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Abstract 

In recent years there has been a dramatic increase in the demand for timely, 

comprehensive global agricultural intelligence. The issue of food security has rapidly 

risen to the top of government agendas around the world as the recent lack of food 



 

 

access led to unprecedented food prices, hunger, poverty, and civil conflict. Timely 

information on global crop production is indispensable for combating the growing 

stress on the world’s crop production, for stabilizing food prices, developing effective 

agricultural policies, and for coordinating responses to regional food shortages.  

Earth Observations (EO) data offer a practical means for generating such 

information as they provide global, timely, cost-effective, and synoptic information 

on crop condition and distribution. Their utility for crop production forecasting has 

long been recognized and demonstrated across a wide range of scales and geographic 

regions. Nevertheless it is widely acknowledged that EO data could be better utilized 

within the operational monitoring systems and thus there is a critical need for 

research focused on developing practical robust methods for agricultural monitoring. 

Within this context this dissertation focused on advancing EO-based methods for crop 

yield forecasting and on demonstrating the potential relevance for adopting EO-based 

crop forecasts for providing timely reliable agricultural intelligence. This thesis made 

contributions to this field by developing and testing a robust EO-based method for 

wheat production forecasting at state to national scales using available and easily 

accessible data. The model was developed in Kansas (KS) using coarse resolution 

normalized difference vegetation index (NDVI) time series data in conjunction with 

out-of-season wheat masks and was directly applied in Ukraine to assess its 

transferability. The model estimated yields within 7% in KS and 10% in Ukraine of 

final estimates 6 weeks prior to harvest.  The relevance of adopting such methods to 

provide timely reliable information to crop commodity markets is demonstrated 

through a 2010 case study. 
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Chapter 1: Introduction
1
 

1.1 Background and Context 

1.1.1 Current context 

The issue of food security has rapidly risen to the top of government agendas around 

the world as the recent lack of food access has led to unprecedented food prices, 

hunger, poverty, and civil conflict.  With one in seven people estimated to suffer from 

hunger and malnutrition, global food production is facing immense challenges from 

an ever-growing global population, an increasing demand for animal products 

(particularly in India and China), increased production of biofuels, land degradation, 

volatile grain markets, limited arable land and water resources, and extreme weather 

events in particular, severe droughts and floods (Godfray et al. 2010, Foley et al. 

2011). With a warming world and a changing climate, these problems will remain 

major issues for governments in this century (GEO-Agriculture-CoP 2011).  

Tools for monitoring and reliably forecasting production are essential for 

anticipating market imbalances, stabilizing markets and enhancing policy responses 

(AMIS 2011). As such, following the ‘Global Food Price Crisis’ in 2008, when the 

cost of food reached record highs and global food stocks reached near record lows, 

the World Summit on Food Security called for increased international cooperation 

and collaboration amongst governments and international agencies to improve the 

quality of national agricultural statistics, production forecasting and early warning 

                                                

1
 Some of the material presented in this chapter was previously published in: Becker-Reshef, I., 

Justice, C., Sullivan, M., Vermote, E., Tucker, C., Anyamba, A., Small, J., Pak, E., Masuoka, E., 

Schmaltz, J., Hansen, M., Pittman, K., Birkett, C., Williams, D., Reynolds, C., & Doorn, B. (2010). 

Monitoring Global Croplands with Coarse Resolution Earth Observations: The Global Agriculture 

Monitoring (GLAM) Project. Remote Sensing, 2, 1589-1609 
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systems for food insecurity (FAO 2009).  Subsequently, in June of 2011 the G-20 

ministers adopted an action plan on food price volatility and agriculture (G20 2011), 

and in October of 2011 UN Food and Agriculture Organization (FAO) issued a report 

(FAO 2011a) titled ‘the State of World Food Insecurity’ which calls for better 

information systems that provide accurate, consistent, transparent and timely 

agricultural market data and analysis. This report highlights the need for better use of 

remotely sensed data, geographic information systems and for improved production 

forecast models that are able to translate crop growth, meteorological and remote 

sensing data into yield and production. 

As reflected by these reports and action plans, it is widely acknowledged that 

timely, traceable, transparent, reliable crop production forecasts and estimates have a 

critical role to play in: regulating markets and anticipating market imbalances; 

developing national and international agricultural policies; and in effectively 

mitigating food shortages. 

Satellite Earth observations (EO) such as surface reflectance, temperature, and 

microwave measurements provide the only practical, cost effective means for 

obtaining timely, objective global information on crop extent, condition and growth. 

As such, it is explicitly recognized that capabilities afforded by EO data should be 

better utilized, further developed, and serve as an integral component of the existing 

operational agricultural monitoring systems (Becker-Reshef et al. 2009a, FAO 

2011a). At same time there is a critical need to ensure continuity of  the current earth 

observing systems and to address the inadequacies of the current systems, such as the 

lack of high quality, accessible, fine (i.e. 0.5m – 20m) and moderate (20m-60m) 
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spatial resolution data with revisit frequency higher than 14-16 days during the 

growing season, particularly over complex agricultural landscapes (Justice and 

Becker-Reshef 2007).  

Research and development over the past several decades in the field of agricultural 

remote sensing has led to considerable capacity for crop monitoring within the current 

regional/global operational monitoring systems including the US Department of 

Agriculture Foreign Agricultural Service (USDA FAS), the European Commission 

Joint Research Center (JRC) Monitoring Agricultural Resources Unit (MARS), the 

UN Food and Agriculture Organization (FAO) Global Information Early Warning 

System (GIEWS), and the Chinese Academy of Sciences (CAS) China CropWatch 

System(Becker-Reshef et al. 2009b). These systems are relied upon nationally and 

internationally to provide crop forecasts as the growing season progresses. 

Nevertheless many challenges exist for making the best use of the currently available, 

remotely sensed data within such systems, and there is a critical need for applied 

research to enhance the capability of such systems around the world (GEO-

Agriculture 2012).  

1.1.2 Foundation for Satellite Based Agricultural Monitoring 

The National Aeronautics and Space Administration (NASA) and the US 

Department of Agriculture (USDA) have been collaborating to monitor global 

agriculture from space since the 1970s. Preliminary research and development on 

satellite monitoring of vegetation and agriculture specifically, started with the Earth 

Resources Technology Satellites (Landsat system) in the early 1970’s (Cohen and 

Goward 2004, Goward et al. 2011). Key events, including unanticipated severe wheat 
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shortages due to Russian crop failures, drew attention to the importance of timely and 

accurate prediction of world food supplies. Subsequently, in 1974, the USDA, NASA 

and National Oceanic and Atmospheric Administration (NOAA) initiated the Large 

Area Crop Inventory Experiment (LACIE) (Macdonald and Hall 1980). The goal of 

this experiment was to improve domestic and international crop forecasting methods 

(Pinter et al. 2003). Early work by USDA and NASA researchers in the late sixties 

and seventies on relating crop plants to their optical properties (Knipling 1970, 

Leamer, Weber and Wiegand 1975, Allen and Richardson 1968, Tucker 1979) 

provided the theoretical basis for monitoring crop growth using remotely sensed 

information (Hatfield et al. 2008, Pinter et al. 2003). Based on the success of the 

LACIE experiment that demonstrated satellite imagery could be used operationally to 

forecast wheat yields in the US and USSR (Bauer 1979), the Agriculture and 

Resource Inventory Surveys Through Aerospace Remote Sensing (AgRISTARS) 

program was initiated in the early 1980’s jointly by NASA, USDA, NOAA and the 

US Department of State. Through the research conducted in these NASA-USDA joint 

programs, the considerable potential of remotely sensed information for monitoring 

and management of agricultural lands was identified.  

One of the most recent efforts that NASA and the USDA Foreign Agricultural 

Service (FAS) have initiated is the Global Agricultural Monitoring (GLAM) Project 

focused on applying data from NASA’s flagship Earth Observing System (EOS) 

instrument, the Moderate Resolution Imaging Spectroradiometer (MODIS) on board 

the Terra satellite, to feed the FAS Decision Support System (DSS) needs.  Despite 

the fact that the research in this field has been active for several decades, it still has 
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not translated into a feasible operational EO-based system for global crop production 

forecasting. New sensor technologies and continued advancements of quality, 

temporal and spatial resolution of EO data, offer opportunities for enhancement and 

continued development of methods for agricultural monitoring.  

1.1.3 Current State: USDA FAS Global Agricultural Monitoring.  

The Foreign Agricultural Service (FAS) of the US Department of Agriculture 

(USDA) is a world leader in agricultural monitoring and is currently the only agency 

internationally providing timely global crop estimates. The FAS works to improve 

foreign market access for US products, build new markets, improve the competitive 

position of US agriculture in the global marketplace, and provide food aid and 

technical assistance to foreign countries (USDA 2007).  The mission of the FAS 

Office of Global Analysis (OGA)/International Production Assessment Division 

(IPAD) is to produce the most objective and accurate assessment of the global 

agricultural production outlook and the conditions affecting food security in the 

world. (USDA 2007). 

FAS crop analysts provide estimates of global production in support of the World 

Agricultural Outlook Board (WAOB) which coordinates reviews and approves the 

monthly World Agricultural Supply and Demand Estimates (WASDE) report by the 

11th day of each month, using a convergence of evidence approach (Vogel and Bange 

1999). These production estimates are the official USDA statistics and play a vital 

role within the global agricultural market as they are utilized in a variety of ways 

including: principal federal economic indicators, crop condition and early warning 

alerts, agricultural monitoring and food security, foreign aid assessments for food 
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import needs, disaster monitoring and relief efforts related to food aid, commercial 

market trends and analysis, and trade policy and exporter assistance.  

The crop analyst production estimates are derived by synthesizing information 

from a wide array of sources, including attaché reports, local reports, field surveys, 

climate data, and exploiting a variety of tools including RS-based data visualization 

and analysis. Nevertheless, it is the remotely sensed earth observations that enable 

crop monitoring to be comprehensive, unbiased, timely owing to their cost-

effectiveness, and synoptic and global coverage. Satellite data have played an 

important role in the FAS DSS system since the mid-1970’s, providing timely, 

synoptic information on crop distribution and condition (Reynolds 2001). FAS is one 

of the largest users of remotely sensed data in the federal government utilizing a 

combination of Landsat, Advanced Wide Field Sensor (AWiFS), Deimos, Advanced 

Very High Resolution Radiometer (AVHRR), Système Pour l’Observation de la 

Terre (SPOT) and MODIS data for operational monitoring of agriculture worldwide.  

1.1.4 Programmatic Context: GLAM 

The research in this thesis was carried out in large part within the context of the 

most recent USDA-NASA-UMD collaboration: GLAM initiated in 2002.  GLAM is a 

joint research project between the USDA FAS, the Global Inventory Monitoring and 

Modeling Studies (GIMMS) group at NASA Goddard Space Flight Center (GSFC), 

the University of Maryland (UMD) Department of Geographical Sciences. It was 

initiated in 2002 and is funded jointly by USDA-FAS and the NASA Science 

Applications Program (Becker-Reshef et al. 2010a). The goal of GLAM is to enhance 

the agricultural monitoring and the crop-production estimation capabilities of the FAS 
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by using the new generation of NASA satellite observations including from MODIS 

and the Visible Infrared Imaging Radiometer Suite (VIIRS) instruments. This project 

built one of the most comprehensive data management systems for remotely-sensed 

based global agricultural monitoring (USDA-FAS 2009a). It was developed taking 

advantage of the significant investment made by NASA in instrument 

characterization and product development by the MODIS Land Science Team, using 

MODIS data provided in Near Real Time by the Land Atmosphere Near real-time 

Capability for EOS (LANCE) (Murphy et al. 2011). The philosophy, as shaped by the 

FAS, was to remove the burden of front-end processing of satellite data from the user 

and present time-series data in a manageable form, for ease of interrogation by the 

analyst (Becker-Reshef et al. 2009a).  

Currently a suite of 8-day and 16-day composite MODIS time-series Vegetation 

Indices (Normalized Difference Vegetation Index, (NDVI), and Normalized 

Difference Water Index, (NDWI)) are custom processed and provided in near real 

time to USDA crop analysts. The vegetation index (VI) products are generated from 

the MOD09 Land Surface Reflectance product (Vermote, El Saleous and Justice 

2002). The analysts use these data, in combination with crop masks, to track the 

evolution of crops through the growing season by making inter-annual comparisons. 

However, at present, these data are rarely integrated into crop forecasting models. 

Figure 1 provides an example of how the GLAM MODIS DBMS was used to 

qualitatively track the impact of the 2008–2009 drought on crops in Argentina. This 

drought had a devastating effect on crops leading to a 30–60 percent reduction in 

production relative to the previous year (USDA-FAS 2009b).   
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Figure 1.1 NDVI anomaly image (left), February 2
nd

 -17
th 

2009, showing the impact of the 2009 

drought in Argentina. Brown indicates negative anomalies, where NDVI was below the average NDVI 

for 2000-2008, green indicates higher than average NDVI values.   The NDVI time series graph on the 

right compares the 2009 NDVI temporal profile of croplands in the Buenos Aries district to the mean 

NDVI profile and to the previous year.  (Becker-Reshef et al. 2010a) 

1.2 Rationale for this research 

1.2.1 Current state (limitations) of crop yield models  

Despite several studies on crop production forecasting, crop yield models have 

seldom progressed to implementation over large areas in an operational domain and 

are typically applicable primarily in the region for which they were developed. A 

variety of methods have been developed to estimate crop yields using remotely 

sensed information. These include biophysical crop-simulation models that retrieve 

crop growth parameters from remotely sensed data and used as inputs to calibrate and 

drive the models. The main drawback of such models is that they typically require 

local calibration and numerous crop specific inputs such as soil characteristics, 

management practices, agro-meteorological data and planting dates, in order to 

simulate crop growth and development through the crop cycle (Moriondo, Maselli 

and Bindi 2007, Dubey et al. 1994). Examples of such crop simulation models and 
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tools include Crop Environment Resource Synthesis (CERES) (Ritchie and Otter 

1985), World Food Studies (WOFOST) (Vandiepen et al. 1989), CopSyst (Vanevert 

and Campbell 1994) Simulateur mulTIdisciplinaire pour les Cultures Standard 

(STICS) (Brisson et al. 1998), Erosion Productivity Impact Calculator (EPIC) 

(Williams 1990), Decision Support System for Agrotechnology Transfer (DSSAT) 

(Jones et al. 2003) and Agricultural Production Systems Simulator (APSIM) (Keating 

et al. 2003). Another class of models are statistical regression-based methods which 

are the most commonly used remote sensing-based approaches for yield forecasting 

(Wall, Larocque and Leger 2007). These are based on empirical relationships 

between historic yields and reflectance-based vegetation indices. They are typically 

straightforward to implement and do not require numerous inputs. A main drawback 

of empirically-based approaches is that relationships between yield and reflectance 

are typically localized and are not easily extendable to other areas (Doraiswamy et al. 

2003, Moriondo et al. 2007). Nonetheless, they are often the preferred approach, 

owing to their limited data requirements and simplicity of implementation.  This 

dissertation is focused on developing an empirical yet transferable yield forecasting 

approach. 

Most countries and agricultural agencies, including the USDA National Agricultural 

Statistics Service (NASS) rely primarily on traditional methods for generating crop 

statistics. These include multiple frame-based sample surveys from farm operators, 

and objective yield surveys where ground measurements of crop yields are collected 

from randomly selected fields (Allen, Hanuscak and Graig 2002).  A primary 

challenge for better integration of EO-based monitoring into the existing operational 
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monitoring systems is limited investments in the research and development necessary 

to realize the operational potential of the US civilian space assets.    

This research builds on the extensive body of research that has been carried out over 

the past several decades on crop yield forecasting, utilizing advances in remotely 

sensed capabilities and products to develop an operationally viable, robust approach 

for assessing yields prior to harvest at national scales. The focus was on utilizing 

readily available EO data sets and optimizing the approach according to the spatial 

and temporal resolution of the available data.  

1.2.2 Why Wheat? 

This dissertation is focused specifically on wheat yield forecasting for several 

reasons.  Wheat cultivation is one of the primary agricultural land uses worldwide 

with the highest planted area among food crops. Wheat is the most important cereal 

crop traded on international markets (Wittwer 1995, FAO 2003). Wheat shortfalls due 

to severe droughts in the principal export countries were major factors in the recent 

global grain price surges in 2008 and 2010 (FAO 2011a) and contributed to the low 

global wheat stocks in 2008 (Trostle 2008). In 2008 global wheat stocks reached a 

thirty-year low, and the U.S. wheat stocks fell to their lowest levels since the late 

1940’s which was a significant factor leading to the 2008 food price crisis (Vocke 

2008). In addition, wheat is the major commodity provided as food aid.  

Consequently wheat shortages not only impact wheat and wheat-product prices, but 

also have dire implications for ensuring food security in developing countries (WFP 

2009, Mitchell and Mielke 2005). Timely and accurate forecasts of wheat production 

prior to harvest at regional, national and international scales for both developing and 
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at-risk countries are crucial. Such estimates can help to improve food accessibility 

risk management, as well as play an important role in stabilizing global markets and 

informing policy and decision making (AMIS 2011, GEO-Agriculture 2012, FAO 

2010, OECD et al. 2011).   

1.3 Thesis Objectives 

The overall focus of this dissertation is to advance EO-based crop yield forecasting   

and demonstrate the relevance for adopting such methods for providing timely 

reliable agricultural intelligence.  This dissertation has three primary research 

objectives addressing three challenges as outlined below:  

 

1. Challenge: Crop-type mask availability 

o Objective: Determine the appropriate spatial and temporal resolution for 

crop yield forecasting using easily accessible data 

2. Challenge: Model transferability 

o Objective: Develop a robust EO-based model for winter wheat yield 

forecasting at state to national scales that is empirical yet portable between 

wheat growing locations 

3. Challenge: Demonstration of Relevance  

o Objective: Demonstrate the potential benefit of EO-based crop forecasts 

for informing crop commodity markets by exploring the relationship 

between USDA wheat production forecasts and global wheat price 

variability using 2010 as a demonstration case study 
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1.4 Structure of the Thesis 

This dissertation consists of five chapters (Figure 1.1).  Chapters 1, 2, and 3 were 

originally written in self-contained journal publication formats and have been 

condensed in the dissertation to avoid redundancy and to improve the flow.  
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Figure 1.2 Structure of this dissertation. 
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Chapter 2: Spatial and temporal resolution considerations for crop yield 

forecasting at state to national scales in the absence of seasonal crop type masks
2
  

2.1 Introduction 

2.1.1 Context 

Within-season spatial information on crop-type distribution are fundamental for up-

to-date crop condition monitoring and yield forecasting over large agricultural areas.  

Yet the availability of such data is often limited and the temporal and spatial scales of 

the data available for this task are rarely at the required scales (Curnel et al. 2011, 

Justice and Becker-Reshef 2007). Within this context this study focused on 

developing a practical approach to wheat yield forecasting at national/sub-national 

scales in the absence of up-to-date (i.e. within the current growing season) crop-type 

information.  

The approach developed in this study was based on spatially aggregating a single, 

crop-specific mask from a recent (within 6 years) preceding growing season assuming 

that the total area of wheat planted varies little in successive years. Preceding season 

masks are more likely to be available than within season masks and are easier to 

produce once the growing season is complete, as crop phenology (i.e. crop temporal 

profiles) can be used to differentiate crop types (Kastens et al. 2005). The approach 

proposed in this chapter can have significant implications for operational monitoring 

at national scales, as a single, recent, crop-specific mask from a preceding season can 

                                                

2
 The material presented in this chapter was submitted for publication and is currently in revision. 

The paper was submitted to IEEE Geoscience and Remote Sensing Letters as: Becker-Reshef I., 

Vermote E., Justice C. Spatial Aggregation of Crop Type Masks for Enhanced Monitoring of Winter 

Wheat Yield. 
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be used in combination with coarse resolution EO NDVI time series for yield 

forecasting over multiple years.  

2.1.2 Crop Type Maps for Yield Forecasting 

Stratifying a region into cropland and, more specifically, crop type---a process 

commonly termed masking---is an important step in developing EO-based yield 

forecasting models (Kastens et al. 2005).  Such masks enable the isolation of the 

remotely sensed (RS) crop-specific signal throughout the growing season, reducing 

the noise on the signal from other land cover or crop types.  A variety of cropland 

masking methods used for isolating the crop signal for the purpose of yield 

forecasting have been documented in the literature. For example, Maselli et al. (2000) 

used NDVI thresholds to isolate the crop pixels of interest in the Sahelian region. 

Genovese et al. (2001) showed that using the cropland class from a medium 

resolution land cover classification improved coarse resolution yield forecasting 

accuracies. Similarly, Rojas (2007) in a study on corn yield in Kenya and Funk and 

Budde (2009) in a study on NDVI-based crop production anomaly estimates in 

Zimbabwe, used cropland masks to improve the accuracies of their yield forecasts.  

One of the difficulties in monitoring and forecasting crop yields using RS imagery is 

the availability of timely and annual crop masks for identification of the crop under 

investigation.  Often, a general cropland mask is used to distinguish cropped areas 

from other land use types, rather than a crop-type specific mask (REF, Rasmussen 

1997, Genovese et al. 2001).  A general cropland mask can be used to isolate a 

general cropland signal but does not provide a crop-specific signal. There are 

significant differences in the spectral response between crops through the growing 
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season (Wardlow, Egbert and Kastens 2007, Odenweller and Johnson 1984, Johnson 

2010). Due to the widespread practice of crop rotation, the use of a crop-specific 

mask requires that a season-specific mask be produced for developing the statistical 

relationship. Moreover, in order to forecast yields during the growing season, the 

crop-specific mask is required prior to the end of the growing season, which can 

present a significant logistical challenge (Kastens et al. 2005) and therefore this 

critical information is seldom available during the growing season.  Even in the case 

of the USA where the USDA NASS, a world leader in operational crop type mapping 

and monitoring, produces annual crop type maps, this information is only publically 

released after the end of the growing season.   

To address this challenge this study sought: 

 to investigate a practical approach to yield forecasting over large regions (i.e. 

state and national levels) using available EO data and that can be implemented 

in cases where within-season crop type masks are not readily available 

 to assess the associated accuracy tradeoffs relative to an ‘optimal’ case where 

within season crop type masks are available. 

2.2 Data and Study Site 

2.2.1 Study Site 

The State of Kansas was chosen as the study site for this research, as it is the 

primary wheat growing state in the U.S. Reliable annual winter wheat classifications 

are available from the USDA NASS Kansas Cropland Data Layer (CDL) (Mueller, 

Boryan and Seffrin 2009). On average, between 2000 and 2010, Kansas produced 

over one fifth of the total U.S. wheat production.  
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In Kansas, at the state and county levels, winter-wheat planted-area generally 

remains relatively constant between consecutive years. According to the USDA 

National Agricultural Statistics Service (NASS) statistics the standard deviation of 

wheat planted area in KS between 2000 and 2011 was 6% (NASS 2012b).  Due to the 

widespread practice of crop rotations (figure 2.1), the location of planted wheat fields 

alternates from one year to the next within the majority of counties in the state, 

although the total planted area remains relatively constant. As such, a static wheat 

mask (derived from a single growing season) at a moderate resolution would not be 

sufficient for capturing the wheat signal over multiple growing seasons for the 

purpose of yield forecasting where crop rotation is common practice. 

This study relied on two types of available data:  i) Crop type maps from the USDA 

NASS CDL for five years, 2006 through 2011, and ii) NASA MODIS 250m 8-day 

and 16-day NDVI composites. These datasets are summarized below.  

2.2.2 The USDA NASS Cropland Data Layer (CDL) 

The CDL is a crop-specific, rasterized, geo-referenced land-cover map produced by 

NASS. (Mueller et al. 2009, NASS 2012a). NASS is the agency responsible for 

administering the USDA’s U.S. program for collecting and publishing agricultural 

statistics at the national, state and county levels. The CDL is produced annually for 

the main agricultural growing states within the United States and is released to the 

public domain after the release of official county crop estimates.  The KS NASS CDL 

layers used in this study were produced by NASS using medium resolution (30 to 56 

meter) imagery from the Indian IRS AWiFS data, Landsat 5, Landsat 7, the NASS 

June Agricultural Survey (JAS), and Farm Service Agency (FSA) Common Land 
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Unit for ground truth and training data. The major crop types within the CDL 

generally have a classification accuracy ranging between 85% and 95% (NASS 

2010).  In this study, winter wheat binary masks were extracted from the Kansas 

2006, 2007, 2008, 2009, 2010 and 2011 CDLs and aggregated to a range of 

increasingly coarser spatial resolutions in order to investigate the relationship 

between crop rotation and spatial scale and the feasibility of using spatially 

aggregated crop masks to forecast yields when seasonal crop type masks are not 

available.  

 
Figure 2.1 Crop rotation rates in Kansas over 6 years: 2006-2011. Low rotation rates are in red (i.e. no 

rotation where 6 out of 6 years were planted with wheat) and high rotation rates are in blue. Top panel 

shows the entire state and the lower panels highlight two contrasting areas. Left panel is an area where 

crop roatation is wide-spread, and the right panel is an area with a wheat mono-culture 
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2.2.3 Vegetation Index Time Series Data 

NDVI was chosen as the remotely sensed input parameter as it has been shown to be 

strongly correlated during the growing season to crop condition parameters such as 

vigor, stress, green biomass and photosynthetic capacity (Jackson et al. 1986, 

Wiegand and Richardson 1990, Patel et al. 2006, Idso et al. 1979b, Tucker 1979, 

Tucker et al. 1981, Sellers 1985). The NDVI was computed from the MODIS surface 

reflectance time-series CMG daily product using equation 2.1 (Tucker 1979). 

MODIS 250 meter 16-day and 8-day NDVI composite time-series were obtained for 

the 2006 through 2011 growing seasons from the Global Agricultural Monitoring 

(GLAM) database (Becker-Reshef et al. 2010a). The 16-day composite dataset is 

generated as an input to the MODIS Vegetation Continuous Fields (VCF) 

intermediate surface-reflectance dataset (Carroll et al. 2011) produced by NASA 

MODIS Advanced Processing System (MODAPS) (Masuoka E. 2011). The 8-day 

composite data set is derived from the MOD09 Surface Reflectance product (Vermote 

and Kotchenova 2008). NDVI was computed using the Red (MODIS band 1, 620nm 

– 670nm) and near infrared (MODIS band 2, 841nm – 876nm) bands:   

(NIR – RED)/ (NIR + RED)   (Tucker 1979).   

Equation 2.1 

Remotely sensed derived VI’s have long been recognized for their value as inputs to 

crop yield and production forecasting models, as well as for tracking crop growth and 

development (Pinter et al. 1981, Funk and Budde 2009, Tucker et al. 1980, Hatfield 

1983, Maselli et al. 1993, Rasmussen 1992, Quarmby et al. 1993).  In particular, it 

has been shown that crop forecasting models are significantly improved when crop 
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masks are used in conjunction with the VI data, as the crop masks isolate the signal of 

the crop under investigation (Kastens et al. 2005, Doraiswamy et al. 2004).  In this 

study, CDL-derived binary wheat masks were scaled up to a range of coarser spatial 

resolutions and used to extract NDVI time-series for wheat pixels. 

2.3 Methods 

This study was carried out in five main steps: 1) Assessment of temporal resolution 

suitability of available EO data for yield forecasting; 2) spatial aggregation of the 

2006 - 2011 wheat masks to increasingly coarser spatial resolution percent-wheat 

masks; 3) analysis of inter-annual percent wheat variability over five years at a series 

of spatial resolutions; 4) extraction of wheat-specific NDVI temporal profiles; 5) 

yield estimation under two scenarios for crop mask availability. 

2.3.1 Temporal Resolution Assessment 

Crops grow and develop rapidly during the growing season. Winter wheat is 

generally planted in autumn and crop emergence and stand establishment typically 

occurs in late autumn prior to winter.  Winter wheat requires a process of 

vernalization  (exposure to low temperatures) in order to flower the following spring 

(Miller 1999). Vernalization requires exposure to temperatures of 5 to 10 degrees 

Celsius for a period of six to eight weeks, and the crop must be biologically active for 

at least four weeks prior to vernalization.  In colder climates winter wheat typically 

enters a state of dormancy during the winter.  During winter, vegetative growth slows 

or ceases and the crop’s resistance to cold weather is increased. Once the soil warms 

up in the spring, winter wheat resumes rapid vegetative growth followed by 

reproductive development and reaches maturity in early to mid-summer.   
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Frequent observations are critical for effectively monitoring the crop’s development 

and state.  In general, composite data are used in order to eliminate clouds and to 

obtain high quality observations by selecting the nearest to nadir observations. Both 

16-day and 8-day composites are freely available from NASA’s MODIS sensor at the 

250m resolution. In this study, the seasonal maximum NDVI was used as the primary 

model input for estimating wheat yields (Becker-Reshef et al. 2010b). The 16-day 

composites are not maximum NDVI composites, but are rather the best quality 

observation within the 16 day period. (Best quality not only with respect to cloud and 

atmosphere perturbation but also with respect to geometry, so the selection favors 

observations closest to nadir.) Consequently the 16-day time-series data are likely to 

often miss the seasonal NDVI peak of wheat. As such it was expected that the higher 

temporal resolution data, i.e. 8-day composites, would be better suited than the 16-

day composites, for extracting the seasonal maximum NDVI signal.  To assess this, 

seasonal NDVI profiles of wheat were extracted for all counties in KS at 250m 

resolution using both the 8-day and 16-day data sets.  The results indicate that in 

Kansas the NDVI seasonal peaks extracted from the 8-days composite were 

consistently higher than the NDVI peaks extracted from 16-day composites for the 

period of study (2006-2011).  The results for this analysis are shown in figures 2.2 

through 2.4. From visual inspection of figure 2.2, an example from Rice County, it 

appears that the 8-day data is better able to capture the seasonal peak. Therefore this 

was further explored by extracting the maximum seasonal NDVI of wheat from every 

county in KS over five growing seasons (figures 2.3 and 2.4).   .  The Results from 

this analysis indicate that indeed the 8-day composites are better able to capture the 



22 

 

seasonal peaks and are consistently higher than the peaks extracted from the 16-day 

data. The 8-day MODIS data set was selected for this study.   

  
Figure 2.2 Rice County NDVI time series graph (2006-2011) comparing the 16-day (blue) versus 8-

day (pink) wheat profiles. The 8-day NDVI seasonal peaks are consistently higher than the 

corresponding 16-day NDVI seasonal peaks.  

 
Figure 2.  Seasonal maximum NDVI extracted for wheat pixels from 4 counties in KS over 5 growing 

seasons. The pink indicates the 8-day seasonal maximum NDVI and the blue indicates the 16-day 

seasonal maximum NDVI for each for the 5 seasons.   
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Figure 2.4 Contrasting the 8-day versus 16-day distributions of the wheat seasonal maximum NDVI 

extracted from all counties in KS 

2.3.2 Spatial Aggregation of Wheat Masks 

Once the temporal resolution was selected the next step was to extract the winter 

wheat pixels from the season specific Kansas CDLs (2006-2011) creating six binary 

wheat masks at the CDL’s native 56 meters spatial resolution.   Wheat pixels were 

assumed to be pure pixels and therefore assigned a value of 100% and all other pixels 

were set to 0%. These masks were then re-projected to match the MODIS NDVI 

time-series data sinusoidal projection.  

Each of the six annual wheat masks was scaled up to a series of fifteen, increasingly 

coarser resolution percent wheat masks, where pixel values represent the proportion 

of wheat within each pixel..  The output was 90 wheat masks: 15 masks for each year 

between 2006 and 2011 at the following spatial resolutions: 250m, 750m, 500m, 1km, 

2km, 3km, 4km, 5km 6km, 7km, 8km 9km 10km, 20km, county  (on average ~ 
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45km, in this case each county was treated as a single grid cell).  At each resolution 

the per-pixel percent wheat was calculated by averaging the value of the 56 meter 

binary masks (wheat – 100, not wheat – 0) within the coarser resolution pixel 

(equation 1). This approach is similar to the spatial aggregation approach commonly 

described in the literature (Woodcock and Strahler 1987, Morisette et al. 2003, 

Nelson et al. 2009).  

For pixel x at coarse resolution r:             
          

  
   

Equation 2.1 

Where          is the scaled-up percent-wheat value for a given pixel x, at coarse 

resolution r. N is the number of 56m pixels within pixel x.  nCDLWheat is the 

number of 56m wheat pixels derived from the CDL wheat mask within pixel x (figure 

2.5). 

 
Figure 2.5 Example of the 2006 wheat mask at 56m resolution (left: green shows the wheat pixels) and 

a corresponding mask aggregated as percent wheat per 4km grid cell (right: color scale represents % 

wheat).   

2.3.3 Analysis of Inter-annual Percent Wheat Variability 

At the basis of the developed approach, is the assumption that at certain spatial 

resolution, the percent wheat within a given pixel remains stable from one year to the 
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next (within a limited number of years), despite crop rotations. In other words the 

spatial variability of percent wheat between years becomes stable.  Implied is that the 

overall planted area within the region of interest is relatively constant over the 

specified time frame. In the case of Kansas, the wheat planted area varied by 6% 

between 2000 and 2011. To assess this assumption in Kansas and determine the 

spatial resolution at which the per-pixel wheat purity remains constant over a period 

of 6 growing seasons, the range of the percent wheat values (RPctxr) for every pixel 

(x) at all 15 resolutions (r) was computed (equation 2).   

                                   

Equation 2.2 

Where                                  are respectively the maximum and the 

minimum percent wheat value for pixel x at resolution r over 6 years.  

Figure 2.6 presents a series of images for western Kansas depicting the RPctW 

values over 6 years in an area with high crop rotation rates.  At the finer resolutions, 

(i.e. 250m) RPctW values were close to 100 indicating that in some years no wheat 

was planted in that location and in other years the pixel was purely wheat (figure 2.6 

shown in red). As pixel size was increased, the variability of percent wheat within a 

given pixel decreased and stabilized.  This effect can be assessed visually in the 

example from western Kansas presented in figure 2.6  



26 

 

 

Figure 2.6 Example of RPct values computed from 6 annual wheat masks for increasingly coarser 

resolutions over western Kansas where crop rotation is common practice. Upper left corner 250m 

resolution, lower right corner treating each county as a single pixel. Red indicates high variability in 

per pixel percent wheat, blue indicates near constant percent wheat across years.  

To quantify and characterize this percent-wheat ‘stabilization’ effect over the entire 

state, the median RPctW (MRPct) was computed for all 105 counties (equation 2.3) at 

each of the spatial resolutions and is presented in figure 2.7.  These results indicate 

that the percent wheat variability drops below 10% starting at the 4km resolution for 

the majority of counties in  Kansas.  

                                

Equation 2.3 

Where          is the Median Range Percent Wheat for county c at resolution r.  
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Figure 2.7 Boxplot of median range percent wheat (MRPct) for all counties in Kansas, computed for 

each spatial resolution using the 2006-2011 wheat masks. 

2.3.4 Wheat Specific NDVI Time Series  

The next step was to evaluate the effect of using a single season percent wheat mask 

for extracting NDVI temporal profiles over multiple years (2006– 2011) for the range 

of pixel resolutions.   

The percent wheat masks were used as a filter to select the purest wheat pixels 

within each county at each spatial aggregation level. Each seasonal mask was used to 

extract the maximum seasonal NDVI (MA_NDVI) signal from its corresponding 

season as well as for the other years (2006-2011) at all spatial resolutions. The 

MA_NDVI signal was adjusted for background noise by subtracting the minimum 

mean NDVI signal (Becker-Reshef et al. 2010b). Figures 2.8a-b show the results of 

this step for two contrasting types of counties: Figure 2.8a for Decatur County where 

crop rotation is common and Figure 2.8b Harper County, where wheat monoculture is 

wide spread. Each time-series graph depicts the MA_NDVI signal from 2006 through 

2011 extracted using the 6 annual crop masks produced in this step, at all spatial 
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resolutions.  In the case of Decatur County, it is evident that a single, season-specific, 

crop mask cannot be used to extract the MA_NDVI at the higher resolutions due to 

the effect of crop rotations. Yet, as the resolution is coarsened the extracted signal 

from each of the crop masks converge, indicating that at the coarser resolution a 

single mask can be used over multiple years to extract a consistent signal. On the 

other hand, in Harper County almost all the masks, even at the finer resolutions, can 

be used to extract a consistent signal, since wheat fields are not heavily rotated 

between years. The trade-off for decreasing the impact of the out of season crop mask 

by coarsening the spatial resolution is the dampening of the wheat signal due to the 

effect of mixed pixels. The explanation for this effect is that winter wheat is generally 

surrounded by fields planted with crops and it greens up before the summer crops. 

Therefore as the spatial resolution is coarsened the wheat signal is mixed with the 

signal from surrounding bare ground and emerging summer crops such as corn. An 

example of this effect is presented in figures 2.9a-b. Figure 2.9a presents the 2010 

seasonal maximum NDVI values of the purest wheat pixels for Decatur and Harper 

counties at increasingly coarser spatial resolutions.  The circle size is proportional to 

percent wheat. It is evident that the maximum NDVI signal is reduced as the percent 

wheat decreases. Figure 2.9b summarizes this effect in KS in a  boxplot of the 

distribution of the 2010 maximum NDVI values extracted from all counties at 

increasing spatial resolutions.   
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2.8a Decatur County 

 
2.8b Harper County 
 

Figure 2.8 a-b Maximum Seasonal NDVI extracted for 2006 through 2011 using 6 seasonal wheat 

masks (2006-2011). Line colors are presented according to the year of the wheat mask. Data were 

extracted at increasingly coarser resolutions. Upper left 250m, lower right 20km. a) Data from Decatur 

County where wheat fields are commonly rotated. b) Data from Harper County where wheat 

monoculture is the dominant practice. 
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Figure 2.9a 2010 Maximum NDVI values for Decatur (top) and Harper (bottom) counties extracted at 

increasing spatial resolutions. Circle size is proportional to percent wheat at each resolution.  

 

 
Figure 2.9b Boxplot distribution of 2010 maximum NDVI values from all counties in Kansas extracted 

at increasing spatial resolutions.  
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In order to select the optimal level of spatial aggregation for yield forecasting given 

this tradeoff in cases when within-season masks are not available and, a yield model 

(fully described in chapter 3 and in  Becker-Reshef et al. (2010b) ) was run under 2 

scenarios of wheat mask availability. The model used the extracted MA_NDVI and 

percent wheat as inputs and was run for the full range of pixel spatial resolutions for 

two scenarios. 

2.3.5 Yield Estimation under two crop mask availability cases 

Many studies have found that crop yields can be successfully forecast by deriving a 

regression based relationship between NDVI derived metrics (Maselli 2001, Tucker 

et al. 1980, Lewis, Rowland and Nadeau 1998, Hamar et al. 1996, Manjunath, Potdar 

and Purohit 2002, Groten 1993, Rasmussen 1992) and yield. Time-integrated NDVI 

measures during the crop reproductive stages and single NDVI observations around 

the time of the seasonal maximum NDVI (which is closely associated with the 

booting-flowering stage in wheat), are common RS metrics in such empirical models, 

as  they are indicative of crop conditions once the majority of the green biomass is 

established (Hochheim and Barber 1998, Tucker et al. 1980, Labus et al. 2002, 

Benedetti and Rossini 1993, Rasmussen 1997).  A maximum-NDVI based wheat 

yield model, described in (Becker-Reshef et al. 2010b) was used in this chapter to 

assess the impact of spatial resolution on yield forecasting.  

Ideally, annually-updated wheat maps would be readily available during the 

growing season at an adequate spatial resolution to extract NDVI time series profiles 

of the target crop. At this time within-season crop-specific masks are rarely available 



32 

 

for the majority of agricultural regions.  However, a single or a series of crop type 

maps are often available or can be more easily generated for previous seasons after 

the growing season is complete and coarse resolution data with frequent overpasses 

are freely accessible for monitoring crop development.  

This study therefore sought to assess the optimum spatial resolution for the model to 

be run on, in order to maximize estimated yield accuracy and to estimate the tradeoff 

between the ‘optimal’ situation (case 1) where season-specific wheat masks are 

available during the growing season (control case) and the most likely situation where 

only a single mask from a previous recent season is available (case 2). 

To accomplish this task the yield model was run for the two cases at all spatial 

resolutions.  Case 1 was treated as the ‘control’ case representing ‘optimal’ data 

availability.  As such, case 2 results were assessed relative to the control case.  The 

estimated yields were also assessed against the official NASS reported yields and the 

RMSE and corresponding percent error were computed for each case and at each 

spatial resolution.  The model estimates were also compared to yield estimates based 

on the 6-year average yields to ensure that method is relevant and performs better 

than simply using the average as an estimate.   

Season specific wheat masks were available for 2006 through 2011 from NASS.  

Therefore, case 1 could only be evaluated on these years. The yield model was run on 

these years with the exception of 2007 since during 2007 large parts of the state 

experienced late spring frosts which caused floral sterility and low yields.  As a result 

for that year, the NDVI signal was relatively high, reflecting the well-developed crop, 

but the end of season yields were very low as a result of the freeze damage that was 
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not reflected in the NDVI (Woolverton 2007, NASS 2007a, NASS 2007b). It is 

acknowledged that such cases present a limitation to current RS yield models which 

are based on the relationship between crop photosynthetic capacity and yield.  

In case 2, which represents instances when only a single seasonal wheat mask is 

available, each of the 6 single-season wheat masks (2006-2011) were used separately 

to extract the MA_NDVI for all years (excluding the season of the mask) and at all 

spatial resolutions. In other words, the 2006 mask was used to extract the seasonal 

MA_NDVI for 2008-2011, followed by the 2007 mask and so on. A similar case 2b 

was also run.  In case 2b only the previous season’s mask was used to extract the 

NDVI signal, except for 2006 which did not have a preceding season’s mask and 

therefore the 2007 mask was used. In other words, the 2010 mask was used to extract 

the 2011 growing season NDVI signal and so on.  As for case 1 the RMSE was 

computed for all case 1, case2 and case 2b model runs.   

2.4 Results 

The EO regression-based winter wheat yield model was run for the cases described. 

In this model, yield was estimated as a function of percent wheat and the maximum 

seasonal NDVI signal (adjusted for background noise).  

For the model to be useful model forecasts should be more accurate than forecasts 

based on using the mean yield to estimate yield.   Thus, the RMSE and percent error 

were computed over the study period where the 6-year average yield was used as the 

estimator. The RMSE was 0.33 tons per hectare (t/ha) which is equivalent to a 12.5% 

error (relative to average yield). 
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The results for cases 1, 2, and 2b are presented in figure 2.10 and table 2.1.  In 

figure 2.10, the results are summarized according to case and spatial resolution versus 

yield percent error.  Case 1 (pink in figure 2.10), as expected, had the overall lowest 

errors (6.15%). The model error was lowest at the 500m resolution and increased with 

increasing resolution. Case 1 used the best available data and as such represented the 

‘optimal’ model runs and was treated as the control case. The subsequent model runs 

of cases 2 and 2b were assessed relative to the performance of this case.  

Case 2 and case 2b, performed poorly relative to case 1 at the finer resolutions due 

to the effect of crop rotations, though performed remarkably well as the spatial 

resolution was coarsened. The error was highest (~30% at the 250m) at the finest 

resolutions, and rapidly declined with increasing resolution.  The lowest percent error 

for   case 2 and case 2b was 7.4% and 7.2% respectively, and was found at the 5km 

resolution and 4km resolutions.   

 
Figure 2.10 Model percent error for each case.  The gray line indicates the % error if the mean yield is 

forecast every year 
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These results are quite promising as they indicate that a single percent wheat mask 

derived from a recent season’s crop-type mask (within 6 years in the case of KS) can 

be used in combination with coarse resolution NDVI to forecast yields prior to 

harvest, in the absence of a timely seasonal crop-type mask by spatial aggregation to 

a coarser resolution percent wheat mask.  The tradeoff of using a single mask (case 2 

in terms of percent error relative to the case 1 minimum error (6.15%) is 1.05% (case 

2b) to 1.25% (case 2)  (table 2.1).  

Table 2.1 accuracy of yield forecasts by case and resolution 

Case 1    Case2            Case2b 

 

2.5 Discussion and Conclusions  

Crop yield forecasting is hampered due to limited availability of crop type masks 

prior to the end of the growing season. The objective of this study was to develop and 

evaluate a practical approach to winter wheat yield forecasting that utilizes readily 

accessible data to forecast yields at sub-national and national scales with minimized 

tradeoff in accuracy relative to a control case.  

This study found that the higher temporal resolution data (8-day composites) were 

better able to capture the seasonal NDVI peak for wheat and that the best yield 

estimates were attained when moderate resolution wheat masks were available for 
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every season analyzed. This study found that the  tradeoff between using a coarse 

resolution, static mask derived from a single preceding season was surprisingly low 

(1.05% case2b and 1.2% case2). These results suggest that in the absence of within-

season crop-specific masks yield can be forecast at the state level with a small 

tradeoff in accuracy, using readily available coarse resolution data and a preceding 

season, static percent wheat mask. 

It should be noted that the best results for case 1 were found at the 500m resolution 

rather than at the 250m resolution. This is likely due to several factors including the 

accuracy of the cropmasks, artifacts of 250m gridding and shifts (it has been shown 

that at the 250m resolution there can be up to a 0.5 pixel shift)  and pixel growth (Tan 

et al. 2006, Wolfe, Roy and Vermote 1998). This topic should be further explored.  

While one would assume that for agricultural remote sensing it is best to work at the 

finest spatial resolution so that individual fields can be resolved, this study provides a 

counter-intuitive result that suggests that coarse resolution data can offer a viable 

alternative in the absence of finer spatial data and up-to-date crop specific masks with 

a small tradeoff in accuracy. By monitoring crops at a coarser resolution, the noise in 

the signal introduced by year to year variability due to crop rotations is reduced. This 

is in keeping with results presented Markham and Townshend (1981), Malingreau 

and Belward (1992) and Nelson et al. (2009), albeit at finer spatial resolutions and for 

different land cover types.   

This chapter presents a viable and efficient method for isolating a coherent, crop-

specific signal over multiple growing seasons using a static, fine resolution crop mask 

aggregated to a coarse resolution. A fundamental condition for this approach is low 
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overall inter-annual variability in planted wheat area. This implies that in regions 

where there are major shifts in planted area between years due to biofuel demand or 

market incentives, this approach would not work.  Nevertheless, according to USDA 

national level statistics this condition does seems to hold true, at least at the national 

level,  for many of the main wheat producing countries where the variation in planted 

area over the past ten years is below 10% (USDA 2010). In the case of Kansas, where 

six annual wheat masks were available from the USDA NASS, the analysis suggests 

that over a period of at least five years this assumption holds true and that per-pixel 

percent wheat variability in Kansas stabilized (below 10%) at approximately 4km 

pixel resolution.   

The main advantage of the results presented for crop monitoring and specifically for 

yield forecasting models that rely on remotely sensed inputs is that a single, coarse 

resolution percent wheat mask is sufficient to extract a consistent wheat temporal 

profile over multiple years. Therefore a single mask, from a previous year would 

likely suffice. Second, this method eliminates the challenge of generating a timely 

and accurate crop type mask prior to the end of the growing season to in order to 

forecast yields. Nevertheless producing accurate crop type masks play a critical role 

for deriving seasonal crop area estimates.  

Finally, the findings from this chapter indicate that higher temporal resolution data 

is better able to capture crop phenologic development, and specifically the seasonal 

NDVI peak. Furthermore, in the case of KS, the percent wheat stabilized at the 4km 

spatial resolution.  As such the next study described in chapter 3 used a daily dataset 

NDVI data set at available at 0.05 degree latitude longitude (equivalent to 
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approximately 4.5km in Kansas) to develop the yield model and evaluate its 

transferability.  
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Chapter 3: A generalized regression-based model for forecasting winter wheat 

yields in Kansas and Ukraine using MODIS data
3
 

3.1 Introduction  

A range of techniques such as visual field estimates, multiple frame-based sample 

surveys, analog-year approaches, crop-simulation models and regression approaches 

have been used for forecasting pre-harvest yield estimates with varying degrees of 

success (Pinter et al. 1981, Wall et al. 2007, Doraiswamy et al. 2003, Chipanshi, 

Ripley and Lawford 1999, Maselli and Rembold 2001). Earth observations (in 

particular surface reflectance and thermal data) owing to their synoptic, timely and 

repetitive coverage, have been recognized as a valuable tool for yield and production 

forecasting (Prasad et al. 2006, Manjunath et al. 2002). Agricultural monitoring from 

space, in particular pre-harvest assessments of crop yield and production, has been a 

topic of research since the early 1970’s  (Wall et al. 2007).   

The utility of EO for crop yield forecasting has been demonstrated across a wide 

range of scales and geographic locations (Mkhabela and Mashinini 2005, Labus et al. 

2002, Kastens et al. 2005, Funk and Budde 2009, Weissteiner and Kuhbauch 2005, 

Salazar, Kogan and Roytman 2007, Rojas  et al. 2007, Quarmby et al. 1993, Mika et 

al. 2002, Hayes and Decker 1996, Hatfield 1983). In particular, the Normalized 

Difference Vegetation Index (NDVI) has been recognized since the 1970’s for its 

value in monitoring crop conditions and forecasting crop yields (Tucker et al. 1980, 

Quarmby et al. 1993, Doraiswamy and Cook 1995, Boken and Shaykewich 2002).   

                                                

3
 The material presented in this chapter was previously published in Becker-Reshef, I., Vermote, E., 

Lindeman, M., & Justice, C. (2010). A generalized regression-based model for forecasting winter 

wheat yields in Kansas and Ukraine using MODIS data. Remote Sensing of Environment, 114, 1312-

1323 
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The basic assumption behind the empirical statistical approaches is that measures of 

photosynthetic capacity, estimated from spectral vegetation indices such as NDVI, are 

directly related to yield. This is because many of the conditions that favorably or 

adversely affect plant development and ultimately yield (i.e. fertilization treatment, 

rust infection, drought, or precipitation-events ) result in a corresponding increase or 

reduction of the crop’s photosynthetically active biomass and this response can often 

be captured though spectral measures such as NDVI (Tucker 1979).  Thus, a 

limitation of such an empirical, NDVI-based approach is that estimates of yield are 

often inaccurate when photosynthetic capacity at the time of measurement is not the 

main determinant of grain yield.  

Pioneering work carried out in this field such as by Fischer (1975) found that wheat 

yields could be forecast as a function of the leaf area at the onset of the reproductive 

stage which corresponds to the timing of maximum crop green leaf area. Tucker et al. 

(1980) found significant linear relationships between wheat yields and time-

integrated NDVI measures during the growing season, and determined that the 

strongest correlation of yield with NDVI occurred around the time of maximum green 

leaf biomass. Pinter et al. (1981) found that wheat and barley yields could be related 

to accumulated NDVI over the growing season. The findings from such studies 

established the ground work for numerous subsequent studies relating spectral 

vegetation indices to crop yields at regional and national scales as well as for this 

study. 
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For example, in field experiments in the Punjab region of India, Mahey et al. (1993) 

found that NDVI measurements during maximum green crop canopy cover were 

highly and linearly correlated with wheat yields. Dubey et al. (1994) developed linear 

regression models to forecast wheat yields at the district level in Punjab using the 

NDVI derived from the Landsat Multispectral Scanner System (MSS) and the Indian 

Remote Sensing (IRS) Satellite Linear Imagine Self Scanning Sensors (LISS-1). 

Similar methods were used by Sridhar et al. (1994) to forecast wheat yields in 

Madhya Pradesh, India. Manjunath et al. (2002) derived linear regression models to 

forecast wheat yields in Rajasthan utilizing NDVI data derived from the National 

Oceanic and Atmospheric Administration (NOAA)  Advanced Very High Resolution 

Radiometer (AVHRR), in conjunction with rainfall data and yield data.  

In a study in Canada, Boken et al. (2002) enhanced a pre-existing operational, 

district-level wheat yield forecasting model, driven by a monthly cumulative moisture 

index (CMI) by incorporating NDVI data into the model, and found that the average 

NDVI during the peak of the growing season and the average NDVI of the entire 

growing season were the best predictor parameters for wheat yield. A subsequent 

study comparing the explanatory power of NDVI for wheat yield modeling versus 

that of CMI found that the NDVI-based model could forecast yields four weeks 

earlier than the CMI–based model (Wall et al. 2007). Basnyat et al. (2004) conducted 

field studies in the Canadian prairies and found significant correlations between 

NDVI and grain yield and determined that the optimal timing for obtaining NDVI 

measurements for spring-planted wheat was approximately one month prior to 

harvest.  
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In Senegal, Rasmussen (1997) developed a linear regression model driven by 

integrated NDVI measures to estimate millet yields. Maselli and Rembold (2001) 

used regression models utilizing multi-year NDVI data to estimate wheat yields at the 

national level in North African countries. In Zimbabwe, Funk and Budde (2009) 

found that phenologically-adjusted, crop-weighted NDVI-anomaly time-series data 

were correlated with crop production anomalies and could be used by the Famine 

Early Warning Systems Network (FEWS) to provide an early and objective 

evaluation of production.   Other methods explored by the famine early warning 

community include utilizing the relationship between NDVI anomalies and the 

Pacific Sea Surface Temperature (SST) anomalies in Southern Africa to forecast 

NDVI anomalies at the onset of the growing season which can then be related to crop 

production (Verdin et al. 1999). 

In China, Ren et al. (2008) developed a linear regression model to forecast winter 

wheat yields in the Shandong Province. Their model regressed spatially- accumulated 

NDVI measurements at the county-level during the growing season with county-level 

production statistics. Yield was then derived from the model’s predicted production 

divided by acreage statistics to forecast yields within 10 percent of official statistics.  

In the U.S. Doraiswamy et al. (2003) used several input parameters retrieved from 

satellite imagery in a crop growth model to simulate spring wheat yields at the sub 

county and county levels in North Dakota. 

Despite extensive studies on crop yield forecasting, crop models have rarely 

progressed successfully into operational implementation and are typically only 



43 

 

applicable in the region for which they are developed as in general, both empirical 

and biophysical models require local calibration 

This study takes advantage of considerable recent improvements in sensor 

technology (i.e. in spectral resolution, calibration, signal to noise ratio)  and uses the 

new surface reflectance, BRDF-corrected, daily product from NASA’s  MODIS data 

(Vermote, Justice and Breon 2009) to develop a robust wheat yield forecasting 

approach.  

3.2 Materials 

This study combined coarse resolution NDVI time-series data and wheat masks, with 

reported crop statistics to develop an empirical, generalized, regression-based, winter 

wheat yield forecasting model. This study first developed and tested a regression-

based model in Kansas, a major wheat producing region that has detailed agricultural 

statistics. Once developed, this Kansas regression model was directly applied to 

Ukraine, a major wheat growing country.  According to USDA statistics, Ukraine is 

the sixth largest wheat exporter, on average accounting for 6% of total wheat exports 

between 2007 and 2009 (FAS 2009).  

Building on the findings from chapter 2, three data-sets were selected for this study: 

winter wheat crop type masks; daily, BRDF-corrected MODIS surface reflectance 

time-series at 0.05 degree latitude longitude; and county-level crop statistics on winter 

wheat yields (Table 3.1). Crop type masks were used to identify the winter wheat 

areas. The Kansas yield statistics were then used with the MODIS NDVI data to 

develop an empirical relationship between NDVI and yield which was then applied 

uniformly to Kansas and Ukraine. 
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Table 3.1 Data used in the study 

 

3.2.1 Study site and official crop statistics 

As in chapter 2, the state of Kansas was chosen as the study site for developing the 

winter wheat yield forecasting model, as it is the main winter wheat producing state 

in the U.S., it has large areas of consecutive wheat fields which generally range from 

30 to 150 ha, and it has a comprehensive and reliable county-level archive of crop 

statistics.  In 2008, the state of Kansas produced 9.7 million tons of winter wheat, 

approximately one fifth of the total U.S. wheat production (NASS 2012b). Winter 

wheat production is concentrated in the western two-thirds of the state (Figure 3.1).  

A reliable archive of county-level statistics on yield, area harvested, and production is 

available from the USDA National Agricultural Statistics Service (NASS) Quick 

Stats database (NASS 2008).  NASS is the agency responsible for administering the 

USDA’s U.S. program for collecting and publishing agricultural statistics at the 

national, state and county levels. It is considered a world leader in agricultural 



45 

 

statistics providing, a comprehensive, uniform, and reliable data set on U.S. crop 

statistics. The NASS crop statistics are based on data obtained from multiple frame-

based sample surveys of farm operators, objective yield surveys, agribusinesses, 

shippers, processors and commercial storage firms and are designed to forecast 

production at the state (rather than county) level (NASS 2007c).  The time-series of 

NASS county-level crop statistics from 2000 to 2008 were used to train and develop 

the basic regression model in Kansas. 

For Ukraine, oblast-level crop statistics were obtained from the State Statistical 

Committee of Ukraine (SSC) for winter wheat area harvested and yield. (An Oblast is 

a sub-national unit approximately three times the size of a Kansas county). These 

official statistics are based on farm surveys collected from all the agricultural 

enterprises (large-scale farms that produce commodities exclusively for sale) which 

account for over 75 percent of Ukraine’s grain production, and from a sample of 

house-hold farms (small farms and household plots that produce crops both sale and 

for personal consumption) which accounts for the remainder of the grain production 

(Personal communication, Oleg Prokopenko, Chief Agricultural Section, State 

Statistical Committee of Ukraine, April 2009). These official Ukrainian statistics were 

used for validation purposes only.   
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Fig. 3.1 Kansas winter wheat distribution based on USDA NASS average planted area (hectares) 

statistics from 2000 to 2006. Dark reds indicate higher per-county planted area and pinks indicate 

lower per-county planted area. 

3.2.2 Crop type maps    

As explained in chapter 2, identification of winter wheat fields is an important 

component of the model development and implementation as it allows for retrieval of 

winter wheat specific remotely sensed parameters. In this chapter the Kansas 2006 and 

2007 CDL layers were scaled up as percent wheat masks to the 0.05 degree resolution 

and used to identify winter wheat growing areas.  A winter wheat map for Ukraine was 

also necessary for the application of the regression model in Ukraine. As no winter 

wheat maps were available for Ukraine, a rasterized winter wheat map was produced 

using a decision tree, similar to that used to produce the NASS CDL and other land 

cover classifications such as those described by Pittman et al. (2010) and Hansen et al. 

(Hansen et al. 2000). Training data covering 37660 hectares, equivalent to 0.53% of 

2008 planted wheat area, were collected from moderate resolution AWiFS images 

(56m) from May, 2008 (timing in Ukraine of the winter wheat flowering growth stage) 

and from June and July 2008 (timing of maturity and harvest of winter wheat in 
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Ukraine). These training data were supplemented with field data collected during the 

USDA FAS crop travel to Ukraine. The distribution of the wheat training data is 

presented in figure 3.2A.  The classification tree was then run on one year of time-

series of MODIS surface reflectance 16-day composite data (August 2007 – August 

2008) to produce a winter wheat map for Ukraine at the MODIS 250m resolution 

(figure 3.2B). In order to validate this map, the classified winter wheat was aggregated 

at the oblast scale and compared with the official Ukraine SSC winter wheat planted 

area statistics. When compared at the oblast level, the classified area from the 250m 

mask had a bias of 28% (SSC area = Classified mask estimate * 0.722439) and a 

precision accuracy of 4.5% (Figure 3.2C).  
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Fig. 3.2 Ukraine winter wheat mask. Panel (A) shows the distribution of the training data collected 

from AWiFS imagery for 2008 winter wheat crop type map for Ukraine. Panel (B) is the 2008 

classified Ukraine winter wheat map at 250 m resolution. Panel (C) is the validation of the winter 

wheat classification map (X-axis) against the official Ukrainian SSC winter wheat oblast-level, planted 

area statistics (Y-axis). When compared at the oblast level, the area computed from the classified mask 

had a bias of 28% (SSC area=Classified_Mask_estimate * 0.72) and a precision accuracy of 4.5% 

relative to the official national level wheat area statistics. 
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3.2.3 MODIS daily Climate Modeling Grid (CMG) time-series 

Traditionally NDVI composite data from the AVHRR have been used to drive 

remotely sensed based crop yield forecasting models (Weissteiner and Kuhbauch 

2005, Salazar et al. 2007, Benedetti and Rossini 1993, Mika et al. 2002, Doraiswamy 

et al. 2003, Ferencz et al. 2004, Manjunath et al. 2002, Hayes and Decker 1996, Smith 

et al. 1995). Daily data from AVHRR had significant levels of noise due to effects of 

such factors as aerosols, clouds, and water vapor and off-nadir viewing. To minimize 

noise due to these effects, temporal composite data derived using the Maximum Value 

Composite (MVC) method were preferred over daily data, as the highest quality pixels 

from each composite time-frame are selected (Holben 1986). With time, the quality of 

remotely sensed data has significantly improved due to advances in sensor technology, 

such as with the MODIS instrument, and to significant methodological enhancements 

to atmospheric correction, cloud detection, BRDF correction algorithms and data 

quality flags (Vermote et al. 2002, Justice et al. 1998).  

Recently, a new high quality, coarse resolution (0.05 degree latitude longitude), 

daily-updated, BRDF-corrected, surface reflectance data set from MODIS has been 

developed, enabling reliable daily monitoring of agricultural regions (Vermote et al. 

2009). This is a daily-updated product which means that clear, high-quality pixels are 

identified daily, and cloudy, low quality pixels are flagged and replaced by linearly 

interpolated values until high-quality data become available. In this way, this dataset 

preserves all of the useable data rather than just a single data point selected by the 

compositing procedure.  This daily product is similar to the ‘objective analysis’ 

scheme that was applied to AVHRR Sea Surface Temperature (SST) (Santoleri, 
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Marullo and Bohm 1991). The objective analysis method was used to produce a daily 

SST product where cloud-free, good quality data were preserved and cloudy pixels or 

atmospherically contaminated pixels were removed and replaced by values that were 

interpolated between irregularly spaced observations.  In their study Santoleri et al. 

(1991) compared daily objective analysis AVHRR SST maps to their corresponding 

composite images and found that the objective analysis images were able to more 

accurately characterize SST values in areas of rapid variability than in the composite 

images.  

Similar to the objective analysis approach, the Climate Modeling Grid (CMG) 

MODIS daily-updated surface reflectance is able to preserve the temporal signal over 

cropped areas better than the corresponding standard composite products trading 

spatial resolution for temporal resolution.  As such it should allow for better estimation 

of remotely sensed-based growing season parameters such as the seasonal peak NDVI 

than the corresponding composite product.  

3.3. Methods 

3.3.1 Regression Model Development for Kansas 

The first step in the model development was to scale up the NASS CDL to the 

MODIS CMG scale (0.05 degrees ) as a percent wheat crop-type mask using the same 

method described in chapter 2. (equation 2.1) 

Once the percent wheat mask was produced it was used to select the 5% purest 

winter wheat pixels at the 0.05 degrees from each county in Kansas. Using these pixels 

as a mask, a wheat specific NDVI time-series derived from the daily CMG product 
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was retrieved for every year of data from each county. The result was an eight year 

(2000-2008) daily NDVI time-series for each county in Kansas. As is evident from the 

example in figure 3.3, the yield values co-vary with the maximum NDVI values from 

each season. This is apparent in all years with the exception of 2007 where the 

maximum NDVI value is high and the yield value is relatively low due to the late 

spring freeze damage (noted in chapter 2).   Therefore, for the purposes of establishing 

the generalized regression model, data from 2007 were excluded.  

Fig. 3.3  NDVI time-series for Harper County, one of the highest wheat producing counties in Kansas.  

date on the X-axis and NDVI values on the Y-axis. The daily NDVI values were extracted from the 

winter wheat areas for 2000 through 2008. The numbers in blue are the final yield values for Harper 

County. The figure shows that the yield values co-vary with the maximum NDVI values from each 

season. This is apparent in all years with the exception of 2007 where the maximum NDVI value is 

high and the yield value is relatively low. 

In this study the seasonal maximum NDVI was used as the main remotely sensed 

input parameter.  The seasonal maximum NDVI was chosen since it enabled a timely 

prediction of production approximately a month and a half prior to harvest. To retrieve 

the maximum NDVI the 95
th

 percentile seasonal NDVI value was extracted from the 

county, wheat specific daily time-series for each year of data (2000-2008). The 
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maximum NDVI values were then adjusted to reduce the influence of non-wheat 

noise, such as soil, on the wheat NDVI signal. This was achieved through applying a 

method similar to that suggested by Rassmusen (1998) where the pre-growing season 

average low vegetation index value for each pixel was subtracted from the maximum 

NDVI growing season values, as expressed in equation 3.1.  

                    
 

 
           

 
     (3.1) 

Where N is the number of years (2000 through 2008), y is the year,             is the 

maximum 95
th

 percentile NDVI for Year y,           is the minimum 5
th

 percentile 

NDVI for Year y.  

The maximum adjusted NDVI (MA-NDVI) from 2007 was excluded from the time-

series due to the April freeze.  

Once the winter wheat MA-NDVI values were retrieved from each county for the 8 

years of data, percent-wheat specific, linear relationships were derived between the 

retrieved MA-NDVI and the NASS reported yield statistics for each county. To derive 

these relationships, the maximum percent (Mpct) wheat value for each county was 

computed as a weighted average of the percent-wheat values of the top 5 percent 

purest pixels in each county (figure 3.4).. A linear regression was then derived for each 

county (with intercept set to 0), regressing eight years of the averaged maximum MA-

NDVI against eight years of NASS yield statistics for each county. The county 

specific regression slope and maximum percent wheat values were then used in the 

next step for generalizing the MA-NDVI to yield relationship as a function of percent 

wheat. 
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Fig. 3.4  Distribution by county of the maximum percent winter wheat computed as a weighted average 

of the 5% purest pixels in each county in Kansas. 

The assumption was that the MA-NDVI value from each county is a mixed signal 

composed of the proportional signals from MA-NDVI of wheat and the MA-NDVI of 

the other land cover (Equation 3.2).   

                                                     

                      (3.2) 

As winter wheat fields are generally located in widely cultivated areas and are 

surrounded primarily by fields sown with spring-planted row crops rather than by 

forests or other land cover classes, the MA-NDVI signal from the other land cover 

types is likely dominated by non-wheat cultivated lands. Winter wheat is sown in the 

fall and by mid-spring reaches its maximum green canopy while the other, non-wheat 

fields are still bare or at the start of their vegetative growth phase. It was therefore 

assumed that                           .  In this case it follows that 

where the percent wheat is low, the MA-NDVI signal will be lower than the MA-

NDVI signal where the percent wheat is higher, as the bare-ground and emerging row-

crop signal will dominate the MA-NDVI signal.  Given these assumptions and since 
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the averaged maximum percent wheat (Mpct) varies by county, the county-specific 

regression slopes of yield to MA-NDVI were expected to vary as a function of percent 

wheat. In other words, in cases where winter wheat percent is low, the slope was 

expected to be proportionally larger than in cases where percent wheat is higher, 

in order to account for the weaker                signal which is due to the 

lower percent wheat. At the county level the MA-NDVI was found to be a good 

predictor of yield and the slopes of these linear relationships varied between counties 

primarily as a function of the averaged maximum percent wheat. As expected, 

counties with lower maximum percent wheat had larger slopes than those with higher 

maximum percent wheat values. An example from two counties, Harper and 

Dickinson Counties is presented in figure 3.5.  Harper County had a maximum percent 

wheat value of 74 and a MA-NDVI to Yield regression slope of 5.3. On the other 

hand, Dickinson County had a lower percent wheat value of 41 and a regression slope 

of 7.8.  

 Fig. 

3.5  Example of two MA-NDVI to Yield regressions from two Kansas counties with differing 

maximum percent wheat county values. Harper County which has a maximum percent wheat of 74 and  

has a MA-NDVI to Yield regression slope of 5.3 whereas Dickinson County which has a lower percent 

wheat of 41and has a higher regression slope of 7.9  
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Once the percent wheat dependent slopes were derived, the next step was to obtain a 

generalized yield-MA-NDVI relationship that could capture the percent-wheat 

dependent variation in slope, and be applied uniformly to the entire state. To 

accomplish this, a linear relationship was derived, regressing the individual county 

slopes computed in the previous step, against the county averaged maximum percent 

winter wheat. Three filters were applied to the data to select the best-suited data points 

for the regression: i) county average harvested area > 4000 hectares ii) RMSE of yield 

to MA-NDVI regression < 0.43 MT/hectare iii) regression correlation coefficient > 

0.6.  Once the filters were applied, the remaining data points were used to derive the 

percent wheat to slope regression (figure3.6)  .where as the percent wheat increases the 

slope decreases. In addition, dispersion in slope values increases at low maximum 

percent crop values. The derived regression is presented in equation 3.3. The 

regression Root Mean Square Error (RMSE) was 0.87, which is equivalent to a 10% 

error and the r
2
 was 0.49.  

 

                           

Equation 3.3 

Where      is maximum percent wheat and       is the corresponding slope of the 

yield to MA-NDVI regression as a function of Mpct. 

Although the averaged maximum percent wheat in some counties is relatively low 

(below 50%), and as such the majority of the MA-NDVI signal is from    

          , this generalized regression proportionally adjusts the MA-NDVI with a 
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higher slope thus giving a proportionally higher weight to the              

allowing the extraction of the MA-NDVI wheat signal even where it is proportionally 

low.  

This linear regression was used to compute the slope of the yield to MA-NDVI 

regression as a function of the maximum percent wheat value. It was applied 

uniformly to the entire state of Kansas to obtain winter wheat yield in tons/hectare for 

each county, by multiplying the MA-NDVI value for each county by the 

corresponding slope derived from equation 3.3. The annual per county yield was then 

multiplied by the NASS county area harvested statistics, to derive a statewide annual 

production number in million metric tons (MMT) (Equations 3.4 and 3.5).  Using this 

generalized regression model, production statistics were estimated for 2000 through 

2008 for the state of Kansas.  

                                                           

Equation 3.4 

                                                             

Equation 3.5 
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Fig. 3.6 Derived linear relationship between the individual county slopes (such as those shown in Fig. 

3.4) and the per-county maximum percent winter wheat. The X-axis is the county maximum winter 

percent wheat value and the Y-axis is the regression slope derived from the individual counties. It 

should be noted that the slope and maximum percent wheat are negatively and linearly correlated. As 

the percent wheat increases the slope decreases. In addition, dispersion in slope values increases at low 

maximum percent crop values. The regression equation is at the top of the graph. The regression Root 

Mean Square Error (RMSE) is 0.87, and the r
2
= 0.49. 

3.4 Results  

The regression model trained on agricultural statistics from Kansas, was applied first 

in Kansas and then directly applied to Ukraine, in order to evaluate its portability to 

another major wheat producing region of the world.  

3.4.1 Kansas  

The Kansas regression model was run for 8 years of data from 2000 through 2008 

excluding 2007 to predict state level yields. Winter wheat production was predicted 

by multiplying the predicted yields by the NASS reported area harvested statistics. 
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The model predictions were validated against the official yield and production NASS 

statistics (figure 3.7). The RMSE of the official versus predicted yields was 0.18 

MT/ha which is equivalent to a 7 percent error. The RMSE of the official versus 

predicted production was 0.67 MMT which is equivalent to a 7 percent error.  
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Fig. 3.7 Results from running the regression model in Kansas. Panel (A) is a scatter plot of the 

estimated versus the official yield statistics and Panel (B) is a scatter plot of the estimated versus 

official production statistics. The RMSE of the official versus estimated yields estimates is 0.18 MT/ha 

which is equivalent to a 7% error. The RMSE of the official versus estimated production is 0.67 MMT 

which is equivalent to a 7% .  
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3.4.2 Ukraine 

To directly transfer the regression model (equation 3.3) developed in Kansas to 

Ukraine, a percent winter wheat mask and a time-series of MA-NDVI were required. 

A percent wheat mask at the 0.05 degree resolution was produced from the MODIS-

derived 250m winter wheat map (using equation 2.1) (figure 3.8A). As for Kansas, it 

was assumed that at the 0.05 degree scale, the per pixel percent wheat remains 

relatively static between years. According to Oblast-level planted area statistics from 

the Ukraine SSC there is an average 11% difference between 2008 planted area and 

the mean planted area (2000-2008).  
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Fig. 3.8  Panel (A) is the percent winter wheat mask (0.05°) scaled up from the 250 m classified winter 

wheat mask. Panel (B) shows the distribution by oblast of the maximum percent winter wheat 

computed from (A), as a weighted average of the 5% purest pixels within each oblast. 

The same methods used in Kansas to retrieve a MA-NDVI a time-series were used in 

Ukraine. First the 5 percent purest pixels in each oblast used for retrieving the  MA-

NDVI. The weighted average of these purest pixels for each oblast is shown in figure 
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3.8B. For each year of data between 2000 and 2008 the maximum seasonal NDVI was 

extracted for the purest winter wheat pixels from each oblast (the peak of the winter 

wheat growing season in Ukraine is between mid April and early June). The MA-

NDVI was computed in the same way as it was computed in Kansas (Equation 3.1).   

The percent wheat dependent Kansas model, equation 3.3, was then directly run on the 

entire country. As in Kansas, the model-predicted yields were multiplied by area 

harvested statistics from the Ukraine State Statistical Committee to obtain production 

estimates. 

The regression model developed in Kansas proved to be directly applicable to 

Ukraine without calibration against Ukrainian yield statistics. The model results were 

validated against the official Ukrainian statistics (figures 3.9 and 3.10). A time-series 

graph of the official production statistics, in pink, are compared to the predicted 

production, in blue, where the year is on the x-axis and winter wheat production in 

thousands of Metrics Tons is on the Y-axis (figure 3.9). The regression model 

predictions were in good agreement with the official Ukrainian statistics capturing the 

fluctuations through time of winter wheat yields and production.  For example, in 2003 

over 60 percent of winter wheat in Ukraine was destroyed due to December frost 

damage and to a persistent ice crust that formed in February as a result of repeated 

cycles of thawing and re-freezing (FAS 2003).  In contrast the 2008 the winter wheat 

crop benefited from excellent weather throughout the growing season and the yields 

reached a 15-year high (FAS 2008). The Kansas model was able to capture the 

dramatic drop in yield in Ukraine in 2003 and the sharp increase in yield in 2008, six 

weeks prior to harvest. The model predictions were validated against the official 
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Ukrainian crop statistics (figure 3.10). The RMSE of the official versus predicted 

yields was 0.44 MT/ha which is equivalent to a 15% error. The RMSE of the official 

versus predicted production was 1.83 MMT which is equivalent to a 10% error. 

 
 Fig. 3.9 Results of directly applying the regression model developed in Kansas to Ukraine. In this 

time-series graph the official production statistics, in pink, are compared to the predicted  production, 

in blue, where the year is on the X-axis and wheat production in thousands of metrics tons is on the Y-

axis. 

 

To further evaluate the model, it was run in real-time in May of 2009 and again in 

May of 2010 to forecast winter wheat production in Ukraine in support of the USDA 

crop analysts. The model forecasted 19.2 MMT of wheat for the 2009/10 season and 

17.4 MMT for the 2010/11 season. According to the official Ukrainian SSC statistics, 

which became available at the end of the season, winter wheat production was 20.5 

MMT in 2009, and 16.8 MMT in 2010 which means that the model forecasts were 

within 6.3% of the official 2009 statistics and within 3.1% in 2010. 
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Fig. 3.10 Two scatter plots validating the Ukraine predictions produced by the model developed in 

Kansas against the official Ukrainian yield and production statistics. The RMSE of the official versus 

estimated yields (top panel) is 0.44 MT/ha which is equivalent to a 15% error. The RMSE of the 

official versus estimated production (bottom panel) is 1.83 MMT which is equivalent to a 10% error. 
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3.5. Discussion 

The regression-based model developed in this study was empirically-based and 

utilized official crop statistics from Kansas to derive a relationship between winter 

wheat specific remotely sensed parameters and reported yield statistics.  In general one 

of the main drawbacks of remotely sensed based empirical yield models is that they 

can only be successfully applied to the areas where they have been developed or 

otherwise require local calibration for application in other regions. (Doraiswamy et al. 

2003). The primary advantage of this study is that it developed a single generalized-

model that was applied at the state-level in Kansas and was proven directly applicable 

to Ukraine.  

The winter wheat regression-based model developed in this study assumes, like 

many other empirical remotely sensed based yield models  that the canopy vigor of 

winter wheat estimated by NDVI measurements is directly related to final winter 

wheat yields(Ferencz et al. 2004). Specifically, NDVI measurements around the time 

of the maximum, which encompass the ‘critical period’ for grain production, have 

been found to be strongly correlated with final yields (Tucker et al. 1980, Doraiswamy 

and Cook 1995, Benedetti and Rossini 1993, Labus 2002). The majority of such 

studies developed approaches which rely on NDVI measurements from composite 

rather than daily data sets, as the data quality and data volume was an issue. In this 

study, owing to the new, coarse resolution, high quality daily, BRDF-corrected CMG 

MODIS surface reflectance data the seasonal peak NDVI was estimated with high 

confidence from the daily data improving the accuracy relative to using 8-day 

composite data by at least 0.5%.      0.5% .  



66 

 

As has been well documented in the literature, this study found that yield was 

positively and linearly correlated to the seasonal maximum NDVI at the county scale. 

The goal of this study was to go beyond this finding and develop a regression model 

that was transferable and directly applicable at the state and national levels. The 

assumption underlying the generalization of the model was that the positive and linear 

relationship between the maximum NDVI signal of pure winter wheat pixels and yield 

is constant between locations. Therefore if the maximum            signal can be 

unmixed from the maximum NDVI signal it can be used directly to predict yield.  Two 

steps were taken to generalize the linear relationships found at the county scale so that 

it could be widely applied and transferred The first step towards isolating the wheat 

signal was to minimize the noise in the maximum NDVI signal retrieved from the 

primarily wheat areas by removing the background signal such as the soil signal. This 

was accomplished by subtracting the average minimum NDVI from the maximum 

seasonal NDVI. This adjusted measure was termed the Adjusted Maximum NDVI 

(MA-NDVI). The MA-NDVI allowed for generalization and direct comparison 

between the maximum NDVI signals retrieved from different locations. The second 

step was to un-mix the               signal from the              signal by 

accounting for percent wheat.  This was accomplished by deriving a set of 

relationships between yield and MA-NDVI and then generalizing the slopes of these 

regressions as a function of percent wheat. As expected, the slope of the MA-NDVI to 

yield regression decreased linearly as a function of increasing wheat purity. The 

explanation for this variation in slope as a function of winter percent wheat is based on 

the fact that wheat is generally located within cropped areas sown with spring-planted 
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row crops rather than by forests or other land-cover classes.  In Kansas and Ukraine, 

where winter wheat is sown in the fall, wheat reaches its maximum green canopy by 

mid-spring while the other, non-wheat fields are still bare or at the start of their 

vegetative growth phase. Therefore, in the cases of low wheat-percentage, the wheat 

reflectance signal is relatively weak as it is suppressed by the bare-ground and 

emerging row-crop signal.  Consequently the MA-NDVI signal in these circumstances 

is lower than the MA-NDVI of purer pixels where a larger portion of the MA-NDVI 

signal is from wheat.  This negative linear relationship between slope and percent 

wheat was used to derive a single, broadly applicable regression model.  

These two steps for un-mixing the maximum wheat NDVI signal, namely the 

maximum NDVI noise reduction and the depiction of the regression slope as a 

function of wheat purity, enabled the development of a robust, simple, remotely sensed 

based generalized-model which was applicable at the state level in Kansas, at national 

level in Ukraine and potentially directly applicable to other major wheat growing 

regions in the world (e.g. Australia, Russia, Argentina, China).  

There are several limitations to utilizing such an empirical, remotely sensed based 

regression model which relies on measurements of vegetation photosynthetic capacity 

to estimate yields.  One of these limitations is that it cannot capture the impact of 

events that reduce yield but do not reduce the peak green biomass.  As in the 2007 late 

spring frosts in Kansa.   Such events can have devastating impacts on yield though this 

impact is not captured by the presented regression model. One possible way to address 

this is to incorporate minimum-daily temperature along with a growing-degree-day 
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phenology model that may be able to detect frost events around the time of anthesis. 

Another challenge of this approach is that it requires a minimum of one, 

representative, winter wheat crop-type map, which is often not available.  In addition, 

large-scale shifts in winter wheat planted area, due to market pressures, tax laws, etc. 

would limit this model application since the underlying percent wheat map would no 

longer be valid. In such a case, a new representative crop percent map would be 

required.  

3.6 Conclusions 

In this chapter an empirical, generalized remotely-sensed based yield model was 

developed and successfully applied at the state level in Kansas using daily, high 

quality 0.05 degree NDVI time-series data to drive the regression model, a percent 

crop mask as a filter to identify the purest winter wheat pixels, and USDA NASS 

county crop statistics for model calibration.   The model predictions of production in 

Kansas closely matched the USDA/NASS reported numbers with a 7% error. This 

empirical regression model that was developed in Kansas was successfully applied 

directly in Ukraine.  The model forecast winter wheat production in Ukraine six weeks 

prior to harvest with a 10 percent error of the official production numbers. In 2009 and 

2010 the model was run in real-time in Ukraine in support of USDA crop analysts. 

The model forecast production within 7% in 2009 and 3% in 2010 of the official 

statistics that were released after the harvest. This model is simple, has limited data 

requirements, and can offer an indication of winter wheat production, shortfalls and 

surplus prior to harvest in regions where little ground data is available.  
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‘Chapter 4: Strengthening the case for EO-based crop monitoring  

4.1 The need for improved agricultural forecasts 

The recent price surges in the global grain markets have brought the issue of food 

security to the forefront of the world’s attention. Between 2006 and 2011 grain prices 

soared twice leading to civil unrest with food riots in over 40 countries, and according 

to FAO estimates, pushing an additional 140 people million below the poverty line.  

These events highlight vulnerability of the world food security to such market shocks, 

as well as the limited capacity of the current systems to provide necessary accurate 

and timely agricultural information.   

Unpredictable weather conditions are cited as the most frequent and significant 

factors leading to food price volatility (OECD-FAO 2011). The devastating droughts 

in Russia, Ukraine and Australia were primary factors leading to the recent food price 

surges of wheat and wheat products.  According to International Monetary Fund 

statistics, the average price of the four main food crops (soy, corn, wheat and rice) 

doubled and in some cases quadrupled between 2006 and 2008. Again in 2010-2011, 

grain prices surged to a new high with wheat prices increasing over 80% in less than a 

year. The mounting concern over grain market volatility led to widespread 

international calls for improved agricultural information, such as the following.  

 “unexpected price hikes and volatility are amongst major threats to food security 

and their root causes need to be addressed, in particular regarding the lack of 

reliable and up-to-date information on crop supply and demand and export 

availability” (FAO 2010). This excerpt is from the official report of the September 

24
th

 2010 Extraordinary Joint Inter-sessional Meeting of FAO’s Intergovernmental 
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Group on Grains and Intergovernmental Group on Rice, held in response to the 

surging wheat prices in 2010. More recently, an Inter-Agency report commissioned 

by the G-20 (OECD et al. 2011), states that the recent food price crises highlight the 

deficiencies in both national and international organizations to provide consistent, 

accurate and timely agricultural forecasts and calls explicitly for increased capacity 

for more frequent and systematic monitoring of the state of crops and for improved 

production forecasts using satellite data and geo-information systems (OECD et al. 

2011). Furthermore, it asserts that more timely, complete and accurate information 

and improved capacity to identify and analyze early warning signs might have calmed 

the markets, re-assured populations and resulted in better readiness. Subsequently the 

G-20 Agriculture ministers agreed on an ‘Action Plan on food price volatility and 

Agriculture’ which was adopted at the G-20 November 2011 Summit. The action plan 

includes two related initiatives: the Agricultural Market Information System (AMIS), 

and the Group on Earth Observations Global Agricultural Monitoring initiative 

(GEOGLAM) focused on improving production outlooks and forecasts using EO 

(GEO-Agriculture 2012, G20 2011).   

The factors governing the recent food price volatility are complex and the subject of 

intense debate, yet it is clear that improvements in terms of timeliness, transparency, 

and reliability of global agricultural information has a critical role to play in 

stabilizing grain markets, developing effective agricultural policies, and mobilizing 

aid in response to impending regional food shortages.  In this context, the limited 

uptake by operational agencies of EO-based crop monitoring, which claims to provide 

more timely and efficient methods than conventional field data collection is 
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perplexing (Justice et al. 2011).  The question arises on what scale EO can contribute 

to mitigating such price volatility given that EO-based crop forecasting methods can 

provide reliable forecasts prior to harvest, as demonstrated in Chapter 3. The next 

section explores this topic using the 2010 price surge as a hypothetical case study. It 

is highlighted that the case study presented below is strictly exploratory and the 

results presented are preliminary. 

4.2 Can EO-based crop forecasts reduce price volatility: a wheat case study?  

As evident from the recent price hikes, the international wheat market is largely 

dominated by events that impact production in the largest wheat export countries. 

These countries, which include the US, Russia, Australia, Ukraine, Canada, 

Kazakhstan and Argentina are responsible for over 70% of global exports and for ~ 

35% of total world production. This implies that timely and accurate wheat 

production estimates for these countries could plausibly provide a good indication of 

global wheat market trends and would be a significant step towards the goal of 

providing necessary wheat outlook information.  Furthermore, this also suggests that 

major shifts between monthly production forecasts for these countries can have an 

impact on international price fluctuations.   

As such, a case could be made that in order to effectively contribute to international 

market stability, EO-based monitoring efforts could focus on the main agricultural 

export countries, and in particular those prone to weather induced yield fluctuations. 

This assertion was evaluated in the case study described below. 
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4.2.2 Case study objectives 

A case study was set up in order to demonstrate the potential benefit of EO crop 

forecasting in main export countries towards helping to stabilize markets and mitigate 

price volatility.  It was conducted based on the results of the yield model presented in 

Chapter 3 applied to the 2010/2011 Russian production forecasts affected by the 2010 

drought. It is acknowledged upfront that this case study presents an oversimplification 

of market behavior and makes assumptions about the accuracy and timeliness of the 

EO-based estimates for the 2010/2011 Russian wheat production. Nevertheless the 

intention was to give a sense of the potential value of RS-based crop estimates for 

grain market stability using existing data and methods and to substantiate the 

international calls for enhancing our current monitoring systems using EO.  

The study was carried out in two steps in order to shed light on two objectives: 

1) Explore the relationship between international monthly wheat prices and 

monthly production forecasts of the main wheat export counties.  

2) Explore the potential impact of reliable, timely EO-based forecasts on 

reducing price volatility.  

4.2.3 Data 

The following data sets were used in this case study:   

 USDA monthly wheat forecasts for 2003-2012 for the main wheat export 

countries (monthly forecasts provided by USDA directly and final 

production statistics were downloaded from the USDA Production Supply 

and Demand online database (USDA 2012). 

 International commodity monthly prices from World Bank for the same 

period (World-Bank 2012) 
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4.2.3.1 USDA monthly forecasts 

 The USDA is currently the only government agency mandated to provide monthly, 

global crop production forecasts. Several studies have been conducted to assess the 

effect of the USDA announcements on market prices. Overall these studies have 

found that the USDA forecasts impact international price changes (Sumner and 

Mueller 1989, Milonas 1987, Mckenzie 2008). For example, Milonas et al. (1987) 

found that the first forecasts of crop year seem to be more important than the later 

forecasts. More recently (Marone 2008) found indications that the USDA forecasts 

have a stronger impact on short-term transactions than on long-term future contracts 

and that the information value of the USDA forecasts is declining as market 

participants are better able to anticipate some of the information prior to the USDA 

release. 

The USDA forecasts are released by the 11
th

 of every month. The May forecast is 

the first forecast of the marketing year, and the April forecast is the last estimate. As 

such, the data for this study was organized and aggregated according to the USDA 

crop year (May through April). It should be noted that the USDA crop forecasts are 

the best publically available source for timely global crop production information. 

The aim of this analysis was to demonstrate the potential value of remotely sensed 

based methods to provide complementary information for crop forecasting.  

4.2.3.2 World Bank Commodity Price Data 

A series of international commodity monthly prices including that of wheat, were 

retrieved from the World Bank (World-Bank 2012)(pink sheet) for a series of 75 

commodities. This database is provided in US $ (nominal – not adjusted for 
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inflation). The US, Hard Red Winter (HRW) Golf price was chosen for this study as 

this is a commonly used wheat price for representing the international wheat markets 

(OECD-FAO 2011, European-Commission 2009).  

4.2.4 Analysis: Steps and Results 

4.2.4.1 The relationship between international monthly wheat prices and monthly 

production forecasts 

Given that international commodity markets are highly linked, the first step was to 

assess the relationships of wheat prices to other commodity prices. The wheat price 

relationships were assessed using linear regression as well as the maximal 

information coefficient (MIC) (Reshef et al. 2011). The MIC is a nonparametric 

measure that provides a score that roughly equals the coefficient of determination of 

the data relative to the regression function regardless of function type.  

The results indicate that wheat prices are most highly related to other food crop 

commodities such as soybeans, maize, rice and sorghum as well as to crude oil and 

less so  to natural gas (figure 4.1 and table 4.1). Of the non-food commodities, crude 

oil had the strongest correlation to wheat price with a linear regression coefficient of 

0.85 and a MIC coefficient of 0.79.  The natural gas prices were also highly 

correlated to the wheat price and are also closely linked to crude oil prices. Although 

causality is hard to establish, it is known that there is a tightened inter-dependence 

between energy and crop commodity markets. This is likely due to a combination of 

factors such as fuel use for agricultural machinery, transportation costs, application of 

fertilizer and chemicals which derived directly from crude oil, and competing 

demands from biofuels (World-Bank 2011, FAO 2011b).  Figure 4.2 is a price time 

series graph showing the relationship between monthly wheat and oil prices.   
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As this case study sought to assess the response of wheat prices to production 

forecasts, the wheat price was de-trended using the regression between oil price and 

wheat price according to equation 4.1:  

DtWPricet = WPricet – (OPricet * 2.25) + 72.3 

Equation 4.1 

Where DtWPricet is the de-trended wheat price at month t, WPricet is the monthly 

wheat price, and Opricet is the crude oil price at time t.  0.25 is the slope and 72.3 is 

the intercept of the regression between crude oil price and wheat price (figure 4.3).  

 

Figure 4.1 Relationship of monthly wheat prices to other commodities. Linear regression (x-axis) and 

MIC coefficients (y-axis).   

Table 4.1. Linear regression and MIC coefficients of monthly international wheat price vs. monthly 

prices of other international commodities  
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Figure 4.2 Monthly  crude oil nominal price vs. monthly wheat price (1999-2012) 
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Figure 4.3 Regression between crude oil price and wheat price 

Next, the USDA monthly wheat production forecasts were aggregated for the largest 

export countries: U.S., Russia, Canada, Australia, Ukraine, Kazakhstan, and 

Argentina and hereafter referred to as Group1. The production forecasts were 

organized according the USDA crop year calendar, where the first estimate for the 

upcoming market year is released in May and the last estimate is released the 

following April. 

These aggregated production forecast data were used to assess the relationship 

between Group1 production forecasts and monthly international wheat price. First, 

the wheat production forecasts were compared with the monthly de-trended wheat 

prices (DtWPrice). Figure 4.4 presents a time series comparison of the DtWPrice vs. 

production forecasts. From visual inspection of figure 4.4 it is generally evident that 

when production forecasts decrease, price increases.  To quantify this relationship, 



78 

 

monthly prices were regressed against the USDA monthly Group1 production 

forecasts for every USDA crop year (2003-2011) figure 4.5.    

 
Figure 4.4 De-trended monthly wheat price vs. monthly wheat production estimates for Group 1 

countries.  

Not surprisingly, price was strongly and negatively correlated to Group 1 production 

forecasts during years of crop shortfalls, namely in 2006-2007, 2007-2008 and more 

recently 2010-2011. Figure 4.6 displays the final aggregate production statistics for 

the Group 1 countries, highlighting the crop shortfall years. Figure 4.5 displays the 

regressions between production forecasts and monthly de-trended wheat prices.  It is 

interesting to note that in shortfall years, the earlier production forecasts overestimate 

production and then drop sometime after the 4
th

 estimate.  As such it seems, as 

suggested by Milonas (1987), that the earlier production forecast have a higher 

impact on price than do the later forecasts as the uncertainly in the estimates is 

reduced and more reliable information becomes available.  It is also acknowledged 
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that many other factors, such as export bans and quotas, hording, and grain stock-

levels played a significant role on excess price volatility though this study is focused 

on exploring the empirical relationship between production forecast and price.  

 
Figure 4.5 Monthly production estimates for Group 1 countries vs. international monthly wheat prices 

by USDA crop year (May-April). Light blue color indicates earlier forecasts and the dark blue 

indicates the later forecasts. Red boxes highlight years with production shortfalls due to weather events 

(primarily droughts).  
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Figure 4.6 Aggregated wheat production (1000 metric tons) for Group 1 countries. Red crosses 

indicate crop years with wheat shortfalls.  

 

The most recent price surge in the 2010-2011 crop year was selected for 

demonstrating the potential contribution of RS-based production estimates towards 

reducing wheat price volatility.  

4.2.4.2 Impact of reliable, timely EO-based forecasts on reducing price volatility  

Prolonged high temperatures and lack of precipitation in Russia were the primary 

reason for the 2010-2011 production shortfalls reflected in the Group1 aggregate 

production statistics.  Initially, the monthly production forecasts were significantly 

higher than the final production estimates. As shown in figure 4.7 the production 

forecasts were within 10% of final production starting in August. (The severe impacts 

of the drought on vegetation were observable in the June MODIS imagery).  
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Figure 4.7 USDA Russian wheat production forecasts for the 2010/11 crop year (pink) versus the final 

production estimate (dashed gray line) 

The following steps were carried out to demonstrate the potential impact of EO-

based forecasts for international wheat prices using the 2010/11 price surges as an 

example. 

Step 1: The forecast errors from the EO-yield model described in chapter 3 

(Becker-Reshef et al. 2010b) were used to approximate viable EO-estimate accuracy 

for Russia in 2010. The EO-yield model was run multiple times during 2010 (for 

May, June, July and August) in order to forecast production in Ukraine. The errors 

from this analysis were applied to the 2010/11 production forecast for Russia. (figure 

4.8)  



82 

 

 
Figure 4.8  USDA Russian wheat production forecasts for the 2010/11 crop year (pink); EO-based 

Russian wheat production forecasts applying EO-model errors from Ukraine model runs (blue); Final 

production estimate (dashed gray line) 

Step 2: The 2010/2011 group1 production forecast were re-aggregate using the EO- 

Russia forecasts (figure 4.9). This re-aggregated forecast will be referred to as the 

EO-forecast.  

 

Figure 4.9 Aggregated USDA wheat production forecasts for the 2010/11 crop year for Group1 (pink); 

Aggregated wheat production forecasts for Group1 applying RS-model errors from Ukraine model 

runs to the Russian forecasts (blue); USDA final production estimate for group1 (dashed gray line) 



83 

 

 

Step 3: De-trended wheat prices were estimated using the derived 2010/11 

regression between DtWprice and aggregated USDA production forecasts for Group1 

(described by equation 4.2, r
2
=0.83 Figure 4.10).  

EstDtWPricet = -0.01 *  PForecastt  + 1158.39                          Equation 4.2 

   

Where EstDtWPricet is the estimated de-trended wheat price for time t and Pforecastt 

is the Production forecast at time t.  

 
Figure 4.10  2010 Regression between USDA production forecasts and monthly wheat price. Labels 

indicate the forecast time step, where 1 is the May forecast. The linear regression and r
2
 are displayed.  

De-trended prices were estimated using a) the original production forecasts for 

Group1 (figure 4.11a) and b) the EO integrated forecasts for Group1 (figure 4.11b). 

Figure 4.11a is a time-series graph of the de-trended wheat prices (gray) vs. the de-

trended price estimates based on the original forecasts (pink). Figure 4.11b is a time 
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series graph comparing the original de-trended price estimates (pink) to the EO-based 

estimates (blue).  This analysis suggests that earlier, reliable production forecasts for 

Russia could have reduced the wheat price fluctuations during the first four time-steps 

of the crop year. 

 
Figure 4.11a-b. a) De-trended wheat price (gray) versus estimated price using USDA forecasts (pink). 

b) Comparing the USDA based (pink) versus the EO-integrated (blue) de-trended wheat price 

estimates.    
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Step 4: The crude-oil trend was applied to the derived estimates of the de-trended 

price time series so that they could be compared with the actual wheat prices.  The 

crude oil trend was applied using the following equation:  

EstWPricet = EstDtWPricet + (OPricet * 2.25)- 73.3 

Equation 4.3 

Where EstWPricet is the wheat price estimated for time t,   EstDtWPricet is the 

estimated de-trended wheat price and Opricet the crude oil price at time t. 

(figure4.12). Figure 4.12a compares the original USDA based price estimates to the 

actual wheat price time-series, and Figure 4.12b compares the original USDA-based 

price estimates to the EO-based price estimates.    
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Figure 4.12a-b a) Wheat price (gray) versus estimated wheat price using USDA forecasts (pink).  b) 

Comparing the USDA based (pink) versus the EO based (blue) wheat price estimates.    

Step 5: The price volatility was computed for: 1) the EO-based price estimates, 2) the 

original USDA-based price estimates, and 3) the actual wheat prices. A common 

measure of volatility is the coefficient of variation (CoV) of a given price series. This 

measure reflects an estimation of variability (standard deviation) as a ratio to its mean 

(European-Commission 2009).  The CoV of the estimated price series was the used in 
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this example to indicate price volatility (table 4.2). Finally, the impact of the EO-

integrated crop production forecasts on price volatility was assessed for the 

2010/2011 crop year relative to the impact of the original forecasts. This was 

computed as follows: 

(VolUSDA- VolRs)/ VolUSDA.  

Where VolUSDA is the volatility computed based on the original USDA production 

forecasts and VolRS is the volatility computed based on the EO-integrated production 

forecasts (table 4.2). 

 Table 4.2 Price Volatility (as CoV) 

 

 

4.3 Discussion 

The three main findings from this highly simplified hypothetical 2010/2011 case 

study are as follows: 1) Monitoring production in the 7 main wheat export countries 

can provide a good indicator of international wheat prices. 2) Price volatility in 

principle can be reduced in part with timely accurate production forecasts afforded 

by better integration of EO-based methods into operational monitoring systems.  In 

the hypothetical case presented here, the 2010/2011 price volatility in international 

markets could have potentially been reduced by more than half from 22% to 9% by 

integrating early season EO-based production forecasts (assuming these are timely 
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and accurate).  (Table 4.2). 3) EO-based forecasts are likely to be of most value to 

operational monitoring systems, during the first estimates of the season, prior to 

harvest and the release of other reliable market information.   
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5. Conclusions 

This dissertation set out to investigate ways to improve current EO-based methods 

for crop yield forecasting focusing on wheat and to demonstrate the potential impact 

that improved EO-based forecasts and their integration into operational monitoring 

systems could have on grain markets. This final chapter summarizes the context for 

this research, reviews the main research findings, and discusses directions for future 

research and the earth observation needs for agricultural monitoring.  

5.1 Summary 

Agriculture faces major challenges in this century. According to FAO estimates 

global food production will need to increase by 70% by 2050 in order to meet the 

growing global demand. Severe weather events in major food producing countries 

were primary factors in the recent food price crises which pushed the number of food-

insecure people over 1 billion and led to civil unrest and riots in several countries 

around the world.  The recent events raise important questions about the accuracy of 

production forecasts and their role in market fluctuations, and highlight the 

deficiencies in the current state of global agricultural monitoring.  Earth observations 

methods and technologies have been used to forecast and estimate crop production 

and help assess the effects of severe weather events prior to harvest but have had 

limited uptake by operational users. As such the primary goal of this dissertation was 

to build on existing methods and research and utilize available EO data in order to 

develop a robust generalized approach for crop yield forecasting prior to harvest that 

can be integrated into an operational domain.  
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5.2 Major findings and contributions 

The focus of this dissertation was on advancing EO-based crop forecasting.  The 

research presented addresses three primary challenges:   

1) Data availability:  

 Developing an approach to yield forecasting that is applicable in the absence 

of up-to-date crop distribution information using data with sufficient revisit 

frequency for monitoring crop development. 

2) Model transferability: 

 Developing a robust yield forecasting model that is transferable between 

major wheat growing regions and is applicable at national scales. 

3) Relevance 

 Demonstration of the value of RS crop forecasting methods towards the 

overall goal of helping to inform commodity grain markets.  

The research was carried out within the framework of the Global Agricultural 

Monitoring project (GLAM) described in chapter 1 (Becker-Reshef et al. 2010a) in 

support of USDA FAS crop analysts.  The goal of chapter 2 was to assess the 

appropriate spatial and temporal resolution for crop yield forecasting using freely, 

easily accessible data.  It addressed the challenge of yield forecasting in the absence 

of within-season crop type masks. This was accomplished by developing an approach 

that utilizes time-series data at coarse spatial resolution in combination with spatially 

aggregated, previous year crop type masks.  The study found that higher temporal 

resolution data, (i.e. 8-day versus 16-day composite data were better suited for 

extracting the seasonal crop parameters, and in particular the seasonal NDVI peak. 

Secondly, it found that where crop rotations are prevalent, coarsening the spatial scale 

of out-of-season crop type mask resulted in a constant per-pixel wheat proportion 

over multiple seasons. This enabled a coherent and comparable extraction of NDVI 

for yield estimation over multiple years using a single out-of-season mask and coarse 
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resolution EO NDVI time series. In the case of Kansas, using a crop type mask 

aggregated to the 5km resolution resulted in a 1.2% tradeoff in accuracy relative to 

the control case where within season cropmasks were available. These findings 

suggest that wheat yield can be forecast with a small tradeoff in accuracy using a 

single, out of season crop mask and coarse resolution NDVI time series data.  

The goal of chapter 3 was to build on the chapter 2 findings and develop a robust 

EO, regression-based model for wheat yield forecasting for use at national scales. As 

such this study combined daily, high quality coarse resolution (0.05 degree) NDVI 

time series data with a single wheat mask and detailed official crop statistics to 

develop an empirical, generalized approach to forecast wheat yields at the state to 

national scales. The regression-based model was developed as a function of seasonal 

maximum NDVI (adjusted for background noise) and percent wheat. The model was 

developed and implemented in Kansas estimating yields with a 7% error. 

Subsequently the same model was successfully implemented in Ukraine, estimating 

winter wheat yields within 10% of official estimates six weeks prior to harvest. As 

wheat masks are not available for Ukraine, this study developed a wheat mask based 

on 2008 data, which was used to forecast yields for multiple years. The results of this 

model were subsequently used by the USDA crop analyst responsible for Ukraine.   

The strengths in the developed approach are that it has limited data requirements, 

utilizes freely available, coarse resolution data, and it is empirical yet transferable. 

These findings could have significant implications for yield forecasting at national 

scales in locations where accurate or timely information is limited.   
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The goal of chapter four was to use the model results (chapter 3) in order to shed 

light on the potential contribution of such EO-based crop forecasts towards helping to 

stabilize grain markets- a topic of major international concern, with the intention of 

demonstrating the utility and relevance of these methods and to highlight the need for 

further investment in advancing this field. The lack of international investment by 

governments, and in particular the agricultural monitoring agencies and space 

agencies, in R&D to realize the full potential of the available space assets for 

operational agricultural monitoring, can be attributed in large part to a lack in 

demonstrated relevance to their mission and since these systems are often not 

considered to be operational.  

The case study in this chapter clearly oversimplifies market behavior and makes 

gross assumptions on the accuracy of EO-based crop forecasts. Nevertheless the 

intention was to give a sense of the potential value of RS-based crop estimates for 

grain market stability using existing data and methods and to substantiate the 

international calls for enhancing our current monitoring systems using EO. The study 

assessed USDA monthly crop forecasts for the primary wheat export countries 

against international monthly wheat prices. The study found that monitoring 

production in the 7 main wheat export countries can provide a good indicator of 

international wheat prices. Furthermore, it demonstrated that price volatility could be 

reduced with timely accurate forecasts afforded by EO-based methods. In this case 

study, price volatility was reduced by 57% (from 22% to 9.5%) by integrating EO-

based production estimates. Finally it provided indications that RS-based forecasts 

are likely to be of most value to operational monitoring systems, during the first 
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estimates of the season, prior to harvest and the release of other reliable market 

information.  

5.3 Future Research: Beyond this Thesis   

A large number of interesting and exciting research topics arise from the research 

findings presented in this dissertation. Based on the experience gained in this 

dissertation a number of improvements to EO-based crop monitoring methods that 

can be used in  the operational domain can be envisioned. The primary topics are 

highlighted in the following section.  

• Model Extension: 

The model has been applied to two main wheat growing locations, namely 

Ukraine and Kansas. In order to further assess the model’s transferability the 

model approach should be extended and evaluated in other large wheat 

producing countries such as Australia, Russia, Argentina and China. 

Preliminary results from this model’s application to southern Russia, Australia 

and China are promising.  

• Model Refinement:  

The current model is optimized for forecasting yield by utilizing the wheat 

NDVI seasonal peak observed roughly six weeks prior to harvest.  Improving 

timeliness of estimates would be highly desirable. Future research should 

explore coupling the daily NDVI data with readily available meteorological 

data in order to model crop growth and forecast the NDVI peak a few weeks 

prior to the actual peak. Research initiated during LACIE (Idso et al. 1979a) 

found a strong correlation between RS measurements of growing degree days 
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(GDD) and wheat growth stages. Such relationships could be used in order to 

forecast the NDVI peak and in turn feed into the yield model forecasting 

yields a few weeks earlier.   

Furthermore, as in the 2007 Kansas case, late spring frost events can have 

devastating impacts on yield, though this impact is not captured by the current 

model. This limitation can be addressed by incorporating a minimum-daily 

temperature along with a growing-degree-day phenology model that can 

detect frost events that occur after the majority of biomass is developed.  

An additional area for model refinement is to develop an automated approach 

for within season wheat classification particularly in regions where planted 

area is highly variable. There are promising results for developing such an 

approach using regression trees for soy mapping using a combination of 

landsat-class data with MODIS 250m data (Hansen et al. 2010). 

 Assess sensitivity and errors: 

Assessing the model sensitivity to crop mask accuracy and to RS data quality 

is another area for future research. Such an assessment can help to provide the 

minimum data requirement guidelines for implementing such an RS based 

yield model. Sensitivity to crop mask accuracy can be assessed by introducing 

random errors into existing crop masks and assessing the impacts on the yield 

estimates.  The model can also be assessed using the AVHRR data archive, 

which is lower quality data, however, has a long data record starting in 1982. 

A consistent long term data set already developed by Vermote et al. (2010) 

would be suitable for such a study. If the model can be run using AVHRR 
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data this would allow for research into yield trends over the last 30 years and a 

more comprehensive assessment of the impacts of extreme weather and events 

connected to climate oscillations on yields 

 Continued assessment of the relationship between  production forecasts 

and price variability 

The preliminary findings from the case study on price volatility and 

production forecast accuracy provide valuable insights on the potential 

contribution of EO-based methods for improving the accuracy of early 

production estimates which are an important component for stabilizing 

markets.  Given the economic component of this research, this research 

should be continued in cooperation with an agricultural economist, to 

develop guidelines for where to focus EO-based efforts for agricultural 

monitoring. This would include further investigation of: which countries 

should be prioritized for EO-based monitoring, forecast accuracy 

requirements, and an assessment of tradeoffs between provision of early 

season estimates and estimate accuracy on price. In addition the relationship 

between price and production forecasts of other major crops (i.e. maize, soy, 

rice) should be explored in order to help identify and prioritize efforts for 

enhancing EO-based production forecasting of the other main crops.  These 

priorities could be used to guide the crop types and countries to focus on for 

assessing the applicability of the yield forecasting approach developed in 

this dissertation to other crop types.   
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5.4 Looking Forward and Future Needs and Role of Earth Observations for 

Agricultural Monitoring  

The need for comprehensive, systematic and accurate global agricultural intelligence 

is clear and will continue to grow in the face of anticipated increasing pressures on our 

agricultural systems. As such it is fundamental that the operational agencies are able to 

meet these agricultural information demands in a timely reliable manner. From the 

remote sensing side these needs include: timely data delivery, ensuring continuity of 

earth observing missions particularly at coarse and moderate resolutions, enhancement 

of the frequency and availability of moderate resolution data (20–60 m), inter-

operability between the current and future sensors, better integration across data sets at 

differing spatial resolutions, enhanced value -added and standardized products such as 

crop type maps, crop calendars, biophysical measures and vegetation indices, 

enhanced yield models (both mechanistic and empirical), crop area estimates, and 

seasonal weather forecasts (Justice and Becker-Reshef 2007, GEO-Agriculture 2012, 

See et al. 2012, Justice  et al. 2009).  

Although sensing systems are currently available to meet many of the crop 

monitoring needs, enhancements and continuity, particularly at the moderate 

resolution (20 m–60 m), are urgently needed (Wulder et al. 2008, Justice et al. 2011). 

Although daily and composited MODIS data can be used to monitor areas with large 

field sizes, findings from the Group on Earth Observations (GEO) Agricultural 

Monitoring Community of Practice (CoP) indicate that finer resolution data are 

needed two or three times every 10 days to provide the necessary cloud free coverage 

for monitoring many of the agricultural regions with smaller field sizes. The Landsat 
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7 (30 meter resolution and 185 km swath) provides 16 days coverage which is sub-

optimal for many agricultural monitoring applications. In addition, the instrument was 

severely impacted by a scan line corrector malfunction in 2003 which further hampers 

use of these data for agricultural monitoring. The Landsat Data Continuity Mission 

(LDCM), scheduled to launch in December 2012, will have an increased global 

acquisition and processing capability and will provide a new source of data but will 

still not meet the revisit frequency requirements for many agricultural applications. 

Sensor redundancy is also needed at moderate resolution and there is an urgent need 

to develop a coordinated global acquisition strategy for the currently available and 

future assets.   

The optimal spatial and temporal resolutions requirements for crop area estimation, 

and crop growth monitoring, and yield forecasting vary according to agricultural 

landscape, and environmental characteristics (Duveiller and Defourny 2010) and 

generally require data at higher temporal and spatial resolutions than what is currently 

available and freely accessible (Curnel et al. 2011).  One of the pressing goals of the 

Group on Earth Observations (GEO) Agricultural Monitoring Task is to define these 

EO-based requirements for global agricultural monitoring (GEO-Agriculture-CoP 

2011).  

The G-20 GEOGLAM initiative is working closely with the Committee on Earth 

Observation Satellites (CEOS) to develop the EO data requirements and acquisition 

strategy for global agricultural monitoring (GEO-Agriculture 2012). In previous 

reports, the GEO agriculture community of practice  recommended that 2–3 scenes 

are acquired every 10 days at resolutions between 20 m and 60 m during the growing 
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season (Justice and Becker-Reshef 2007). This strategy should be extended into the 

future and applied to the constellation of next generation sensors at this resolution as 

they come online (e.g., CBERS 3, LDCM, Sentinel 2). Similarly, a strategy is needed 

to acquire one or two images a month at 5m to 1m spatial resolution, sampling critical 

agricultural areas. Smallsat satellite constellations can offer a cost-effective solution 

for providing global Landsat class data with a 1 to 3 day revisit frequency that is 

required for monitoring agriculture during the growing season (Goward et al. 2011). 

Data from such constellation could be cross-calibrated using properly calibrated more 

expensive missions.   

In addition there is a need to explore and enhance methods for the integrated use of 

coarse and moderate resolution data for agricultural monitoring which can be used in 

tandem both for crop area estimation as shown by Chang et al. (2007) and for crop 

condition monitoring and yield forecasting. Attention also needs to be given to 

ensuring data product continuity and quality assurance, requiring instrument 

calibration and inter-calibration, product inter-comparison and validation, and 

definition of data quality standards.  

Using current readily available data and methods, the RS community can make a big 

contribution towards provision of timely, up-to-date, transparent information, 

responding to the urgent international call for such data. These data are critical for 

economic, humanitarian and security perspectives.  

Currently there remains a large gap between the capacity for crop production 

monitoring within the remote sensing research community and the current operational 

monitoring systems. A big challenge is that sufficient investments have not been made 
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for full integration of EO-based methods into the operational agricultural forecasts in 

part because the capabilities are not considered to be operational or relevant.     

Given the heightened interest in food security, calls for improved up-to-date crop 

forecasts, it seems that the time is ripe for a concerted international effort to integrate 

the advances in the research domain and in satellite technologies to transition and 

integrate them into the operational monitoring domain. This thesis has made a 

contribution to this broader agenda by developing and testing a robust EO-based 

method for wheat production forecasting, using available data and demonstrating the 

relevance for adopting such methods to provide timely information to inform crop 

commodity markets.     
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Publications relevant to this dissertation: 

GEO-Agriculture (2012) (contributing author). GEOGLAM: The G-20 GEO Global 

Agricultural Monitoring Initiative submitted to the G-20 Agriculture Ministers 

March 23, 2012 

See, L., Fritz, S., Thornton, P., You, L., Becker-Reshef, I., Justice, C., Leo, O., & 

Herrero, M. (2012). Building a Consolidated Community Global Cropland 

Map. Earthzine. Published online:  January 24 2012. 

http://www.earthzine.org/. 

Becker-Reshef  I., Vermote E., Justice C. (in revision). Spatial Aggregation of Crop 

Type Masks for Enhanced Monitoring of Winter Wheat Yield. Submitted to 

IEEE Geoscience and Remote Sensing Letters. 

Becker-Reshef I.,  Justice  C.,  Sullivan M., Tucker CJ., Anyamba A.,  Small J.,  Pak 

E., Hansen M.,  Pittman K., Schmaltz J.,  Masouka E., Williams D., Reynolds 

C., and Doorn B. (2010). Monitoring Global Croplands with Coarse 

Resolution Earth Observations: The Global Agriculture Monitoring (GLAM) 

Project.  Remote Sensing, 2, 1589-1609. 

Becker-Reshef I., Vermote E., Lindeman M., Justice C.  (2010). A Generalized 

Regression-based Model for Forecasting Winter Wheat Yields in Kansas and 

Ukraine Using MODIS Data. Remote Sensing of Environment, 114, 1312-

1323. 

Pittman, K.W., Hansen, M.C., Becker-Reshef, I., Potapov, P.V., & Justice, C.O. 

(2010). Estimating global cropland extent with multiyear MODIS data. 

Remote Sensing, 2, 1844-1863. 

Becker-Reshef I., Justice C., Leo O., Bingfang, W., Parihar J., (2009). Building a 

Global Agricultural Monitoring System of Systems: An Overview of the GEO 

Agriculture Monitoring Task. Earthzine. Published on December 22, 2009.  

http://www.earthzine.org/ 

Becker-Reshef, I., Justice, C., Doorn, B., Reynolds, C., Anyamba, A., & Tucker, C.J. 

(2009). NASA’s contribution to the Group on Earth Observations (GEO) 

Global Agricultural Monitoring System of Systems. NASA Earth Observer, 

21, 24-29 

Justice C, Becker-Reshef I, Parihar J.S, DeLince J, Leo O, Binfang W, Defourny P, 

J.T., T., & J., F. (2009). The GEO Global Agricultural Monitoring System of 

Systems Task: an overview.  33rd International Symposium on Remote 

Sensing of Environment conference proceedings. Stresa, Italy: ISRSE 

Justice C. and Becker-Reshef I. Eds. Developing a Strategy for Global Agricultural 

Monitoring in the Framework of the Group on Earth Observations (GEO), 

Workshop Report. 2007. University of Maryland. 
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