm were used,

for which θ±1 = 0.610◦ and 1.524◦, respectively. When used in conjunction with a

θbase = 28◦ base angle fused silica axicon, this corresponds to γ1, γ0 and γ−1 values of

15.624◦, 14.886◦, 14.155◦ and 16.742◦, 14.886◦, 13.067◦ respectively. The wavenum-

ber of our λ = 1064 nm Nd:YAG laser in vacuum is k = 2π/λ = 5.9 × 106. It can

be clearly seen that the periodicity of the predicted and experimentally measured

structures match almost perfectly.

The critical observation to be taken away from these plots is that the high

frequency intensity oscillations undergo a π phase shift with each ‘beat’, resulting in

destructive interference and cancellation of quasi-phase matching in any interaction

longer than the beat period, which was ∼ 5.5 mm for 330 µm modulations (Figure

4.6) and 1.1 mm for 130 µm modulations (Figure 4.5). This beating effect will occur

whenever an odd number of diffracted orders interfere at the focus.

4.2.2 Ring grating imaging

To eliminate the ‘beats’ and avoid their detrimental effects upon quasi-phase

matched processes, the ring grating was imaged to the line focus of the axicon instead

of being placed directly in front of the axicon. This allows us to physically block the

m = 0 order at the intermediate focus while leaving the m = ±1 orders unimpeded.

Aberration introduced to the beam by the imaging system did not affect the angles

γm with which the diffracted orders converge upon the line focus of the axicon, as

there was no measured change in the periodicity of the plasma channel after the
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addition of the imaging system.

The imaging setup consisted of pair of 75 mm diameter plano-convex lenses

with a f = 15 cm focal length placed 30 cm apart, imaging the ring grating 60

cm downstream. These large diameter imaging lenses were chosen to have sufficient

numerical aperture to catch the diffracted orders being relayed to the cluster jet.

The optical elements in the path of the laser were, in order, the ring grating, a

f = 15 cm planoconvex lens, a 1064 nm AR coated BK7 glass vacuum window, a

second f = 15 cm planoconvex lens, an 800 nm mirror at 45◦ (which combines the

channel-generating and guided beams) and finally a 28◦ fused silica axicon.

The ring grating was held in an optical mount on a 3-axis transverse positioning

stage in atmosphere, allowing the axes of the axicon and ring grating to be lined

up with respect to one another with sufficient precision. The amount of transverse

positioning precision required is of the order of the ring grating modulation period.

Alignment of gratings with periods < 100 µm was difficult in initial experiments,

because flex of the vacuum chamber walls after evacuation was sufficient to misalign

the ring grating with respect to the axicon. Additionally, when imaging the ring

grating, each diffracted order of the ring grating comes to a high-intensity line focus

in the process of being imaged from the ring grating to the cluster jet, so the axial

position of the optics had to be carefully chosen to avoid damage.

Additionally, as the ruling period of the grating becomes smaller and θm be-

comes larger, the line foci of the +m and −m diffracted orders shift further away

from and closer to the axicon, respectively (Figure 4.4). Due to the finite transverse

extent of the beam, this reduces the axial length of the region of overlap between the
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diffracted orders and thus the length of the modulated guide that can be created.

To enable full overlap of all diffracted orders at the line focus and make the most

efficient use of the beam energy available, the ring grating can be imaged on the

line focus instead of simply placing it next to the axicon as shown in Figure 4.4.

4.2.3 Range of generated modulation periods

Figures 4.6(d) and 4.7(b) show phase images extracted from transverse inter-

ferograms of modulated channels with 330 and 35 µm modulation periods in an

argon cluster jet, generated by ring gratings with radial groove periods of 100 and

10 µm. The use of clustered targets acts to greatly stabilize plasma generation

and is responsible for our ability to ‘sculpt’ fine and consistent modulation features.

Note that all density profiles shown are extracted from the average phase of 200

consecutive interferograms, and the shot-to-shot extracted density variation is less

than 5%.

Corrugated guides were also generated in backfill gases. Figure 4.7(a) shows a

shadowgram of a modulated channel produced in air with a period of 35 µm with a

10 µm ruling period RG. However, channels generated in backfill are not useful for

guiding high intensity pulses due to ionization-induced defocusing, which prevents

the pulse from reaching peak intensity and efficiently coupling into the entrance of

the waveguide. We use these backfill plasmas primarily as an alignment diagnostic.
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Breakdown in Atmosphere Breakdown in Argon Clusters 

35µm 

Extracted phase 

35µm 

50µm 

Raw shadowgram 

50µm (a) (b) 

Figure 4.7: Transverse images of plasma channels with a 35 µm modulation period

imposed using a ring grating a 10 µm radial ruling period. An axicon-focused

Nd:YAG laser pulse (500 mJ, 100 ps, 1064 nm) was brought to focus in atmosphere

(a) and in a uniform elongated argon cluster jet (b). Both images were taken using

a transverse 60 fs Ti:sapphire probe pulse, where (a) is a raw shadowgram and (b)

is the extracted phase from an interferogram.
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Breakdown in Argon clusters Breakdown in atmosphere 

15 mm 

15 mm 

(a) (b) 

Figure 4.8: Photographs of channels with a ∼ 2 mm modulation period, generated

in atmosphere (a) and an axially uniform elongated argon cluster jet (b). The

modulations were imposed upon the channel using a ring grating with a ∼ 0.6 mm

radial period in the path of the axicon-focused Nd:YAG laser pulse (500 mJ, 100

ps, 1064 nm).
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Figure 4.9: Abel-inverted radial electron density images of corrugated plasma chan-

nels made with a ring grating imaged to a hydrogen cluster jet (800 psi backing,

−145◦ Celsius). 3 mm section of channel with (bottom panel (b)) and without (top

panel (b)) a right-to-left propagating guided femtosecond pulse (70 mJ, 60 fs, 800

nm) injected 1 ns after channel formation. Exit mode from the bottom panel of (a)

inset, 30 µm FWHM (c).
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Figure 4.10: Abel-inverted radial electron density images of corrugated plasma chan-

nels made with a ring grating imaged to a hydrogen cluster jet (800 psi backing,

−145◦ Celsius). Detail images of two periods of hydrogen plasma channels, for using

100 ps Nd:YAG laser pulse energies of (a) 200 mJ, (b) 300 mJ and (c) 500 mJ (with

slight RG misalignment with respect to axicon), with interferometer probe delays,

top to bottom, of 0.5 (i), 1.0 (ii) and 2.0 ns (iii).
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4.2.4 Hydrogen plasma RG modulated waveguides

Results for a corrugated hydrogen plasma waveguide are shown in Figures 4.9

and 4.10. Hydrogen plasma is an attractive medium for laser-plasma acceleration

[20, 85] because it is easy to fully ionize during formation, avoiding the prospect of

refractive defocusing and pulse distortion that could be caused by further ionization.

The modulation period of 330 µm was chosen because it ensured clearly observable

periodic oscillations in plasma channel density. Figure 4.9 shows the electron density

Ne(r, z) of a 3 mm section near the entrance of a 15 mm hydrogen waveguide 1 ns

after the arrival of the axicon-focused 100 ps pulse, immediately before (a) and after

(b) guiding of a high-intensity femtosecond pulse. Figure 4.9(c) shows a guided mode

imaged from the exit with 30 µm FWHM. The similarity in density profiles of the

injected (b) and uninjected (a) waveguides shows that the guided pulse has little

effect on the guide. Energy throughput in these hydrogen guides is approximately

10%, yielding output intensity of 1017 W/cm2. Leakage and side scattering out of

the guide due to the modulations are the primary cause of this low throughput.

This side leakage is observed in argon results presented later in this section (Figures

4.11 and 4.12).

Higher magnification pictures of a two-period section of the guide are shown

in Figure 4.10 for 100 ps pulse energies of (a) 200 mJ, (b) 300 mJ and (c) 500 mJ

as a function of interferometer probe pulse delays 0.5, 1, and 2 ns in rows (i), (ii)

and (iii) respectively. It is seen in (a) that using a less energetic axicon-focused

pulse can produce periodic ‘beads’ of plasma, separated by zones of neutral clusters
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and atoms, while (b) shows that using more pulse energy results in a continuous

ionization, which is desirable to avoid ionization-induced defocusing of the guided

pulse. The beads in (a) act as a series of plasma lenslets, collecting the light emerging

from each gap and re-focusing it to the next gap. Figure 4.10(c) shows the result of

an intentional misalignment at 500 mJ of the Bessel beam axis and the RG optical

axis: a continuous plasma fiber is generated with angular fluting. In this case,

owing to the top-bottom asymmetry in the extracted phase image, separate Abel

inversions were performed above and below the optical axis.

4.2.5 Argon plasma RG modulated waveguides

Modulated waveguides with higher average ionization Z were generated in

clustered argon. An extended region is shown at 1.5 ns delay in Figure 4.11(a)

with and without guided pulse injection (bottom and top panels, respectively) 10

ps before and after the guided pulse leaves the frame. The guided pulse has little

effect on the preformed plasma waveguide, but a significant electron density ‘halo’

appears approximately 100 µm outside the channel wall. Sequences of probe images

taken at increasing probe delays show that the halo propagates right to left at the

speed of light with the guided pulse. The halo’s radial location remains constant

over the full 15 mm length of the waveguide, but the initial density of the halo

continuously drops with propagation distance from the entrance of the guide. This

suggests that it is caused by a portion of the guided pulse leaking through the

walls of the waveguide that ionizes neutral clusters around the periphery of the
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Figure 4.11: Extended Abel-inverted radial electron density images of corrugated

plasma channels made with a ring grating imaged to an argon cluster jet with a

330 µm axial period (800 psi backing, 22◦ Celsius). 3 mm section of channel with

(bottom panel (b)) and without (top panel (a)) a right-to-left propagating guided

Ti:sapphire pulse (70 mJ, 60 fs, 800 nm) injected 1.5 ns after channel formation.

(c) Lowest order exit mode from (b), with an average FWHM of 28 µm (c). The

vertical FWHM of (c) is 26 µm and the horizontal FWHM is 30 µm.
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Figure 4.12: Plasma channels modulated by a ring grating in an argon cluster jet at

800 psi backing pressure and room temperature. Magnified images at 2 ns delay of

beaded (300 mJ pump, (a)) and more continuous (500 mJ pump, (b)) modulations.

Left and right columns: (i) density profile of uninjected waveguide, (ii) density

profile of injected waveguide, raw (iii) and Abel-inverted (iv) scattering image at

800 nm corresponding to (ii).
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channel [103], rather than by a portion of the driving femtosecond pulse that failed

to couple into the channel at the entrance and continued to propagate outside of

the channel. Note that although no halo is observed around the hydrogen plasma

channels, the hydrogen clusters in these experiments are smaller and more weakly

bound together, so it is unlikely they can survive so close to the channel after its

formation.

Higher resolution images of modulations near the center of argon cluster chan-

nels are shown in Figure 4.12, revealing in the left column (a) that using a less

energetic axicon-focused pulse (300 mJ) can produce periodic ‘beads’ of plasma sep-

arated by zones of neutral clusters and atoms, while the right column (b) shows that

using more pulse energy (500 mJ) results in continuous ionization. Rows (i) and

(ii) show the plasma channels before and after the passage of the intense guided

femtosecond pulse. It can be seen that the beads in column (a) act as a series of

plasma lenslets, collecting the light emerging from each gap and re-focusing it to

the next gap. Strong additional ionization by the guided pulse is observed in the

initially neutral gaps of the channels in column (a) as the beam is focused and col-

lected by successive segments. Both the beaded and continuous channels in row (ii)

show in more detail the ionization halo seen in Figure 4.11(b) induced by leakage of

the guided pulse through the walls of the channel.

Remarkably, the guided energy throughput of the channel is still ∼ 10%, show-

ing that the plasma lenslets can recapture the guided pulse with reasonable efficiency.

Throughput for continuous channels made with more 100 ps energy is ∼ 20%, yield-

ing a peak intensity of 2 × 1017 W/cm2 at the beam waist, based on the fact that
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the exit mode of the channel is measured at a guide bulge. This peak guided in-

tensity was limited by available pulse energy in the femtosecond laser system. For

comparison, throughput at this injection delay in an unmodulated waveguide is ∼

60%.

Thomson-Rayleigh scattering of guided 800 nm light was transversely imaged

through the same optics used to record probe images is shown before (Figure 4.12,

row (iii)) and after (row (iv)) Abel inversion. These scattering images are dominated

by regions where there was no measurable plasma density prior to the arrival of the

guided pulse, making it clear that the dominant scatterers are likely ionizing clusters

and atoms that either survived in the gaps between beads or in between bulges of

the continuous guide.

4.3 Wire obstruction modulations

Our second method for producing modulated plasma channels uses an axially

uniform channel generating beam focused upon a modulated cluster target, an ex-

ample of which shown in Figure 4.13. We accomplish this modulation of the target

by stretching thin wires with periodic separation across the orifice of our standard 15

mm by 1 mm elongated cluster source nozzle, parallel to the 1 mm dimension. This

array of wires disrupts the cluster jet at regular intervals, allowing the formation of

a modulated waveguide with a uniform axicon-focused 100 ps laser pulse.

98



Ar, H2 or N2 

Cluster Jet 

100ps laser pulse for 

channel generation 
Axicon 

Femtosecond 

laser pulse 

Femtosecond 

probe pulse 

Wire Obstruction Modulated Waveguide Layout 

1.5 cm 

1030 µm 

330 µm 

Extracted Phase 

(a) 

(b) 

(c) 

Figure 4.13: Experimental setup for waveguides modulated with cluster jet obstruc-

tions. A Nd:YAG laser pulse (200 – 500 mJ, 100 ps, 1064 nm) is brought to a line

focus with an axicon, overfilling an elongated cluster jet target with periodic ob-

structions, making a 15 mm corrugated plasma channel. A Ti:sapphire laser pulse

(70 mJ, 60 fs, 800 nm) is focused to the entrance of the guide through a hole in the

axis of the axicon, guiding with electronically adjustable delay. A < 1 mJ portion of

this fs pulse was used to probe the channel transversely, then sent through a folded

wavefront Michelson interferometer. (b) Photograph of channel with an array of 250

µm wires with 1 mm spacing and (c) an extracted phase image of channel with 25

µm wires at a 200 µm modulation period, both in room temperature argon cluster

targets.
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Figure 4.14: Abel-inverted radial electron density images of a single break in a

plasma waveguide as a function of delay, produced with a Nd:YAG pulse (1064 nm,

500 mJ, 100 ps) in 800 psi nitrogen (a−d) and argon (e−h) cluster jets at −145◦ and

22◦ Celsius, respectively. The gap in the channel was caused by a 25 µm diameter

wire across the exit of the elongated nozzle. The wire is in contact with the nozzle,

∼ 2 mm below the channel.
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4.3.1 Single wire obstructions

Initial experiments examined the effects upon the plasma waveguide of a single

25 µm diameter tungsten wire stretched across the short dimension of our gas valve

nozzle. We observed the temporal evolution of the waveguide in the neighborhood

of the wire using the same transverse interferometry setup used in the ring grating

channel experiments. Abel-inverted radial electron density images Ne(r, z) in Figure

4.14 show that this obstruction in the cluster flow causes a gap in the plasma column

with an initial width of ∼ 50 µm. This gap remains remarkably sharp and well

defined as the plasma column expands radially and axially, as the gaps between

sections of the waveguide shrink and eventually disappear after 6 ns of expansion,

for the full useful life of the waveguide.

These images show that the primary effect of a single wire positioned over the

nozzle exit is to cast a localized downstream ‘shadow’ in the cluster flow. Subsequent

guiding experiments, to be discussed shortly, showed that this shadow is a manifes-

tation of the absence of clusters, and hence any appreciable plasma. The mean free

path for inter-cluster collisions with our jet parameters [42] is λcluster = (Nσ)−1 ≈

1 mm, where N ≈ 1013 cm−3 is the cluster density and σ ≈ 1.5 × 10−12 cm2 is the

hard sphere collisional cross section for a 70 Å cluster [42]. λcluster is much larger

than the wire diameters in these experiments, so the cluster encounter with the wire

is almost purely ballistic. Cluster collisions with the wire are of sufficient energy to

disintegrate them, and the resulting low density accumulation of monomers near the

wire might impede the ballistic flow of massive clusters, although the magnitude of
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this effect has not been assessed. It is seen in Figure 4.14 that the edges and gaps

in the nitrogen channels are significantly sharper than those seen in the argon chan-

nels. We attribute this to the larger number of available ionization stages in argon,

which allow electron density profiles to vary spatially over a larger extent.

The effect of 50, 100, and 250 µm wire obstructions upon the channel was also

investigated, and it was found that the break widths in the plasma channel increased

with wire diameter (for example, a 300 µm gap for a 250 µm wire). Smaller diameter

wires led to sharper gaps. It is likely that gaps less than 50 µm can be achieved, but

wires smaller than 25 µm were too fragile to mount with the manual winding method

used in these experiments. Note that like the corrugated channels generated with

ring gratings, wire-modulated plasma channels are highly stable and reproducible.

All density profiles shown in this paper are extracted from the average phase of 200

consecutive interferograms, with a shot-to-shot extracted density variation of less

than 5%.

4.3.2 Arrays of wire obstructions

For this method to be usable for the particle acceleration and coherent light

generation applications requiring quasi-phase matching that were discussed in Chap-

ter 3, a sequence of appropriately located breaks in the plasma channel must be

imposed with an array of regularly spaced wires. The first array constructed con-

sisted of 250 µm wires with 1 mm periodicity, seen in figure 4.13(b). 25 µm wires

with ∼ 200 µm spacing were then used , which produced argon and nitrogen plasma
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Figure 4.15: Waveguides with multiple wire obstructions at the nozzle exit. Abel-

inverted radial electron density profile 2 ns after channel generation in (a) a nitrogen

cluster jet (800 psi, −145◦ Celsius) and (b) an argon cluster jet (800 psi, −85◦

Celsius), both with 25 µm diameter wire obstructions at a 200 µm period. (c)

shows a channel made using the same parameters as (b) but with a Ti:sapphire laser

pulse (70 mJ, 60 fs, 800 nm) guided from right to left. In (d) Rayleigh scattering

of the guided pulse in (c) is imaged by blocking the probe pulse and placing an 800

nm interference filter in the imaging setup.
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waveguides (Figures 4.15(a) and 4.15(b)) with local radial electron density profiles

and temporal evolution similar to those observed with single wires. We observed a

suppression of peak local plasma density where the wires in the hand-wound array

were more closely spaced, possibly also reflecting the effect of monomer interference

with cluster flow.

Any electron density in the gaps of the channels is below the sensitivity of the

transverse interferometer, a clear indication that there were little to no clusters in

that region of the target. However, based on unguided channel images alone, the

gaps could still contain significant unclustered gas density, because the 100 ps Bessel

beam may not cause detectable ionization in the unclustered gas densities of our

jet. A 70 mJ, 60 fs, 800 nm Ti:sapphire laser pulse was then guided in an argon

channel, shown in radial electron density images taken from probe pulses before

(Figure 4.15(b)) and after (Figure 4.15(c)) passage of the guided pulse. After the

high intensity pulse propagated through the gaps there was virtually no change in

plasma density. Given the ion stage of the plasma and the ∼ 1017 cm−3 threshold

phase shift sensitivity of the probe in our optical interferometry setup, the gas atom

density in the gaps must therefore be ∼ 1016 cm−3, assuming ionization of order

10×. An examination of the scattered light from the guided pulse (Figure 4.15(d))

corroborates this conclusion of negligible atom density in the gaps. Note that the

slanted gap shadows seen in figures 4.15(c) and 4.15(d) can be attributed to the

local direction of the flow from the cluster nozzle near that section of the wire grid.

Also seen in Figure 4.15(c) is the halo of plasma density appearing outside the

walls of the plasma waveguide also observed in the RG modulated channels in Figure

104



4.12. The halo is present only with passage of the guided femtosecond pulse, as also

observed in the corrugated channels formed with RGs. We attribute this plasma

halo to leakage of the guided pulse through the walls of the modulated channel,

and subsequent scattering/absorption by unionized clusters in the peripheral region

around the channel. There is no such further ionization in the regions adjacent to

the gaps, reinforcing the conclusion that there are no clusters present in the wire

shadows. Figure 4.15(d) shows Rayleigh scattering of the femtosecond pulse guided

in the channel shown in figure 4.15(c). As was the case for the RG modulated chan-

nel, femtosecond light impinging upon unionized clusters was the primary source

of Rayleigh scattering, which in the channel shown in figure 4.15(c) only occurred

after leakage reached unionized clusters outside channel walls.
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Chapter 5

Nitrogen cluster plasma EUV generation

In this Chapter, we present results from experiments in which a nitrogen clus-

ter jet from a cryogenically cooled gas valve was irradiated with femtosecond laser

pulses of peak reduced vector potential up to a0 = 0.97 ( 2× 1018 W/cm2, λ0 = 800

nm). The original purpose of these experiments was to create a nitrogen soft x-ray

laser on the 2p3/2 → 1s1/2 (λ = 24.779 Å) and 2p1/2 → 1s1/2 (λ = 24.785 Å) Ly-

man α transitions in hydrogen-like nitrogen (N6+). Although no gain was observed,

the process of EUV emission from these laser-irradiated nitrogen clusters is rich in

physics.

This x-ray laser scheme attempted is a transient, recombination-pumped 3-

level laser with severe pumping requirements — more than 50% of an ensemble of

N6+ ions must be in the upper laser level to achieve a population inversion because

the lower level of the lasing transition is the ground state of the ion. To achieve this,

a majority of the nitrogen atoms must first be fully ionized, then recombination must

occur on a timescale shorter than the radiative lifetime of the upper state (886.3 fs

for the 2p3/2 and 2p1/2 levels in H-like nitrogen) so that large upper level populations

can be established before a significant fraction of H-like ions in the ground state is

built up.

This requires the recombination to be predominantly 3-body (collisional) with
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little 2-body (radiative) recombination, because 3-body recombination preferentially

captures electrons to outer excited states of the ion (with a rate ∝ n4, where n is

the principal quantum number), while 2-body primarily captures electrons to the

innermost unoccupied energy levels of the ion, for reasons discussed in Chapter 1.

The ratio of the 3-body to 2-body recombination rates scales ∝ NeT
−3.83 (obtained

by dividing the rates given in Chapter 1), so colder, denser plasmas are required.

The transient scheme being attempted in this dissertation must be distin-

guished from quasi-steady state x-ray laser schemes, in which stimulated emission

can occur repeatedly from a given ion in the gain medium as the upper state of

the lasing transition is continuously re-populated. For example, one of the first soft

x-ray laser schemes to be theoretically explored [145] and experimentally demon-

strated [146] (3p → 3s transitions in Ne-like Se and Y) used quasi-steady state

collisional electron excitation. In this Ne-like scheme, electron-ion collisions in a

plasma excite bound electrons which decay to the metastable upper state. The

lifetime of the laser upper level is much longer than the lifetime of the lower level,

and electron-ion collisions are sufficiently frequent to re-populate the upper level

after stimulated depletion to the lower laser level and decay to the ground state. In

contrast, the scheme proposed here in H-like nitrogen utilizes a transient population

inversion mechanism, in which the plasma is rapidly heated more quickly than the

relaxation rate of the excited states.

There have been previous theoretical and experimental studies attempting

development of a transient soft x-ray laser on this transition using recombination

pumping in a plasma generated by optical field ionization (OFI) of a gas with a
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Figure 5.1: Figures reproduced from reference [147] showing calculated maximum

transient local gain coefficients Gmax for the 2p3/2 → 1s1/2 transition in uniform,

fully ionized nitrogen plasmas as a function of electron density and temperature.
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femtosecond laser, including some that exclusively consider nitrogen plasmas [147,

148]. First, 2-dimensional PIC simulations were performed to determine the laser

and target parameters required to create a fully stripped nitrogen plasma via OFI,

then hydrodynamic simulations were run to investigate the time-dependent behavior

of the temperature and density as the plasma expands and cools after the passage

of the laser pulse. Transient local gain coefficients are also calculated, and are

reproduced in Figure 5.1.

These calculations indicated that in a fully ionized nitrogen plasma, after the

passage of the femtosecond pulse, an electron density and temperature of > 3×1020

cm−3 and < 50 eV are required to obtain a population inversion on the 2 → 1

transition in H-like nitrogen [147], as shown in Figure 5.1. For an electron density

and temperature of 6×1020 cm−3 and 15 eV, Gmax values of 1100 and 400 cm−1 are

predicted for the 2p3/2 → 1s1/2 and 2p1/2 → 1s1/2 Lyman α transitions, respectively.

This peak local gain occured approximately 400 fs after the peak of the pump pulse,

and then fell to zero after < 1 ps. Note that this is roughly the same timescale as

the 886.3 fs lifetime of the upper state found by taking the inverse of the Einstein

A coefficient.

Simulation results for an assortment of initial electron temperatures and den-

sities (reproduced in Figure 5.1) indicated that the scaling of the maximum local

gain coefficient Gmax is proportional to N3
e exp(−kBTe) [147]. In the hydrodynam-

ically expanding plasma columns created via OFI of a gas considered in these sim-

ulations, the electron density and temperature were essentially static during the

subpicosecond timescale over which transient gain is predicted. Although this is not
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Figure 5.2: Plots of average ionization (a) and peak electron temperature (b) from

a 1D hydrodynamic simulation [62] of the explosion of a 25 nm radius nitrogen

cluster irradiated by a Ti:sapphire laser with peak intensity of 5× 1017 W/cm2 and

pulsewidth of 35 fs.

the case for exploding laser-irradiated clusters, which explode on a subpicosecond

timescale [63], the simulation results reproduced in Figure 5.1 should still provide a

rough guide for the Gmax values that might be expected for similar electron densities

and temperatures within an exploding laser-irradiated cluster.

This theory was followed by experiments [148] in which a 10 TW Ti:sapphire

femtosecond laser was focused in a jet of nitrogen gas with peak intensity of ∼ 1019

W/cm2 , producing plasma with an electron density of up to 1020 cm−3 via OFI,

but no amplification was observed. This was attributed to the high initial electron

temperatures of ∼ 400 eV, resulting from heating of the plasma due to Raman

excitation, driving plasma waves [148].

The experiments described in this Chapter attempted to use the unique prop-
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erties of laser-irradiated clusters to create the dense, cold, fully stripped plasma for

which gain is predicted. Simulations performed with a 1D hydrodynamic code [62]

show that when a 35 fs Ti:sapphire laser pulse with peak intensity of 5×1017 W/cm2

ionizes and heats a nitrogen cluster with a radius of 25 nm, a plasma is created that

quickly reaches an average ionization 〈Z〉 > 6.5 (Figure 5.2(a)), the first prerequisite

for a population inversion. At the same time, the peak electron temperature within

the nanoplasma drops to < 10 eV less than 100 femtoseconds after the passage of

the pulse (Figure 5.2(b)), while the electron density is still > 1021 cm−3, creating

ideal conditions for gain according to the simulation results from reference [147] in

Figure 5.1. These laser and cluster parameters are easily within the capabilities of

our 25 TW laser system and cryogenically cooled gas valve.

However, the laser intensity used in these runs approaches the upper limit

of the regime in which this code is applicable, as the code does not incorporate

relativistic effects and this intensity corresponds to a reduced vector potential a0 '

0.5. Additionally, use of a fluid code assumes that the oscillation amplitude of free

electrons quivering in the laser field is much less than the the diameter of the cluster.

For this intensity, the quiver excursion amplitude xosc = eE
meω2 = 62 nm (ignoring

relativistic corrections). This exceeds the limits where the hydrocode is valid, but

these simulation results are used to gain physical insight into the cluster heating

and explosion dynamics.

Based on the cluster explosion velocities seen in these 1D simulations (∼ 5×107

cm/s), the clusters merge into a uniform plasma with an electron density of < 1020

cm−3 approximately 5 ps after the peak of the pump pulse. This merging time is
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longer for higher intensity laser intensity laser pulses and larger cluster sizes for

fixed average atom densities, but was always between 1 and 10 ps for the parameter

range explored in these experiments. The average ionization 〈Z〉 shows relatively

slow decline over the 500 fs window of the simulation, which indicates that recom-

bination may not take place quickly enough to create a population inversion before

the clusters merge. However, these initial simulation results were still sufficiently

promising to motivate experiments.

5.1 Experimental setup

To study EUV emission from laser-produced nitrogen plasmas, we irradiated

a jet of clusters in vacuum with a 25 TW peak power Ti:sapphire femtosecond laser.

The cluster size and average density within the jet were independently controlled

by changing the backing pressure and temperature of a gas valve. The 15 mm by

1 mm elongated nozzle of the gas valve could be variably oriented with respect to

the incoming laser, resulting in a cluster jet target between 1 and 15 mm thick. To

minimize propagation effects due to strong absorption of the laser pulse by clusters,

most EUV spectral data was collected using a 1 mm thick cluster target. The

energy and pulsewidth of the femtosecond laser pulses were controlled using a half

wave plate/ thin film polarizer pair and the compressor grating spacing, respectively.

The cryogenically cooled gas valve and femtosecond laser are described in detail in

Chapter 2. This interaction takes place in the vacuum system described in Appendix

A.
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Figure 5.3: Experimental layout for the generation of laser-produced plasmas in a

nitrogen cluster jet. A Ti:sapphire laser pulse (up to 830 mJ, 36 fs, 800 nm) is

focused using a dielectric concave spherical mirror (f = 1 m) in a retro-reflecting

geometry through a 4 mm diameter hole in a 45◦ turning mirror. Transverse profiles

of the plasma and cluster jet (interferograms and shadowgrams) were gathered by

sending a frequency-doubled probe pulse through an interferometer into a CCD

camera. Energy throughput measurements were collected by moving a pickoff mirror

on a motorized stage into the beam path of the laser after the focus. A flat-field

spectrometer collected EUV spectra (1.5 – 20 nm, see Appendix B)
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The laser was brought to focus by retro-reflecting the beam off a dielectric

concave spherical mirror with a focal length f = 1 m through a 4 mm hole drilled

in an 45◦ turning mirror (Figure 5.3). This focused the beam at f/25 to a Gaussian

spot with FWHM of 34.6 µm in the X and 23.4 µm in the Y dimension (Figure

5.4). This corresponds to an average 1/e2 radius of w0 = 12.3 µm and a confocal

parameter of b = 1.2 mm, longer than the 1 mm thickness of the cluster jet. When

operated at minimum pulsewidth (36 fs FWHM) and maximum energy (830 mJ)

the laser reaches a maximum peak intensity of 1.8×1018 W/cm2 at the focus in this

weakly focusing configuration.

EUV light in the 15 – 200 Å wavelength range emitted by the nitrogen plasma

was collected at a repetition rate of up to 10 Hz (the maximum repetition rate of the

laser) by the flat-field spectrometer described in Appendix B. The acceptance cone

of the spectrometer was oriented towards the plasma along the axis of the driving

femtosecond laser and residual laser light was blocked from the spectrometer using

thin metal filters that transmit EUV (Al, Zr or Ni with thicknesses from 0.1 – 0.8

µm). Reducing the repetition rate of the laser extends the usable lifetime of the

metal filters, which were eventually punctured by the laser. These thin metal filters

allowed single-shot observation of emission lines from hydrogen-like, helium-like and

lithium-like nitrogen, which will be described in detail later in this Chapter. The ∼

0.05 – 0.20 Å spectral resolution of the spectrometer was limited by the CCD pixel

size.

Radial and axial profiles of plasma and neutral gas density were obtained

using a frequency-doubled transverse probe pulse (Figure 5.3). The probe pulse (<
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Figure 5.4: Focal spot profile of the Ti:sapphire laser focused with the f = 1 m

concave mirror in the setup shown in Figure 5.3. This profile was directly obtained

using a CCD camera and 10× magnification microscope objective, and displayed

using a (a) standard and (b) logarithmic intensity colormap. Plots (c) and (d)

show Y (23.4 µm FWHM) and X (34.6 µm FWHM) lineouts through the focus,

respectively. 69% of the beam energy is contained within the central Gaussian

profile.
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5 mJ) was split from the main pump pulse, sent through a variable-length optical

delay arm and then frequency-doubled to 400 nm. This collimated probe pulse then

arrives at the interaction region in the vacuum chamber up to 1 ns prior to or 2 ns

after the main pump pulse, depending on the delay arm position. When the delay

is set such that the probe arrives at the cluster jet before the pump pulse and sent

transversely through the plasma column, the neutral atoms in the jet impart a phase

shift on a section of the probe, allowing us to measure the volume average neutral

gas density. Alternatively, when the probe arrives after the pump pulse, electron

density is measured.

To extract the phase shift imparted upon the probe pulse by plasma or clus-

tered neutral gas, it is directed out of the vacuum chamber through a window into

a folded wavefront interferometer, where it is split into two pulses that are spatially

offset and recombined at a slight angle, resulting in interference fringes. By using

the flat phase front at the edge of the beam as a reference, the phase shift result-

ing from plasma is encoded in the spatial phase of the fringes of an interferogram

collected by a CCD camera. This image is processed by extracting the phase of

the fringes, then Abel-inverting the image about the axis to obtain radial density

profiles. The 800 nm pump light scattered off the clusters was blocked from the

imaging system while transmitting the 400 nm probe using an interference filter. A

detailed description of the algorithm used to implement the Abel inversion integral

can be found in a prior dissertation from our group [144].
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5.2 Neutral gas density measurements

Neutral N2 molecule density was measured by extracting the phase shift in a

400 nm probe pulse to determine how the jet density varied as a function of gas

valve temperature and backing pressure. The individual clusters are much smaller

than the wavelength of the probe pulse, and cannot be resolved by the imaging

setup, and the phase shift of the probe pulse will be determined exclusively by the

local volume averaged molecule density, independent of the cluster size distribution.

The gas valve nozzle has a rectangular 1 by 15 mm exit. This measurement was

performed for two different gas valve orientations offset from one another by 90◦ ,

such that the probe propagation path is 1 mm or 15 mm long through the jet of

clusters, henceforth referred to ‘side-on’ and ‘end-on’ probing, respectively.

In the 1 mm long probe path orientation (side-on), the phase shift imparted

upon the probe was too small to allow consistent measurement of the absolute

density. However, the phase shift observed along the width of the jet in the side-on

orientation was sufficiently uniform to justify treatment of the density along the

long axis of the nozzle as a 15 mm step function, and infer the 3-dimensional profile

of the jet based on the profile measured in the end-on orientation, shown in Figure

5.5(a). This and all other extracted phase profiles are the average of 100 consecutive

shots.

A lineout of the density profile experienced at the pump laser focus ∼ 1.5 mm

above the gas nozzle exit is shown in Figure 5.5(b). The nominal gas density at

the laser focus is obtained by observing the value of the ∼ 0.5 mm wide uniform
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Figure 5.5: Example image (a) of N2 molecule density extracted from a transverse

interferogram when the gas valve is held at −100◦ Celsius with a backing pressure

of 425 PSI. This cluster jet shown emerged from the 1 mm by 15 mm rectangular

nozzle positioned 0.5 mm below the frame, and is flowing in the Y direction. To

collect this image the probe was oriented end-on, such that it propagated through

15 mm of jet material. The inset plot (b) is a lineout of (a) at Y=1.5 mm, the height

at which the pump beam strikes the jet.
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data point is extracted from an image of the neutral N2 molecule density similar to

the one shown in Figure 5.5(a).
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central peak region, 1.85 × 1018 N2 molecules/cm3 in this case. These neutral gas

measurements allowed us to verify that we were holding the N2 molecule density

constant while adjusting the temperature of the gas valve (Figure 5.6). This effec-

tively allows independent control of the mean cluster size and atom density of the

cluster jet. The scaling of the Hagena parameter predicts that larger mean cluster

sizes occur at lower temperatures, and this was confirmed with measurements of the

mean cluster radius ā that will be discussed in a later section.

5.3 Electron density measurements

Electron density measurements recorded using the 400 nm probe pulse 10 ps

after the onset of pump-pulse-driven plasma formation. This relative timing between

the pump and probe pulses was set by finding the probe pulse delay arm position for

which plasma formation was seen on half of the transverse interferogram in the axial

dimension, then adding 10 ps worth of path length on the probe pulse delay arm

micrometer. Images and radial electron density profiles of the plasma generated by

a 100 mJ, 36 fs Ti:sapphire pump pulse are shown in Figure 5.7. These conditions

((a) −40◦, (b) −70◦, (c) −100◦ and (d) −130◦ Celsius) correspond to the same

parameters as those shown in the top line (950 µs valve open time) in Figure 5.6, so

the pump laser propagated through a 1 mm thick jet of clusters with a mean density

of approximately 1.85× 1018 N2 molecules/cm3. The top and bottom halves of each

electron density phase image were Abel-inverted independently, which is why the

radial profiles are asymmetric about the axis.
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Figure 5.7: Plots showing radial lineouts (top of each frame) from electron density

profile images (bottom of each frame) measured ∼ 10 ps after the arrival and passage

of the pump laser (100 mJ, 36 fs, 800 nm) for gas valve temperatures of (a) −40◦,

(b) −70◦, (c) −100◦ and (d) −130◦ Celsius. The N2 molecule density in all four cases

is ∼ 1.85 × 1018 molecules/cm3, measured in Figure 5.6. In each plot, the electron

density gridlines occur at multiples of the nitrogen atom density. On the right-hand

side of each plot, ‘steps’ in the electron density appear to correspond to the different

ionization stages of nitrogen plasma in the wings of the focal spot (Figure 5.4).

121



The horizontal gridlines on the radial profiles in Figure 5.7 are drawn at integer

multiples of the neutral nitrogen atom density (double the neutral nitrogen molecule

density), allowing the state of ionization attained by different radial sections of the

plasma to be seen. This indicates that for all four gas valve temperatures plotted,

a significant fraction of the nitrogen atoms within 30 µm of the axis reach the He-

like ionization stage. However, due to fluctuations in the measured electron density

within ∼ 15 µm of the central axis, it is unclear based on these profiles whether

or not there is significant population of H-like or fully stripped ions. Additionally,

sharp ‘steps’ in electron density are seen on the right side of each extracted radial

profile in Figure 5.7 that jump in integer multiples of the neutral atom density. It is

likely that these steps occur at radii where the laser intensity is capable of creating

successive ion species within the nitrogen clusters due to collisional ionization (focal

profile shown in Figure 5.4).

One possible source of fluctuations in an Abel-inverted profile is incorrect

choice of the axis of symmetry. To minimize this effect, the height and angle of

the axis on each frame was found using an algorithm that minimizes the on-axis

discontinuity of the Abel-inverted profile within a 10 µm radius of the axis. The

discontinuities that remain are likely artifacts from the Abel inversion algorithm

caused by the azimuthal nonuniformity of the plasma, because this algorithm as-

sumes an azimuthally symmetric object. It is likely that the plasma is azimuthally

nonuniform as a result of the focal spot (Figure 5.4) which deviates from a Gaussian

profile in the ‘wings’ at radii greater > 15 µm. Any artifacts in the inverted profile

will increase in magnitude as the axis is approached. This could explain both the
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relatively strong on-axis electron density fluctuations and why the ‘step’ electron

densities in the wings of the radial profiles do not always occur at exact multiples

of the neutral atom density.

5.4 Cluster size measurements

To determine the mean radius ā and density ncl of clusters within the jet, two

types of measurements are used in conjunction — Rayleigh scattering of an end-on

probe pulse (1), and transverse interferometry to measure the mean neutral gas den-

sity (2), as described in a prior section. The foundation of this all-optical technique

is the fact that the Rayleigh scattering cross-section of a cluster with radius a σscat

is proportional to ncla
6 and the phase shift ∆φ imparted on a probe pulse in the

neutral gas density measurement is proportional to ncla
3. This procedure has been

performed previously in our group and described in detail [42, 84].

For a single cluster of radius a, the Rayleigh scattering cross section σscatt in

the near-field limit ka << 1 is given by

σscatt =
8π

3
k4|γ|2 =

8π

3
k4a6

∣∣∣∣ε− 1

ε+ 2

∣∣∣∣2 (5.1)

where k is the probe laser wavenumber, γ = a3(ε − 1)/(ε + 2) is the cluster polar-

izability and ε is the dielectric function of the cluster material. For larger clusters

that violate the near-field approximation, Mie terms must be incorporated into the

expression for scattering cross section σscatt.

The nucleation of clusters in expanding jets of gas results in a distribution of

cluster sizes. This technique does not provide information about the details of this
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distribution — in practice, the ensemble average over the cluster size distribution

ā is the value that can be measured. By making the additional assumption that

all nitrogen atoms are contained in clusters and that no absorption of the probe by

neutral atoms occurs, we see that the intensity of Rayleigh scattered light SRayleigh

from a jet is given by SRayleigh ∝ nclσscat ∝ nclā
6.

Measuring the phase shift ∆φ imparted on a probe pulse by a jet of neu-

tral clusters satisfies ∆φ ∝ nclγ ∝ nclā
3. Taken together with SRayleigh, these two

measurements allow us to solve for the average cluster radius ā and density ncl.

Neutral gas density images collected resembled Figure 5.5(a) and a sample Rayleigh

scattering image from a cluster jet is shown in Figure 5.9(a).

The imaging setups used for this all-optical measurement had the same speci-

fications as those used in Reference [42] and were performed in an auxiliary vacuum

chamber (Figure 5.8). The only significant difference is that a 1064 nm Nd:YAG

probe beam was used in the current setup, while a 532 nm probe (frequency-doubled

Nd:YAG) was used previously [42]. This results in a factor of 16 reduction in scatter-

ing yield for a given cluster size (because σscatt ∝ k4), but allows the characterization

of clusters that are twice as large before the near-field approximation is violated and

Mie scattering terms must be accounted for.

Mean cluster radius and gas density measurements were performed as a func-

tion of gas valve temperature for a fixed mass output of 1.5×1018 atoms/cm3, shown

in Figure 5.10(a). Axial Rayleigh scattering lineouts at select temperatures within

this scan are shown in in Figure 5.9(c). This scan shows that the cluster radius

increases with decreasing temperature, in qualitative agreement with the Hagena
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Figure 5.8: Layout of the auxiliary vacuum chamber used to measure the mean

cluster size within the jet. In both the neutral gas density (b) and Rayleigh scattering

(b) measurements, the probe beam propagated end-on through the jet, experiencing

15 mm of jet material. Taken together, these measurements allow us to calculate

the mean cluster radius ā and mean cluster density ncl in the jet.
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Raw Scattering Images 

Figure 5.9: Sample raw images of 1064 nm light scattered from (a) a cluster jet

(−120◦ Celsius gas valve temperature, mean radius ā = 94 nm) and (b) a droplet jet

(−165◦ Celsius gas valve temperature). Also shown are central lineouts for various

gas valve temperatures at a constant nitrogen atom density of 1.5× 1018 cm−3.
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Figure 5.10: Plot showing average cluster radius ā and mean cluster density ncl

as a function of temperature for a constant nitrogen atom density of 1.5 × 1018

cm−3, extracted from the data shown in Figure 5.9. The data point at -140◦ Celsius

corresponds to the onset of the droplet regime in which the aggregate diameter is of

the order of the probe wavelength (λ = 1064 nm), where an accurate measurement

of cluster size would require the incorporation of Mie terms.

parameter scaling. However, as the temperature drops from −80◦ to −100◦ Celsius,

there is a sharp jump in average cluster radius from 30 to 100 nm. This jump is

likely caused by gas flow details specific to this nozzle.

As the temperature drops to −140◦ Celsius, the average radius ā jumps sharply

again, to a value of 500 nm. This value underestimates the true size, because this

radius is of the same order as the 1064 nm wavelength of light being used to perform

the measurement. Mie terms would need to be included in the processing algorithm

to account for this. An inspection of the pressure-temperature phase diagram of

nitrogen overlaid with the operating regime of the gas valve (Figure 5.11) reveals
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that this closely corresponds to the gas-liquid phase transition of nitrogen at the

600 PSI pressure in the gas valve reservoir. In this regime, the gas valve releases a

stream of liquid that fragments into droplets with mean radii typically larger than

1 µm [50].

Although the critical point of nitrogen does not occur until −146.9◦ Celsius,

the temperature of the gas valve in the cluster size measurement setup is likely

∼ 10◦ Celsius lower than the thermocouple reading. This can be explained by a

difference between the cryogenic cooling blocks used in the cluster size test chamber

and the 25 TW target chamber (Figure 5.3) — the thermocouple that measures the

temperature is mounted in a different location in the copper block that holds the

cryogenic cooling line and gas valve, so there could be a difference in temperature

reading for the same gas valve temperature. This is corroborated by a transition in

EUV emission from the laser-produced plasma at ∼ −160◦ Celsius that occurs at

the onset of droplet formation that will be discussed in a subsequent section.

5.5 Laser energy absorption measurements

The laser energy absorbed by the cluster jet was measured by diverting the

800 nm light transmitted through the jet after focus out of the vacuum chamber

with a dielectric mirror on a motorized translation stage, then measuring it with

a power meter (Figure 5.3). Although a measurement of pump light scattered by

the cluster jet was not performed, the beam transmitted through the cluster jet had

similar diameter and divergence as a beam with the jet off. Additionally, previous
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Figure 5.11: Plot showing the region within pressure-temperature phase space ac-

cessible to the gas valve overlaid upon the vapor pressure curve of nitrogen. At

backing pressures below 33 bar to the left of the vapor pressure curve, the gas valve

produces a stream of liquid that fragments into droplets instead of a jet of gas in

which cluster nucleation occurs.
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experiments under similar conditions in which the laser light scattered from a cluster

jet was collected [149] have shown that a negligible fraction of the pump laser is

scattered. Therefore, we can attribute the energy loss in the beam to absorption.

Figure 5.12 shows the fraction of incident laser energy absorbed by a 1 mm

thick nitrogen cluster jet with an atom density of ∼ 1.5 × 1018 cm−3 as a function

of laser energy for gas valve temperatures of −80◦,−100◦,−120◦,−140◦ and −150◦

Celsius. This clearly shows that at lower temperatures (which result in larger clus-

ters, as discussed in the previous section) a higher fraction of the incident pulse

energy is absorbed by the nitrogen clusters. Higher incident laser pulse energy also

results in a higher absorption fraction.

In the case of a 15 mm long cluster jet transverse electron density measure-

ments, laser energy throughput measurements and visual inspection of the plasma

showed that the laser was only able to penetrate the full 15 mm length of the cluster

jet and create a uniform plasma column when the atom density was below ∼ 1×1017,

due to extremely efficient absorption of laser energy by the nitrogen clusters. Al-

though up to half of the incident laser energy was transmitted through a 15 mm

cluster jet with a density of 3.8×1017 (Figure 5.13) this resulted in a plasma column

with a strong axial taper. Absorption measurements collected for several densities

at −145◦ Celsius corroborated the observations in Figure 5.12 of a 1 mm jet, with a

higher fraction of pulse energy being absorbed when higher incident beam energies

were used. To minimize the axial gradients in laser intensity and plasma density, all

EUV spectral data presented in this dissertation were gathered with the jet oriented

such that the laser encountered a 1 mm thick sheet of clusters at focus.
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Figure 5.12: Plot showing the fraction of laser pulse energy absorbed (36 fs, 800 nm)

by a 1 mm thick cluster jet as a function of laser energy for select gas valve tem-

peratures. Nitrogen atom density is ∼ 1.5× 1018 cm−3 for all conditions. Rayleigh

scattering measurements (Figure 5.10) showed that jets with larger mean cluster

radii were released from lower temperature gas valves, as predicted by the Hagena

parameter scaling.
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Figure 5.13: Plot showing laser pulse energy fraction absorption as a function of

laser energy when the pump laser experienced a 15 mm thick cluster jet for several

nitrogen atom densities, all with the gas valve held at a temperature of −145◦

Celsius.
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5.6 Spectral Data

The flat-field EUV spectrometer described in Appendix B is capable of using

two different diffraction gratings (Hitachi), both with variable line spacing. The

first grating, with a central ruling density of 2400 lines/mm, is capable of observing

wavelengths in the 15 – 100 Å spectral range. The second has a ruling density of

1200 lines/mm, which allows the observation of wavelengths between 50 and 200

Å. Additionally, < 1 µm thick metal filters (Lebow Company) were installed on a

filter wheel in front of the spectrometer entrance slit to block the Ti:sapphire laser

light and allow the passage of EUV. By using different grating/filter combinations,

emission from different spectral regions was observed.

When using the 2400 line/mm grating and a 0.2 µm Ni filter, H-like and He-

like recombination lines (diffracted in the first order from the grating) were visible

in the 17 – 24.8 Å and 21 – 29.6 Å spectral range, respectively, identified in the

sample spectrum shown in Figure 5.14. These lines were clearly visible on the EUV

spectrometer for the full range of gas jet temperatures (−173◦ to 23◦ Celsius) and

backing pressures (50 to 800 PSI) used.

When the 1200 line/mm grating was installed in the spectrometer and a 0.2

µm Zr filter was used, emission lines from H-like, He-like and Li-like nitrogen were

visible, and are labeled in Figures 5.15 and 5.16 (the same spectrum, displayed twice

with different lines identified in each Figure for clarity). Line emission diffracted

in the first order from the grating was observed from H-like (79.3 – 133.8 Å), He-

like (99.5 – 136.6 Å) and Li-like (131.3 – 143.9 Å) nitrogen. Emission lines with
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Figure 5.14: Example of a raw nitrogen spectrum recorded with the flat-field spec-

trometer using the 2400 line/mm grating. A 36 fs Ti:sapphire laser pulse with peak

intensity of 4× 1017 W/cm2 (200 mJ/pulse) irradiated a cluster jet with an average

atom density of ∼ 3 × 1018 cm−3 (solenoid valve at −100◦ Celsius, backed by 475

PSI N2). A thin nickel filter prevented laser light from entering the spectrometer.

He-like and H-like nitrogen emission lines are visible.
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Figure 5.15: Example of a raw nitrogen spectrum recorded with the flat-field spec-

trometer using the 1200 line/mm grating. A 36 fs Ti:sapphire laser pulse with a

peak intensity of 3.5× 1017 W/cm2 (175 mJ/pulse) irradiated a cluster jet with an

average atom density of ∼ 2 × 1018 cm−3 (solenoid valve at −150◦ Celsius, backed

by 550 PSI N2). A thin zirconium filter prevented laser light from entering the spec-

trometer. Li-like, He-like and H-like nitrogen emission lines are visible in first order,

and some H-like and He-like lines are visible in higher orders. Here, select first-order

H-like and He-like emission lines have been labeled. In the H-like emission series

shown, the 2p-Xd and 2s-Xp line pairs are not separately resolved.
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Figure 5.16: The same spectrum shown in Figure 5.15, with a different group of

emission lines labeled. Li-like emission lines and continuum are observed in the

first order above at wavelengths above 125 Å. He-like and H-like emission with

wavelength < 30 Å is observed in higher orders.
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wavelengths longer than 145 Å were not observed due to the positioning of the back-

thinned CCD camera in the spectrometer, which has an active area that is narrower

than the flat focal field of the diffraction grating grating. Additionally, some H-like

and He-like emission lines with wavelengths less than 50 Å were diffracted in high

order from the 1200 line/mm grating and are labeled in Figure 5.16. These lines

were also observed using the 2400 line/mm grating in first order in Figure 5.14.

A peak laser intensity of 1019 W/cm2 is required to field-ionize H-like nitrogen

with a femtosecond pulse at a wavelength of 800 nm [74,77], well in excess of the peak

intensities reached in this experiment, so it is clear that any observation of He-like or

H-like spectral emission must be attributed to electron collisional ionization enabled

by the presence of clusters. On this basis, the EUV spectra we have collected indicate

that the nucleation of nitrogen clusters occurs within the full range of temperatures

accessible to our gas valve, at temperatures as high as 22◦ Celcius. EUV emission

lines from H-like nitrogen in the femtosecond laser-irradiated cluster jet below the

OFI ionization threshold has also been observed in previous experiments, in a jet

from a cryogenically cooled gas valve irradiated by a 7× 1017 W/cm2 laser [77] and

in a jet from an uncooled gas valve irradiated with a peak intensity of 1.2 × 1017

W/cm2 [74].

Over the full range of experimental parameters explored, the relative emission

intensity of all spectral lines from within each individual ion species (H-like, He-like

or Li-like) was stable. The only changes in the intra-species line intensity ratios

observed were explained by variations in the frequency-dependent re-absorption of

EUV by neutral gas in the vacuum chamber between the laser-produced plasma
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and spectrometer. This suggests that the combination of 2-body and 3-body re-

combination responsible for emission is constant within each species, and that no

amplification is occurring on the 2p3/2 → 1s1/2 (λ = 24.779 Å) and 2p1/2 → 1s1/2

(λ = 24.785 Å) Lyman α transitions in H-like nitrogen. However, there were changes

in the inter -species emission intensity ratios between the H-like, He-like and Li-like

species as the laser energy and nitrogen cluster size were changed. This indicates

that the fraction of the nitrogen atom ensemble reaching a given ionization species is

changing as the laser pulse energy and cluster size vary. These trends are discussed

in detail below.

5.6.1 EUV emission scaling with laser intensity

When the gas valve was held and constant backing pressure (550 psi) and

solenoid open time (450 µs) used for several temperatures and the laser energy

was scanned up to 250 mJ (5 × 1017 W/cm2), EUV emission from H-like, He-like

and Li-like nitrogen species all monotonically increased (Figure 5.17, subplots (a),

(b) and (c), respectively). An absolute comparison of the EUV intensity from each

species is not meaningful in these plots, because the wavelength-dependent quantum

efficiency of the CCD camera and diffraction efficiency of the grating in the EUV

spectrometer was not compensated for. However, by comparing the relative emission

ratios between these three species (Figure 5.18), differences in EUV emission growth

as a function of energy become apparent.

It can be seen in Figure 5.18(a) that at laser energies below 50 mJ (1 × 1017
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Figure 5.17: A 36 fs FWHM Ti:sapphire laser pulse energy vs valve temperature

scan showing (a) H-like, (b) He-like and (c) Li-like intensity measured by summing

emission lines. The H-like intensity shown is the sum of the 2p-3d, 2s-3p, 2p-5d

and 2s-5p lines, He-like is the sum of 1s2p-1s4d and 1s2p-1s5d, and Li-like is the

sum of 2s-6p and 2s-9p. The emission from each species grows steadily as the laser

energy rises and the solenoid valve temperature drops (which increases the mean

cluster size). In this data set, the nitrogen atom density was not measured, but

likely increased as the temperature was decreased.
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Figure 5.18: The relative ratios of the line emission intensities from species shown

in Figure 5.17. The ratio of H-like to He-like reveals that the H-like EUV emission

begins at higher laser intensities than the He-like, and that the H-like to He-like

emission ratio stabilizes above ∼ 50 mJ (a peak intensity of 1× 1017 W/cm2). The

H-like to Li-like (b) and He-like to Li-like (c) ratios are similar, peaking at ∼ 40 mJ

(8 × 1016 W/cm2), which can be explained by the fact that the Li-like ionization

threshold (97 eV) is much lower than the similar He-like (552 eV) and H-like (667

eV) thresholds.

140



W/cm2), the relative ratio of H-like to He-like emission grows with increasing in-

tensity. Additionally, it can be seen in Figures 5.18(b) and (c) that at laser energies

below 40 mJ (8 × 1016 W/cm2), the relative ratios of H-like and He-like to Li-like

emission grow. This can easily be explained by observing the ionization thresholds

of Li-like (97 eV), He-like (552 eV) and H-like (667 eV) nitrogen — the onset of

emission for species with larger ionization thresholds occurs at higher intensities,

then saturates for each species once the laser pulse is able to maintain the intensity

required for ionization throughout the entire thickness of the jet. Once this satu-

ration occurs, the relative ratios in Figure 5.18 remain essentially constant as the

laser energy is further increased. The continued growth of absolute EUV emission

intensity from all three species above 50 mJ seen in Figure 5.17 can be explained by

the radially increasing focal volume subject to laser intensity above the ionization

threshold for each species.

The qualitative behavior of these results agrees with previous observations

[150] in which it was shown that xenon clusters exhibit a relatively low intensity

threshold for x-ray and EUV production from a given cluster. Once the effective

species ionization threshold was crossed, the emission per cluster within that ion

species remained essentially constant as a function of intensity and the primary

consequence of increasing intensity was to increase the focal volume exposed to

intensities above the species ionization threshold. The results presented in Figure

5.18 bear this out, and show that once the laser has crossed the effective ionization

threshold for all ion species, all EUV emission grows in tandem with laser intensity

as the volume of the focus increases radially.
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Figure 5.17 also shows that for fixed laser energy, EUV emission intensity from

all species increased as the gas valve temperature was decreased from−110◦ to−160◦

Celsius. However, the nitrogen atom density in the cluster jet was not measured in

this particular experimental run and likely increased as falling gas valve temperature

reduced the impedance of the solenoid, increasing the mass output per pulse, which

could explain the growth in EUV emission intensity with decreasing temperature in

this data set. In the data presented in subsequent sections, this issue was avoided

by measuring the neutral atom density and adjusting gas valve parameters (solenoid

open time and backing pressure) to maintain constant jet density as the temperature

was adjusted. This allowed us to study the trends in EUV emission as a function of

mean cluster radius while holding the mean atom density within the jet fixed.

5.6.2 EUV emission scaling with cluster radius

Using the procedure for holding atom density constant discussed above, scans

were performed with fixed laser intensity and target density, while the mean cluster

size in the jet was controlled by scanning the gas valve temperature from −180◦ to

−60◦ Celsius. EUV in the 15 – 50 Å spectral region was collected using the 2400

line/mm grating and a 0.2 µm thick Ni filter, allowing observation of the H-like and

He-like nitrogen emission lines shown Figure 5.14. The relative ratios of the emission

lines within both of these ion species was stable as the gas valve temperature was

scanned for each laser energy and target density. This was also the case for the data

presented in the previous section which was collected as a function of laser energy
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Figure 5.19: Plot showing that the ratio of 1s-2p to 1s-3p H-like nitrogen emission

remains constant as a function of gas valve temperature for three different mean

target densities, indicating that no amplification is taking place. These two H-like

nitrogen emission lines are components of the signal shown in Figure 5.20(a).

(Figure 5.17). An example of this stability is displayed in Figure 5.19. The ratio

of the 1s-2p to 1s-3p H-like nitrogen emission lines was essentially unchanged as

the gas valve temperature was varied for three different mean target densities. This

indicates that the original goal of this experiment, amplification of the 2p3/2 → 1s1/2

and 2p1/2 → 1s1/2 H-like nitrogen emission lines, is not taking place.

The slight apparent discontinuity in the data between−120◦ and−100◦ Celsius

can be explained by noting that this data was collected in experimental runs on two

separate days (−180◦ to −120◦, then −100◦ to −60◦ Celsius). Gradual wear in

the gas valve poppet and variation in the laser output made it difficult to exactly
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replicate experimental conditions from day to day.

Trends in the total EUV emission intensity from the H-like and He-like species

as a function of gas valve temperature are shown in Figures 5.20(a) and 5.20(b),

respectively. The intensities plotted are the sum of the five H-like and five He-like

EUV emission lines labeled in Figure 5.14. Emission line intensities were measured

(in arbitrary units) by subtracting the optical background, then adding the values

of the four highest-valued pixels within the line profile. The wavelength-dependent

diffraction efficiency of the diffraction grating and quantum efficiency of the camera

were not compensated for, so this analysis only considers trends in EUV emission

intensities.

These temperature scans were run for three different electron density / laser

energy pairs — 7.5×1018 cm−3 at 75 mJ, 1.2×1019 cm−3 at 200 mJ and ∼ 1.5×1019

cm−3 at 300 mJ. These pairs were chosen to ensure that at least ∼ 50 mJ of laser

energy was transmitted through 1 mm thick cluster jet. This guarantees that the

intensity within the cluster jet is always above 1 × 1017 W/cm2, where saturation

in the H-like emission growth was observed in the energy scans discussed in the

previous section (Figure 5.18).

For all three laser energy/ target density pairs, EUV emission from H-like

(Figure 5.20(a)) and He-like (Figure 5.20(b)) nitrogen species increased as the gas

valve temperature was decreased from −60◦ to −160◦ Celsius. By comparing these

trends to the mean cluster radius measurement shown in Figure 5.10, it is clear

that a jet containing larger clusters will emit more intense EUV emission. This is

corroborated by 1-D hydrocode simulations that will be discussed in the subsequent
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Figure 5.20: Trends in H-like (a) and He-like (b) nitrogen EUV emission as a function

of gas valve temperature for three target density/ laser energy pairs. The intensities

displayed are the sum of all emission lines within each species labeled in Figure

5.14. The sharp drop in H-like and He-like emission intensity as the temperature

drops below −160◦ Celsius corresponds to the onset of droplet formation. The H-

like to He-like nitrogen EUV emission ratio (c) is relatively stable as a function of

temperature, with the exception of a sharp jump as the temperature drops below

−90◦ Celsius, when the mean cluster radius increases from 30 to 100 nm (Figure

5.10).
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Figure 5.21: Electron densities measured using transverse interferometry for the

experimental parameters used in Figures 5.20 and 5.19. At lower temperatures, the

mass output of the gas valve was unstable as a function of backing pressure and

difficult to control precisely.
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section. Fluctuations in the EUV emission intensity below −140◦ Celsius can be

explained by variations in the target density, which was measured using transverse

interferometry at each data point and is shown in Figure 5.21.

However, once the gas valve is cooled below approximately −160◦ Celsius, this

trend is reversed as the EUV emission from H-like and He-like nitrogen sharply drops

(Figures 5.20(a) and 5.20(b)). We attribute this to the pre-expansion nitrogen in the

solenoid valve undergoing a gas-to-liquid phase transition, resulting in the release

of a stream of liquid that fragments into droplets after entering the vacuum. It has

also been previously observed [50] that the mean aggregate diameter in a droplet

jet is larger (> 1 µm) than those encountered in a cluster jet (< 100 nm). The

gas-liquid phase transition in nitrogen at −160◦ Celsius occurs at 250 PSI, in good

agreement with our experimental parameters. We also see that this transition occurs

at slightly lower temperatures when the backing pressure is dropped, as predicted

by the pressure-temperature phase diagram (Figure 5.11).

Sharply increased pump scattering seen in transverse interferograms (prior to

phase extraction and Abel inversion) and stronger absorption of the pump corrob-

orate this conclusion. There is also an abrupt increase in the amount of visible,

blue-shifted laser light (due to self-phase modulation during the ionization process)

in the transmission through the cluster jet. Additionally, when the pressure and

temperature within the solenoid valve crosses the vapor pressure curve and enters

the liquid regime, the mass output of the valve as a function of backing pressure

becomes highly unstable. This agrees with previously published results in which the

gas-liquid phase transition was observed in argon jets [37].
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Although a previous study on EUV production from nitrogen clusters [77]

claimed to generate nitrogen droplets, the sharp drop in absolute EUV emission

at the onset of droplet formation that we observe was not seen. Moreover, the

temperature of −95◦ Celsius at which droplets were reported is well above the N2

critical temperature of −146.9◦ Celsius. Therefore, we believe that the results in

this dissertation are the first measurements of EUV spectra from laser-irradiated

nitrogen droplets.

The ratio of EUV emission from H-like and He-like nitrogen (Figure 5.20(c)) is

relatively stable as the temperature is decreased from −60◦ to −160◦ Celsius, with

the exception of a sharp jump as the temperature drops below −90◦ Celsius, when

the mean cluster radius increases from 30 to 100 nm (Figure 5.10). The ratio of H-like

to He-like emission seen when the mean cluster radius is greater than 100 nm (which

occurs at temperatures of −100◦ Celsius and lower) is robust over a wide range of

laser intensities (Figure 5.18(a)) and indicates that a fully stripped nitrogen plasma

is being created by the laser-cluster interaction. This conclusion is corroborated by

1-D hydrocode simulations of these parameters that will be discussed in the following

section.

Additional support for this conclusion can be found by comparing the absolute

intensities of the H-like and He-like emission spectra. Although the wavelength

dependent quantum efficiency of the CCD camera and diffractive efficiency of the

grating in the spectrometer were not compensated for in these measurements, the

H-like 1s-2p (24.779 and 24.785 Å) and He-like 1s2-1s3p (24.898 and 24.962 Å)

emission lines are sufficiently close together to allow an absolute comparison of
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species emission intensity to be made without compensating for the spectrometer

efficiency.

To make a simple prediction for what the relative strength of the emission

in these two spectral lines should be in a fully stripped plasma, we assume that

all electrons pass through the n = 3 electron shell of a He-like or H-like nitrogen

ion after recombining, and that they are evenly distributed amongst all possible

states within this shell. When this assumption holds during the H-like then He-like

recombination, each atom will either decay straight from an n = 3 to n = 1 state

and emit a single photon, or will decay in two stages, first from n = 3 to n = 2 then

n = 2 to n = 1. The ratio of the total rate of all possible H-like n = 3 to n = 2

decay to the total rate of all possible He-like n = 3 to n = 1 decay should thus be

the ratio of the H-like 1s-2p and He-like 1s2-1s3p emission line intensities.

This can be easily determined by observing the dipole allowed decay pathways

in H-like atoms. Electrons in 3d and 3s states decay to 2p, which then decays to 1s,

whereas electrons initially in 3p states can decay to 2s or 1s states. However, the 2s

state is metastable and cannot decay to the 1s state, so it will likely be re-excited

into the 3p state, eventually decaying directly to the 1s state. Therefore, the total

ratio of 3-1 to 2-1 emission will be the ratio of the total number of 3d and 3s states

to the number of 3p states. The 3d level is 14 times degenerate (` = 3/2, 5/2 and

3/2 states) [151], the 3p level is 6 times degenerate (` = 3/2 and 1/2 states) [151]

and the 3s level is 4 times degenerate (` = 1/2 and 1/2 states) [151]. Therefore, the

total expected ratio of 3-1 to 2-1 emission within H-like nitrogen is (14+4)/6 = 3.

Although these energy levels will undergo additional splitting during He-like
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decay when there is also an electron in the ground state, this will not change the

H-like result substantially. Therefore, the 3-2 to 3-1 intensity ratio within H-like

should be the same as that within He-like, and the ratio of H-like 1s-2p (24.779 and

24.785 Å) to He-like 1s2-1s3p (24.898 and 24.962 Å) should be approximately 3 if

the plasma is fully stripped. This is in very good agreement with the ratios of 2.5 to

3.5 observed in spectra collected when the gas valve temperature was below −100◦

Celsius (Figure 5.20).

5.7 Electron temperature extraction from EUV spectra

It was also possible to extract electron temperature information from these

spectra [152] that correspond to the times at which recombination to the H-like

and He-like ion species occurs, using the recombination continua shown in Figure

5.22. The shape of the continuum reflects the distribution of kinetic energies in

electrons that undergo recombination. Thermal electrons will have a Maxwellian

speed distribution ∝ v2 exp(−mev
2/2kTe), so radiative recombination to a given

bound state with ionization potential Ei will result in the emission of photons with

a frequency distribution ∝ exp(−hν/kTe). This allows extraction of the electron

temperature Te using an exponential fit to the recombination continua in the H-like

and He-like emission spectra displayed in Figure 5.20.

The electron temperature at the time of recombination is found to be between 5

and 20 eV for both species, independent of the gas valve temperature. Any trends in

electron temperature as a were obscured by these fairly large error bars, which were
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Figure 5.22: Detail of a raw spectrum from Figure 5.14 showing the He-like and

H-like series recombination continuum edges from which the electron temperature

could be estimated.
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a result of nonuniform optical background on the CCD from scattered light within

the spectrometer. This diffuse background could not be cleanly disentangled from

the EUV signal dispersed by the grating, and choosing different levels of background

subtraction resulted in different extracted electron temperatures. The fact that this

deeply ionized plasma was created in the presence of electron temperatures many

orders of magnitude below the ionization threshold is confirmation of the strong

nonequilibrium processes that this experiment was designed to achieve.

5.8 Simulations and analysis

In an effort to better understand trends in the H-like and He-like emission ra-

tios observed experimentally and to investigate why no lasing occurred, simulations

of the laser-cluster ionization process were performed. The irradiation of a 20, 40,

60, 80 or 100 nm radus nitrogen cluster with a 36 fs, 800 nm, 6.25 × 1017 W/cm2

peak intensity pulse was simulated with the 1D fluid code described in [62]. This

corresponds to the range of cluster sizes encountered in the data shown in Figure

5.20 and the laser intensity reached with 300 mJ of laser energy. Time t = 0 denotes

the peak of the laser pulse. The output provides the fluid velocity, electron tem-

perature, electron density, ion temperature and ion species densities as a function

of radius over this time interval. As discussed above, this code does not include

effects due to the large electron oscillation amplitudes and relativistic mass correc-

tions encountered at intensities above 1016 W/cm2, but can be used to gain insight

into trends in the cluster heating and explosion dynamics.
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Figure 5.23: Plots of the simulated ion species populations as a function of time

when 20 nm (a) and 100 nm (b) radius nitrogen clusters were irradiated with a

36 fs FWHM Ti:sapphire laser pulse with a peak intensity of 6.25 × 1017 W/cm2.

Maximum average ionization 〈Z〉avg occurs at t = 105 fs and 225 fs for the 20 and

100 nm clusters, which are 30% and 69% fully stripped at those times, respectively.
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Figure 5.24: Simulation results showing the absolute (a) and relative (b) ionization

fraction of the ensemble of nitrogen atoms within 20, 40, 60, 80 and 100 nm radius

nitrogen clusters irradiated with a 36 fs FWHM Ti:sapphire laser pulse with a peak

intensity of 6.25× 1017 W/cm2. Plot (b) is the ratio of the two lines plotted in (a).

The relative ratio of EUV emission from H-like and He-like ion species should follow

the trend in (b), ignoring any collisional re-excitation events after recombination has

occurred.
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5.8.1 Ionization fraction vs cluster size

For all five cluster sizes simulated, the entire ensemble of ions within the

cluster reached at least the He-like ionization stage before the laser pulse reached

peak intensity. The fraction of the ensemble of ions in the He-like, H-like and fully

stripped ion stages for the largest (100 nm) and smallest (20 nm) clusters simulated

is shown as a function of time in Figure 5.23. In both cases, > 99% of the atoms

in the cluster reach at least the He-like ionization stage before the pulse reaches

peak intensity, and do not drop below this stage for the duration of the simulation

window. The larger 100 nm cluster then becomes more deeply ionized than the 20

nm cluster, but takes longer to do so. The peak fully stripped fraction is larger

(69% vs 30%) and occurs at a later time after the peak intensity (225 fs vs 105 fs)

in the 100 nm cluster as compared to the 20 nm cluster.

The details of this trend as a function of cluster size are shown in Figure

5.24. A plot of the fraction of the nucleus ensemble that reaches the H-like and

fully stripped ion stages are shown in (a), rising with the cluster size. Plot (b) then

shows the ratio of the two lines plotted in (a), which should follow the same trend as

the EUV recombination emission seen from the H-like and He-like species, assuming

that no ‘extra’ emission from collisional re-excitation and decay in these ion species

happens after the initial recombination has occurred.

This provides reasonable quantitative agreement with the features observed in

our experiment. The plot in Figure 5.24 predicts an EUV emission ratio from the

H-like to He-like species that jumps by 54% (from 0.46 to 0.71) as the cluster size is
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increased from 30 nm to 100 nm, which agrees reasonably well with the 73% jump

in relative emission intensity (from 2.2 to 3.8) observed experimentally as the tem-

perature drops through −90◦ Celsius in Figure 5.20(c), when the measured cluster

size increases from 30 to 100 nm (Figure 5.10). Additionally, it should be noted

that this code underestimates the ionization fraction that will actually occur. The

code considers electron collisional ionization only from the ground state of each ion.

However, in practice collisional ionization will proceed from excited states already

populated by electron collisions, thus strongly enhancing the ionization yield. It is

thus highly likely that a fully stripped plasma occurs in the conditions simulated

and shown in Figure 5.20(c), as we concluded based on the experimental results.

5.8.2 Energy deposition and plasma temperature

The simulation results give a mean radial fluid expansion speed of 7×107 cm/s

in the 20 nm cluster at the end of the simulation window. Since a jet of uniformly

distributed 20 nm clusters with an average atom density of 3× 1018 cm−3 will have

an average cluster separation of 0.9 µm, the expanding nanoplasmas will merge into

a uniform plasma after ∼ 2 ps. Based on the slow recombination rate seen within the

simulation window (Figure 5.23), to a good approximation we can say that 〈Z〉avg

does not change in the time period before the clusters merge into a uniform plasma.

Once the laser pulse has passed, all of the residual energy deposited by the laser

will be contained in the random thermal motion of the ions and electrons, directed

kinetic motion of the electron-ion fluid and potential energy in the ions from the
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liberation of electrons.

Figure 5.25 shows how the distribution of residual energy within the plasma

changes after the passage of the laser pulse. Initially, all of the energy deposited

by the laser is contained in the thermal energy of the electrons (Figure 5.25(a))

plus ionization potential energy, which remains approximately constant throughout

the simulation window after the passage of the laser pulse. As electron pressure

drives radial expansion of the cluster, the electron temperature Te drops, and the

average radial velocity vj of each radial mass element j rises (Figure 5.25(f)). The

nanoplasma remains quasi-neutral throughout expansion, so the average radial ve-

locity of the ions and electrons will be the same, resulting in an ion to electron

radial kinetic energy ratio of of mi/me ' 25000. Thus the net effect is that the

residual energy deposited by the laser is initially in the form of electron thermal

energy (Figure 5.25(a)), but is transferred almost completely into radial ion kinetic

energy (Figure 5.25(e)) within the 300 fs simulation window.

To determine the temperature of the uniform plasma created by the merged

cluster plasmas 5 ps after the arrival of the laser, consider an ion in a mass element

j of an expanding cluster with velocity v = vj + ∆vj, where vj is the fluid velocity

of mass element j (radially directed with respect to the cluster center of mass)

and ∆vj represents the range of ion thermal velocities in mass element j such that

1
2
mi〈∆v2

j 〉 ' 3
2
kBTi. After the clusters merge, a new effective ion temperature Teff is
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Figure 5.25: Results for a simulation of the irradiation of a 20 nm radius nitrogen

cluster with a 36 fs FWHM Ti:sapphire laser pulse with a peak intensity of 6.25×1017

W/cm2 showing the average thermal (a− c) and kinetic (d− f) energy per particle

as a function of time for electrons (a, d), ions (b, e) and in total (c, f). Initially, the

deposited laser energy is primarily in electron thermal motion (a), but as the cluster

expands the energy is transferred almost entirely to radial ion kinetic energy (e).

The clusters merge into a uniform plasma after < 5 ps, at which time the ion kinetic

energy re-thermalizes.
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established, where

3

2
kBTeff = 1

2
mi〈v · v〉 (5.2)

= 1
2
mi〈(vj + ∆vj) · (vj + ∆vj)〉

= 1
2
mi〈v2

j 〉+ 1
2
mi〈∆v2

j 〉+mi〈vj ·∆vj〉

= 1
2
mi〈v2

j 〉+ 3
2
kBTi + 0

where 〈vj ·∆vj〉 = 0 because for every ion with thermal velocity contribution ∆vj

there is another ion with opposite contribution −∆vj. This means that after the

cluster plasmas merge, the ion temperature Teff of the merged, uniform plasma will

be

Teff '
1

3

mi

kB
〈v2
j 〉+ Ti. (5.3)

Note that an identical analysis can be performed for the electron temperature, and

that the velocities with which the electrons and ions expand will be identical due to

quasi-neutrality.

This has the effect of creating a uniform plasma with hot ions and cold elec-

trons after the clusters have merged, where the mean ion and electron velocities vi

and ve are roughly equal and randomly directed, so Ti/Te ' mi/me. Thus for a 20

nm radius cluster, this means that because the residual kinetic energy deposition per

atom (thermal and directed) was ∼ 12 keV, after the clusters merge into a uniform

plasma the electron temperature will be < 1 eV and the ion temperature will be

∼ 12 keV. In conjunction with the electron density, these parameters could be used

to calculate the 3-body recombination rate in the plasma.
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5.8.3 Comparison with x-ray laser theory

Although it is likely that a fully stripped nitrogen plasma is being created,

no gain was observed on the 2p3/2 → 1s1/2 and 2p1/2 → 1s1/2 Lyman α transitions

in hydrogen-like nitrogen. This can be explained by the fact that strong 3-body

recombination needs to occur on a timescale faster than the 886.3 fs lifetime of the

upper states, but relatively slow recombination rates are seen in fluid simulations

during the 300 fs after the peak of the laser pulse (Figure 5.23).

The 3-body recombination scales ∝ n2
eT
−9/2
e , so high electron densities and

low temperatures are required to facilitate a fast rate. Simulations and data (Figure

5.22) indicate that recombination occurs when the electron temperature is < 20

eV, within the range where gain is predicted in Figure 5.1. Therefore, the electron

density during the cluster explosions must be dropping too quickly to facilitate a

sufficiently fast 3-body recombination rate. Once the clusters merge after ∼ 10

ps of expansion, the electron densities measured in these experiments were always

< 5 × 1019 cm−3. According to the calculations [147] shown in Figure 5.1, this is

too low for gain to occur even with low electron temperatures. Thus the electron

density and temperature conditions in which this x-ray laser is predicted do not

occur during the evolution of the plasma.

Previous work [74] in which time-resolved EUV from nitrogen cluster plas-

mas was observed with an x-ray streak camera showed that the majority of EUV

emission occurred after the nanoplasmas merged and the bulk plasma column had

time to expand and cool, between 1 and 1.8 ns after the peak of the laser pulse.
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This corroborates our conclusion that little recombination occurs during the early

expansion phase of the clusters, < 10 ps after the peak of the pump pulse.
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Chapter 6

Conclusion

In this dissertation, the unique properties of clusters were used to enable ex-

periments with applications in laser-based particle acceleration and coherent EUV

generation. Modulated plasma waveguides capable of guiding ultra-high intensity

laser pulses that can be used to directly accelerate charged particles [126] were gen-

erated in cluster jets [141] . Additionally, development of an x-ray laser on the

2p → 1s transition in H-like nitrogen was attempted, but no amplification was

observed.

6.1 Summary

The results of experiments in which structured plasma waveguides were gen-

erated using two different methods to impose periodic modulations are presented

in Chapter 4. These methods are both modifications of the hydrodynamic shock

technique, in which a laser pulse is brought to a line focus within an elongated jet

of clusters [102], creating a plasma column that hydrodynamically evolves into a

channel capable of guiding. The first modulation technique uses a ‘ring grating’ to

add periodic intensity modulations to the channel generating beam, which is then

focused on a uniform elongated jet of clusters, resulting in periodic variations in

heating that lead to modulations in diameter. The second method uses thin wire
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obstructions (< 50µm diameter) in the elongated jet of clusters, resulting in vacuum

gaps in the jet. When a uniform beam is brought to focus within this modulated

target, a plasma channel is created with periodic index of refraction modulations

due to the vacuum gaps.

In Chapter 5, experiments were presented in which nitrogen clusters were

irradiated with intense femtosecond laser pulses, in an attempt to make a transient

x-ray laser [78] on the 2p3/2 → 1s1/2 (λ = 24.779 Å) and 2p1/2 → 1s1/2 (λ = 24.785

Å) transitions in H-like nitrogen, but no amplification was observed. Trends in

the emission lines from H-like, He-like and Li-like nitrogen (1.5 to 15 nm spectral

range) were collected with a single-shot flat-field spectrometer (Appendix B) as a

function of incident laser energy and nitrogen cluster radius. The mean radius of

clusters within the jet was measured by observing the Rayleigh scattering from

a low-intensity laser [42]. Additionally, a transverse probe was used to directly

measure the neutral N2 molecule density in the jet and the electron density of the

plasmas that were created using the femtosecond laser. Taken together, these results

indicated that a fully stripped nitrogen plasma was created.

6.2 Future work

6.2.1 Laser-based particle acceleration

The successful demonstration of modulated plasma waveguides in cluster jets

makes several avenues of research possible. Guided pulses in these channels could be

used to generate terahertz [86], to quasi-phase match high harmonic generation, and
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to directly accelerate charged particles [126–128]. Currently, research is underway

attempting to realize the direct acceleration of electrons, by injecting a relativistic

electron bunch with a co-propagating relativistic electron beam. The work presented

in this dissertation represents complete development of the methods required to

make the modulated waveguides required for this particle acceleration technique.

Thus the main obstacles to experimental demonstration are the creation of radially

polarized femtosecond laser pulse and a relativistic seed electron bunch with proper

relative phasing.

A method for creating an approximation of a radially polarized laser pulse

for the proof-of-concept experiment has been tested at low CW intensities and is

ready to be implemented in vacuum with a higher intensity Ti:sapphire pulse. This

technique works by imparting a π phase shift on half of a collimated laser beam

by transmitting it through a pellicle of appropriate thickness that has been cut in

half. Currently, a suitable relativistic electron source has not been tested. One pos-

sible method for generating the seed electron beam involves focusing a femtosecond

Ti:sapphire laser pulse with several mJ of energy (which could be split off from the

main pump pulse of the 25 TW laser system) upon a solid target [153].

6.2.2 Coherent EUV generation

It is likely that amplification was not demonstrated on the 2p→ 1s transition

in H-like nitrogen because the 3-body recombination rate was too small compared

to the lifetime of the upper level (886.3 fs) as a result of insufficient electron density.
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To overcome this problem, there are two approaches that might be pursued.

First, a set of laser-cluster interaction conditions could be found that allow

sufficiently fast 3-body recombination and gain to occur during the explosion of

the individual nanoplasmas within a picosecond of the arrival of the laser pulse.

Initially, this could be pursued by further simulations of the laser-cluster interaction,

preferably using a PIC code that is valid at the relativistic laser intensities that are

likely to be required

The second approach would entail increasing the average density of the cluster

jet in an attempt to create the appropriate electron temperature and density for gain

after the exploding clusters have merged into a uniform plasma after ∼ 10 ps. In the

course of the experiments performed in Chapter 5, this was attempted by removing

the elongated nozzle of the gas valve, allowing the laser to strike ∼ 1 mm above the

circular orifice. However, the laser was unable to penetrate the 1 mm thickness of

the jet as a result of high density (∼ 7×1019 atoms/cm−3, measured with transverse

interferometry), leading to a tapered plasma that terminated in the middle of the

jet. As a result, EUV emission from the plasma was strongly re-absorbed by the

gas, and very little signal was seen on the flat-field EUV spectrometer. It may be

possible to cirumvent this problem by using a thinner cluster jet or by focusing the

laser with a side-pumping geometry, for example with a reflective axicon.
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Appendix A

Vacuum System

The vacuum system for the 25 terawatt laser consists of a pair of chambers

connected by a 6” ID beam transfer tube, evacuated by a roots booster backed by a

5-stage roots roughing pump (Figure A.1). The chirped laser pulse enters through

an AR coated CVI laser window on the chamber containing the compressor gratings

(the ‘compressor chamber’). It is then directed through beam transfer tubes to

the chamber in which laser-cluster interactions occur, containing the focusing optics

and cluster source (the ‘target chamber’). Additional diagnostics such as a Flat-

Field EUV spectrometer or an electron spectrometer can be attached to the target

chamber via a vacuum bellows. The compressor chamber is a custom ∼ 0.15 m3 box

chamber fabricated by Kurt J. Lesker Company and the target chamber is a ∼ 0.5

m3 box chamber fabricated by Nor-Cal Products.

The system is evacuated using a five-stage roots-type roughing pump (Alcatel

ADP 122 L, or ‘ADP’) backing a single-stage roots-type booster (Oerlikon Leybold

RUVAC WSU-501, or ‘RUVAC’). The ADP has a pumping rate of 112 m3h−1 with a

maximum continuous inlet pressure of 37 Torr. The RUVAC has a nominal pumping

speed of 505 m3h−1 and a maximum continuous inlet/outlet differential pressure of

60 Torr. When backed by the ADP, the RUVAC has an effective pumping rate of

∼ 450 m3h−1 and can draw the total volume of the vacuum system (∼ 1 m3) to an
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Figure A.1: Topology of the vacuum system used to run experiments with the 25

TW Ti:sapphire laser.

ultimate pressure of < 5 × 10−4 Torr, measured with a Baratron absolute pressure

transducer (MKS Instruments Model 626A) connected to the target chamber where

the cluster source resides.

The choice of these vacuum pumps was motivated by the unique system de-

sign requirements imposed by the simultaneous presence of the pulse compressor

gratings, which require a clean, oil-free vacuum, and the high-output gas valve used

to create jets of clusters. Typically, vacuum systems containing pulse compressors

are evacuated with turbo pumps backed by scroll pumps . However, a single puff

from our cluster jet (a 1 mm orifice backed by 800 PSI gas, open for ∼ 650 µs)

releases sufficient mass to bring the chamber into the viscous flow regime (& 10−3

Torr) [154], where turbopumps cannot efficiently function; they are designed to oper-

ate exclusively in the molecular flow regime (. 10−4 Torr) [154]. It may be possible

to operate with a turbopump by substantially reducing the repetition rate of the

gas valve, but 10 Hz operation is desirable.
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Although roots pumps are ‘dry’ in the parlance of the vacuum industry, this

merely means that the seal between the high and low pressure regions in the pump

are not held separate with liquid, unlike a ‘wet’ pump such as a rotary vane pump in

which oil creates the seal. Therefore, in spite of the fact that they are ‘dry’ pumps,

both the ADP and RUVAC have gearboxes containing lubricating oil which become

evacuated during operation. Oil is dangerous because it can evaporate in vacuum

and then re-condense upon laser optics, allowing the laser to burn the deposited oil

which leaves carbon residue on the surface, rendering that region of the optic useless.

Therefore caution must be taken to prevent gearbox oil from reaching sections of

the vacuum system containing laser optics. This risk is especially acute in the case

of the pulse compressor gratings, which are extremely expensive and have a lead

time of several months.

In a roots-type pump, the high- and low-pressure regions within the pump

are separated by a pair of lobes that rotate at up to 5000 RPM. Each lobe is on a

shaft driven by a gearbox that requires lubrication, so a seal on the surface of the

rotating shaft is required to isolate the gearbox from the region of the pump body

being evacuated by the rotors. The ADP uses dynamic seals that make contact

with the moving shaft, and the RUVAC has a ‘labyrinth’ style seal that does not

make contact with the shaft but has extremely close tolerances. Both the ADP and

RUVAC pumps are lubricated with synthetic oil (Fomblin Y25/6 perfluoropolyether

(PFPE)), which has a room temperature vapor pressure of 6×10−8 Torr, much lower

than the ∼ 10−3 Torr vapor pressure of natural mineral oil. This reduces but does

not eliminate the risk of contamination. Additionally, to minimize any pressure
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differential that could draw oil vapor from the gearbox along the shaft and into

the main body of the RUVAC, especially during initial evacuation of the chambers,

a small auxiliary pump (Oerlikon Leybold DIVAC 0.8 T diaphragm pump) puts

negative pressure on the RUVAC gearbox via a direct connection through the oil fill

port.

As a further measure to safeguard against any pump seal failure which might

allow oil vapor to coat laser optics, a dry nitrogen system has been installed that

releases a steady bleed of N2 at three locations to maintain pressure (∼ 2 × 10−3

Torr) in the viscous flow regime. This is necessary because if the pressure drops into

the molecular flow regime, any contaminants can ballistically migrate upstream,

and eventually coat all exposed surfaces in the vacuum. Care has also been taken

to verify that all moving parts (translation stages, motorized micrometers, motion

feedthrus, etc.) contained in the vacuum system use high-vacuum compatible com-

ponents, containing only low vapor pressure high vacuum grease (Apiezon L or N,

Krytox, etc.).
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Appendix B

Flat-field EUV spectrometer

To observe the EUV light emitted from plasmas produced in the laser-cluster

interaction, a custom flat-field grazing-incidence vacuum EUV spectrometer was

used. This spectrometer uses a mechanically ruled aberration-corrected concave

diffraction grating with variable line spacing (VLS) [155] to image spectrally dis-

persed EUV from an entrance slit to a flat focal plane in which a back-thinned CCD

detector is placed, allowing us to obtain single-shot spectra at the repetition rate of

the laser (Figure B.1a).

The spectrometer can accommodate two different gratings with different ruling

densities and incidence angles, allowing the observation of two different wavelength

ranges. However, switching the gratings is a time-consuming procedure requiring

re-alignment of the spectrometer. Both gratings are manufactured by Hitachi, using

Pyrex substrates with height × length × thickness dimensions of 30× 50× 10 mm.

The ruled gold surface is on the concave 30 × 50 face. The distance between the

grating center and entrance slit/spectral plane is 237/235.3 mm for both gratings.

The first grating (Hitachi 001-0437 [156]) has a central ruling density σ0 of

1200 lines/mm, with a blaze angle of 3.2 degrees and a blaze wavelength of 100 Å.

The focal plane is flat in the 50 – 200 Å wavelength region (Figure B.1(b)), where

the reciprocal dispersion ranges from 4.3 – 7.7 Å/mm. It is designed to be used at a
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Figure B.1: Optical schematic of the flat-field spectrometer (a) and the focal planes

of the 1200 (b) and 2400 (c) line/mm gratings as a function of incidence angle.

Reproduced from Reference [156].
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3 degree angle of incidence with respect to the plane of the grating. The grooves are

variably spaced with minimum and maximum densities of 1010 and 1449 lines/mm,

respectively. The ruling density is explicitly described by the expression

σ =
σ0

1 + 2b2
R
w + 2b3

R2w2 + 2b4
R3w3

(B.1)

where σ is the the ruling density w millimeters from the grating center along the

length of the grating, σ0 is the ruling density at the grating center, R = 5649± 20

mm is the radius of curvature of the grating surface and b2, b3 and b4 are numerical

coefficients with values of −20, 4.558× 102 and −1.184× 104, respectively.

The second grating (Hitachi 001-0450 [156]) has a central ruling density σ0

of 2400 lines/mm with a blaze angle of 1.9 degrees and a blaze wavelength of 1.5

degrees. The focal plane is flat in the 15 – 100 Å wavelength region (Figure B.1c)

with reciprocal dispersion ranging from 1.5 – 3.7 Å/mm [157] at a grazing incidence

of 1.35 degrees. The radius of curvature of the concave spherical face is 15920 ±20

mm.

When using the 1200 line/mm grating an Andor Technology iKon-M 934 DO

Series back-thinned CCD camera collected EUV spectra. It is uncoated, windowless,

cooled to −70◦ Celsius and mounted via a 6” conflat flange that places the CCD in

vacuum. It had a 1024× 1024 array of 13 µm × 13 µm pixels. The Andor iKon was

a ‘loaner’ camera from Andor that was used while awaiting the arrival of the Andor

Newton described in the subsequent paragraph. It was coincidental that the iKon

was only used with the 1200 line/mm grating and the Newton was only used with

the 2400 line/mm grating.
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When using the 2400 line/mm grating an Andor Technology Newton DO920P-

BN-9HC Series back-thinned CCD detector recorded spectra. It is uncoated, win-

dowless, cooled to −70◦ Celsius and mounted in the same way that the iKon was,

with a 6” conflat flange. The active area of the CCD is a 1024 × 256 array of 26

µm × 26 µm pixels, with a rectangular aspect ratio that more closely matches the

geometry of the flat focal plane than the square CCD found in the iKon.

The diffraction grating is held in an optical mount (Lees) on a rotational

stage (Ealing Electro-Optics) in the center of a custom cylindrical stainless steel

vacuum chamber (manufactured by the Kurt J. Lesker Company), connected to the

CCD camera by a custom edge-welded metal bellows (manufactured by Metal Flex

Welded Bellows, Inc.). The CCD was positioned in the flat-field focal plane of the

diffraction grating using a pair of translation stages (Newport Corporation UMR12

series) outfitted with high-strength micrometers (Newport Corporation BM series)

and a rotational stage (Newport Corporation UTR series) capable of withstanding

the compressive force of the vacuum upon the edge-welded bellows. The Kurt J.

Lesker vacuum chamber was connected to the experimental chamber by a hydroform

bellows, manually operated gate valve, filter wheel and entrance slit assembly (taken

from an Acton VM-502 vacuum monochromator) in that order. The entire flat-field

spectrometer assembly was mounted on rails and could be moved transversely by up

to 25 mm with respect to the target chamber using another BM series micrometer

with the degree of freedom provided by the hydroform bellows.

To block infrared laser light while transmitting EUV, metal filters with thick-

ness < 1 µm were used. Depending on the spectral regime being observed, filters
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Flat-field Spectrometer Vacuum Chamber Layout 

Figure B.2: Schematic of the vacuum enclosure for the flat-field spectrometer.

made of aluminum (0.25, 0.4 or 0.8 µm), nickel (0.1, 0.2 or 0.4 µm) or zirconium (0.2

µm) were installed. The filters are extremely fragile, and were frequently damaged

when > 50 mJ of femtosecond pulse energy impinged upon the them. However, jets

of large clusters usually absorbed enough energy to ‘protect’ the filter from the laser.

Up to three filters were installed at once in a filter wheel ∼ 1 cm in front of the en-

trance slit to the spectrometer, approximately 60 cm away from the laser-produced

plasma.

At the grazing incidence angles of 1.35 and 3 degrees in which they are used, the

concave gratings image the entrance slit to the CCD surface with extremely small

numerical apertures NA of ∼ 0.005 and ∼ 0.011 for the 2400 and 1200 line/mm

gratings, respectively. However, even the longest EUV wavelength λ0 at which the

spectrometer operates is short enough that this still corresponds to a diffraction-
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limited imaged spot radius w0 = λ0/(πNA) that is never larger than ∼ 500 nm,

more than an order of magnitude smaller than the entrance slit width and CCD

pixel size. Thus in practice the maximum attainable spectral resolution of the

spectrometer is fundamentally limited by the pixel size of the CCD detector being

used. However, for all data presented in this dissertation the resolution was limited

by the entrance slit width, usually set to ∼ 100 µm, chosen because the natural

width of the spectral lines typically emitted from the plasma was typically of order

0.5 Å. Further restricting the slit width attenuated the signal without significantly

improving our ability to distinguish adjacent spectral lines.
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