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Purpose: The purpose of this dissertation is to evaluate the image quality of clinical

Full Field Digital Mammography (FFDM) systems. This is done by evaluating image ac-

quisition performance of clinical FFDM in a comprehensive way that accounts for scatter,

focal spot un-sharpness, detector blur and anti-scatter grid performance using an anthro-

pomorphic phantom. Additionally we intend to provide a limited evaluation of the effects

that image processing in clinical FFDM has in signal detectability.

Methodology: We explored different strategies and a variety of mathematical model

observers in order to evaluate the performance of clinical FFDM systems under different

conditions. To evaluate image acquisition performance, we tested a system-model-based

Hotelling observer (SMHO) model on a bench-top system using a uniform anthropomor-

phic phantom for an signal known exactly background known exactly (SKE/BKE) task.

We then applied this concept on two clinical FFDM systems to compare their perfor-

mance. In a limited study to evaluate the effects of image processing in the detectability



of FFDM, we implemented the channelized Hotelling observer (CHO) model on clinically

realistic images of an anatomical phantom for an SKE/BKE task.

Results: Even though the two systems use different detection technologies, there was

no significant difference between their image acquisition performances quantified by the

Contrast-Detail (CD) curves. We applied the CHO model to investigate the image process-

ing algorithms used in GE Senographe DS FFDM system. For the particular SKE/BKE

task with rotationally symmetric signals, the image processing tends to contribute to a

non-significant reduction of system detectability.

Conclusion: We provided a complete description of FFDM system performance in-

cluding the image acquisition chain and post-acquisition image processing. We demon-

strated the simplicity and effectiveness of both the MFHO and CHO methods in a clinical

setting.
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1. INTRODUCTION

1.1 Background

In 1973, breast cancer ranked first as a cause of cancer death among North American

women, and it accounted for 20% of all cancer mortalities[1]. In the next 30 years, the total

breast cancer mortality was substantially reduced due to improved treatments including

the use of hormonal and cytotoxic treatments[2, 3]. However, breast cancer is still the

second leading cause of cancer death (after lung cancer) in women. In 2008, 182,460 cases

of invasive breast cancer and 67,770 cases of situ breast cancer were reported. 40,930 breast

cancer deaths were estimated in the same year[4], and 39,520 women were estimated to

die from breast cancer in 2011[5]. These statistics highlight the clinical significance of

reducing breast cancer mortality.

Many scientists have contributed to investigating the prevalence of breast cancer by

attempting to better understand the etiology of breast cancer. Even though no confirmed

cause of breast cancer has been reported yet[5–10], the analysis of the etiology leads to the

development of breast cancer therapies. In most therapies, early cancer detection plays

a key role in increasing patient survival rates. The rates are significantly higher when

tumors are detected and treated at an early stage, i. e., smaller than 2cm[11].

In the past 15 years, the breast cancer mortality rate has been decreased by 30% to

50% due to the use of screening mammography in early cancer detection[12, 13]. The

mortality rate can be remarkably reduced for women who are 40 years of age or older[14,

15]. Lower benefits to younger women are due to their increased risk of rapidly growing

cancerous tissues and higher breast densities which affect the sensitivity of the screening

mammography[16, 17].
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1. Introduction 2

During the past ten years, Full Field Digital Mammography (FFDM) has been gaining

popularity and has widely replaced screen-film systems in clinical practice in the USA. A

typical FFDM system consists of an x-ray tube that emits x-ray photons; a compression

paddle that provides consistent pressure to breasts; a digital detector that interacts with

the x-rays transmitted from the breast, absorbs energy carried by the photons, converts this

energy to a measurable signal and collects this signal; a computer console that stores the

raw images obtained at detector; and a display workstation where the processed images

could be reviewed by human observers such as radiologists. One of the biggest image

quality disadvantages of film systems is the sigmoid shaped film response to radiation

exposure. The contrast of the film is determined by the gradient, or the slope, of its

response curve. The non-linear regions of the curve (the “toe” and the “shoulder”) have

very low contrast, and only the linear region with the higher slope has contrast suitable for

imaging. Therefore the linear region of the response curve limits the dynamic range[18].

The effectiveness of film systems is also limited by film processing artifacts that contribute

to the false-negative rate[19]. With the development of digital detectors, the response

curve in FFDM systems is linearly proportional to incident x-ray intensity, resulting in

a wider dynamic range. Unlike the film, which has the roles of acquisition, storage and

display, in FFDM, image acquisition, storage and display functions are performed by

different subsystems[20]. The film contrast is determined by how the film is processed;

whereas in FFDM, contrast can be adjusted and optimized based on the dynamic range

of the system. In clinical practice, FFDM systems have significantly lower recall rates[21]

and better diagnostic accuracy for young women (under age 50) with dense breasts[22].

In addition, the FFDM decreases the image acquisition time and reduces film library

maintenance costs[23].

1.2 Image Quality and Model Observers

A medical image is a representation of human organs. It reveals tissue structures and it

is relevant to clinical diagnosis. Various evaluation methods have been proposed in the
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past to quantify x-ray image quality. In the early 1970s, evaluation methods such as the

mean square difference between objects and their images did not take into account the

purpose of medical images. Without linking the phrase “Image Quality” to diagnostic

tasks, at that time, the assessment of system performance entirely relies on the subjective

impression of humans. Running clinical trials links image quality with how well the image

can fulfill its medical tasks or purposes. Previous research has shown that even though

humans are skilled at signal detection and discrimination tasks[24], they have a number

of inefficiencies including inter- and intra-observer variabilities and a limited range of

sampling and integration[25]. In addition, running clinical trials is very expensive and

time consuming. As an alternative, in clinical practice, image quality is often characterized

by pixel SNR that describes the relative strength of signal with respect to that of noise

(mean pixel value divided by the standard deviation). It is commonly used because of its

simplicity. However, pixel SNR ignores correlations between pixels and does not account

for the shape of signals. The pixel SNR could provide inaccurate or misleading information

if it is used as a figure of merit[26]. It is therefore necessary to develop clinically practical

objective assessment methods that can provide meaningful measurements of image quality.

Classification is a common clinical task in breast cancer diagnosis. Signal detection

belongs to a classification task: to detect whether breast cancer is present or absent

based on x-ray images. In this dissertation, we consider a binary detection task with two

hypotheses: signals are present in the images, or signals are absent in the images.

In order to provide objective assessment of image quality and to avoid the uncer-

tainty due to inter- and intra-human observer variability, model observers are often used

to quantify image quality. A model observer is a decision making function that extracts

information from images. Given an input image, the model observer calculates and returns

a test statistic, which is a scalar value, according to its template. For the aforementioned

detection task, given images under the two hypotheses, the test statistic values will gen-

erate two distributions: one from signal present images, and the other one from signal

absent images. These two distributions are called probability density functions (PDFs).
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By setting a threshold value, the model observer will be able compare test statistic values

to the threshold and decide which of the two hypotheses (signal present or signal absent)

is true for each image. Each threshold value determines a detection sensitivity, i. e., the

True Positive Fraction (TPF) of decisions, and a detection specificity, one minus the False

Positive Fraction (FPF) of decisions.

In detection tasks, the detection probability is often quantified by the Receiver Oper-

ating Characteristic (ROC) curve[27, 28]. This curve plots TPF as a function of FPF with

moving the decision threshold value from positive infinity to negative infinity. The Area

Under ROC Curve (AUC) determines the separability of the two distributions under differ-

ent hypotheses, which represents detection probability of signals[29]. Fig.3.1 shows three

ROC curves and the corresponding PDFs. pr(t|Hi) represents the PDF for hypothesis i.

Fig. 1.1: The ROC curves and the corresponding PDFs. The separability of the two PDFs
under different hypotheses determines the AUC, which represents detection probability.

System detectability is quantified by signal to noise ratio (SNR). Burgess et al. linked

SNR to detection probability for multiple-alternative-forced-choice (MAFC) detection

tasks[30]. For a 2AFC binary detection task, the link between SNR and AUC is thus

given as:
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AUC =
1

2
+

1

2
Erf

(
SNR

2

)
. (1.2.1)

In general, higher SNR equivalents to better detection probability, and thus an infinitely

large SNR corresponds to 100% detection probability. The SNR, which is directly linked

to detection probability, can be used as a figure of merit to quantify image quality in

detection tasks.

Consider the signal detection task with hypothesis H1 corresponding to signal present

images and hypothesis H2 corresponding to signal absent images, the system detectability,

or the SNR, for a model observer can be calculated as[29]:

SNR =
t̄2 − t̄1√
1
2
σ2

1 + 1
2
σ2

2

, (1.2.2)

where ti is the test statistic of the observer when hypothesis Hi is true, t̄i is the mean

test statistic under hypothesis Hi, and σ2
i is the variance of test statistic under hypothesis

Hi.

SNR can be calculated differently according to different observer models. Commonly

used model observers for detection tasks include: the ideal observer, the non-prewhitening

observer, and the Hotelling observer. Among all model observers, including both math-

ematical observers and human observers, the ideal Bayesian observer is a decision maker

that yields the best possible performance of the imaging system[31]. It uses all statistical

information to optimally perform the imaging task. The strategy of the ideal observer is

to calculate a test statistic called the likelihood ratio, which is defined as the ratio of the

PDFs under the two hypotheses[29]. In realistic imaging conditions, since the PDFs are

usually unknown, it might be impossible to estimate its performance without sufficient

statistics of the data[32]. Therefore, the Hotelling observer, which is an ideal linear ob-

server that achieves the best performance of all observers constrained to linear operations

on the data, is a more desirable alternative[32–34]. This observer is equivalent to the

ideal Bayesian observer in detection tasks that only involve Gaussian data. The decision
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Observer Model Test Statistic System Detectability (SNR)

Ideal Observer t(g) = pr(g|H2)
pr(g|H1)

No general mathematical expression

Non-prewhitening Ob-
server (Spatial)

t(g) = ∆Stg SNR2 =
(∆St∆S)

2

∆StK∆S

Non-prewhitening Ob-
server (Frequency)

t(g) = ∆Stg SNR2 =
[
∫

df∆S(f)2MTF(f)2]
2∫

df∆S(f)2MTF(f)2NPS(f)

Hotelling Observer
(Spatial)

t(g) = ∆StK−1g SNR2 = ∆StK−1∆S

Hotelling Observer (Fre-
quency)

t(g) = ∆StK−1g SNR2 =
∫

df ∆S(f)2MTF(f)2

NPS(f)

Channelized Hotelling
Observer

t(V) = ∆StUK−1
c V SNR2 = ∆StUK−1

c ∆UtS

Tab. 1.1: Commonly used model observers and their templates to calculate test statistics.

function of the Hotelling observer can be practically calculated. The upper bond to the

system detectability is thus tractable and can be quantified by the Hotelling observer SNR.

The channelized Hotelling observer applies a channel mechanism to the Hotelling observer

to reduce the dimensionality of the calculation. The non-prewhitening observer is not

designed to represent the best possible performance of the system, but to simulate human

performance without prewhiten the noise correlations[32].

The model observer SNR definitions are summarized in Table.1.1 with notations defined

in Table.1.2. The Hotelling observer uses the known signal as well as the noise covariance

matrix K as a template to prewhiten noise correlations. The non-prewhitening observer

uses only the known signal as the template without knowing any information about noise

correlations. If the system noise is uncorrelated, the performance of the two observers is

identical. In detection tasks with correlated system noise, the performance of the non-

prewhitening observer is necessarily worse than the Hotelling observer. The channelized

Hotelling observer uses the same observer template as the Hotelling observer, but partially

captures the information within the images. Details of calculating different model observer

SNR are discussed in later Chapters.
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Notation Definition

x Discrete spatial dimension, parallel to chest wall
y Discrete spatial dimension, perpendicular to chest wall
fx Discrete frequency along the x direction
fy Discrete frequency along the y direction
∆x Pixel size along the x direction
∆y Pixel size along the y direction
g Input image
w Ideal projection of an object
nq Quantum noise
ne Electronic noise
pr (g|Hi) Probability when hypothesis Hi is true
∆S Difference signal in spatial domain
∆S(f) Difference signal in frequency domain
K Noise covariance matrix in spatial domain
H System transfer function in spatial domain
R Disk signal radius
h Disk signal radius
µ Linear attenuation coefficient
m Magnification factor
NPS(f) Noise power spectrum in frequency domain
GNPS(f) Generalized noise power spectrum in frequency domain
MTF(f) Modulation transfer function in frequency domain
GMTF(f) Generalized modulation transfer function in frequency domain
GNEQ(f) Generalized noise equivalent quanta in frequency domain
SNR Signal to noise ratio
U Matrix of channels
V A channelized image
Kc Channelized covariance matrix
SNRc Channelized Hotelling observer SNR

Tab. 1.2: Definitions of notations in calculating model observer SNR.
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In this dissertation, we choose to use the Hotelling observer that provides the best

possible system performance for the signal known exactly/background known exactly

(SKE/BKE) detection task we considered. It maximizes the SNR of all observers that

are constrained to linear operations including model observers and humans. Appendix B

provides a mathematical proof of this statement.

1.3 Motivation

Evaluating the performance of FFDM systems involves the assessment of FFDM image

acquisition, as well as the evaluation of image processing designed to help human observers

extract information from FFDM images. Our motivation in this dissertation is to develop

clinically practical methodology to evaluate both the image acquisition performance of

clinical FFDM systems and the effects of image processing algorithms used in clinical

FFDM on image quality.

In the evaluation of FFDM image acquisition, our goal is to develop a system-model-

based Hotelling observer method that accounts for not only detector blur, but also scatter

blur, focal spot unsharpness, magnification factor and noise correlations of the system. A

complete description of the performance of the image acquisition part of clinical FFDM

systems can be provided by this method with making one set of measurements. The image

acquisition performance should be evaluated by this method with taking a reasonable

amount of images. In a clinical setting, there are limits to the number of images one

can obtain for testing purposes because of considerations of the x-ray tube and detector

lifespan. Additionally, data collection restrictions are imposed by patient scheduling. This

method should provide a means to build an empirical model of the FFDM system, which

can be used to predict system performance at different doses without the needs of collecting

additional images. A validation of this method needs to be provided by comparing its

evaluation results to other published literatures.

In the evaluation of FFDM image processing, our goal is to develop a methodology

that evaluates the effects of image processing on the best possible system performance.
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Non-linear image processing/adaptive image processing algorithms are commonly used in

clinical FFDM, this method should be able to take into account the effects of non-linear

image processing on images. Because most of the non-linear image processing used in

clinical FFDM adapts to different imaging regions, we need to design appropriate phantoms

in the development of this methodology to trigger image processing (that will be otherwise

turned off) including but not limited to edge enhancing and noise smoothing. This method

needs to be practical in clinic as well, with the collection of limited number of images.



2. EVALUATION OF FFDM IMAGE ACQUISITION IN SPATIAL
DOMAIN

2.1 Introduction

In Nov. 2010, the U.S. Food and Drug Administration (FDA) published a Class II Spe-

cial Control Guidance for FFDM systems[35]. Any firm intending to market a new FFDM

system needs to either show that its device meets the recommendations of this guidance or

provide equivalent assurances of safety and effectiveness with respect to previously cleared

FFDM systems. This guidance provides a recommended procedure for evaluating FFDM

image acquisition performance and identifies the classification regulation. FFDM image

acquisition is recommended to be evaluated through characterization of system properties

including: the contrast between different tissues, the system noise properties, and the sys-

tem spatial resolution, which refers to the ability of the system to resolve small details[36].

However, this evaluation of system properties has its limitations. Detector based bench

tests are recommended in the guidance, such as Noise Power Spectrum (NPS), Modula-

tion Transfer Function (MTF) and Detective Quantum Efficiency (DQE) measurements.

These metrics do not take into account the effects of scatter from patients, focal spot un-

sharpness, and magnification factors because any phantoms that model x-ray attenuation

of patient breasts are not involved in these measurements. As a complement, the guidance

suggests a human observer-based phantom study using the Contrast-Detail Phantom for

Mammography (CDMAM). The development of phantom is an outcome of the project:

“Quality Assurance in Mammography”, done at the Department of Radiology, University

Medical Centre Nijmegen, (St. Radboud), the Netherlands. The CDMAM phantom con-

sists of gold disks of various thicknesses and diameters, attached to an aluminum base

Administrator
Line

Administrator
Typewritten Text
10
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with up to four PMMA covers (1 cm thick each). The disks are distributed within a

matrix of 16 rows and 16 columns. Each matrix cell contains two identical disks: one

in the center and another one randomly located in one of the corners. Human observers

are required to determine the locations of disks by reading the CDMAM images. The

threshold thickness (for the least detectable disks) as a function of disk diameter, i. e., the

Contrast-Detail (CD) Curve, can be obtained in the results to represent FFDM system

performance. However, such a study might be affected by large uncertainties associated

with inter- and intra-observer variability between humans. Furthermore, in this guidance,

the link between the measurements of the physical characteristics of the system and the

human observer studies is missing. Some expensive and time consuming clinical trials

could be potentially avoided through such a link.

Many scientists have contributed to implementing the Hotelling observer model in the

evaluation of FFDM image acquisition performance in an effort to provide objective as-

sessment. Sandrik and Wagner[37] developed a Fourier based expression of the Hotelling

observer SNR that they applied to a specific imaging task in the assessment of the per-

formance of film systems. The Fourier approach makes the simplifying assumptions that

signal transfer is shift-invariant and noise is cyclo-stationary. The Hotelling SNR can be

expressed in terms of a difference signal (the difference between signal present and sig-

nal absent images) and the noise equivalent quanta (NEQ). The NEQ can be determined

from the detector Modulation Transfer Function (MTF) and the Noise Power Spectrum

(NPS)[37–39], which characterize the deterministic signal transfer of the detector and the

system noise respectively. Furthermore, the detective quantum efficiency (DQE) obtained

by normalizing NEQ with the photon fluence that reaches the detector, can be used as

a figure of merit to quantify detector performance. The DQE quantifies the efficiency

of a detector to detect x-ray photons[40]. Jennings et al. developed a database of mea-

sured mammographic x-ray spectra that can be used to determine the number of incident

photons[41, 42] for the DQE calculation, and Dobbins et al. presented examples for calcu-

lating the DQE[42, 43] for different imaging systems. Many authors have used this Fourier
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approach to evaluate the performance of mammographic systems[41, 44]. This method is

based on measurements of the detector without the presence of a phantom to simulate

realistic scatter and focal spot blurring conditions.

In an attempt to improve the Hotelling observer based evaluation method, a number

of authors contributed to developing practical approaches for calculating the Hotelling

observer SNR in spatial domain (defining the system properties in spatial domain) with

phantoms placed in the Field of View (FOV). Gagne et al. calculated the Hotelling observer

SNR with an image based methodology for a given SKE/BKE task to evaluate clinical

FFDM systems[45]. By including a phantom in the evaluation, this method accounts for

scatter from the phantom and focal spot unsharpness. However, the results are limited to

the specific test objects and system settings. Since this approach does not create a model

of the system, one must retake all the images in order to evaluate the system performance

for other types of signals or at different technique parameters. Kyprianou described a

method for building an empirical model of a bench-top imaging system, which models

projection radiography, by analyzing the system response function and the system noise

in spatial domain[46].

Inspired by Kyprianou’s work, in this Chapter, we present an experimental methodol-

ogy that calculates the Hotelling observer SNR in spatial domain as a figure of merit to

evaluate the image acquisition performance of FFDM systems for a SKE/BKE detection

task. We apply this evaluation method to a bench-top system that simulates projection

mammography in our lab. This allows us to be able to make adjustments and improve-

ments to the method prior to the application on clinical FFDM systems, so that we can

take advantages of our limited time spent in the clinic. With placing a phantom in the

FOV, it accounts for the scatter from the phantom, focal spot unsharpness and magnifica-

tion factor in the estimation of image quality. Moreover, this method provides an empirical

model of the system and thus allows for the prediction of system performance as well as

for the optimization of technique parameters.
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2.2 Materials and Methods

2.2.1 Theory

Based on the linearity assumption, system noise is considered an additive to the blurred

image. The image g is thus defined as:

g = Hw + nq + ne (2.2.1)

where the H matrix is an imaging operator, or system response function, that maps

a discrete object phase-space to a discrete image. It transfers the projection through the

imaging system and returns a blurred image. w is the ideal projection of the object at

detector surface considering the geometry of the system and the magnification factor. nq

is the quantum noise that is proportional to exposure, and ne represents the electronic

noise. The notations used in this dissertation are all summarized in Table.1.2.

The test statistic t(g) of the Hotelling observer is defined by the following equation[31]:

t(g) = (∆StK−1)g = [H(w1 −w2)]tK−1g, (2.2.2)

where K is the covariance matrix that characterizes both the quantum noise and elec-

tronic noise of the system. It accounts for not only the variance of each pixel, but also

the covariance between any two pixels. It is generally accepted that higher order of noise

correlation can be ignored[31]. It is defined as: K = 〈(g − g)(g − g)t〉, where g is the

noise-free average image. w1 is the projection of signal and background, and w2 is the pro-

jection of background only. ∆S is therefore the expected difference signal between signal

present and absent images. For instance, if using the CDMAM phantom, signal-present

images are those containing gold disks while signal absent images are those with phantom

background only. For each given image g, the Hotelling observer test statistic t(g) returns

a scalar value. The returned test statistic values are normally distributed for both the

signal present and absent input images.
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The Hotelling observer SNR measures the overlap between the two distributions under

different hypotheses, and it quantifies the system detectability. This SNR can be calculated

following its definition in Eq.1.2.2[29].

The mean test statistic of ti under hypothesis i for the Hotelling observer is:

〈t(g)|Hi〉 = 〈∆StK−1g|Hi〉 = ∆StK−1Si. (2.2.3)

The variance of ti under the ith hypothesis is:

σ2
i = 〈[t(g)− 〈t(g)|Hi〉]2|Hi〉

= 〈∆StK−1ggtK−1∆S|Hi〉 −∆StK−1SiS
t
iK
−1∆S.

(2.2.4)

The variance is thus equal to:

σ2
i = ∆StK−1∆S. (2.2.5)

If we put all the pieces together, the Hotelling observer SNR can be expressed as:

SNR2 =
∆StK−1S2 −∆StK−1S1

∆StK−1∆S
=

[∆StK−1∆S]2

∆StK−1∆S
= ∆StK−1∆S. (2.2.6)

In this Chapter, we consider disk-shaped gold signals when estimating the Hotelling

observer SNR. The continuous phase-space of the disk signal is defined as:

∆w(x, y; kV p,R, h, µg,m)

= X

√
(
x

m
)2 + (

y

m
)2 < R2

(
1−

∫ kV p

0

dEpr(E; kV p)e−µg(E)h
)
,

(2.2.7)

where pr(E; kVp) is the normalized x-ray spectrum for a specific kVp, h is the thickness



2. Evaluation of FFDM Image Acquisition in Spatial Domain 15

of the disk with radius R, µg is the energy-dependent linear attenuation coefficient of gold

and m is the magnification factor. The continuous phase-space can be discretized and

then used for the calculation of ∆S.

2.2.2 Methodology Development

Experimental Setup

Multiple collimators

phantom
Ion 

chamber

Detector

110 cm 11 cm

Edge

X-ray tube

Fig. 2.1: The system setup with the uniform phantom assembly consisting of four PMMA
plates (1 cm thick each) and a 0.5 mm thick Al base. Note that the edge test object for the
determination of edge response function was placed between the second and the third PMMA
plates, where the disk objects are supposed to be positioned.

In the attempt to develop the evaluation methodology for FFDM using the definition of

the Hotelling observer in spatial domain, we consider a bench-top imaging system which

models projection mammography in this Chapter. This allows us to test the method

and optimize technique parameters so that when the method is applied to clinical FFDM
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systems, their time and resources will be used efficiently. We use a Varian 4030CB (Varian

Corp. Salt Lake City UT) detector with a 2048 × 1596 detection area, 195 × 195 µm

pixels and 600 µm thick columnar CsI(Tl) scintillator. The detector is set at 14 bit mode

without binning. The x-ray tube is a Varian B180 with 0.6 mm focal spot, Tungsten

target and 1 mm Al inherent tube filtration. Tube voltage is set to the lowest available

voltage 40 kVp in order to simulate clinical FFDM settings. Two collimators are used to

collimate the incident x-ray cone beam to fit the shape of the phantom. The phantom is

positioned 112 cm away from the x-ray tube (distance measured from the center of the

phantom) and 11cm away from the detector. The corresponding magnification factor for

the objects, which are placed in the center of the phantom, is 1.1. The phantom holder

is made of plastic material to avoid generating additional scatter x-rays. Exposures are

measured with a Rad Cal ion chamber (Radcal MOD 10X5-6) on the detector surface.

The experimental setup is schematically shown in Fig.2.1.

Fig. 2.2: The uniform phantom that models the background
of the CDMAM phantom. In the center, a 5 cm×5 cm, 0.25
mm thick Dysprosium (Dy) edge test object is taped and
sandwiched between the second and the third PMMA plates.

We choose to evaluate im-

age quality using the CDMAM

phantom, since it is built ac-

cording to the published data

in the EUREF Type Test-

ing Protocol relating PMMA

thickness to equivalent breast

thickness[47], and it is recom-

mended in the FDA Class II

Special Control Guidance for

FFDM system. Automated

software scoring and human ob-

server reading are the available

means for assessing the quality

of the CDMAM images[48, 49]. However, the automated scoring method suffers from
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limited statistics while the human observer reading is significantly affected by reader vari-

ability and reduced precision. These methods yield biased assessments of the system per-

formance. It is therefore necessary to develop a task specific evaluation method that takes

advantage of using the CDMAM phantom to provide objective and reliable evaluation

results.

0 500 1000 1500 2000 2500 3000
0

1

2

3

4

Gray level

mR 40 kVp

Fig. 2.3: Detector linearity at 40 kVp for expo-
sures up to 5 mR.

We designed a uniform phantom as-

sembly, which simulates the background

of the CDMAM phantom of version 3.2.

Therefore, the two phantoms have the

same attenuation, same noise properties

and generate the same amount of scat-

ter. Using this phantom allows us to

separately analyze the system noise and

the transfer function simulating a situa-

tion in which the CDMAM phantom is

used. The CDMAM phantom consists

of a 3 mm thick PMMA cover and a

0.5 mm thick Al base (99.5% aluminum)

with gold disks (99.99% gold) of varying

thicknesses (from 0.05 to 1.60 µm) and

diameters (from 0.10 to 3.20 mm). The

phantom itself has a PMMA equivalent thickness of 1 cm under standard mammogra-

phy exposures, and it comes with four 16.25 × 24 cm PMMA plates, 1 cm thick each.

To simulate the uniform background of the CDMAM phantom, we use four 1 cm thick

PMMA plates and a 0.5 mm thick Aluminum base placed in the mid-distance between the

four PMMA plates. The phantom assembly matches the size of the CDMAM phantom

(162.5×240 mm) and its attenuation in the mammography energy spectrum. The CD-

MAM phantom has an Al Half Value Layer (HVL) of 1.108 mm, and the uniform phantom



2. Evaluation of FFDM Image Acquisition in Spatial Domain 18

assembly has an Al HVL of 1.113 mm at the lab settings.

Image Corrections

We performed the flat-field correction to raw images in order to remove the variations

in the pixel-to-pixel sensitivity of the detector. The flat-field corrections consist of the

correction for the nonuniform pixel gain and the subtraction of the dark-field (a mean of

100 dark-filed images was subtracted from each image).

We measured exposures and the corresponding grey-level pixel values for six different

tube currents. Based on the measurements, we fit a linear relation between the exposure

and grey-level pixel value. The linearity curve is shown in Fig.2.3. It thus allowed us to

convert the image pixel values into meaningful exposures.

System Deterministic Properties

The detector transfer function is determined by the detector Ray Response Function

(RRF), which is the detector response to a simulated infinitesimal x-ray beam. Kyprianou

et al. developed an experimental method to estimate the detector RRF from a known

detector Edge Response Function(ERF)[50]. We implemented this method with the im-

provement of placing a phantom in the FOV to take into account the scatter from phantom,

the focal spot unsharpness and magnification factor, rather than only accounting for de-

tector blur in the RRF. Therefore, in order to differentiate this RRF from the detector

RRF, we name it the system RRF.

In an attempt to estimate the system RRF using the uniform phantom assembly, we

placed a 5×5 cm square-shaped, 0.25 mm thick Dysprosium edge object between the

second and the third PMMA plates counting from the detector, at the center area of the

uniform phantom assembly. The edge was tilted 1.5 degree with respect to the horizontal

axis as shown in Fig.2.2. We measured the ERF of the four edges and then obtained

the average ERF. The system RRF was acquired from the ERF following the procedure

described in Ref.50.
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(a) The horizontal and vertical LRFs and the
corresponding system RRFs at 40 kVp. The Dy
edge was sandwiched between the second and
the third PMMA plates.
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(b) System RRFs at 40 kVp. The
Dy edge was sandwiched between the
second and the third PMMA plates.
The dashed line represents the hori-
zontal RRF, the solid line represents
the vertical RRF.
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(c) Detector RRFs at 40 kVp. The
Dy edge was positioned directly at the
detector surface. The dashed line rep-
resents the horizontal RRF, the solid
line represents the vertical RRF.

Fig. 2.4: LRF and RRF measurements at 40 kVP. Test Dy edge was either taped directly at
the detector surface or sandwiched between the second and the third PMMA plates.
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We obtained the system response function, H matrix, by sub-pixel-simulated-scanning

a 32×32 detector area with the system RRF and simultaneously recording the accumulated

detector responses[50]. The system RRF was effectively sampled at four different locations

within one pixel. The dimensions of the resulting H matrix are therefore 1024×4096.

System Noise Covariance Matrix

We estimated the system noise covariance matrix at 2.49 mR (detector entrance exposure)

by taking 90 flat-field corrected images of the uniform phantom assembly. We selected a

384×384 central region within each image assuming that the system noise is stationary

within this region. This central region was separated into 32×32 sub-regions and tiled

in a 12×12 array. If KROI represents the covariance matrix calculated for each Region of

Interest(ROI), the average covariance matrix over all ROIs within each image, i. e., Kg,

is thus defined as: Kg = 〈KROI〉. The overall average covariance matrix K is acquired by

averaging Kg over all 90 images. The dimensions of the overall average covariance matrix

are 1024×1024.

Hotelling observer SNR

We simulated a series of gold disks of thickness from 0.05 µm to 1.6 µm and diameter

from 0.1 mm to 3.2 mm as input signals inspired by the CDMAM phantom of version 3.2.

The ideal projection of disk signals ∆w was specified by the disk radius and height taking

into account the energy spectrum dependent linear attenuation coefficient following the

procedure of Ref.51. The Hotelling observer SNR was calculated following its definition

for each disk signal.

2.3 Results

Fig.2.3 shows the linearity of the detector. It is used to convert the image pixel values

into detector entrance exposures.
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In Fig.2.4a, discrete points and the corresponding fits for the points represent the hori-

zontal and vertical system Line Response Functions (LRFs). The system RRFs generated

from the LRFs along these two directions are also shown in this figure. Fig.2.4b shows the

system RRF measured along the two axes. The edge test object was placed in between

the second and the third PMMA plates of the uniform phantom assembly. Fig.2.4c shows

the detector RRF along the two axes when the edge test object was directly placed at the

detector surface without placing the phantom in the FOV.
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Fig. 2.5: The HHt of the system at 40 kVp,
representing the system response function.

Fig.2.5 shows the HHt representing the

system transfer function.

Fig.2.6a shows the overall average co-

variance matrix at a detector entrance ex-

posure of 2.49 mR. Fig.2.6c shows the

eigenvectors of the aforementioned covari-

ance matrix. Fig.2.6b shows the first

10×10 partial-covariance matrix. The ma-

trix element (i,j) shows the noise correla-

tion between the ith pixel and the jth pixel.

The correlations between the first pixel and

its adjacent 6×6 neighbors are shown in

Fig.2.6d.

Fig.2.7 shows a sample simulation of

the CDMAM disk signal with a thickness

of 1 µm and a diameter of 2 mm. The two

images on the left are the ideal projections (2D and 3D version) of the simulated disk,

while the two images on the right are the corresponding images transferred through the

system, blurred by the system response function.

Fig.2.8 shows the 2D Hotelling observer SNR map for different disk diameters and

thicknesses at 2.49 mR. Fig.2.9 shows the Hotelling observer SNR as a function of: detector



2. Evaluation of FFDM Image Acquisition in Spatial Domain 22

entrance exposure(2.9a), disk area (2.9b), disk thickness (2.9c) and disk radius (2.9d)

respectively.
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(a) The overall average covariance matrix K.
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(b) The first 10×10 sub-matrix of the overall
covariance matrix.

(c) Eigenvectors of the overall average covari-
ance matrix.
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(d) noise correlations of the first pixel with its 6×6
adjacent neighbors.

Fig. 2.6: Covariance matrix measured using the uniform phantom assembly, at 40 kVp and at
the detector entrance exposure of 2.49 mR.
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The covariance matrix consists of the quantum noise, which is proportional to exposure,

and the electronic noise, which can be considered as an additive constant. Since the

difference signal ∆S is also proportional to exposure, the Hotelling observer SNR satisfies

the following relation:

SNR ∝

√
aX2

X+b
, (2.3.1)

where a is a constant, X represents the exposure and b represents the electronic noise.

Using the estimated SNRs and the corresponding exposures in Fig.2.9a, we solved the

constant a to be mR−1 and the constant b to be 93 µR.

2.4 Discussion

Fig. 2.7: Two images on the left: projection
of a gold disk with 1 µm thickness and 2 mm
diameter; two images on the right: the corre-
sponding blurred image of the projection.

Placing the uniform phantom assembly in the

FOV to take into account the scatter gen-

erated by the phantom and the focal spot

unsharpness provides a more accurate esti-

mation of the system performance. Without

the phantom, the detector RRF shows no dif-

ference in system response between the hor-

izontal and vertical directions. However, the

system RRF shows that the system response

along the horizontal direction has more blur

than that along the vertical direction. One

possible explanation is that the x-ray scatter

generated from the phantom is not identical

along the two directions due to the rectangu-

lar shape of the phantom. Another possibility

is that the focal spot has a rectangular shape,
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which also contributes to this difference. After adding a linear anti-scatter grid to the

system, which is commonly used in clinical FFDM systems, we expect to see larger differ-

ence between the system response functions along the two axes, because the grid removes

different amounts of scatter along these two directions. Therefore, this evaluation method

provides a potential tool to evaluate the scatter removal method of the FFDM system.

Details will be discussed in Chapter 3.

By simulating disk signals instead of taking images of the actual signals, we have the

ability to predict system performance for other types of signals embedded in the same

background without the collection of additional images. We could acquire as many images

as we need using the bench-top system, however, it becomes problematic if we need to

eventually apply the method to clinical FFDM systems since our access to clinical FFDM

systems is limited by the system lifetime as well as unpredictable patient scheduling.

Therefore, the evaluation method becomes more clinically practical when using simulated

signals.

In our signal simulation, we have accounted for the x-ray spectrum, the geometry of the

system setting, the material, size and thickness of signals in the ideal projection. Using the

system response function H matrix derived from the system RRF, we take into account the

system blur and eventually obtain the blurred image of the projection as shown in Fig.2.7.

We choose to estimate the system response function within a 32×32 small detector region

because our computation is limited by the large dimension of the H matrix. Since we use

the sub-pixel-simulated-scanning method, the dimension of the H matrix is 1024×4096

for a 32×32 detection region. It also explains why we choose to show the Figure of HHt

to represent the system response instead of showing the H matrix.

The noise covariance matrix accounts for the noise correlations between any two pixels.

The diagonal of the covariance matrix represents the variance of each pixel, and the off-

diagonal elements are the covariances between pixels. The variance of each pixel is higher

than the covariance with any other pixels, therefore the diagonal of the covariance matrix is

the brightest line in Fig.2.6a. However, the noise correlations between pixels, especially the
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Fig. 2.8: 2D Hotelling observer SNR map for different disk radiuses and thicknesses at 2.49
mR.

neighbor pixels, noticeably contribute to the system noise as shown in Fig.2.6d. Ignoring

noise correlations would introduce uncertainties to the estimation of system noise. Ideally,

with obtaining an infinite number of images, the eigenvectors of the covariance matrix

exactly describe the basis functions of the space. In practice, since limited by the available

number of images, assuming sinusoidal-basis-functions is a desirable alternative to reduce

the required number of images.

The Hotelling observer SNR as a function of disk diameter/area shown in the results

matches the theory described in the literature[25, 52].
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(a) The Hotelling observer SNR as a function of
detector entrance exposure for a 0.25 µm thick
disk with 0.5 mm diameter.
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(b) The Hotelling observer SNR as a function
of disk area with fixed disk thickness 0.4 µm.
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(c) The Hotelling observer SNR as a function
of disk thickness with fixed disk diameter 0.8
mm.
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(d) The Hotelling observer SNR as a function
of disk diameter with fixed disk thickness 0.4
µm.

Fig. 2.9: The estimated Hotelling observer SNR at 2.49 mR.
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2.5 Conclusion

In this Chapter, we developed an experimental method that uses the Hotelling observer

SNR as a figure of merit to evaluate the performance of mammographic systems. It cal-

culates the system noise and transfer function independent of signals, and thus provides

an empirical model of the system. Therefore, the evaluation results can be used to pre-

dict system performance at any exposure with any type of signal embedded in the same

background. Although we only applied this method to a bench-top system in our lab,

which simulates a projection mammography, the method is general and can be used to

evaluate clinical FFDM. However, it requires a huge number of images in order to provide

an accurate estimation of noise covariance matrix. A desirable alternative is to extend

the method into Fourier frequency domain to reduce the required number of images and

to make the methodology practical in clinic. Details will be discussed in the following

Chapter.



3. EVALUATION OF FFDM IMAGE ACQUISITION IN FREQUENCY
DOMAIN

3.1 Introduction and Background

In Chapter 2, we have developed a task specific system-model-based evaluation methodol-

ogy that calculates the Hotelling observer SNR in spatial domain to quantify the FFDM

image acquisition performance. And we have applied it on a bench-top system which

models projection mammography in our lab. However,in order to ensure the estimation

accuracy, this method requires a fairly large number of images. In a clinical setting, there

are limits to the number of images one can obtain for testing purposes because of consider-

ations of the x-ray tube and detector lifespan. Additionally, data collection restrictions are

imposed by patient scheduling. Describing system properties in Fourier frequency domain

has the advantage that it requires much fewer images because the shift invariance and sta-

tionarity assumptions allow more averaging. The Fourier based approach becomes more

attractive for evaluating FFDM systems in a clinical setting as long as the implications of

the assumptions made are fully understood. It is thus important to develop a clinically

applicable task specific evaluation methodology in frequency domain to perform a com-

plete assessment of the FFDM image acquisition system. Similarly, this method will be

able to provide an empirical model of the FFDM system, which allows for the prediction

of system performance. And it will take into account the noise correlations of the system,

as well as signal size, shape, pixel size, focal spot unsharpness and scatter from patients.

In order to use the Fourier approach for evaluating the image acquisition part of FFDM

systems by taking into account the effects of focal spot unsharpness and patient scatter,

many scientists have contributed to generalizing the definitions of the MTF, NPS, NEQ
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and the Hotelling observer SNR. Wagner investigated the effects of system noise and

patient scatter on system detectability[53–55] recognizing the necessity of developing a

comprehensive assessment approach that takes into account these effects[37]. Muntz stud-

ied focal spot size, magnification factor, patient scatter and described their effects on

image quality by combining them in a comprehensive function[56]. Boone et al. intro-

duced the scatter MTF that measures the spatial distribution of scatter[57]. Following

in the footsteps of this research, Cooper et al. proposed an experimental methodology

to measure the magnitude and spatial distribution of scattered radiations for different

clinically relevant configurations[58]. Similarly, Doi et al. initially studied the focal spot

unsharpness[59], Shaw et al. introduced the focal spot MTF[60], and Ganguly imple-

mented the scatter MTF in a clinically relevant application[61]. In an effort to describe

the complete system performance with considering both the focal spot unsharpness and

scatter, Kyprianou et al. analytically generalized the MTF definition by separately defin-

ing the scatter MTF, the focal spot MTF and the detector MTF, generalized the NPS

definition by considering the magnification factor and derived the generalized NEQ based

on these two definitions[51, 62, 63]. For a microangiographic system, Samei developed an

experimental methodology for estimating the effective DQE, which accounts for the scatter

magnitude, and evaluated its use in selected digital radiographic imaging systems[64].

The task specific Signal to Noise Ratio (SNR) provides an objective assessment of

image quality. A model observer is a decision making function that extracts information

from an image, evaluates a test statistic, and compares it with a threshold value, to

decide which of two populations (i.e. signal present or signal absent in a Signal Known

Exactly/Background Known Exactly (SKE/BKE) detection task) an image belongs to.

The ideal Bayesian observer is a decision maker that yields the best possible performance

of the imaging system[31]. It uses all statistical information to optimally perform the

imaging task. The ideal linear, or Hotelling, observer achieves the best performance of any

observer constrained to linear operations on the data. It is a more desirable alternative[32–

34], because this observer is equivalent to the ideal Bayesian observer in detection tasks
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that involve Gaussian data, and its decision function can be practically calculated.

A number of authors have contributed to the development of practical approaches for

calculating the Hotelling observer SNR. Sandrik and Wagner[37] first introduced an expres-

sion of the Hotelling observer SNR derived in Fourier domain to estimate the performance

of a film system. Gagne et al. calculated the Hotelling observer SNR with an image-based

methodology for an SKE/BKE task to evaluate clinical FFDM systems[45]. By including

a phantom in the evaluation, this method accounts for scatter from the phantom and focal

spot unsharpness. Kyprianou and Liu described a method for building an empirical model

of a bench-top imaging system, which models projection radiography and mammography

respectively, by analyzing the system response function and the system noise[46, 65]. In

a more recent study, Monnin et al. used a non-prewhitened model observer with an eye

filter (NPWE) in an effort to model the human observer and estimated the system noise

with a phantom placed in the FOV.[66] Their NPWE observer made use of the the system

noise evaluated with a uniform phantom (in order to account for the scatter noise) as well

as the detector MTF.

In this Chapter, we built upon previous work to develop an experimental methodology

for evaluating the performance of clinical FFDM image acquisition chain. The method

uses an empirical model of the system to calculate the task specific System-Model-Based

Hotelling Observer SNR in the spatial frequency domain (SMFHO SNR). The resulting

SNR was used to generate contrast-detail (CD) curves in order to fascilitate the comparison

between systems and methods. We demonstrate the practicality and clinical applicability

of the method on two clinical FFDM systems (the GE Senographe DS and the Hologic

Selenia) and we compare our results with other published methods.

3.2 Materials and Methods

Fig.3.1 summarizes our approach for developing an empirical system model observer in

order to generate the CD curves of the image aquisition chain of FFDM. A model of the
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image acquisition chain of the system is generated from the GMTF and GNNPS evaluated

using a uniform phantom. The Hotelling observer, defined in terms of the GMTF and

GNPS and a set of simulated signals, is used to estimate system detectability. From the

Hotelling SNR the detection probabilities of disk signals of the CDMAM phantom can be

estimated and CD curves can be generated by setting a threshold probability.

Fig. 3.1: Evaluation procedure of the SMFHO methodology.

3.2.1 FFDM System Descriptions

In this Chapter we evaluate two clinical FFDM systems with different underlying detector

technologies and scatter removal grids: the GE Senographe DS located at National Naval

Medical Center, Bethesda, MD and the Hologic Selenia at Sibley Memorial Hospital,

Washington DC. The schematic in Fig.3.2 demonstrates the acquisition geometry of both

systems.

The GE Senographe DS FFDM system has two focal spots, 0.1 and 0.3 mm nominal,

indirect CsI scintillator based digital detector, FOV of 19×23 cm (1920×2304 pixel), pixel

size of 100 µm, kVp range 22 to 49, mAs range 4 to 500 and source to image distance

(SID) of 66 cm. A 31 line pair/cm moving linear grid is built into the Bucky that covers

the detector. The Bucky can be removed when required by our experiments. The sys-

tem has two imaging modes. The fine view mode, uses proprietary sofware to filter the

“for-processing” images (images before processing for display). The standard mode only

performs the basic corrections for flat-field, dark-field bad pixels and gain. For simplicity,

the fine view mode will be referred to as imaging mode A while the standard mode will
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(a) The front view of the system schematic.
A copper edge was placed in between the
phantom slabs for measuring the GMTF.
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(b) The side view of the system schematic. A copper
edge was placed in between the phantom slabs for
measuring the GMTF.

Fig. 3.2: Schematic of the GE Senographe DS and Hologic Selenia FFDM systems showing the
X-ray tube, phantom assembly and detector.

be referred to as imaging mode B.

In the GE Senographe DS system, scintillators are used to convert x-ray photons

into visible lights.X-rays are detected by a layer of phosphor, typically thallium (Tl)-

activated CsI phosphor. Directly behind the phosphor layer, there is a layer of amorphous

silicon, on which an array of photodiodes is used to record the emitted light photons. The

photodiodes generate electrical signals in proportion to the absorbed light photons. These

electrical signals will be amplified and recorded by the electronic system behind the layer

of photodiodes[67]. The biggest limitation of this technology is the detector blur due to

lateral spread of light photons. GE uses needle-like elements to channel the light photons

in an effort to control the lateral spread[68].

The Hologic Selenia FFDM system has two focal spots, 0.1 and 0.3 mm nominal,

selenium based direct digital detector, FOV of 24×29 cm (3428×4096 pixel), pixel size of

70 µm, kVp range from 20 to 39, mAs range from 3 to 400, the LORAD HTC anti-scatter
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grid1 and SID of 66 cm. For our experiments we used the “Phantom” mode which is

typically used for QA purposes.

In the Hologic Selenia system, the detector directly converts the received x-rays to

electronic charges. Amorphous selenium is used to absorb x-ray photons. When this

material interacts with x-ray photons, an electric charge is liberated in the form of electron-

hole pairs. A electric field is applied to control the lateral spread of electron-hole pairs

and electrode pads are used to collect charges. Comparing to the indirect detection, the

FFDM system uses this technology has better lateral resolution. However, the selenium

based detectors are usually made thicker than indirect detectors in order to increase the

detection efficiency. In addition, the cost is higher than indirect detectors[70].

For both systems, we performed all of our experiments with the large focal spot, molyb-

denum target, molybdenum filter, 30 kVp and three tube outputs: 20 mAs, 100 mAs and

200 mAs.

The uniform phantom we used consists of four PMMA plates (10 mm thick each), a 3

mm thick PMMA cover and an aluminum sheet (0.5 mm thick) placed midway between

the four PMMA plates. The phantom assembly matches the size and thickness of the

Contrast Detail Mammography (CDMAM) phantom[71], version 3.4 (Capintec, Inc., NJ)

(162.5×240 mm) as well as its attenuation for the typical mammography energy range.

Both phantoms have 5 cm equivalent thickness of PMMA. According to Dance et al.[72],

this PMMA thickness is equivalent to a 6 cm thick breast with 20% glandularity. We

measured and compared the Al half value layer (HVL) for this phantom assembly and for

the CDMAM phantom on the GE Senographe DS system set at 100 mAs. The CDMAM

phantom HVL was 0.676 mm, while the uniform phantom HVL was 0.673 mm.

For both systems, we measured detector entrance exposures by placing the phantom as

close as possible to the x-ray tube and placing an ionization chamber between the phantom

and the detector surface, as shown in Fig.3.2, to avoid back-scatter. We fit a linear relation

between tube output (mAs) and the measured exposures (mR), after correcting for the

1 The HTC grid has a cross-hatch design that reduces scatter in two directions[69].
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distance from the detector using the inverse square law. This way, we obtained the scatter

free detector entrance exposures for a given tube output. Note that when the phantom is

placed near the detector the detector entrance exposure will be higher due to scatter from

the phantom. The detector entrance exposures are used to compare our evaluation results

to those from the literature.

We estimated the mean glandular breast dose (MGD) by implementing the method

described in Refs.73 and 72, assuming a 6 cm thick standard breast with 20 percent

glandularity. For the three tube outputs we considered, the MGDs are 0.53 mGy, 2.71

mGy and 5.42 mGy for the GE Senographe DS and 0.49 mGy, 2.87 mGy and 4.97 mGy

for the Hologic Selenia system.

3.2.2 Detector MTF and Generalized MTF evaluation

The MTF describes the spatial resolution of the detector. It is defined as the normalized

modulus of the Fourier transformation of the Line Response Function (LRF)[31, 74, 75].

In the attempt to fully characterize a clinical FFDM imaging system with regards to

the detector blur, focal spot unsharpness due to magnification and the scatter from the

phantom, we estimated the Generalized Modulation Transfer Function (GMTF)[62, 63,

76, 77]:

GMTF(fx, 0) = GMTF(f) =

∣∣∣∣∣
256∑
i=1

LRF(xi)e
− 2πifxi

256

∣∣∣∣∣
256∑
i=1

LRF(xi)

, (3.2.1)

where f is the discrete frequency (1/mm) and x is the discrete spatial dimension in

mm. Eq.3.2.1 shows the 1D GMTF along the x axis as one slice of the 2D GMTF. In our

experiments, the x direction is defined as parallel to chest wall. The phrase “Generalized”

is used to identify that the GMTF was estimated with the uniform breast phantom in

place and that it is different from the traditional detector MTF.
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For both systems, an edge test object (2.5 cm × 2.5 cm) was placed in the mid-

distance between the four PMMA plates (the location where the disk signals inside the

CDMAM phantom would have been positioned) 1.5 cm away from the chest side where

the incident X-ray beam is almost perpendicular. Note that clinical systems commonly set

very low pixel values to zero in order to reduce electronic noise, therefore high attenuation

materials such as Dysprosium or lead, suggested in the Refs.65 and 50, could not be used

in our experiments. Instead, a 0.14 mm thick copper plate was chosen as the edge test

object because it does not attenuate the beam completely. To reduce noise, an average

of five images of the phantom assembly was taken at each exposure, and a second order

polynomial fit (avoiding the test object area) was subtracted from the mean image to

correct for the heel effect. Following the procedure described in Refs.65 and 50, the Edge

Response Function (ERF) and the LRF were estimated using the corrected average image

while the pre-sampled GMTF was derived from the LRF[50]. For the GE Senographe DS

system, the pixel size at the detector plane was estimated to be 100 µm, the magnification

factor from the center of the phantom to the detector was 1.03, hence the pixel size at

the object plane was 97 µm, and the Nyquist frequency was 5.15 mm−1. For the Hologic

Selenia system, the pixel size was 68 µm at the object plane and the Nyquist frequency

was 7.35 mm−1. The zero frequency in the Fourier space corresponds to infinite length

in the spatial domain. We estimated the zero frequency GMTF by linear extrapolation

of the first few points of the GMTF. To reduce noise in the GMTF data, we performed

a piecewise fit to the GMTF. The low frequency drop section of the curve represents the

scatter MTF. Since the drop is very steep[63], we were only able to obtain three data

points. And a line was thus fit to this section. A twentieth order polynomial was fit

to the remaining points. In order to obtain the 2D GMTF, two profiles (along x and

y directions) of the 2D asymmetric GMTF were acquired from the LRFs, and the 2D

GMTF was obtained by fitting cubic splines between the horizontal and vertical 1D GMTF

profiles. For a given GMTF magnitude GMTF0, four points on the x and y directions that

satisfy GMTF(fx, fy) = GMTF0 were located, and a cubic spline was fit between the
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four points. This procedure was repeated for 200 different magnitudes. It should be

noted that the results can be trusted only along the axis directions, and the interpolation

between measured points provides an estimate of the 2D GMTF. “Boot-strapping” with

replacement (the idea was introduced and explained in Refs.45) was used to estimate the

mean and standard deviation of the GMTF with finite number of samples. For the same

edge, we derived 10 LRFs. We then created a new set of LRFs by randomly picking 10

LRFs from the original set and we calculated their mean. By repeating this procedure

100 times, we were able to collect 100 mean LRFs. From each mean LRF, we can derive a

corresponding 1D GMTF. And from the whole set of mean LRFs, we were able to estimate

the mean and variance of the GMTF. Two times of the standard deviation was used as

error bar.

3.2.3 NPS and Generalized Normalized NPS evaluation

The detector based Normalized Noise Power Spectrum (NNPS) was acquired by normaliz-

ing the detector NPS with the squared average pixel value for a given exposure[78]. Since

both the primary and scatter X-rays exiting patients contribute to the noise recorded by

the detector, we estimated the Generalized NNPS (GNNPS)[62] with the uniform phantom

assembly placed on the detector underneath the compression paddle (the typical location

of a breast):

GNNPS(fx, fy) =
GNPS(fx, fy)

d2 , (3.2.2)

where the average detector output signal is given as d and the GNPS can be calculated

by:

GNPS(fx, fy) =
∆x∆y

N× 256× 256

N∑
n=1

∣∣∣∣∣
256∑
i=1

256∑
j=1

(In (xi, yj)− Sn (xi, yj)) e
−

2πifx,fyxiyj
256×256

∣∣∣∣∣
2

.

(3.2.3)
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In (xi, yj) is the nth Region Of Interest (ROI) of the flat field corrected images of the

uniform background and S is the 2D second-order polynomial fit of this image. N is the

total number of ROIs (number of ROIs within one image times number of images). ∆x

and ∆y are the physical dimensions of the detector pixels.

We acquired five images of the uniform phantom assembly. From each image, a 640 ×

640 pixel region at the same location where the edge was placed for the MTF calculation

was selected and subdivided into 256 × 256 ROIs following refs.[62, 63, 78]. Each ROI

overlapped by three quarters with its neighbors. This provides 80 ROIs in total from the

five images to be used for the GNPS calculation. “Boot-strapping”[45, 51] with replace-

ment was used to randomly sample ROI regions to obtain error bars for the GNNPS.

3.2.4 Hotelling observer SNR

To make the best possible estimate of the image acquisition performance of the two FFDM

systems, we calculated the Hotelling observer SNR. The Hotelling observer integrates the

frequency content of a signal, filtered and blurred by the system transfer function and

hidden by the system noise. The Hotelling observer SNR is defined as[31, 62]:

SNR2 = ∆x∆y
256∑
k=1

256∑
l=1

GMTF2(fx, fy)

GNNPS(fx, fy)
∆S2

F(fxk , fyl), (3.2.4)

where ∆SF(fx, fy) is the Fourier transformation of an object of interest, here a set of gold

disks with thicknesses from 0.03 µm to 2.0 µm and diameters from 0.06 mm to 2.0 mm as

input signals to match the targets in the CDMAM phantom. In the simulation, each disk

signal was specified by signal size and thickness, taking into account the energy-spectrum-

dependent linear attenuation coefficient following the procedure of Ref.51. The standard

deviation of the Hotelling observer SNR was determined from the propagation of errors of

the GMTF and the GNNPS.

In order to compare the SMFHO SNR with other published methods, we implemented

three additional observer models on the GE Senographe DS system. In their image-based,
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image-space method, Gagne et. al.[45] obtained both signal present and absent images

using the CDMAM phantom. They generated the difference signal ∆S by subtracting

sample averages of the two. They then estimated the covariance matrix which repre-

sents system noise and calculated the Hotelling observer SNRISIB19
1 which is defined as:

SNRISIB19 = ∆StK−1∆S. To implement this method, we acquired five images at each

exposure with the CDMAM phantom placed in the middle of the four uniform PMMA

plates (between the second and the third PMMA slabs replacing the 0.5 mm Al sheet of

the uniform phantom) in order to obtain signal present ROIs. Five images of the uni-

form background with the aluminum sheet replacing the CDMAM phantom were acquired

to obtain the signal absent ROIs (5048 ROIs in total). To generate ∆S for each disk

size, we averaged five 19×19 pixel signal present ROIs and then subtracted the average

signal absent ROI. All 5048 19 × 19 signal absent ROIs were used to estimate the co-

variance matrix for each exposure. In order to investigate differences between Gagne’s

image-space, image-based method with Fourier-space, image-based methods we calculated

SNRFSIB19 and SNRFSIB256 by dividing the square of the Fourier transformation of 19× 19

and 256 × 256 pixel ∆S, by the appropriate 2D GNNPS. Because of its larger size the

256 × 256 GNNPS was calculated with only 80 ROIs, while the 19 × 19 GNNPS was

calculated with 5048 ROIs.

3.2.5 Contrast-Detail Analysis

Contrast-Detail (CD) curves are commonly used to determine the boundary between vis-

ible and invisible objects[79, 80]. The CD curves were generated by determining the disk

thickness-diameter pairs that result in a fixed detection probability. For our 4AFC experi-

ments, the detection probability of 62.5% was chosen as the threshold probability because

it is the mid distance between chance (25%) and 100% detection. In practice, we con-

verted the threshold detection probability to a threshold SNR[30]. For each disk diameter,

1 Note that the symbol SNRISIB19 identifies the image-space, image-based SNR with 19×19 pixel ROIs
using Gagne’s method
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because of the discrete disk thickness of the CDMAM phantom, we compared the 16 SNRs

(corresponding to 16 thicknesses) to this threshold. The thicker one of the two disks that

produce SNR closest to the threshold SNR was chosen as the threshold thickness. For

example, if the threshold SNR is equal to 0.5, the 1.42 µm disk has a SNR of 0.3 and the

the 2 µm disk has a SNR of 0.51, then 2 µm will be chosen as a threshold thickness. A

CD curve was obtained as an interpolation between all 16 threshold thicknesses.

To determine the probability of detection when scoring CDMAM images, we considered

a four alternative forced choice (4AFC) detection task, based on the visual detection task

perfromed by the human readers of the CDMAM: choosing the correct signal location out

of four possibilities within each cell of the CDMAM phantom. For the 4AFC imaging

task, the detection probability p can be related to the SKE/BKE Hotelling observer SNR

as described in Ref.30 by Burgess.

The CD curves were generated by determining the disk thickness-diameter pairs that

result in a fixed detection probability. For our 4AFC experiments, the detection probability

of 62.5% was chosen as the threshold because it is the midway between chance (25%)

and 100% detection. In practice, we converted the threshold detection probability to a

threshold SNR[30]. We simulated a series of gold disks with thicknesses from 0.03 µm to

2.0 µm and diameters from 0.06 mm to 2.0 mm as input signals to match the targets in

the CDMAM phantom. For each disk diameter, we compared the 16 SNRs (corresponding

to 16 thicknesses) to the threshold SNR. The thicker one of the two disks that produced

an SNR closest to the threshold SNR was chosen as the threshold thickness. For example,

if the threshold SNR is equal to 0.5, the 1.42 µm disk has a SNR of 0.3 and the the 2 µm

disk has a SNR of 0.51, then 2 µm will be chosen as a threshold detectable thickness. CD

curves were obtained by linear interpolation between all 16 threshold thicknesses.

To link the SMFHO CD curves to human reader performance, we estimated the human

efficiency, defined as the human observer SNR2
Human divided by the Hotelling observer

SNR2
SMFHO. We obtained the estimated human performance by implementing an empirical

method developed by Young et al.[81, 82]. Young’s empirical model links the CD curves
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generated by the CDCOM software2 and those by human readers from three different

imaging centers. We implemented Young’s method on the GE Senographe DS system

with imaging mode B for the three exposure levels (20 mAs, 100 mAs and 200 mAs).

For each exposure level, we acquired eight images of the CDMAM phantom and used

CDCOM software output and Young’s model to obtain the estimated human CD curves.

From the CD curves we obtained the estimated human observer SNR and compared it to

the Hotelling observer SNR. The human efficiency was calculated by averaging over the

three exposures.

3.3 Results

0 1 2 3 4 5

0.2

0.4

0.6

0.8

1.0

f @mm-1D

GMTF�MTF copmarison
GMTF�grid
GMTF�no grid
MTF�grid
MTF�no grid

Fig. 3.3: Detector MTF (without phantom) and GMTF (with phantom in place) measurements
for the GE Senographe DS system at 100 mAs tube output with imaging mode B. Results are
shown with and without the grid installed on the system.

Fig.3.3 shows the comparison between the detector MTF (without phantom) and the

GMTF (with the phantom in place) with and without the grid of the GE Senographe DS

2 CDCOM[71] is a software program for scoring CDMAM images. It works by detecting the two disk
signals within each cell (one in the center and the other in one of the four corners). The program compares
the detection results to a pre-determined template and returns the detection probability.
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FFDM system (mode B) measured at 100 mAs along the x-direction (parallel to the chest

wall). The detector MTF was slightly higher when the grid was not installed. The low

frequency drop observed when the grid was in place was due to scatter within the grid that

degraded the detector MTF. The grid however, significantly improved the GMTF when

the phantom was in place because, as evidenced by the low frequency drop, it reduced the

scatter fraction from 38.6% to 18.4%.
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(a) 1D GMTF for the GE Senographe
DS system. Solid lines with filled sym-
bols represent imaging mode A while
dashed lines with empty symbols rep-
resent mode B.
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(b) 1D GMTF for the Hologic Selenia system.

Fig. 3.4: 1D GMTF measured along the x axis (parallel to the chest wall), for the two systems.
Three MGDs are denoted by different colors/symbols. The symbols, that correspond to every
10th point, are shown to help identify the curves. Error bars are twice the standard deviation.

Fig.3.4 shows the 1D GMTF derived from the LRF measured along the x-direction, for

the GE Senographe DS system (3.4a), and the Hologic Selenia (3.4b) for different MGDs.

In Fig.3.4a, solid lines with filled symbols represent imaging mode A while dashed lines

with empty symbols represent mode B. The symbols are shown to help identify the curves

and they do not correspond to specific points. In mode B, the GMTF did not significantly
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change with MGD. In mode A, the GMTFs were all higher than those in mode B for all

MGDs due to possible image sharpening employed by mode A. Furthermore, the GMTF

increased with higher MGD, indicating that higher sharpening was employed when the dose

was increased. In Fig.3.4b, for the Hologic Selenia system, the GMTFs at three MGDs were

identical within error bars. Although the plots were not shown here, we observed the same

behaivior in the y-direction GMTF with respect to dose dependence. However, for the

GE system the GMTF had a larger low frequency drop in the y-direction. This difference

was due to the different amounts of scatter that reach the detector in the two directions:

more scatter is removed along the x-axis, the axis perpendicular to the grid lines (scatter

fraction: 18.4%±0.4%), than that along the y-axis (scatter fraction: 16.3%±0.2%). The

Hologic Selenia grid removes the same amount of scatter along the two axes (scatter

fraction: 9.8%±0.4%) because it employes a 2D cross hatched cell pattern. Note that the

small increase in scatter we observed for the GE system along the y-direction only occurs

for a very small solid angle (defined by the grid septa spacing). The rotationally averaged

scatter fraction was estimated using the beam stop method (17.8%±0.2%) and was about

halfway between the x and y scatter fraction estimates from the GMTF.

Fig.3.5 shows the 1D GNNPS for the GE Senographe DS system (3.5a), and the Hologic

Selenia system (3.5b). For both systems, the GNNPS decreases with increased MGD. For

the GE system, mode A has higher GNNPS than mode B, because the image sharpening

algorithm designed to increase system resolution also increases system noise. Note that

the numerical GNNPS range is similar between the two systems for similar doses.

Fig.3.6 shows the comparison between (A) SMFHO SNR, (B) SNRISIB19, (C) SNRFSIB256

and (D) SNRFSIB19 for imaging task with a specific disk signal: 0.63 mm in diameter and

1 µm in thickness, for the GE Senographe DS system with imaging mode B at 2.71 mGy

MGD. Within error bars, the SNR results are close to each other. Notice that the SMFHO

SNR and its error bar vary noticeably with the number of ROIs. When using 256 × 256

pixel ROIs in our measurements, which provides us 80 ROIs, the SNR becomes stable

(error bars are very small compared to those estimated with 10 ROIs) and changes very
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to every 10th point, are shown to help identify the curves. Error bars are twice the standard
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slowly.

In the CD analysis, we first normalized the SMFHO SNR2 by MGD for all signals

at three MGDs, since SNR2 is proportional to MGD. We therefore obtained the SNR

at 1 mGy MGD. Next, we averaged the SNR at 1 mGy MGD for the three data sets

and created an SNR map for all 16 × 16 signals. Fig.3.7 shows the SMFHO CD curve

comparison at 1 mGy MGD for the two systems. Notice that because the disk thicknesses

are discrete, small fluctuations in the threshold SNR can cause the CD curve to jump to

the next available disk thickness. This is a possible explanation for the difference between

the CD curves of the two systems at smaller diameters.
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Fig. 3.6: GE Senographe DS system at 2.71 mGy MGD with imaging mode B. For one specific
signal: 0.63 mm in diameter and 1 µm in thickness, the comparison between (A) SMFHO SNR,
(B) SNRISIB19, (C) SNRFSIB256 and (D) SNRFSIB19.
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for the two systems, including two imaging modes of the GE Senographe DS system.

Fig.3.8 shows the comparison between CD curves acquired with different methods.

In Fig.3.8a, we compare the SMFHO CD curves before and after adjusting by a mean

human efficiency factor for the GE Senographe DS system, mode A, at 44.6 µGy detector

entrance exposure (corresponding to 0.53 mGy MGD). The human efficiency was estimated

by dividing the predicted human observer SNR2, which was derived from the CDCOM
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reading outputs as per the procedure described in Refs.81 and 82, to the SMFHO SNR2.

We obtained the efficiency for each disk signal and calculated the mean human efficiency

factor, which is 30%±5%, by averaging over all signals. We compare the SMFHO CD

curve, adjusted by human efficiency, to that obtained by Monnin at a similar entrance

exposure for two specific disk diameters, the comparison shows a fairly good agreement.

Notice that in this figure, we also show two human CD curves obtained at 70 and 140 µGy

detector entrance exposures for the GE Senographe 2000D FFDM system by Rivetti[83]

for comparison purposes. Even though the human CD analysis was performed on an older

version of the GE FFDM system, the results are close to the SMFHO CD curve adjusted

by human efficiency. Fig.3.8b shows the comparison between the SMFHO CD curves

(before adjusting by human efficiency) and the ones obtained from CDCOM readings at

three MGDs.
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Fig. 3.8: The CD curves of the GE Senographe DS system obtained from using the SMFHO
method, the CDCOM software readings and the human observer readings.

3.4 Discussion

The SMFHO method uses a model of system noise and deterministic properties for a uni-

form breast phantom to calculate the Hotelling observer SNR for clinically relevant FFDM

imaging tasks. Using the empirically derived model, the SMFHO SNR can be estimated

for different signal shapes and sizes with different system settings. With this method we

can practically perform a comprehensive evaluation of clinical FFDM systems, including

detector performance, scatter rejection, focal spot unsharpness and patient MGD.
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In order to make the SMFHO methodology practical for evaluating FFDM systems

in a clinical setting with collecting a limited number of images, we make the following

assumptions: the FFDM system under evaluation is linear and cyclostationary. This

method, without modification, is not applicable for evaluating systems that use non-linear

or adaptive image processing algorithms. Furthermore, since the x-ray incident angles, the

amounts of scatter and the focal spot dimensions all vary depending on different detector

locations, the system is not shift invariant globally. Therefore, our results are only valid

for the relatively small ROI of the experimental measurements, where the system blur and

system noise can be considered shift invariant and cyclostationary.

We implemented the “boot-strapping” technology to account for the variabilities in

the system noise and system response measurements. The variabilities come from the

distribution of x-ray photons as well as system motion. However, since we only considered

simulated signals, the variabilities of signals, including the difference between the actual

signal diameter/thickness and the nominal diameter/thickness, have not been included in

our error analysis.

In the attempt to validate the SMFHO method, we compare it to three other methods

in Fig.3.6 and demonstrate that within error bars there is no significant difference between

them.

SNRISIB19 was estimated in spatial domain using 5048 ROIs to estimate the noise

covariance matrix. Since it used the most efficient Hotelling observer, it provided the

highest SNR. SNRFSIB19, on the other hand, was estimated in frequency domain. It used

the same amount of ROIs to estimate system noise (GNNPS). The difference between the

two SNRs is due to the limiting assumptions made in order to perform Fourier transform.

Note that calculating the GNNPS performs more averaging than estimating the covariance

matrix, the SNRFSIB19 therefore has lower error bar than the SNRISIB19.

We also investigated how the SNR and its uncertainty vary with the number of ROIs

used to calculate the GNNPS. We compared SNRFSIB256, using 80 256 × 256 pixel ROIs, to

SNRFSIB19, using 5048 19 × 19 pixel ROIs. No significant difference was observed between
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the two, except for a slightly smaller error bar of SNRFSIB19 due to the large amount of

ROIs. Therefore, the results had shown that 80 is an adequate number of ROIs in our

imaging tasks.

The SMFHO SNR is slightly smaller than the SNRISIB19, however the difference is

not significant. The SMFHO methodology provides equivalent results to the image-

space,image-based method, while in the meantime allowing for predicting FFDM system

performance with other types of signals at different exposures without the need of collect-

ing additional images.

One of the biggest advantages of the SMFHO method over using the detector MTF

for estimating the SNR is that the GMTF accounts for realistic scatter conditions and

thus can be used to evaluate the system scatter removal method. To demonstrate the

advantages of the GMTF, for the GE Senographe DS system we compared the MTF with

and without a grid (without using a phantom) and the GMTF without and without a

grid (with the uniform phantom on the detector). Since the MTF only accounts for the

detector blur, as well as potential scatter contributed by the grid, but not for the scatter

rejected by it, the system with grid has a worse MTF as shown in Fig.3.3. However, the

GMTF shows that even though the grid itself contributes to blur, it reduces the scatter

fraction by 20%, and therefore significantly improves the system GMTF. The fact that

the GMTF is noticeably higher for the system with grid shows that the blur added by

the grid is a justified tradeoff. Therefore, the SMFHO evaluation methodology, which

uses the GMTF to describe system deterministic properties, can be used to evaluate the

performance of the system anti-scatter method.

In this chapter, we presented a practical method to estimate the 2D GMTF from

1D GMTF profiles. The importance of evaluating the 1D GMTF profiles along more

than one direction is demonstrated by comparing the GMTF along the two axes. For the

GE Senographe DS system the GMTFx and GMTFy are significantly different because the

linear grid removes more scatter along the x axis than along the y axis. The Hologic Selenia

system uses the Lorad High Transmission Cellular (HTC) grid, which rejects scatter with
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a cross-hatch shaped grid[69], reduces the same amounts of scatter along the two axes.

The resulting GMTF profiles along the two axes are thus identical at low frequencies due

to the symmetric scatter fraction. However, there is still a noticeable difference between

them at higher frequencies. One possible explanation is the rectangular shape of the focal

spot, which has a smaller length along the y axis than that along the x axis, resulting

in higher GMTF along the y axis. We obtained the 2D GMTF by fitting cubic splines

between the GMTFx and GMTFy. Even though the results are only accurate along the

two axes, it provides additional information of the system blur than using the 1D GMTF.

The SMFHO method can be used to evaluate the effects of linear image processing

algorithms on image quality. The fine view image processing used in the GE Senographe

DS system acquisition mode A improves the GMTF. The GMTF of mode A increases with

higher MGD, while the GMTF of mode B is constant with MGD. A possible explanation

is that the fine view mode applies a MGD depended sharpening filter to images in order to

enhance the edges. This processing filter also increases system noise at different MGDs as

shown in Fig.3.5. However for the Hotelling observer, the processing effects on the GMTF

and the GNNPS cancel out in the CD curves. Using this processing filter does not improve

the system detectability of this observer.

It is instructive to examine the behavior of the SMFHO SNR to verify the dependence of

the SNR on MGD and signal size. In Ref.84, Burgess provided a simple model to estimate

SNR for uniform background and analytically showed that SNR2 is linearly proportional

to MGD while SNR is linearly proportional to signal size. The SMFHO SNR results for

the two clinical systems reach a good agreement with Burgess’s theory as we expected.

The SMFHO method uses an empirical model of FFDM systems based on the GNNPS

and the GMTF. To implement this method, we simulated signals accounting for the linear

attenuation coefficient of signals[85], x-ray spectrum, signal size, shape and thickness for a

specific uniform background phantom. One advantage of this method is that we can predict

FFDM system performance for other types of signals embedded in the same background

without the need of collecting additional images.
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Notice that we have the ability to obtain the SMFHO CD curves at any MGDs due to

the fact that the SMFHO SNR2 is linearly proportional to MGD. We can also predict the

system performance at any given MGDs.

The SMFHO CD curves could be potentially used to predict human performance.

Young et al. proposed a methodology to predict human observer performance from the

CDCOM software readings of CDMAM images[81, 82].Using Young’s method, we related

the SMFHO CD curves to CDCOM readings, something that allowed us to predict hu-

man performance. A relevant research by Rivetti et al.[83] studied human performance

and provided human observer CD curves for the GE Senographe 2000D. We digitized and

displayed the human CD curves at two detector entrance exposures in Fig.3.8a. Although

this CD analysis was performed on an older version of the GE FFDM system, the results

are close to the SMFHO CD curve adjusted by human efficiency factor at 44.6 µGy de-

tector entrance exposure. The efficiency of the TSFM observer compared to the human

observer has not been evaluated experimentally. Future work could include performing hu-

man observer studies, comparing with the predicted human CD curves using the SMFHO

method and calculating a human efficiency factor that can be directly linked to human

performance. Notice that we have the ability to obtain the SMFHO CD curves at any

MGDs due to the fact that the SMFHO SNR2 is linearly proportional to MGD. We can

also predict human performance at any given MGDs.

We summarized the advantages of using the SMFHO method to evaluate the perfor-

mance of clinical FFDM systems. Comparing to the pixel SNR, the SMFHO method

provides an objective assessment of the system performance based on a SKE/BKE detec-

tion task. It uses an uniform phantom when estimating the system noise and deterministic

properties to take into account the scatter from the phantom and focal spot unsharpness.

Comparing to the detector based MTF, the SMFHO method can be used to evaluate the

performance of the anti-scatter grid in clinical FFDM. It provides equivalent evaluation

results with Gagne’s image-based method[45], but uses an empirical model of the system to

predict system performance without the needs of collecting additional images when varying
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exposures or signal types. Comparing to Monnin’s method that uses a non-prewhtiening

observer to simulate human performance[66], the SMFHO method estimates the best pos-

sible performance of FFDM systems quantified by the Hotelling observer SNR. This SNR

is calculated in Fourier frequency domain to avoid taking a large number of images on

clinical systems in order to calculate an invertible noise covariance matrix in spatial do-

main. The SMFHO method derives CD curves from the SNR results for the detection task,

instead of fitting a function to relate the system detectability to CD curve in Monnin’s

method. It provides a direct comparison with human studies, and thus can be potentially

used to predict human performance.

3.5 Conclusions

A clinically practical SMFHO assessment methodology for evaluating FFDM system per-

formance has been presented in this chapter. This method uses an empirical model of the

FFDM imaging system, incorporating a uniform phantom assembly placed in the FOV

to account for scatter and focal spot unsharpness. For a SKE/BKE detection task, with

taking only five images of the phantom background and another five of the edge test

object, SMFHO CD curves can be generated. The evaluation results are not limited to

specific system settings, and can be used to predict system performance using other types

of signals at various MGDs. In addition, this method can be potentially used to predict

human observer performance. We applied the method to evaluate the performance of the

GE Senographe DS and the Hologic Selenia systems, and demonstrated that there is no

significant difference between them.



4. EVALUATION OF IMAGE PROCESSING USED IN CLINICAL
FFDM

4.1 Introduction

Post-acquisition image processing algorithms are typically employed in clinical FFDM

systems to generate “for display” FFDM images with the familiar “film-like” apperarance

as well as to aid human observers in extracting information. Most of the processing

is typically performed by linear filtering, however some more sophisticated algorithms

employ non-linear/non-reversable processing that introduce the possibility of affecting

system detectability. Therefore, it is necessary to take into account the effects of post-

acquisition image processing algorithms in the evaluation of clinical FFDM image quality.

The exact image processing algorithms employed in a clinical FFDM system are usually

proprietary. Review of published litterature indicated that typical post-acquisition image

processing algorithms include the following steps:

• Pre-processing

• Segmentation

• Normalization

• Post-processing

Pre-processing is the first step in image processing chain[86]. Detail enhancement

algorithms can be used to set the grey levels of the direct irradiated detection areas

(with no x-ray absorbtion) to zero in order to optimize the dynamic range of the images.
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Logarithmic conversion can be used to adjust the grey level range in a digital image, by

expanding values of dark pixels and compressing values of bright pixels.

Normalization is a linear processing applied to readjust the brightness and contrast

across the whole breast region of a digital image[87]. Typically, without normalization,

the dynamic range of monitors does not allow the display of all the variations in both

the high density (bright areas near the center of the breast) and low density regions

(dark areas near the nipple). Furthermore human readers will not be able to discriminate

between small changes in a dark region and at the same time small changes in a bright

region.

Region segmentation is the next step. The aim of segmentation is to locate various

distinct regions such as compressed tissue areas, skin lines that form strong edges and

suspicious masses. Matsubara et. al. developed a thresholding technique to categorize

mammographic regions based on tissue densities using histogram analysis[88]. They set

threshold values in the histogram to detect ROIs that contain suspicious masses. Szekelyet.

al. used a region based technique with a set of decision trees[89] to segment mammographic

images[90]. The decision trees are automatically created from a set of training images.

Each training image is divided into smaller ROIs, and each ROI has the class label (nor-

mal tissue or mass) provided by specialists. Difference in training images will cause the

difference in the decision trees, and different decision trees will classify the image seg-

ments differently. The image is segmented using vote values provided by all the decision

trees. Other authors proposed edge-detection based techniques to segment mammographic

images[91, 92]. The edge-detection based technique detects the changing rate in grey lev-

els, measured by the derivative of grey levels, to locate high contrast edges. By detecting

the edges, the algorithm will be able to determine the boundaries of objects. After the

segmentation, different regions could be separately processed according to different needs.

Edge enhancement is a post-processing algorithm that is commonly applied to enhance

edges in order to make the regions/signals easier for humans to detect. Osher et. al.

demonstrated the necessity of enhancing edges with image processing algorithms and they
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described a filter based edge enhancement method and its applications[93]. Nitzberg et.

al. described a model of nonlinear image filtering for edge enhancement using anisotropic

diffusion[94]. This method can be used to enhance not only edges, but also corners as

well as T junctions. Pollak et. al. proposed an edge enhancement method that uses

a family of first-order multidimensional ordinary differential equations: the “Stabilized

Inverse Diffusion Equations” (SIDE’s)[95]. These equations are defined in a semi-discrete

scale space, i.e., continuous in scale (or time) and discrete in space. They demonstrated

successful applications of the method in enhancing edges with very high levels of noise, as

well as to blurry signals.

Another important post-processing algorithm is noise suppression. Many authors pro-

posed different filter based noise smoothing methods since 1980s[96–98]. Alvarez et. al.

proposed that diffusion equations can also be used in noise suppression algorithms[99].

Following in the footsteps of their research, Pollak et. al. demonstrated the application

of using SIDE’s to reduce system noise[95].

Well designed image processing algorithms aid human observers to extract more diag-

nostic information, but inappropriate processing might damage the system detectability.

For instance, noise suppression or smoothing could smooth-out low contrast signals while

edge enhancement could potentially introduce spurious signals. Therefore, it is necessary

to develop a clinically practical methodology that evaluates image processing of FFDM

systems.

Image processing for FFDM heavily relies on the content of the images, therefore an

image-based model observer would be more appropriate than the system model observer

discussed in previous Chapters. Without dimensionality reduction, image-based methods

are typically not practical in a clinical environment due to the fact that such methods

require large numbers of images to estimate image quality. Myers and Barrett proposed

to add a channel mechanism to observer models in order to make image-based model

observers practical[100]. Channels can be considered as complete or incomplete basis

vectors in a channelized space. A channelized image can be expressed uniquely as a finite
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linear combination of a set of channels assuming with enough channels. After channelizing

an image, the dimensionality of the image will be reduced to the number of channels used.

Myers and Barrett introduced a channelized ideal observer, constrained to process

scenes through frequency selective channels[? ]. For simplicity, they considered non-

overlapping frequency selective channels with constant magnitudes. They found that this

channelized ideal observer has equivalent performance with ideal observer for selected

detection and discrimination tasks. In addition, they demonstrated that this channelized

ideal observer is able to predict human performance in correlated noise. In the late 1990s,

Barrett et. al. incorporated the channel mechanism in the Hotelling observer[101]. They

indicated that the channelized Hotelling observer provides a practical method to quantify

image quality.

Barrett et. al. indicated that a channelized observer only approximates the perfor-

mance of that observer when the channels are efficient[101]. The choice of efficient channels

is determined by imaging tasks, system properties and objects. Gallas and Barrett val-

idated that the Laguerre - Gauess (LG) channels are efficient channels for the Hotelling

observer in a detection task with lumpy backgrounds and rotationally symmetric signals in

known locations[101]. Park et. al. introduced a LG channelized ideal observer in detection

tasks using non-Gaussian distributed lumpy backgrounds and Gaussian signal profiles, and

showed that the LG channels are efficient channels for the aforementioned tasks[102, 103].

In this Chapter, we implemented the LG channelized Hotelling observer model to

perform a preliminary investigation the post-acquisition image processing algorithms used

in the GE Senographe DS system. These non-linear algorithms are intended to improve

image quality without affecting the safety and effectiveness of the system.

4.2 Materials and Methods

In this Chapter, we performed a preliminary investigation of the post-acquisition image

processing algorithm of the GE Senographe DS FFDM system (for the system specifica-
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tions please see Chapter 3) using the LG CHO model. Our goal with this preliminary

investigation is develop a simple test to identify whether processing images for display

causes information in FFDM images to be lost when compared to unprocessed images. As

this is a preliminary investigation we will not make an attempt to evaluate how the hu-

man observer detectability is affected by image processing. In this section we describe the

specialized signal phantom we developed by making use of the Rachel anthropomorphic

phantom and the LG-CHO observer with an SKE/BKE task we implemented.

4.2.1 Theory

Let image g be an M dimensional vector (M×1). An (M×1) channel ui channelizes an

image, returning a scalar value as follows:

vi = (ui)
tg. (4.2.1)

In order to extract more information from the images, multiple channels are used to

channelize an image. Given the total number of channels N, the channel matrix U (M×N)

is defined as:

U = [u1,u2...uN] (4.2.2)

Notice that in the attempt to reduce the dimensionality of the calculation, N is selected

to satisfy N�M. Therefore, the number of channels used to channelize an image is usually

much smaller than the number of pixels of that image. A N-dimensional channelized image

V can be obtained as:

V = Utg = [v1, v2...vN]. (4.2.3)

The N-dimensional channelized image (N×1) reduces the dimension of the noise co-

variance matrix to N × N, where N is usually smaller than 10. In order to obtain a full
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rank invertible covariance matrix, the number of images needed must be equal to or larger

than N. For the GE Senographe DS system with a detection area of 1914×2094 pixel, for

signals of typical sizes from 10 mm to 40 mm, the size of signal present ROIs would be

around 100×100 pixel. Without channelizing the images, a minimum of 10,000 indepen-

dent images must be taken in order to estimate the inverse of the covariance matrix for

this ROI. Even if we had 10,000 images, it is still computationally intense to generate the

inverse of such a large covariance matrix[104]. The channelized model observer provides a

practical methodology to estimate the noise covariance matrix and its inverse.

The Channelized Hotelling Observer (CHO) uses a test statistic, which is a function

of the channelized image V:

t
(
V
)

= ∆StUK−1
c V, (4.2.4)

where the channelized covariance matrix Kc is defined as:

Kc =
〈(

Vi −V
)(

Vi −V
)t〉
. (4.2.5)

The CHO SNR can be estimated using the following definition:

SNR2
c = ∆StUK−1

c Ut∆S. (4.2.6)

It has been previously demonstrated that, with enough LG channels, the LG CHO ap-

proximates the performance of the ideal observer in detection tasks of circularly symmetric

signals embedded in a lumpy background and positioned at known locations[101].

The LG channels are created from Laguerre polynomials and Gaussian functions de-

fined as:

ui(r|au) =

√
2

au
exp

(
−πr2

a2
u

)
Li

(
2πr2

a2
u

)
, (4.2.7)

where au is the width of the Gaussian function. au determines a Gaussian envelope
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(au = 2πσ2
u), and Li determines a series of Laguerre polynomials:

Li(x) =
i∑

j=0

(−1)j
(
i

j

)
xj

j!
. (4.2.8)

In the LG channel definition, the variable x =

(
2πr2

a2u

)
yields an orthonormal family

that satisfies:

∫ ∞
0

rdr ui(r)uj(r) = δij. (4.2.9)

4.2.2 Experimental Setup

System and Phantom

In the development of our phantom we made use of the Rachel anthropomorphic phan-

tom which when imaged radiographically it generates realistic anthropomorphic projec-

tion images. We chose a realistic breast background in order to trigger the type of image

processing that will be applied in a clinical situation. Based on our experience, image

processing algorithms are disabled when using phantoms with uniform backgrounds. The

Rachel phantom consists of an outer case, tissue equivalent material at different thick-

nesses that model location specific breast attenuation and a high resolution mammogram

film. The layer of tissue equivalent materials is used to simulate breast thickness variation.

The tissue layer is superimposed to the digitally processed mammogram film to model the

complex structure of mammograms.

We designed a holder for the Rachel phantom, which facilitates reproducible positioning

of the phantom in the x-ray field. It is very important to maintain the same background

with and without signals in order to have a good estimation of the difference signal ∆S,

which is obtained by subtracting the signal absent image (background only) from the signal

present image (background with signals).
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Measurements

Typically, non-linear image processing algorithms adapt to different imaging conditions.

For example, edge enhancing is used to enhance pre-detected high contrast objects, and

noise smoothing is typically applied to smooth-out noise in regions with no pre-detected

objects. High contrast objects can be enhanced by edge enhancing algorithms; and low

contrast objects (contrast lower than a preset threshold when compared to the noise) might

be smoothed out by the noise smoothing algorithms.

In an attempt to evaluate the effects of potential non-linear image processing algo-

rithms, we considered both high and low contrast signals. To determine the appropriate

contrast of the signals system and exposure we run multiple pilot studies using disk sig-

nals of different materials, different thicknesses and diameters. Our goal for the pilot

studies was that the low contrast objects should be on the threshold of being undetectable

by trained human observers when superimposed over realistic breast background. Such

signals could potentially be considered as part of the background by image processing

algorithms. On the other hand, our goal for the high contrast objects was that they be

slightly over the detectable threshold when superimposed over a realistic mammographic

background. Such signals coule be easily identified by image processing algorithms and

potentially enhanced. The materials that satisfied the aforementioned conditions were 0.26

mm thick PMMA and 0.16 mm thick Polycarbonate for the high and low contrast signal

films respectively. We cut circular holes in the films with a precision LASER cutter. The

holes are referred to as negative signals. The shape of the signal films was semicircular in

order to match the shape of the breast in the Rachel phantom. Signals with three different

diameters: 2 mm (six signals), 3 mm (four signals) and 4 mm (four signals), are positioned

on concentric circular arcs at 25, 45 and 65 mm from the center as can be seen in Fig.(4.1).

Since our goal was to determine whether signal information was lost due to image

processing without regarding human observer performance, we wanted to maximize the

information that our model observer had in its disposal. For this reason we chose an

SKE/BKE type of task where the observer has knowledge of the fixed average background
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Fig. 4.1: Signal film designed for both high (PMMA) and low (Polycarbonate) contrast signals.

as well as the fixed average signal. Note that typically in mammography images are not

quantum limited, but detectability is limited by the background complexity. We therefore

expect that even though the low contrast signals are barely visible when superimposed

over a mammographic background, when the background is subtracted for the SKE/BKE

task the signals will be readily visible, as in the case of digital subtraction angiography.

For the implementation of the methodology we used the GE Senographe DS FFDM

system that we had available at the FDA with the following technique parameters: Rh/Rh,

28 kVp and 50 mAs. We placed the high contrast PMMA film on top of the Rachel phan-

tom holder without having the phantom in the FOV to record the signal locations. This

system setup facilitates the determination of signal locations in the absence of anatomical

background. We took five images of each signal film and determined the signal locations

from the average image. We assigned consecutive numbers (starting from 1) to mark the

signals with the same diameter. The signal locations (with their assigned numbers) are

shown in Fig.(4.3), three signal diameters can be differentiated by colors. We repeated

the procedure for the low contrast Polycarbonate film.

After the determination of signal locations, we placed the Rachel phantom in the FOV,
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Fig. 4.2: Rachel anthropomorphic phantom, a high contrast signal (PMMA) film and the
phantom holder for consistent positioning. This phantom models the breast structure radio-
graphically.

inside the phantom holder. The signal film was kept stationary on top of the holder to

facilitate the consistent positioning, as shown in Fig.(4.2). We set the system technique

parameters to Rh/Rh, 30 kVp and 110 mAs. We took 100 signal present images (with

the signal films) and 100 signal absent images (with the signal films replaced by blank

PMMA/Polycarbonate films), and stored the images with and without the post-acquisition

processing in order to make the comparison.

We selected 120×120 pixel signal present ROIs from signal present images with the sig-

nal located in the center of the ROI. We selected the signal absent ROIs from signal absent

images, at the same locations as the signal present ROIs to ensure the same background.

We investigated the number of channels needed to ensure the efficiency of the LG

channel set. For three high contrast signals with different sizes, we calculated the LG-

CHO SNR by summing over different numbers of channels and plotted the LG CHO SNR

as a function of channel number.
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Fig. 4.3: The average image over five individual images of the signal film. For each signal
diameter, there are four (3 mm and 4 mm) or six (2 mm) signals. We assigned consecutive
numbers (starting from 1) to mark the signals with the same diameter.
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Fig. 4.4: The LG CHO SNR as a function of the
number of channels for three high contrast (PMMA)
signals with diameters 2 mm, 3 mm and 4 mm. Raw
(un-processed) images are used in this analysis.

Based on the results of our anal-

ysis, we decided to use ten channels

to build the Channelized Hotelling Ob-

server (CHO) model. For each disk sig-

nal, the LG channels satisfy that the

width of the first channel is equal to the

Full Width at Half Maximum (FWHM)

of the signal. Therefore, the width of

the Gaussian function au was set to 10,

8 and 6 mm corresponding to disk di-

ameter of 4 mm, 3 mm and 2 mm. Note

that this LG CHO model reduces the

dimension of the data to the number of

channels (ten), which is much smaller
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than the original image.

We applied the 2D LG channels on

both the signal present and absent ROIs following Eq.(4.2.3), and obtained the channel-

ized difference signal ∆S. We calculated the channelized covariance matrix as defined in

Eq.(4.2.5). And we estimated the channelized Hotelling observer SNR using Eq.(4.2.6).

“Boot-strapping” with replacement was used to randomly sample ROIs to obtain new

data sets of the CHO SNR. The standard deviation of the CHO SNR was estimated from

100 “boot-strapped” ROI samples for each disk signal. Our error analysis accounted for

quantum and electronic noise as well as minor x-ray tube and system motion between

exposures.

4.3 Results

Fig.(4.4) shows the LG-CHO SNR as a function of the number of channels used in the

channelized observer for three high contrast (PMMA) signals with diameters: 4 mm, 3

mm and 2 mm. Error bars were generated from the “boot-strapped” samples of signal

present/absent images. The LG-CHO SNR becomes stable for all three signal sizes when

using ten or more channels.

Examples of the channels we used for the three signal diameters 4 mm, 3 mm and 2

mm are shown in Fig.(4.5) from top to bottom. The first four channels (out of 10) are

shown from left to right.

Fig.(4.6) shows the signal present (left) and absent (right) ROIs as well as the difference

signal in the middle for both the high contrast and low contrast signals. Disk diameter

is fixed at 2 mm. Fig.(4.6a) and Fig.(4.6b) are the images of the high contrast signals

with and without image processing. Fig.(4.6c) and Fig.(4.6d) are the images of the low

contrast signals with and without image processing.

Fig.(4.7), Fig.(4.8) and Fig.(4.9) show the resulting CHO SNR for high contrast signals

(PMMA) with three diameters: 4 mm, 3 mm and 2 mm respectively. For each signal, the
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Fig. 4.5: The three rows are the 120×120 LG channels with au=10,8 and 6 from top to bottom.
The four columns are the first four 120×120 LG channels with i=1,2,3 and 4 from left to right.

CHO SNR of the raw image (denoted by A) is compared to that of the processed image

(denoted by B). The signal locations are marked by consecutive numbers from 1 to 6 as

shown in Fig.(4.3). Standard deviation of the CHO SNR was estimated from the “boot-

strapped” samples. Fig.(4.10) shows the percent difference of the CHO SNR, for high

contrast signals, between the raw images and processed images for the different signal

sizes and locations. Positive difference indicates higher CHO SNR of the raw images, and

negative difference indicates higher SNR of the processed images. Average percentage

error of the percent difference was 13%. Fig.(4.11), Fig.(4.12) and Fig.(4.13) show the

CHO SNRs and their error bars for low contrast signals. Fig.(4.14) shows the percentage
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difference of the CHO SNR for low contrast signals. Average percentage error of the

percent difference was also 13%.
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(a) High contrast PMMA signals, without image processing.

(b) High contrast PMMA signals, with image processing.

(c) Low contrast Polycarbonate signals, without image processing.

(d) Low contrast Polycarbonate signals, without image processing.

Fig. 4.6: Signal present (left), absent (right) ROIs as well as the difference signal (middle) for
both the high contrast and low contrast signals. Signal diameter is fixed at 2 mm.
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Fig. 4.7: The CHO SNR for high contrast signals with diameter 4 mm at four different locations.
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Fig. 4.8: The CHO SNR for high contrast signals with diameter 3 mm at four different locations.
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Fig. 4.9: The CHO SNR for high contrast signals with diameter 2 mm at six different locations.
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Fig. 4.11: The CHO SNR for low contrast signals with diameter 4 mm at four different
locations.

A B

1

A B

2

A B

3

A B

4

0

5

10

15

20

25

30

35

Low Contrast Sig H3 mmL

S
N

R

A:Raw Images B:Processed Images

Fig. 4.12: The CHO SNR for low contrast signals with diameter 3 mm at four different
locations.
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Fig. 4.13: The CHO SNR for low contrast signals with diameter 2 mm at six different locations.
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4.4 Discussion

The purpose of post-acquisition image processing in FFDM is twofold: to present mammo-

grams in a way that is familiar with radiologists that were trained with film-based images

and also to maximize the diagnostic information extracted by radiologists. In this the-

sis, we focused on answering the narrow question on whether image processing in FFDM

degrades useful information in clinical images. In this preliminary work we developed

a phantom and and implemented a methodology to investigate this question and imple-

mented on a single FFDM system. For the methodology to be fully validated it should

be tested on different systems with different image processing algorithms under varying

conditions. Furthermore, human observer studies should be considered to investigate the

effects of such processing algorithms on humans.

In order to analyze the effects of image processing algorithms, an image-based Hotelling

observer is much more suitable than the system-model-based Hotelling observer that we

proposed in the previous Chapters. The system-model-based Hotelling observer has been

developed based on an assumption of linear system performance, however, such assumption

will likely not be satisfied because most processing algorithms are non-linear.

We used a LG CHO model to reduce the dimensionality of the image-based Hotelling

observer model. We know from literature that with enough LG channels, the LG CHO

approximates the performance of the ideal observer and we have demonstrated in Fig.(4.4)

that the LG CHO SNR becomes stable after using ten or more than ten channels.

Low contrast signals are intended to be used for evaluating the possible reduction of

signal detectability by the noise smoothing algorithm. We therefore chose low contrast

signals so that the signals would be hardly detectable in the signal signal plus background

images (the input to the image processing algorithms), but are easily detectable after

subtracting the background (the input to the model observer), as shown in Fig.(4.6). The

CHO SNR for low contrast signals with and without the processing algorithms shows no

significant difference within the error bars. It demonstrates that the non-linear processing
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of the GE Senographe DS does not reduce signal information from the processed images.

However, even though the difference of the CHO SNR between the raw images and the

processed images is not significant, the CHO SNR tends to be sightly higher for the raw

(un-processed) images.

High contrast signals are designed for evaluating edge enhancing algorithms that are

potentially applied to enhance these signals. High contrast signals are readily detectable

in the signal present images. The CHO SNR for high contrast signals also shows no

significant difference between the processed and unprocessed images. The non-linear post-

acquisition processing applied to high contrast signals does not reduce the signal informa-

tion significatly, however the trends show slight non-significant increase CHO SNR in the

unprocessed, raw images.

The CHO SNRs for the same signal size and contrast are significantly different at

different locations because the system noise is Poison distributed and thus proportional to

x-ray intensity over the signal regions. Even though the CHO SNR was calculated using

the difference signal ∆S that is independent on background structure, the system noise at

different locations is still different depending on the background attenuation.

4.5 Conclusions

In this Chapter, we implemented the LG Channelized Hotelling observer model to inves-

tigate the post acquisition image processing algorithms used in the GE Senographe DS

FFDM system. We studied the effects of image processing on both high and low contrast

signals with a realistic anthropomorphic background. We found that there is no significant

difference of the LG CHO-SNR between the processed and unprocessed images. We thus

concluded that, for the FFDM system we studied, image processing does not adversely

affect signal detectability of the system as evaluated by the LG CHO-SNR for the specific

SKE/BKE task we perfromed. This study, however, does not evaluate whether human ob-

server detectability affected by image processing algorithms. Our evaluation results were
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limited to the GE Senographe DS system, however, the methodology is general and should

be applied to investigate image processing used in other clinical FFDM systems in the fu-

ture. Furthermore, the methodology should be validated against other methods based on

unkown location of the signal and for background unkonwn, or known statistically.



5. SUMMARY AND CONCLUSIONS

5.1 Summary

In this dissertation, we proposed methodologies for evaluating both the image acquisition

performance and image processing algorithms of clinical FFDM systems.

In the evaluation of image acquisition performance of clinical FFDM systems, we devel-

oped a system-model-based Hotelling observer method, which would be complementary

to the current Class II Special Controls Guidance for FFDM systems published by the

U.S. FDA. In Chapter 2, we have demonstrated the application of the methodology on a

bench-top system that models projection mammography in spatial domain, with using the

covariance matrix and H matrix to characterize the system noise and deterministic prop-

erties respectively. By placing a phantom in the FOV, the scatter from patients, the focal

spot unsharpness and the magnification factor have been taken into account in the assess-

ment. To make the methodology clinically practical, we extended it into Fourier frequency

domain and applied it on two clinical FFDM systems, which are the GE Senographe DS

and the Hologic Selenia, with taking limited number of images as shown in Chapter 3.

In the evaluation of image processing algorithms in clinical FFDM, we implemented an

image based method that uses the LG channelized Hotelling observer model in Chapter

4 to quantify image quality before and after applying the image processing. We have

demonstrated the application of this method on the GE Senographe DS system. Moreover,

even though we only applied this method on one clinical FFDM system, the method is

general and has the potential to be used to evaluate image processing algorithms used in

other FFDM systems as well as in other imaging modalities.
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In Chapters 2 and 3, we proposed to use a system-model-based Hotelling observer

method in the evaluation of image acquisition performance of clinical FFDM systems.

In this approach that we introduced for the first time, we built an empirical model of

the FFDM system, with estimating the generalized definitions of system noise and deter-

ministic properties when placing a uniform phantom assembly in the FOV. This method

provides a complete description of the image acquisition performance of clinical FFDM

systems with taking into account not only the detector blur, but also scatter blur, fo-

cal spot unsharpness and noise correlations. This approach provides a clinically practical

means to not only evaluate FFDM image acquisition performance at a given exposure, but

also to predict system system performance at any other exposures with different types of

signals without the needs of collecting additional images when the access to clinical FFDM

systems is limited. In addition, CD curves can be derived from the Hotelling observer SNR

with simulating a series of signals that have different sizes and thicknesses. It leads to

potential prediction of human observer performance. In Chapter 3, we have demonstrated

this prediction by adjusting the SMHO CD curve with an efficiency value. The results

reached an agreement with actual human studies provided in published literatures.

In Chapter 4, we implemented the CHO model to investigate the effects of image

processing in clinical FFDM systems. We proposed to use an image based method that

accounts for the effects of non-linear/adaptive image processing. We designed signal phan-

toms to be used with an anthropomorphic background phantom in order to trigger po-

tential image processing used in GE Senographe DS system. We compared image quality

before and after the image processing, and we concluded that the image processing has

a trend of reducing system detectability for both high and low contrast signals, but the

difference is within error bars. Even though we have only demonstrated this method on

one clinical FFDM system, the method is general, and has the potential to be used for

evaluating image processing in other FFDM systems as well as in other modalities.
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5.2 Assumptions and Limitations

The purpose of this research is to develop an approach to evaluate the image acquisition

part of FFDM systems. We incorporated the effects of focal spot unsharpness, the effects

of scatter from patients and the effects of magnification to image quality. Other effects

that might affect image quality but were not investigated here include the ghosting effect

during the image acquisition, the motion effect, etc. These effects can be discussed in

future research.

Furthermore, some assumptions were made for the system properties. These are lim-

itations on the application not on the concepts of the methodology. In Chapters 2 and

3, uniform backgrounds were given by the phantom assembly. The background region

can be therefore separated into subregions, and the sub-ROIs can be treated as if they

are equivalent to each other. We ended up having much more ROIs than the number of

background images that we obtained. This assumption is not valid for phantoms with

non-uniform backgrounds. The background ROI selection has to be location specific in

that case, which requires a larger number of background images to be taken. Another

assumption is that the 2D system GMTF can be estimated from the 1D GMTF measured

along x and y directions. This assumption is limiting when a relatively large focal spot is

used since it produces a non-symmetric GMTF. It is also limiting when the system grid

removes different amounts of scatter along directions other than the x and y axes. Our

signal simulation is also limiting when the actual signals are produced with variabilities

in their thicknesses.

5.3 Future Work

In this dissertation, we have only considered the use of the Hotelling observer model, which

gives the best possible system performance. Even though we have demonstrated the poten-

tial of using this observer model to predict human performance, human observer efficiency

comparing to this observer is relatively low. In the future, we can implement other observer
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models that better match with human performance, such as the non-prewhitening matched

filter, in an effort to predict human performance. And we can perform actual human stud-

ies, and compare the results with both the Hotelling observer and the non-prewhitening

matched filter in generating CD curves for evaluating image acquisition performance of

clinical FFDM systems.

In the evaluation of FFDM image acquisition, we have shown the application of the

system-model-based Hotelling observer method on two different FFDM technologies. In

the future, we can use this method to evaluate other FFDM technologies, and provide a

complete comparison of FFDM image acquisition performance between different available

technologies as well as between different manufacturers.

In the evaluation of image processing, we implemented the CHO model to evaluate

non-linear image processing used in clinical FFDM. This method also has the potential

to be able to evaluate non-linear processing used in CT reconstruction algorithms. GE

claims that they developed an ASIR iterative reconstruction method for CT that can

remarkably reduce dose without affecting image quality. Using this CHO method, we

have the potential to evaluate this iterative reconstruction method, link radiation dose to

an objective assessment of image quality and provide validation to GE’s aforementioned

statement.

We used an anthropomorphic phantom with realistic background structures in the eval-

uation of image processing in FFDM. Here, we added the background in the attempt to

trigger image processing that would be otherwise turned off. We considered an SKE/BKE

task without accounting for the effects of anatomic background noise on signal detectabil-

ity. In the future, we could implement a search-based model observer that searches for

signals with unknown locations in a statistically known background. This detection task

would link observer based evaluation one step closer to diagnostic performance of FFDM

systems.



APPENDIX



A. HOTELLING OBSERVER MAXIMIZES THE SNR OF LINEAR

OBSERVERS

The Hotelling observer maximizes the performance of all linear observers including math-

ematical model observers and humans[29].

The test statistic of a linear observer is:

t(g) = utg, (A.0.1)

where ut is the linear observer template and g is a given image. According to Eq.1.2.2,

the linear observer SNR satisfies:

SNR2 =
(ut∆S)

2

utKu
. (A.0.2)

The test statistic template of the Hotelling observer is:

t(g) = ∆StK−1g, (A.0.3)

and therefore the Hotelling observer SNR satisfies:

SNR2 = ∆StK−1∆S. (A.0.4)

In order to prove that the Hotelling observer SNR maximizes SNR of all linear ob-

servers, we need to prove the following inequality:
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∆StK−1∆S ≥ (ut∆S)
2

utKu
. (A.0.5)

After multiplying the term utKu to both sides of the inequality, we need to prove that:

∆StK−1∆S � utKu ≥
(
ut∆S

)2
. (A.0.6)

Eq.A.0.6 can be rewritten as:

∆StK−
1
2 K−

1
2 ∆S � utK

1
2 K

1
2 u ≥

(
utK−

1
2 K

1
2 ∆S

)2

. (A.0.7)

Because of the Cauchy - Schwartz inequality, Eq.A.0.7 is true, and therefore Eq.A.0.5

is true[29].
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