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It is common practice for researchers in the social sciences and education to use 

model selection techniques to search for best fitting models and to carry out inference as 

if these models were given a priori. This study examined the effect of model selection on 

inference in the framework of loglinear modeling. The purposes were to (i) examine the 

consequences when the behavior of model selection is ignored; and (ii) investigate the 

performance of the estimator provided by the Bayesian model averaging method and 

evaluate the usefulness of the multi-model inference as opposed to the single model 

inference.  

The basic finding of this study was that inference based on a single “best fit” 

model chosen from a set of candidate models leads to underestimation of the sampling 

variability of the parameters estimates and induces additional bias in the estimates.  The 

results of the simulation study showed that due to model uncertainty the post-model-

selection parameter estimator has larger bias, standard error, and mean square error than 

the estimator under the true model assumption. The same results applied to the 

conditional odds ratio estimators. The primary reason for these results is that the 

sampling distribution of the post-model-selection estimator is, in actuality, a mixture of 

distributions from a set of candidate models. Thus, the variability of the post-model-



selection estimator has a large component from selection bias. While these problems 

were alleviated with the increase of sample size, the interpretation of the p-value of the Z-

statistic of the parameters was misleading even when sample size was quite large. To 

avoid the problem of inference based on a single best model, Bayesian model averaging 

adopts a multi-model inference method, treating the weighted mean of the estimates from 

each model in the set as a point estimator, where the weights are derived using Bayes’ 

theorem. Generally speaking, the simulation results confirmed the efficacy of the BMA 

method as compared with data-driven single “best-fit” model inference. 
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Chapter 1: Introduction 

1.1 Introduction to the Dilemma of Model Selection 

 Model selection is the process of choosing an appropriate model from a set of 

candidate models, given the data. Model selection is thought to be “important and 

unavoidable.” (Raftery, 1995). In practice, it is not possible to specify the correct model 

for relations among variables in a data set.  In the absence of knowledge about the true 

model, it is natural for investigators to fit several candidate models to the data and choose 

the one with, in some sense, the best fit. If one of the research questions is to find out the 

most convincing theory among several competing ones, which are represented by 

different statistical models, then model selection is an essential part of the research.  

When the model selection procedure is applied, one question is asked implicitly: 

among the set of models, which one most likely to have produced the data. Various 

model selection techniques have been proposed to address this question. Once a model is 

selected, the model is used to estimate model parameters as if the model were the true 

model. In other words, the data are analyzed as if they were generated by the selected 

model. A major criticism of this approach is that the model is selected based on a data-

driven criterion and the same data are used to select the model and estimate the 

parameters (Hurvich & Tsai, 1990). When one first chooses a best model and then bases 

the inferences on that model, one ignores the uncertainty involved in the choice of this 

best model which may have a large effect on estimates of parameters of interest. This 

problem is well known and has been widely discussed in the research literature 

(Chatfield, 1995).  
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The reasoning underlying the modeling process in conventional inferential 

statistics is shown in Figure 1. First, we impose a model on a specified population and 

assume that the population data are generated by this model. Then an observed sample 

drawn (in theory) from the population is used to estimate the parameters of the model. An 

assumption in using the sample data to estimate the parameters of the model is that the 

model is given a priori. Of course, the a priori model may be incorrect; that is, 

misspecified. If the model is selected based on the data, then the assumption is violated 

and the parameter estimation is dependent on the outcome of a model selection process. 

Therefore, the estimates may be biased, the standard errors may be biased, the coverage 

of the confidence interval may not be at nominal levels, and inferences derived from 

these estimators may be misleading. Hurvich and Tsai (1990) pointed out “Conditionally 

on the event of having selected a particular model, the distribution of the data may be 

substantially different from their unconditional distribution.”  Zhang (1992) commented 

on this process as “logically unsound and practically misleading.”  

 

FIGURE 1. The "model a priori" assumption in conventional inferential statistics. 

 

1.2  An Illustrative Example 

As an illustration of the problem, consider a hypothetical example of linear 

regression. Suppose, in an empirical study, the researcher has one response variable Y, 
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and two possible explanatory variables X1 and X2.  Assume that the researcher is 

primarily interested in the effect associated with variable X1 and that variable X2 is 

treated as an auxiliary variable. Whether or not X2 enters into the regression equation 

depends on analysis of the sample data. Thus, assuming that the “true model” is unknown 

to the researcher, two candidate models exist:  

Unrestricted model:             uuuuu xxy εβββ +++= 22110     
(1) 

Restricted model:                 rrrr xy εββ ++= 110      (2) 

Suppose model (1) is the “true model.”  The researcher uses a-data-driven method 

to select between the two models and then estimates the parameter of interest, .1uβ  This 

leads to what has been called  the “pretest estimator” (Judge and Bock, 1978). The 

procedure to obtain the “pretest estimator,” *
1β  , say, is: 

(1) conduct a two-sided t test for the regression coefficient 2β  where the test hypotheses 

are:  

H0: 2β =0 vs. H1: 2β ≠0.  

(2) if  ||
2β

t ≥  c, where c is the critical value of student’s t with α=.05, say, reject H0  and 

use the unrestricted model to estimate .1β  

 (3) otherwise retain H0  and use the restricted model to estimate 1β .  

In summary,  

   ( ) ru 11
*
1

ˆ1ˆ βδβδβ −+=      (3) 

where 1=δ  if ||
2β

t ≥  c or δ= 0 otherwise; note that r1β̂ is the OLS estimator from the 

restricted model and u1β̂  is the OLS estimator from the unrestricted model. For a linear 
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regression model εXβy += , the OLS of β is obtained from yxT-1T x)(xβ̂ = , the 

variance and standard error are 2-1T σx)(xβ̂var = , and ( ) ( ) σ̂xxβ̂se
1T

i

−
= ii , and the t 

statistic is obtained from 
i

tβ = iβ̂ / ( )iβ̂se .  

 When this two-stage process is performed over repeated samples, the empirical 

sampling distribution of the “pretest estimator,”  *
1β  can be obtained. Clearly, it is a 

mixture of the distributions of r1β and u1β . Their mixing proportion is the proportion of 

times when the test hypothesis, H0:  2β =0,  is rejected. In general, the empirical sampling 

distribution of  *
1β  is different from that of u1β , which suggests that the means and 

standard errors of these distributions might differ to a non-trivial degree.   

Figure 2 shows the empirical distributions of these empirical distributions for two 

estimators over 10,000 repeated samples of sizes 25, 50 and 200 in a simulation study 

(Gao & Dayton, 2008). For our illustrative purposes, we take a very severe case when the 

correlation between X1 and X2 is -.9, the correlation between Y and X2 is -.8, and the 

correlation between Y and X1 is .8. Plots (a) and (b) show that when sample size is 25 

and 50, the distributions are substantially different in terms of mean and variance, even 

the shapes of distributions are different. While u1β  is unimodal, *
1β  becomes bimodal. 

Also the density *
1β  is more variable than the corresponding density of u1β . When the 

sample size increases to 200, the difference between the two estimators becomes very 

small as shown in plot (c). This is a special instance of a more general problem that 

commonly occurs in regression research. 

A natural question to ask is how different the distributions of these estimators are 

under other combinations of correlation coefficients between variables X1 and X2,  Y and 
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X1, Y and X2. In a simulation study (Gao & Dayton, 2008), variance ratios of the two 

estimators were computed from the empirical distributions under different combinations 

of correlation coefficients from -.9 to .9 in increments of .1 over 10000 samples of size 

20, 50, 100 and 200. The relationship among variance ratio and variable correlations is 

complex and cannot be captured by any simple linear functions (see Figure 3). 
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FIGURE 2. Empirical distributions of estimator u1β  (solid line) and *
1β  (dashed line) 
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FIGURE 3. Ratio of empirical variance of the post-model-selection estimator to that of estimator under true model assumption, 
21xxr  

and 
2yxr  (n=20) 
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What makes the model selection problem more serious and hard to analyze is the 

large number of independent variables in real-life regression analysis. In practical 

research, with the increase in the computing power, and incorporation of automatic model 

selection procedure into various software, the problem is exacerbated. Consider the “best 

subset” model selection procedure in regression analysis, 5 explanatory variables will 

generate 3225 = possible models, not including the interaction terms. When multiple 

model comparison/selection steps are executed, the bias and difference in standard error 

might be magnified, but is hard to quantify in finite samples.  

1.3 The Purpose of the Current Study 

In loglinear analysis of multi-way contingency table, the typical research 

questions are whether associations of certain factors exist and if they do exist, at which 

level: i.e., two-factor-effects level and/or three-factor-effects level, etc. To study these 

questions, a typical strategy is to compare hierarchical models and to apply a selection 

procedure. Unsaturated (i.e., restricted) models are systematically compared to the 

unrestricted, saturated model to determine whether the variables interact. An example of 

this practice is a criminology study of drug use by Rosay, Najaka, and Herz (2007), for 

which the data comprise a 26 contingency table. Hierarchical loglinear models were 

compared and the contingency table was collapsed so as to include only statistically 

significant main effects and interactions. They stated “Models are compared using 

differences in Chi-Square statistics to determine whether the six-way interaction is 

significant, all five-way, all four-way, all three-way, all two-way, and all main effects are 

significant. Furthermore, models are compared to determine whether all six and five-way 

interactions are jointly significant…(p. 51)” Given the nature of the two-step estimation 
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process, it is apparent that model selection in loglinear modeling is vulnerable to the 

same criticism as when these techniques are used in linear regression.  

 Although the topic of the effect of model selection raises a core issue in practical 

research, it has not been widely investigated. In particular, little research has been 

conducted on the consequences of model selection in categorical data analysis. As shown 

in section 2.1, most research papers on the impact of model selection investigate the 

properties of pretest estimators in multiple regression settings that deal with continuous 

data. As shown above in the illustrative example, the central issue is that a post-model-

selection estimator is in effect a mixture of many potential estimators. Bayesian model 

averaging (BMA) is a method of incorporating model uncertainty in inference (Hoeting, 

Madigan, Raftery, & Volinsky, 1999). With the BMA methodology, relatively little effort 

has been devoted to investigating its actual performance, such as estimator precision. 

Thus, this study is among the first empirical work to show that the effect of model 

selection extends to the models for categorical data and to investigate the precision of the 

BMA method in that setting.  

The goal of this study was to (i) investigate the empirical properties of estimators 

after model selection and compare them with those under the true model assumption in 

the context of log-linear analysis of cross-classified categorical data; and (ii) evaluate the 

performance of Bayesian model averaging estimator in the above mentioned context.  

The magnitude of the bias, relative bias, MSE, and relative efficiency of parameter 

estimators were calculated under a variety of conditions. The distributions of the z-

statistics of the parameters were compared to the reference distribution. Another goal was 
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to examine the relationship of the model selection problem and sample size as the 

problem could worsen or alleviate as the sample size grows.  

The remainder of this document is organized as follows. Chapter 2 reviews the 

literature on four topics: the difficulty of model selection, loglinear model theory, model 

selection in the context of loglinear modeling and Bayesian model averaging. A Monte 

Carlo simulation study is described in chapter 3, with results from the experiments 

presented and examined in chapter 4. Discussion of the findings, description of limitation 

of the study and possibility for future research are given in chapter 5, followed by 

appendices which provide a case study of BMA method, details of the results of the 

simulation study, and R code used in the computations and simulations. 
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Chapter 2: Literature Review 

2.1 The Dilemma of Model Selection 

In practice, hypothesis tests and other model selection procedures are used to 

assess the fit of candidate models and a specific model is chosen based on these results. 

Subsequently, the selected model is interpreted on the basis of the same parameter 

estimates used in selecting the model. Econometricians call the initial estimators “pretest 

estimators” (Judge & Bock, 1978). The bias in estimation due to the use of model 

selection procedures was first investigated by Bancroft (1944). He studied pretest bias in 

the regression coefficient, 1β  , estimated for the model: 

                                                      exxy ++= 2211 ββ     (4) 

An F test was carried out to decide if regressor 2x  should be retained in the model after 

the regression model 1 1 2 2
ˆ ˆŷ x xβ β= +  had been fitted. He derived the mathematical form of 

the bias of 1̂β obtained after the preliminary F test: 
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0XI is the incomplete beta function, c is the 

value of F-distribution corresponding to some assigned significance level for 1 and (n-3) 

degrees of freedom, and ρ  is the sample correlation coefficient between the fixed 

variates 1x  and 2x . This formula suggests that: (1) keeping other factors fixed, bias 



12 
 

decreases as sample size increases; and, (2) bias is proportional to the sample correlation 

coefficient of the two regressors 1x  and 2x . Bancroft pointed out that when ρ , n, and c 

are fixed, for increasing 2β , the bias increases at first and then decreases, which means 

there is no linear relationship between the magnitude of 2β  and the bias of 1β̂ . 

Since Bancroft’s seminal paper on the effect of model selection, this topic has 

received considerable attention. Mosteller (1948) assessed the impact of an initial 

significance test on the pooled estimates of error in analysis of covariance. He gave the 

closed form for the mean squared error of the pretest estimator under that situation. 

Huntsberger (1955) generalized the expression of pretest estimator in the area of pooling 

data. He expressed it as a weighted average of two estimators. These early research 

studies derived analytical solutions for the properties of the pre-test estimators under 

specific conditions. Unfortunately, the usefulness of theses results for practitioners is 

limited because only special conditions of linear regression were considered.  

Sclove, Morris and Radhakrishanan (1972) studied the loss functions of the 

pretest estimators and derived their properties. They found that one undesirable property 

of pretest estimators is that no pretest estimators can satisfy the minimax criterion. 

Bankroft and Han (1977) reviewed the early literature on this topic and summarized the 

difficulties induced by variable selection.  

An early simulation study on the effect of model selection can be found in 

Freedman (1983). He generated a matrix of 100 rows and 51 columns. The numbers in 

each column were drawn from standard normal distribution independently. Columns 1-50 

were treated as independent variables 501,...,xx , and column 51 was taken as dependent 

variable y .  The data were analyzed in two rounds: (1) y was regressed on all 50 of the 
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sx'  and (2) only the variables whose coefficients were significant at 0.25 level were kept 

in the equation and the equation was refitted. Freeman found that “The results from the 

second pass are misleading indeed, for they appear to demonstrate a definite relationship 

between Y and the X’s, that is, between noise and noise.” In addition, he noted that the 

use of p-values of F test in multiple regression after model selection can be dramatically 

misleading.  

Hurvich and Tsai (1990) conducted a simulation study on the coverage rates of 

confidence regions for the pretest estimators in linear regression settings. Their result 

showed that the coverage rates are much smaller for the pretest estimator than the 

estimator when the model is known as a prior. They suggested splitting the data to do 

“exploratory” and “confirmatory” data analyses.  They quoted Tukey (1980, p.821) as 

asserting “often, confirmation requires a new unexplored set of data.” In practice, cross 

validation is expensive and how to split the data remains unsettled. Danilov and Magnus 

(2004) found the unconditional first and second moments of the pretest estimator for the 

linear regression. They showed that the error in the moments varies for different model 

selection procedures. They also studied the relationship between error and the number of 

auxiliary regressors. E(UR), the expectation of underreporting ratio, was expressed as a 

function of sample size, number of variables of interest, and number of auxiliary 

variables.  

Asymptotic properties of the preliminary-test estimators have also been 

investigated (e.g. Sen ,1979). Pötscher (1991) derived the large sample limit distribution 

of the preliminary-test estimator in a general setting including linear and nonlinear 

models. One of his results is that the bias problem vanishes asymptotically when the 
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model selection criteria are consistent and the variance increases as might be expected 

from the uncertainty due to the model selection process. He also pointed out that the 

shape of the distribution may also change. Zhang (1992) studied the asymptotic results 

for inference on linear regression models when the final prediction error criterion is used 

to select a model and showed that asymptotic estimates of error variance are satisfactory 

but that the asymptotic confidence regions for unknown parameters are generally too 

small in that coverage probabilities are less than nominal probabilities. Pötscher and 

Novák (1998) conducted a simulation study in which they examined the small sample 

distribution and compared the small sample distribution to the asymptotic distribution as 

derived in Pötscher (1991). In the context of linear regression, Leeb and Pötscher (2005) 

obtained the k-dimensional cumulative distribution function. They stated “a large sample 

size does not guarantee a small estimation error with high probability when estimating 

the conditional distribution function of a post-model-selection estimator.”  The 

asymptotical results are useful theoretically but not very useful in finite samples. Kabaila 

(2005) derived a new computationally intense Monte Carlo simulation estimator of the 

coverage probability, which used conditioning for variance reduction. He also 

investigated the coverage probability of the 95% confidence interval for post-model-

selection estimator. For the real-life data presented in his article, the probability is .79 

using AIC and .70 using BIC in as the model selection criterion, confirming that the 

confidence intervals after model selection are inadequate.  

Although these research studies have demonstrated the innate difficulty of model 

selection, their results are usually not taken into consideration in practice. The reason 
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may be that no one has derived a correction for estimates and for standard errors due to 

the complexity of the model uncertainty in common research setting.  

2.2  Loglinear Models 

 Loglinear models are used for modeling cell frequencies in a contingency table as 

a loglinear combination of effects (model parameters) due to each classification factor 

singly and in combination. For a three-way table, a loglinear models expresses the 

expected frequency of cases, Fij, in the cell defined by category i of the row dimension, 

category j of the column dimension, and category k of the layer dimension (see Bishop, 

Fienberg, & Holland, 1975; Everitt, 1977; Knoke & Burke, 1980):  
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where the “base rate” is  η , X
iτ is the effect of  being in category i of the row dimension, 

Y
jτ is the effect of being in category j of the column dimension, Zkτ is the effect of  being 

in category k of the layer dimension, XY
ijτ is the effect of being in the categories i and j 

simultaneously (over and above the effects due to each category separately), etc. Thus, 

deviations from the “base rate” cell frequency are attributed to the effects of different 

dimensions and their interactions. Taking logarithms yields a linear relation 
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To avoid over-parameterization, necessary constraints are:  
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With these constraints, parameters such as X
iλ are the coefficients of dummy variables for 

the first ( )1−I  categories of X. The parameters are interpreted in a multiplicative sense. 
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For example, 109 /X
i =λ means that the frequency of cells in category i of dimension X 

is 146% higher than the base rate since 46.29.0 =e .  

 In loglinear modeling, the “hierarchy principle” (Reynolds, 1977) is often 

observed. The hierarchy principle prescribes that if a model contains two-factor 

interactions then it must contain the main effects of the two factors. The same rule 

extends to higher order interactions that contain main effects as well as lower order 

interactions. For example, in a three-way table of factors X, Y, and Z, if a model contains 

interaction XYZ, then it must contain interaction XY, XZ, and YZ.  Mathematically, it is 

possible to include interaction XYZ without including XY. In practice, it makes the 

model difficult to interpret. The hierarchy principle limits the permissible models and 

simplifies notation. Thus, for a three-way table, model (XY,Z) implies a model having 

Z
k

Y
j

X
i λλλλ ,,, and .XY

ijλ  In this document, we follow the “principle of hierarchy.” Table 

1 shows the short-handed notation for models of a three-way contingency table.  

TABLE 1 
Notation for selected log-linear models in three-way tables 
Model Symbol 
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 In a three-way table, each possible model has an interpretation in terms of 

association and independence. There are three types of independence relationship in the 

variables of three-way tables, namely, mutual independence, jointly independence and 

conditional independence. Table 2 lists these relationships and specific examples. See 
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Gilbert (1981) and Fienberg (2007) for an extensive discussion of interpretation of 

independence and association. 

TABLE 2 
Summary of three types of independence relationship in log-linear models 
Model Interpretation 
(X, Y, Z) Variables X, Y and Z are mutually independent 
(XY,Z) Variable Z is jointly independent of X and Y 
(XY, XZ) Y and Z are conditionally independent, given X 
  

2.3  Model Selection in Loglinear Analysis 

 In log-linear analysis of three-way contingency tables, model selection is an 

integral part of the analysis. Popular textbooks on loglinear modeling (e.g., Agresti, 2002; 

Christensen,1990, 1997; Fienberg, 2007) all suggest the inspection of a series of models. 

Agresti (2002) suggested the use of likelihood-ratio tests in selecting hierarchical models. 

However, Raftery (1986) pointed out that the use of likelihood-ratio tests in model 

selection gives unsatisfactory results when the sample size is large. McCullagh and 

Nelder (1989) discussed variable selection in the generalized linear model context based 

on variants of the Akaike information criterion (AIC) (Akaike, 1974): 

   pMLMAIC ×+−= 2)(log2)(     (9) 

where )(log ML is the maximized log-likelihood and p is the number of independent 

parameters in model M. The selection procedure is to choose the model with minimum 

AIC. In general, AIC penalizes the more highly parameterized model. The mathematical 

reasoning behind AIC is related to the Kullback-Leibler information function (Akaike, 

1974). If one replaces p×2  by pn ×)(log  in equation (9), one obtains the Schwarz 

(1978) Bayesian Information Criterion (BIC). BIC incorporates a stronger penalty for 

model complexity (if ).8≥n  Useful references on the general topic of model selection 



18 
 

include Linhart and Zucchini (1986), McQuarrie and Tsai (1998), Lahiri (2001), and 

Miller (2002) as well as special journal issues such as Journal of Mathematical 

Psychology in 2006.  

 Christensen (1997) suggested a two-step general model selection approach for 

loglinear models: (i) first choose an initial model from the ones that have all effects of a 

certain level, such as all main effects, all two-way-effects, and all three-way-effects, etc. 

(ii) once the initial model is chosen, one can consider removing terms. For three way 

contingency table, Christensen claims that his inclination is to directly use AIC as the 

model selection criterion.   

 To approach the problem of model uncertainty in the model selection process, 

Good and Crook (1987) and Albert (1989) developed Bayes factors for two-way and 

three-way contingency tables based on product-multinomial sampling and multinomial 

sampling schemes. Prior distributions for the cell probabilities are assumed to be normal 

and the conditional probability of each model is obtained given the observed data. Model 

selection can be performed by examining the values of the posterior probabilities, 

Prob(Model M | data). More recently, Madigan and Raftery (1994) used graphical 

methods for Bayesian model selection in high-dimensional contingency tables. These 

methods seem attractive, but the choice of prior distributions is arbitrary and computation 

of the integrals for high dimensional tables is difficult, which may decrease the accuracy 

of the results and make the methods difficult to apply in practice.  

2.4  Bayesian Model Averaging 

Due to the dilemma of model selection, an alternative of the traditional 

approaches of model selection emerged as model averaging. In performing model 
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averaging, the analyst assumes that each of the candidate models provides a valid 

estimate of the parameters in its own right. Thus, each model is assigned a weight that 

reflects the degree to which the data support the model. From the mid-1990s, the “Seattle 

school of model uncertainty” has studied the use of Bayesian model averaging (BMA) as 

a method of incorporating model uncertainty in inference (Hoeting, Madigan, Raftery, & 

Volinsky, 1999). The use of BMA has now been utilized in fields of research such as 

public health (Morales et al., 2006), economics (Fernandez et al., 2001) and political 

science (Geer & Lau, 2006), epidemiology (Viallefont et al., 2001) and air pollution 

(Shaddick et al., 1998; Clyde, 2000).  

Let Q denote the quantity of interest (e.g., a model parameter) and let 

( ) ( ) ( ) ( ){ }KM,...M,M,M  210=Μ  denote the set of candidate models. The law of total 

probability implies that the posterior probability distribution of Q is 

( ) data)|(Mpr data) ,M|(Qpr data|Qpr (K)

0

(K)∑
=

=
K

k    
(10) 

The posterior model probability data)|(Mpr (K)  can be thought of as weights and the 

quantity data) ,M|(Qpr (K)  is the posterior distribution under a specific model. 

According to the Bayes theorem, the posterior probability of any given model ( )KM is 

given by 
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where (i) ( )( ) ( ) ( ) kkk θθ,θ dM|prM|dataprM|datapr (K)(K)K ∫=    (12) 

          (ii) ( )( )KM|datapr  is the likelihood of model (K)M ,  
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          (iii) kθ is the parameter set for model (K)M ,  

          (iv) )(Mpr (K)  is the prior probability for model (K)M being the true model.  

 The Bayesian point estimate of θ1 is its posterior mean, as in  
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where )M data,|(ˆ (K)
11 θθ EK = , i.e., K

1̂θ  is the posterior mean of 1θ  under model (K)M . 

When 1θ  is not included in a particular model, this term is zero. Note that, )data|( 1θE  is 

a weighted average of the model-specific point estimates and the weights are posterior 

model probabilities. The Bayesian standard error, the posterior standard deviation of 1θ , 

is the square root of  

its variance:  
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where (K)
1 M data,|var(θ ) is the variance of 1θ under particular model given the data. 

 From a Bayesian point of view, hypothesis testing is replaced by the question 

"what is the posterior probability that 1θ  is not equal to zero?" This is given by the sum 

of the posterior probabilities of the models that include 1θ : 

∑
∈

=≠
(K)
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Mθ

θ    (15) 

The quantity data)0(Pr 1 |≠θ indicates that the probability that 1θ  is included and 

estimated in at least one model. The conventional rule of thumb (Viallefont et al., 2001). 

for interpreting this quantity in terms of evidence for the existence of 1θ ; is: values less 

than 0.5 suggest no evidence; values between 0.5 and 0.75 suggest weak evidence; values 
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between 0.75 and 0.95 suggest positive evidence; between 0.95 and 0.99 suggest strong 

evidence; and beyond 0.99 suggest very strong evidence.  

 For generalized linear models such as loglinear models, Raftery (1996) proposed 

the using of a Bayes factor to compute the posterior probability of a specific model. 

Suppose the models ( )1M and ( )2M are parameterized by vectors of parameters 1θ  and 

2θ . Thus the Bayes factor 12K  is given by (Raftery, 1996): 
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The Bayes factor is a piece of evidence given by data for ( )1M over ( )2M . For the model 

space M , let model ( ) ( ) ( )K21 M,...,M,M all compare with ( )0M . This generates 

1+K Bayes factors. Then the posterior probability of model ( )kM is given by (Raftery, 

1996) 
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where 
)(Mpr 

)(Mpr 
(0)

(K)

 is the prior odds for model (K)M against (0)M  which is often assumed to 

be one in computation.  

 The BMA approach requires the specification of two types of prior distributions: 

(i) the prior probabilities of the models ),(Mpr (K) and (ii) the prior distributions of the 

parametersθgiven model (K)M . To make the computation easier, the variables are 

assumed to be standardized. The prior distribution is assumed to be normal, and 

distributed as ( ) ( )Uνθ ,N~| (k)M , where ( )001 ,...,,v=ν and { }222 ,,, φφψ ...diagU = . 
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Raftery (1996) suggested let 01 =ν and .1=φ  For the specification of the parameter φ , 

Raftery (1996) suggested “it is usually better to report, or at least to consider, the result 

from a range of reasonable values of φ .” (p. 259) The range he recommended is 

51 ≤≤ φ , with 1.65 as a “central” value. 
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Chapter 3: Research Design  

3.1  Purpose of the Simulation Study 

We performed a large-scale simulation study in which several factors were varied 

in order to:  

(1) investigate the performance of the model parameter estimator under (a) the 

true model assumption, (b) under model selection by the AIC criterion (i.e., the post-

model-selection estimators) and (c) under Bayesian model averaging estimators using 

three different prior distributions;   

(2) compare the empirical distribution of the Z-statistics for λ under model 

selection and normal distribution, which is the reference distribution;   

(3) examine the performance of the estimators of the conditional odds ratio under 

the true model assumption, under model selection, and under BMA using one set of prior 

distributions.  

3.2  Sampling Schemes  

There are three common sampling schemes in contingency tables: multinomial, 

Poisson and product-multinomial. 

(1) multinomial sampling scheme: When the sample size is fixed at N, and there are m 

cells (cross-classification conditions), for each trial of N, it must be classified as one of 

the m conditions. Suppose mn,...,n,n 21  are the number of events happens under the m 

conditions and let  pi , i=1,2,…, m be the probability that the ith  event occurs on that 

occasion. The multinomial distribution is written as:( mn,...,n,n 21 )~MN(N, p1, p2,…, pm). 
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The probability mass function of multinomial distribution is  
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 (2) Poisson sampling scheme: The Poisson distribution is used to model counts of event 

that occur randomly over time or space. The probability mass function of Poisson 

distribution is 

( ) ,...,,xfor!x/exnPr x 210=== −λλ  

If the sample size is fixed, then independent counts in the m cells of the Poisson process 

follow the multinomial distribution.   

(3) product-multinomial sampling scheme: If for each level of one variable, or the 

combination of levels of two variable, a multinomial sample of size ni+   is sampled, then 

the resulting distribution is product-multinomial. One reason for the product-multinomial 

sampling design may be the proportions of the sample size, ni+  , reflect the proportions in 

the population. In product-multinomial modeling, any model that has the term XY
ijλ  

automatically has these margins fixed (see Christensen, 1997).  

3.3  Fixed Factors 

 The following aspects were fixed in the simulation study: (1) number of 

replications, (2) estimation methods, (3) true model for data generation. The number of 

replications was set at 10000.  

Two computational algorithms for maximum-likelihood estimation are commonly 

used in loglinear modeling: Newton-Raphson and iterative proportional fitting (IPF).  IPF 

(Deming & Stephan,1940) is a simple method for calculating MLEs of cell frequencies 

that does not involve matrix inversion. IPF calculates the expected cell frequencies, but 
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does not produce estimates for model parameters or associated standard errors. The 

Newton-Raphson method does involve matrix inversion to produce model parameter 

estimates and is more efficient numerically than IPF since the rate of convergence is 

quadratic rather than linear (Agresti, 2002). In general, both methods yield the same 

results. In this study, the Newton-Raphson method was used because estimates and 

standard errors were desired. With respect to sampling schemes, Birch (1963) showed 

that the MLEs are the same for independent Poisson sampling, simple multinomial 

sampling, and product- multinomial sampling.  

The true model that generates data is (XY, XZ) under all conditions. This model 

was chosen so that both the effects of over-fitting [e.g., model (XY,XZ,YZ)] and under-

fitting [e.g, model (XY,Z)] could be studied. 

3.4  Manipulated Factors 

 The following aspects were systematically manipulated in the simulation study: 

(1) sample size, (2) sampling schemes, (3) level of factors in a three-way contingency 

table and (4) magnitude of main and association effects.  

 A pilot study, summarized in Appendix C, was conducted that showed that 

sample size was an important factor that influenced the magnitude of relative bias and 

variance ratios. Thus, five sample sizes were selected, 50, 100, 200, 500, and 1000.  

When sample size is 50, the average cell frequency is 6 for 2×2×2 tables, which creates 

no problem for parameter estimation. However, with 2×2×3 tables, the average cell 

frequency is 4 which is slightly deficient judged by the rule of thumb for average cell size 

of 5. A sample size of 1000 was chosen to check if the problems induced by model 

selection were only small sample problems.  
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 When the sample size is fixed, the Poisson distribution and the multinomial 

distribution are equivalent. We took account of the nature of the product-multinomial 

sampling design by restricting our attention to models that include the termXY
ijλ  since this 

restriction reduces the number of possible models to a manageable level as listed in Table 

3. Under multinomial sampling, there are 8 models that include all the main effects as 

shown in Table 4.  

TABLE 3 
Unique models with the product- multinomial sampling design, fixing .ijµ   

Model Degree of Freedom 
M(1): (XYZ)  0 
M(2): (XY, YZ, XZ) (I-1)(J-1)(K-1) 
M(3): (XY, XZ) I(J-1)(K-1) 
M(4): (XY, YZ) J(I-1)(K-1) 
M(5): (XY, Z) (K-1)(IJ-1) 
 
 
TABLE 4 
Unique models with the multinomial sampling assuming all main effects exist  
Model Degree of Freedom 
M(1): (XYZ) 0 
M(2): (XY, YZ, XZ) (I-1)(J-1)(K-1) 
M(3): (XY, XZ) I(J-1)(K-1) 
M(4): (XY, YZ) J(I-1)(K-1) 
M(5): (XZ, YZ) K(I-1)(J-1) 
M(6): (XY, Z) (K-1)(IJ-1) 
M(7): (XZ, Y) (J-1)(IK-1) 
M(8): (YZ, X) (I-1)(JK-1) 
 

 In this simulation study, two types of three way table are investigated, namely, 

222 ×× and 322 ×× . The number of parameters of the true model, i.e., the λ ’s, is six in 

the former table and ten in the latter table. The true model that generates data was 

assumed to be (XY,XZ). 
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 The data were generated for different values of λ ’s. For the 222 ××  table, based 

on Pardo and Pardo’s study (2003), two different sets of value were chosen: the first set 

implies small values for the main effects and interactions 3111 .ZYX −=== λλλ , 

311 .XY =λ and 311 .XZ −=λ . The second set implies big values for the main effects and 

interactions 1111 === ZYX λλλ , 111 =XYλ and .XZ 211 −=λ  For the 332 ××  table, the third set 

of parameters was defined as “small”: 322111 .ZYZYX −===== λλλλλ , 

3.,3. 1111 −=−= XZXY λλ  and 312 .XZ −=λ and the fourth parameter set implies large effects, 

122111 ===== ZYZYX λλλλλ  , 111 =XYλ , 211 −=XZλ , and 212 −=XZλ . The specifications of 

the parameters are summarized in Table 5.  

TABLE 5 
Simulated main and interaction effect parameters  

222 ×× table 322 ××  table 
Set One Set Two Set Three Set Four 

31 .X −=λ  11 =Xλ  31 .X −=λ  11 =Xλ  

31 .Y −=λ  11 =Yλ  31 .Y −=λ  11 =Yλ  

31 .Z −=λ  11 =Zλ  31 .Z −=λ  11 =Zλ  

311 .XY −=λ  111 =XYλ  32 .Z −=λ  12 =Zλ  

311 .XZ −=λ  211 −=XZλ  3.11 −=XYλ  111 =XYλ  

  311 .XZ −=λ  211 −=XZλ  

  312 .XZ −=λ  212 −=XZλ  

 

For each generated dataset, three types of estimates were obtained: (1) parameter 

estimates under the true model (XY, XZ), (2) parameter estimates using BMA (with 

φ =1, 1.65, 5); and (3) the post-model-selection estimator using AIC as the model 

selection criterion. The choice of the prior parameters φ  is based on the results of Raftery 
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(1996), where he mentioned that at )65.1(2/1 =e , φ  balances two criteria. He also stated 

“the log-Bayes factor changes rapidly as a function of φ  for ,1<φ and then changes 

much more slowly over this preferred range of value of ].51[ ≤≤ φφ ” Under the 

product-multinomial sampling schemes, the "best" model was chosen from five models 

as shown in Table 3 and under multinomial sampling schemes, the "best" model was 

chosen from eight models as shown in Table 4. The empirical distributions of these 

estimators were studied and compared. Table 6 summarizes the cases for this simulation 

study.  

TABLE 6 
Cases for the Simulation Study 
Case # Design 

1 Product-multinomial sampling: parameter set 1 selected from 5 models in Table 4 
2 Product multinomial sampling: parameter set 2 selected from 5 models in Table 4 
3 Product multinomial sampling: parameter set 3 selected from 5 models in Table 4 
4 Product multinomial sampling: parameter set 4 selected from 5 models in Table 4 
5 Multinomial sampling: parameter set 1 selected from 8 models in Table 5 
6 Multinomial sampling: parameter set 2 selected from 8 models in Table 5 
7 Multinomial sampling: parameter set 3 selected from 8 models in Table 5 
8 Multinomial sampling: parameter set 4 selected from 8 models in Table 5 

 

3.5 Data Generation 

The simulation was done in R. The data were generated based on the true model 

(XY, XZ): The log-linear representation of the model is:  

                   
XZ
ik

XY
ij

Z
k

Y
j

X
iijklog λλλλλλµ +++++= .   (18) 

Before data can be generated, the value of λ (constant) must be calculated such 

that the sum of the ijkµ ’s is equal to the sample size. For example, when sample size is 

50, the data generation proceeds as follows: 

Step 1. Calculate λ by solving the following equation: 
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Step 2. Calculate 222121111 , ..., µ, µµ from equation (18).  

Step 3. Calculate the cell probabilities ijkπ , as 50/µπ ijkijk = .  

Step 4.  Generate the data according to the multinomial distribution, 

) MN(50,~)n,...,n,(n 222111821 ,...ππ . The R function "rmultinom(n, size, prob)" was used 

in generating random multinomial distributions.  

Step 5. Since the cell probabilities ijkπ  remain the same for the model (XY, XZ) even 

under different sample sizes, the only change when generating other data with other 

sample size is to specify different "size" values in the R function "rmultinom(n, size, 

prob)". That is, one does not need to go through step 1 through 4 to obtain the same cell 

probability ),...,( 222111 ππ . The parameters were estimated via the R function glm, which 

utilizes the Newton-Raphson algorithm (Thompson, 2009).  

3.6 Evaluation Criteria 

3.6.1 Assessing Model Parameter Estimators  

 The performance of (i) the post-model-selection estimator, (ii) the estimator under 

the "true model" assumption, and (iii) three BMA estimators (phi=1, 1.65, 5) were 

evaluated using criteria such as Empirical Bias, MSE.  
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 Some indicators of the quality of an estimator are the bias, standard error, and 

mean square error (MSE).  Bias is calculated as the expected value of the estimates by the 

sample average over the Monte Carlo iterations minus the true value of the parameter. 

For simulation with B replicates, 

λλλ −= ∑
=

iB
Bias ˆ 

1
) ( 
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             (19) 
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 The reported results also include relative efficiency. The Relative Efficiency of 

estimator 1λ  to estimator 2λ , which is given by  
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A REL EFF value above one indicates that estimator 1λ  is more effective in reducing 

estimation errors than estimator 2λ . This criterion has been used to compare the 

efficiency of two types of estimators in the literature of simulation study (Yang and Xie, 

2003).  

3.6.2 Assessing Distribution Assumptions of Z Tests 

In the loglinear model, a Z test is used to test the statistical significance of each 

coefficient (λ 's ) in the model where Z is given by  
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where nullλ  is the parameter value used to generate the data. Although Z statistics are 

known to be poorly behaved with small sample sizes (Agresti, 2002), they are still 

routinely used in practice because they are based on the estimates and are easy to 

implement. The research interest was in whether or not the empirical Z statistics 

distribution under model selection deviated in a dramatic fashion from its theoretical 

distribution, the normal distribution. The .01, .025, .05, .1, .5, .9, .95, .975, .99 percentiles 

of the calculated quantity (23) were reported for model selection conditions and for the 

true model condition. The percentiles were compared with the critical values from the 

theoretical Z distribution. In this way, any strong deviations from the Z distribution could 

be detected. Quantile-quantile (Q-Q) plots of the theoretical Z distribution versus the 

distribution of the computed Z statistic were graphed. The skewness of the computed Z, if 

any, was investigated. The interest was to find out if the Z-based inference leads to 

conservative or liberal conclusion under the model selection conditions.  

3.6.3 Assessing Estimated Conditional Odds Ratio in Two-by-two-by-two Table 

For a two-by-two table, odds ratio is 
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If  1=θ , this suggests the independence of the two classification variables. If  θ  is 

different than 1, some degree of association between the two variables can be inferred. 

However, Feinstein (1973) strongly criticized using odds ratios as a measure of 

association, pointing out that rates of the marginal variables are lost. Since this happens 
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only when the event is very rare, such as certain diseases, we do not face this problem in 

the general setting.  

 Odds ratios are the same under the Poisson, multinomial, and product-

multinomial sampling schemes. The sample odds ratio is estimated as 

    ( ) ( )21122211 /ˆ nnnn=θ      (25) 

The problem with this estimator is that if any of the cell counts equals zero, θ̂  would be 

estimated as zero or infinity and the estimator is undefined. Gart and Zweifel (1967) and 

Haldane (1956) recommended an adjusted odds ratio which adds .5 to each cell 

frequency. And Gart (1966) showed that this estimator behaves well.  

    
( )( )
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If a loglinear model is fitted to the data, the odds ratio can be estimated from the fitted 

value of the estimated cell counts generated by the model. In this simulation study, due to 

the possibility of cell counts of zero in the generated data, we used the adjusted fitted 

value of cell count to estimate odds ratios: 

( )( )
( )( )5.5.
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θ      (27) 

Odds ratios can only express the probability relationship in a two-by-two table. However, 

for loglinear models based on a 222 ×× table, odds ratios are still useful in describing the 

dependence relationship among the variables.  

 For three-way tables, conditional odds ratios between two variables are the odds 

ratios computed at a fixed level of the third variable and marginal odds ratios between 

two variables are the odds ratio computed based on cell counts collapsed over all the 

levels of the third variable.  If a model, such as model (XY, XZ), has no three-way 
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association term, then conditional odds ratios between any two variables are the same at 

each level of the third variable. Therefore, among the five models to be selected in Table 

3, conditional association (conditional odds ratio) between variables X and Y is the same 

for level 1 or Z as for level 2 of Z. In model (XYZ), conditional association (conditional 

odds ratio) between X and Y has to be estimated at different levels of variable Z. In this 

simulation study, the conditional odds ratio between any two variables is estimated at 

level 1 of the third variable.  

 The means and standard errors of the conditional odds ratios and marginal odds 

ratios are reported under three conditions: (i) true model assumption, (ii) after model 

selection, and (iii) using the BMA method. 
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Chapter 4: Results  

Detailed results for cases 1 through 8 are presented in Appendix B, Tables B1 

through B37.  Although each case has some distinct characteristics, general patterns of 

the performance of the five estimators are similar across cases. Therefore, in section 4.1, 

case 1 is presented in detail to illustrate the performance of the five estimators in terms of 

bias, standard error, MSE, and relative efficiency. Also, the distribution of the Z-statistics 

of the model parameters in comparison with the reference distribution, under model 

selection and true model assumption is examined. Finally, the conditional odds ratios of 

the two-by-two-by-two table under the five estimation methods are investigated. Section 

4.2 presents the general results in all eight cases of the simulation study and compares 

them with case 1 results.  

4.1 Case 1 as an Example 

4.1.1 Bias, Standard Error, MSE, and Relative Efficiency of Parameter Estimators 

Figure 4 and Table 7 present the percentage of time that each candidate model 

was selected by the AIC model selection criteria for case 1. The candidate models are 

classified into four categories: the underspecified/underfitted models, the 

overspecified/overfitted models, the misspecified/misfitted model, and the true model.  

When the true model is itself a candidate model, overfitting refers to choosing a model 

with additional variables and underfitting refers to choosing a model with fewer 

variables. The term “misfit” refers to choosing a model with one or more wrong 

variables. Both overfitting and underfitting have been known to reduce efficiency and 

decrease the predictive abilities of a model. (McQuarrie & Tsai,1998). Underfitted 
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models suffer from the lack of details since it reduces the complexity of the true model. 

With overfitted models, variations in the extra variables tend to result in larger variances 

in the predictions. At smaller sample sizes 50, 100, and 200, AIC favors the 

underspecified model (XY, Z) (over 50%), and the true model is chosen with relative 

small percentages of 16%, 20%, and 27%, respectively. However, when sample size 

increases, the percentage of time that the true model is chosen also increases. When 

sample size reaches 1000, the percentage of times of choosing the true model has 

increased to 62%; the percentage of overfitting by model (XY, XZ, YZ) or (XYZ) has 

increased to around 18%; and the percentage of unfitting has reduced to 17%. As 

expected with AIC, the penalty function of the AIC criteria is playing a more important 

role when the sample size is smaller, causing more underfitting in smaller samples than in 

larger samples.  

 

FIGURE 4. Percentage of time each model was selected by AIC 
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TABLE 7 
Percentage of time each candidate model was selected  by AIC (case 1) 
Models % 
n=50 
M(1): (XYZ)  Overspecified 6.61 
M(2): (XY, YZ, XZ) Overspecified 3.06 
M (3): (XY, XZ) True model 16.06 
M(4): (XY, YZ) Misspecified 11.30 
M(5): (XY, Z) Underspecified 62.97 
n=100 
M(1): (XYZ)  Overspecified 5.47 
M(2): (XY, YZ, XZ) Overspecified 3.47 
M (3): (XY, XZ) True model 20.30 
M(4): (XY, YZ) Misspecified 11.38 
M(5): (XY, Z) Underspecified 59.38 
n=200 
M(1): (XYZ)  Overspecified 5.38 
M(2): (XY, YZ, XZ) Overspecified 4.90 
M (3): (XY, XZ) True model 26.76 
M(4): (XY, YZ) Misspecified 9.41 
M(5): (XY, Z) Underspecified 53.55 
n=500 
M(1): (XYZ)  Overspecified 6.40 
M(2): (XY, YZ, XZ) Overspecified 7.87 
M (3): (XY, XZ) True model 43.67 
M(4): (XY, YZ) Misspecified 6.23 
M(5): (XY, Z) Underspecified 35.83 
n=1000 
M(1): (XYZ)  Overspecified 7.46 
M(2): (XY, YZ, XZ) Overspecified 10.49 
M (3): (XY, XZ) True model 61.89 
M(4): (XY, YZ) Misspecified 2.97 
M(5): (XY, Z) Underspecified 17.19 
 

Tables 8 and 9 present the bias, standard error, MSE, and relative efficiency of the 

five estimators using product-multinomial sampling with varying sample sizes. In these tables, 

“True Model Assumption” designated cases with no model selection process; “Model Selection” 

refers to model selection using AIC criterion, and BMA refers to the estimator obtained using 

Bayesian Model Averaging method. As expected, for parameter XY
11λ and XZ

11λ , bias goes down 

for all five estimators as the sample size increases from 50 to 1000. The maximum likelihood 

estimator is known to be biased in finite samples (Schaefer, 1983; Firth, 1993) but converges to 

the true value as sample size approaches infinity. This pattern is seen in the estimator under the 
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true model assumption. However, it is not true for the post-model-selection estimator or the BMA 

estimator. For example, when sample size is 1000, the bias for XZ
11λ̂ becomes negligible (-.002) 

under the true model assumption, while the bias is .022 under model selection (in absolute value, 

about 10 times larger than -.002).  Under some sample sizes, BMA estimators exhibit larger bias 

than the post-model-selection estimator. However, the standard error of the post-model-selection 

estimator is always greater than the standard error of the estimator under true model assumption. 

The BMA estimators generally have smaller standard error than the post-model-selection 

estimator with no exceptions for either XY
11λ̂ or XZ

11λ̂ in case 1.  

TABLE 8 

Simulation results of the estimates of XY
11λ̂  in case 1 

 Estimate Method 
Sample 
size 

 True Model 
Assumption 

Model 
Selection 

BMA 1 BMA 2 BMA 3 

50 Bias -0.061 -0.154 -0.120 -0.110 -0.084 
 SE 0.847 1.866 1.088 1.010 0.846 
 MSE 0.721 3.506 1.199 1.032 0.723 
 Rel EFF  4.863 1.663 1.431 1.003 
       
100 Bias -0.013 -0.022 -0.018 -0.017 -0.015 
 SE 0.440 0.643 0.488 0.483 0.469 
 MSE 0.193 0.414 0.238 0.233 0.220 
 Rel EFF  2.145 1.233 1.207 1.140 
       
200 Bias -0.009 -0.011 -0.010 -0.010 -0.009 
 SE 0.308 0.334 0.311 0.310 0.308 
 MSE 0.095 0.112 0.097 0.096 0.095 
 Rel EFF  1.179 1.021 1.011 1.000 
       
500 Bias -0.004 -0.005 -0.004 -0.004 -0.004 
 SE 0.191 0.210 0.193 0.192 0.191 
 MSE 0.037 0.044 0.037 0.037 0.037 
 Rel EFF  1.189 1.000 1.000 1.000 
       
1000 Bias 0.001 0.001 0.001 0.001 0.001 
 SE 0.135 0.149 0.136 0.136 0.135 
 MSE 0.018 0.022 0.019 0.018 0.018 
 Rel EFF  1.222 1.056 1.000 1.000 
1Results from phi=1, 2results from phi=1.65, 3results from phi=5 
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TABLE 9 

Simulation results of the estimates of XZ
11λ̂  in case 1 

 Estimates Methods 
Sample 
size 

 True  Model 
Assumption 

Model 
Selection 

BMA 1 BMA 2 BMA 3 

50 Bias -0.048 -0.049 -0.010 0.036 0.139 
 SE 0.790 2.040 1.064 0.960 0.701 
 MSE 0.627 4.165 1.132 0.923 0.511 
 Rel EFF  6.643 1.805 1.472 0.815 
       
100 Bias -0.015 0.081 0.094 0.130 0.200 
 SE 0.441 0.576 0.368 0.338 0.262 
 MSE 0.194 0.338 0.145 0.131 0.109 
 Rel EFF  1.742 0.747 0.675 0.562 
       
200 Bias -0.008 0.080 0.107 0.141 0.203 
 SE 0.308 0.358 0.261 0.243 0.197 
 MSE 0.095 0.134 0.080 0.079 0.080 
 Rel EFF  1.411 0.597 0.988 1.013 
       
500 Bias 0.000 0.052 0.106 0.135 0.190 
 SE 0.195 0.250 0.200 0.193 0.171 
 MSE 0.038 0.065 0.051 0.056 0.066 
 Rel EFF  1.711 1.342 1.474 1.737 
       
1000 Bias -0.002 0.022 0.079 0.103 0.151 
 SE 0.136 0.181 0.173 0.175 0.173 
 MSE 0.018 0.033 0.036 0.041 0.053 
 Rel EFF  1.833 2.000 2.278 2.944 
1Results from phi=1, 2results from phi=1.65, 3results from phi=5 
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Figure 5 reports the MSE of XY
11λ̂ and XZ

11λ̂ in case 1. In each panel of the plot, the MSE is 

denoted by symbols connected by the solid line, and different types of points denote different 

sample size results. As expected, the estimator under the true model assumption always 

outperforms the post-model-selection estimator. For the parameter,  XY
11λ , the relative efficiency 

(REL EFF) of  the post-model-selection estimator versus the estimator under true model 

assumption is 4 when sample size is 50, goes down to around 2 when sample size increases to 

100, and stabilizes at about 1.2 when the sample size is 200, 500, or 1000. The relative 

efficiencies are smaller for the three BMA estimators; all of them are lower than 1.7 at all sample 

sizes. For the parameter, XY
12λ , the relative efficiencies for the three BMA estimators are smaller 

than those for the post-model-selection estimator under all sample sizes with the exception of 

sample size of 1000. At sample size of 1000, the relative efficiency is 1.8, 2.0, 2.3, and 2.9 for 

post-model-selection estimator, BMA1, BMA2, BMA3, respectively. On the whole, the poster-

model-selection estimator is less efficient (in terms of MSE) than the estimator under true model 

assumption. When sample size increases, the magnitude of inefficiency decreases. Generally 

speaking, the three BMA estimators outperform the post-model-selection estimators in terms of 

MSE, although the existence of several exceptions leads to no general conclusion.  
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FIGURE 5. MSE of XY
11λ̂ and XZ

11λ̂ in case 1 

 

Figure 6 presents boxplots for the empirical distributions of the estimates for the 

two parameters of interest,XY
11λ and XZ

11λ , at the sample size of 500. The labels “Tr”, “S”, 

“B1”, “B2”, “B3” correspond to the estimator under the true model assumption, under 

model selection, BMA (phi=1), BMA (phi=1.65), BMA (phi=5), respectively. These 

figures suggest four major findings:  (i) The estimator under the true model assumption 

XY
11λ̂

XZ
11λ̂
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outperforms the other four estimators in terms of bias and variability;  (ii) Estimates for 

parameter, XY
11λ and XZ

11λ , show very different distributional patterns; (iii) For XY
11λ , all five 

estimators show relatively little bias, with the estimator under model selection having the 

largest variability. The reduction of variability of the three BMA estimators is clearly 

identified in the first sub-plot; (iv) For XZ
11λ , the estimator under model selection shows 

the largest standard error. Although the BMA estimators reduce the standard error, they 

show larger bias than the post-model-selection estimator. In general, Bayesian Model 

Averaging estimators tend to trade bias for variance.  

 

FIGURE 6. Boxplots of the empirical distributions of parameter estimators under true 
model assumptions (Tr), under model selection (S), BMA(phi=1) (B1), BMA (phi=1.65) 

(B2), BMA (phi=5) (B3) for XY
11λ (plot a) and XZ

11λ (plot b) for case 1, n=500.  



42 
 

There are two reasons that the results for XY
11λ̂ and XZ

11λ̂ are quite different. First, 

model (XY,XZ) and (XY,Z) are contained in the set of candidate models, but not model 

(XZ,Y). In that sense, XY
11λ̂ and XZ

11λ̂ are not symmetric. Second, the underfitted model 

(XY, Z) is favored by AIC for small sample sizes. Since the empirical distribution of 

post-model-selection estimator is a mixture, a large proportion of the mixture comes from 

the estimate XZ
11λ̂ from model (XY,Z).  Therefore, these two parameters, although having 

the same true value of -.3 are showing different patterns.  

4.1.2 Distribution of the Z-statistic 

 Z-statistics of the form, λσλλ ˆ/)ˆ( null−  were computed for each replication where 

nullλ  is the true value and λ̂ is the estimate. The percentiles of the Z-statistic under model 

selection and under the true model assumption for case 1 are reported in Table 10. The 

critical values indicate that strong deviations from the normal distribution are found in 

the model selection condition while under the true model assumption condition, the Z-

statistic distribution is approximately normal. The apparent left skewness of the empirical 

distribution of λσλλ ˆ/)ˆ( 11 null
XZ −  under model selection condition will tend to lead to 

erroneous inferences if normality is assumed. Normal-based inference will be 

conservative if Z-statistic is greater than zero because one will be more likely to accept 

the null hypothesis than if one had the empirical distribution of the test statistic from 

Table 10. For instance, consider the scenario of sample size of 1000, two-tail test, and 

Type I error rate set at .05, a Z-statistic of 1.0 will lead to a decision of “failing to reject 

the null hypothesis” if one is using the normal distribution, but will lead to a decision of 

“reject the null hypothesis” if one is using the empirical distribution. If Z-statistic is less 
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than zero, normal-based inference will be slightly more liberal than if one had the 

empirical distribution of the test statistic. For instance, consider the scenario of sample 

size of 1000, two-tail test, and Type I error rate set at .05, a Z-statistic of -2.0 will lead to 

a decision of “rejecting the null hypothesis” if one uses the normal distribution, but will 

lead to a decision of “failing to reject the null hypothesis” if one uses the empirical 

distribution. While under the true model assumption, the empirical distributions of the Z-

statistic generally agree with the normal distribution.  

TABLE 10 
Simulation results: percentiles of the Z-statistic under model-selection for parameter 

XY
11λ and XZ

11λ for case 1 
n 0.01 0.025 0.05 0.1 0.5 0.9 0.95 0.975 0.99 
Under model-selection condition 

XY
11λ  

50 -2.233 -1.959 -1.657 -1.316 -0.009 1.360 1.727 2.036 2.338 
100 -2.386 -1.997 -1.698 -1.339 -0.001 1.350 1.714 2.015 2.374 
200 -2.373 -2.024 -1.707 -1.352 -0.014 1.340 1.702 2.051 2.448 
500 -2.422 -2.015 -1.720 -1.350 -0.016 1.345 1.724 2.035 2.466 
1000 -2.412 -2.034 -1.719 -1.332 0.015 1.362 1.743 2.062 2.443 

XZ
11λ  

50 -2.206 -1.910 -1.664 -1.307 0.000 0.000 0.403 2.012 2.397 
100 -2.296 -2.023 -1.716 -1.335 0.000 0.000 0.000 1.159 2.357 
200 -2.388 -2.051 -1.742 -1.377 0.000 0.000 0.000 0.848 2.433 
500 -2.410 -2.048 -1.710 -1.340 0.000 0.000 0.092 0.562 1.567 
1000 -2.465 -2.051 -1.732 -1.345 0.000 0.573 0.733 0.921 1.727 
Under true model assumption 

XY
11λ  

50 -2.146 -1.881 -1.627 -1.264 -0.014 1.282 1.660 1.940 2.281 
100 -2.295 -1.904 -1.636 -1.307 0.000 1.304 1.658 1.956 2.293 
200 -2.275 -1.935 -1.651 -1.282 -0.012 1.274 1.615 1.946 2.318 
500 -2.295 -1.921 -1.631 -1.283 -0.015 1.283 1.636 1.935 2.310 
1000 -2.262 -1.924 -1.623 -1.262 0.014 1.282 1.672 1.941 2.336 

XZ
11λ  

50 -2.141 -1.840 -1.623 -1.258 -0.014 1.275 1.613 1.940 2.319 
100 -2.239 -1.909 -1.610 -1.270 -0.023 1.265 1.632 1.930 2.281 
200 -2.217 -1.939 -1.646 -1.296 0.009 1.301 1.672 1.985 2.341 
500 -2.325 -1.954 -1.620 -1.245 0.010 1.304 1.628 1.962 2.320 
1000 -2.310 -1.939 -1.626 -1.264 -0.007 1.277 1.636 1.956 2.323 
          
Z-
statistic 

-2.326 -1.960 -1.645 -1.282 0.000 1.282 1.645 1.960 2.326 
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The kernel density of the Z-statistic for XY
11λ and XZ

11λ under model selection 

condition, under true model assumption and normal densities are plotted in Figure 8. The 

distribution of Z-statistic for XY
11λ is symmetric and approximately normal. The 

distribution of the Z-statistic for the coefficient XZ
11λ is perhaps more interesting, because 

in the set of the five models listed in Table 3, which the “best fit model” is chosen from, 

every model includes the term XY
11λ . Examination of the percentage of times each model 

is selected in case 1 reveals that the underspecified model (XY, Z) is selected most of the 

time for sample sizes at or below 200. The distribution of XZ
11λ is essentially a mixture of 

the estimated XZ
11λ  from each of the five models and the proportion of each component is 

the percentage of the time each model is selected as the “best fitting model.” In the 

mixture of the distribution of XZ
11λ , the largest component is 0 for sample sizes below 200 

in case 1, since the estimated XZ
11λ̂ is 0 in the model (XY,Z) .  
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FIGURE 7. Kernel densities for the Z-statistic testing (a) parameter XY
11λ  and (b) 

parameter XZ
11λ in case 1,n=500.  
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The QQ-plot is a useful tool to checking if the two data sets come from 

populations with a common distribution. The empirical distributions of the Z-statistics 

may be very far from normality, and therefore the corresponding inference of the statistic 

based on normal distribution may be misleading. In this analysis, QQ-plots serve as a 

visual aid to determine the model adequacy. Figure 8 shows the QQ-plot of the standard 

normal distribution versus the distribution of the Z-statistics for testing parameters XY
11λ  

and XZ
11λ under the true model assumption and under the model selection condition for 

case 1 when sample size is 500. For XY
11λ , both Z-statistics under true model assumption 

and under model selection condition both seem to be normal. For XZ
11λ , Z-statistics seems 

normal under true model assumption and is quite different from normal under the model 

selection condition.  

On the whole, the empirical distributions of the Z-statistic deviate in a dramatic 

fashion from theoretical normal distributions. In particular, the tail percentiles are quite 

different from those of the normal and this problem does not diminish with large sample 

size.   
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FIGURE 8. QQ-plots of the standard normal distribution versus the distribution of Z-

statistics for testing parameters (a) XY
11λ  under true model assumption; (b) XY

11λ  under 

model selection condition; (c) XZ
11λ  under true model assumption; (d) XZ

11λ  under model 

selection condition for case 1, n=500.    
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4.1.3 Conditional Odds Ratio 

 Table 11 reports the empirical mean, standard error of the conditional odds ratio 

estimator under true model assumption, model selection condition, and BMA with 

phi=1.65.  Because of the addition of .5 in both denominator and numerator of the 

conditional odds ratio estimator, the true value of this estimator cannot be calculated and, 

consequently, the bias of the estimators cannot be directly computed. There are three 

major findings: (i) For all the three types of estimators, the standard error goes down as 

sample size rises. (ii) As expected, )ˆ()ˆ()ˆ( SELECTBMATRUE sesese θθθ << , with one 

exception, XZθ̂ at sample size of 50, where )ˆ()ˆ( BMASELECT sese θθ < . (iii) The magnitude 

of )ˆ( YZse θ  is much smaller than that of )ˆ( XYse θ  and )ˆ( XZse θ under the true model 

assumption, while it is not the same with the other two conditions. For instance, at sample 

size of 500, )ˆ( YZse θ  and )ˆ( XZse θ under true model assumptions are .002 and .101, 

respectively, while the )ˆ( YZse θ  and )ˆ( XZse θ under model selection condition are .235 and 

.155, respectively. One reason might be that under the true model (XY, XZ), there is no 

YZλ term. Therefore, the empirical mean of the conditional odds ratio, )ˆ( YZE θ , is close to 

1 under all sample sizes and this conditional odds ratio estimate is quite stable. For 

example, with )ˆ( YZse θ , the )ˆ( SELECTseθ is 118 times )ˆ( TRUEseθ  and 46 times )ˆ( BMAse θ  at 

sample size of 500. These striking results suggest that the estimate of the conditional 

odds ratio under post-model-selection condition is far less stable than that under the true 

model assumption condition, and the inference based on a set of candidate models 

(BMA) helps to noticeably bring down the variability.  
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TABLE 11 
Empirical means, standard error for the conditional odds ratio estimator under true model assumption, model selection, and BMA 
(phi=1.65) for n=50, 100, 200, 500 and 1000: case 1.  
 TRUE MODEL MODEL SELECTION BMA (phi=1.65) 

XYθ̂  ( )θ̂E  ( )θ̂se  ( )θ̂E  ( )θ̂se  ( )θ̂E  ( )θ̂se  

n=50 0.900 0.533 1.049 1.657 1.005 1.391 
n=100 0.826 0.345 0.867 0.603 0.824 0.382 
n=200 0.782 0.234 0.801 0.344 0.782 0.254 
n=500 0.757 0.143 0.765 0.188 0.758 0.147 
n=1000 0.751 0.101 0.754 0.131 0.748 0.103 

XZθ̂        

n=50 0.908 0.542 1.108 1.651 1.050 2.361 
n=100 0.825 0.344 0.931 0.560 0.907 0.300 
n=200 0.783 0.235 0.870 0.311 0.888 0.196 
n=500 0.760 0.147 0.815 0.212 0.867 0.147 
n=1000 0.749 0.101 0.774 0.155 0.833 0.138 

YZθ̂        

n=50 1.057 0.121 1.396 2.469 1.307 2.314 
n=100 1.024 0.026 1.150 0.972 1.062 0.538 
n=200 1.011 0.008 1.068 0.432 1.025 0.205 
n=500 1.004 0.002 1.030 0.235 1.010 0.091 
n=1000 1.002 7E-04 1.013 0.159 1.006 0.060 
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4.2 General Results 

4.2.1 Parameter Estimate, Bias, Standard Error, MSE, and Relative Efficiency 

The percentages of times that each model is selected by AIC as the “best-fit” 

model for case 1-case 8 are displayed in Figures 9 and 10. For the product-multinomial 

sampling design (case 1-case 4), the 222 ×× table and the 322 ×× table show similar 

patterns. In particular, in the small-valued parameter setting, case 1 and case 3 both show 

poor selection accuracy when sample size is small or moderate (at or below 500) but have 

improved selection accuracy (about 69%) when sample size is as large as 1000.  At small 

or moderate sample sizes, the underfitted model (XY, Z) is selected most often as the 

“best fit” model. In large-valued parameter setting, case 2 and case 4 both have 

satisfactory (above 70%) selection accuracy for all sample sizes. For the multinomial 

sampling design (case5-case8), selection accuracy is low (below 50%) even when sample 

size is as large as 1000 for small-valued parameter scenario but selection accuracy is 

satisfactory (about 80%) when sample size is large as 1000 for the big-valued parameter 

scenario.  

The bias, standard error, and mean-square error are presented in Tables B1-B37. 

Figure 11—17 display the box-plots of distributions of the parameters. The results in 

cases 2-8 confirm the observation made in case 1, that if inference is made conditional on 

the best model chosen, the bias, the standard error and MSE of the estimator are all 

greater than those of the estimator under the model a priori assumption.  
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             FIGURE 9. Percentage of each model being selected (case 1-case 4) 



52 
 

 

           FIGURE 10. Percentage of each model being selected (case 5--case 8) 
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There are six major findings: (1) As for case 1, when the sample size increases, 

the bias, standard error and MSE becomes smaller for each of the five estimators; (2) The 

bias of the ML estimator under true model assumption essentially disappears when 

sample size is fairly large, whereas the bias of the post-model-selection estimator persists 

even at sample size 60 observations per cell; (3) The standard error of the post-model-

selection estimator can become very large at moderate sample size of 16 observations per 

cell. This usually happens when the parameter is large valued. For example in case 4 

(large parameter value, five models in the model set, 322 ×× table ), at sample size 200, 

the values of )ˆ( 11
XZse λ are .429, 4.25, 2.011 for estimator under true model assumption, 

under model selection, and by the BMA1 , respectively; (4) When the parameter is large 

valued, the contrast of  the bias, standard error, and MSE of the post-model-selection 

estimator against estimator under true model assumption is more prominent than the 

scenario when the parameter is small value. For example, with case 2, the bias, standard 

error, and MSE of the post-model-selection estimator are -.478, 3.224, and 10.621, 

respectively, and its relative efficiency versus the estimator under the true model 

assumption is 84. When other factors remains the same, with the small value parameter 

scenario (for example, case 1), the estimates are.08 (bias), .358 (s.e.) , .134 (MSE), and 

1.411(Rel EFF). On reflection, this is to be expected, as larger valued estimates tend to 

have larger variability. (5) BMA point estimates have MSE lower than standard variable 

selection methods, however, it might introduce larger bias in the estimator under some 

conditions. (6) Let M1 denote the model set under the product multinomial sampling 

scheme and M2 denote the model set under multinomial sampling scheme. Then M1 

contains 8 models, M2 contains 5 models and M2⊂  M1. Case 5−case 8 are parallel to 
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case 1−case 4, with the former selected over larger candidate model set. The percentage 

of each model being selected is more spread out in case 5−case 8, as two misspecified 

models (XZ, Y), (YZ, X) and one underspecified model (XY, Z) are included. The 

comparison of these two categories shows intractable results. The interests here focus on 

the comparison of BMA results. The purpose is to see whether BMA, when performed 

over a larger set of models (including the smaller set), lead to bigger variability of the 

estimates, as suggested by the BMA variance formula (14). The results do not give a 

definitive answer to the question, since different scenarios point to different answers, and 

there seems to be no rules governing each result. However, the difference between them 

is of a small magnitude.  

4.2.2 Distribution of the Z-statistic 

 Similar to the result in case 1, the Z-statistic of the parameters under model 

selection condition usually do not follow a normal distribution while the Z-statistic under 

the true model assumption always do, as is shown by the Q-Q plots in Figures B1-B7. To 

quantify the deviation from normality, Kolmogorov-Smirnov tests are performed on the 

empirical distributions of the Z-statistics of the parameters XY
11λ , XZ

11λ and XZ
12λ under model 

selection and under true model assumption to detect the deviation from normality. Table 

B28−B30 show the p-value of the Kolmogorov-Smirnov test statistic. Since the sample 

size in these tests are as large as 10000, some of the p-value under true model assumption 

conditions is also very small (below .05), but on the whole, they are bigger than the p-

value under model selection conditions.  
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4.2.3 Conditional Odds Ratio 

The Empirical means, standard error for the conditional odds ratio estimator under 

the true model assumption, model selection and BMA (phi=1.65) for different sample 

sizes are presented in Table B31-B37. The results of case 2-case 8 are similar to that of 

case 1. The standard error of the post-model-selection estimator always has larger 

standard error than that of the estimator under true model assumption. Their contrast is 

more prominent in the conditional odds ratio YZθ̂  rather than XYθ̂ and XZθ̂ . This is 

because the true model is (XY, XZ) in this simulation study, indicating that there is no 

association between factor Y and Z. Therefore, we expect the conditional odds ratio to be 

close to 1 with small variability under the true model assumption. Selecting a model other 

than the true model produces a quite different conditional odds ratio, since the odds ratio 

(θ̂ ) is based on the ratio of the expected cell mean, which is on the exponential scale of 

the of the parameter estimates. Hence, small bias in the λ ’s will produce bigger 

deviations in the µ ’s and θ̂ ’s.  

 What is informative of the result is that almost in all cases, in small sample size 

such as 50 and 100, conditional odds ratio based on BMA parameter estimators has 

bigger standard error than post-model-selection estimators. This suggests that using BMA 

in small samples cannot not guarantee smaller variability of the conditional odds ratio 

estimator than that under model selection. When sample size is greater than 200, the 

advantage of BMA is secured.  
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FIGURE 11. Boxplots of the empirical distributions of parameter estimators under true 
model assumptions (Tr), under model selection (S), BMA(phi=1) (B1), BMA (phi=1.65) 

(B2), BMA (phi=5) (B3) for XY
11λ (plot a) and XZ

11λ (plot b) for case 2, n=500.  
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FIGURE 12. Boxplots of the empirical distributions of parameter estimators under true 
model assumptions (Tr), under model selection (S), BMA(phi=1) (B1), BMA (phi=1.65) 

(B2), BMA (phi=5) (B3) for XY
11λ (plot a), XZ

11λ (plot b) and XZ
12λ (plot c) for case 3, n=500.  
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FIGURE 13. Boxplots of the empirical distributions of parameter estimators under true 
model assumptions (Tr), under model selection (S), BMA(phi=1) (B1), BMA (phi=1.65) 

(B2), BMA (phi=5) (B3) for XY
11λ (plot a), XZ

11λ (plot b) and XZ
12λ (plot c) for case 4, n=500.  
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FIGURE 14. Boxplots of the empirical distributions of parameter estimators under true 
model assumptions (Tr), under model selection (S), BMA(phi=1) (B1), BMA (phi=1.65) 

(B2), BMA (phi=5) (B3) for XY
11λ (plot a) and XZ

11λ (plot b) for case 5, n=500.  
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FIGURE 15. Boxplots of the empirical distributions of parameter estimators under true 
model assumptions (Tr), under model selection (S), BMA(phi=1) (B1), BMA (phi=1.65) 

(B2), BMA (phi=5) (B3) for XY
11λ (plot a) and XZ

11λ (plot b) for case 6, n=500.  
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FIGURE 16. Boxplots of the empirical distributions of parameter estimators under true 
model assumptions (Tr), under model selection (S), BMA(phi=1) (B1), BMA (phi=1.65) 

(B2), BMA (phi=5) (B3) for XY
11λ (plot a), XZ

11λ (plot b) and XZ
12λ (plot c) for case 7, n=500.  
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FIGURE 17. Boxplots of the empirical distributions of parameter estimators under true 
model assumptions (Tr), under model selection (S), BMA(phi=1) (B1), BMA (phi=1.65) 

(B2), BMA (phi=5) (B3) for XY
11λ (plot a), XZ

11λ (plot b) and XZ
12λ (plot c) for case 8, n=500.  
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Chapter 5: Conclusion and Discussion 

It is common practice for researchers in the social sciences and education to use a 

model selection technique to find a best fitting model and, then, to carry out inference as 

if this model were given a priori. This study examined the effect of model selection, 

variable selection in this context, on the inference of the log-linear model. The purpose 

was to (i) find out the consequences when the behavior of model selection is ignored; (ii) 

investigate the performance of the estimator provided by the Bayesian model averaging 

method, and evaluate usefulness of the multi-model inference as opposed to the single 

model inference.  

The basic finding of this study were that inference based on a single “best fit” 

model chosen from a set of candidate models tends to underestimate the variability of the 

parameters and induce additional bias in estimation for a loglinear model.  The results of 

the simulation study showed that the post-model-selection parameter estimator has larger 

bias, standard error, and mean square error than the estimator under the true model 

assumption due to model uncertainty. The same results applied to the conditional odds-

ratio estimators. The fundamental reason is that the sampling distribution of the post-

model-selection estimator is actually a mixture of distributions from a set of candidate 

models. The variability of the post-model-selection estimator has a large component from 

selection bias. While these problems are alleviated with the increase of sample size, the 

interpretation of the p-value of the Z-statistic of the parameters is erroneous even when 

sample size is quite large.  

To avoid the problem of the inference based a single best model, Bayesian model 

averaging adopts a multi-model inference method, treating the weighted mean of the 
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estimates from each model in the set as the point estimator, where the weights are derived 

using Bayes theorem. In this thesis, real and simulated datasets were used to illustrate this 

method and results were compared with the single “best fit” model inference. The BMA 

method requires specification of prior probabilities for models and prior densities for the 

parameters. Under the uniform prior probability for models and normal distributions for 

the parameters, different specifications of the normal distribution lead to somewhat 

different results in terms of MSE of the parameter estimates in the simulation study. With 

large sample size, it was true that different and reasonable choices of prior distributions 

had minor effects on posterior inferences. Generally speaking, the simulation results 

confirm the efficacy of the BMA method as compared with data-driven single “best-fit” 

model inference.  

The distribution of the post-model-selection estimator has proved annoyingly 

intractable because the type of models and the specific set of models vary from research 

to research. The known theoretical results fall short of what we would like to know for 

practical applications. Based on the current findings, several recommendations can be 

given: (i) Bayesian model averaging is a better alternative to the inference based on a 

single best model since it has smaller MSE, although additional bias is introduced by this 

method. Usually, multivariate normal priors are used for the parameters in the Bayesian 

model averaging method. Different specification of the multivariate normal distribution 

parameters leads to different results but when the sample size is relatively large (500 or 

larger, say), these differences are  small. (ii) If model selection is vital in some research 

setting (for example comparing theories represented by different models), large sample 

size is needed. The question to ask is how large is considered “large?” Based on the 



65 
 

results of this simulation study, in the loglinear model setting, 60 observations per cell 

helps to keep the magnitude of the relative efficiency of the post-model-selection 

estimator versus the estimator under true model assumption at a relatively low level 

(below 10). (iii) The p-value of the post-model-selection Z-statistic is misleading, even 

under large sample size, and, therefore, its use is not recommended. Using the normal 

curve theory p-values will lead to either conservative or liberal conclusions depending on 

the shape of the sampling distribution of the Z-statistics. Usually, in the loglinear model 

cases studied here, some post-model-selection Z-statistics were leptokurtic, having a 

higher peak than normal distribution, i.e., more scores fall at 0 due to the fact some 

underestimated models are chosen.  

Based on the current research, some implications for the future research are : (i) 

AIC has been criticized for not being dimension-consistent, in other words, as sample 

size grows, the probability of selecting the “true” model does not go to 1, while BIC is 

dimensional-consistent. It would be valuable to evaluate the performance of the post-

model-selection estimator using the BIC as model selection criterion.; (ii) Due to the 

scope of this research, only the point estimators were investigated. In future studies, it 

would be beneficial to investigate the accuracy of the BMA variance estimators. Also, the 

coverage properties of the confidence intervals might be of interest in the future study.  

As a final note, although the multi-model inference method (BMA) outperformed 

post-model-selection estimators using measures such as estimated mean square error, the 

interpretation of the estimates using the BMA method should proceed with caution. It is 

because meaning and interpretation of a coefficient might change over models. The 

interpretation of a parameter pertains to the particular model, even if the same symbol is 
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used to designate the parameter. If BMA results are used to explain a specific coefficient, 

one should make sure that the interpretation of the coefficient should be the same over 

the set of competing models. In summary, BMA gives more realistic estimates of model 

uncertainty and provides a structured way to deal with the model selection dilemma. 

However, model averaging method does not provide model parsimony, since it averages 

models across different dimensions. We can only interpret the parameters as from the 

saturated model with the average coefficients, which makes it difficult to answer such 

research questions as “among the three factors of marijuana, cigarette, and alcohol, what 

types of independence relationship can be inferred based on the dataset” in a drug data 

context.  



67 
 

Appendix A: Application of Bayesian Model Averaging to Real Data 

In this section we applied the Bayesian model averaging method to some real 

data, which provided some insight into the performance of the method. The results 

reported in this section were analyzed using the software package, BMA, in R. First, we 

described the drug data. Second, we investigated the issue of sensitivity by changing the 

prior distributions on the posterior results. Third, a comparison of BMA results and 

classical results were presented. Fourth, we utilized the principle of "Occam's razor" to 

reduce the number of models in the model set when the number of model under 

consideration is huge. Finally, we compared the results of two model averaging methods, 

namely, Bayesian model averaging and frequentist model averaging. In the frequentist 

model averaging, two methods were used to generate the weights: the bootstrap method, 

and the AIC method.  

Drug Data  

 We illustrate the use of BMA in loglinear analysis of contingency table with the 

student drug data in Agresti (2002). The data were from a 1992 survey by the Wright 

State University and the United Health Services. The Survey asked 2276 senior high 

school students in Dayton, Ohio whether they had ever used alcohol, cigarettes, or 

marijuana. The respondents were cross-classified by alcohol use (A), cigarette use (C) , 

and marijuana use (M).  

 Agresti gave an example of the model selection process in loglinear model 

building. He  investigated nine models (all possible) for the three-way contingency table, 

namely, (A,C,M), (M, AC), (A,CM), (C, AM), (AM,CM),(AC, AM), (AC,CM), 

(AC,AM,CM),(ACM). He suggested AIC could be used in this type of model 
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comparison. Judging by minimum AIC, the all-two-factor-interaction model (AC, AM, 

CM) fits the data best.  He also gave advice on the use of the likelihood ratio tests: "With 

large sample sizes, statistically significant effects can be weak and unimportant. A more 

relevant concern is whether the associations are strong enough to be important. 

Confidence intervals are more useful than tests for assessing this" (p.325). The drug data 

are summarized in Table A1.   

TABLE A1 
Drug data 
Marijuana(M) Cigarette (C) Alcohol(A) count 

Yes Yes Yes 911 
No Yes Yes 538 
Yes No Yes 44 
No No Yes 456 
Yes Yes No 3 
No Yes No 43 
Yes No No 2 
No No No 279 

 

 The log-linear model (AMC) can be written in matrix form as  
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In simple form, a log-linear model is expressed as 

βXµ    log =  

where µ  is a  1  ×q vector of expected counts (q is the number of cells), X  is a 

pq   × design matrix with known values (p is the number of parameters including the 
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intercept and often X  consists of 1s and 0s), and β  is a 1×p vector of unknown 

parameters.  

 

An Investigation of Sensitivity 

 In BMA, the conclusion is drawn based on the posterior probabilities of each 

model in the model set. In most applications of BMA, the standard practice of setting up 

priors is to use the flat prior model probability, which is the default in the software.  

These reference priors are chosen by "public agreement," much like units of length and 

weight. The analysts fall back to the default when there is insufficient information. 

However, the robustness of the BMA results under different prior specification has 

seldom been inspected. In this section, we use the change in posterior model probability 

and parameter probability as a sensitivity measure for BMA. Two types of priors will be 

investigated: the prior model probabilities and the prior parameter distributions.  

 In BMA, the choice of prior is to a certain degree arbitrary, which poses a 

difficulty for applied researchers. However, advocates of BMA tend to view specification 

of a prior as an important but controllable technical complexity. They are attracted to the 

overall logical consistency and its role as a formal way to solve the model uncertainty 

problem.  

 In the BMA sensitivity analysis of drug data, the prior probabilities were 

constructed based on substantive knowledge of substance uses. In this sense, the prior is 

viewed as a unique representation of our ignorance. Thus, we devote a section to a 

description of our knowledge of substance uses. We begin with a brief review of the 

literature on substance uses, then move on to how this body of knowledge assists us in 
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choosing subjective priors. Our aim is to find out whether the weights in model averaging 

are sensitive to the choice of specification of the prior probability. Or, in other words, we 

try to find out whether prior settings have a dramatic impact on the value of the Bayes 

factor, and subsequently, on the posterior inference resulting from BMA. The 

investigation is conducted using the glib function for generalized linear models in the R 

software package BMA. The R glib function obtains the posterior model probability via 

Bayes factors.  

 In the United States, alcohol and cigarette are licit drugs while marijuana is, an 

illegal drug. Drug use, on the whole, is a complex social phenomenon influenced by 

many interacting factors (Rob, Reynolds, & Finlayson,1990). Several competing theories 

of drug uses can be represented by different loglinear models. Three major theories were 

explored.  

 The problem-behavior theory, one of the most cited and influential theories on 

drug use, stated that the associations between drug use are due to a common etiology 

caused by similar psychological and environmental factors from a variety of domains 

including biological, genetic, social and behavioral (Donovan & Jessor, 1985). If the 

same factors are responsible for the associations between these drugs, measures used to 

asses these variables are psychometrically comparable, then one would expect the 

associations to be similar between the licit drugs and marijuana use. The loglinear 

representing this theory is (AC, AM, CM) or (ACM). These models posit that the use of 

these substances is a symptom of a larger set of destructive and deviant behaviors and 

thus they are all related.  
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 In drug use literature, “gateway drugs” refer to alcohol and cigarette. Gateway 

theory suggested that individuals usually started drug use with alcohol and/cigarettes and 

then progressed to marijuana and other illicit drugs (Kandel & Faust, 1975; Yamaguchi & 

Kandel, 1984). The loglinear model representing this theory is (AM, CM).  

 A third theory, representing by the model (CM, A), is the lifestyle theory. Coffey, 

Carlin, Lynskey, Li, and Patton (2003) found that persistent, frequent alcohol use during 

the teen years negated the risk for developing marijuana dependence in regular marijuana 

users as young adults, whereas persistent cigarette use is a strong predictor of marijuana 

dependence, possibly due to similar modes of ingestion of cigarettes and marijuana. They 

hypothesized that their findings may illustrate a social process whereby individuals either 

become part of a predominantly alcohol-using or marijuana-using lifestyle. In model 

(CM, A), cigarette use and marijuana use are associated, but alcohol use are not 

associated with marijuana use.  

 Based on the above substantive knowledge, four sets of reference priors chosen in 

the sensitivity analysis were shown in table A2. The weights for set 1-3 were arranged 

such that each model in the sequence gets a prior weight 30% more than the previous 

one. This type of priors was proposed by Bartels (1997). The weight vector (1,1.3,1.32 

1.33, 1.34, 1.35, 1.36, 1.37, 1.38), when normalized, became the prior probability vector 

(.031,.041,.053,.069,.089,.116,.151,.196,.255). The prior probabilities assigned reflected 

the Bayesian interpretation of probability as a measure of uncertainty. This construction 

of the priors provided a good approximation to the subjective knowledge on the drug use 

issue. Set four adopted uniform model priors. Its weight vector (1,1,1,1,1,1,1,1,1), when 

normalized, became the prior probability vector 
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(.111,.111,.111,.111,.111,.111,.111,.111,.111). The prior probabilities were graphically 

presented in Figure A1.  

 

FIGURE A1. Prior model probabilities.  

 Table A2 presented the models arranged based on the theories. Since the problem-

behavior theory suggested the most likely models are (ACM) or (AC,AM,CM),  these 

two models were assigned the highest prior model weights, (1.3)7 and (1.3)8 , 

respectively. The less association terms a model had, the smaller prior model probability 

was assigned. The gateway theory supported that the two interaction terms AM and CM 

be included in the model, therefore, three models containing these two terms, i.e., 

(ACM),  (AM,CM, AC), and (AM,CM), were given relatively higher prior model 

weights, (1.3)6, (1.3)7 and (1.3)8 , respectively. The lifestyle theory suggested that only 

cigarette use was related to marijuana use and alcohol use was not associated with 

marijuana use. Thus, five models containing the terms AM, i.e., (AM,CM), (C,AM), 

(AC,AM,CM), (AC,AM) and (ACM) were given relatively less weights, (1.3)1, (1.3)2,  

(1.3)3, (1.3)4, and (1.3)5. The model that posited that the three substance uses were 

mutually independent, i.e., (A, C, M) was given lowest prior weight in set 1-3, since all 



73 
 

three theories stated that at least some level of associations existed among the three types 

of substance uses. The setup represented prior opinions in an easily elicitable form.  

 

 

TABLE A2 
Four sets of reference priors in the sensitivity analysis 

Prior model weight based on substantive knowledge Uninformative 
priors 

Prior model 
weight 

Set 1: based on 
problem-
behavior theory 

Set 2: based on 
gateway theory  

Set 3: based on 
lifestyle theory 

Set 4: Uniform 
prior model 
weight 

1 (A,C, M) (A,C, M) (A,C, M) 1 
(1.3)1 (M,AC) (M,AC) (AM,CM) 1 
(1.3)2 (A,CM) (A,CM) (C,AM) 1 
(1.3)3 (C,AM) (C,AM) (AC,AM,CM) 1 
(1.3)4 (AM,CM) (AC,AM) (AC,AM) 1 
(1.3)5 (AC,AM) (AC,CM) (ACM) 1 
(1.3)6 (AC,CM) (ACM) (M,AC) 1 
(1.3)7 (ACM) (AC,AM,CM) (AC,CM) 1 
(1.3)8 (AC,AM,CM) (AM,CM) (A,CM) 1 
 
 
 
 
TABLE A3 
Posterior probabilities with four sets of prior model weights (phi=1.65) 
Models Probabilities1 Probabilities2 Probabilities3 Probabilities4 
(A,C, M) 0 0 0 0 
(M,AC) 0 0 0 0 
(A,CM) 0 0 0 0 
(C,AM) 0 0 0 0 
(AM,CM) 0 0 0 0 
(AC,AM) 0 0 0 0 
(AC,CM) 0 0 0 0 
(ACM) .494 .494 .682 .559 
(AC,AM,CM) .506 .506 .318 .441 
1Results from prior set 1, 2Results from prior set 2, 3Results from prior set 3, and 4Results 
from prior set 4. 
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TABLE A4 
 Maximum likelihood parameter estimates for the two most likely models 
Parameters  Model (AC,AM,CM) (ACM) 
Intercept 5.633 5.631 
A 0.488 0.491 
C -1.887 -1.870 
M -5.309 -4.938 
A*M 2.986 2.600 
A*C 2.055 2.035 
C*M 2.848 2.275 
A*C*M ------ 0.590 
 
 Table A3 showed the results of posterior probabilities, i.e., the model weights in 

BMA. First, it was notable that the posterior probabilities put most mass on two models, 

namely, (ACM) and (AC,AM,CM), and the other seven models received zero probability 

in all four settings. Second, the differences in posterior probabilities under the four 

settings were relatively small except those of set three. Since the coefficients of model 

(ACM) and (AC, AM, CM) were very close, as shown in Table A4, weighted averages 

(BMA estimates) in set three does not differ a lot from those in other sets. In this case, the 

likelihood function (the data) yielded more information than the priors. Third, prior set 

one and two lead to exactly the same posterior probability (.506) for model 

(AC,AM,CM), although the prior probabilities for this model was .196 for set one and 

.255 for set two. The 30% increase of prior model probability from .196 to .255 did not 

cause any difference in the posterior probabilities. 

 We conclude that different principles of assigning model priors were not making 

large differences to the posterior inferences in the drug data. It showed that specifying a 

model prior using external information did not have a practical advantage. In other 

words, using the default uniform model priors provided robust results in this example.  
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 The second part of the analyses focuses on comparing posterior inferences under 

different reasonable choices of prior parameter distribution. As was mentioned in 

literature review, prior distribution of the parameter was assumed to be normal, and 

distributed as ( ) ( )Uν,N~M|θ , where ( )001 ,...,,v=ν  and { }222 φφψ ,...,diagU = . 

Raftery (1996) suggested let 1.and01 == φν  We wanted to know if the posterior was 

impacted by different choices of φ .  The reasonable range for φ  suggested by Raftery 

(1996) is from 1 to 5, with 1.65 as a "central value." The φ  values in this part of analysis 

were set to 1, 1.65 and 5. The posterior probabilities with different priors for parameters 

were displayed in Table A5. In this part of analyses, the prior model weights were 

assumed to be uniform.  

 

TABLE A5 
Posterior probabilities with different priors for parameters 
Models Probabilities1 Probabilities2 Probabilities3 
(A,C, M) 0 0 0 
(M,AC) 0 0 0 
(A,CM) 0 0 0 
(C,AM) 0 0 0 
(AM,CM) 0 0 0 
(AC,AM) 0 0 0 
(AC,CM) 0 0 0 
(ACM) .945 .559 .147 
(AC,AM,CM) .055 .441 .853 
1Results from phi=1, 2results from phi=1.65, 3results from phi=5 
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TABLE A6 
BMA results for Mean(θ|data) under different parameter prior assumptions 

Parameters Mean(θ|data) 
phi=1 phi=1.65 phi=5 

Intercept 5.631 5.632 5.633 
A 0.491 0.490 0.488 
C -1.871 -1.878 -1.885 
M -4.958 -5.102 -5.254 
A*M 2.621 2.770 2.929 
A*C 2.036 2.044 2.052 
C*M 2.307 2.528 2.764 
A*C*M 0.558 0.330 0.087 
 

 Table A6 presented the BMA results for Mean(θ|data) under different parameter 

prior assumptions. The BMA Mean(θ|data) was quite similar for the three phi values 

except the parameter "A*C*M". This was because the term "A*C*M " was the only 

difference between these two models. In model (AC,AM,CM), the coefficient of 

"A*C*M " was considered to be zero, and it was given a weight of .853 when phi is set to 

5, vs .055 when phi is set to 1. This made the coefficient of "A*C*M " vary more than 

other parameters. On the whole, the impact of constructing different parameter priors was 

minimal in this case.  

 Both parts of the sensitivity analyses results suggest that with large small sizes 

(N=2276, and minimum cell size is two), reasonable choices of prior distributions have 

minor effects on posterior probabilities in the drug data. Although posterior probabilities 

are functions of prior distributions, the likelihood function overweighs the priors when 

the sample size is large. Since this result might be just coincident, the conclusion should 

not be generalized to other dataset and/or other settings.  
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BMA vs. Classical Analysis  

 In classical loglinear analysis of drug data, the nine possible models were 

examined, the best fit model was chosen based on AIC or other criteria, and inference 

was based on the "best" model. This practice ignored model uncertainty. BMA had been 

advocated as a formal way to circumvent the problem of model uncertainty. Posterior 

means and standard deviations were used in BMA inferences instead of parameter 

estimates and standard errors. The BMA analogue of the p-value is the quantity 

P(θ≠0|data).  

 

TABLE A7 
Drug data example: comparison of BMA results (via Bayes factor) to post-model-
selection estimates  

 
 
 Table A7 compared the BMA result to post-model-selection estimator. The model 

selection criteria used was the standard AIC, since the models were not hierarchical, G2 

was not appropriate. Model (AC,AM,CM) was chosen as the "best " model because it has the 

minimum AIC value. Nonetheless, (AC,AM,CM) represented only 44.1% of the total posterior 

probability, indicating the amount of model uncertainty is ineligible. The BMA result of Mean (θ 

  Bayesian model averaging (phi=1.65) Model (AC,AM,CM) 

Parameter 

Mean SD  

Estimate (se) p-value 

 

θ |Data 
 

 

θ |Data 
 

 
P( θ≠0|data) 

 

      
A 0.490 0.076 1 0.488 (0.076) < 0.0001 

C -1.877 0.164 1 -1.887 (0.163) < 0.0001 

M -5.102 0.645 1 -5.309 (0.475) < 0.0001 

A*M 2.770 0.661 1 2.986 (0.465) < 0.0001 
A*C 2.044 0.176 1 2.055 (0.174) < 0.0001 
C*M 2.528 0.844 1 2.848 (0.164) < 0.0001 

A*C*M 0.330 0.790 0.559           -------       ------ 
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|Data) was very similar to the post-model-selection estimates. However, the standard errors of 

the estimates of model (AC, AM, CM) were much smaller than the SD(θ|Data) of BMA 

estimates, indicating that post-model-selection estimators substantially underestimated variability 

and produced too optimistic confidence interval. For example, the standard deviation of the 

posterior distribution of the coefficient of the term C*M is .844 under BMA, compared with .164 

(s.e.) of the post-model-selection estimator. The 95% confidences interval formed for this 

parameter from BMA was about five times wider than the one from model selection. The results 

in table A7 suggested that the confidence intervals formed for BMA estimates were much wider 

than those of a single chosen model. Inference based on a set of candidate models rather than a 

single model incorporated model selection into inference.  The posterior probabilities and the p-

values agreed that there were very strong evidence for all the one way effect and two way 

associations. "Strong" can be interpreted based on p-value smaller than 0.001, and P( θ≠0|data) 

greater than 0.99.  

 Figure A2 graphically presented the marginal posterior distribution of the coefficients. 

The spike in the plot of "X7" (the three way association term ACM) corresponded to P( 

0≠θ  |Data)= 0.559. 
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FIGURE A2. Posterior densities of coefficients in BMA results, X1-X7 representing variables C, 

M, A, CM, AC, AM, AMC, in that order (intercept is not plotted). 
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BMA: with vs. without Following “Principle of Hierarchy” 

 For the two-by-two-by-two drug data, if the "principle of hierarchy" (Reynolds, 

1977) as followed, the permissible models were nine, which is a small number. If the 

"principle of hierarchy" was not followed, the permissible models were 27=128, since 

each term could be included or excluded. Although it was difficult to interpret the model 

having terms AMC but not A, it is mathematically feasible. The R glib function requires 

the user to specify all the models to be considered. It was practically unfeasible to 

manually input 128 models in one function (consider the possible mistakes one will 

make). A better alternative, in this case, is the R bic.glm function in the BMA package, 

which utilizes BIC to approximate the Bayes factor in large samples (Kass & Raftery, 

1995). 

  The posterior probability is given by  

( ) ( )

( ) ( )∑
≈

i

|
))(M exp(-.5BIC)pr(M

))(M exp(-.5BIC)pr(M
data)(MPr 

ii

ii
(i) ,  (27) 

The function bic.glm could carry out Bayesian model averaging analysis for generalized 

linear models. Another feature of this function was the utilization of "Occam's razor" in 

reducing number of models to make the summation manageable. The principle of 

Occam’s razor states that one should not increase, beyond what is necessary, to number 

of entities required to explain things. This principle is useful in the statistical model 

building process, because the subject domain could become unlimited complex in some 

cases (Jefferys & Berger, 1991). Under this principle, the models with posterior 

probability far less than the best model in the model space are excluded. The rule was to 

get rid of those models belonging to the set (Madigan & Raftery, 1994): 
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where the value of c are determined by the context. Madigan and Raftery (1994) 

suggested in a general context, the default c value is 20, compared with a c value of 1,000 

for forensic evidence in criminal cases suggested by Evett (1991). 

 Reducing the number of models greatly reduced the amount of computation in the 

analysis of three dimensional table, and it was especially important in accounting for 

model uncertainty in higher dimensional tables. For example, the number of all possible 

loglinear models for four dimensional contingency table is 215=32768, if the law of 

hierarchy is not followed. Table A8 containd the results of the BMA analysis, averaged 

over a set of parsimonious, data-supported models. Table A9 listed the models with 

highest posterior model probability (PMP).  

TABLE A8 
BMA results utilizing Occam's razor when the "hierarchy principle" is not followed 
parameter Mean  

θ|data 
SD 
θ|data 

P(θ≠0|data) 

A 0.489 0.076 1 
C -1.879 0.164 1 
M -5.152 0.614 1 
A*M 2.824 0.618 1 
A*C 2.046 0.175 1 
C*M 2.557 0.797 .95 
A*C*M 0.297 0.796 .33 
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TABLE A9 
Models with highest posterior probability  
 C M A C*M A*C A*M A*M*C PMP 1 

Model 
1 

• • • • • •  0.670 

Model 
2 

• • • • • • • 0.285 

Model 
3 

• • •  • • • 0.045 

1PMP denotes posterior probability 
2dot denotes the inclusion of the term in the model 
 
 
 When the law of hierarchy was not followed, and the Ockham's razor constant c 

was set to 20, three models were left in the parsimonious model set: the saturated model, 

the all two-way-association model and a model consisting of the terms C, M, A, A*C, 

A*M, and A*M*C, which could not be represented by the model symbols we used. 

Model 3 in table A9 represented 4.5% of the total posterior probability. These three 

models accounted for virtually 100 percent of the posterior probability, which means the 

other models excluded by the Ockham's razor represented negligible amount of posterior 

probability. Nonetheless, it is still possible that in some datasets, the many models with 

small posterior probabilities contribute collectively a fair amount of the posterior 

probabilities. If that happens, the researcher need to reset the Ockham's razor constant to 

allow more models to enter, thus increasing the amount of posterior probability 

accounted for by the parsimonious model set. Moulton (1991) gave an extreme example 

of such occasion: in about 4000 models, over 800 models were required to account for 

the 90% of the posterior probability.   

Model Weights Obtained Via Bootstrap Model Averaging, AIC, and BMA 

 Although most of the statistical approaches to handling model uncertainty are 

Bayesian, frequentist alternatives do exist. Bootstrapping has been proposed to determine 
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the relative frequencies of each model being designated as "best," thus constructing a set 

of weights. Little justifications are given in these works and the advocators acknowledge 

the need for more research in this area. Efron and Gong (1983) considered a data-based 

process of explanatory variable selection for a logistic model. They applied the selection 

process to bootstrap replications of the data, obtaining a distribution of logistic models, 

which represent uncertainty about the models.  

 Buckland, Burnham, and Augustin (1997) investigated the performance of 

different bootstrap resampling methods in producing the model averaging weights: 

nonparametric bootstrap, parametric bootstrap, and bootstrap from the residuals. Martin 

and Roberts (2006) did a bootstrap model averaging in time series studies and compared 

its results with BMA in their simulation studies. They found that bootstrap model 

averaging and BMA offered very similar results and they did not favor one method over 

the other.  

 In this section, we generated bootstrap resamples, and applied the model selection 

procedure to each resample. The relative frequencies for each model was treated as 

weight for each model in the bootstrap model averaging. As Candolo, Davison, and 

Demetrio (2003) pointed out the bootstrap variance thus obtained was too large to make 

sense, we did not use the bootstrap method to compute variances of the parameters in the 

averaged model. Our goal was to compare the weights given by bootstrap method, the 

AIC approximation method, and the BMA method.  

 The method of obtaining bootstrapping model averaging weights consisted of 

three steps:  
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 Step 1. Sample with replacement from the cases until the resample contains the 

same number of individuals as the original sample. We sampled the case numbers, 

indexed from 1 to N (2276). We calculated the cumulative cell frequencies of the original 

data, and then calculate how many resampled cases indices fell between the cumulative 

cell frequencies, thus generating the resampled contingency table.  

 Step 2. Follow through the estimation procedure, including model selection by 

minimum AIC, on this resample exactly as if it had been the observed sample.  

 Step 3. Repeat this process 1000 times to generate the bootstrap estimate of the 

relative frequencies of each model.  

 Clyde (2000) noted that BIC could be used in approximating the model weights in 

large samples. Suppose ia  is the prior probability placed on model k. The model weights 

could be approximated as (Clyde, 2000): 
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where )).(min()()( )()( MBICMBICMBIC ii −=∆  Buckland, Burnham, and Augustin 

(1997) proposed an approximation of the model weights based on AIC under the 

frequentist framework. The weight is given by (Buckland, Burnham, & Augustin, 1997): 
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)/2)exp(-AIC(MAIC
kW ,     (29) 

This definition of weight leads to the fact that two models with same AICs would be 

given the same weight, even if they have different number of parameters. They obtained 
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the averaged estimator and its variance for the weighted estimator, which were given by 

(Buckland, Burnham, & Augustin, 1997): 
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where kB can be replaced by θθ ˆˆˆ −= kkB , and ( )kθ̂kvar  can be obtained from the fitted 

models by their standard method. Burnham and Anderson (2004) noted that there was a 

connection between AIC
kW  and  ICB

kW . They pointed out  AIC
kW  was a form of ICB

kW  , if 

the prior weight ia was specified in a “savvy” way. See Burnham and Anderson (2002) 

for further discussion of the topic. 

TABLE A10 
Model weights given by the bootstrap method, AIC approximation, and BMA  
 Bootstrap method AIC approximation BMA (phi=1.65) 
(AMC) .300 .307 .559 
(AM,AC,CM) .700 .697 .441 
(AM,CM) 0 0 0 
(AC,AM) 0 0 0 
(AC,CM) 0 0 0 
(M,AC) 0 0 0 
(A,CM) 0 0 0 
(C,AM) 0 0 0 
(A,C, M) 0 0 0 
 
 The results in Table A10 showed that all three methods put weights are on two 

models, (ACM) and (AC,AM,CM), exclusively. The two frequentist methods, Bootstrap 

method and AIC approximation, gave essentially the same weight to each model, while 

the BMA method allocated different weight on the two models. Although the model 

weights were somewhat different for the three methods, the averaged means of the 

parameters are still similar across the methods. It was because the parameter estimates for 
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the two models (AMC) and (AM,AC,CM) are very close in magnitude. Buckland, 

Burnham, and Augustin (1997) pointed out that for generalized linear models, 

observations were assumed to be independently distributed, but their variance is a 

function of their expectation, so the cases were not independently and identically 

distributed, thus nonparametric bootstrap should be replaced by the parametric bootstrap. 

Candolo, Davison, and Demetrio (2003) showed that for Poisson regression setting, the 

parameteric bootstrap and nonparametric bootstrap gave very similar results in terms of 

model weight. If we consider loglinear model as a special case of Poisson regression, the 

nonparametric bootstrap method used in this section was a reasonable approximation to 

the ideal result. The bootstrap method has a conceptual advantage in that the analysis of 

the same data does not lead to incompatible results when different priors are specified, 

thereby minimizing the need for incorporating relevant prior information. However, the 

difficulty of bootstrap methods lies in the fact that for some type of models, 

nonparametric bootstrap is still a very difficult topic.  
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Appendix B: Simulation Results 

TABLE B1 
Percentage of time each model is selected (%) under model selection for case 1-4 
Models Case 1 Case 2 Case 3 Case 4 
n=50 
M(1): (XYZ)  Overspecified 6.61 10.22 4.51 6.14 
M(2): (XY, YZ, 
XZ) 

Overspecified 3.06 15.09 2.94 15.03 

M (3): (XY, XZ) True model 16.06 70.08 14.75 69.74 
M(4): (XY, YZ) Misspecified 11.30 1.19 11.12 2.28 
M(5): (XY, Z) Underspecified 62.97 3.42 66.68 6.81 
n=100 
M(1): (XYZ)  Overspecified 5.47 12.21 3.74 7.77 
M(2): (XY, YZ, 
XZ) 

Overspecified 3.47 13.36 2.81 12.24 

M (3): (XY, XZ) True model 20.30 74.24 17.52 79.45 
M(4): (XY, YZ) Misspecified 11.38 .04 10.69 .18 
M(5): (XY, Z) Underspecified 59.38 .15 65.24 .36 
n=200 
M(1): (XYZ)  Overspecified 5.38 9.32 3.16 8.09 
M(2): (XY, YZ, 
XZ) 

Overspecified 4.90 13.29 3.61 11.67 

M (3): (XY, XZ) True model 26.76 77.39 22.58 80.24 
M(4): (XY, YZ) Misspecified 9.41 .00 9.83 .00 
M(5): (XY, Z) Underspecified 53.55 .00 60.82 .00 
n=500 
M(1): (XYZ)  Overspecified 6.40 8.46 3.91 6.10 
M(2): (XY, YZ, 
XZ) 

Overspecified 7.87 13.59 5.28 11.65 

M (3): (XY, XZ) True model 43.67 77.95 38.70 82.25 
M(4): (XY, YZ) Misspecified 6.23 .00 7.14 .00 
M(5): (XY, Z) Underspecified 35.83 .00 44.97 .00 
n=1000 
M(1): (XYZ)  Overspecified 7.46 8.16 4.31 5.70 
M(2): (XY, YZ, 
XZ) 

Overspecified 10.49 13.38 8.33 11.63 

M (3): (XY, XZ) True model 61.89 78.46 57.21 82.67 
M(4): (XY, YZ) Misspecified 2.97 .00 4.21 .00 
M(5): (XY, Z) Underspecified 17.19 .00 25.94 .00 
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TABLE B2 
Percentage of time each model is selected (%) for case 5-8 

Models Case 5 Case 6 Case 7 Case 8 
n=50 
M(1): (XYZ) Overspecified 4.62 7.02 3.41 4.28 
M(2): (XY, YZ, XZ) Overspecified 1.11 6.45 1.00 6.52 
M (3): (XY, XZ) True model 3.26 31.67 2.82 32.89 
M(4): (XY, YZ) Misspecified 3.29 .80 2.47 1.11 
M(5): (XZ, YZ) Misspecified 2.36 10.26 1.84 9.46 
M(6): (XY, Z) Underspecified 30.63 1.63 49.70 4.77 
M(7): (XZ, Y) Misspecified 30.64 41.47 20.87 39.66 
M(8): (YZ, X) Misspecified 25.69 .70 17.87 1.31 
n=100 
M(1): (XYZ) Overspecified 3.92 9.59 2.55 6.71 
M(2): (XY, YZ, XZ) Overspecified 1.04 7.30 .86 7.40 
M (3): (XY, XZ) True model 5.37 46.26 4.75 52.06 
M(4): (XY, YZ) Misspecified 2.84 .02 2.60 .12 
M(5): (XZ, YZ) Misspecified 2.87 8.76 1.87 6.64 
M(6): (XY, Z) Underspecified 31.69 .06 49.77 .21 
M(7): (XZ, Y) Misspecified 30.71 27.99 21.82 26.85 
M(8): (YZ, X) Misspecified 21.56 .02 15.78 .01 
n=200 
M(1): (XYZ) Overspecified 3.64 8.87 2.12 7.55 
M(2): (XY, YZ, XZ) Overspecified 1.72 9.21 .94 9.60 
M (3): (XY, XZ) True model 9.43 66.05 7.99 70.07 
M(4): (XY, YZ) Misspecified 3.56 .00 3.21 .00 
M(5): (XZ, YZ) Misspecified 3.17 5.06 2.50 3.42 
M(6): (XY, Z) Underspecified 31.25 .00 48.15 .00 
M(7): (XZ, Y) Misspecified 31.71 10.81 23.24 9.36 
M(8): (YZ, X) Misspecified 15.52 .00 11.85 .00 
n=500 
M(1): (XYZ) Overspecified 4.90 8.50 3.04 5.87 
M(2): (XY, YZ, XZ) Overspecified 4.42 12.88 3.44 12.12 
M (3): (XY, XZ) True model 24.61 77.58 21.98 81.56 
M(4): (XY, YZ) Misspecified 3.37 .00 4.37 .00 
M(5): (XZ, YZ) Misspecified 3.62 .59 2.53 .24 
M(6): (XY, Z) Underspecified 26.82 .00 38.31 .00 
M(7): (XZ, Y) Misspecified 25.53 .45 21.01 .21 
M(8): (YZ, X) Misspecified 6.73 .00 5.32 .00 
n=1000 
M(1): (XYZ) Overspecified 6.90 8.48 4.30 5.37 
M(2): (XY, YZ, XZ) Overspecified 8.26 12.90 6.96 11.97 
M (3): (XY, XZ) True model 48.74 78.61 45.88 82.65 
M(4): (XY, YZ) Misspecified 2.57 .00 3.20 .00 
M(5): (XZ, YZ) Misspecified 2.22 .01 1.68 .01 
M(6): (XY, Z) Underspecified 15.41 .00 24.42 .00 
M(7): (XZ, Y) Misspecified 14.76 .00 12.36 .00 
M(8): (YZ, X) Misspecified 1.14 .00 1.20 .00 
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TABLE B3 
Simulation results of the estimates of XY

11λ  in case 2 
  Method 
Sample 
size 

Estimate True Model 
Assumption 

Model 
Selection 

BMA 1 BMA 2 BMA 3 

50 Bias -0.031 -0.343 -1.065 -0.796 -0.543 
 SE 3.757 7.795 4.497 4.047 3.573 
 MSE 14.118 60.878 21.352 17.013 13.063 
 Rel EFF  4.312 1.512 1.205 0.925 
       
100 Bias 0.025 -0.859 -0.624 -0.476 -0.294 
 SE 0.666 4.998 2.580 2.174 1.709 
 MSE 0.445 25.715 7.043 4.953 3.007 
 Rel EFF  57.851 15.844 11.142 6.765 
       
200 Bias 0.011 -0.177 -0.067 -0.061 -0.042 
 SE 0.412 2.169 1.063 0.935 0.755 
 MSE 0.170 4.737 1.133 0.879 0.572 
 Rel EFF  27.908 6.676 5.176 3.367 
       
500 Bias 0.003 -0.002 0.009 0.004 0.003 
 SE 0.253 0.340 0.272 0.268 0.259 
 MSE 0.064 0.116 0.074 0.072 0.067 
 Rel EFF  1.800 1.154 1.117 1.044 
       
1000 Bias -0.001 -0.004 0.002 0.000 0.000 
 SE 0.175 0.232 0.186 0.182 0.177 
 MSE 0.031 0.054 0.035 0.033 0.031 
 Rel EFF  1.766 1.132 1.088 1.025 
1Results from phi=1, 2results from phi=1.65, 3results from phi=5 
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TABLE B4 
Simulation results of the estimates of XZ

11λ  in case 2 
  Method 
Sample 
size 

Estimate True Model 
Assumption 

Model 
Selection 

BMA 1 BMA 2 BMA 3 

50 Bias -0.382 -2.148 -3.032 -2.503 -1.752 
 SE 2.573 10.581 5.904 5.429 5.036 
 MSE 6.765 116.561 44.04 35.739 28.426 
 Rel EFF  17.231 6.510 5.283 4.202 
       
100 Bias -0.059 -2.008 -1.482 -1.235 -0.837 
 SE 0.525 7.664 3.781 3.398 2.914 
 MSE 0.279 62.755 16.487 13.070 9.190 
 Rel EFF  224.900 59.087 46.839 32.934 
       
200 Bias -0.024 -0.478 -0.235 -0.220 -0.173 
 SE 0.354 3.224 1.508 1.378 1.154 
 MSE 0.126 10.621 2.329 1.946 1.361 
 Rel EFF  84.490 18.527 15.479 10.827 
       
500 Bias -0.009 -0.029 -0.013 -0.017 -0.013 
 SE 0.223 0.379 0.255 0.247 0.231 
 MSE 0.050 0.144 0.065 0.061 0.054 
 Rel EFF  2.898 1.312 1.231 1.078 
       
1000 Bias -0.005 -0.016 -0.006 -0.007 -0.006 
 SE 0.156 0.260 0.174 0.167 0.158 
 MSE 0.024 0.068 0.030 0.028 0.025 
 Rel EFF  2.777 1.245 1.150 1.030 
1Results from phi=1, 2results from phi=1.65, 3results from phi=5 



91 
 

TABLE B5 
 Simulation results of the estimates of XY

11λ  in case 3 
  Method 
Sample 
size 

Estimate True Model 
Assumption 

Model 
Selection 

BMA 1 BMA 2 BMA 3 

50 Bias -0.040 -0.177 -0.268 -0.162 -0.057 
 SE 0.722 2.960 1.872 1.350 0.759 
 MSE 0.524 8.789 3.577 1.849 0.579 
 Rel EFF  16.788 6.833 3.531 1.106 
       
100 Bias -0.006 -0.056 -0.044 -0.029 -0.009 
 SE 0.431 1.259 0.742 0.621 0.461 
 MSE 0.186 1.589 0.552 0.386 0.212 
 Rel EFF  8.552 2.972 2.080 1.144 
       
200 Bias -0.006 -0.007 -0.009 -0.007 -0.006 
 SE 0.298 0.340 0.300 0.299 0.298 
 MSE 0.089 0.115 0.090 0.089 0.089 
 Rel EFF  1.299 1.017 1.005 1.000 
       
500 Bias -0.005 -0.007 -0.006 -0.005 -0.005 
 SE 0.188 0.212 0.189 0.189 0.188 
 MSE 0.035 0.045 0.036 0.036 0.035 
 Rel EFF  1.272 1.013 1.006 1.000 
       
1000 Bias -0.002 -0.002 -0.002 -0.002 -0.002 
 SE 0.130 0.149 0.131 0.131 0.130 
 MSE 0.017 0.022 0.017 0.017 0.017 
 Rel EFF  1.309 1.014 1.003 1.000 
1Results from phi=1, 2results from phi=1.65, 3results from phi=5 
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TABLE B6 
Simulation results of the estimates of XZ

11λ  in case 3 
  Methods 
Sample 
size 

Estimates True Model 
Assumption 

Model 
Selection 

BMA 1 BMA 2 BMA 3 

50 Bias 0.034 -0.071 -0.089 -0.138 -0.237 
 SE 0.910 2.097 1.242 0.899 0.432 
 MSE 0.829 4.403 1.549 0.828 0.243 
 Rel EFF  5.310 1.869 0.999 0.293 
       
100 Bias 0.016 -0.131 -0.166 -0.193 -0.26 
 SE 0.508 0.586 0.344 0.313 0.172 
 MSE 0.258 0.360 0.146 0.135 0.097 
 Rel EFF  1.393 0.564 0.522 0.375 
       
200 Bias 0.006 -0.133 -0.178 -0.205 -0.264 
 SE 0.351 0.355 0.219 0.199 0.128 
 MSE 0.123 0.144 0.080 0.082 0.086 
 Rel EFF  1.166 0.648 0.664 0.698 
       
500 Bias 0.004 -0.091 -0.167 -0.195 -0.254 
 SE 0.221 0.270 0.184 0.174 0.126 
 MSE 0.049 0.081 0.062 0.068 0.080 
 Rel EFF  1.659 1.264 1.393 1.641 
       
1000 Bias 0.002 -0.047 -0.136 -0.164 -0.229 
 SE 0.155 0.207 0.176 0.173 0.140 
 MSE 0.024 0.045 0.050 0.057 0.072 
 Rel EFF  1.888 2.071 2.362 3.021 
1Results from phi=1, 2results from phi=1.65, 3results from phi=5 
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TABLE B7 
 Simulation results of the estimates of XZ

12λ  in case 3 
  Methods 
Sample 
size 

Estimates True Model 
Assumption 

Model 
Selection 

BMA 1 BMA 2 BMA 3 

50 Bias 0.024 -0.112 -0.111 -0.154 -0.238 
 SE 1.072 1.988 1.254 0.921 0.471 
 MSE 1.150 3.965 1.584 0.872 0.279 
 Rel EFF  3.448 1.377 0.758 0.242 
       
100 Bias 0.022 -0.124 -0.162 -0.190 -0.258 
 SE 0.517 0.583 0.347 0.313 0.168 
 MSE 0.268 0.356 0.146 0.134 0.095 
 Rel EFF  1.327 0.546 0.500 0.355 
       
200 Bias 0.004 -0.128 -0.178 -0.204 -0.263 
 SE 0.353 0.360 0.220 0.201 0.127 
 MSE 0.125 0.146 0.080 0.082 0.086 
 Rel EFF  1.166 0.641 0.656 0.686 
       
500 Bias 0.002 -0.089 -0.167 -0.194 -0.253 
 SE 0.222 0.272 0.187 0.177 0.130 
 MSE 0.049 0.082 0.063 0.069 0.081 
 Rel EFF  1.661 1.276 1.403 1.644 
       
1000 Bias 0.001 -0.047 -0.136 -0.163 -0.229 
 SE 0.156 0.207 0.177 0.174 0.142 
 MSE 0.024 0.045 0.050 0.057 0.072 
 Rel EFF  1.845 2.043 2.326 2.966 
1Results from phi=1, 2results from phi=1.65, 3results from phi=5 
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TABLE B8 
 Simulation results of the estimates of XY

11λ  in case 4 
  Methods 
Sample 
size 

Estimates True Model 
Assumption 

Model 
Selection 

BMA 1 BMA 2 BMA 3 

50 Bias 0.356 0.915 -0.493 -0.115 0.198 
 SE 3.440 7.255 5.352 4.407 3.069 
 MSE 11.957 53.466 28.887 19.429 9.457 
 Rel EFF  4.472 2.416 1.625 0.791 
       
100 Bias 0.046 -0.401 -0.738 -0.382 -0.071 
 SE 0.869 4.739 3.045 2.245 1.269 
 MSE 0.758 22.613 9.818 5.187 1.616 
 Rel EFF  29.828 12.951 6.843 2.132 
       
200 Bias 0.013 -0.337 -0.203 -0.088 -0.007 
 SE 0.397 2.947 1.363 0.904 0.528 
 MSE 0.158 8.797 1.899 0.826 0.279 
 Rel EFF  55.777 12.039 5.234 1.771 
       
500 Bias 0.008 -0.013 0.006 0.004 0.006 
 SE 0.240 0.685 0.369 0.334 0.274 
 MSE 0.058 0.469 0.136 0.111 0.075 
 Rel EFF  8.119 2.353 1.930 1.297 
       
1000 Bias 0.005 0.004 0.007 0.005 0.005 
 SE 0.171 0.228 0.173 0.172 0.171 
 MSE 0.029 0.052 0.030 0.030 0.029 
 Rel EFF  1.777 1.027 1.012 1.002 
1Results from phi=1, 2results from phi=1.65, 3results from phi=5 
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TABLE B9 
 Simulation results of the estimates of XZ

11λ  in case 4 
  Methods 
Sample 
size 

Estimates True Model 
Assumption 

Model 
Selection 

BMA 1 BMA 2 BMA 3 

50 Bias -1.083 -1.622 -3.166 -2.089 -0.488 
 SE 4.481 8.890 6.541 5.489 4.075 
 MSE 21.246 81.656 52.809 34.492 16.840 
 Rel EFF  3.843 2.486 1.623 0.793 
       
100 Bias -0.161 -1.262 -1.884 -1.129 -0.198 
 SE 1.315 7.174 4.471 3.457 2.076 
 MSE 1.755 53.051 23.534 13.226 4.348 
 Rel EFF  30.233 13.411 7.537 2.478 
       
200 Bias -0.044 -0.825 -0.510 -0.297 -0.095 
 SE 0.429 4.505 2.011 1.449 0.803 
 MSE 0.186 20.972 4.305 2.186 0.654 
 Rel EFF  112.986 23.194 11.779 3.522 
       
500 Bias -0.012 -0.053 -0.024 -0.021 -0.016 
 SE 0.265 0.838 0.445 0.409 0.32 
 MSE 0.070 0.705 0.198 0.168 0.103 
 Rel EFF  10.031 2.823 2.385 1.462 
       
1000 Bias -0.009 -0.012 -0.008 -0.009 -0.009 
 SE 0.185 0.261 0.187 0.186 0.185 
 MSE 0.034 0.068 0.035 0.035 0.034 
 Rel EFF  1.991 1.028 1.009 1.001 
1Results from phi=1, 2results from phi=1.65, 3results from phi=5 
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TABLE B10 
 Simulation results of the estimates of XZ

12λ  in case 4 
  Methods 
Sample 
size 

Estimates True Model 
Assumption 

Model 
Selection 

BMA 1 BMA 2 BMA 3 

50 Bias -1.068 -1.671 -3.261 -2.152 -0.512 
 SE 4.465 8.774 6.533 5.482 4.097 
 MSE 21.079 79.761 53.314 34.68 17.045 
 Rel EFF  3.784 2.529 1.645 0.809 
       
100 Bias -0.166 -1.258 -1.863 -1.111 -0.187 
 SE 1.323 7.000 4.377 3.390 2.061 
 MSE 1.777 50.581 22.622 12.721 4.281 
 Rel EFF  28.458 12.728 7.157 2.408 
       
200 Bias -0.044 -0.796 -0.500 -0.292 -0.094 
 SE 0.429 4.404 1.989 1.428 0.789 
 MSE 0.186 20.027 4.204 2.125 0.631 
 Rel EFF  107.698 22.610 11.430 3.396 
       
500 Bias -0.011 -0.053 -0.023 -0.020 -0.014 
 SE 0.262 0.822 0.419 0.374 0.295 
 MSE 0.069 0.678 0.176 0.140 0.087 
 Rel EFF  9.819 2.551 2.028 1.266 
       
1000 Bias -0.010 -0.018 -0.01 -0.011 -0.01 
 SE 0.182 0.261 0.185 0.183 0.182 
 MSE 0.033 0.069 0.034 0.033 0.033 
 Rel EFF  2.066 1.032 1.008 1.001 
1Results from phi=1, 2results from phi=1.65, 3results from phi=5 
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TABLE B11 
 Simulation results of the estimates of XY

11λ  in case 5 
  Methods 
Sample 
size 

Estimates True Model 
Assumption 

Model 
Selection 

BMA 1 BMA 2 BMA 3 

50 Bias -0.064 -0.116 -0.047 -0.007 0.064 
 SE 1.061 2.010 1.109 0.979 0.734 
 MSE 1.129 4.052 1.231 0.958 0.542 
 Rel EFF  3.590 1.091 0.848 0.480 
       
100 Bias -0.017 0.038 0.068 0.087 0.114 
 SE 0.446 0.589 0.404 0.392 0.359 
 MSE 0.199 0.349 0.168 0.161 0.142 
 Rel EFF  1.750 0.841 0.808 0.712 
       
200 Bias -0.001 0.053 0.086 0.103 0.125 
 SE 0.309 0.341 0.265 0.258 0.247 
 MSE 0.096 0.119 0.077 0.077 0.077 
 Rel EFF  1.246 0.810 0.804 0.800 
       
500 Bias -0.004 0.039 0.077 0.092 0.112 
 SE 0.194 0.242 0.202 0.202 0.200 
 MSE 0.038 0.060 0.047 0.049 0.052 
 Rel EFF  1.596 1.245 1.302 1.392 
       
1000 Bias -0.001 0.018 0.063 0.076 0.098 
 SE 0.136 0.177 0.168 0.170 0.174 
 MSE 0.018 0.032 0.032 0.035 0.040 
 Rel EFF  1.713 1.731 1.885 2.154 
1Results from phi=1, 2results from phi=1.65, 3results from phi=5 
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TABLE B12 
 Simulation results of the estimates of XZ

11λ  in case 5 
  Methods 
Sample 
size 

Estimates True Model 
Assumption 

Model 
Selection 

BMA 1 BMA 2 BMA 3 

50 Bias -0.048 -0.044 0.002 0.035 0.088 
 SE 1.063 1.780 0.973 0.871 0.703 
 MSE 1.132 3.170 0.946 0.760 0.502 
 Rel EFF  2.800 0.836 0.672 0.444 
       
100 Bias -0.016 0.043 0.071 0.091 0.118 
 SE 0.442 0.528 0.364 0.348 0.322 
 MSE 0.196 0.281 0.138 0.129 0.118 
 Rel EFF  1.433 0.703 0.660 0.602 
       
200 Bias -0.007 0.050 0.082 0.099 0.121 
 SE 0.307 0.342 0.266 0.259 0.249 
 MSE 0.094 0.120 0.077 0.077 0.076 
 Rel EFF  1.270 0.823 0.816 0.812 
       
500 Bias 0.000 0.042 0.080 0.095 0.115 
 SE 0.195 0.244 0.202 0.201 0.199 
 MSE 0.038 0.061 0.047 0.049 0.053 
 Rel EFF  1.611 1.247 1.302 1.388 
       
1000 Bias -0.001 0.019 0.062 0.076 0.097 
 SE 0.138 0.179 0.169 0.172 0.175 
 MSE 0.019 0.032 0.032 0.035 0.040 
 Rel EFF  1.704 1.709 1.859 2.120 
1Results from phi=1, 2results from phi=1.65, 3results from phi=5 
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TABLE B13 
Simulation results of the estimates of XY

11λ  in case 6 
  Methods 
Sample 
size 

Estimates True Model 
Assumption 

Model 
Selection 

BMA 1 BMA 2 BMA 3 

50 Bias 0.066 -0.074 -0.830 -0.626 -0.577 
 SE 3.794 6.956 4.010 3.474 2.840 
 MSE 14.397 48.382 16.766 12.458 8.398 
 Rel EFF  3.361 1.165 0.865 0.583 
       
100 Bias 0.002 -0.701 -0.667 -0.565 -0.589 
 SE 0.727 4.118 2.152 1.690 1.265 
 MSE 0.529 17.451 5.073 3.176 1.947 
 Rel EFF  33.007 9.595 6.007 3.683 
       
200 Bias 0.008 -0.243 -0.198 -0.250 -0.366 
 SE 0.403 2.176 1.033 0.865 0.677 
 MSE 0.162 4.792 1.105 0.811 0.593 
 Rel EFF  29.559 6.818 5.001 3.655 
       
500 Bias 0.001 -0.010 -0.023 -0.045 -0.089 
 SE 0.249 0.425 0.335 0.351 0.388 
 MSE 0.062 0.181 0.112 0.125 0.158 
 Rel EFF  2.911 1.808 2.009 2.546 
       
1000 Bias 0.000 -0.004 0.001 -0.002 -0.005 
 SE 0.175 0.231 0.189 0.189 0.191 
 MSE 0.031 0.054 0.036 0.036 0.037 
 Rel EFF  1.751 1.172 1.168 1.199 
1Results from phi=1, 2results from phi=1.65, 3results from phi=5 
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TABLE B14 
 Simulation results of the estimates of XZ

11λ  in case 6 
  Methods 
Sample 
size 

Estimates True Model 
Assumption 

Model 
Selection 

BMA 1 BMA 2 BMA 3 

50 Bias -0.384 -1.665 -2.564 -1.93 -1.095 
 SE 2.551 9.153 5.367 4.639 3.654 
 MSE 6.654 86.547 35.377 25.240 14.547 
 Rel EFF  13.006 5.316 3.793 2.186 
       
100 Bias -0.066 -1.625 -1.292 -0.963 -0.521 
 SE 0.584 7.027 3.442 2.944 2.258 
 MSE 0.346 52.021 13.512 9.595 5.370 
 Rel EFF  150.537 39.100 27.765 15.539 
       
200 Bias -0.027 -0.490 -0.243 -0.212 -0.145 
 SE 0.358 3.264 1.500 1.320 1.012 
 MSE 0.129 10.895 2.308 1.788 1.044 
 Rel EFF  84.530 17.905 13.872 8.102 
       
500 Bias -0.016 -0.037 -0.021 -0.025 -0.021 
 SE 0.222 0.452 0.286 0.278 0.262 
 MSE 0.050 0.206 0.082 0.078 0.069 
 Rel EFF  4.141 1.659 1.565 1.395 
       
1000 Bias -0.004 -0.016 -0.006 -0.008 -0.006 
 SE 0.154 0.257 0.169 0.164 0.156 
 MSE 0.024 0.066 0.029 0.027 0.024 
 Rel EFF  2.804 1.214 1.135 1.031 
1Results from phi=1, 2results from phi=1.65, 3results from phi=5 
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TABLE B15 
Simulation results of the estimates of XY

11λ  in case 7 
  Methods 
Sample 
size 

Estimates True Model 
Assumption 

Model 
Selection 

BMA 1 BMA 2 BMA 3 

50 Bias -0.029 -0.071 -0.118 -0.030 0.024 
 SE 0.735 2.541 1.524 1.083 0.673 
 MSE 0.541 6.461 2.337 1.174 0.454 
 Rel EFF  11.947 4.321 2.171 0.839 
       
100 Bias -0.012 -0.020 0.016 0.037 0.040 
 SE 0.429 1.294 0.735 0.566 0.401 
 MSE 0.184 1.674 0.541 0.322 0.162 
 Rel EFF  9.107 2.941 1.751 0.883 
       
200 Bias -0.005 0.039 0.058 0.060 0.043 
 SE 0.297 0.340 0.269 0.271 0.281 
 MSE 0.088 0.117 0.076 0.077 0.081 
 Rel EFF  1.321 0.857 0.872 0.913 
       
500 Bias 0.000 0.034 0.051 0.054 0.042 
 SE 0.186 0.235 0.194 0.195 0.195 
 MSE 0.222 0.267 0.197 0.195 0.174 
 Rel EFF  1.204 0.887 0.880 0.785 
       
1000 Bias -0.002 0.015 0.035 0.040 0.038 
 SE 0.132 0.174 0.155 0.157 0.156 
 MSE 0.017 0.030 0.025 0.026 0.026 
 Rel EFF  1.750 1.446 1.510 1.486 
1Results from phi=1, 2results from phi=1.65, 3results from phi=5 
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TABLE B16 
Simulation results of the estimates of XZ

11λ  in case 7 
  Methods 
Sample 
size 

Estimates True Model 
Assumption 

Model 
Selection 

BMA 1 BMA 2 BMA 3 

50 Bias 0.023 -0.064 -0.077 -0.109 -0.165 
 SE 0.989 2.016 1.162 0.872 0.555 
 MSE 0.979 4.068 1.355 0.772 0.335 
 Rel EFF  4.155 1.384 0.788 0.342 
       
100 Bias 0.010 -0.106 -0.137 -0.147 -0.191 
 SE 0.513 0.542 0.376 0.344 0.276 
 MSE 0.264 0.305 0.160 0.140 0.112 
 Rel EFF  1.157 0.606 0.531 0.426 
       
200 Bias 0.002 -0.107 -0.145 -0.157 -0.201 
 SE 0.352 0.355 0.248 0.243 0.209 
 MSE 0.124 0.137 0.082 0.084 0.084 
 Rel EFF  1.108 0.665 0.677 0.678 
       
500 Bias -0.003 -0.080 -0.141 -0.156 -0.202 
 SE 0.223 0.266 0.196 0.195 0.174 
 MSE 0.050 0.077 0.058 0.062 0.071 
 Rel EFF  1.557 1.178 1.258 1.432 
       
1000 Bias -0.002 -0.046 -0.121 -0.140 -0.189 
 SE 0.155 0.205 0.177 0.178 0.165 
 MSE 0.024 0.044 0.046 0.051 0.063 
 Rel EFF  1.830 1.915 2.128 2.630 
1Results from phi=1, 2results from phi=1.65, 3results from phi=5 
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TABLE B17 
Simulation results of the estimates of XZ

12λ  in case 7 
  Methods 
Sample 
size 

Estimates True Model 
Assumption 

Model 
Selection 

BMA 1 BMA 2 BMA 3 

50 Bias 0.020 -0.057 -0.075 -0.110 -0.168 
 SE 1.008 1.987 1.117 0.840 0.553 
 MSE 1.016 3.951 1.252 0.718 0.334 
 Rel EFF  3.890 1.233 0.707 0.329 
       
100 Bias 0.009 -0.104 -0.137 -0.147 -0.190 
 SE 0.518 0.483 0.345 0.331 0.279 
 MSE 0.269 0.244 0.138 0.131 0.114 
 Rel EFF  0.909 0.513 0.487 0.423 
       
200 Bias 0.001 -0.106 -0.145 -0.158 -0.201 
 SE 0.352 0.357 0.247 0.242 0.208 
 MSE 0.124 0.139 0.082 0.084 0.084 
 Rel EFF  1.118 0.662 0.674 0.675 
       
500 Bias -0.001 -0.080 -0.140 -0.156 -0.201 
 SE 0.222 0.267 0.197 0.195 0.174 
 MSE 0.049 0.077 0.058 0.062 0.071 
 Rel EFF  1.578 1.186 1.267 1.443 
       
1000 Bias 0.000 -0.043 -0.119 -0.138 -0.188 
 SE 0.158 0.207 0.18 0.181 0.168 
 MSE 0.025 0.045 0.047 0.052 0.064 
 Rel EFF  1.787 1.863 2.066 2.541 
1Results from phi=1, 2results from phi=1.65, 3results from phi=5 
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TABLE B18 
Simulation results of the estimates of XY

11λ  in case 8 
  Methods 
Sample 
size 

Estimates True Model 
Assumption 

Model 
Selection 

BMA 1 BMA 2 BMA 3 

50 Bias 0.410 0.842 -0.273 -0.041 -0.011 
 SE 3.616 6.819 4.912 3.953 2.755 
 MSE 13.245 47.200 24.198 15.624 7.587 
 Rel EFF  3.564 1.827 1.180 0.573 
       
100 Bias 0.036 -0.501 -0.782 -0.542 -0.448 
 SE 0.844 4.424 2.706 1.901 1.042 
 MSE 0.714 19.825 7.935 3.908 1.287 
 Rel EFF  27.776 11.117 5.476 1.803 
       
200 Bias 0.013 -0.371 -0.279 -0.243 -0.307 
 SE 0.398 2.964 1.315 0.949 0.671 
 MSE 0.158 8.925 1.808 0.960 0.545 
 Rel EFF  56.376 11.422 6.066 3.440 
       
500 Bias 0.009 0.003 -0.002 -0.016 -0.047 
 SE 0.244 0.341 0.277 0.290 0.327 
 MSE 0.059 0.116 0.077 0.084 0.109 
 Rel EFF  1.958 1.294 1.419 1.837 
       
1000 Bias 0.001 -0.002 0.002 0.000 -0.001 
 SE 0.169 0.227 0.173 0.172 0.174 
 MSE 0.028 0.052 0.030 0.030 0.030 
 Rel EFF  1.809 1.050 1.043 1.062 
1Results from phi=1, 2results from phi=1.65, 3results from phi=5 
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TABLE B19 
Simulation results of the estimates of XZ

11λ  in case 8 
  Methods 
Sample 
size 

Estimates True Model 
Assumption 

Model 
Selection 

BMA 1 BMA 2 BMA 3 

50 Bias -1.067 -1.538 -2.763 -1.723 -0.448 
 SE 4.414 7.879 5.862 4.718 3.347 
 MSE 20.617 64.44 41.993 25.227 11.400 
 Rel EFF  3.126 2.037 1.224 0.553 
       
100 Bias -0.143 -1.205 -1.636 -0.919 -0.167 
 SE 1.209 6.840 4.149 3.045 1.652 
 MSE 1.481 48.231 19.890 10.116 2.756 
 Rel EFF  32.568 13.431 6.831 1.861 
       
200 Bias -0.041 -0.785 -0.461 -0.260 -0.081 
 SE 0.425 4.513 1.962 1.422 0.778 
 MSE 0.182 20.981 4.062 2.089 0.612 
 Rel EFF  115.306 22.323 11.480 3.361 
       
500 Bias -0.016 -0.044 -0.024 -0.023 -0.018 
 SE 0.266 0.672 0.386 0.365 0.289 
 MSE 0.071 0.454 0.150 0.134 0.084 
 Rel EFF  6.379 2.104 1.880 1.182 
       
1000 Bias -0.009 -0.016 -0.010 -0.010 -0.009 
 SE 0.185 0.261 0.188 0.186 0.185 
 MSE 0.034 0.068 0.035 0.035 0.034 
 Rel EFF  2.001 1.030 1.012 1.003 
1Results from phi=1, 2results from phi=1.65, 3results from phi=5 
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TABLE B20 
Simulation results of the estimates of XZ

12λ  in case 8 
  Methods 
Sample 
size 

Estimates True Model 
Assumption 

Model 
Selection 

BMA 1 BMA 2 BMA 3 

50 Bias -1.060 -1.472 -2.709 -1.682 -0.437 
 SE 4.408 7.794 5.844 4.709 3.345 
 MSE 20.554 62.900 41.487 25.002 11.376 
 Rel EFF  3.060 2.018 1.216 0.553 
       
100 Bias -0.148 -1.140 -1.624 -0.907 -0.169 
 SE 1.210 6.755 4.131 3.047 1.692 
 MSE 1.486 46.924 19.702 10.106 2.893 
 Rel EFF  31.581 13.260 6.802 1.947 
       
200 Bias -0.038 -0.764 -0.442 -0.245 -0.079 
 SE 0.424 4.424 1.916 1.392 0.811 
 MSE 0.181 20.152 3.865 1.997 0.664 
 Rel EFF  111.351 21.355 11.035 3.667 
       
500 Bias -0.017 -0.045 -0.024 -0.022 -0.018 
 SE 0.264 0.581 0.336 0.307 0.267 
 MSE 0.070 0.340 0.114 0.095 0.072 
 Rel EFF  4.847 1.618 1.352 1.021 
       
1000 Bias -0.008 -0.017 -0.009 -0.009 -0.008 
 SE 0.185 0.262 0.188 0.186 0.185 
 MSE 0.034 0.069 0.036 0.035 0.034 
 Rel EFF  2.006 1.036 1.015 1.003 
1Results from phi=1, 2results from phi=1.65, 3results from phi=5 
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TABLE B21 
Simulation results: percentiles of the Z-statistic under model-selection for parameter 

XY
11λ and XZ

11λ for case 2 
n 0.01 0.025 0.05 0.1 0.5 0.9 0.95 0.975 0.99 

XY
11λ   

50 -2.064 -1.784 -1.521 -1.200 0.001 1.294 1.590 1.866 2.086 
100 -2.226 -1.918 -1.631 -1.257 0.001 1.428 1.789 2.040 2.319 
200 -2.309 -2.004 -1.716 -1.366 -0.001 1.436 1.790 2.128 2.475 
500 -2.475 -2.154 -1.849 -1.447 -0.017 1.430 1.836 2.175 2.582 
1000 -2.508 -2.130 -1.820 -1.437 0.015 1.446 1.866 2.187 2.587 

XZ
11λ  

50 -1.947 -1.729 -1.495 -1.231 -0.001 1.036 1.368 1.604 1.830 
100 -2.156 -1.912 -1.636 -1.304 -0.001 1.392 1.812 2.162 2.463 
200 -2.274 -2.017 -1.771 -1.408 -0.042 1.379 1.819 2.120 2.462 
500 -2.467 -2.162 -1.868 -1.484 -0.036 1.405 1.833 2.221 2.611 
1000 -2.507 -2.208 -1.857 -1.479 -0.041 1.429 1.880 2.200 2.610 
          
Z-
statistic 

-2.326 -1.960 -1.645 -1.282 0.000 1.282 1.645 1.960 2.326 
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TABLE B22 
Simulation results: percentiles of the Z-statistic under model-selection for parameter 

XY
11λ and XZ

11λ for case 3 
 0.01 0.025 0.05 0.1 0.5 0.9 0.95 0.975 0.99 

XY
11λ  

n=50 -2.223 -1.943 -1.665 -1.302 -0.037 1.277 1.660 1.949 2.336 
n=100 -2.349 -2.044 -1.731 -1.327 -0.001 1.332 1.723 2.077 2.449 
n=200 -2.400 -2.031 -1.713 -1.323 -0.013 1.308 1.683 2.031 2.478 
n=500 -2.512 -2.071 -1.725 -1.331 -0.019 1.294 1.700 2.054 2.419 
n=1000 -2.457 -2.056 -1.686 -1.318 -0.017 1.322 1.677 1.999 2.403 

XZ
11λ  

n=50 -2.296 -1.547 -0.546 0.000 0.000 1.142 1.679 1.946 2.245 
n=100 -2.104 -1.259 -0.284 0.000 0.000 1.304 1.701 2.015 2.295 
n=200 -1.992 -1.073 -0.256 0.000 0.000 1.297 1.696 2.004 2.390 
n=500 -1.835 -1.209 -0.634 -0.023 0.000 1.294 1.701 2.050 2.429 
n=1000 -1.840 -1.354 -0.937 -0.464 0.000 1.319 1.680 2.001 2.386 

XZ
12λ  

n=50 -2.495 -1.759 -0.629 0.000 0.000 1.384 2.123 2.441 2.749 
n=100 -2.922 -1.406 0.000 0.000 0.000 2.628 3.625 4.174 4.692 
n=200 -2.734 -1.185 0.000 0.000 0.000 4.834 5.848 6.780 7.730 
n=500 -2.441 -0.910 0.000 0.000 0.000 10.081 11.783 13.266 15.152 
n=1000 -1.722 -0.808 -0.054 0.000 7.194 18.028 20.389 22.602 24.954 
          
Z-statistic -2.326 -1.960 -1.645 -1.282 0.000 1.282 1.645 1.960 2.326 
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TABLE B23 
Simulation results: percentiles of the Z-statistic under model-selection for parameter 

XY
11λ and XZ

11λ for case 4 
 0.01 0.025 0.05 0.1 0.5 0.9 0.95 0.975 0.99 

XY
11λ  

n=50 -2.167 -1.849 -1.573 -1.200 0.001 1.212 1.489 1.705 1.930 
n=100 -2.327 -1.96 -1.603 -1.257 0.021 1.364 1.698 1.963 2.260 
n=200 -2.324 -1.982 -1.681 -1.305 0.005 1.373 1.777 2.062 2.416 
n=500 -2.348 -2.039 -1.742 -1.338 0.028 1.356 1.728 2.045 2.441 
n=1000 -2.500 -2.123 -1.784 -1.366 0.038 1.384 1.771 2.132 2.518 

XZ
11λ  

n=50 -1.775 -1.558 -1.357 -1.111 -0.001 0.829 1.221 1.527 1.884 
n=100 -2.051 -1.825 -1.605 -1.302 -0.024 1.209 1.593 1.906 2.237 
n=200 -2.235 -1.890 -1.647 -1.307 -0.023 1.301 1.710 2.061 2.425 
n=500 -2.332 -2.050 -1.724 -1.360 -0.040 1.340 1.755 2.088 2.512 
n=1000 -2.474 -2.089 -1.750 -1.394 -0.031 1.342 1.749 2.092 2.527 

XZ
12λ  

n=50 -1.741 -1.549 -1.395 -1.185 -0.215 0.516 0.952 1.329 1.775 
n=100 -4.396 -4.113 -3.849 -3.500 -1.908 0.049 0.740 1.289 1.888 
n=200 -9.817 -9.356 -8.952 -8.455 -6.266 -0.001 0.625 1.354 2.042 
n=500 

-26.727 -25.951 -25.277 
-

24.433 
-

20.922 -0.401 0.648 1.275 2.110 
n=1000 

-55.643 -54.381 -53.367 
-

52.118 
-

47.268 -0.312 0.640 1.389 2.088 
          
Z-statistic -2.326 -1.960 -1.645 -1.282 0.000 1.282 1.645 1.960 2.326 
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TABLE B24 
Simulation results: percentiles of the Z-statistic under model-selection for parameter 

XY
11λ and XZ

11λ for case 5 
n 0.01 0.025 0.05 0.1 0.5 0.9 0.95 0.975 0.99 

XY
11λ  

50 -2.179 -1.958 -1.682 -1.307 0.000 0.145 1.576 1.990 2.353 
100 -2.386 -2.028 -1.739 -1.341 0.000 0.000 1.329 1.983 2.390 
200 -2.290 -1.910 -1.582 -1.258 -0.003 1.315 1.658 1.931 2.345 
500 -2.347 -2.008 -1.648 -1.299 0.001 1.260 1.647 1.980 2.398 
1000 -2.477 -2.086 -1.736 -1.340 -0.009 0.616 0.773 1.097 1.666 

XZ
11λ  

50 -2.516 -2.162 -1.835 -1.426 0.000 0.234 1.613 2.036 2.563 
100 -4.281 -3.482 -2.627 -1.610 0.000 0.000 1.222 1.927 2.496 
200 -2.249 -1.897 -1.621 -1.282 -0.012 1.265 1.641 1.933 2.279 
500 -2.282 -1.946 -1.660 -1.304 0.012 1.297 1.669 1.997 2.365 
1000 -29.213 -26.526 -24.22 -21.346 -2.047 0.301 0.697 1.051 1.605 
          
Z-
statistic 

-2.326 -1.960 -1.645 -1.282 0.000 1.282 1.645 1.960 2.326 

 
 
 
 
TABLE B25 
Simulation results: percentiles of the Z-statistic under model-selection for parameter 

XY
11λ and XZ

11λ for case 6 
n 0.01 0.025 0.05 0.1 0.5 0.9 0.95 0.975 0.99 

XY
11λ  

50 -0.103 -0.001 0.000 0.000 0.000 1.284 1.598 1.855 2.078 
100 -1.107 -0.531 -0.306 -0.100 0.000 1.423 1.788 2.069 2.376 
200 -1.615 -1.195 -0.970 -0.730 0.000 1.439 1.805 2.106 2.494 
500 -2.223 -1.998 -1.705 -1.385 0.006 1.427 1.842 2.177 2.540 
1000 -2.552 -2.145 -1.801 -1.424 0.000 1.420 1.818 2.140 2.559 

XZ
11λ  

50 -2.510 -2.250 -2.012 -1.690 -0.368 0.834 1.265 1.579 1.926 
100 -6.228 -5.862 -5.485 -5.019 -1.324 0.860 1.419 1.873 2.321 
200 -14.116 -13.556 -13.068 -12.445 -9.416 0.498 1.264 1.837 2.363 
500 -38.171 -37.287 -36.472 -35.489 -31.411 0.004 1.167 1.806 2.280 
1000 -78.442 -77.100 -76.119 -74.748 -69.017 -0.078 1.092 1.822 2.338 
          
Z-
statistic 

-2.326 -1.960 -1.645 -1.282 0.000 1.282 1.645 1.960 2.326 
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TABLE B26 
Simulation results: percentiles of the Z-statistic under model-selection for parameter 

XY
11λ and XZ

11λ for case 7 
 0.01 0.025 0.05 0.1 0.5 0.9 0.95 0.975 0.99 

XY
11λ  

n=50 -2.220 -1.911 -1.627 -1.258 0.000 1.006 1.552 1.937 2.268 
n=100 -2.318 -1.997 -1.681 -1.327 0.000 0.839 1.519 1.992 2.390 
n=200 -2.311 -2.002 -1.678 -1.324 0.000 0.608 1.265 1.813 2.373 
n=500 -2.392 -2.009 -1.699 -1.313 0.000 0.449 0.970 1.412 1.975 
n=1000 -2.439 -2.066 -1.735 -1.354 -0.017 0.683 0.872 1.240 1.875 

XZ
11λ  

n=50 -2.297 -1.841 -1.104 0.000 0.000 1.274 1.661 1.959 2.229 
n=100 -2.307 -1.724 -0.822 0.000 0.000 1.309 1.695 1.994 2.348 
n=200 -2.130 -1.284 -0.601 0.000 0.000 1.293 1.651 1.995 2.341 
n=500 -1.886 -1.314 -0.756 -0.163 0.000 1.306 1.680 1.982 2.383 
n=1000 -1.957 -1.400 -0.955 -0.527 0.000 1.332 1.686 2.022 2.333 

XZ
12λ  

n=50 -2.237 -1.826 -1.046 0.000 0.000 1.271 1.691 2.024 2.412 
n=100 -2.364 -1.665 -0.818 0.000 0.000 1.418 1.994 2.895 3.864 
n=200 -2.366 -1.388 -0.540 0.000 0.000 1.661 3.633 5.402 6.439 
n=500 -2.199 -1.148 -0.559 0.000 0.000 8.513 10.437 11.897 13.556 
n=1000 -1.955 -1.147 -0.557 0.000 1.146 17.111 19.871 22.03 24.608 
          
Z-statistic -2.326 -1.960 -1.645 -1.282 0.000 1.282 1.645 1.960 2.326 
 



112 
 

TABLE B27 
Simulation results: percentiles of the Z-statistic under model-selection for parameter 

XY
11λ and XZ

11λ for case 8 
 0.01 0.025 0.05 0.1 0.5 0.9 0.95 0.975 0.99 

XY
11λ  

n=50 -0.504 -0.003 0.000 0.000 0.000 1.197 1.486 1.675 1.869 
n=100 -0.608 -0.441 -0.327 -0.141 0.000 1.355 1.695 1.948 2.191 
n=200 -1.313 -1.147 -0.987 -0.779 0.002 1.387 1.755 2.060 2.448 
n=500 -2.276 -1.983 -1.685 -1.317 0.029 1.419 1.825 2.139 2.530 
n=1000 -2.460 -2.085 -1.754 -1.381 0.003 1.366 1.740 2.087 2.473 

XZ
11λ  

n=50 -1.837 -1.577 -1.376 -1.113 -0.002 0.889 1.238 1.597 1.978 
n=100 -2.045 -1.795 -1.567 -1.282 -0.025 1.223 1.621 1.981 2.326 
n=200 -2.193 -1.887 -1.638 -1.295 -0.008 1.295 1.740 2.063 2.512 
n=500 -2.305 -2.052 -1.768 -1.424 -0.035 1.339 1.750 2.106 2.587 
n=1000 -2.419 -2.080 -1.755 -1.369 -0.056 1.317 1.762 2.122 2.481 

XZ
12λ  

n=50 -1.776 -1.576 -1.390 -1.163 -0.101 0.799 1.179 1.540 1.944 
n=100 -4.245 -3.920 -3.605 -3.220 -1.117 0.802 1.337 1.697 2.114 
n=200 -9.864 -9.316 -8.850 -8.300 -5.843 0.320 1.009 1.542 2.129 
n=500 

-26.933 -26.055 -25.277 
-

24.408 
-

20.965 -0.318 0.642 1.397 2.060 
n=1000 

-55.644 -54.546 -53.541 
-

52.203 
-

47.169 -0.402 0.565 1.297 2.074 
          
Z-
statistic 

-2.326 -1.960 -1.645 -1.282 0.000 1.282 1.645 1.960 2.326 
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TABLE B28 
Simulation results: p-values of Kolmogorov-Smirnov test of the empirical distribution of 
the Z statistics of XY

11λ  

 
 

case 1 case 2 case 3 case 4 
TRUE SELECT TRUE SELECT TRUE SELECT TRUE SELECT 

n=50 .0496 .0001 .0000 .0000 .0484 .0030 .0000 .0000 
n=100 .1270 .0280 .0006 .0000 .1795 .0121 .0001 .0000 
n=200 .5178 .0020 .4569 .0000 .3969 .0427 .0012 .0000 
n=500 .3643 .0009 .2821 .0000 .7838 .1038 .4963 .0021 
n=1000 .1884 .0104 .6222 .0000 .4456 .2251 .5646 .0001 

  
 
 

case 5 case 6 case 7 case 8 
TRUE SELECT TRUE SELECT TRUE SELECT TRUE SELECT 

n=50 .0000 .0000 .0000 .0000 .0001 .0000 .0000 .0000 
n=100 .1838 .0000 .0016 .0000 .3710 .0000 .0001 .0000 
n=200 .7089 .0000 .0101 .0000 .3159 .0000 .7388 .0000 
n=500 .1509 .0000 .0493 .0000 .8741 .0000 .1169 .0001 
n=1000 .8958 .0000 .3493 .0000 .5736 .0000 .4852 .0000 

 

TABLE B29 
Simulation results: p-values of Kolmogorov-Smirnov test of the empirical distribution of 
the Z statistics of XZ

11λ  

 
 

case 1 case 2 case 3 case 4 
TRUE SELECT TRUE SELECT TRUE SELECT TRUE SELECT 

n=50 .0014 .0000 .0000 .0000 .0024 .0000 .0000 .0000 
n=100 .0550 .0000 .0000 .0000 .9881 .0000 .0000 .0000 
n=200 .5164 .0000 .0000 .0000 .4166 .0000 .0000 .0000 
n=500 .8330 .0000 .0478 .0000 .0117 .0000 .0005 .0000 
n=1000 .4193 .0000 .1198 .0000 .0855 .0000 .0883 .0000 

  
 
 

case 5 case 6 case 7 case 8 
TRUE SELECT TRUE SELECT TRUE SELECT TRUE SELECT 

n=50 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 
n=100 .0000 .0000 .0000 .0000 .3272 .0000 .0000 .0000 
n=200 .0000 .0000 .0001 .0000 .3589 .0000 .0000 .0000 
n=500 .9783 .0000 .0062 .0000 .6876 .0000 .0035 .0000 
n=1000 .6070 .0000 .0007 .0000 .7990 .0000 .0817 .0000 
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TABLE B30 
Simulation results: p-values of Kolmogorov-Smirnov test of the empirical distribution of 
the Z statistics of XZ

12λ  

 
 

case 3 case 4 case 7 case 8 
TRUE SELECT TRUE SELECT TRUE SELECT TRUE SELECT 

n=50 .0060 .0000 .0000 .0000 .0082 .0000 .0000 .0000 
n=100 .8260 .0000 .0000 .0000 .0221 .0000 .0000 .0000 
n=200 .3967 .0000 .0039 .0000 .9528 .0000 .0000 .0000 
n=500 .4497 .0000 .0005 .0000 .1870 .0000 .0008 .0000 
n=1000 .9575 .0000 .5246 .0000 .6765 .0000 .0835 .0000 

 

 

 

TABLE B31 
Empirical means, standard error for the conditional odds ratio estimator under true model 
assumption, model selection, and  BMA (phi=1.65) for n=50, 100, 200, 500 and 1000 for 
case 2 
 TRUE MODEL MODEL SELECTION BMA (phi=1.65) 

XYθ̂  ( )θ̂E  ( )θ̂se  ( )θ̂E  ( )θ̂se  ( )θ̂E  ( )θ̂se  

n=50 2.655 2.032 3.077 3.443 4.022 4.731 
n=100 2.745 1.518 3.444 3.889 3.880 4.416 
n=200 2.754 1.097 3.164 3.253 3.062 2.888 
n=500 2.731 0.685 2.826 1.067 2.761 0.770 
n=1000 2.719 0.473 2.763 0.654 2.737 0.498 

XZθ̂        

n=50 0.176 0.123 0.196 0.199 0.228 0.199 
n=100 0.155 0.076 0.157 0.089 0.164 0.104 
n=200 0.145 0.050 0.145 0.053 0.145 0.051 
n=500 0.139 0.031 0.139 0.033 0.139 0.031 
n=1000 0.137 0.021 0.137 0.022 0.137 0.021 

YZθ̂        

n=50 0.801 0.125 1.063 1.174 1.313 1.277 
n=100 0.887 0.057 1.216 1.384 1.324 1.437 
n=200 0.941 0.022 1.132 1.130 1.085 1.014 
n=500 0.976 0.006 1.029 0.356 0.993 0.178 
n=1000 0.988 0.002 1.012 0.217 0.994 0.089 
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TABLE B32 
Empirical means, standard error for the conditional odds ratio estimator under true model 
assumption, model selection, and  BMA (phi=1.65) for n=50, 100, 200, 500 and 1000 for 
case 3   
 TRUE MODEL MODEL SELECTION BMA (phi=1.65) 

XYθ̂  ( )θ̂E  ( )θ̂se  ( )θ̂E  ( )θ̂se  ( )θ̂E  ( )θ̂se  

n=50 0.870 0.486 0.985 1.737 1.012 1.776 
n=100 0.818 0.336 0.847 0.541 0.826 0.483 
n=200 0.777 0.227 0.790 0.305 0.779 0.230 
n=500 0.754 0.141 0.759 0.172 0.758 0.141 
n=1000 0.748 0.097 0.750 0.117 0.749 0.098 
 

 

TABLE B33 
Empirical means, standard error for the conditional odds ratio estimator under true model 
assumption, model selection, and  BMA (phi=1.65) for n=50, 100, 200, 500 and 1000 for 
case 4  
 TRUE MODEL MODEL SELECTION BMA (phi=1.65) 

XYθ̂  ( )θ̂E  ( )θ̂se  ( )θ̂E  ( )θ̂se  ( )θ̂E  ( )θ̂se  

n=50 2.429 1.653 2.746 3.694 3.521 4.560 
n=100 2.589 1.350 2.967 3.081 3.437 3.241 
n=200 2.659 1.001 3.085 3.162 3.101 2.856 
n=500 2.704 0.636 2.805 1.286 2.721 0.839 
n=1000 2.714 0.457 2.742 0.635 2.707 0.461 
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TABLE B34 
Empirical means, standard error for the conditional odds ratio estimator under true model 
assumption, model selection, and  BMA (phi=1.65) for n=50, 100, 200, 500 and 1000 for 
case 5  
 TRUE MODEL MODEL SELECTION BMA (phi=1.65) 

XYθ̂  ( )θ̂E  ( )θ̂se  ( )θ̂E  ( )θ̂se  ( )θ̂E  ( )θ̂se  

n=50 0.91 0.541 1.043 1.435 0.986 1.25 
n=100 0.825 0.349 0.901 0.587 0.874 0.278 
n=200 0.789 0.239 0.846 0.306 0.855 0.186 
n=500 0.757 0.145 0.801 0.206 0.831 0.151 
n=1000 0.749 0.101 0.771 0.151 0.816 0.13 

XZθ̂        

n=50 0.921 0.536 1.098 1.902 1.007 1.788 
n=100 0.825 0.346 0.903 0.577 0.878 0.284 
n=200 0.784 0.234 0.844 0.304 0.853 0.189 
n=500 0.76 0.146 0.802 0.202 0.835 0.148 
n=1000 0.75 0.103 0.773 0.154 0.812 0.131 

YZθ̂        

n=50 1.056 0.139 1.385 2.42 1.262 1.954 
n=100 1.024 0.027 1.15 1.081 1.061 0.392 
n=200 1.011 0.008 1.07 0.404 1.03 0.195 
n=500 1.004 0.002 1.026 0.222 1.013 0.103 
n=1000 1.002 0.001 1.014 0.159 1.008 0.062 
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TABLE B35 
 Empirical means, standard error for the conditional odds ratio estimator under true model 
assumption, model selection, and  BMA (phi=1.65) for n=50, 100, 200, 500 and 1000 for 
case 6 
 TRUE MODEL MODEL SELECTION BMA (phi=1.65) 

XYθ̂  ( )θ̂E  ( )θ̂se  ( )θ̂E  ( )θ̂se  ( )θ̂E  ( )θ̂se  

n=50 2.728 2.146 2.881 4.160 3.343 4.361 
n=100 2.727 1.530 3.245 4.035 3.219 4.244 
n=200 2.736 1.064 3.070 3.166 2.678 2.833 
n=500 2.725 0.670 2.806 1.042 2.675 0.820 
n=1000 2.721 0.472 2.767 0.662 2.733 0.508 

XZθ̂        

n=50 0.174 0.118 0.188 0.183 0.214 0.184 
n=100 0.154 0.075 0.156 0.086 0.161 0.096 
n=200 0.145 0.050 0.145 0.053 0.145 0.051 
n=500 0.138 0.030 0.138 0.032 0.139 0.031 
n=1000 0.137 0.021 0.137 0.022 0.137 0.022 

YZθ̂        

n=50 0.797 0.125 0.989 1.034 1.282 1.250 
n=100 0.887 0.057 1.184 1.357 1.260 1.387 
n=200 0.940 0.023 1.119 1.127 1.046 0.989 
n=500 0.976 0.006 1.022 0.360 0.984 0.162 
n=1000 0.988 0.002 1.012 0.216 0.992 0.085 
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TABLE B36 
Empirical means, standard error for the conditional odds ratio estimator under true model 
assumption, model selection, and  BMA (phi=1.65) for n=50, 100, 200, 500 and 1000 for 
case 7  
 TRUE MODEL MODEL SELECTION BMA (phi=1.65) 

XYθ̂  ( )θ̂E  ( )θ̂se  ( )θ̂E  ( )θ̂se  ( )θ̂E  ( )θ̂se  

n=50 0.879 0.486 1.015 1.696 0.955 1.038 
n=100 0.813 0.334 0.875 0.651 0.850 0.313 
n=200 0.778 0.227 0.826 0.281 0.820 0.197 
n=500 0.757 0.140 0.790 0.186 0.799 0.145 
n=1000 0.747 0.098 0.764 0.138 0.782 0.120 
 

 
 
 
TABLE B37 
Empirical means, standard error for the conditional odds ratio estimator under true model 
assumption, model selection, and  BMA (phi=1.65) for n=50, 100, 200, 500 and 1000 for 
case 8 
 TRUE MODEL MODEL SELECTION BMA (phi=1.65) 

XYθ̂  ( )θ̂E  ( )θ̂se  ( )θ̂E  ( )θ̂se  ( )θ̂E  ( )θ̂se  
n=50 2.429 1.693 2.493 3.575 2.982 5.103 
n=100 2.551 1.304 2.743 3.017 2.831 2.931 
n=200 2.657 0.994 3.010 3.303 2.734 2.622 
n=500 2.709 0.65 2.799 1.315 2.658 0.805 
n=1000 2.704 0.451 2.737 0.640 2.710 0.461 
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FIGURE B1. Q-Q plot of the Z-statistics for testing parameters (a) XY
11λ  under true model 

assumption; (b) XY
11λ  under model selection condition; (c) XZ

11λ  under true model 

assumption; (d) XZ
11λ  under true model assumption for case 2, n=500.    
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FIGURE B2. Q-Q plot of the Z-statistics for testing parameters (a) XY
11λ  under true model 

assumption; (b) XY
11λ  under model selection condition; (c) XZ

11λ  under true model 

assumption; (d) XZ
11λ  under true model assumption; (e) XZ

12λ  under true model assumption; 

(f) XZ
12λ  under model selection for case 3, n=500.    
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FIGURE B3. Q-Q plot of the Z-statistics for testing parameters (a) XY
11λ  under true model 

assumption; (b) XY
11λ  under model selection condition; (c) XZ

11λ  under true model 

assumption; (d) XZ
11λ  under true model assumption; (e) XZ

12λ  under true model assumption; 

(f) XZ
12λ  under model selection for case 4, n=500.    
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FIGURE B4. Q-Q plot of the Z-statistics for testing parameters (a) XY
11λ  under true model 

assumption; (b) XY
11λ  under model selection condition; (c) XZ

11λ  under true model 

assumption; (d) XZ
11λ  under true model assumption for case 5, n=500.    
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FIGURE B5. Q-Q plot of the Z-statistics for testing parameters (a) XY
11λ  under true model 

assumption; (b) XY
11λ  under model selection condition; (c) XZ

11λ  under true model 

assumption; (d) XZ
11λ  under true model assumption for case 6, n=500.    
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FIGURE B6. Q-Q plot of the Z-statistics for testing parameters (a) XY
11λ  under true model 

assumption; (b) XY
11λ  under model selection condition; (c) XZ

11λ  under true model 

assumption; (d) XZ
11λ  under true model assumption; (e) XZ

12λ  under true model assumption; 

(f) XZ
12λ  under model selection for case 7, n=500.    
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FIGURE B7. Q-Q plot of the Z-statistics for testing parameters (a) XY
11λ  under true model 

assumption; (b) XY
11λ  under model selection condition; (c) XZ

11λ  under true model 

assumption; (d) XZ
11λ  under true model assumption; (e) XZ

12λ  under true model assumption; 

(f) XZ
12λ  under model selection for case 8, n=500.    
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Appendix C: Pilot Study 

Data Generation 

 All simulation was carried out by the programs written and executed using R and 

1,000 iterations were conducted for each condition. The IPF algorithm was used to 

estimate expected cell frequencies.  

 This simulation study was built around the Drug data in Agresti (2002)’s work. 

Agresti (2002, p323) gave an example of the model selection process. The data were 

from a 1992 survey by the Wright State University and the United Health Services. The 

Survey asked 2276 final year of high school students in Dayton, Ohio whether they had 

ever used alcohol, cigarettes, or marirjuana. The respondents were cross-classified by 

alcohol use, cigarette use, and marijuana use. With three factors, it was easy to look at all 

possible models. Agresti investigated 9 possible models for the three-way contingency 

table. He suggested AIC could be used in this type of model comparison. Judging by 

minimum AIC, the all-two-factor-interaction model fit the best. His data were reproduced 

in Table C1.  

 The true model that generated the data in this pilot study were (AC, AM, CM), 

since this was the model chosen based on the AIC criteria. The sampling scheme was 

assumed to be multinomial: MN(n,p111, p112,p121,p122,p211,p212,p221,p222).  Fienberg (2007) 

argued that “Few, if any, large-scale sample surveys, …, use simple random samples 

leading to the multinomial sampling model.”  In this study, complex survey design was 

not taken into consideration and a simple random sample was assumed.  

The effects used to generate data are from the SAS analysis of drug data based on 

the model (AC, AM, CM). First, the cell probabilities and cumulative cell probabilities 
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are calculated (see Table C1). Second, for each observation, a uniform distribution is 

generated, ( )10,Uniform~U i  and is compared to the cumulative cell probabilities. If  iU  

is smaller than 0.399992619, it is assigned to the cell of “marijuana (Yes) cigarette  (Yes) 

alcohol (Yes).” If iU is between 0.399992619 and 0.636643234, it is assigned to the cell 

of  “marijuana (No) cigarette  (Yes) alcohol (Yes),” etc. Third, for each sample, five 

possible models are compared: (A,C,M), (AC,M), (AM,CM),(AC, AM,CM), (ACM). 

The best model was selected by minimizing AIC   

AIC= -2(maximized log likelihood – number of parameters in the model) 

or, equivalently, minimizing (G2-2*df). The distributions of the estimated odds ratio were 

the interest in the pilot study.  

TABLE C1 
Fitted values, proportions and cumulative proportions of the model (AC,AM, CM) 

marijuana cigarette alcohol 
Model 

(AC,AM,CM) 
proportions 

cumulative 
proportions 

Yes Yes Yes 910.3832 0.3999926 0.399992619 
No Yes Yes 538.6168 0.2366506 0.636643234 
Yes No Yes 44.61683 0.0196031 0.656246410 
No No Yes 455.3832 0.2000804 0.856326902 
Yes Yes No 3.61683 0.0015891 0.857916019 
No Yes No 42.38317 0.0186217 0.876537799 
Yes No No 1.38317 0.0006077 0.877145518 
No No No 279.6168 0.1228544 1 

 

Preliminary Results 

Preliminary results of this simulation are shown in Table C2. The sample size 

varies from 50, 100, 200, 500, 1000, to 2000.  

The relative bias is defined as the empirical mean under model selection minus 

the empirical mean under the true model. The standard error ratio is defined as the 

empirical standard error under model selection divided by the empirical standard error 
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under the true model. Figure C1 shows the distributions of the two estimators of 

CMθ
(

when sample size is 500. At this relative large sample size, the disparity of the 

distribution is very obvious. The distribution of CMθ
(

under model selection had two peaks 

while the one under true model had only one. In this case, the relative bias was .499, and 

the standard error ratio was 2.761.   

 

 

FIGURE C1.  The distributions of two odds ratio estimator CMθ
(

, post-model-selection 

estimator (dashed) vs. true model assumption (solid) when sample size equals 500. 
 
 

Take the odds ratio estimates of association between Alcohol and Cigarettes 

( ACθ
(

) for example. The percentage of selecting the true model ranged from .76 to .93, it 

did not seem to have a directional relationship with the sample size, i.e., increasing the 

sample size does not indicate the rate of choosing the correct model rises. The mean of 

odds ratio estimators (both obtained by model selection and by the true model) went 

down from around 9.7 to around 7.8 as sample size increases. The relative bias changed 
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sign unpredictably when sample increases. The s.e. ratio was relatively stable irrespective 

of sample size.  

 Odds ratio CMθ
(

showed much more dramatic results. The relative bias increased 

from .081 to 7.273 when sample size increased from 50 to 2000. The standard error ratio 

increased from 1.242 to 8.995 as sample size increased from 50 to 2000. This was against 

the anticipation that similar with linear regression, the difference in the empirical mean 

would diminish and the difference in the standard error would stay when sample size 

increases. When sample size was 2000, under model selection, the empirical mean is 

21.108 and the standard error 22.281; one would draw a conclusion that this odds ratio 

was not significantly different from 1. However, at the same sample size, under the true 

model, the empirical mean was 13.835 and standard error is 2.477; one would draw a 

conclusion that this odds ratio was significantly different from 1. Consequently, the 

independence relationship between variable Marijuana and Cigarettes was different under 

these two conditions.  
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TABLE C2 
Empirical Means, standard error for the conditional odds ratio estimators (model selection vs. no model selection)  

sample size 

percentage of 
time a true 

model is 
selected True model Model selection  

ACθ
(

   ( )ACE θ
(

 ( )ACseθ
(

 ( )ACE θ
(

 ( )ACseθ
(

 
Difference in 

empirical means se ratio  

n=50 0.752 9.714 9.629 9.562 9.996 -0.152 1.038 
n=100 0.900 10.494 10.730 10.645 11.217 0.151 1.045 
n=200 0.936 9.706 9.092 9.916 10.215 0.210 1.124 
n=500 0.870 8.343 3.560 8.304 3.680 -0.039 1.034 
n=1000 0.816 8.082 2.309 8.071 2.350 -0.011 1.018 
n=2000 0.769 7.931 1.536 7.950 1.563 0.019 1.018 

AMθ
(

  ( )AME θ
(

 ( )AMseθ
(

 ( )AME θ
(

 ( )AMseθ
(

   

n=50 0.752 1.983 1.942 1.930 1.970 -0.053 1.014 
n=100 0.900 2.965 2.185 2.963 2.269 -0.002 1.038 
n=200 0.936 4.787 2.830 4.765 2.940 -0.022 1.040 
n=500 0.870 8.858 4.276 8.783 4.761 -0.075 1.113 
n=1000 0.816 12.847 5.937 13.489 7.504 0.642 1.264 
n=2000 0.769 16.015 7.002 20.425 14.470 4.410 2.067 

CMθ
(

  ( )CME θ
(

 ( )CMseθ
(

 ( )CME θ
(

 ( )CMseθ
(

   

n=50 0.752 7.749 6.435 7.830 7.993 0.081 1.242 
n=100 0.900 9.127 8.496 9.907 12.841 0.780 1.511 
n=200 0.936 9.242 7.196 10.184 15.974 0.942 2.220 
n=500 0.870 10.045 3.900 10.544 10.769 0.499 2.761 
n=1000 0.816 11.800 3.306 14.305 15.093 2.505 4.565 
n=2000 0.769 13.835 2.477 21.108 22.281 7.273 8.995 
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 Appendix D: R Code  
 

Pilot Study 

library(MASS) 
repnumber=10000 
theta.select=c() 
theta=c() 
theta2=c() 
theta2.select=c() 
theta3=c() 
theta3.select=c() 
counter=0 
samplesize=100 
for (j in 1:repnumber){ 
U=c() 
c1=0;c2=0;c3=0;c4=0;c5=0;c6=0;c7=0;c8=0 
 
for (i in 1:samplesize){ 
U[i]=runif(1,0,1) 
if (U[i]>=0 & U[i]<=0.399992619) c1=c1+1 
if(U[i]>0.399992619 & U[i]<=0.636643234) c2=c2+1 
if (U[i]>0.636643234 & U[i]<=0.65624641) c3=c3+1 
if (U[i]>0.65624641 & U[i]<=0.856326902)  c4=c4+1 
if (U[i]>=0.856326902 & U[i]<=0.857916019) c5=c5+1 
if(U[i]>0.857916019 & U[i]<=0.876537799) c6=c6+1 
if (U[i]>0.876537799 & U[i]<=0.877145518) c7=c7+1 
if (U[i]>0.877145518 & U[i]<=1)  c8=c8+1 
} 
#c1;c2;c3;c4;c5;c6;c7;c8 
 
table.1=data.frame(expand.grid(marijuana=factor(c(" Yes","No"),levels=c("No","Yes")), 
        cigarette=factor(c("Yes","No"),levels=c("No ","Yes")), 
       alcohol=factor(c("Yes","No"),levels=c("No"," Yes"))), 
     count=c(c1,c2,c3,c4,c5,c6,c7,c8)) 
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fitACM=loglm(count~alcohol*cigarette*marijuana,data =table.1,param=T,fit=T) #ACM--------model  1 
fitAC.AM.CM=update(fitACM,.~.-alcohol:cigarette:mar ijuana)      #AC,AM,CM---model  2 
fitAM.CM=update(fitAC.AM.CM,.~.-alcohol:cigarette)       #AM,CM------model  3 
fitAC.M=update(fitAC.AM.CM,.~.-alcohol:marijuana-ci garette:marijuana)      #AC,M-------model  4 
fitA.C.M=update(fitAC.M,.~.-alcohol:cigarette)        #A,C,M------model  5 
 
m1=fitACM$deviance-2*fitACM$df                         #calculate AIC's  
m2=fitAC.AM.CM$deviance-2*fitAC.AM.CM$df 
m3=fitAM.CM$deviance-2*fitAM.CM$df 
m4=fitAC.M$deviance-2*fitAC.M$df 
m5=fitA.C.M$deviance-2*fitA.C.M$df 
 
aic=c(m1,m2,m3,m4,m5) 
ind=which.min(aic)     #find the index of the minim um of the vector aic 
 
         #compute theta of AC of this best fit mode l 
if (ind==1){f.1=c(aperm(fitted(fitACM))); theta.sel ect[j]=(f.1[1]+.5)*(f.1[7]+.5)/((f.1[3]+.5)*(f.1[5] +.5)); 
       theta2.select[j]=(f.1[1]+.5)*(f.1[6]+.5)/((f .1[2]+.5)*(f.1[5]+.5)) 
       theta3.select[j]=(f.1[1]+.5)*(f.1[4]+.5)/((f .1[2]+.5)*(f.1[3]+.5))} 
 
if 
(ind==2){f.2=c(aperm(fitted(fitAC.AM.CM)));theta.se lect[j]=(f.2[1]+.5)*(f.2[7]+.5)/((f.2[3]+.5)*(f.2[5 ]+.5)); 
        counter=counter+1; 
       
 theta2.select[j]=(f.2[1]+.5)*(f.2[6]+.5)/((f.2[2]+ .5)*(f.2[5]+.5)) 
       
 theta3.select[j]=(f.2[1]+.5)*(f.2[4]+.5)/((f.2[2]+ .5)*(f.2[3]+.5))} 
 
if (ind==3){f.3=c(aperm(fitted(fitAM.CM)));theta.se lect[j]=(f.3[1]+.5)*(f.3[7]+.5)/((f.3[3]+.5)*(f.3[5 ]+.5)) 
       theta2.select[j]=(f.3[1]+.5)*(f.3[6]+.5)/((f .3[2]+.5)*(f.3[5]+.5)) 
       theta3.select[j]=(f.3[1]+.5)*(f.3[4]+.5)/((f .3[2]+.5)*(f.3[3]+.5))} 
 
if (ind==4){f.4=c(aperm(fitted(fitAC.M)));theta.sel ect[j]=(f.4[1]+.5)*(f.4[7]+.5)/((f.4[3]+.5)*(f.4[5] +.5)) 
       theta2.select[j]=(f.4[1]+.5)*(f.4[6]+.5)/((f .4[2]+.5)*(f.4[5]+.5)) 
       theta3.select[j]=(f.4[1]+.5)*(f.4[4]+.5)/((f .4[2]+.5)*(f.4[3]+.5))} 
 
if (ind==5){f.5=c(aperm(fitted(fitA.C.M)));theta.se lect[j]=(f.5[1]+.5)*(f.5[7]+.5)/((f.5[3]+.5)*(f.5[5 ]+.5)) 
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       theta2.select[j]=(f.5[1]+.5)*(f.5[6]+.5)/((f .5[2]+.5)*(f.5[5]+.5)) 
       theta3.select[j]=(f.5[1]+.5)*(f.5[4]+.5)/((f .5[2]+.5)*(f.5[3]+.5))} 
 
d.2=c(aperm(fitted(fitAC.AM.CM))) 
theta[j]=(d.2[1]+.5)*(d.2[7]+.5)/((d.2[3]+.5)*(d.2[ 5]+.5)) 
theta2[j]=(d.2[1]+.5)*(d.2[6]+.5)/((d.2[2]+.5)*(d.2 [5]+.5)) 
theta3[j]=(d.2[1]+.5)*(d.2[4]+.5)/((d.2[2]+.5)*(d.2 [3]+.5)) 
} 
counter 
mean(theta);var(theta) 
mean(theta.select);var(theta.select) 
mean(theta2);var(theta2) 
mean(theta2.select);var(theta2.select) 
mean(theta3);var(theta3) 
mean(theta3.select);var(theta3.select) 
plot(density(theta),lwd=1,lty=1,col="black",ann=FAL SE, las=1,ylim=c(0,2),xlim=c(-2,2)) 
plot(density(theta.select),lwd=1,lty=2,col="red",an n=FALSE, las=1, ylim=c(0,30),xlim=c(0,5)) 

 

 

 

 

 

 

 



 

Classical Analysis of Model (AM,CM,AC) of the Drug Data 

table.8.3<-data.frame(expand.grid( 
 marijuana=factor(c("Yes","No"),levels=c("No","Yes" )), 
 cigarette=factor(c("Yes","No"),levels=c("No","Yes" )),  
 alcohol=factor(c("Yes","No"),levels=c("No","Yes")) ),  
count=c(911,538,44,456,3,43,2,279)) 
 
options(contrasts=c("contr.treatment","contr.poly") ) 
fit.glm<-glm(count~.^2, data=table.8.3, family=pois son)  

BMA Sensitivity Analysis of the Drug Data 

library(MASS) 
library(BMA) 
#####################SET FOUR: uniform priors ##### ####### 
 
# columns correspond to C, M, A, CM, AC, AM, AMC 
x=rbind(  
 c(1,1,1,1,1,1,1), 
 c(1,0,1,0,1,0,0), 
 c(0,1,1,0,0,1,0), 
 c(0,0,1,0,0,0,0), 
 c(1,1,0,1,0,0,0), 
 c(1,0,0,0,0,0,0), 
 c(0,1,0,0,0,0,0), 
 c(0,0,0,0,0,0,0)) 
n=c(1,1,1,1,1,1,1,1) 
y=c(911,538,44,456,3,43,2,279) 
model9=rbind( 
c(1,1,1,0,0,0,0),  #model (A,C,M) 
c(1,1,1,0,1,0,0),  #model (M,AC) 
c(1,1,1,1,0,0,0),  #model (A,CM) 
c(1,1,1,0,0,1,0),  #model (C,AM) 
c(1,1,1,1,0,1,0),  #model (AM,CM) 
c(1,1,1,0,1,1,0),  #model (AC,AM) 
c(1,1,1,1,1,0,0),  #model (AC,CM) 
c(1,1,1,1,1,1,1),  #model (ACM) 
c(1,1,1,1,1,1,0)   #model (AC,AM,CM) 
) 
glib.drug <- glib(x,y,n,error="poisson",link="log", models=model9) 
 
glib.drug$glim.est$coef 
glib.drug$inputs$phi 
glib.drug$bf$postprob 
 
#####################SET ONE: based on problem-beha vior theory 
############ 
 
# columns correspond to C, M, A, CM, AC, AM, AMC 
x=rbind(  
 c(1,1,1,1,1,1,1), 
 c(1,0,1,0,1,0,0), 
 c(0,1,1,0,0,1,0), 
 c(0,0,1,0,0,0,0), 
 c(1,1,0,1,0,0,0), 
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 c(1,0,0,0,0,0,0), 
 c(0,1,0,0,0,0,0), 
 c(0,0,0,0,0,0,0)) 
n=c(1,1,1,1,1,1,1,1) 
y=c(911,538,44,456,3,43,2,279) 
model9=rbind( 
c(1,1,1,0,0,0,0),  #model (A,C,M) 
c(1,1,1,0,1,0,0),  #model (M,AC) 
c(1,1,1,1,0,0,0),  #model (A,CM) 
c(1,1,1,0,0,1,0),  #model (C,AM) 
c(1,1,1,1,0,1,0),  #model (AM,CM) 
c(1,1,1,0,1,1,0),  #model (AC,AM) 
c(1,1,1,1,1,0,0),  #model (AC,CM) 
c(1,1,1,1,1,1,1),  #model (ACM) 
c(1,1,1,1,1,1,0)   #model (AC,AM,CM) 
) 
glib.drug <- glib(x,y,n,error="poisson",link="log",  
pmw=c(1,1.3,1.3^2,1.3^3,1.3^4,1.3^5,1.3^6,1.3^7,1.3 ^8),models=model9) 
 
glib.drug$bf$postprob 
 
####################SET TWO: based on lifestyle the ory ############# 
model9=rbind( 
c(1,1,1,0,0,0,0),  #model (A,C,M) 
c(1,1,1,0,1,0,0),  #model (M,AC) 
c(1,1,1,1,0,0,0),  #model (A,CM) 
c(1,1,1,0,0,1,0),  #model (C,AM) 
c(1,1,1,0,1,1,0),  #model (AC,AM) 
c(1,1,1,1,1,0,0),  #model (AC,CM) 
c(1,1,1,1,1,1,1),  #model (ACM) 
c(1,1,1,1,1,1,0),  #model (AC,AM,CM) 
c(1,1,1,1,0,1,0)  #model (AM,CM) 
) 
 
glib.drug <- glib(x,y,n,error="poisson",link="log",  
pmw=c(1,1.3,1.3^2,1.3^3,1.3^4,1.3^5,1.3^6,1.3^7,1.3 ^8),models=model9) 
 
glib.drug$bf$postprob 
 
 
################  SET THREE: based on lifestyle the ory############### 
model9=rbind( 
c(1,1,1,0,0,0,0),  #model (A,C,M) 
c(1,1,1,1,0,1,0),  #model (AM,CM) 
c(1,1,1,0,0,1,0),  #model (C,AM) 
c(1,1,1,1,1,1,0),  #model (AC,AM,CM) 
c(1,1,1,0,1,1,0),  #model (AC,AM) 
c(1,1,1,1,1,1,1),  #model (ACM) 
c(1,1,1,0,1,0,0),  #model (M,AC) 
c(1,1,1,1,1,0,0),  #model (AC,CM) 
c(1,1,1,1,0,0,0)  #model (A,CM) 
) 
 
glib.drug <- glib(x,y,n,error="poisson",link="log",  
pmw=c(1,1.3,1.3^2,1.3^3,1.3^4,1.3^5,1.3^6,1.3^7,1.3 ^8),models=model9) 
 
glib.drug$bf$postprob 
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Model Weights via Bootstrapping Model Averaging  

 
library(MASS) 
countdata=c(911,538,44,456,3,43,2,279) 
cumsum(countdata)  
f1=0;f2=0;f3=0;f4=0;f5=0;f6=0;f7=0;f8=0;f9=0    #fr equencies 
for ( i in 1:1000){ 
this.ind<-sample(2276,2276,replace=TRUE) 
#calculate the cell frequencies of this bootstrape sample 
c1=length(this.ind[this.ind<=911]) 
c2=length(this.ind[911<this.ind & this.ind<=1449]) 
c3=length(this.ind[1449<this.ind & this.ind<=1493])  
c4=length(this.ind[1493<this.ind & this.ind<=1949])  
c5=length(this.ind[1949<this.ind & this.ind<=1952])  
c6=length(this.ind[1952<this.ind & this.ind<=1995])  
c7=length(this.ind[1995<this.ind & this.ind<=1997])  
c8=length(this.ind[1997<this.ind & this.ind<=2276])  
 
table.1=data.frame(expand.grid( 
marijuana=factor(c("Yes","No"),levels=c("No","Yes") ),    
    cigarette=factor(c("Yes","No"),levels=c("No","Y es")), 
alcohol=factor(c("Yes","No"),levels=c("No","Yes"))) , 
count=c(c1,c2,c3,c4,c5,c6,c7,c8)) 
 
fitACM=glm(count~alcohol*cigarette*marijuana,data=t able.1,family=poisso
n(link=log))            #ACM 
fitAC.AM.CM=update(fitACM,.~.-alcohol:cigarette:mar ijuana)#AC,AM,CM 
fitAM.CM=update(fitAC.AM.CM,.~.-alcohol:cigarette)     #AM,CM 
fitAM.AC=update(fitAC.AM.CM,.~.-cigarette:marijuana )     #AM,AM 
fitAC.CM=update(fitAC.AM.CM,.~.-alcohol:marijuana)     #AC,CM 
fitAC.M=update(fitAC.AM.CM,.~.-alcohol:marijuana-ci garette:marijuana)  
#AC,M 
fitAM.C=update(fitAC.AM.CM,.~.-alcohol:cigarette-ci garette:marijuana)  
#AM,C 
fitCM.A=update(fitAC.AM.CM,.~.-alcohol:cigarette-al cohol:marijuana)    
#CM,A 
fitA.C.M=update(fitAC.M,.~.-alcohol:cigarette)         
#A,C,M 
m1=fitACM$aic 
m2=fitAC.AM.CM$aic 
m3=fitAM.CM$aic 
m4=fitAM.AC$aic 
m5=fitAC.CM$aic 
m6=fitAC.M$aic 
m7=fitAM.C$aic 
m8=fitCM.A$aic 
m9=fitA.C.M$aic 
aic=c(m1,m2,m3,m4,m5,m7,m8,m9) 
ind=which.min(aic)  
if (ind==1){f1=f1+1} 
if (ind==2){f2=f2+1} 
if (ind==3){f3=f3+1} 
if (ind==4){f4=f4+1} 
if (ind==5){f5=f5+1} 



137 
 

if (ind==6){f6=f6+1} 
if (ind==7){f7=f7+1} 
if (ind==8){f8=f8+1} 
if (ind==9){f9=f9+1}} 
fre=c(f1,f2,f3,f4,f5,f6,f7,f8,f9) 
weight=fre/sum(fre) 
 

Model Weights via AIC Approximation 

 
countdata=c(911,538,44,456,3,43,2,279) 
table.1=data.frame(expand.grid( 
marijuana=factor(c("Yes","No"),levels=c("No","Yes") ), 
cigarette=factor(c("Yes","No"),levels=c("No","Yes") ), 
alcohol=factor(c("Yes","No"),levels=c("No","Yes"))) , 
count=countdata) 
 
fitACM=glm(count~alcohol*cigarette*marijuana,data=t able.1,family=poisso
n(link=log))         #ACM 
fitAC.AM.CM=update(fitACM,.~.-alcohol:cigarette:mar ijuana) #AC,AM,CM 
fitAM.CM=update(fitAC.AM.CM,.~.-alcohol:cigarette)  #AM,CM 
fitAM.AC=update(fitAC.AM.CM,.~.-cigarette:marijuana )  #AM,AM 
fitAC.CM=update(fitAC.AM.CM,.~.-alcohol:marijuana)  #AC,CM 
fitAC.M=update(fitAC.AM.CM,.~.-alcohol:marijuana-ci garette:marijuana)  
#AC,M 
fitAM.C=update(fitAC.AM.CM,.~.-alcohol:cigarette-ci garette:marijuana)  
#AM,C 
fitCM.A=update(fitAC.AM.CM,.~.-alcohol:cigarette-al cohol:marijuana)    
#CM,A 
fitA.C.M=update(fitAC.M,.~.-alcohol:cigarette)         
#A,C,M 
m1=fitACM$aic 
m2=fitAC.AM.CM$aic 
m3=fitAM.CM$aic 
m4=fitAM.AC$aic 
m5=fitAC.CM$aic 
m6=fitAC.M$aic 
m7=fitAM.C$aic 
m8=fitCM.A$aic 
m9=fitA.C.M$aic 
aic=c(m1,m2,m3,m4,m5,m7,m8,m9) 
weight=exp(-aic/2) 
normedwt=weight/sum(weight) 
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