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The basic finding of this study was that inference based on a singleitbest f
model chosen from a set of candidate models leads to underestimation of the sampling
variability of the parameters estimates and induces additional bias inithatest The
results of the simulation study showed that due to model uncertainty the post-model-
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distributions from a set of candidate models. Thus, the variability of the post-model
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method as compared with data-driven single “best-fit” model inference.



THE IMPACT OF MODEL SELECTION ON LOGLINEAR ANALYSIS
OF CONTINGENCY TABLES

By

Jing Gao

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park, in partial fulfillment
of the requirements for the degree of
Doctor of Philosophy
2009

Advisory Committee:

Professor C. Mitchell Dayton, Chair
Professor George B. Macready
Professor Gregory R. Hancock
Professor Jeffrey R. Harring
Professor Partha Labhiri



© Copyright by
Jing Gao
2009



ACKNOWLEDGEMENTS

| would like to thank my dissertation committee members, Dr. Hancock, Dr.
Macready, Dr. Harring, and Dr. Lahiri for providing me with constructive ssiggns on
this paper. | especially would like to thank Dr. Dayton for his guidance during my
graduate career.

| also would like to thank my family for their support. To my husband, Yong,
thank you for loving me and supporting me. To my daughter, Gabrielle, your sthiée is
biggest reward for me during this journey. To my parents, thank you for your

unconditional love and support.



TABLE OF CONTENTS

CHAPTER 1: INTRODUCTION . ... ettt ettt e e e e e aneaees 1
1.1INTRODUCTION TO THEDILEMMA OF MODEL SELECTION .c..utiuit e ieaeeeeaeeeaeneeaeneeennes 1
1.2 AN TLLUSTRATIVE EXAMPLE .. cueie ettt et e e et ee e e e e e e e e e e e eneeenns 2
1.3THE PURPOSE OF THECURRENT STUDY eivuiuitninenente e eetesesenseseaseeesesesneesesenensensnsenens 8
CHAPTER 2: LITERATURE REVIEW .o 11
2.1 THE DILEMMA OF MODEL SELECTION ..eutetntetete et eaeeeaeneeeeee e eeenee e seaenseaensenensens 11
2.2 LOGLINEAR IMODELS. e ittttitetet i teeeesteaseaeea st tensensen s e s en e s e e en s e reneen e ren e s e renrenrenrenns 15
2.3 MODEL SELECTION IN LOGLINEAR ANALY SIS .. eutttteeeeeeee et e e eeaeeaeeeeeaeaaeeneeaenasenas 17
2.4 BAYESIAN MODEL AVERAGING ....uttitie et eeee e et e e et e eaaea s ea e e et e s en e aesaeaaeaaenaenaenns 18
CHAPTER 3: RESEARCH DESIGN ....coiiiiii ettt 23
3.1 PURPOSE OF THESIMULATION STUDY ..euiutnieieieteeeeaeeeaeneeeeee e aeenseaenseenseaensenensens 23
3.2 SAMPLING SCHEMES .. cuie ettt et e et et e ettt e e et e e et e et e e te e e e e ae e eeerereneaaeenns 23
Rl = D= D Y 27Xk 0] = LS NPT 24
3.4 M ANIPULATED FACTORS. ¢t ettt ettt ettt et ettt et e e et e e e e e e e e e e e e reaeneens 25
S O DATA GENERATION. 1.ttt tt ettt et ttn et ees s enteaees s tn s e e ea s ea s ententea et enten e reneen e e ren e e e renrens 28
B O EVALUATION CRITERIA ittt iit ettt eee ettt e e ettt e et en e e et ear e e e e en e e eneen e e e ren e e e e renns 29
3.6.1 Assessing Model Parameter EStimators..............uuviiiiiiiiiiieeecceeceeeceeein 29
3.6.2 Assessing Distribution ASsumptions of Z TeStS ......ccvvvivieieieiiieeeeeeeen 30
3.6.3 Assessing Estimated Conditional Odds Ratio in Two-by-two-by-two Table...31
CHAPTER 4: RESULT S e e e 34
A T CASELAS AN EXAMPLE ....eei ettt et ettt ettt e et et e e e e e e e e e an e anaens 34
4.1.1 Bias, Standard Error, MSE, and Relative Efficiency of Parameter Estriat
4.1.2 Distribution Of the Z-STAtiSTIC ....ueeueeeeee e 42
4.1.3 ConditioNal OddS RALIO. ... ccueeeeeee e 48
2 GENE R AL RE SULT S s ttttttttt ettt ettt et ettt ettt et e e e et e e ea e e eeaeanaenennenneenas 50
4.2.1 Parameter Estimate, Bias, Standard Error, MSE, and Relative Efficiens§
4.2.2 Distribution Of the Z-STAtISTIC .....eeueeeee e 54
4.2.3 ConditionNal OddS RaAtiO......couieeiie e e 55
CHAPTER 5: CONCLUSION AND DISCUSSION ...ovii e 63



APPENDIX A: APPLICATION OF BAYESIAN MODEL AVERAGING TO

REAL DA T A e e e e 67
APPENDIX B: SIMULATION RESULTS ..., 87
APPENDIX C: PILOT STUDY ..ottt 126
APPENDIX D: R CODE ...ttt 131
REFERENCES . ... 138



LIST OF TABLES

TABLE 1 Notation for selected log-linear models in three-way tables...............ccccccennnn. 16
TABLE 2 Summary of three types of independence relationship in log-linear snodét
TABLE 3 Unique models with the product- multinomial sampling design, fixjng...26
TABLE 4 Unique models with the multinomial sampling assuming all main efeedst26
TABLE 5 Simulated main and interaction effect parameters.........ccccovvvvciiiiiiiiiii e, 27
TABLE 6 Cases for the Simulation Study .............oovvviiiiiiiiiii e 28
TABLE 7 Percentage of time each candidate model was selected by A¢Cljcas...36

TABLE 8 Simulation results of the estimates/iﬁ“ INCASE 1 .oooiiiiiiiiieeee e 37

TABLE 9 Simulation results of the estimates/fzj‘lZ INCASe 1 ....coooviiiiiiiiiciii i 38
TABLE 10 Simulation results: percentiles of the Z-statistic under modisdtgm for
parameterd;) and A7 fOr CASE L....couiiriiirieeiee et 43

TABLE 11 Empirical means, standard error for the conditional odds ratio estiorater
true model assumption, model selection, and BMA (phi=1.65) for n=50, 100, 200,

500 aNd 1000: CASE L. ...iiiiiiiiiiiiiiiiiiie ettt et e e e e e e e e e e e s e r et e et e e e e e e e e e e e e e a 49
LAY = I N T T [ - - PSSR 68
TABLE A2 Four sets of reference priors in the sensitivity analysis ..........cccccevvieiiieeeeenn.. 73

TABLE A3 Posterior probabilities with four sets of prior model weights (phi=1.65Y3
TABLE A4 Maximum likelihood parameter estimates for the two most possiblelsTdde
TABLE A5 Posterior probabilities with different priors for parameters.................... 75
TABLE A6 BMA results for Mear{|data) under different parameter prior assumptions 76
TABLE A7 Drug data example: comparison of BMA results (via Bayes fatigrost-
MOdel-SeleCtioN ESHMALES .......cciiiiiiiiiii e 77
TABLE A8 BMA results utilizing Occam's razor when the "hierarchipgple” is not
1011011V PP PO OO 81
TABLE A9 Models with highest posterior probability ..., 82
TABLE A10 Model weights given by the bootstrap method, AIC approximation, and

TABLE B2 Percentage of time each model is selected (%) for case 5-8 ............. 88.........
TABLE B3 Simulation results of the estimatesAgf" in case 2.........ccoccoveivreieicnnnne, 89

TABLE B4 Simulation results of the estimatesAgf in case 2.........ccccceeveveeieiicieneane, 90
TABLE B5 Simulation results of the estimatesgf’ in case 3........ccccccvriercieicienne, 91
TABLE B6 Simulation results of the estimatesgf in case 3.......c.ccoceovveivrereicneiene, 92
TABLE B7 Simulation results of the estimatesf incase 3...........ccccoeeeveveiiceenennn, 93
TABLE B8 Simulation results of the estimatesgf’ in case 4........ccccccevvveiiiiccnne, 94

\Y



TABLE B9 Simulation results of the estimatesAf in case 4........ccocccevvcercciccnne, 95

TABLE B10 Simulation results of the estimatesAgf in case 4..........ccccccevveviervennennnn. 96
TABLE B11 Simulation results of the estimatesAf in case 5.......ccccccovvereieinecnene. 97
TABLE B12 Simulation results of the estimatesAf in case 5........cccocvvevvirerieeennnn. 98
TABLE B13 Simulation results of the estimatesAf in case 6............ccccceevveeereenenne, 99
TABLE B14 Simulation results of the estimatesigf in case 6.........cccccorevererinnnee. 100
TABLE B15 Simulation results of the estimatesAf in case 7.........cc.ccoceverveverennnn. 101
TABLE B16 Simulation results of the estimatesAf in case 7.........ccccoceverveverennnn. 102
TABLE B17 Simulation results of the estimatesAgf in case 7.........cc.ccocevervevennnnnn. 103
TABLE B18 Simulation results of the estimatesAf in case 8............ccocceevveverennnn. 104
TABLE B19 Simulation results of the estimatesgf in case 8........cc.ccoecevienncnne. 105
TABLE B20 Simulation results of the estimatesgf in case 8........cc.ccovcevierncnnnne. 106
TABLE B21 Simulation results: percentiles of the Z-statistic under meslettion for
parameterly and A, fOr CASE 2.....cviiiuiiieieieeeie sttt 107
TABLE B22 Simulation results: percentiles of the Z-statistic under meelettion for
parameterly and A4, fOr CASE 3.....cviiiiiiieieece st 108
TABLE B23 Simulation results: percentiles of the Z-statistic under meelettion for
parameterd;) and A7 fOr CASE 4....cviiiiiieeisiereie et 109
TABLE B24 Simulation results: percentiles of the Z-statistic under meslettion for
parameterd;) and A7 fOr CASE 5....oviuiiieiriiieie ettt 110
TABLE B25 Simulation results: percentiles of the Z-statistic under meslettion for
parameterly and A4, fOr CASE B.....cvcviviiverieiericie st 110
TABLE B26 Simulation results: percentiles of the Z-statistic under maslettion for
parameterly and A, fOr CASE 7 ..oviiiiiuiiiericieeeee e 111
TABLE B27 Simulation results: percentiles of the Z-statistic under meslettion for
parameterd;) and A7 fOr CASE B.......ciiiiiiiriiieerieieeiee et 112
TABLE B28 Simulation results: p-values of Kolmogorov-Smirnov test of the ecapiri
distribution of the Z statistics OF ..o, 113
TABLE B29 Simulation results: p-values of Kolmogorov-Smirnov test of the ecapiri
distribution of the Z StatiStics OF ..........ccvciiieeieece e 113
TABLE B30 Simulation results: p-values of Kolmogorov-Smirnov test of the ecapiri
distribution of the Z StatiStiCs OF ........c.ccvciiiieieice e 114

TABLE B31 Empirical means, standard error for the conditional odds ratioagstim
under true model assumption, model selection, and BMA (phi=1.65) for n=50, 100,

200, 500 aNd 1000 fOr CASE 2 ...eneeeee e et 114



TABLE B32 Empirical means, standard error for the conditional odds ratioagstim

under true model assumption, model selection, and BMA (phi=1.65) for n=50, 100,

200, 500 and 1000 fOF CASE 3 ....eiiiiiiieiiiieeee et e e e e e e e e e e e e e e e e e s s e 115
TABLE B33 Empirical means, standard error for the conditional odds ratioagéstim

under true model assumption, model selection, and BMA (phi=1.65) for n=50, 100,

200, 500 and 1000 fOF CASE 4 ......coeeeiiieiinuiiiaaa e e e e e e e ettt e e e e e e e e e e e aaeeeeeensnees 115
TABLE B34 Empirical means, standard error for the conditional odds ratioagstim

under true model assumption, model selection, and BMA (phi=1.65) for n=50, 100,

200, 500 and 1000 fOF CASE 5 ...eiiiiiiiiiiiiieiee e a e e e e e e e 116
TABLE B35 Empirical means, standard error for the conditional odds ratioagstim

under true model assumption, model selection, and BMA (phi=1.65) for n=50, 100,

200, 500 and 1000 fOF CASE 6 .....cceeerrrrrrrniiiiiaaaee e e e e e et e eeeeeeeetiaaea e a e e e e e e e e aeaeeeeeeesenens 117
TABLE B36 Empirical means, standard error for the conditional odds ratioagéstim

under true model assumption, model selection, and BMA (phi=1.65) for n=50, 100,

200, 500 and 1000 fOF CASE 7 ....ceeeeeeeiiurinniiiaaa e e e e e e e e et e eeeeeeetraaaaaa e e e e e e e e e aaaaeeeeeeeenenes 118
TABLE B37 Empirical means, standard error for the conditional odds ratioagstim

under true model assumption, model selection, and BMA (phi=1.65) for n=50, 100,

200, 500 and 1000 fOF CASE 8 .....eeeiiiiiiiiieieeeeeee et e e e e e e e e e e e e e e e e s 118
TABLE C1 Fitted values, proportions and cumulative proportions of the model (AC,AM,

(1Y) OO OTTOTRTTT 127
TABLE C2 Empirical Means, standard error for the conditional odds ratio estsnat

(model selection vs. N0 model Selection) ...........ouuuueiiiiiiii 130

Vil



LIST OF FIGURES

FIGURE 1. The "moded priori" assumption in conventional inferential statistics. .......... 2
FIGURE 2.Empirical distributions of estimatgf,, (solid line) andg; (dashed line).....6
FIGURE 3.Ratio of empirical variance of the post-model-selection estimator tofthat
estimator under true model assumptign, andr,,  (N=20) ..., 7
FIGURE 4. Percentage of time each model was selected by AIC............coooiiiiiiiiiinnennn. 35
FIGURE 5.MSE 0f 2 aNd 22N CASE 1 ...oocveverereeeesceeeeeeeeseseeseeeeeseesses s eseeneenaeneen e 40

FIGURE 6. Boxplots of the empirical distributions of parameter estimators trnde
model assumptions (Tr), under model selection (S), BMA(phi=1) (B1), BMA

(phi=1.65) (B2), BMA (phi=5) (B3) fori\ (plot a) and (plot b) for case 1,

5 0 PP 41
FIGURE 7.Kernel densities for the Z-statistic testing (a) paraméfgrand (b)
parameterd;)s i Case 1,N=500.........couiriiiiaieeeeieeieseeie et reseere e e see s 45

FIGURE 8. QQ-plots of the standard normal distribution versus the distribution of Z-
statistics for testing parameters )" under true model assumption; (&}’ under

model selection condition; (c);Y under true model assumption; (&} under

model selection condition for case 1, N=500. .....cccooeiiiiiiiiiiiicee e 47
FIGURE 9.Percentage of each model being selected (case 1-case 4) ...........uuvvviiieeneennn. 51
FIGURE 10.Percentage of each model being selected (case 5--case 8) ...........ueevveieinennn. 52

FIGURE 11.Boxplots of the empirical distributions of parameter estimators under true
model assumptions (Tr), under model selection (S), BMA(phi=1) (B1), BMA
(phi=1.65) (B2), BMA (phi=5) (B3) fori\ (plot a) and); (plot b) for case 2,

LTS 00 TR 56

FIGURE 12.Boxplots of the empirical distributions of parameter estimators under true
model assumptions (Tr), under model selection (S), BMA(phi=1) (B1), BMA
(phi=1.65) (B2), BMA (phi=5) (B3) fori\" (plot a), 45 (plot b) and 4,5 (plot c) for
CASE 3, NT500. ...ttt e e e e e a e e e e e e e e e e erra e 57

FIGURE 13. Boxplots of the empirical distributions of parameter estimators wnder
model assumptions (Tr), under model selection (S), BMA(phi=1) (B1), BMA
(phi=1.65) (B2), BMA (phi=5) (B3) fori\" (plot a), 4, (plot b) and A5 (plot c) for
CASE 4, NT500. ...t e et e e e e e e e e e e e ena e 58

FIGURE 14.Boxplots of the empirical distributions of parameter estimators under true
model assumptions (Tr), under model selection (S), BMA(phi=1) (B1), BMA

viii



(phi=1.65) (B2), BMA (phi=5) (B3) fort\ (plot a) and) (plot b) for case 5,

LTS O PRSP 59
FIGURE 15. Boxplots of the empirical distributions of parameter estimators wnder

model assumptions (Tr), under model selection (S), BMA(phi=1) (B1), BMA

(phi=1.65) (B2), BMA (phi=5) (B3) fori\ (plot a) and) (plot b) for case 6,

LT O PP EEPRPOPPPPRPRN 60
FIGURE 16.Boxplots of the empirical distributions of parameter estimators under true

model assumptions (Tr), under model selection (S), BMA(phi=1) (B1), BMA

(phi=1.65) (B2), BMA (phi=5) (B3) fori)\" (plot a), 45 (plot b) and A5 (plot c) for

CASE 7, NT500. ...ttt e e e e e e e et e e e e e e enr e 61
FIGURE 17.Boxplots of the empirical distributions of parameter estimators under true

model assumptions (Tr), under model selection (S), BMA(phi=1) (B1), BMA

(phi=1.65) (B2), BMA (phi=5) (B3) fori)\" (plot a), 4, (plot b) and 4,5 (plot c) for

CASE 8, NTO00. ...t e e et e e e e e e e b e e e e err e e 62
FIGURE ALl. Prior model probabilities. ...........coooiiiiiii e 72
FIGURE A2. Posterior densities of coefficients in BMA results, X1-X#fesenting

variables C, M, A, CM, AC, AM, AMC, in that order (intercept is not plotted)....... 79

FIGURE B1. Q-Q plot of the Z-statistics for testing parametergfa)under true model
assumption; (b)Y’ under model selection condition; (¢}* under true model
assumption; (d,¥ under true model assumption for case 2, n=500. ................... 119

FIGURE B2. Q-Q plot of the Z-statistics for testing parametergfa)under true model
assumption; (b)Y’ under model selection condition; (¢}* under true model
assumption; (d},7 under true model assumption; @&} under true model
assumption; (LY under model selection for case 3, N=500. ..........cccerereereanennen. 120

FIGURE B3. Q-Q plot of the Z-statistics for testing parametersfa)under true model
assumption; (b))’ under model selection condition; (¢ under true model
assumption; (d,¥ under true model assumption; @&} under true model
assumption; (ALY under model selection for case 4, N=500. .............ccccervereenenne, 121

FIGURE B4. Q-Q plot of the Z-statistics for testing parameterg fa)under true model
assumption; (b)Y’ under model selection condition; (¢}* under true model
assumption; (d},7 under true model assumption for case 5, n=500. ................... 122

FIGURE B5. Q-Q plot of the Z-statistics for testing parametergfa)under true model
assumption; (b)Y’ under model selection condition; (¢}* under true model
assumption; (d)1,7 under true model assumption for case 6, n=500. ................... 123



FIGURE B6. Q-Q plot of the Z-statistics for testing parameterg fa)under true model

assumption; (b)Y’ under model selection condition; (¢}* under true model

assumption; (d},7 under true model assumption; @&} under true model

assumption; (LY under model selection for case 7, N=500. ..........cccerereeeenennen. 124
FIGURE B7. Q-Q plot of the Z-statistics for testing parametersfa)under true model

assumption; (b)) under model selection condition; (¢} under true model

assumption; (d,¥ under true model assumption; @&¥° under true model

assumption; (LY under model selection for case 8, N=500. .............cccervereennne. 125
FIGURE C1. The distributions of two odds ratio estim%&; , post-model-selection

estimator (dashed) vs. true model assumption (solid) when sample size equals 500.128



Chapter 1: Introduction

1.1 Introduction to the Dilemma of Model Selection

Model selection is the process of choosing an appropriate model from a set of
candidate models, given the data. Model selection is thought to be “important and
unavoidable.” (Raftery, 1995). In practice, it is not possible to specify the toroeel
for relations among variables in a data set. In the absence of knowledge albaug the
model, it is natural for investigators to fit several candidate models tath@add choose
the one with, in some sense, the best fit. If one of the research questionsdsouat the
most convincing theory among several competing ones, which are represented by
different statistical models, then model selection is an essential phaet &search.

When the model selection procedure is applied, one question is asked implicitly:
among the set of models, which one most likely to have produced the data. Various
model selection techniques have been proposed to address this question. Once a model is
selected, the model is used to estimate model parameters as if the medéleiare
model. In other words, the data are analyzed as if they were generatedsejected
model. A major criticism of this approach is that the model is selected based an a dat
driven criterion and the same data are used to select the model and estimate the
parameters (Hurvich & Tsai, 1990). When one first chooses a best model and then bases
the inferences on that model, one ignores the uncertainty involved in the choice of this
best model which may have a large effect on estimates of parametersestinthais
problem is well known and has been widely discussed in the research literature

(Chatfield, 1995).



The reasoning underlying the modeling process in conventional inferential
statistics is shown in Figure 1. First, we impose a model on a specified popaladi
assume that the population data are generated by this model. Then an observed sample
drawn (in theory) from the population is used to estimate the parameters of tHeAnode
assumption in using the sample data to estimate the parameters of thesntioatethie
model is givera priori. Of course, the a priori model may be incorrect; that is,
misspecified. If the model is selected based on the data, then the assumpdilaned
and the parameter estimation is dependent on the outcome of a model selection process.
Therefore, the estimates may be biased, the standard errors mayedetbhmgoverage
of the confidence interval may not be at nominal levels, and inferences derived from
these estimators may be misleading. Hurvich and Tsai (1990) pointed out “Conditionally
on the event of having selected a particular model, the distribution of the data may be
substantially different from their unconditional distribution.” Zhang (1992) conedent

on this process as “logically unsound and practically misleading.”

model
a priori

population sample

1

FIGURE 1. The "moded priori" assumption in conventional inferential statistics.

1.2 An lllustrative Example
As an illustration of the problem, consider a hypothetical example of linear

regression. Suppose, in an empirical study, the researcher has one respainseYya



and two possible explanatory variablesaxXd %. Assume that the researcher is

primarily interested in the effect associated with variahland that variable Xis

treated as an auxiliary variable. Whether or npéedters into the regression equation

depends on analysis of the sample data. Thus, assuming that the “true moaletioan

to the researcher, two candidate models exist:

Unrestricted model: Yo = Bou + BuXe + PouXs + &4 (1)

Restricted model: Y, = LBo + Py X + &, 2

Suppose model (1) is the “true model.” The researcher uses a-data-driven method

to select between the two models and then estimates the parameteest,igfer This

leads to what has been called the “pretest estimator” (Judge and Bock, 1978). The

procedure to obtain the “pretest estimatgs,”, say, is:

(1) conduct a two-sided t test for the regression coeffigignivhere the test hypotheses
are:

Ho: B,=0vs. H: £,#0.

(2) if [t, | = c, where cis the critical value of student’s t witkr.05, say, reject fand

use the unrestricted model to estimgte

(3) otherwise retain ¢1and use the restricted model to estiméte

In summary,
Br = 6+ (1~ 6)By ©)
whered =1if |t, |> c oré= 0 otherwise; note tha)tﬁ’lr is the OLS estimator from the

restricted model aan?lu is the OLS estimator from the unrestricted moHet. a linear



regression modey = XB + ¢, the OLS off is obtained fronf = (x"x)*x" y, the
variance and standard error arar g = (x"x) 62, and se(ﬁi ): \/(xTx)if&, and the t

statistic is obtained fror, =, /se(, ).

When this two-stage process is performed overategesamples, the empirical
sampling distribution of the “pretest estimator3, can be obtained. Clearly, it is a
mixture of the distributions ofy,, and g,,. Their mixing proportion is the proportion of
times when the test hypothesis; H3,=0, is rejected. In general, the empirical sangplin
distribution of A, is different from that of,, , which suggests that the means and

standard errors of these distributions might diféea non-trivial degree.

Figure 2 shows the empirical distributions of thesw®irical distributions for two
estimators over 10,000 repeated samples of sizes02&nd 200 in a simulation study
(Gao & Dayton, 2008). For our illustrative purposes take a very severe case when the
correlation between YXand X% is -.9, the correlation between Y andiX-.8, and the
correlation between Y and;Xs .8. Plots (a) and (b) show that when sample isi25

and 50, the distributions are substantially diffeei@ terms of mean and variance, even

the shapes of distributions are different. Whilg is unimodal, 5, becomes bimodal.

Also the densitys; is more variable than the corresponding densitg,of When the

sample size increases to 200, the difference betteetwo estimators becomes very
small as shown in plot (c). This is a special ins&aof a more general problem that
commonly occurs in regression research.

A natural question to ask is how different therilisitions of these estimators are

under other combinations of correlation coefficeebétween variablesand X%, Y and

4



X1, Y and %. In a simulation study (Gao & Dayton, 2008), vada ratios of the two
estimators were computed from the empirical distrdns under different combinations
of correlation coefficients from -.9 to .9 in inanents of .1 over 10000 samples of size
20, 50, 100 and 200. The relationship among vagaato and variable correlations is

complex and cannot be captured by any simple liheaations (see Figure 3).



{a} n=25 (b} n=50 (e} n=200

4~ 4 4 4 4 !
2= 3= 1
k-] -0 -0
i S e i
0 0 €
ril= PR i
3 0E 3 0g 1 0
2 - o 2 - 2 4
1A 17 i
0 [ [
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FIGURE 2.Empirical distributions of estimatgf,, (solid line) andg; (dashed line)
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FIGURE 3.Ratio of empirical variance of the post-model-setgcestimator to that of estimator under true ni@dsumptiony, ,
andr,, (n=20)



What makes the model selection problem more sedadshard to analyze is the
large number of independent variables in realrkigression analysis. In practical
research, with the increase in the computing powed,incorporation of automatic model
selection procedure into various software, the lgrolis exacerbated. Consider the “best
subset” model selection procedure in regressiofysisab explanatory variables will
generate2® = 32possible models, not including the interaction ®rilvhen multiple
model comparison/selection steps are executedbidiseand difference in standard error

might be magnified, but is hard to quantify in fensamples.

1.3 The Purpose of the Current Study

In loglinear analysis of multi-way contingency t@pihe typical research
guestions are whether associations of certainfaeist and if they do exist, at which
level: i.e., two-factor-effects level and/or thrieetor-effects level, etc. To study these
guestions, a typical strategy is to compare hibreat models and to apply a selection
procedureUnsaturated (i.e., restricted) models are systealgticompared to the
unrestricted, saturated model to determine whetieevariables interact. An example of
this practice is a criminology study of drug useRnsay, Najaka, and Herz (2007), for
which the data comprise § @ontingency table. Hierarchical loglinear modeérev
compared and the contingency table was collapsed soinclude only statistically
significant main effects and interactions. TheyedtdModels are compared using
differences in Chi-Square statistics to determihetier the six-way interaction is
significant, all five-way, all four-way, all thregay, all two-way, and all main effects are
significant. Furthermore, models are compared terdene whether all six and five-way

interactions are jointly significant...(p. 51)” Givéime nature of the two-step estimation



process, it is apparent that model selection itiHegr modeling is vulnerable to the
same criticism as when these techniques are udegkbar regression.

Although the topic of the effect of model selentraises a core issue in practical
research, it has not been widely investigatedahtiqular, little research has been
conducted on the consequences of model selecticat@gorical data analysis. As shown
in section 2.1, most research papers on the ingfanbdel selection investigate the
properties of pretest estimators in multiple regji@s settings that deal with continuous
data. As shown above in the illustrative example,dentral issue is that a post-model-
selection estimator is in effect a mixture of maayential estimators. Bayesian model
averaging (BMA) is a method of incorporating modetertainty in inference (Hoeting,
Madigan, Raftery, & Volinsky, 1999). With the BMAathodology, relatively little effort
has been devoted to investigating its actual perdoice, such as estimator precision.
Thus, this study is among the first empirical wtolshow that the effect of model
selection extends to the models for categorica dat to investigate the precision of the
BMA method in that setting.

The goal of this study was to (i) investigate thepeical properties of estimators
after model selection and compare them with theskeuthe true model assumption in
the context of log-linear analysis of cross-clasdittategorical data; and (ii) evaluate the
performance of Bayesian model averaging estimattteé above mentioned context.
The magnitude of the bias, relative bias, MSE, ratative efficiency of parameter
estimators were calculated under a variety of dan. The distributions of the z-

statistics of the parameters were compared toeteeence distribution. Another goal was



to examine the relationship of the model selegtimyblem and sample size as the
problem could worsen or alleviate as the sample giaws.

The remainder of this document is organized asvidl Chapter 2 reviews the
literature on four topics: the difficulty of mod&élection, loglinear model theory, model
selection in the context of loglinear modeling &ajesian model averaging. A Monte
Carlo simulation study is described in chapter B, nesults from the experiments
presented and examined in chapter 4. Discussitmedfndings, description of limitation
of the study and possibility for future research avergin chapter 5, followed by
appendices which provide a case study of BMA methethils of the results of the

simulation study, and R code used in the computatamd simulations.
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Chapter 2: Literature Review

2.1 The Dilemma of Model Selection

In practice, hypothesis tests and other model seteprocedures are used to
assess the fit of candidate models and a specdieins chosen based on these results.
Subsequently, the selected model is interpreteti®@basis of the same parameter
estimates used in selecting the model. Econometisatall the initial estimators “pretest
estimators” (Judge & Bock, 1978). The bias in eation due to the use of model
selection procedures was first investigated by Bah¢1944). He studied pretest bias in

the regression coefficieng, , estimated for the model:

Y =B+ X, +e (4)
An F test was carried out to decide if regresspshould be retained in the model after
the regression modgk= ﬁ’l>g+ ﬁ’zxz had been fitted. He derived the mathematical fofm

the bias ofﬁ’lobtained after the preliminary F test:

: zae® (n-33 .
Bias= 1- I =+ 5
pﬁ{ ,Zo i ( > 2 JH (5)
A2 _ 2
wherex, = 1 , a= (1 P Xn 1)52, I, is the incomplete beta function, c is the
—+1 2
n-3

value of F-distribution corresponding to some assiysignificance level for 1 and (n-3)

degrees of freedom, arpdis the sample correlation coefficient between tked

variatesx, and x, . This formula suggests that: (1) keeping othetofacfixed, bias
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decreases as sample size increases; and, (2} Ipesportional to the sample correlation

coefficient of the two regressoss and x, . Bancroft pointed out that when, n, and c

are fixed, for increasing,, the bias increases at first and then decreaseshmeans

there is no linear relationship between the magkeitf 5, and the bias of3,.

Since Bancroft's seminal paper on the effect of ehgélection, this topic has
received considerable attention. Mosteller (1948gased the impact of an initial
significance test on the pooled estimates of emranalysis of covariance. He gave the
closed form for the mean squared error of the pregtimator under that situation.
Huntsberger (1955) generalized the expressionatégr estimator in the area of pooling
data. He expressed it as a weighted average oéstumators. These early research
studies derived analytical solutions for the praipsrof the pre-test estimators under
specific conditions. Unfortunately, the usefulnektheses results for practitioners is
limited because only special conditions of lineagression were considered.

Sclove, Morris and Radhakrishanan (1972) studieddss functions of the
pretest estimators and derived their propertiesyTound that one undesirable property
of pretest estimators is that no pretest estimatanssatisfy the minimax criterion.
Bankroft and Han (1977) reviewed the early literaton this topic and summarized the
difficulties induced by variable selection.

An early simulation study on the effect of moddesgon can be found in
Freedman (1983). He generated a matrix of 100 eowis51 columns. The numbers in
each column were drawn from standard normal digioh independently. Columns 1-50

were treated as independent variablgs.,x;,, and column 51 was taken as dependent
variabley. The data were analyzed in two rounds: ylyas regressed on all 50 of the
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x's and (2) only the variables whose coefficients vageificant at 0.25 level were kept
in the equation and the equation was refitted. fegefound that “The results from the
second pass are misleading indeed, for they appemonstrate a definite relationship
between Y and the X's, that is, between noise anskr’ In addition, he noted that the
use of p-values of F test in multiple regressidarahodel selection can be dramatically
misleading.

Hurvich and Tsai (1990) conducted a simulation gta the coverage rates of
confidence regions for the pretest estimatorsi@dr regression settings. Their result
showed that the coverage rates are much smalléndqretest estimator than the
estimator when the model is knownaaprior. They suggested splitting the data to do
“exploratory” and “confirmatory” data analyses. ejfquoted Tukey (1980, p.821) as
asserting “often, confirmation requires a new uherqul set of data.” In practice, cross
validation is expensive and how to split the dataains unsettled. Danilov and Magnus
(2004) found the unconditional first and second reots of the pretest estimator for the
linear regression. They showed that the errorémtioments varies for different model
selection procedures. They also studied the relship between error and the number of
auxiliary regressors. E(UR), the expectation ofarneporting ratio, was expressed as a
function of sample size, number of variables oéiiest, and number of auxiliary
variables.

Asymptotic properties of the preliminary-test estiors have also been
investigated (e.g. Sen ,1979). Pétscher (1991yethe large sample limit distribution
of the preliminary-test estimator in a generalisgtincluding linear and nonlinear

models. One of his results is that the bias prolanishes asymptotically when the
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model selection criteria are consistent and theamee increases as might be expected
from the uncertainty due to the model selectiorcess. He also pointed out that the
shape of the distribution may also change. ZhaBg4Lstudied the asymptotic results
for inference on linear regression models wherfitied prediction error criterion is used
to select a model and showed that asymptotic et error variance are satisfactory
but that the asymptotic confidence regions for wwkm parameters are generally too
small in that coverage probabilities are less th@minal probabilities. Pétscher and
Novéak (1998) conducted a simulation study in whiady examined the small sample
distribution and compared the small sample distiaouto the asymptotic distribution as
derived in Pétscher (1991). In the context of lmegression, Leeb and Pdtscher (2005)
obtained the k-dimensional cumulative distributionction. They stated “a large sample
size does not guarantee a small estimation ertbrhigh probability when estimating
the conditional distribution function of a post-nebdelection estimator.” The
asymptotical results are useful theoretically battvery useful in finite samples. Kabaila
(2005) derived a new computationally intense Mdaelo simulation estimator of the
coverage probability, which used conditioning fariance reduction. He also
investigated the coverage probability of the 95%fickence interval for post-model-
selection estimator. For the real-life data preseim his article, the probability is .79
using AIC and .70 using BIC in as the model sebectriterion, confirming that the
confidence intervals after model selection are eogite.

Although these research studies have demonstitaddriate difficulty of model

selection, their results are usually not taken autosideration in practice. The reason
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may be that no one has derived a correction famagts and for standard errors due to

the complexity of the model uncertainty in commesaarch setting.

2.2 Loglinear Models

Loglinear models are used for modeling cell freguies in a contingency table as
a loglinear combination of effects (model parangtdue to each classification factor
singly and in combination. For a three-way tablmghinear models expresses the
expected frequency of caseg, i the cell defined by categorpf the row dimension,
categoryj of the column dimension, and categéryf the layer dimension (see Bishop,

Fienberg, & Holland, 1975; Everitt, 1977; Knoke &Re, 1980):

_ X_Y_Z_XY_XZ_YZ_XYZ
Fijk =ik Tyt T Tk Ti Cik (6)

where the “base rate” ig, 7, is the effect of being in categargf the row dimension,
er is the effect of being in categojpf the column dimension;/ is the effect of being

in category k of the layer dimensiory," is the effect of being in the categoriezndj

simultaneously (over and above the effects duatb eategory separately), etc. Thus,
deviations from the “base rate” cell frequencyattabuted to the effects of different

dimensions and their interactions. Taking logarghnelds a linear relation

log sy = A+ A" + A + 25 + A + A5+ A + 437 (7)
To avoid over-parameterization, necessary conssrane:

B =R =AY =AY = RE=RE AR =R =20 (®)
With these constraints, parameters suchi’aare the coefficients of dummy variables for

the first(l —1) categories of X. The parameters are interpretednmultiplicative sense.
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For example 4 = 9/10means that the frequency of cells in categarfydimension X

is 146% higher than the base rate siate= 246.

In loglinear modeling, the “hierarchy principldRéynolds, 1977) is often
observed. The hierarchy principle prescribes thatnnodel contains two-factor
interactions then it must contain the main effe¢tdhe two factors. The same rule
extends to higher order interactions that contaamneffects as well as lower order
interactions. For example, in a three-way tabl&ofors X, Y, and Z, if a model contains
interaction XYZ, then it must contain interactioty XXZ, and YZ. Mathematically, it is
possible to include interaction XYZ without incladi XY. In practice, it makes the
model difficult to interpret. The hierarchy print@dimits the permissible models and

simplifies notation. Thus, for a three-way tabl@dal (XY,Z) implies a model having
A, 47, A, Z¢ and A, In this document, we follow the “principle of héechy.” Table

1 shows the short-handed notation for models bfeetway contingency table.

TABLE 1
Notation for selected log-linear models in threepuables
Model Symbol
log y = A+ A" + A + A + A + A8+ A% + 47 (XYZ)
loguy = A+ A" + A + A5 + 4 + 435 + A% (XY, XZ, YZ)
log sty = A+ A+ A + 8 + A" + 47 (XY, X2)
X Y z XY
log sty = A+ A+ A + 245 + 4, (XY, 2)
log sty = A+ A"+ A + 2% X, Y, 2)

In a three-way table, each possible model hastarpretation in terms of
association and independence. There are three ¢ypasependence relationship in the
variables of three-way tables, namely, mutual iretelence, jointly independence and

conditional independence. Table 2 lists theseiogiships and specific examples. See

16



Gilbert (1981) and Fienberg (2007) for an extensiigeussion of interpretation of
independence and association.

TABLE 2
Summary of three types of independence relationshipg-linear models

Model Interpretation

XY, 2 Variables X, Y and Z are mutually indejpkemt
(XY,2) Variable Z is jointly independent of X and Y
(XY, XZ) Y and Z are conditionally independent, givX

2.3 Model Selection in Loglinear Analysis

In log-linear analysis of three-way contingendyi¢s, model selection is an
integral part of the analysis. Popular textbook$oginear modeling (e.g., Agresti, 2002;
Christensen,1990, 1997; Fienberg, 2007) all sugbeshspection of a series of models.
Agresti (2002) suggested the use of likelihooderégsts in selecting hierarchical models.
However, Raftery (1986) pointed out that the uskkefihood-ratio tests in model
selection gives unsatisfactory results when thepgasize is large. McCullagh and
Nelder (1989) discussed variable selection in #reegalized linear model context based
on variants of the Akaike information criterion @) (Akaike, 1974):

AIC (M) =-2logL (M) +2x p (9)
wherelogL (M) is the maximized log-likelihood and p is the numbemndependent
parameters in model M. The selection procedure choose the model with minimum
AIC. In general, AIC penalizes the more highly paeterized model. The mathematical
reasoning behind AIC is related to the KullbackHlei information function (Akaike,
1974). If one replacegx p by log(n)x p in equation (9), one obtains the Schwarz
(1978) Bayesian Information Criterion (BIC). BlCcorporates a stronger penalty for

model complexity (ifn > 8). Useful references on the general topic of modeksen

17



include Linhart and Zucchini (1986), McQuarrie arghi (1998), Lahiri (2001), and
Miller (2002) as well as special journal issueshsasJournal of Mathematical
Psychologyin 2006.

Christensen (1997) suggested a two-step genedglnelection approach for
loglinear models: (i) first choose an initial modi@m the ones that have all effects of a
certain level, such as all main effects, all twoyvedfects, and all three-way-effects, etc.
(i) once the initial model is chosen, one can agrsremoving terms. For three way
contingency table, Christensen claims that hignatbn is to directly use AIC as the
model selection criterion.

To approach the problem of model uncertainty ertfodel selection process,
Good and Crook (1987) and Albert (1989) developaygeB factors for two-way and
three-way contingency tables based on product-nasttial sampling and multinomial
sampling schemes. Prior distributions for the padbabilities are assumed to be normal
and the conditional probability of each model isanfed given the observed data. Model
selection can be performed by examining the vabdidgise posterior probabilities,
Prob(Model M | data). More recently, Madigan and&s (1994) used graphical
methods for Bayesian model selection in high-dinmra contingency tables. These
methods seem attractive, but the choice of pristridutions is arbitrary and computation
of the integrals for high dimensional tables ididifit, which may decrease the accuracy

of the results and make the methods difficult tplgn practice.

2.4 Bayesian Model Averaging
Due to the dilemma of model selection, an altemweadif the traditional

approaches of model selection emerged as modedgingr In performing model
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averaging, the analyst assumes that each of tltkdzdae models provides a valid
estimate of the parameters in its own right. Tleash model is assigned a weight that
reflects the degree to which the data support théet From the mid-1990s, the “Seattle
school of model uncertainty” has studied the usBagfesian model averaging (BMA) as
a method of incorporating model uncertainty in iafece (Hoeting, Madigan, Raftery, &
Volinsky, 1999). The use of BMA has now been uitlan fields of research such as
public health (Moralest al, 2006), economics (Fernandstzal, 2001) and political
science (Geer & Lau, 2006), epidemiology (Viallgfenhal.,2001) and air pollution
(Shaddicket al,, 1998; Clyde, 2000).

Let Qdenote the quantity of interegt.@, a model parameter) and let
M = { MO MY M@ MK } denote the set of candidate models. The law af tot

probability implies that the posterior probabildistribution of Q is

pr(Q|data) = zK: pr(Q|M® data)pr(M® |data) (10)

k=0
The posterior model probabilitgr (M® | datajan be thought of as weights and the
quantity pr (Q|M® | data) is the posterior distribution under a specific ®lod

According to the Bayes theorem, the posterior dodityaof any given modeM is

given by
® ®
pr(M® |data)= -2 (92IM )pr(M ") (11)
> pr(datal M?)pr(M?)
i=0
where (i)pr(data| M ®))= J'pr(data| 0, ,M®)pr(o, [M®)do, (12)

(ipr(datal M*) is the likelihood of modeM ®,
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(iii)0, is the parameter set for moddl®

(iv)pr (M® ) is the prior probability for modey © being the true model.

The Bayesian point estimatedfis its posterior mean, as in

K. .
E (6, |datg = > 6/ pr(M " |datg (13)

i—0
wheredX = E (6, |dataM®) , i.e., OX is the posterior mean @ under modeM .
When ¢, is not included in a particular model, this teszero. Note that= (¢, | data) is
a weighted average of the model-specific pointesties and the weights are posterior
model probabilities. The Bayesian standard erhar posterior standard deviation &f

is the square root of

its variance:
K ~

var(g, |datg = >’ {(var(e1 |dataM ®) + (6X)?) pr(M® | data)- E[p) | dataﬁz} (14)
i=0

wherevar(@, | dataM ) is the variance of), under particular model given the data.
From a Bayesian point of view, hypothesis testsngplaced by the question
"what is the posterior probability th& is not equal to zero?" This is given by the sum

of the posterior probabilities of the models tmadude 4, :

Pr(¢, = O|data)= > pr(M® |data) (15)

M®:g,em
The quantityPr (6, = 0| data)indicates that the probability th& is included and
estimated in at least one model. The conventianalaf thumb (Viallefonet al, 2001).
for interpreting this quantity in terms of eviderfoe the existence of, ; is: values less

than 0.5 suggest no evidence; values between @.8.@b suggest weak evidence; values
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between 0.75 and 0.95 suggest positive evidenteeka 0.95 and 0.99 suggest strong
evidence; and beyond 0.99 suggest very strong estde
For generalized linear models such as loglineatetsy Raftery (1996) proposed

the using of a Bayes factor to compute the posteriabability of a specific model.
Suppose the modeld ¥ and M @ are parameterized by vectors of parameerand

0,. Thus the Bayes factdf,, is given by (Raftery, 1996):

_ pr(datagM®)  [pr(8, [MY) pr(datal6,,M?) do,

= = 16
pr(datalM®)  [pr (0, |M?) pr(data],,M") do, (10)

12

The Bayes factor is a piece of evidence given g fita M @ over M@, For the model

2)

spaceM , let modelM®, M@ ... M™all compare withM . This generates

K +1Bayes factors. Then the posterior probability otleldv ) is given by (Raftery,

1996)
pr(M®)
(0) 10
or (M™®) | data)= —PTM™) (17)
([ Pr(M?)
Z 0) KiO
Spr(M®)
pr(M®) . - ® Aqai © which i
wherew is the prior odds for modd¥ ™ againstM ™ which is often assumed to
pr

be one in computation.

The BMA approach requires the specification of tymes of prior distributions:
(i) the prior probabilities of the modefs (M®™ ajd (ii) the prior distributions of the
parameter8 given modelM® . To make the computation easier, the variables are
assumed to be standardized. The prior distribusi@ssumed to be normal, and

distributed ad0 | M® )~ N(v,U), wherev = (v, 0,...0)and U = diag{y2, ¢°,..,4%|.
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Raftery (1996) suggested lef = Oand ¢ = 1. For the specification of the parametgr

Raftery (1996) suggested “it is usually betterepart, or at least to consider, the result
from a range of reasonable valuespof (p. 259) The range he recommended is

1< ¢ <5, with 1.65 as a “central” value.
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Chapter 3: Research Design

3.1 Purpose of the Simulation Study

We performed a large-scale simulation study in wlkeberal factors were varied
in order to:

(1) investigate the performance of the model patanmestimator under (a) the
true model assumption, (b) under model selectiothbyAIC criterion (i.e., the post-
model-selection estimators) and (c) under Bayeasiadel averaging estimators using
three different prior distributions;

(2) compare the empirical distribution of the Ztistacs for A under model
selection and normal distribution, which is theerehce distribution;

(3) examine the performance of the estimators @ttinditional odds ratio under
the true model assumption, under model selectimhuader BMA using one set of prior

distributions.

3.2 Sampling Schemes

There are three common sampling schemes in comitygables: multinomial,
Poisson and product-multinomial.
(1) multinomial sampling scheme: When the sample s fixed at N, and there are
cells (cross-classification conditions), for eachl tof N, it must be classified as one of

them conditions. Supposs, ,n, ,...,n,, are the number of events happens undemthe

conditions and let ;p i=1,2,.., m be the probability that th® ievent occurs on that

occasion. The multinomial distribution is writtest@, ,n, ,...,n,, )~MN(N, pz, p2,-.., Pm)-
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The probability mass function of multinomial dibttion is

N!
" bl.b !

Pr(n, =b,,....n,, =b,) pX..po.

(2) Poisson sampling scheme: The Poisson disiibig used to model counts of event
that occur randomly over time or space. The prditgaionass function of Poisson
distribution is
Pr(n=x)=A¢"/x!  forx=0,12,..

If the sample size is fixed, then independent coumthem cells of the Poisson process
follow the multinomial distribution.

(3) product-multinomial sampling scheme: If for bdevel of one variable, or the
combination of levels of two variable, a multinohsample of sizei,. is sampled, then
the resulting distribution is product-multinomi@ne reason for the product-multinomial

sampling design may be the proportions of the sarsigkni. , reflect the proportions in

the population. In product-multinomial modelingyanodel that has the terviTj‘Y

automatically has these margins fixed (see Chsstien1997).

3.3 Fixed Factors

The following aspects were fixed in the simulatstady: (1) number of
replications, (2) estimation methods, (3) true nhdoledata generation. The number of
replications was set at 10000.

Two computational algorithms for maximume-likelihoesdtimation are commonly
used in loglinear modeling: Newton-Raphson anchitee proportional fitting (IPF). IPF
(Deming & Stephan,1940) is a simple method forudaking MLESs of cell frequencies

that does not involve matrix inversion. IPF caltegathe expected cell frequencies, but
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does not produce estimates for model parametexrssociated standard errors. The
Newton-Raphson method does involve matrix inversioproduce model parameter
estimates and is more efficient numerically thala $ihce the rate of convergence is
qguadratic rather than linear (Agresti, 2002). Ingyal, both methods yield the same
results. In this study, the Newton-Raphson methas wsed because estimates and
standard errors were desired. With respect to samptihemes, Birch (1963) showed
that the MLEs are the same for independent Poisaomling, simple multinomial
sampling, and product- multinomial sampling.

The true model that generates data is (XY, XZ) uadleconditions. This model
was chosen so that both the effects of over-fitteng., model (XY,XZ,YZ)] and under-

fitting [e.g, model (XY,Z)] could be studied.

3.4 Manipulated Factors

The following aspects were systematically manifgaan the simulation study:
(1) sample size, (2) sampling schemes, (3) lev&abrs in a three-way contingency
table and (4) magnitude of main and associaticecesf

A pilot study, summarized in Appendix C, was cartdd that showed that
sample size was an important factor that influertbednagnitude of relative bias and
variance ratios. Thus, five sample sizes were s&le&0, 100, 200, 500, and 1000.
When sample size is 50, the average cell frequen6yar 2x2x2 tables, which creates
no problem for parameter estimation. However, R&Rx3 tables, the average cell
frequency is 4 which is slightly deficient judgeglthe rule of thumb for average cell size
of 5. A sample size of 1000 was chosen to chettieiproblems induced by model

selection were only small sample problems.
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When the sample size is fixed, the Poisson digioh and the multinomial

distribution are equivalent. We took account ofaéure of the product-multinomial
sampling design by restricting our attention to eledhat include the terﬁifY since this
restriction reduces the number of possible modetsrhanageable level as listed in Table

3. Under multinomial sampling, there are 8 modedg include all the main effects as

shown in Table 4.

TABLE 3

Unique models with the product- multinomial samgldesign, fixingy;
Model Degree of Freedom
MWP: (XYZ) 0

M®@: (XY, YZ, XZ) (I-1)(3-1)(K-1)

M®@: (XY, X2Z) 1(J-1)(K-1)

M®@: (XY, YZ) J(I-1)(K-1)

M®: (XY, Z2) (K-1)(13-1)

TABLE 4

Unique models with the multinomial sampling assugrafi main effects exist
Model Degree of Freedom
M®P: (XYZ) 0

M®@: (XY, YZ, XZ) (I-1)(J-1)(K-1)

M®: (XY, X2) 1(3-1)(K-1)

M®@: (XY, YZ) J(-1)(K-1)

M®: (XZ, YZ) K(I-1)(J3-1)

M©: (XY, 2) (K-1)(13-1)

M: (XZ,Y) (J-1)(IK-1)

M®: (YZ, X) (I-1)(JK-1)

In this simulation study, two types of three walgle are investigated, namely,
2x 2x2and 2x 2x 3. The number of parameters of the true model,the.4’s, is six in
the former table and ten in the latter table. The model that generates data was

assumed to be (XY,X2).
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The data were generated for different valued &. For the2x 2x 2 table, based

on Pardo and Pardo’s study (2003), two differetd eevalue were chosen: the first set

implies small values for the main effects and iattions A, = 4] = A2 =—. 3
A5 =.3and 4;{ =-. 3 The second set implies big values for the mdieces and
interactionsA, = 4] =47 = 14 =1land 4,Y = -2. For the2x 3x 3 table, the third set
of parameters was defined as “small}: =4 = A7 =2, =45 =—. , 3

Y =-3 Y =-3 and 4 =-. 3and the fourth parameter set implies large effects,
A= =2=2=205=1,=1 1% =-2,and ¥ =- 2 The specifications of

the parameters are summarized in Table 5.

TABLE 5
Simulated main and interaction effect parameters
2x 2x 2table 2x2x 3 table

Set One Set Two Set Three Set Four

A=-3 A =1 A =-3 A =1

A =-3 A =1 A =-3 A =1

A =-3 XY 1 JZ=-3 2 =1

A% =-3 X2 _ AN =-3 XY 1
¢ =_3 =2
¢ =_3 NE =2

For each generated dataset, three types of estimvate obtained: (1) parameter
estimates under the true model (XY, XZ), (2) paremestimates using BMA (with

¢=1, 1.65, 5); and (3) the post-model-selectiomestibr using AIC as the model

selection criterion. The choice of the prior parter®y is based on the results of Raftery
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(1996), where he mentioned thated’ (= 165 , ¢) balances two criteria. He also stated
“the log-Bayes factor changes rapidly as a functib for ¢ < 1,and then changes
much more slowly over this preferred range of vaitig [L< ¢ <5].” Under the

product-multinomial sampling schemes, the "besttehavas chosen from five models
as shown in Table 3 and under multinomial samgiclgemes, the "best" model was
chosen from eight models as shown in Table 4. Tiygrgcal distributions of these

estimators were studied and compared. Table 6 suzeadhe cases for this simulation

study.

TABLE 6

Cases for the Simulation Study

Case # Design
1 Product-multinomial sampling: parameter set 1 selected from 5 modedble 4
2 Product multinomial sampling: parameter set 2 setefrom 5 models in Table 4
3 Product multinomial sampling: parameter set 3 setefrom 5 models in Table 4
4 Product multinomial sampling: parameter set 4 setefrom 5 models in Table 4
5 Multinomial sampling: parameter set 1 selected fBomodels in Table 5
6 Multinomial sampling: parameter set 2 selected fBomodels in Table 5
7 Multinomial sampling: parameter set 3 selected fBomodels in Table 5
8 Multinomial sampling: parameter set 4 selected fBomodels in Table 5

3.5 Data Generation
The simulation was done in R. The data were gesgtzased on the true model
(XY, XZ): The log-linear representation of the mbue
log sy = A+ A" + A + 2 + A + K. (18)
Before data can be generated, the valug @onstant) must be calculated such
that the sum of they, 's is equal to the sample size. For example, wiempte size is

50, the data generation proceeds as follows:

Step 1. Calculatél by solving the following equation:

28



exp(4) exp(4y ) exp(4) ) exp(r ) exp(4y ) exp(Ay; ) +
exp(4) exp(4; ) exp(;) exp(Ay ) +

exp(4) exp(4,)exp(;) +

exp(4) exp{y) +

exp(4) exp(4y ) exp(4) ) exp(4y )+

exp(4) exp(4y) +

exp(1) exp(4) +
exp(1) =50

Step 2. Calculatey ;, 4,1, --- .45, from equation (18).

Step 3. Calculate the cell probabilitieg , asr;, = u; /50.

Step 4. Generate the data according to the matisdadistribution,

(n;,n,,....ng) ~ MN(50, 7,,,,..,,,) . The R function "rmultinom(n, size, prob)" was dse
in generating random multinomial distributions.

Step 5. Since the cell probabilitie, remain the same for the model (XY, XZ) even
under different sample sizes, the only change vgesrerating other data with other

sample size is to specify different "size" valueshie R function "rmultinom(n, size,

prob)". That is, one does not need to go througp &tthrough 4 to obtain the same cell
probability(z,,,,...,7,,,) - The parameters were estimated via the R fungfion which

utilizes the Newton-Raphson algorithm (Thompsor®Q0

3.6 Evaluation Criteria
3.6.1 Assessing Model Parameter Estimators

The performance of (i) the post-model-selectidimestor, (i) the estimator under
the "true model" assumption, and (iii) three BMAisitors (phi=1, 1.65, 5) were

evaluated using criteria such as Empirical BiaspMS
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Some indicators of the quality of an estimatortheebias, standard error, and
mean square error (MSE). Bias is calculated asxpected value of the estimates by the
sample average over the Monte Carlo iterations siihe true value of the parameter.

For simulation with B replicates,

Bias(1) =%§B: ) (19)

s.e:\/BilZB:(ii —5)2 (20)

o

where

Mo
o

W~
I

MSE(/‘L)zézB: (A, —1)? (21)

i=1
The reported results also include relative efficie The Relative Efficiency of

estimator4, to estimatori,, which is given by

E(1,-4)? MSE(4,)

REL EFF= =
E(4,-4)* MSE(4,)

(22)

A REL EFF value above one indicates that estimafds more effective in reducing

estimation errors than estimatéy. This criterion has been used to compare the
efficiency of two types of estimators in the litena of simulation study (Yang and Xie,
2003).
3.6.2 Assessing Distribution Assumptions of Z Tests

In the loglinear model, a Z test is used to testdtatistical significance of each

coefficient (1 's ) in the model where Z is given by
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(i) - ﬂ“null
boui 23
s () (23)

where 4., is the parameter value used to generate the Altitt@ugh Z statistics are

nul
known to be poorly behaved with small sample s{&ggesti, 2002), they are still
routinely used in practice because they are basedeoestimates and are easy to
implement. The research interest was in whethaobthe empirical Z statistics
distribution under model selection deviated in andfatic fashion from its theoretical
distribution, the normal distribution. The .01,50205, .1, .5, .9, .95, .975, .99 percentiles
of the calculated quantity (23) were reported fadel selection conditions and for the
true model condition. The percentiles were comparigl the critical values from the
theoretical Z distribution. In this way, any strodeyviations from the Z distribution could
be detected. Quantile-quantile (Q-Q) plots of tieotetical Z distribution versus the
distribution of the computed Z statistic were gregphThe skewness of the computed Z, if
any, was investigated. The interest was to findifaiie Z-based inference leads to
conservative or liberal conclusion under the maeétction conditions.

3.6.3 Assessing Estimated Conditional Odds Ratio in Two-by-two-by-twoable

For a two-by-two table, odds ratio is

T, /(1_ 7[1) _ myl _ 1

0= (24)

T, /(1— 7[2) Tol oy o0y
If 6=1, this suggests the independence of the two dleatsiin variables. If@ is
different than 1, some degree of association betileetwo variables can be inferred.
However, Feinstein (1973) strongly criticized usouyls ratios as a measure of

association, pointing out that rates of the mailgiagables are lost. Since this happens
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only when the event is very rare, such as certiaedes, we do not face this problem in
the general setting.
Odds ratios are the same under the Poisson, immligh and product-

multinomial sampling schemes. The sample odds imgstimated as

6 = (n,n,,)/(n,n,,) (25)
The problem with this estimator is that if any loé tcell counts equals zeré,would be
estimated as zero or infinity and the estimatamidefined. Gart and Zweifel (1967) and
Haldane (1956) recommended an adjusted odds rat@hwadds .5 to each cell
frequency. And Gart (1966) showed that this estmiaghaves well.

G- (n11 + .5)(n22 + .5) (26)

(n,, + 5)n,, + .5)

If a loglinear model is fitted to the data, the sddtio can be estimated from the fitted
value of the estimated cell counts generated bynibéel. In this simulation study, due to
the possibility of cell counts of zero in the gaated data, we used the adjusted fitted

value of cell count to estimate odds ratios:

5 (uy + 5)uy, +.5)
0= {0, + 5Nu, + 5) 27)

Odds ratios can only express the probability retethip in a two-by-two table. However,
for loglinear models based o2 2x 2table, odds ratios are still useful in describing t
dependence relationship among the variables.

For three-way tables, conditional odds ratios lketwtwo variables are the odds
ratios computed at a fixed level of the third valeaand marginal odds ratios between
two variables are the odds ratio computed basezklboounts collapsed over all the
levels of the third variable. If a model, suchrasdel (XY, XZ), has no three-way
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association term, then conditional odds ratios betwany two variables are the same at
each level of the third variable. Therefore, amtivgfive models to be selected in Table
3, conditional association (conditional odds raie)ween variables X and Y is the same
for level 1 or Z as for level 2 of Z. In model (XY,Zonditional association (conditional
odds ratio) between X and Y has to be estimatéiffatent levels of variable Z. In this
simulation study, the conditional odds ratio betwaay two variables is estimated at
level 1 of the third variable.

The means and standard errors of the conditiadd catios and marginal odds
ratios are reported under three conditions: (B nodel assumption, (ii) after model

selection, and (iii) using the BMA method.
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Chapter 4: Results

Detailed results for cases 1 through 8 are predentAppendix B, Tables B1
through B37. Although each case has some disthratacteristics, general patterns of
the performance of the five estimators are sinaitaoss cases. Therefore, in section 4.1,
case 1 is presented in detail to illustrate théoperance of the five estimators in terms of
bias, standard error, MSE, and relative efficieddgo, the distribution of the Z-statistics
of the model parameters in comparison with theregige distribution, under model
selection and true model assumption is examinewlllyj the conditional odds ratios of
the two-by-two-by-two table under the five estimatimethods are investigated. Section
4.2 presents the general results in all eight cafstége simulation study and compares

them with case 1 results.

4.1 Case 1 as an Example

4.1.1 Bias, Standard Error, MSE, and Relative Efficiency of Parameter Estiators
Figure 4 and Table 7 present the percentage ofthateeach candidate model
was selected by the AIC model selection criteriecse 1. The candidate models are
classified into four categories: the underspecitiaderfitted models, the
overspecified/overfitted models, the misspecifiadfitted model, and the true model.
When the true model is itself a candidate modedrfitting refers to choosing a model
with additional variables and underfitting refesschoosing a model with fewer
variables. The term “misfit” refers to choosing adwel with one or more wrong
variables. Both overfitting and underfitting haweeh known to reduce efficiency and

decrease the predictive abilities of a model. (Maxgie & Tsai,1998). Underfitted
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models suffer from the lack of details since ituees the complexity of the true model.
With overfitted models, variations in the extraiabtes tend to result in larger variances
in the predictions. At smaller sample sizes 50, #b@ 200, AIC favors the
underspecified model (XY, Z) (over 50%), and theetmodel is chosen with relative
small percentages of 16%, 20%, and 27%, respegtidelwvever, when sample size
increases, the percentage of time that the trueehi®@dhosen also increases. When
sample size reaches 1000, the percentage of tihoé®osing the true model has
increased to 62%; the percentage of overfittingnogel (XY, XZ, YZ) or (XYZ) has
increased to around 18%; and the percentage dfingfhas reduced to 17%. As
expected with AIC, the penalty function of the AdGteria is playing a more important
role when the sample size is smaller, causing moderfitting in smaller samples than in

larger samples.
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FIGURE 4. Percentage of time each model was selégté\IC
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TABLE 7
Percentage of time each candidate model was sgldtedIC (case 1)

Models %

n=50

M®: (XYZ) Overspecified 6.61
M®@: (XY, YZ, XZ)  Overspecified 3.06
M®: (XY, XZ) True model 16.06
M@: (XY, YZ) Misspecified 11.30
M®: (XY, 2) Underspecified 62.97
n=100

M®: (XYZ) Overspecified 5.47
M®@: (XY, YZ, XZ)  Overspecified 3.47
M®: (XY, XZ) True model 20.30
M@ (XY, YZ) Misspecified 11.38
M®: (XY, 2) Underspecified 59.38
n=200

M®: (XYZ) Overspecified 5.38
M®@: (XY, YZ, XZ)  Overspecified 4.90
M®: (XY, XZ) True model 26.76
M@ (XY, YZ) Misspecified 9.41
M®: (XY, 2) Underspecified 53.55
n=500

M®: (XYZ) Overspecified 6.40
M®@: (XY, YZ, XZ)  Overspecified 7.87
M®: (XY, XZ) True model 43.67
M®: (XY, YZ) Misspecified 6.23
M®: (XY, 2) Underspecified 35.83
n=1000

M®: (XYZ) Overspecified 7.46
M®@: (XY, YZ, XZ)  Overspecified 10.49
M®: (XY, XZ) True model 61.89
M®: (XY, YZ) Misspecified 2.97
M®: (XY, Z) Underspecified 17.19

Tables 8 and 9 present the bias, standard erroE, i&l relative efficiency of the
five estimators usingroduct-multinomial sampling with varying sample sizes. In these tables
“True Model Assumption” designated cases with no model selection prokkstel Selection”
refers to model selection using AIC criterion, and BMA refers teegtienator obtained using
Bayesian Model Averaging method. As expected, for parandgfeand 4,7, bias goes down
for all five estimators as the sample size increases from 50 to 10®@aamum likelihood

estimator is known to be biased in finite samples (Schaefer, EB88;1993) but converges to

the true value as sample size approaches infinity. This p@teeen in the estimator under the
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true model assumption. However, it is not true for the post-modettiesl@stimator or the BMA

estimator. For example, when sample size is 1000, the biaﬂ%ffdnecomes negligible (-.002)

under the true model assumption, while the bias is .022 under model selectionl{iteaksue,
about 10 times larger than -.002). Under some sample sizes, BMA estimshibit larger bias
than the post-model-selection estimator. However, the standaratinerpost-model-selection
estimator is always greater than the standard error of the estumater true model assumption.

The BMA estimators generally have smaller standard error thapotitenodel-selection

estimator with no exceptions for eithéf or 2% in case 1.

TABLE 8

Simulation results of the estimates 4f’ in case 1
Estimate Method

Sample True Model Model BMA* BMA? BMA®

size Assumption  Selection

50 Bias -0.061 -0.154 -0.120 -0.110 -0.084
SE 0.847 1.866 1.088 1.010 0.846
MSE 0.721 3.506 1.199 1.032 0.723
Rel EFF 4.863 1.663 1.431 1.003

100 Bias -0.013 -0.022 -0.018 -0.017 -0.015
SE 0.440 0.643 0.488 0.483 0.469
MSE 0.193 0.414 0.238 0.233 0.220
Rel EFF 2.145 1.233 1.207 1.140

200 Bias -0.009 -0.011 -0.010 -0.010 -0.009
SE 0.308 0.334 0.311 0.310 0.308
MSE 0.095 0.112 0.097 0.096 0.095
Rel EFF 1.179 1.021 1.011 1.000

500 Bias -0.004 -0.005 -0.004 -0.004 -0.004
SE 0.191 0.210 0.193 0.192 0.191
MSE 0.037 0.044 0.037 0.037 0.037
Rel EFF 1.189 1.000 1.000 1.000

1000 Bias 0.001 0.001 0.001 0.001 0.001
SE 0.135 0.149 0.136 0.136 0.135
MSE 0.018 0.022 0.019 0.018 0.018
Rel EFF 1.222 1.056 1.000 1.000

'Results from phi=1iresults from phi=1.65results from phi=5
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TABLE 9

Simulation results of the estimates,i:ﬁZ in case 1

Estimates Methods
Sample True Model Model BMA*! BMA?® BMA®
size Assumption  Selection
50 Bias -0.048 -0.049 -0.010 0.036 0.139
SE 0.790 2.040 1.064 0.960 0.701
MSE 0.627 4.165 1.132 0.923 0.511
Rel EFF 6.643 1.805 1.472 0.815
100 Bias -0.015 0.081 0.094 0.130 0.200
SE 0.441 0.576 0.368 0.338 0.262
MSE 0.194 0.338 0.145 0.131 0.109
Rel EFF 1.742 0.747 0.675 0.562
200 Bias -0.008 0.080 0.107 0.141 0.203
SE 0.308 0.358 0.261 0.243 0.197
MSE 0.095 0.134 0.080 0.079 0.080
Rel EFF 1411 0.597 0.988 1.013
500 Bias 0.000 0.052 0.106 0.135 0.190
SE 0.195 0.250 0.200 0.193 0.171
MSE 0.038 0.065 0.051 0.056 0.066
Rel EFF 1.711 1.342 1.474 1.737
1000 Bias -0.002 0.022 0.079 0.103 0.151
SE 0.136 0.181 0.173 0.175 0.173
MSE 0.018 0.033 0.036 0.041 0.053
Rel EFF 1.833 2.000 2.278 2.944

'Results from phi=1jresults from phi=1.65results from phi=5
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Figure 5 reports the MSE o’ and 2% in case 1. In each panel of the plot, the MSE is

denoted by symbols connected by the solid line, and different types of points diéfiectat

sample size results. As expected, the estimator under the true s&tepéon always
outperforms the post-model-selection estimator. For the paranﬁﬁér the relative efficiency

(REL EFF) of the post-model-selection estimator versus theasti under true model
assumption is 4 when sample size is 50, goes down to around 2 when sample sigesiore
100, and stabilizes at about 1.2 when the sample size is 200, 500, or 1000. Tlee relativ

efficiencies are smaller for the three BMA estimatorspaithem are lower than 1.7 at all sample
sizes. For the paramete%sz, the relative efficiencies for the three BMA estimators arallem

than those for the post-model-selection estimator under all samplevitizéise exception of
sample size of 1000. At sample size of 1000, the relative efficiency is 1.8,2.an@ 2.9 for
post-model-selection estimator, BM/ABMA?, BMA?, respectively. On the whole, the poster-
model-selection estimator is less efficient (in terms of MSH) tha estimator under true model
assumption. When sample size increases, the magnitude of ineffidecreases. Generally
speaking, the three BMA estimators outperform the post-model-selestioratrs in terms of

MSE, although the existence of several exceptions leads to no gemetabam.
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FIGURE 5.MSE of 2 and 2)%in case 1

two parameters of interedf,” and 4,7, at the sample size of 500. The labels “Tr”, “S”,

“B1”, “B2”, “B3” correspond to the estimator undtre true model assumption, under
model selection, BMA (phi=1), BMA (phi=1.65), BMAkKi=5), respectively. These

figures suggest four major findings: (i) The estior under the true model assumption

Figure 6 presents boxplots for the empirical disttions of the estimates for the

40




outperforms the other four estimators in termsia$ land variability; (ii) Estimates for
parameter )" and 4,5, show very different distributional patterns;)(for A\, all five
estimators show relatively little bias, with theiestor under model selection having the
largest variability. The reduction of variability the three BMA estimators is clearly
identified in the first sub-plot; (iv) Fof?, the estimator under model selection shows
the largest standard error. Although the BMA estorsareduce the standard error, they
show larger bias than the post-model-selectiomestir. In general, Bayesian Model

Averaging estimators tend to trade bias for vaganc
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FIGURE 6. Boxplots of the empirical distributionsparameter estimators under true
model assumptions (Tr), under model selectionBS)A(phi=1) (B1), BMA (phi=1.65)
(B2), BMA (phi=5) (B3) for A’ (plot a) andAs (plot b) for case 1, n=500.
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There are two reasons that the results#drand /% are quite different. First,
model (XY,XZ) and (XY,Z) are contained in the sétandidate models, but not model
(XZ,Y). In that sensed and )% are not symmetric. Second, the underfitted model

(XY, 2) is favored by AIC for small sample sizesn& the empirical distribution of

post-model-selection estimator is a mixture, adgrgportion of the mixture comes from
the estimateilxlZ from model (XY,Z). Therefore, these two parametalthough having

the same true value of -.3 are showing differettepas.

4.1.2 Distribution of the Z-statistic

Z-statistics of the form(4 - ..)! o, were computed for each replication where

A 1S the true value and is the estimate. The percentiles of the Z-statistider model

nul
selection and under the true model assumptionaee & are reported in Table 10. The
critical values indicate that strong deviationgrirthe normal distribution are found in
the model selection condition while under the mael assumption condition, the Z-

statistic distribution is approximately normal. Tdygparent left skewness of the empirical
distribution of (1* - 1_,,)/ &, under model selection condition will tend to lead

erroneous inferences if normality is assumed. Noitraaed inference will be
conservative if Z-statistic is greater than zeroawse one will be more likely to accept
the null hypothesis than if one had the empirigstrdbution of the test statistic from
Table 10. For instance, consider the scenariorapsasize of 1000, two-tail test, and
Type | error rate set at .05, a Z-statistic ofWilDlead to a decision of “failing to reject
the null hypothesis” if one is using the normallition, but will lead to a decision of

“reject the null hypothesis” if one is using theparital distribution. If Z-statistic is less
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than zero, normal-based inference will be slightlyre liberal than if one had the
empirical distribution of the test statistic. Fosiance, consider the scenario of sample
size of 1000, two-tail test, and Type | error rege at .05, a Z-statistic of -2.0 will lead to
a decision of “rejecting the null hypothesis” ifeoases the normal distribution, but will
lead to a decision of “failing to reject the nujidothesis” if one uses the empirical
distribution. While under the true model assumptibie empirical distributions of the Z-
statistic generally agree with the normal distridut

TABLE 10
Simulation results: percentiles of the Z-statisticler model-selection for parameter

A and A7 for case 1

n 0.01 0.025 0.05 0.1 0.5 0.9 0.95 0.975 0.99
Under model-selection condition

Ay

50 -2.233 -1959 -1.657 -1.316 -0.009 1.360 1.727 2.036 2.338
100 -2.386 -1.997 -1.698 -1.339 -0.001 1350 1.714 2.015 2.374
200 -2.373 -2.024 -1.707 -1.352 -0.014 1340 1.702 2.051 2.448
500 -2.422 -2.015 -1.720 -1.350 -0.016 1.345 1.724 2.035 2.466
1000 -2.412 -2.034 -1.719 -1.332 0.015 1.362 1.743 2.062 2.443
i

50 -2.206 -1910 -1.664 -1.307 0.000 0.000 0.403 2.012 2.397
100 -2.296 -2.023 -1.716 -1.335 0.000 0.000 0.000 1.159 2.357
200 -2.388 -2.051 -1.742 -1.377 0.000 0.000 0.000 0.848 2.433
500 -2.410 -2.048 -1.710 -1.340 0.000 0.000 0.092 0.562 1.567
1000 -2.465 -2.051 -1.732 -1.345 0.000 0.573 0.733 0.921 1.727
Under true model assumption

A

50 -2.146 -1.881 -1.627 -1.264 -0.014 1.282 1.660 1.940 2.281
100 -2.295 -1904 -1.636 -1.307 0.000 1304 1.658 1.956 2.293
200 -2.275 -1.935 -1.651 -1.282 -0.012 1.274 1.615 1946 2.318
500 -2.295 -1.921 -1.631 -1.283 -0.015 1.283 1.636 1.935 2.310
1000 -2.262 -1.924 -1.623 -1.262 0.014 1.282 1.672 1941 2.336
i

50 -2.141 -1.840 -1.623 -1.258 -0.014 1.275 1.613 1940 2.319
100 -2.239 -1.909 -1.610 -1.270 -0.023 1.265 1.632 1.930 2.281
200 -2.217 -1.939 -1.646 -1.296 0.009 1301 1.672 1985 2.341
500 -2.325 -1.954 -1.620 -1.245 0.010 1304 1.628 1.962 2.320
1000 -2.310 -1.939 -1.626 -1.264 -0.007 1.277 1.636 1.956 2.323
Z- -2.326 -1.960 -1.645 -1.282 0.000 1.282 1.645 1.960 2.326
statistic
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The kernel density of the Z-statistic faf\’ and 4, under model selection
condition, under true model assumption and norreakilies are plotted in Figure 8. The
distribution of Z-statistic ford,;" is symmetric and approximately normal. The
distribution of the Z-statistic for the coefficiedt, is perhaps more interesting, because
in the set of the five models listed in Table 3jchithe “best fit model” is chosen from,
every model includes the teriif)’ . Examination of the percentage of times each model
is selected in case 1 reveals that the undersedctiodel (XY, Z) is selected most of the

time for sample sizes at or below 200. The distiiivuof 1) is essentially a mixture of

the estimatedi;? from each of the five models and the proportioeath component is
the percentage of the time each model is selestéued'best fitting model.” In the

mixture of the distribution of,,"", the largest component is 0 for sample sizes bav

in case 1, since the estimatéff is 0 in the model (XY,Z) .
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The QQ-plot is a useful tool to checking if the tdata sets come from
populations with a common distribution. The emgifidistributions of the Z-statistics
may be very far from normality, and therefore tberesponding inference of the statistic
based on normal distribution may be misleadindhis analysis, QQ-plots serve as a

visual aid to determine the model adequacy. Fi§uwkows the QQ-plot of the standard

normal distribution versus the distribution of thetatistics for testing parametets’
and 4;¥ under the true model assumption and under the nsedttion condition for
case 1 when sample size is 500. R}, both Z-statistics under true model assumption

and under model selection condition both seem todomal. ForA,", Z-statistics seems

normal under true model assumption and is quifergiht from normal under the model
selection condition.

On the whole, the empirical distributions of thetatistic deviate in a dramatic
fashion from theoretical normal distributions. krcular, the tail percentiles are quite
different from those of the normal and this probléoes not diminish with large sample

size.
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4.1.3 Conditional Odds Ratio

Table 11 reports the empirical mean, standard efrthe conditional odds ratio
estimator under true model assumption, model sefecondition, and BMA with
phi=1.65. Because of the addition of .5 in bothateinator and numerator of the
conditional odds ratio estimator, the true valugheg estimator cannot be calculated and,
consequently, the bias of the estimators canndireetly computed. There are three

major findings: (i) For all the three types of esditors, the standard error goes down as
sample size rises. (ii) As expectess; (éTRUE) < se(éBMA) <se (éSELECT) , with one
exception,éXZ at sample size of 50, whe@(éSELECT) < se(éBMA) . (iif) The magnitude

of se(éYz) IS much smaller than that sb(éXY) and se(éxz) under the true model
assumption, while it is not the same with the otia@r conditions. For instance, at sample
size of 500,se(6,,) and se(d,, ) under true model assumptions are .002 and .101,
respectively, while these(éYz) and se(éxz) under model selection condition are .235 and
155, respectively. One reason might be that utigetrue model (XY, XZ), there is no
A term. Therefore, the empirical mean of the condélmdds ratioE (6,,) , is close to

1 under all sample sizes and this conditional getis estimate is quite stable. For
example, withse(d, ,) , the Se(qr, ccr) is 118 timesse(f;q,e) and 46 timese(d,,,) at

sample size of 500. These striking results sugbesthe estimate of the conditional
odds ratio under post-model-selection conditioiaidess stable than that under the true
model assumption condition, and the inference basealset of candidate models

(BMA) helps to noticeably bring down the varialyilit
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TABLE 11
Empirical means, standard error for the conditiatls ratio estimator under true model assumptimdel selection, and BMA
(phi=1.65) for n=50, 100, 200, 500 and 1000: case 1

TRUE MODEL MODEL SELECTION BMA (phi=1.65)
b 20 sd0) (o) sd0) (o) sd0)
n=50 0.900 0.533 1.049 1.657 1.005 1.391
n=100 0.826 0.345 0.867 0.603 0.824 0.382
n=200 0.782 0.234 0.801 0.344 0.782 0.254
n=500 0.757 0.143 0.765 0.188 0.758 0.147
n=1000 0.751 0.101 0.754 0.131 0.748 0.103
Oxz
n=50 0.908 0.542 1.108 1.651 1.050 2.361
n=100 0.825 0.344 0.931 0.560 0.907 0.300
n=200 0.783 0.235 0.870 0.311 0.888 0.196
n=500 0.760 0.147 0.815 0.212 0.867 0.147
n=1000 0.749 0.101 0.774 0.155 0.833 0.138
Oz
n=50 1.057 0.121 1.396 2.469 1.307 2.314
n=100 1.024 0.026 1.150 0.972 1.062 0.538
n=200 1.011 0.008 1.068 0.432 1.025 0.205
n=500 1.004 0.002 1.030 0.235 1.010 0.091
n=1000 1.002 7E-04 1.013 0.159 1.006 0.060
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4.2 General Results

4.2.1 Parameter Estimate, Bias, Standard Error, MSE, and Relative Efficiency

The percentages of times that each model is sdlbgt@dIC as the “best-fit”
model for case 1-case 8 are displayed in Figueesddl0. For the product-multinomial
sampling design (case 1-case 4), the2 x 2table and thex 2x 3table show similar
patterns. In particular, in the small-valued paremnsetting, case 1 and case 3 both show
poor selection accuracy when sample size is smatlaalerate (at or below 500) but have
improved selection accuracy (about 69%) when sasipteis as large as 1000. At small
or moderate sample sizes, the underfitted model &Ys selected most often as the
“best fit” model. In large-valued parameter settiogse 2 and case 4 both have
satisfactory (above 70%) selection accuracy fosathple sizes. For the multinomial
sampling design (case5-case8), selection accusdowi(below 50%) even when sample
size is as large as 1000 for small-valued paransetrario but selection accuracy is
satisfactory (about 80%) when sample size is lasgg#000 for the big-valued parameter
scenario.

The bias, standard error, and mean-square err@resented in Tables B1-B37.
Figure 11—17 display the box-plots of distributimfdhe parameters. The results in
cases 2-8 confirm the observation made in cadel jftinference is made conditional on
the best model chosen, the bias, the standardarbMSE of the estimator are all

greater than those of the estimator under the meogabri assumption.
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There are six major findings: (1) As for case lewlhe sample size increases,
the bias, standard error and MSE becomes smalfleafdh of the five estimators; (2) The
bias of the ML estimator under true model assumpgissentially disappears when
sample size is fairly large, whereas the bias efpbst-model-selection estimator persists
even at sample size 60 observations per cell; lt@)standard error of the post-model-
selection estimator can become very large at mtelseample size of 16 observations per
cell. This usually happens when the parametergglaalued. For example in case 4
(large parameter value, five models in the modglZe 2 x 3table ), at sample size 200,
the values ofse(1)?) are .429, 4.25, 2.011 for estimator under true rhassumption,
under model selection, and by the BMAespectively; (4) When the parameter is large
valued, the contrast of the bias, standard earod, MSE of the post-model-selection
estimator against estimator under true model assamig more prominent than the
scenario when the parameter is small value. Fanpie with case 2, the bias, standard
error, and MSE of the post-model-selection estimate -.478, 3.224, and 10.621,
respectively, and its relative efficiency versus éstimator under the true model
assumption is 84. When other factors remains thmeswith the small value parameter
scenario (for example, case 1), the estimates&(bifls), .358 (s.e.) , .134 (MSE), and
1.411(Rel EFF). On reflection, this is to be expdg¢hs larger valued estimates tend to
have larger variability. (5) BMA point estimatesveaMSE lower than standard variable
selection methods, however, it might introducedatgas in the estimator under some
conditions. (6) LeM; denote the model set under the product multinogsaaipling
scheme ani1, denote the model set under multinomial samplifgste. TheriM,

contains 8 modeld/l, contains 5 models arM,~ M;. Case 5-case 8 are parallel to
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case kcase 4, with the former selected over larger catdichodel set. The percentage
of each model being selected is more spread aigse 5-case 8, as two misspecified
models (XZ, Y), (YZ, X) and one underspecified miogéy, Z) are included. The
comparison of these two categories shows intraetasiults. The interests here focus on
the comparison of BMA results. The purpose is ®owkether BMA, when performed
over a larger set of models (including the smalkt), lead to bigger variability of the
estimates, as suggested by the BMA variance foridla The results do not give a
definitive answer to the question, since differgrgnarios point to different answers, and
there seems to be no rules governing each resultekkr, the difference between them

is of a small magnitude.

4.2.2 Distribution of the Z-statistic

Similar to the result in case 1, the Z-statisfithe parameters under model
selection condition usually do not follow a norrdatribution while the Z-statistic under
the true model assumption always do, as is showhé@-Q plots in Figures B1-B7. To
guantify the deviation from normality, Kolmogorowva8nov tests are performed on the
empirical distributions of the Z-statistics of tharametersi.,", 4, and 1} under model
selection and under true model assumption to détealeviation from normality. Table
B28-B30 show the p-value of the Kolmogorov-Smirnov satistic. Since the sample
size in these tests are as large as 10000, sothe pfvalue under true model assumption
conditions is also very small (below .05), but ba whole, they are bigger than the p-

value under model selection conditions.
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4.2.3 Conditional Odds Ratio

The Empirical means, standard error for the coowlgi odds ratio estimator under
the true model assumption, model selection and BptA=1.65) for different sample
sizes are presented in Table B31-B37. The restittase 2-case 8 are similar to that of
case 1. The standard error of the post-model-sefeestimator always has larger
standard error than that of the estimator undertnodel assumption. Their contrast is
more prominent in the conditional odds raﬁg rather than§XY and éxz . This is
because the true model is (XY, XZ) in this simwdatstudy, indicating that there is no
association between factor Y and Z. Therefore, xpeet the conditional odds ratio to be

close to 1 with small variability under the trueaebassumption. Selecting a model other

than the true model produces a quite different tmmal odds ratio, since the odds ratio

(é) is based on the ratio of the expected cell meaich is on the exponential scale of

the of the parameter estimates. Hence, small bitkeeil 's will produce bigger

deviations in thex ’'s and 0’s.

What is informative of the result is that almasail cases, in small sample size
such as 50 and 100, conditional odds ratio basd@M parameter estimators has
bigger standard error than post-model-selectiomesbrs. This suggests that using BMA
in small samples cannot not guarantee smallerhiditygof the conditional odds ratio
estimator than that under model selection. Wherpsagize is greater than 200, the

advantage of BMA is secured.
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FIGURE 11.Boxplots of the empirical distributions of paranregetimators under true
model assumptions (Tr), under model selectionBS)A(phi=1) (B1), BMA (phi=1.65)

(B2), BMA (phi=5) (B3) for 4" (plot a) andA; (plot b) for case 2, n=500.
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FIGURE 12.Boxplots of the empirical distributions of paranregstimators under true
model assumptions (Tr), under model selectionBS)A(phi=1) (B1), BMA (phi=1.65)
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model assumptions (Tr), under model selectionBS)A(phi=1) (B1), BMA (phi=1.65)
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FIGURE 14.Boxplots of the empirical distributions of paranregetimators under true
model assumptions (Tr), under model selectionBS)A(phi=1) (B1), BMA (phi=1.65)
(B2), BMA (phi=5) (B3) for A’ (plot a) andAs (plot b) for case 5, n=500.
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FIGURE 15. Boxplots of the empirical distributioolSparameter estimators under true
model assumptions (Tr), under model selectionBS)A(phi=1) (B1), BMA (phi=1.65)
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FIGURE 16.Boxplots of the empirical distributions of paranregstimators under true
model assumptions (Tr), under model selectionBS)A(phi=1) (B1), BMA (phi=1.65)

(B2), BMA (phi=5) (B3) for 1}’ (plot a), 4" (plot b) and A5 (plot c) for case 7, n=500.
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FIGURE 17.Boxplots of the empirical distributions of paranregstimators under true
model assumptions (Tr), under model selectionBS)A(phi=1) (B1), BMA (phi=1.65)

(B2), BMA (phi=5) (B3) for ;" (plot a), 4 (plot b) and A% (plot c) for case 8, n=500.
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Chapter 5: Conclusion and Discussion

It is common practice for researchers in the s@dmnces and education to use a
model selection technique to find a best fittingd@loand, then, to carry out inference as
if this model were givea priori. This study examined the effect of model selegtion
variable selection in this context, on the infeeen€the log-linear model. The purpose
was to (i) find out the consequences when the bhehafmodel selection is ignored; (ii)
investigate the performance of the estimator preidy the Bayesian model averaging
method, and evaluate usefulness of the multi-mindielence as opposed to the single
model inference.

The basic finding of this study were that inferebesed on a single “best fit”
model chosen from a set of candidate models tendsderestimate the variability of the
parameters and induce additional bias in estimdtioa loglinear model. The results of
the simulation study showed that the post-modelesiein parameter estimator has larger
bias, standard error, and mean square error tlea@stimator under the true model
assumption due to model uncertainty. The sametseapplied to the conditional odds-
ratio estimators. The fundamental reason is tlas#impling distribution of the post-
model-selection estimator is actually a mixtur@istributions from a set of candidate
models. The variability of the post-model-selectastimator has a large component from
selection bias. While these problems are alleviatigld the increase of sample size, the
interpretation of the p-value of the Z-statistidloé parameters is erroneous even when
sample size is quite large.

To avoid the problem of the inference based a sibgkt model, Bayesian model

averaging adopts a multi-model inference meth@dtitng the weighted mean of the
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estimates from each model in the set as the psimhator, where the weights are derived
using Bayes theorem. In this thesis, real and sitadldatasets were used to illustrate this
method and results were compared with the singést“bt” model inference. The BMA
method requires specification of prior probabisitier models and prior densities for the
parameters. Under the uniform prior probability fioodels and normal distributions for
the parameters, different specifications of themadrdistribution lead to somewhat
different results in terms of MSE of the parametgimates in the simulation study. With
large sample size, it was true that different azabonable choices of prior distributions
had minor effects on posterior inferences. Genesgleaking, the simulation results
confirm the efficacy of the BMA method as compawneth data-driven single “best-fit”
model inference.

The distribution of the post-model-selection estondas proved annoyingly
intractable because the type of models and thefepset of models vary from research
to research. The known theoretical results falrtsbbwhat we would like to know for
practical applications. Based on the current figdjrseveral recommendations can be
given: (i) Bayesian model averaging is a betterahtive to the inference based on a
single best model since it has smaller MSE, althadgitional bias is introduced by this
method. Usually, multivariate normal priors aredus® the parameters in the Bayesian
model averaging method. Different specificationh&f multivariate normal distribution
parameters leads to different results but wherséneple size is relatively large (500 or
larger, say), these differences are small. (imdfdel selection is vital in some research
setting (for example comparing theories represebyedifferent models), large sample

size is needed. The question to ask is how largerisidered “large?” Based on the
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results of this simulation study, in the loglin@andel setting, 60 observations per cell
helps to keep the magnitude of the relative efficieof the post-model-selection
estimator versus the estimator under true modehasson at a relatively low level
(below 10). (iii) The p-value of the post-modelesglon Z-statistic is misleading, even
under large sample size, and, therefore, its usetisecommended. Using the normal
curve theory p-values will lead to either consameabr liberal conclusions depending on
the shape of the sampling distribution of the Zistias. Usually, in the loglinear model
cases studied here, some post-model-selectiontigtstsm were leptokurtic, having a
higher peak than normal distribution, i.e., moreres fall at O due to the fact some
underestimated models are chosen.

Based on the current research, some implicatiangé&future research are : (i)
AIC has been criticized for not being dimensionsgistent, in other words, as sample
size grows, the probability of selecting the “truneddel does not go to 1, while BIC is
dimensional-consistent. It would be valuable toleate the performance of the post-
model-selection estimator using the BIC as modeksien criterion.; (ii) Due to the
scope of this research, only the point estimataewnvestigated. In future studies, it
would be beneficial to investigate the accuracthefBMA variance estimators. Also, the
coverage properties of the confidence intervalshbbg of interest in the future study.

As a final note, although the multi-model inferemeethod (BMA) outperformed
post-model-selection estimators using measuresasielstimated mean square error, the
interpretation of the estimates using the BMA mdtkbould proceed with caution. It is
because meaning and interpretation of a coefficreght change over models. The

interpretation of a parameter pertains to the paldr model, even if the same symbol is
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used to designate the parameter. If BMA resultsiaesl to explain a specific coefficient,
one should make sure that the interpretation ottafficient should be the same over
the set of competing models. In summary, BMA givesge realistic estimates of model
uncertainty and provides a structured way to detl the model selection dilemma.
However, model averaging method does not provideainearsimony, since it averages
models across different dimensions. We can onbrpmet the parameters as from the
saturated model with the average coefficients, iwmeakes it difficult to answer such
research questions as “among the three factoraofuana, cigarette, and alcohol, what
types of independence relationship can be infdresdd on the dataset” in a drug data

context.
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Appendix A: Application of Bayesian Model Averagingto Real Data

In this section we applied the Bayesian model ayrgamethod to some real
data, which provided some insight into the perfarogaof the method. The results
reported in this section were analyzed using tlfitsvace package, BMA, in R. First, we
described the drug data. Second, we investigatetssiue of sensitivity by changing the
prior distributions on the posterior results. Thisdcomparison of BMA results and
classical results were presented. Fourth, we etllthe principle of "Occam's razor" to
reduce the number of models in the model set wiem@imber of model under
consideration is huge. Finally, we compared thalte®f two model averaging methods,
namely, Bayesian model averaging and frequentisteinaveraging. In the frequentist
model averaging, two methods were used to gentrateeights: the bootstrap method,
and the AIC method.

Drug Data

We illustrate the use of BMA in loglinear analysiscontingency table with the
student drug data in Agresti (2002). The data virera a 1992 survey by the Wright
State University and the United Health Servicee $hrvey asked 2276 senior high
school students in Dayton, Ohio whether they haat aged alcohol, cigarettes, or
marijuana. The respondents were cross-classifieldmhol use (A), cigarette use (C) ,
and marijuana use (M).

Agresti gave an example of the model selectiocgss in loglinear model
building. He investigated nine models (all pos=jlibr the three-way contingency table,
namely, (A,C,M), (M, AC), (A,CM), (C, AM), (AM,CMYAC, AM), (AC,CM),

(AC,AM,CM),(ACM). He suggested AIC could be usedthis type of model
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comparison. Judging by minimum AIC, the all-twotfaeinteraction model (AC, AM,
CM) fits the data best. He also gave advice ornusigeof the likelihood ratio tests: "With
large sample sizes, statistically significant eezan be weak and unimportant. A more
relevant concern is whether the associations evagenough to be important.

Confidence intervals are more useful than testagsessing this" (p.325). The drug data

are summarized in Table Al.

TABLE Al
Drug data
Marijuana(M) Cigarette (C) Alcohol(A) count

Yes Yes Yes 911
No Yes Yes 538
Yes No Yes 44
No No Yes 456
Yes Yes No 3
No Yes No 43
Yes No No 2
No No No 279

The log-linear model (AMC) can be written in matiorm as

Moguy,] 111111 17%
logu,| |11 01010 0|4
logu,, | {1 011001 0]|A
log s, | [1 0 01 00 0 OfA
logum,| |11 101 00 0]
l0g 4,5, 1100000 Ofarc
log 4,,, 10100000/11\1M
|logs,,,| [1 0 0 0 0 0 O O] AMC

In simple form, a log-linear model is expressed as
logpn=Xp
wherep is aqx1 vector of expected counts (q is the number of zeXsis a

gx pdesign matrix with known values(is the number of parameters including the
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intercept and ofterX consists of 1s and 0s), apdis a p x 1vector of unknown

parameters.

An Investigation of Sensitivity

In BMA, the conclusion is drawn based on the pastgarobabilities of each
model in the model set. In most applications of BMi#e standard practice of setting up
priors is to use the flat prior model probabiliyhich is the default in the software.
These reference priors are chosen by "public ageaehmuch like units of length and
weight. The analysts fall back to the default whtegre is insufficient information.
However, the robustness of the BMA results undiemrint prior specification has
seldom been inspected. In this section, we uselthege in posterior model probability
and parameter probability as a sensitivity meaurBMA. Two types of priors will be
investigated: the prior model probabilities and phier parameter distributions.

In BMA, the choice of prior is to a certain degegbitrary, which poses a
difficulty for applied researchers. However, adwesaof BMA tend to view specification
of a prior as an important but controllable techh@mmplexity. They are attracted to the
overall logical consistency and its role as a fdrwaay to solve the model uncertainty
problem.

In the BMA sensitivity analysis of drug data, fwéor probabilities were
constructed based on substantive knowledge of snibstuses. In this sense, the prior is
viewed as a unique representation of our ignorafices, we devote a section to a
description of our knowledge of substance usesb@¢gn with a brief review of the

literature on substance uses, then move on to hisvbbdy of knowledge assists us in
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choosing subjective priors. Our aim is to find adnether the weights in model averaging
are sensitive to the choice of specification ofgihier probability. Or, in other words, we
try to find out whether prior settings have a dramianpact on the value of the Bayes
factor, and subsequently, on the posterior infezersulting from BMA. The
investigation is conducted using the glib functiongeneralized linear models in the R
software package BMA. The R glib function obtaine posterior model probability via
Bayes factors.

In the United States, alcohol and cigarette aredrugs while marijuana is, an
illegal drug. Drug use, on the whole, is a comegial phenomenon influenced by
many interacting factors (Rob, Reynolds, & Finlayd®90). Several competing theories
of drug uses can be represented by different leglimodels. Three major theories were
explored.

The problem-behavior theory, one of the most cited influential theories on
drug use, stated that the associations betweenusdeigre due to a common etiology
caused by similar psychological and environmeraetdrs from a variety of domains
including biological, genetic, social and behavigi2onovan & Jessor, 1985). If the
same factors are responsible for the associatietvglen these drugs, measures used to
asses these variables are psychometrically compathbn one would expect the
associations to be similar between the licit draigd marijuana use. The loglinear
representing this theory is (AC, AM, CM) or (ACM)hese models posit that the use of
these substances is a symptom of a larger sestudéve and deviant behaviors and

thus they are all related.
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In drug use literature, “gateway drugs” refer lmphol and cigarette. Gateway
theory suggested that individuals usually started dise with alcohol and/cigarettes and
then progressed to marijuana and other illicit dr(i¢gndel & Faust, 1975; Yamaguchi &
Kandel, 1984). The loglinear model representing theory is (AM, CM).

A third theory, representing by the model (CM, B)the lifestyle theory. Coffey,
Carlin, Lynskey, Li, and Patton (2003) found thatgistent, frequent alcohol use during
the teen years negated the risk for developingju@ra dependence in regular marijuana
users as young adults, whereas persistent cigaisdtes a strong predictor of marijuana
dependence, possibly due to similar modes of irgesf cigarettes and marijuana. They
hypothesized that their findings may illustrateaial process whereby individuals either
become part of a predominantly alcohol-using orijuamna-using lifestyle. In model
(CM, A), cigarette use and marijuana use are agtatibut alcohol use are not
associated with marijuana use.

Based on the above substantive knowledge, foaradeeference priors chosen in
the sensitivity analysis were shown in table A2e Tieights for set 1-3 were arranged
such that each model in the sequence gets a peighin30% more than the previous
one. This type of priors was proposed by Barte®97). The weight vector (1,1.3,1.3
1.3, 1.3, 1.2, 1.3, 1.3, 1.3), when normalized, became the prior probabilitytee
(.031,.041,.053,.069,.089,.116,.151,.196,.255). Arier probabilities assigned reflected
the Bayesian interpretation of probability as a soea of uncertainty. This construction
of the priors provided a good approximation togbbjective knowledge on the drug use
issue. Set four adopted uniform model priors. ksght vector (1,1,1,1,1,1,1,1,1), when

normalized, became the prior probability vector
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(111,.111,111,.111,.122,.222,.221,.111,.111). griwr probabilities were graphically

presented in Figure Al.

0.3
0.25 A ——(A,C,M)
/ \ / \ = (M, AC)
0.2
/ / = (A,CM]
0.15 // \ )\ i (C,AM]
o1 y /\’ st (AM,CM]
X—’?M/ (AC,AM)
0.05
— b (AC,CM)
0 T T T 1 {ACM}
1 2 3 4 (AC,AM,CM)
prior madel probability set

FIGURE Al. Prior model probabilities.

Table A2 presented the models arranged basecdedhdbries. Since the problem-
behavior theory suggested the most likely modelACM) or (AC,AM,CM), these
two models were assigned the highest prior modigwe (1.3J and (1.33,
respectively. The less association terms a modkgltha smaller prior model probability
was assigned. The gateway theory supported thavthanteraction terms AM and CM
be included in the model, therefore, three modetaining these two terms, i.e.,
(ACM), (AM,CM, AC), and (AM,CM), were given relately higher prior model
weights, (1.3), (1.3Y and (1.33, respectively. The lifestyle theory suggested timdy
cigarette use was related to marijuana use anti@lcse was not associated with
marijuana use. Thus, five models containing thexseAM, i.e., (AM,CM), (C,AM),
(AC,AM,CM), (AC,AM) and (ACM) were given relativelless weights, (1.3)(1.3Y,
(1.3), (1.3Y, and (1.3). The model that posited that the three substases were
mutually independent, i.e., (A, C, M) was given &st/prior weight in set 1-3, since all
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three theories stated that at least some levedsafcations existed among the three types

of substance uses. The setup represented pridoopiim an easily elicitable form.

TABLE A2
Four sets of reference priors in the sensitivitglgsis
Prior model weight based on substantive knowledge ninfdrmative
priors
Prior model  Set 1: based on Set 2: based on Set 3: based on Set 4: Uniform
weight problem- gateway theory lifestyle theory prior model
behavior theory weight
1 (A,C, M) (A,C, M) (A,C, M) 1
(1.3} (M,AC) (M,AC) (AM,CM) 1
(1.3F (A,CM) (A,CM) (C,AM) 1
(1.3 (C,AM) (C,AM) (AC,AM,CM) 1
(1.3) (AM,CM) (AC,AM) (AC,AM) 1
(1.3) (AC,AM) (AC,CM) (ACM) 1
(1.3) (AC,CM) (ACM) (M,AC) 1
(1.3) (ACM) (AC,AM,CM) (AC,CM) 1
(1.3f (AC,AM,CM)  (AM,CM) (A,CM) 1
TABLE A3
Posterior probabilities with four sets of prior neb@veights (phi=1.65)
Models Probabilities  ProbabilitieS  ProbabilitieS  Probabilitie§
(A,C, M) 0 0 0 0
(M,AC) 0 0 0 0
(A,CM) 0 0 0 0
(C,AM) 0 0 0 0
(AM,CM) 0 0 0 0
(AC,AM) 0 0 0 0
(AC,CM) 0 0 0 0
(ACM) 494 494 .682 .559
(AC,AM,CM) .506 .506 .318 441

'Results from prior set TResults from prior set 2Results from prior set 3, afiResults
from prior set 4.
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TABLE A4
Maximum likelihood parameter estimates for the tnast likely models

Parameters Model (AC,AM,CM) (ACM)
Intercept 5.633 5.631
A 0.488 0.491

C -1.887 -1.870
M -5.309 -4.938
A*M 2.986 2.600
A*C 2.055 2.035
C*M 2.848 2.275
A*C*M e 0.590

Table A3 showed the results of posterior probtd) i.e., the model weights in
BMA. First, it was notable that the posterior prbitiies put most mass on two models,
namely, (ACM) and (AC,AM,CM), and the other seveadals received zero probability
in all four settings. Second, the differences istpoor probabilities under the four
settings were relatively small except those otlsete. Since the coefficients of model
(ACM) and (AC, AM, CM) were very close, as showriTiable A4, weighted averages
(BMA estimates) in set three does not differ atioin those in other sets. In this case, the
likelihood function (the data) yielded more infortioa than the priors. Third, prior set
one and two lead to exactly the same posteriorgimtity (.506) for model
(AC,AM,CM), although the prior probabilities forithmodel was .196 for set one and
.255 for set two. The 30% increase of prior modebpbility from .196 to .255 did not
cause any difference in the posterior probabilities

We conclude that different principles of assigningdel priors were not making
large differences to the posterior inferences endirug data. It showed that specifying a
model prior using external information did not havpractical advantage. In other

words, using the default uniform model priors po®d robust results in this example.
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The second part of the analyses focuses on congpaoisterior inferences under
different reasonable choices of prior parametdridigion. As was mentioned in

literature review, prior distribution of the paramewas assumed to be normal, and
distributed ag6| M )~ N(v,U), wherev = (v, 0,...0) and U = diag{y *, 4.4 .
Raftery (1996) suggested let = 0 and¢g =1. We wanted to know if the posterior was
impacted by different choices @f. The reasonable range farsuggested by Raftery
(1996) is from 1 to 5, with 1.65 as a "central ealurhe ¢ values in this part of analysis

were setto 1, 1.65 and 5. The posterior probadslivith different priors for parameters
were displayed in Table A5. In this part of ana$ygbe prior model weights were

assumed to be uniform.

TABLE A5

Posterior probabilities with different priors foagameters
Models Probabilitie’s Probabilitie$ Probabilities
(A,C, M) 0 0 0
(M,AC) 0 0 0
(A,CM) 0 0 0
(C,AM) 0 0 0
(AM,CM) 0 0 0
(AC,AM) 0 0 0
(AC,CM) 0 0 0
(ACM) .945 .559 147
(AC,AM,CM) .055 441 .853

'Results from phi=Tresults from phi=1.65results from phi=5
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TABLE A6
BMA results for Mearf{|data) under different parameter prior assumptions

Parameters Meabidata)

phi=1 phi=1.65 phi=5
Intercept 5.631 5.632 5.633
A 0.491 0.490 0.488
C -1.871 -1.878 -1.885
M -4.958 -5.102 -5.254
A*M 2.621 2.770 2.929
A*C 2.036 2.044 2.052
C*M 2.307 2.528 2.764
A*C*M 0.558 0.330 0.087

Table A6 presented the BMA results for Meddéta) under different parameter
prior assumptions. The BMA Medidata) was quite similar for the three phi values
except the parameter "A*C*M". This was becauseténm "A*C*M " was the only
difference between these two models. In model (AL @M), the coefficient of
"A*C*M " was considered to be zero, and it was gihaeweight of .853 when phi is set to
5, vs .055 when phi is set to 1. This made thefmpeft of "A*C*M " vary more than
other parameters. On the whole, the impact of coatstg different parameter priors was
minimal in this case.

Both parts of the sensitivity analyses resultgssgthat with large small sizes
(N=2276, and minimum cell size is two), reasonalleices of prior distributions have
minor effects on posterior probabilities in thegldata. Although posterior probabilities
are functions of prior distributions, the likelirbéunction overweighs the priors when
the sample size is large. Since this result mighiubt coincident, the conclusion should

not be generalized to other dataset and/or othenge
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BMA vs. Classical Analysis

In classical loglinear analysis of drug data,nivee possible models were
examined, the best fit model was chosen based GroAbther criteria, and inference
was based on the "best" model. This practice ighoredel uncertainty. BMA had been
advocated as a formal way to circumvent the prold&émodel uncertainty. Posterior
means and standard deviations were used in BMAantes instead of parameter
estimates and standard errors. The BMA analogtigegb-value is the quantity

P(©+0|data).

TABLE A7
Drug data example: comparison of BMA results (vay®s factor) to post-model-
selection estimates

Bayesian model averaging (phi=1.65) Model (AC,AM,CM)
Mean SD

Parameter 0 |Date 0 |Date P(0#0|data Estimate (se) p-value
A 0.490 0.076 1 0.488 (0.076) < 0.0001
C -1.877 0.164 1 -1.887 (0.163) < 0.0001
M -5.102 0.645 1 -5.309 (0.475) < 0.0001
A*M 2.770 0.661 1 2.986 (0.465) < 0.0001
A*C 2.044 0.176 1 2.055 (0.174) < 0.0001
C*M 2.528 0.844 1 2.848 (0.164) < 0.0001
A*C*M 0.330 0.790 0559 - e

Table A7 compared the BMA result to post-modeésibn estimator. The model
selection criteria used was the standard AIC, siheenodels were not hierarchical G
was not appropriate. ModéAC,AM,CM) was chosen as the "best " model because it has the

minimum AIC value. Nonetheless, (AC,AM,CM) represented only 44.18eofotal posterior

probability, indicating the amount of model uncertainty is ineligible. The BbBAIt of Meanq
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|Data) was very similar to the post-model-selection estimd@sever, the standard errors of
the estimates of model (AC, AM, CM) were much seralhan the SP|Data) of BMA
estimates, indicating that post-model-selection estimators subbyambderestimated variability
and produced too optimistic confidence interval. For example, the stand@tioteof the
posterior distribution of the coefficient of the term C*M is .844 under BMvngared with .164
(s.e.) of the post-model-selection estimator. The 95% confidencesirftemed for this
parameter from BMA was about five times wider than the one from nsetktion. The results
in table A7 suggested that the confidence intervals formed for BMates were much wider
than those of a single chosen model. Inference based on a set of candidateatietelsan a
single model incorporated model selection into inference. The pogtestmabilities and the p-
values agreed that there were very strong evidence for all theagneffect and two way
associations. "Strong" can be interpreted based on p-value smaller tHhra@d@P+0|data
greater than 0.99.

Figure A2 graphically presented the marginal posterior kigtdn of the coefficients.

The spike in the plot of "X7" (the three way asation term ACM) corresponded Rg

6 # 0 |Data)= 0.559.
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FIGURE A2.Posterior densities of coefficients in BMA results, X1-X7 reprasgmariables C,

M, A, CM, AC, AM, AMC, in that order (intercept is not plotted).
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BMA: with vs. without Following “Principle of Hierarchy”

For the two-by-two-by-two drug data, if the "priple of hierarchy" (Reynolds,
1977) as followed, the permissible models were,nirfech is a small number. If the
"principle of hierarchy" was not followed, the pessible models were’2128, since
each term could be included or excluded. Althougheais difficult to interpret the model
having terms AMC but not A, it is mathematicallya$gble. The R glib function requires
the user to specify all the models to be considdtedas practically unfeasible to
manually input 128 models in one function (consitier possible mistakes one will
make). A better alternative, in this case, is th@dyylm function in the BMA package,
which utilizes BIC to approximate the Bayes fadtolarge samples (Kass & Raftery,
1995).

The posterior probability is given by

pr(M?y exp(-.5BIQM 1))
> pr(MY) exp(-.5BIQM "))’

Pr(M? | data)~ (27)

The function bic.glm could carry out Bayesian maaetraging analysis for generalized
linear models. Another feature of this function wiaes utilization of "Occam's razor" in
reducing number of models to make the summatioragpeable. The principle of
Occam'’s razor states that one should not incré@s@nd what is necessary, to number
of entities required to explain things. This prpleiis useful in the statistical model
building process, because the subject domain dmddme unlimited complex in some
cases (Jefferys & Berger, 1991). Under this prilecifhe models with posterior
probability far less than the best model in the el@pace are excluded. The rule was to

get rid of those models belonging to the set (Malig Raftery, 1994):
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SIVICE max(pr(M| data))> c
pr(M® | data)

where the value af are determined by the context. Madigan and RaftE994)
suggested in a general context, the defauétlue is 20, compared withcaralue of 1,000
for forensic evidence in criminal cases suggesyefvett (1991).

Reducing the number of models greatly reducedmtheunt of computation in the
analysis of three dimensional table, and it wageisily important in accounting for
model uncertainty in higher dimensional tables. &ample, the number of all possible
loglinear models for four dimensional contingenalle is 2°=32768, if the law of
hierarchy is not followed. Table A8 containd theuks of the BMA analysis, averaged
over a set of parsimonious, data-supported modalde A9 listed the models with

highest posterior model probability (PMP).

TABLE A8

BMA results utilizing Occam's razor when the "hrefrey principle” is not followed

parameter Mean SD P©+0|data)
f|data 0|data

A 0.489 0.076 1

C -1.879 0.164 1

M -5.152 0.614 1

A*M 2.824 0.618 1

A*C 2.046 0.175 1

C*M 2.557 0.797 .95

A*C*M 0.297 0.796 .33
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TABLE A9
Models with highest posterior probability

C M A C*M A*C A*M A*M*C PMP !
Model ° ° ° ° ° ° 0.670
1
Model ° ° ° ° ° ° ° 0.285
2
Model ° ° ° ° ° ° 0.045
3

'PMP denotes posterior probability
“dot denotes the inclusion of the term in the model

When the law of hierarchy was not followed, anel @ckham's razor constant ¢
was set to 20, three models were left in the pamsious model set: the saturated model,
the all two-way-association model and a model timgj of the terms C, M, A, A*C,
A*M, and A*M*C, which could not be represented llhetmodel symbols we used.
Model 3 in table A9 represented 4.5% of the totaterior probability. These three
models accounted for virtually 100 percent of thetprior probability, which means the
other models excluded by the Ockham's razor repregenegligible amount of posterior
probability. Nonetheless, it is still possible timsome datasets, the many models with
small posterior probabilities contribute collectiva fair amount of the posterior
probabilities. If that happens, the researcher neeedset the Ockham's razor constant to
allow more models to enter, thus increasing theuarhof posterior probability
accounted for by the parsimonious model set. Mouli®91) gave an extreme example
of such occasion: in about 4000 models, over 800aisowere required to account for
the 90% of the posterior probability.
Model Weights Obtained Via Bootstrap Model Averaging, AIC, and BMA

Although most of the statistical approaches to haganodel uncertainty are

Bayesian, frequentist alternatives do exist. Boapgiing has been proposed to determine
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the relative frequencies of each model being desaghas "best," thus constructing a set
of weights. Little justifications are given in tleegorks and the advocators acknowledge
the need for more research in this area. EfronGomnp (1983) considered a data-based
process of explanatory variable selection for askbgmodel. They applied the selection
process to bootstrap replications of the data,imibiaa distribution of logistic models,
which represent uncertainty about the models.

Buckland, Burnham, and Augustin (1997) investigdte performance of
different bootstrap resampling methods in produtirgmodel averaging weights:
nonparametric bootstrap, parametric bootstrap baadstrap from the residuals. Martin
and Roberts (2006) did a bootstrap model averagitigne series studies and compared
its results with BMA in their simulation studieshdy found that bootstrap model
averaging and BMA offered very similar results dmely did not favor one method over
the other.

In this section, we generated bootstrap resamatesapplied the model selection
procedure to each resample. The relative frequericreeach model was treated as
weight for each model in the bootstrap model avietacAs Candolo, Davison, and
Demetrio (2003) pointed out the bootstrap varighcs obtained was too large to make
sense, we did not use the bootstrap method to denvauances of the parameters in the
averaged model. Our goal was to compare the weggihes by bootstrap method, the
AIC approximation method, and the BMA method.

The method of obtaining bootstrapping model aviegageights consisted of

three steps:
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Step 1. Sample with replacement from the casebktbhatresample contains the
same number of individuals as the original same.sampled the case numbers,
indexed from 1 to N (2276). We calculated the ciatwé cell frequencies of the original
data, and then calculate how many resampled cadiees fell between the cumulative
cell frequencies, thus generating the resampletirggency table.

Step 2. Follow through the estimation procedureluding model selection by
minimum AIC, on this resample exactly as if it Hesskn the observed sample.

Step 3. Repeat this process 1000 times to gendatsootstrap estimate of the
relative frequencies of each model.

Clyde (2000) noted that BIC could be used in apipnating the model weights in

large samples. Suppose is the prior probability placed on modelThe model weights

could be approximated as (Clyde, 2000):

exp( ;ABIC(M D))a,

WkBIC — , (28)

K
D expf ;ABIC(M “))a,

k=1
where ABIC(M ) = BIC(M ) — min(BIC(M)). Buckland, Burnham, and Augustin
(1997) proposed an approximation of the model wsighsed on AIC under the
frequentist framework. The weight is given by (Blacid, Burnham, & Augustin, 1997):

exp(-AlIC(M*)/2)
i exp(-AlIC(M®)/2)

i=1

WkAIC — (29)

This definition of weight leads to the fact thabtwmodels with same AICs would be

given the same weight, even if they have differemhber of parameters. They obtained
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the averaged estimator and its variance for thghted estimator, which were given by

(Buckland, Burnham, & Augustin, 1997):

D

= zK:wk 6, .(30) (30)

. K . 2
var(g) = {Z W, +Jvar (6, )+ B2 } , (31)
k=0

where B, can be replaced bﬁk = ék 9 , andvar, (@k) can be obtained from the fitted
models by their standard method. Burnham and Aondegf2004) noted that there was a
connection betweew,*“ and W,?“. They pointed outW,*“ was a form ofn,*© , if

the prior weighta, was specified in a “savvy” way. See Burnham andeksdn (2002)

for further discussion of the topic.

TABLE A10
Model weights given by the bootstrap method, Al@ragimation, and BMA

Bootstrap method AIC approximation BMA (phi=1.65)

(AMC) 300 307 559
(AM,AC,CM) 700 697 441
(AM,CM) 0 0 0
(AC,AM) 0 0 0
(AC,CM) 0 0 0
(M,AC) 0 0 0
(A,CM) 0 0 0
(C,AM) 0 0 0
(A,C, M) 0 0 0

The results in Table A10 showed that all threehm@$ put weights are on two
models, (ACM) and (AC,AM,CM), exclusively. The tvilequentist methods, Bootstrap
method and AIC approximation, gave essentiallysdnae weight to each model, while
the BMA method allocated different weight on th@tmodels. Although the model
weights were somewhat different for the three mashthe averaged means of the

parameters are still similar across the methodsa$t because the parameter estimates for
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the two models (AMC) and (AM,AC,CM) are very clasemagnitude. Buckland,
Burnham, and Augustin (1997) pointed out that femeyalized linear models,
observations were assumed to be independentlyodittd, but their variance is a
function of their expectation, so the cases wetenuependently and identically
distributed, thus nonparametric bootstrap shoulcep&aced by the parametric bootstrap.
Candolo, Davison, and Demetrio (2003) showed thraPbisson regression setting, the
parameteric bootstrap and nonparametric bootstap gery similar results in terms of
model weight. If we consider loglinear model apacsal case of Poisson regression, the
nonparametric bootstrap method used in this seetama reasonable approximation to
the ideal result. The bootstrap method has a conakpdvantage in that the analysis of
the same data does not lead to incompatible resbks different priors are specified,
thereby minimizing the need for incorporating ra@et/prior information. However, the
difficulty of bootstrap methods lies in the facattior some type of models,

nonparametric bootstrap is still a very difficudptc.
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Appendix B: Simulation Results

TABLE B1

Percentage of time each model is selected (%) unddel selection for case 1-4
Models Case 1 Case 2 Case 3 Case 4
n=50

M®: (XYZ) Overspecified 6.61 10.22 4,51 6.14
M®@: (XY, YZ, Overspecified 3.06 15.09 2.94 15.03
XZ)

M (XY, XZ) True model 16.06 70.08 14.75 69.74
M@: (XY, YZ) Misspecified 11.30 1.19 11.12 2.28
M®: (XY, 2) Underspecified 62.97 3.42 66.68 6.81
n=100

M®: (XYZ) Overspecified 5.47 12.21 3.74 7.77
M®: (XY, YZ, Overspecified 3.47 13.36 2.81 12.24
XZ)

M (XY, XZ) True model 20.30 74.24 17.52 79.45
M®: (XY, YZ) Misspecified 11.38 .04 10.69 18
M®: (XY, 2) Underspecified 59.38 15 65.24 .36
n=200

M®: (XYZ) Overspecified 5.38 9.32 3.16 8.09
M®@: (XY, YZ, Overspecified 4.90 13.29 3.61 11.67
XZ)

M (XY, XZ) True model 26.76 77.39 22.58 80.24
M@: (XY, YZ) Misspecified 9.41 .00 9.83 .00
M®: (XY, 2) Underspecified 53.55 .00 60.82 .00
n=500

M®: (XYZ) Overspecified 6.40 8.46 3.01 6.10
M®@: (XY, YZ, Overspecified 7.87 13.59 5.28 11.65
X2Z)

M (XY, XZ) True model 43.67 77.95 38.70 82.25
M@: (XY, YZ) Misspecified 6.23 .00 7.14 .00
M®: (XY, 2) Underspecified 35.83 .00 44.97 .00
n=1000

M®: (XYZ) Overspecified 7.46 8.16 4.31 5.70
M®@: (XY, YZ, Overspecified 10.49 13.38 8.33 11.63
XZ)

M (XY, XZ) True model 61.89 78.46 57.21 82.67
M®@: (XY, YZ) Misspecified 2.97 .00 4.21 .00
M®: (XY, Z) Underspecified 17.19 .00 25.94 .00
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TABLE B2

Percentage of time each model is selected (%)dee 6-8

Models Case5 Case6 Case7 CaseS8
n=50
M®: (XYZ) Overspecified 4.62 7.02 341 4.28
M®@: (XY, YZ, X2) Overspecified 1.11 6.45  1.00 6.52
M@ (XY, XZ) True model 3.26 31.67 2.82  32.89
M@ (XY, YZ) Misspecified 3.29 .80 2.47 1.11
M®: (XZ, YZ) Misspecified 2.36 10.26  1.84 9.46
M©: (XY, 2) Underspecified 30.63 1.63 49.70 4.77
MD: (XZ,Y) Misspecified 30.64 41.47 20.87  39.66
M®: (YZ, X) Misspecified 25.69 70 17.87 1.31
n=100
M®: (XYZ) Overspecified 3.92 959 255 6.71
M®@: (XY, YZ, X2) Overspecified 1.04 7.30 .86 7.40
M®: (XY, XZ) True model 5.37 46.26 475  52.06
M@: (XY, YZ) Misspecified 2.84 .02 2.60 12
M®: (XZ, YZ) Misspecified 2.87 8.76 1.87 6.64
M©: (XY, 2) Underspecified 31.69 .06 49.77 21
M©: (XZ, Y) Misspecified 30.71 2799 2182 26.85
M®: (YZ, X) Misspecified 21.56 02 1578 .01
n=200
M®: (XYZ) Overspecified 3.64 8.87 212 7.55
M®@: (XY, YZ, XZ) Overspecified 1.72 9.21 94 9.60
M®: (XY, XZ) True model 9.43 66.05 7.99  70.07
M@ (XY, YZ) Misspecified 3.56 .00 3.21 .00
M®: (XZ, YZ) Misspecified 3.17 506  2.50 3.42
M©: (XY, 2) Underspecified 31.25 .00 48.15 .00
M (XZ, Y) Misspecified 31.71 10.81 23.24 9.36
M®: (YZ, X) Misspecified 15.52 00 11.85 .00
n=500
M®: (XYZ) Overspecified 4.90 850 3.04 5.87
M®@: (XY, YZ, X2) Overspecified 4.42 12.88  3.44  12.12
M@ (XY, XZ) True model 24.61 7758 2198 8156
M®@: (XY, YZ) Misspecified 3.37 .00 4.37 .00
M®: (XZ, YZ) Misspecified 3.62 .59 2.53 24
M©: (XY, 2) Underspecified 26.82 .00 3831 .00
M©: (XZ, Y) Misspecified 25.53 45  21.01 21
M®: (YZ, X) Misspecified 6.73 .00 5.32 .00
n=1000
M®: (XYZ) Overspecified 6.90 8.48  4.30 5.37
M®@: (XY, YZ, X2) Overspecified 8.26 1290 6.96  11.97
M®: (XY, XZ) True model 48.74 7861 4588  82.65
M®: (XY, YZ) Misspecified 2.57 .00 3.20 .00
M®: (XZ, YZ) Misspecified 2.22 .01 1.68 .01
M©: (XY, 2) Underspecified 15.41 00 24.42 .00
MD: (XZ, Y) Misspecified 14.76 00 12.36 .00
M®: (YZ, X) Misspecified 1.14 .00 1.20 .00
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TABLE B3

Simulation results of the estimates 4f' in case 2

Method
Sample  Estimate True Model Model BMA® BMA*® BMA?®
size Assumption  Selection
50 Bias -0.031 -0.343 -1.065 -0.796 -0.543
SE 3.757 7.795 4.497 4.047 3.573
MSE 14.118 60.878 21.352 17.013 13.063
Rel EFF 4.312 1.512 1.205 0.925
100 Bias 0.025 -0.859 -0.624 -0.476 -0.294
SE 0.666 4.998 2.580 2.174 1.709
MSE 0.445 25.715 7.043 4.953 3.007
Rel EFF 57.851 15.844 11.142 6.765
200 Bias 0.011 -0.177 -0.067 -0.061 -0.042
SE 0.412 2.169 1.063 0.935 0.755
MSE 0.170 4,737 1.133 0.879 0.572
Rel EFF 27.908 6.676 5.176 3.367
500 Bias 0.003 -0.002 0.009 0.004 0.003
SE 0.253 0.340 0.272 0.268 0.259
MSE 0.064 0.116 0.074 0.072 0.067
Rel EFF 1.800 1.154 1.117 1.044
1000 Bias -0.001 -0.004 0.002 0.000 0.000
SE 0.175 0.232 0.186 0.182 0.177
MSE 0.031 0.054 0.035 0.033 0.031
Rel EFF 1.766 1.132 1.088 1.025

'Results from phi=2results from phi=1.65esults from phi=5
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TABLE B4

Simulation results of the estimates 4f in case 2

Method
Sample  Estimate True Model Model BMA® BMA*® BMA?®
size Assumption  Selection
50 Bias -0.382 -2.148 -3.032 -2.503 -1.752
SE 2.573 10.581 5.904 5.429 5.036
MSE 6.765 116.561 44.04 35.739 28.426
Rel EFF 17.231 6.510 5.283 4.202
100 Bias -0.059 -2.008 -1.482 -1.235 -0.837
SE 0.525 7.664 3.781 3.398 2.914
MSE 0.279 62.755 16.487 13.070 9.190
Rel EFF 224.900 59.087 46.839 32.934
200 Bias -0.024 -0.478 -0.235 -0.220 -0.173
SE 0.354 3.224 1.508 1.378 1.154
MSE 0.126 10.621 2.329 1.946 1.361
Rel EFF 84.490 18.527 15.479 10.827
500 Bias -0.009 -0.029 -0.013 -0.017 -0.013
SE 0.223 0.379 0.255 0.247 0.231
MSE 0.050 0.144 0.065 0.061 0.054
Rel EFF 2.898 1.312 1.231 1.078
1000 Bias -0.005 -0.016 -0.006 -0.007 -0.006
SE 0.156 0.260 0.174 0.167 0.158
MSE 0.024 0.068 0.030 0.028 0.025
Rel EFF 2.777 1.245 1.150 1.030

'Results from phi=2results from phi=1.65esults from phi=5
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TABLE B5
Simulation results of the estimatesgf’ in case 3

Method
Sample  Estimate True Model Model BMA® BMA? BMA?®
size Assumption Selection
50 Bias -0.040 -0.177 -0.268 -0.162 -0.057
SE 0.722 2.960 1.872 1.350 0.759
MSE 0.524 8.789 3.577 1.849 0.579
Rel EFF 16.788 6.833 3.531 1.106
100 Bias -0.006 -0.056 -0.044 -0.029 -0.009
SE 0.431 1.259 0.742 0.621 0.461
MSE 0.186 1.589 0.552 0.386 0.212
Rel EFF 8.552 2.972 2.080 1.144
200 Bias -0.006 -0.007 -0.009 -0.007 -0.006
SE 0.298 0.340 0.300 0.299 0.298
MSE 0.089 0.115 0.090 0.089 0.089
Rel EFF 1.299 1.017 1.005 1.000
500 Bias -0.005 -0.007 -0.006 -0.005 -0.005
SE 0.188 0.212 0.189 0.189 0.188
MSE 0.035 0.045 0.036 0.036 0.035
Rel EFF 1.272 1.013 1.006 1.000
1000 Bias -0.002 -0.002 -0.002 -0.002 -0.002
SE 0.130 0.149 0.131 0.131 0.130
MSE 0.017 0.022 0.017 0.017 0.017
Rel EFF 1.309 1.014 1.003 1.000

'Results from phi=2results from phi=1.65esults from phi=5
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TABLE B6

Simulation results of the estimates 4f in case 3

Methods
Sample  Estimates True Model Model BMA® BMA*® BMA?®
size Assumption  Selection
50 Bias 0.034 -0.071 -0.089 -0.138 -0.237
SE 0.910 2.097 1.242 0.899 0.432
MSE 0.829 4.403 1.549 0.828 0.243
Rel EFF 5.310 1.869 0.999 0.293
100 Bias 0.016 -0.131 -0.166 -0.193 -0.26
SE 0.508 0.586 0.344 0.313 0.172
MSE 0.258 0.360 0.146 0.135 0.097
Rel EFF 1.393 0.564 0.522 0.375
200 Bias 0.006 -0.133 -0.178 -0.205 -0.264
SE 0.351 0.355 0.219 0.199 0.128
MSE 0.123 0.144 0.080 0.082 0.086
Rel EFF 1.166 0.648 0.664 0.698
500 Bias 0.004 -0.091 -0.167 -0.195 -0.254
SE 0.221 0.270 0.184 0.174 0.126
MSE 0.049 0.081 0.062 0.068 0.080
Rel EFF 1.659 1.264 1.393 1.641
1000 Bias 0.002 -0.047 -0.136 -0.164 -0.229
SE 0.155 0.207 0.176 0.173 0.140
MSE 0.024 0.045 0.050 0.057 0.072
Rel EFF 1.888 2.071 2.362 3.021

'Results from phi=2results from phi=1.65esults from phi=5
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TABLE B7

Simulation results of the estimatesgf in case 3

Methods
Sample  Estimates True Model Model BMA® BMA*® BMA?®
size Assumption  Selection
50 Bias 0.024 -0.112 -0.111 -0.154 -0.238
SE 1.072 1.988 1.254 0.921 0.471
MSE 1.150 3.965 1.584 0.872 0.279
Rel EFF 3.448 1.377 0.758 0.242
100 Bias 0.022 -0.124 -0.162 -0.190 -0.258
SE 0.517 0.583 0.347 0.313 0.168
MSE 0.268 0.356 0.146 0.134 0.095
Rel EFF 1.327 0.546 0.500 0.355
200 Bias 0.004 -0.128 -0.178 -0.204 -0.263
SE 0.353 0.360 0.220 0.201 0.127
MSE 0.125 0.146 0.080 0.082 0.086
Rel EFF 1.166 0.641 0.656 0.686
500 Bias 0.002 -0.089 -0.167 -0.194 -0.253
SE 0.222 0.272 0.187 0.177 0.130
MSE 0.049 0.082 0.063 0.069 0.081
Rel EFF 1.661 1.276 1.403 1.644
1000 Bias 0.001 -0.047 -0.136 -0.163 -0.229
SE 0.156 0.207 0.177 0.174 0.142
MSE 0.024 0.045 0.050 0.057 0.072
Rel EFF 1.845 2.043 2.326 2.966

'Results from phi=2results from phi=1.65esults from phi=5
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TABLE B8

Simulation results of the estimatesAg{’ in case 4

Methods
Sample  Estimates True Model Model BMA® BMA? BMA?®
size Assumption Selection
50 Bias 0.356 0.915 -0.493 -0.115 0.198
SE 3.440 7.255 5.352 4.407 3.069
MSE 11.957 53.466 28.887 19.429 9.457
Rel EFF 4.472 2.416 1.625 0.791
100 Bias 0.046 -0.401 -0.738 -0.382 -0.071
SE 0.869 4.739 3.045 2.245 1.269
MSE 0.758 22.613 9.818 5.187 1.616
Rel EFF 29.828 12.951 6.843 2.132
200 Bias 0.013 -0.337 -0.203 -0.088 -0.007
SE 0.397 2.947 1.363 0.904 0.528
MSE 0.158 8.797 1.899 0.826 0.279
Rel EFF 55.777 12.039 5.234 1.771
500 Bias 0.008 -0.013 0.006 0.004 0.006
SE 0.240 0.685 0.369 0.334 0.274
MSE 0.058 0.469 0.136 0.111 0.075
Rel EFF 8.119 2.353 1.930 1.297
1000 Bias 0.005 0.004 0.007 0.005 0.005
SE 0.171 0.228 0.173 0.172 0.171
MSE 0.029 0.052 0.030 0.030 0.029
Rel EFF 1.777 1.027 1.012 1.002

'Results from phi=2results from phi=1.65esults from phi=5
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TABLE B9

Simulation results of the estimatesgf in case 4

Methods
Sample  Estimates True Model Model BMA® BMA? BMA?®
size Assumption Selection
50 Bias -1.083 -1.622 -3.166 -2.089 -0.488
SE 4.481 8.890 6.541 5.489 4.075
MSE 21.246 81.656 52.809 34.492 16.840
Rel EFF 3.843 2.486 1.623 0.793
100 Bias -0.161 -1.262 -1.884 -1.129 -0.198
SE 1.315 7.174 4.471 3.457 2.076
MSE 1.755 53.051 23.534 13.226 4.348
Rel EFF 30.233 13.411 7.537 2.478
200 Bias -0.044 -0.825 -0.510 -0.297 -0.095
SE 0.429 4.505 2.011 1.449 0.803
MSE 0.186 20.972 4.305 2.186 0.654
Rel EFF 112.986 23.194 11.779 3.522
500 Bias -0.012 -0.053 -0.024 -0.021 -0.016
SE 0.265 0.838 0.445 0.409 0.32
MSE 0.070 0.705 0.198 0.168 0.103
Rel EFF 10.031 2.823 2.385 1.462
1000 Bias -0.009 -0.012 -0.008 -0.009 -0.009
SE 0.185 0.261 0.187 0.186 0.185
MSE 0.034 0.068 0.035 0.035 0.034
Rel EFF 1.991 1.028 1.009 1.001

'Results from phi=2results from phi=1.65esults from phi=5
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TABLE B10

Simulation results of the estimatesAf in case 4

Methods
Sample  Estimates True Model Model BMA® BMA? BMA?®
size Assumption Selection
50 Bias -1.068 -1.671 -3.261 -2.152 -0.512
SE 4.465 8.774 6.533 5.482 4.097
MSE 21.079 79.761 53.314 34.68 17.045
Rel EFF 3.784 2.529 1.645 0.809
100 Bias -0.166 -1.258 -1.863 -1.111 -0.187
SE 1.323 7.000 4.377 3.390 2.061
MSE 1.777 50.581 22.622 12.721 4.281
Rel EFF 28.458 12.728 7.157 2.408
200 Bias -0.044 -0.796 -0.500 -0.292 -0.094
SE 0.429 4.404 1.989 1.428 0.789
MSE 0.186 20.027 4.204 2.125 0.631
Rel EFF 107.698 22.610 11.430 3.396
500 Bias -0.011 -0.053 -0.023 -0.020 -0.014
SE 0.262 0.822 0.419 0.374 0.295
MSE 0.069 0.678 0.176 0.140 0.087
Rel EFF 9.819 2.551 2.028 1.266
1000 Bias -0.010 -0.018 -0.01 -0.011 -0.01
SE 0.182 0.261 0.185 0.183 0.182
MSE 0.033 0.069 0.034 0.033 0.033
Rel EFF 2.066 1.032 1.008 1.001

'Results from phi=2results from phi=1.65esults from phi=5
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TABLE B11

Simulation results of the estimatesgf’ in case 5

Methods
Sample  Estimates True Model Model BMA® BMA*® BMA?®
size Assumption  Selection
50 Bias -0.064 -0.116 -0.047 -0.007 0.064
SE 1.061 2.010 1.109 0.979 0.734
MSE 1.129 4.052 1.231 0.958 0.542
Rel EFF 3.590 1.091 0.848 0.480
100 Bias -0.017 0.038 0.068 0.087 0.114
SE 0.446 0.589 0.404 0.392 0.359
MSE 0.199 0.349 0.168 0.161 0.142
Rel EFF 1.750 0.841 0.808 0.712
200 Bias -0.001 0.053 0.086 0.103 0.125
SE 0.309 0.341 0.265 0.258 0.247
MSE 0.096 0.119 0.077 0.077 0.077
Rel EFF 1.246 0.810 0.804 0.800
500 Bias -0.004 0.039 0.077 0.092 0.112
SE 0.194 0.242 0.202 0.202 0.200
MSE 0.038 0.060 0.047 0.049 0.052
Rel EFF 1.596 1.245 1.302 1.392
1000 Bias -0.001 0.018 0.063 0.076 0.098
SE 0.136 0.177 0.168 0.170 0.174
MSE 0.018 0.032 0.032 0.035 0.040
Rel EFF 1.713 1.731 1.885 2.154

'Results from phi=2results from phi=1.65esults from phi=5
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TABLE B12

Simulation results of the estimatesgf in case 5

Methods
Sample  Estimates True Model Model BMA® BMA*® BMA?®
size Assumption  Selection
50 Bias -0.048 -0.044 0.002 0.035 0.088
SE 1.063 1.780 0.973 0.871 0.703
MSE 1.132 3.170 0.946 0.760 0.502
Rel EFF 2.800 0.836 0.672 0.444
100 Bias -0.016 0.043 0.071 0.091 0.118
SE 0.442 0.528 0.364 0.348 0.322
MSE 0.196 0.281 0.138 0.129 0.118
Rel EFF 1.433 0.703 0.660 0.602
200 Bias -0.007 0.050 0.082 0.099 0.121
SE 0.307 0.342 0.266 0.259 0.249
MSE 0.094 0.120 0.077 0.077 0.076
Rel EFF 1.270 0.823 0.816 0.812
500 Bias 0.000 0.042 0.080 0.095 0.115
SE 0.195 0.244 0.202 0.201 0.199
MSE 0.038 0.061 0.047 0.049 0.053
Rel EFF 1.611 1.247 1.302 1.388
1000 Bias -0.001 0.019 0.062 0.076 0.097
SE 0.138 0.179 0.169 0.172 0.175
MSE 0.019 0.032 0.032 0.035 0.040
Rel EFF 1.704 1.709 1.859 2.120

'Results from phi=2results from phi=1.65esults from phi=5
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TABLE B13

Simulation results of the estimates A4f’ in case 6

Methods
Sample  Estimates True Model Model BMA® BMA? BMA?®
size Assumption Selection
50 Bias 0.066 -0.074 -0.830 -0.626 -0.577
SE 3.794 6.956 4.010 3.474 2.840
MSE 14.397 48.382 16.766 12.458 8.398
Rel EFF 3.361 1.165 0.865 0.583
100 Bias 0.002 -0.701 -0.667 -0.565 -0.589
SE 0.727 4.118 2.152 1.690 1.265
MSE 0.529 17.451 5.073 3.176 1.947
Rel EFF 33.007 9.595 6.007 3.683
200 Bias 0.008 -0.243 -0.198 -0.250 -0.366
SE 0.403 2.176 1.033 0.865 0.677
MSE 0.162 4.792 1.105 0.811 0.593
Rel EFF 29.559 6.818 5.001 3.655
500 Bias 0.001 -0.010 -0.023 -0.045 -0.089
SE 0.249 0.425 0.335 0.351 0.388
MSE 0.062 0.181 0.112 0.125 0.158
Rel EFF 2.911 1.808 2.009 2.546
1000 Bias 0.000 -0.004 0.001 -0.002 -0.005
SE 0.175 0.231 0.189 0.189 0.191
MSE 0.031 0.054 0.036 0.036 0.037
Rel EFF 1.751 1.172 1.168 1.199

'Results from phi=2results from phi=1.65esults from phi=5
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TABLE B14

Simulation results of the estimates 4f° in case 6

Methods
Sample  Estimates True Model Model BMA® BMA? BMA?®
size Assumption Selection
50 Bias -0.384 -1.665 -2.564 -1.93 -1.095
SE 2.551 9.153 5.367 4.639 3.654
MSE 6.654 86.547 35.377 25.240 14.547
Rel EFF 13.006 5.316 3.793 2.186
100 Bias -0.066 -1.625 -1.292 -0.963 -0.521
SE 0.584 7.027 3.442 2.944 2.258
MSE 0.346 52.021 13.512 9.595 5.370
Rel EFF 150.537 39.100 27.765 15.539
200 Bias -0.027 -0.490 -0.243 -0.212 -0.145
SE 0.358 3.264 1.500 1.320 1.012
MSE 0.129 10.895 2.308 1.788 1.044
Rel EFF 84.530 17.905 13.872 8.102
500 Bias -0.016 -0.037 -0.021 -0.025 -0.021
SE 0.222 0.452 0.286 0.278 0.262
MSE 0.050 0.206 0.082 0.078 0.069
Rel EFF 4.141 1.659 1.565 1.395
1000 Bias -0.004 -0.016 -0.006 -0.008 -0.006
SE 0.154 0.257 0.169 0.164 0.156
MSE 0.024 0.066 0.029 0.027 0.024
Rel EFF 2.804 1.214 1.135 1.031

'Results from phi=2results from phi=1.65esults from phi=5
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TABLE B15
Simulation results of the estimates A4f’ in case 7

Methods
Sample  Estimates True Model Model BMA® BMA*® BMA?®
size Assumption  Selection
50 Bias -0.029 -0.071 -0.118 -0.030 0.024
SE 0.735 2.541 1.524 1.083 0.673
MSE 0.541 6.461 2.337 1.174 0.454
Rel EFF 11.947 4.321 2.171 0.839
100 Bias -0.012 -0.020 0.016 0.037 0.040
SE 0.429 1.294 0.735 0.566 0.401
MSE 0.184 1.674 0.541 0.322 0.162
Rel EFF 9.107 2.941 1.751 0.883
200 Bias -0.005 0.039 0.058 0.060 0.043
SE 0.297 0.340 0.269 0.271 0.281
MSE 0.088 0.117 0.076 0.077 0.081
Rel EFF 1.321 0.857 0.872 0.913
500 Bias 0.000 0.034 0.051 0.054 0.042
SE 0.186 0.235 0.194 0.195 0.195
MSE 0.222 0.267 0.197 0.195 0.174
Rel EFF 1.204 0.887 0.880 0.785
1000 Bias -0.002 0.015 0.035 0.040 0.038
SE 0.132 0.174 0.155 0.157 0.156
MSE 0.017 0.030 0.025 0.026 0.026
Rel EFF 1.750 1.446 1.510 1.486

'Results from phi=2results from phi=1.65esults from phi=5
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TABLE B16

Simulation results of the estimates 4f in case 7

Methods
Sample  Estimates True Model Model BMA® BMA*® BMA?®
size Assumption  Selection
50 Bias 0.023 -0.064 -0.077 -0.109 -0.165
SE 0.989 2.016 1.162 0.872 0.555
MSE 0.979 4.068 1.355 0.772 0.335
Rel EFF 4.155 1.384 0.788 0.342
100 Bias 0.010 -0.106 -0.137 -0.147 -0.191
SE 0.513 0.542 0.376 0.344 0.276
MSE 0.264 0.305 0.160 0.140 0.112
Rel EFF 1.157 0.606 0.531 0.426
200 Bias 0.002 -0.107 -0.145 -0.157 -0.201
SE 0.352 0.355 0.248 0.243 0.209
MSE 0.124 0.137 0.082 0.084 0.084
Rel EFF 1.108 0.665 0.677 0.678
500 Bias -0.003 -0.080 -0.141 -0.156 -0.202
SE 0.223 0.266 0.196 0.195 0.174
MSE 0.050 0.077 0.058 0.062 0.071
Rel EFF 1.557 1.178 1.258 1.432
1000 Bias -0.002 -0.046 -0.121 -0.140 -0.189
SE 0.155 0.205 0.177 0.178 0.165
MSE 0.024 0.044 0.046 0.051 0.063
Rel EFF 1.830 1.915 2.128 2.630

'Results from phi=2results from phi=1.65esults from phi=5
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TABLE B17

Simulation results of the estimates 4f in case 7

Methods
Sample  Estimates True Model Model BMA® BMA*® BMA?®
size Assumption  Selection
50 Bias 0.020 -0.057 -0.075 -0.110 -0.168
SE 1.008 1.987 1.117 0.840 0.553
MSE 1.016 3.951 1.252 0.718 0.334
Rel EFF 3.890 1.233 0.707 0.329
100 Bias 0.009 -0.104 -0.137 -0.147 -0.190
SE 0.518 0.483 0.345 0.331 0.279
MSE 0.269 0.244 0.138 0.131 0.114
Rel EFF 0.909 0.513 0.487 0.423
200 Bias 0.001 -0.106 -0.145 -0.158 -0.201
SE 0.352 0.357 0.247 0.242 0.208
MSE 0.124 0.139 0.082 0.084 0.084
Rel EFF 1.118 0.662 0.674 0.675
500 Bias -0.001 -0.080 -0.140 -0.156 -0.201
SE 0.222 0.267 0.197 0.195 0.174
MSE 0.049 0.077 0.058 0.062 0.071
Rel EFF 1.578 1.186 1.267 1.443
1000 Bias 0.000 -0.043 -0.119 -0.138 -0.188
SE 0.158 0.207 0.18 0.181 0.168
MSE 0.025 0.045 0.047 0.052 0.064
Rel EFF 1.787 1.863 2.066 2.541

'Results from phi=2results from phi=1.65esults from phi=5
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TABLE B18

Simulation results of the estimates 4f in case 8

Methods
Sample  Estimates True Model Model BMA® BMA? BMA?®
size Assumption Selection
50 Bias 0.410 0.842 -0.273 -0.041 -0.011
SE 3.616 6.819 4912 3.953 2.755
MSE 13.245 47.200 24.198 15.624 7.587
Rel EFF 3.564 1.827 1.180 0.573
100 Bias 0.036 -0.501 -0.782 -0.542 -0.448
SE 0.844 4.424 2.706 1.901 1.042
MSE 0.714 19.825 7.935 3.908 1.287
Rel EFF 27.776 11.117 5.476 1.803
200 Bias 0.013 -0.371 -0.279 -0.243 -0.307
SE 0.398 2.964 1.315 0.949 0.671
MSE 0.158 8.925 1.808 0.960 0.545
Rel EFF 56.376 11.422 6.066 3.440
500 Bias 0.009 0.003 -0.002 -0.016 -0.047
SE 0.244 0.341 0.277 0.290 0.327
MSE 0.059 0.116 0.077 0.084 0.109
Rel EFF 1.958 1.294 1.419 1.837
1000 Bias 0.001 -0.002 0.002 0.000 -0.001
SE 0.169 0.227 0.173 0.172 0.174
MSE 0.028 0.052 0.030 0.030 0.030
Rel EFF 1.809 1.050 1.043 1.062

'Results from phi=2results from phi=1.65esults from phi=5
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TABLE B19

Simulation results of the estimates 4f in case 8

Methods
Sample  Estimates True Model Model BMA® BMA? BMA?®
size Assumption Selection
50 Bias -1.067 -1.538 -2.763 -1.723 -0.448
SE 4.414 7.879 5.862 4.718 3.347
MSE 20.617 64.44 41.993 25.227 11.400
Rel EFF 3.126 2.037 1.224 0.553
100 Bias -0.143 -1.205 -1.636 -0.919 -0.167
SE 1.209 6.840 4.149 3.045 1.652
MSE 1.481 48.231 19.890 10.116 2.756
Rel EFF 32.568 13.431 6.831 1.861
200 Bias -0.041 -0.785 -0.461 -0.260 -0.081
SE 0.425 4.513 1.962 1.422 0.778
MSE 0.182 20.981 4.062 2.089 0.612
Rel EFF 115.306 22.323 11.480 3.361
500 Bias -0.016 -0.044 -0.024 -0.023 -0.018
SE 0.266 0.672 0.386 0.365 0.289
MSE 0.071 0.454 0.150 0.134 0.084
Rel EFF 6.379 2.104 1.880 1.182
1000 Bias -0.009 -0.016 -0.010 -0.010 -0.009
SE 0.185 0.261 0.188 0.186 0.185
MSE 0.034 0.068 0.035 0.035 0.034
Rel EFF 2.001 1.030 1.012 1.003

'Results from phi=2results from phi=1.65esults from phi=5
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TABLE B20

Simulation results of the estimates 4f in case 8

Methods
Sample  Estimates True Model Model BMA® BMA? BMA?®
size Assumption Selection
50 Bias -1.060 -1.472 -2.709 -1.682 -0.437
SE 4.408 7.794 5.844 4.709 3.345
MSE 20.554 62.900 41.487 25.002 11.376
Rel EFF 3.060 2.018 1.216 0.553
100 Bias -0.148 -1.140 -1.624 -0.907 -0.169
SE 1.210 6.755 4.131 3.047 1.692
MSE 1.486 46.924 19.702 10.106 2.893
Rel EFF 31.581 13.260 6.802 1.947
200 Bias -0.038 -0.764 -0.442 -0.245 -0.079
SE 0.424 4.424 1.916 1.392 0.811
MSE 0.181 20.152 3.865 1.997 0.664
Rel EFF 111.351 21.355 11.035 3.667
500 Bias -0.017 -0.045 -0.024 -0.022 -0.018
SE 0.264 0.581 0.336 0.307 0.267
MSE 0.070 0.340 0.114 0.095 0.072
Rel EFF 4.847 1.618 1.352 1.021
1000 Bias -0.008 -0.017 -0.009 -0.009 -0.008
SE 0.185 0.262 0.188 0.186 0.185
MSE 0.034 0.069 0.036 0.035 0.034
Rel EFF 2.006 1.036 1.015 1.003

'Results from phi=2results from phi=1.65esults from phi=5
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TABLE B21
Simulation results: percentiles of the Z-statisticler model-selection for parameter

A and A7 for case 2

n 0.01 0.025 0.05 0.1 0.5 0.9 0.95 0.975 0.99
A

50 -2.064 -1.784 -1521 -1.200 0.001 1.294 1590 1.866 2.086
100 -2.226 -1.918 -1.631 -1.257 0.001 1428 1789 2.040 2.319
200 -2.309 -2.004 -1.716 -1.366 -0.001 1436 1790 2.128 2.475
500 -2.475 -2.154 -1.849 -1.447 -0.017 1430 1.836 2.175 2.582
1000 -2.508 -2.130 -1.820 -1.437 0.015 1.446 1.866 2.187 2.587
At

50 -1.947  -1.729 -1.495 -1.231 -0.001 1.036 1.368 1.604 1.830
100 -2.156  -1.912 -1.636 -1.304 -0.001 1.392 1.812 2162 2.463
200 -2.274 -2.017 -1.771 -1.408 -0.042 1.379 1.819 2120 2.462
500 -2.467 -2.162 -1.868 -1.484 -0.036 1405 1833 2221 2611
1000 -2.507 -2.208 -1.857 -1.479 -0.041 1429 1880 2.200 2.610
Z- -2.326  -1.960 -1.645 -1.282 0.000 1.282 1.645 1960 2.326

statistic
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TABLE B22
Simulation results: percentiles of the Z-statisticler model-selection for parameter

A and 4,7 for case 3

0.01 0.025 0.05 0.1 0.5 0.9 0.95 0.975 0.99

n=50 -2.223 -1.943 -1.665 -1.302 -0.037 1.277 1.660 1.949 2.336
n=100 -2.349 -2.044 -1.731 -1.327 -0.001 1.332 1.723 2.077 2.449
n=200 -2.400 -2.031 -1.713 -1.323 -0.013 1.308 1.683 2.031 2.478
n=500 -2.512 -2.071 -1.725 -1.331 -0.019 1.294 1.700 2.054 2.419
n=1000 -2.457 -2.056 -1.686 -1.318 -0.017 1.322 1.677 1.999 2.403

n=50 -2.296 -1.547 -0.546 0.000 0.000 1.142 1.679 1.946 2.245
n=100 -2.104 -1.259 -0.284 0.000 0.000 1.304 1.701 2.015 2.295
n=200 -1.992 -1.073 -0.256 0.000 0.000 1.297 1.696 2.004 2.390
n=500 -1.835 -1.209 -0.634 -0.023 0.000 1.294 1.701 2.050 2.429
n=1000 -1.840 -1.354 -0.937 -0.464 0.000 1.319 1.680 2.001 2.386

n=50 -2.495 -1.759 -0.629 0.000 0.000 1.384 2123 2.441 2.749
n=100 -2.922 -1.406 0.000 0.000 0.000 2.628 3.625 4.174 4.692
n=200 -2.734 -1.185 0.000 0.000 0.000 4.834 5.848 6.780 7.730
n=500 -2.441 -0.910 0.000 0.000 0.000 10.081 11.783 13.266 15.152
n=1000 -1.722 -0.808 -0.054 0.000 7.194 18.028 20.389 22.602 24.954

Z-statistic -2.326 -1.960 -1.645 -1.282 0.000 1.282 1.645 1.960 2.326
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TABLE B23
Simulation results: percentiles of the Z-statisticler model-selection for parameter

A and 4,7 for case 4

001 0025 0.05 0.1 05 09 095 0975 099
it
n=50  -2.167 -1.849 -1573 -1.200 0.001 1.212 1489 1705 1.930
n=100 -2.327 -1.96 -1.603 -1.257 0.021 1.364 1.698 1.963 2.260
n=200 -2.324 -1.982 -1.681 -1.305 0.005 1.373 1.777 2062 2.416
n=500 -2.348 -2.039 -1.742 -1.338 0.028 1.356 1.728 2.045 2.441
n=1000 -2.500 -2.123 -1.784 -1.366 0.038 1.384 1.771 2132 2518
i
n=50  -1.775 -1558 -1.357 -1.111 -0.001 0.829 1.221 1527 1.884
n=100 -2.051 -1.825 -1.605 -1.302 -0.024 1.209 1593 1.906 2.237
n=200 -2.235 -1.890 -1.647 -1.307 -0.023 1.301 1.710 2.061 2.425
n=500 -2.332 -2.050 -1.724 -1.360 -0.040 1.340 1.755 2.088 2.512
n=1000 -2.474 -2.089 -1.750 -1.394 -0.031 1.342 1.749 2092 2.527
My
n=50  -1.741 -1549 -1.395 -1.185 -0.215 0516 0.952 1.329 1.775
n=100 -4.396 -4.113 -3.849 -3.500 -1.908 0.049 0.740 1.289 1.888
n=200 -9.817 -9.356 -8.952 -8.455 -6.266 -0.001 0.625 1.354 2.042
n=500 - -
-26.727 -25.951 -25.277 24.433 20.922 -0.401 0.648 1.275 2.110
n=1000 - -
-55.643 -54.381 -53.367 52.118 47.268 -0.312 0.640 1.389 2.088
Z-statistic  -2.326  -1.960 -1.645 -1.282 0.000 1.282 1.645 1.960 2.326
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TABLE B24
Simulation results: percentiles of the Z-statisticler model-selection for parameter

A and 4,7 for case 5

n 0.01 0.025 0.05 0.1 0.5 0.9 0.95 0.975 0.99
A

50 -2.179 -1958 -1.682 -1.307 0.000 0.145 1576 1.990 2.353
100 -2.386 -2.028 -1.739 -1.341 0.000 0.000 1.329 1.983 2.390
200 -2.290 -1910 -1.582 -1.258 -0.003 1.315 1.658 1.931 2.345
500 -2.347 -2.008 -1.648 -1.299 0.001 1.260 1.647 1.980 2.398
1000 -2.477 -2.086 -1.736 -1.340 -0.009 0.616 0.773 1.097 1.666
At

50 -2.516 -2.162 -1.835 -1.426 0.000 0.234 1613 2.036 2.563
100 -4.281 -3.482 -2.627 -1.610 0.000 0.000 1.222 1.927 2.496
200 -2.249 -1.897 -1.621 -1.282 -0.012 1.265 1.641 1933 2.279
500 -2.282 -1946 -1.660 -1.304 0.012 1.297 1669 1.997 2.365
1000 -29.213 -26.526 -24.22 -21.346 -2.047 0.301 0.697 1.051 1.605
zZ- -2.326  -1.960 -1.645 -1.282 0.000 1.282 1.645 1960 2.326
statistic

TABLE B25

Simulation results: percentiles of the Z-statisticler model-selection for parameter
A and 4,7 for case 6

n 0.01 0.025 0.05 0.1 0.5 0.9 0.95 0.975 0.99
A

50 -0.103 -0.001 0.000 0.000 0.000 1.284 1.598 1.855 2.078
100 -1.107 -0.531 -0.306 -0.100 0.000 1.423 1.788 2.069 2.376
200 -1.615 -1.195 -0.970 -0.730 0.000 1439 1805 2106 2.494
500 -2.223  -1.998 -1.705 -1.385 0.006 1.427 1.842 2177 2.540
1000 -2.552 -2.145 -1.801 -1.424 0.000 1.420 1.818 2.140 2.559
Y e

50 -2510 -2.250 -2.012 -1.690 -0.368 0.834 1.265 1.579 1.926
100 -6.228 -5.862 -5.485 -5.019 -1.324 0.860 1.419 1.873 2.321
200 -14.116 -13.556 -13.068 -12.445 -9.416 0.498 1.264 1.837 2.363
500 -38.171 -37.287 -36.472 -35.489 -31.411 0.004 1.167 1.806 2.280
1000 -78.442 -77.100 -76.119 -74.748 -69.017 -0.078 1.092 1.822 2.338
Z- -2.326 -1.960 -1.645 -1.282 0.000 1.282 1.645 1960 2.326

statistic
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TABLE B26
Simulation results: percentiles of the Z-statisticler model-selection for parameter

A and A7 for case 7

0.01 0.025 0.05 0.1 0.5 0.9 0.95 0.975 0.99
A
n=50 -2.220 -1.911 -1.627 -1.258 0.000 1.006 1.552 1.937 2.268
n=100 -2.318 -1.997 -1.681 -1.327 0.000 0.839 1.519 1.992 2.390
n=200 -2.311 -2.002 -1.678 -1.324 0.000 0.608 1.265 1.813 2.373
n=500 -2.392 -2.009 -1.699 -1.313 0.000 0.449 0.970 1.412 1.975
n=1000 -2.439 -2.066 -1.735 -1.354 -0.017 0.683 0.872 1.240 1.875
o
n=50 -2.297 -1.841 -1.104 0.000 0.000 1.274 1.661 1.959 2.229
n=100 -2.307 -1.724 -0.822 0.000 0.000 1.309 1.695 1.994 2.348
n=200 -2.130 -1.284 -0.601 0.000 0.000 1.293 1.651 1.995 2.341
n=500 -1.886 -1.314 -0.756 -0.163 0.000 1.306 1.680 1.982 2.383
n=1000 -1.957 -1.400 -0.955 -0.527 0.000 1.332 1.686 2.022 2.333
Ay
n=50 -2.237 -1.826 -1.046 0.000 0.000 1.271 1.691 2.024 2.412
n=100 -2.364 -1.665 -0.818 0.000 0.000 1.418 1.994 2.895 3.864
n=200 -2.366 -1.388 -0.540 0.000 0.000 1.661 3.633 5.402 6.439
n=500 -2.199 -1.148 -0.559 0.000 0.000 8.513 10.437 11.897 13.556
n=1000 -1.955 -1.147 -0.557 0.000 1.146 17.111 19.871 22.03 24.608
Z-statistic  -2.326 -1.960 -1.645 -1.282 0.000 1.282 1.645 1.960 2.326
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TABLE B27
Simulation results: percentiles of the Z-statisticler model-selection for parameter

A and 4,7 for case 8

0.01 0.025 0.05 0.1 0.5 0.9 0.95 0.975 0.99

A
n=50 -0.504 -0.003 0.000 0.000 0.000 1.197 1.486 1.675 1.869
n=100 -0.608 -0.441 -0.327 -0.141 0.000 1355 1695 1.948 2.191
n=200 -1.313 -1.147 -0.987 -0.779 0.002 1.387 1.755 2.060 2.448
n=500 -2.276 -1.983 -1.685 -1.317 0.029 1.419 1825 2.139 2.530
n=1000 -2460 -2.085 -1.754 -1381 0.003 1.366 1.740 2.087 2.473
Ay
n=50 -1.837 -1577 -1.376 -1.113 -0.002 0.889 1.238 1597 1.978
n=100 -2.045 -1.795 -1567 -1.282 -0.025 1.223 1.621 1.981 2.326
n=200 -2.193 -1.887 -1.638 -1.295 -0.008 1.295 1.740 2.063 2.512
n=500 -2.305 -2.052 -1.768 -1.424 -0.035 1339 1.750 2.106 2.587
n=1000 -2.419 -2.080 -1.755 -1.369 -0.056 1.317 1.762 2.122 2.481
s
n=50 -1.776 -1576 -1.390 -1.163 -0.101 0.799 1.179 1.540 1.944
n=100 -4.245 -3920 -3.605 -3.220 -1.117 0.802 1.337 1.697 2114
n=200 -9.864 -9.316 -8.850 -8.300 -5.843 0.320 1.009 1542 2.129
n=500 - -

-26.933 -26.055 -25.277 24.408 20.965 -0.318 0.642 1.397 2.060
n=1000 - -

-55.644 -54546 -53.541 52.203 47.169 -0.402 0.565 1.297 2.074
Z- -2.326 -1960 -1.645 -1.282 0.000 1.282 1.645 1960 2.326
statistic
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TABLE B28
Simulation results: p-values of Kolmogorov-Smirrtest of the empirical distribution of

the Z statistics ofi,;

case 1l case 2 case 3 case 4
TRUE SELECT TRUE SELECT TRUE SELECT TRUE SELECT
n=50 .0496 .0001  .0000 .0000 .0484 .0030 .0000 .0000
n=100 .1270 .0280 .0006 .0000 1795 .0121 .0001 .0000
n=200 5178 .0020 .4569 .0000 .3969 .0427 .0012 .0000
n=500 .3643 .0009 .2821 .0000 .7838 .1038 .4963 .0021

n=1000 .1884 .0104  .6222 .0000 4456 2251 .5646 .0001

case 5 case 6 case 7 case 8
TRUE SELECT TRUE SELECT TRUE SELECT TRUE SELECT
n=50 .0000 .0000 .0000 .0000 .0001 .0000 .0000 .0000
n=100 .1838 .0000 .0016 .0000 .3710 .0000 .0001 .0000
n=200 .7089 .0000 .0101 .0000 .3159 .0000 .7388 .0000
n=500 .1509 .0000 .0493 .0000 .8741 .0000 .1169 .0001
n=1000 .8958 .0000 .3493 .0000 .5736 .0000 .4852 .0000

TABLE B29
Simulation results: p-values of Kolmogorov-Smirrtest of the empirical distribution of

the Z statistics oft,;

case 1 case 2 case 3 case 4
TRUE SELECT TRUE  SELECT TRUE SELECT TRUE SELECT

n=50 .0014 .0000 .0000 .0000 .0024 .0000 .0000 .0000
n=100 .0550 .0000 .0000 .0000 .9881 .0000 .0000 .0000
n=200 .5164 .0000 .0000 .0000 4166 .0000 .0000 .0000
n=500 .8330 .0000 .0478 .0000 .0117 .0000 .0005 .0000
n=1000 .4193 .0000 .1198 .0000 .0855 .0000 .0883 .0000

case 5 case 6 case 7 case 8

TRUE SELECT TRUE SELECT TRUE SELECT TRUE  SELECT
n=50 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000

n=100 .0000 .0000 .0000 .0000 3272 .0000 .0000 .0000
n=200 .0000 .0000 .0001 .0000 .3589  .0000 .0000 .0000
n=500 9783 .0000 .0062 .0000 .6876  .0000 .0035 .0000
n=1000 .6070 .0000 .0007 .0000 .7990 .0000 .0817 .0000
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TABLE B30
Simulation results: p-values of Kolmogorov-Smirrtest of the empirical distribution of

the Z statistics oft};

case 3 case 4 case 7 case 8
TRUE SELECT TRUE SELECT TRUE SELECT TRUE SELECT
n=50 .0060 .0000 .0000 .0000 .0082 .0000 .0000 .0000
n=100 .8260 .0000 .0000 .0000 .0221 .0000 .0000 .0000
n=200 .3967 .0000 .0039 .0000 .9528 .0000 .0000 .0000
n=500 4497 .0000 .0005 .0000 .1870 .0000 .0008 .0000
n=1000 .9575 .0000 5246 .0000 .6765 .0000 .0835 .0000

TABLE B31

Empirical means, standard error for the conditiatls ratio estimator under true model
assumption, model selection, and BMA (phi=1.65%)fa50, 100, 200, 500 and 1000 for
case 2

TRUE MODEL MODEL SELECTION BMA (phi=1.65)

b Elo)  sdo)  Elp)  sdo)  Efp)  sdo)
n=50 2.655 2.032 3.077 3.443 4.022 4.731
n=100 2.745 1.518 3.444 3.889 3.880 4.416
n=200 2.754 1.097 3.164 3.253 3.062 2.888
n=500 2.731 0.685 2.826 1.067 2.761 0.770
n=1000 2.719 0.473 2.763 0.654 2.737 0.498
Oxz

n=50 0.176 0.123 0.196 0.199 0.228 0.199
n=100 0.155 0.076 0.157 0.089 0.164 0.104
n=200 0.145 0.050 0.145 0.053 0.145 0.051
n=500 0.139 0.031 0.139 0.033 0.139 0.031
n=1000 0.137 0.021 0.137 0.022 0.137 0.021
Oy,

n=50 0.801 0.125 1.063 1.174 1.313 1.277
n=100 0.887 0.057 1.216 1.384 1.324 1.437
n=200 0.941 0.022 1.132 1.130 1.085 1.014
n=500 0.976 0.006 1.029 0.356 0.993 0.178
n=1000 0.988 0.002 1.012 0.217 0.994 0.089
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TABLE B32

Empirical means, standard error for the conditiatls ratio estimator under true model
assumption, model selection, and BMA (phi=1.65%)f850, 100, 200, 500 and 1000 for
case 3

TRUE MODEL MODEL SELECTION BMA (phi=1.65)
b Elo)  sdo)  Elp)  sdo)  Efp)  sdo)
n=50 0.870 0.486 0.985 1.737 1.012 1.776
n=100 0.818 0.336 0.847 0.541 0.826 0.483
n=200 0.777 0.227 0.790 0.305 0.779 0.230
n=500 0.754 0.141 0.759 0.172 0.758 0.141
n=1000 0.748 0.097 0.750 0.117 0.749 0.098

TABLE B33
Empirical means, standard error for the conditiatls ratio estimator under true model

assumption, model selection, and BMA (phi=1.6%)ne50, 100, 200, 500 and 1000 for
case 4

TRUE MODEL MODEL SELECTION BMA (phi=1.65)
b Ep)  sdo)  Elo)  sdo)  El)  sdo)
n=50 2.429 1.653 2.746 3.694 3.521 4.560
n=100 2.589 1.350 2.967 3.081 3.437 3.241
n=200 2.659 1.001 3.085 3.162 3.101 2.856
n=500 2.704 0.636 2.805 1.286 2.721 0.839
n=1000 2.714 0.457 2.742 0.635 2.707 0.461
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TABLE B34

Empirical means, standard error for the conditiatls ratio estimator under true model
assumption, model selection, and BMA (phi=1.65%)fa50, 100, 200, 500 and 1000 for
case 5

TRUE MODEL MODEL SELECTION BMA (phi=1.65)

b Elo)  sdo)  Elp)  sdo)  Efp)  sdo)
n=50 0.91 0.541 1.043 1.435 0.986 1.25
n=100 0.825 0.349 0.901 0.587 0.874 0.278
n=200 0.789 0.239 0.846 0.306 0.855 0.186
n=500 0.757 0.145 0.801 0.206 0.831 0.151
n=1000 0.749 0.101 0.771 0.151 0.816 0.13
Oxz

n=50 0.921 0.536 1.098 1.902 1.007 1.788
n=100 0.825 0.346 0.903 0.577 0.878 0.284
n=200 0.784 0.234 0.844 0.304 0.853 0.189
n=500 0.76 0.146 0.802 0.202 0.835 0.148
n=1000 0.75 0.103 0.773 0.154 0.812 0.131
Oz

n=50 1.056 0.139 1.385 2.42 1.262 1.954
n=100 1.024 0.027 1.15 1.081 1.061 0.392
n=200 1.011 0.008 1.07 0.404 1.03 0.195
n=500 1.004 0.002 1.026 0.222 1.013 0.103
n=1000 1.002 0.001 1.014 0.159 1.008 0.062
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TABLE B35

Empirical means, standard error for the conditiaals ratio estimator under true model
assumption, model selection, and BMA (phi=1.65%)fa50, 100, 200, 500 and 1000 for
case 6

TRUE MODEL MODEL SELECTION BMA (phi=1.65)

b Eo)  sdo)  El)  sdo)  Efp)  sdo)
n=50 2.728 2.146 2.881 4.160 3.343 4.361
n=100 2.727 1.530 3.245 4.035 3.219 4.244
n=200 2.736 1.064 3.070 3.166 2.678 2.833
n=500 2.725 0.670 2.806 1.042 2.675 0.820
n=1000 2.721 0.472 2.767 0.662 2.733 0.508
Oxz

n=50 0.174 0.118 0.188 0.183 0.214 0.184
n=100 0.154 0.075 0.156 0.086 0.161 0.096
n=200 0.145 0.050 0.145 0.053 0.145 0.051
n=500 0.138 0.030 0.138 0.032 0.139 0.031
n=1000 0.137 0.021 0.137 0.022 0.137 0.022
Oz

n=50 0.797 0.125 0.989 1.034 1.282 1.250
n=100 0.887 0.057 1.184 1.357 1.260 1.387
n=200 0.940 0.023 1.119 1.127 1.046 0.989
n=500 0.976 0.006 1.022 0.360 0.984 0.162
n=1000 0.988 0.002 1.012 0.216 0.992 0.085
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TABLE B36

Empirical means, standard error for the conditiatls ratio estimator under true model
assumption, model selection, and BMA (phi=1.6%)fa50, 100, 200, 500 and 1000 for
case 7

TRUE MODEL MODEL SELECTION BMA (phi=1.65)
b Elo)  sdo)  Elp)  sdo)  Efp)  sdo)
n=50 0.879 0.486 1.015 1.696 0.955 1.038
n=100 0.813 0.334 0.875 0.651 0.850 0.313
n=200 0.778 0.227 0.826 0.281 0.820 0.197
n=500 0.757 0.140 0.790 0.186 0.799 0.145
n=1000 0.747 0.098 0.764 0.138 0.782 0.120

TABLE B37

Empirical means, standard error for the conditiatls ratio estimator under true model
assumption, model selection, and BMA (phi=1.65%)f850, 100, 200, 500 and 1000 for
case 8

TRUE MODEL MODEL SELECTION BMA (phi=1.65)

O E(p)  sd)  Elp)  sdo)  Elp) )

n=50 2.429 1.693 2.493 3.575 2.982 5.103
n=100 2.551 1.304 2.743 3.017 2.831 2.931
n=200 2.657 0.994 3.010 3.303 2.734 2.622
n=500 2.709 0.65 2.799 1.315 2.658 0.805
n=1000 2.704 0.451 2.737 0.640 2.710 0.461
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FIGURE B1. Q-Q plot of the Z-statistics for testipgrameters (a},;’ under true model
assumption; (b))’ under model selection condition; (¢} under true model

assumption; (d®,¥ under true model assumption for case 2, n=500.
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FIGURE B2. Q-Q plot of the Z-statistics for testipgrameters (a},;’ under true model
assumption; (b)) under model selection condition; (¢} under true model
assumption; (d®,¥ under true model assumption; @&} under true model assumption;

(f) ¥ under model selection for case 3, n=500.
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FIGURE B3. Q-Q plot of the Z-statistics for testipgrameters (a},;’ under true model
assumption; (b))’ under model selection condition; (¢} under true model
assumption; (d®,¥ under true model assumption; @&} under true model assumption;

(f) ¥ under model selection for case 4, n=500.
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FIGURE B4. Q-Q plot of the Z-statistics for testipgrameters (a},;" under true model
assumption; (b};;" under model selection condition; (¢} under true model

assumption; (d®,¥ under true model assumption for case 5, n=500.
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Appendix C: Pilot Study
Data Generation

All simulation was carried out by the programstten and executed using R and
1,000 iterations were conducted for each condifldre IPF algorithm was used to
estimate expected cell frequencies.

This simulation study was built around the Drugpda Agresti (2002)’s work.
Agresti (2002, p323) gave an example of the moelelction process. The data were
from a 1992 survey by the Wright State Universitgd ghe United Health Services. The
Survey asked 2276 final year of high school stuiglanDayton, Ohio whether they had
ever used alcohol, cigarettes, or marirjuana. Espandents were cross-classified by
alcohol use, cigarette use, and marijuana use. thige factors, it was easy to look at all
possible models. Agresti investigated 9 possibldetsfor the three-way contingency
table. He suggested AIC could be used in this bfpeodel comparison. Judging by
minimum AIC, the all-two-factor-interaction modd the best. His data were reproduced
in Table C1.

The true model that generated the data in thet piudy were (AC, AM, CM),
since this was the model chosen based on the Ati€}iar The sampling scheme was
assumed to be multinomial: MN(Rig Pr12P121,P122P211,P212, P221,0222). Fienberg (2007)
argued that “Few, if any, large-scale sample sigyey, use simple random samples
leading to the multinomial sampling model.” Indlsitudy, complex survey design was
not taken into consideration and a simple randamp$awas assumed.

The effects used to generate data are from theg®@lysis of drug data based on

the model (AC, AM, CM). First, the cell probabiéi and cumulative cell probabilities
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are calculated (see Table C1). Second, for eadradison, a uniform distribution is
generatedy, ~ Uniform(O,l) and is compared to the cumulative cell probabsitilf U,

is smaller than 0.399992619, it is assigned tac#lleof “marijuana (Yes) cigarette (Yes)
alcohol (Yes).” IfU, is between 0.399992619 and 0.636643234, it is @sgitp the cell
of “marijuana (No) cigarette (Yes) alcohol (Yé®tc. Third, for each sample, five
possible models are compared: (A,C,M), (AC,M), (AM]),(AC, AM,CM), (ACM).

The best model was selected by minimizing AIC

AIC= -2(maximized log likelihood — number of paraers in the model)

or, equivalently, minimizing (&2*df). The distributions of the estimated oddsaatere

the interest in the pilot study.

TABLE C1
Fitted values, proportions and cumulative proposiof the model (AC,AM, CM)
marijuana cigarette alcohol Model proportions cumula_tlve
(AC,AM,CM) proportions
Yes Yes Yes 910.3832 0.3999926 0.399992619
No Yes Yes 538.6168 0.2366506 0.636643234
Yes No Yes 44.61683 0.0196031 0.656246410
No No Yes 455.3832 0.2000804 0.856326902
Yes Yes No 3.61683 0.0015891 0.857916019
No Yes No 42.38317 0.0186217 0.876537799
Yes No No 1.38317 0.0006077 0.877145518
No No No 279.6168 0.1228544 1

Preliminary Results

Preliminary results of this simulation are showmable C2. The sample size
varies from 50, 100, 200, 500, 1000, to 2000.

The relative bias is defined as the empirical m@zater model selection minus
the empirical mean under the true model. The stanelaor ratio is defined as the
empirical standard error under model selectionddigliby the empirical standard error
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under the true model. Figure C1 shows the distobstof the two estimators of

éCM when sample size is 500. At this relative largedamize, the disparity of the

distribution is very obvious. The distribution é@M under model selection had two peaks

while the one under true model had only one. Is tlise, the relative bias was .499, and

the standard error ratio was 2.761.
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S

0 5 10 15 20 25 30

FIGURE C1. The distributions of two odds ratiomsitor éCM , post-model-selection
estimator (dashed) vs. true model assumption (salen sample size equals 500.

Take the odds ratio estimates of association betwémohol and Cigarettes
(éAC) for example. The percentage of selecting thermodel ranged from .76 to .93, it

did not seem to have a directional relationshihie sample size, i.e., increasing the
sample size does not indicate the rate of chodhmgorrect model rises. The mean of
odds ratio estimators (both obtained by model siele@and by the true model) went

down from around 9.7 to around 7.8 as sample s@eases. The relative bias changed
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sign unpredictably when sample increases. Theatie.was relatively stable irrespective

of sample size.
Odds ratioéCM showed much more dramatic results. The relative iniereased

from .081 to 7.273 when sample size increased B0ro 2000. The standard error ratio
increased from 1.242 to 8.995 as sample size isedefrom 50 to 2000. This was against
the anticipation that similar with linear regressithe difference in the empirical mean
would diminish and the difference in the standardrenvould stay when sample size
increases. When sample size was 2000, under meldetisn, the empirical mean is
21.108 and the standard error 22.281; one would draonclusion that this odds ratio
was not significantly different from 1. However,the same sample size, under the true
model, the empirical mean was 13.835 and standavdie 2.477; one would draw a
conclusion that this odds ratio was significantifyedent from 1. Consequently, the
independence relationship between variable Marguand Cigarettes was different under

these two conditions.
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TABLE C2

Empirical Means, standard error for the conditiamdds ratio estimators (model selection vs. no mselection)

percentage of

time a true
model is

sample size selected True model Model selection

éAC E(éAC ) SE(éAc ) E(é AC ) SG(éAC ) emlg;:{(?;??r?galr?s se ratio
n=50 0.752 9.714 9.629 9.562 9.996 -0.152 1.038
n=100 0.900 10.494 10.730 10.645 11.217 0.151 1.045
n=200 0.936 9.706 9.092 9.916 10.215 0.210 1.124
n=500 0.870 8.343 3.560 8.304 3.680 -0.039 1.034
n=1000 0.816 8.082 2.309 8.071 2.350 -0.011 1.018
n=2000 0.769 7.931 1.536 7.950 1.563 0.019 1.018
éAM E(éAM ) S4éAM ) E(éAM ) S4éAM )

n=50 0.752 1.983 1.942 1.930 1.970 -0.053 1.014
n=100 0.900 2.965 2.185 2.963 2.269 -0.002 1.038
n=200 0.936 4.787 2.830 4.765 2.940 -0.022 1.040
n=500 0.870 8.858 4.276 8.783 4.761 -0.075 1.113
n=1000 0.816 12.847 5.937 13.489 7.504 0.642 1.264
n=2000 0.769 16.015 7.002 20.425 14.470 4.410 2.067
éCM E(éCM ) S4éCM ) E(éCM ) SdéCM )

n=50 0.752 7.749 6.435 7.830 7.993 0.081 1.242
n=100 0.900 9.127 8.496 9.907 12.841 0.780 1.511
n=200 0.936 9.242 7.196 10.184 15.974 0.942 2.220
n=500 0.870 10.045 3.900 10.544 10.769 0.499 2.761
n=1000 0.816 11.800 3.306 14.305 15.093 2.505 4.565
n=2000 0.769 13.835 2.477 21.108 22.281 7.273 8.995
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Appendix D: R Code

Pilot Study

library(MASS)
repnumber=10000
theta.select=c()
theta=c()

theta2=c()
theta2.select=c()
theta3=c()
theta3.select=c()
counter=0
samplesize=100

for (j in 1:repnumber){
U=c()
€1=0;c2=0;c3=0;c4=0,c5=0;c6=0;c7=0;c8=0

for (i in 1:samplesize){

U[i]=runif(1,0,1)

if (U[i]>=0 & U[i]<=0.399992619) c1=c1+1
if(U[i]>0.399992619 & UJ[i]<=0.636643234) c2=c2+1

if (U[i]>0.636643234 & U[i]<=0.65624641) c3=c3+1

if (U[i]>0.65624641 & UJ[i]<=0.856326902) c4=c4+1
if (U[i]>=0.856326902 & U[i]<=0.857916019) c5=c5+1
if(U[i]>0.857916019 & UJ[i]<=0.876537799) c6=c6+1

if (U[i]>0.876537799 & UJ[i]<=0.877145518) c7=c7+1
if (U[i]>0.877145518 & U[i]<=1) c8=c8+1

}
#cl;c2;c3;c4;c5;c6;c7;c8

table.1=data.frame(expand.grid(marijuana=factor(c(" Yes","No"),levels=c("No","Yes")),
cigarette=factor(c("Yes","No"),levels=c("No ""Yes")),
alcohol=factor(c("Yes","No"),levels=c("No"," Yes")),

count=c(c1,c2,c3,c4,c5,c6,c7,c8))
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fitACM=logim(count~alcohol*cigarette*marijuana,data
fitAC.AM.CM=update(fitACM,.~.-alcohol:cigarette:mar
fitAM.CM=update(fitAC.AM.CM,.~.-alcohol:cigarette)

fitAC.M=update(fitAC.AM.CM,.~.-alcohol:marijuana-ci

fitA.C.M=update(fitAC.M,.~.-alcohol:cigarette)

m1=fitACM$deviance-2*fitACM$df
m2=fitAC.AM.CM$deviance-2*fitAC.AM.CM$df
m3=fitAM.CM$deviance-2*fitAM.CM$df
m4=fitAC.M$deviance-2*fitAC.M$df
m5=fitA.C.M$deviance-2*fitA.C.M$df

aic=c(m1,m2,m3,m4,m5)

ind=which.min(aic) #find the index of the minim

if (ind==1){f.1=c(aperm(fitted(fitACM))); theta.sel

if

(ind==2){f.2=c(aperm(fitted(fitAC.AM.CM)));theta.se

theta2.select[j]=(f.2[1]+.5)*(f.2[6]+.5)/((f.2[2]+

theta3.select[j]=(f.2[1]+.5)*(F.2[4]+.5)/((F.2[2]+

if (ind==3){f.3=c(aperm(fitted(fitAM.CM)));theta.se

if (ind==4){f.4=c(aperm(fitted(fitAC.M)));theta.sel

if (ind==5){f.5=c(aperm(fitted(fitA.C.M)));theta.se

=table.1,param=T fit=T) #ACM-------- model 1
jjuana) #AC,AM,CM---model 2

garette:marijuana)

#calculate AIC's

um of the vector aic

#compute theta of AC of this best fit mode I

ect[jl=(f.1[1]+.5)*(f.1[7]+.5)/((f.1[3]+.5)*(f.1[5]
theta2.select[j]=(f.1[1]+.5)*(f.1[6]+.5)/((f
theta3.select[j]=(f.1[1]+.5)*(f.1[4]+.5)/((f

+.5));
A[2]+.5)*(f.1[5]+.5))
.1[2]+.5)*(f.1[3]+.5))}

lect[jl=(f.2[1]+.5)*(F.2[7]+.5)/((F.2[3]+.5)*(F.2[5
counter=cou nter+1;

1+.9));

5)*(f.2[5]+.5))
5)*(f.2[3]+.5))}
lect[j]=(F.3[1]+.5)*(F.3[7]+.5)/((f.3[3]+.5)*(.3[5

theta2.select[j]=(f.3[1]+.5)*(f.3[6]+5)/((f
theta3.select[j]=(f.3[1]+.5)*(f.3[4]+5)/((f

]+.5))
.3[2]+.5)*(f.3[5]+.5))
.3[2]+.5)*(f.3[3]+.5))}

ectj]=(F.4[1]+.5)*(f.4[7]+.5)/((f.4[3]+.5)*(F.4[5]
theta2.select[j]=(f.4[1]+.5)*(F.4[6]+.5)/((f
theta3.select[j]=(f.4[1]+.5)*(F.4[4]+.5)/((f

+.5))
A[2]+.5)*(F.4[5]+.5))
AA[2]+.5)*(F.4[3]+.5))}
lect[j]=(F.5[1]+.5)*(F.5[7]+.5)/((f.5[3]+.5)*(F.5[5
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d.2=c(aperm(fitted(fitAC.AM.CM)))
theta[j]=(d.2[1]+.5)*(d.2[7]+.5)/((d.2[3]+.5)*(d.2[
theta2[j]=(d.2[1]+.5)*(d.2[6]+.5)/((d.2[2]+.5)*(d.2
theta3[j]=(d.2[1]+.5)*(d.2[4]+.5)/((d.2[2]+.5)*(d.2

}

counter

mean(theta);var(theta)
mean(theta.select);var(theta.select)
mean(theta?2);var(theta2)
mean(theta2.select);var(theta2.select)
mean(theta3);var(theta3)
mean(theta3.select);var(theta3.select)
plot(density(theta),lwd=1,lty=1,col="black",ann=FAL
plot(density(theta.select),lwd=1,Ilty=2,col="red",an

theta2.select[j]=(f.5[1]+.5)*(f.5[6]+.5)/((f
theta3.select[j]=(f.5[1]+.5)*(f.5[4]+.5)/((f

5]+.5))
[5]+.5))
[3]+.5))

SE, las=1,ylim=c(0,2),xlim=c(-2,2))
n=FALSE, las=1, ylim=c(0,30),xlim=c(0,5))
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Classical Analysis of Model (AM,CM,AC) of the Drug Data

table.8.3<-data.frame(expand.grid(
marijuana=factor(c("Yes","No"),levels=c("No","Yes"
cigarette=factor(c("Yes","No"),levels=c("No","Yes"
alcohol=factor(c("Yes","No"),levels=c("No","Yes"))
count=c(911,538,44,456,3,43,2,279))

options(contrasts=c("contr.treatment”,"contr.poly")
fit.glm<-glm(count~."2, data=table.8.3, family=pois

BMA Sensitivity Analysis of the Drug Data

library(MASS)
library(BMA)
T HHHAHHHH#SET FOUR: uniform priors ###H#

# columns correspond to C, M, A, CM, AC, AM, AMC
x=rbind(
c(1,1,1,1,1,1,1),
¢(1,0,1,0,1,0,0),
¢(0,1,1,0,0,1,0),
¢(0,0,1,0,0,0,0),
¢(1,1,0,1,0,0,0),
¢(1,0,0,0,0,0,0),
¢(0,1,0,0,0,0,0),
¢(0,0,0,0,0,0,0))
n=c(1,1,1,1,1,1,1,1)
y=c(911,538,44,456,3,43,2,279)
model9=rbind(
¢(1,1,1,0,0,0,0), #model (A,C,M)
c(1,1,1,0,1,0,0), #model (M,AC)
c(1,1,1,1,0,0,0), #model (A,CM)
¢(1,1,1,0,0,1,0), #model (C,AM)
c(1,1,1,1,0,1,0), #model (AM,CM)
c(1,1,1,0,1,1,0), #model (AC,AM)
c(1,1,1,1,1,0,0), #model (AC,CM)
c(1,1,1,1,1,1,1), #model (ACM)
c(1,2,1,1,1,1,0) #model (AC,AM,CM)

glib.drug <- glib(x,y,n,error="poisson",link="log",

glib.drug$glim.est$coef
glib.drug$inputs$phi
glib.drug$bf$postprob

HHHHHHR I #H#SET ONE: based on problem-beha
T

# columns correspond to C, M, A, CM, AC, AM, AMC
x=rbind(

c(1,1,1,1,1,1,1),

¢(1,0,1,0,1,0,0),

¢(0,1,1,0,0,1,0),

¢(0,0,1,0,0,0,0),

c(1,1,0,1,0,0,0),

),
),
),

son)

HHAHHHH

models=model9)
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¢(1,0,0,0,0,0,0),

¢(0,1,0,0,0,0,0),

¢(0,0,0,0,0,0,0))
n=c(1,1,1,1,1,1,1,1)
y=c(911,538,44,456,3,43,2,279)
model9=rbind(
c(1,1,1,0,0,0,0), #model (A,C,M)
¢(1,1,1,0,1,0,0), #model (M,AC)
¢(1,1,1,1,0,0,0), #model (A,CM)
c(1,1,1,0,0,1,0), #model (C,AM)
c(1,1,1,1,0,1,0), #model (AM,CM)
c(1,1,1,0,1,1,0), #model (AC,AM)
c(1,1,1,1,1,0,0), #model (AC,CM)
c(1,1,1,1,1,1,1), #model (ACM)
c(1,1,1,1,1,1,0) #model (AC,AM,CM)

glib.drug <- glib(x,y,n,error="poisson",link="log",
pmw=c(1,1.3,1.3°2,1.373,1.3"4,1.3"5,1.3"6,1.3"7,1.3

glib.drug$bf$postprob

P HHHHF#SET TWO: based on lifestyle the
model9=rbind(

¢(1,1,1,0,0,0,0), #model (A,C,M)
c(1,1,1,0,1,0,0), #model (M,AC)
c(1,1,1,1,0,0,0), #model (A,CM)
c(1,1,1,0,0,1,0), #model (C,AM)
c(1,1,1,0,1,1,0), #model (AC,AM)
c(1,1,1,1,1,0,0), #model (AC,CM)
c(1,1,1,1,1,1,1), #model (ACM)
c(1,1,1,1,1,1,0), #model (AC,AM,CM)
c(1,1,1,1,0,1,0) #model (AM,CM)

)

glib.drug <- glib(x,y,n,error="poisson",link="log",
pmw=c(1,1.3,1.3*2,1.373,1.3"4,1.375,1.3"6,1.3"7,1.3

glib.drug$bf$postprob

HHHHHHHHHAH A SET THREE: based on lifestyle the
model9=rbind(

¢(1,1,1,0,0,0,0), #model (A,C,M)
c(1,2,1,1,0,1,0), #model (AM,CM)
¢(1,1,1,0,0,1,0), #model (C,AM)
c(1,1,1,1,1,1,0), #model (AC,AM,CM)
c(1,1,1,0,1,1,0), #model (AC,AM)
c(1,1,1,1,1,1,1), #model (ACM)
¢(1,1,1,0,1,0,0), #model (M,AC)
c(1,1,1,1,1,0,0), #model (AC,CM)
c(1,1,1,1,0,0,0) #model (A,CM)

)

glib.drug <- glib(x,y,n,error="poisson",link="log",
pmw=c(1,1.3,1.3°2,1.373,1.3"4,1.3"5,1.3"6,1.3"7,1.3

glib.drug$bf$postprob
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Model Weights via Bootstrapping Model Averaging

library(MASS)

countdata=c(911,538,44,456,3,43,2,279)

cumsum(countdata)

f1=0;f2=0;f3=0;f4=0;f5=0;f6=0;f7=0;f8=0;f9=0 #fr equencies
for (iin 1:1000){

this.ind<-sample(2276,2276,replace=TRUE)

#calculate the cell frequencies of this bootstrape sample
cl=length(this.ind[this.ind<=911])

c2=length(this.ind[911<this.ind & this.ind<=1449])
c3=length(this.ind[1449<this.ind & this.ind<=1493])
c4=length(this.ind[1493<this.ind & this.ind<=1949])
c5=length(this.ind[1949<this.ind & this.ind<=1952])
c6=length(this.ind[1952<this.ind & this.ind<=1995])
c7=length(this.ind[1995<this.ind & this.ind<=1997])
c8=length(this.ind[1997<this.ind & this.ind<=2276])

table.1=data.frame(expand.grid(
marijuana=factor(c("Yes","No"),levels=c("No","Yes") ),

cigarette=factor(c("Yes","No"),levels=c("No","Y es™),
alcohol=factor(c("Yes","No"),levels=c("No","Yes")))
count=c(c1,c2,c3,c4,c5,c6,c7,c8))

fitACM=glm(count~alcohol*cigarette*marijuana,data=t able.1,family=poisso
n(link=log)) #ACM
fitAC.AM.CM=update(fitACM,.~.-alcohol:cigarette:mar ijjuana)#AC,AM,CM
fitAM.CM=update(fitAC.AM.CM,.~.-alcohol:cigarette) #AM,CM
fitAM.AC=update(fitAC.AM.CM,.~.-cigarette:marijuana ) #AM,AM
fitAC.CM=update(fitAC.AM.CM,.~.-alcohol:marijuana) #AC,CM
fitAC.M=update(fitAC.AM.CM,.~.-alcohol:marijuana-ci garette:marijuana)
#ACM

fitAM.C=update(fitAC.AM.CM,.~.-alcohol:cigarette-ci garette:marijuana)
#AM,C

fitCM.A=update(fitAC.AM.CM,.~.-alcohol:cigarette-al cohol:marijuana)
#CM,A

fitA.C.M=update(fitAC.M,.~.-alcohol:cigarette)

#A,C,M

m1=fitACM$aic
m2=fitAC.AM.CM$aic
m3=fitAM.CM$aic
m4=fitAM.AC$aic
m5=fitAC.CM$aic
m6=fitAC.M$aic
m7=fitAM.C$aic
m8=fitCM.A$aic
m9=fitA.C.M$aic
aic=c(m1,m2,m3,m4,m5,m7,m8,m9)
ind=which.min(aic)

if (ind==1){f1=f1+1}

if (ind==2){f2=f2+1}

if (ind==3){f3=f3+1}

if (ind==4){f4=f4+1}

if (ind==5){f5=f5+1}
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if (ind==6){f6=f6+1}
if (ind==7){f7=f7+1}
if (ind==8){f8=f8+1}
if (ind==9){f9=f9+1}}
fre=c(f1,f2,f3,f4,15,6,17,f8,{9)
weight=fre/sum(fre)

Model Weights via AIC Approximation

countdata=c(911,538,44,456,3,43,2,279)
table.1=data.frame(expand.grid(
marijuana=factor(c("Yes","No"),levels=c("No","Yes")
cigarette=factor(c("Yes","No"),levels=c("No","Yes")
alcohol=factor(c("Yes","No"),levels=c("No","Yes")))
count=countdata)

fitACM=glm(count~alcohol*cigarette*marijuana,data=t
n(link=log))
fitAC.AM.CM=update(fitACM,.~.-alcohol:cigarette:mar
fitAM.CM=update(fitAC.AM.CM,.~.-alcohol:cigarette)
fitAM.AC=update(fitAC.AM.CM,.~.-cigarette:marijuana
fitAC.CM=update(fitAC.AM.CM,.~.-alcohol:marijuana)
fitAC.M=update(fitAC.AM.CM,.~.-alcohol:marijuana-ci
#AC,M
fitAM.C=update(fitAC.AM.CM,.~.-alcohol:cigarette-ci
#AM,C
fitCM.A=update(fitAC.AM.CM,.~.-alcohol:cigarette-al
#CM,A

fitA.C.M=update(fitAC.M,.~.-alcohol:cigarette)

#A,C,M

m1=fitACM$aic

m2=fitAC.AM.CM8$aic

m3=fitAM.CM$aic

m4=fitAM.AC$aic

m5=fitAC.CM$aic

m6=fitAC.M$aic

m7=fitAM.C$aic

m8=fitCM.AS$aic

m9=fitA.C.M$aic

aic=c(m1,m2,m3,m4,m5,m7,m8,m9)
weight=exp(-aic/2)

normedwt=weight/sum(weight)
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jjuana) #AC,AM,CM
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) #AM,AM
#AC,CM

garette:marijuana)
garette:marijuana)

cohol:marijuana)
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