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In this thesis, we study, theoretically, hybrid systems composed of semicon-

ducting quantum dots (SQDs) and metallic nanoparticles (MNPs) which are coupled

by means of an applied optical field. Systems composed of SQDs and MNPs have

recently been a very active area of research. Such structures are considered to be

viable candidates for use in nanodevices in quantum information and nanoscale ex-

citation transfer. The goal of this thesis is to investigate the interactions of the

constituent particles and predict the hybrid response of SQD/MNP systems.

We first study a single SQD coupled to a spherical MNP, and explore the

relationship between the size of the constituents and the response of the system.

We identify four distinct regimes of behavior in the strong field limit that each

exhibit novel properties, namely, the Fano regime, exciton induced transparency,

suppression and bistability. In chapter 3, we will explore these four regimes in

detail and set bounds on each.

In chapter 4, we then show that the response of the system can be tailored by



engineering metal nanoparticle shape and the exciton resonance of SQDs to control

the local-fields that couple the MNPs and SQDs. We identify regimes where dark

modes and higher order multipolar modes can influence hybrid response. Exter-

nal fields do not directly drive MNP dark modes, so SQD/MNP coupling is dom-

inated by the local induced coupling, providing a situation in which the induced

self-interaction could be probed using near field techniques.

Finally, we consider a system of two SQDs coupled to a MNP. In particular, we

identify and address issues in modeling the system using a semiclassical approach,

which can lead to unstable and chaotic behavior in a strong SQD-SQD coupling

regime. When we model the system using a more quantum mechanical approach,

this chaotic regime is absent. Finally, we compare the two models on a system

with a strong plasmon-mediated interaction between the SQDs and a weak direct

interaction between them.
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Chapter 1

Background and Motivation

1.1 Introduction

On December 29, 1959, Richard Feynman gave his now famous talk “There’s

Plenty of Room at the Bottom” at the APS annual meeting at the California In-

stitute of Technology [1]. He spoke of the possibilities that miniaturization could

bring to data storage, atomic and molecular manipulation and synthesis, and even

nanomachines and nanorobotics. He challenged scientists of the day to improve

upon the 1 nm resolution size of the scanning electron microscope (SEM). He also

made the prediction that a single bit of information could someday be stored with

the use of only 100 atoms, meaning that less than 1000 atoms would be needed to

store a single alphanumeric character in 8-bit binary.

The scanning tunneling microscope (STM) was developed by Binnig and Rohrer

in 1981 [2] with a resolution size approximately ten times smaller than that of an

SEM. By the end of the decade, Eigler and Schweizer [3] used an STM to demon-

strate a single atom manipulation technique that allowed them to write out “IBM”

using letters that were approximating 5 nm in height, and all three letters consisted

of only 35 atoms, surpassing even Feynman’s bold prediction. With this not so

humble beginning, the advent of nanotechnology truly began.

Nanotechnology is more than just the imaging and manipulation of objects on a
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Figure 1.1: An artist’s rendition of a C60 buckminsterfullerene. Each of the black dots represents

a single carbon atom. Graphic generated using Mathematica software.

nanometer scale. Also included under this broad heading is the development of new,

novel, nanoscale structures and materials, which due to their size and composition

can possess unique properties. In 1985, Kroto, et. al. discovered C60 buckminster-

fullerene, a molecule consisting solely of 60 carbon atoms with each atom bound

to three others and forming a spherical shell [4] (see Figure 1.1). This pattern of

bonding forms a structure of pentagons and hexagons that alternate throughout the

object in a familiar soccer ball pattern. This molecule turned out to be just one

member in a larger family of molecules which are now known as fullerenes. The

most common of the fullerenes are the buckyballs (which includes the aforemen-

tioned C60, as well as the similar structures C24, C28, C32, C36, C50, C70, etc

[5]).

Another type of fullerene is the carbon nanotube [6]. These objects are the

two-dimensional analog of buckyballs. A carbon nanotube has the same pattern
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of carbon binding as the buckyballs, however, instead of having a spherical shape,

they are rolled up in a cylinder- like a cigar. These nanotubes often have a diameter

around 1 nm with a length that can reach a million times that, and contain millions

of carbon atoms.

One thing that makes carbon nanotubes particularly interesting is that one

dimension (the circumference of the cylinder) is very small and very quantum me-

chanical, and the other dimension (its length) is very large, reaching millimeter

scales, i.e. the macroscopic world. So from the scale of a few atoms to that of a

30 cm long carbon nanotube, we can say that the study of nanoscale physics is the

study of the boundary between classical and quantum mechanics.

1.2 Nanoparticles

The focus of this thesis will be hybrid systems made from semiconducting

nanoparticles [7, 8] and metal nanoparticles [9, 10]. These systems can often ex-

hibit characteristics of both the quantum and classical regimes. Furthermore, the

boundary between classical and quantum can be defined by the particles, i.e. the

semiconducting nanoparticles can behave more quantum mechanically and the metal

nanoparticles can behave more classically. Such nanoparticles are objects typically

1�100 nm in size, often approximately spherical in shape, and composed of atoms in

the bulk form for the material rather than the highly ordered and hollow structure

of the fullerenes. Nanoparticles can have novel properties due to their extremely

small size. First, there can be confinement effects once the size of the nanoparticle
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is on the order of the wavelength of its excitation energy. Second, as a particle is

made increasingly small, the ratio of the number of surface atoms of the particle

to those that make up the bulk grows larger. As such, surface effects can come to

dominate the physics of a nanoparticle, whereas they might be ignored in a larger

object of the same composition.

Metal nanoparticles (MNPs) are typically made of a single metal such as gold,

silver or platinum. If an MNP has an oblong shape, like a rod or cylinder, with

a length on the order of 10 � 1000 nm then it is commonly known as a nanorod.

If a nanorod has a nearly infinite length (on the order of 1µm), it could then be

considered as a nanowire.

A nanoparticle made out of a semiconductor material (most typically InAs,

GaAs, ZnS, ZnSe, CdS, CdSe, CdTe, or HgS) is referred to as a semiconductor

nanoparticle. If the size of a semiconductor nanoparticle is small enough to confine

an electron in the conduction band and also a hole in the valence band, in all

three spatial directions, it is known as a semiconducting quantum dot (SQD). If the

nanorod or nanowire is made from a semiconducting material, then it would be a

quantum wire and would have excitations that were confined in two of the three

directions, while the excitations would be free to propagate in the third.

In this thesis, the metallic nanoparticles that we will consider will range in

size from just a few nanometers to 100 nm or more. Metals of this size consist of

very many electrons. Due to this, it will be valid to treat the MNPs we consider

to be classical in nature. The SQDs that we will consider will be slightly smaller

in size than the MNPs. However, the size of the SQD has little effect on how it is
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modeled. Most important is the confinement of the electron inside the SQD, which

requires the SQD to be modeled quantum mechanically.

1.3 Nanosuperstructures

A structure made from a few or many nanoscale objects is often called a

nanosuperstructure [11, 12, 13]. Such a physical system could have unique prop-

erties, and they could be engineered to suit a particular task. Recent advances in

nanoscience have already allowed for the construction and study of such nanosuper-

structures. By using various combinations of the available building blocks (nanowires,

semiconductor quantum dots, metal nanoparticles, biolinkers, etc.) to create hybrid

molecules, novel physical phenomena may be explored. Such structures will allow

the study of physics at the interface of classical and quantum mechanics and could

provide the technology for a number of devices in the field of quantum information.

These structures should allow for the physical transportation of excitations as well

as the transportation of coherent states.

Experiments have already demonstrated the plausibility of creating and study-

ing such superstructures. Recently, researchers have shown that using a lithographic

process, it is possible to control the deposition of quantum dots near nanowires [14].

This two step process, one of which results in a polymer template, should make

more complicated structures accessible in the near future.

Recently, hybrid structures consisting of a quantum dot and a metal nanopar-

ticle joined by a biolinker have been assembled and studied [15]. Experimental
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investigations have shown efficient exciton-plasmon-photon conversion and an en-

hanced emission rate with the coupling of a CdSe quantum dot to a silver nanowire

[16, 17]. Furthermore, when coupled to elongated MNPs, the photoluminescence in-

tensity of SQDs is enhanced in a polarization-selective way [18], and when coupled

with a nano-optical Yagi Uda antenna the SQD emission can be made unidirectional

[19].

Hybrid structures consisting of an SQD and an MNP are a very active area

of research in theoretical physics [15, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30].

By coupling the broad continuous plasmonic response of the MNP to the discrete

excitons of the SQD, these structures allow the study of systems at the interface

between classical and quantum physics. Furthermore, such structures could allow

for the directed nanoscale transmission of information and excitations.

In this thesis, we will examine the physics of nanohybrid molecules, in particu-

lar those formed with metallic nanoparticles and semiconductor quantum dots. We

hope to learn how the presence of a nearby SQD affects the response of an MNP.

The MNP, with its ability to enhance local fields, will certainly have a large effect

on a nearby quantum dot. We will study how the behavior of these nanoparticles

changes when they are combined in hybrid structures in Chapters 3 and 4 of this

thesis.
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1.4 Transmission of Quantum Information

Once we allow for systems consisting of more than one nanoparticle, we must

then consider how excitations are transferred between nanoparticles. The nanoscale

transmission of quantum information and excitations between qubits for quantum

communication, quantum computing and quantum measurement will require trans-

fer where the quantum character of the information can be maintained.

At submicrometer distances, this means directed transmission must be carried

out with better than wavelength scale resolution. One possible solution to this lim-

itation is coupling qubits, for example in quantum dots, to plasmonic structures. It

has been predicted that below the diffraction limit, highly efficient directed energy

transfer over plasmonic wires consisting of chains of closely spaced metal nanopar-

ticles could be achieved [31]. And at larger distances, strong, coherent coupling

between emitters should be possible by means of guided plasmons that are evanes-

cently coupled with a nearby dielectric waveguide[32]. Furthermore, it has been

predicted that large entanglement, either spontaneously formed or in a continu-

ously driven steady state, would be possible between qubits coupled to a plasmonic

waveguide over distances exceeding a wavelength [33].

Several recent experiments have already shown very promising results in these

structures. It has been shown that quantum coherence can survive in plasmonic

structures, such as the transportation of entangled photons by surface plasmons [34]

and the energy-time entanglement of a pair of photons following a photon-plasmon-

photon conversion [35]. Furthermore, it has been demonstrated that during plasmon
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propagation in metallic waveguides, losses appear to follow a linear, uncorrelated

Markovian model of damping at the single quanta level, showing the quantum regime

of plasmonics is realistic [36]. In related work, the quantum statistics of the light

from a quantum emitter (in this case the color center of a nanodiamond) was shown

to be preserved after conversion to plasmons and propagation in a polycrystalline

gold film [37].

To exploit this paradigm for quantum, nanoscale communication, one must

understand how metallic nanoparticles act as nanoantennas and nanoguides. One

must understand the coupling between dots and plasmons in metallic nanoparticles.

One must also understand how dot-to-dot quantum communication is modified by

transfer via plasmons. Finally, one must understand how transfer is further modified

if the metal nanoparticles are small and quantum effects can influence their response.

To this end, we will consider systems in which the interaction between two spatially

separated quantum dots is mediated by plasmons. This is the subject of Chapter 5.

The layout of the thesis is as follows. In Chapter 2, we discuss how we will be

modeling the MNP and SQD as physical objects, and then we review the necessary

physics and math that we will need to model the interacting system. We then

examine some toy models to highlight some of the technical issues involved in the

study of these systems and to illustrate the manner in which modeling was done for

the work presented in this thesis. In Chapter 3, we model a realistic hybrid system

consisting of an SQD coupled to a nearly spherical MNP. The two particles are

driven by an oscillating electric field which in turn causes a dipole-dipole coupling.

We will examine the optical response of the system in both the weak field regime
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and in the strong field regime. Furthermore, we will discover four distinct regimes of

behavior that depend on the strength of the SQD-MNP coupling, as we first reported

in [21] and expanded upon in [22]. In Chapter 4, we will see how the dependence

of local field enhancement strength on MNP shape could be exploited to engineer

MNP-SQD hybrids that are biased towards a desired type of hybrid response. These

results were first reported by us in [38]. In Chapter 5, we look beyond two particle

MNP-SQD systems and look at the ways in which we can model a more complicated

SQD-MNP-SQD system. Finally, in Chapter 6, I present my conclusions and briefly

discuss the outlook and future work to be done to further our knowledge on these

and similar systems.

9



Chapter 2

Tools and Toys

The system we wish to study consists of an SQD and an MNP separated by

some distance with both particles subject to an applied optical field (as shown in

Figure 2.1). We imagine that both particles have resonances near the energy of

the applied field, and we will then model how the presence of the one effects the

response of the other. To this end, we will describe techniques needed to model

hybrid nanoparticle systems. Although we are focused on systems consisting of

MNPs and SQDs, much of what will be discussed here is applicable to a much

broader group of systems, especially those that operate in the visible or near-visible

spectrum and in which losses and decoherence must be accounted for.

Figure 2.1: An MNP and an SQD subject to an applied optical field.

We begin this chapter with brief descriptions of MNPs. We then proceed to
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model their plasmonic resonances using a Drude model, and we then show how to

use experimental data to build a response function. We then discuss SQDs and

confinement effects, and show how SQDs can be treated like atoms. In the next

section, we look at open quantum systems. In order to study our MNP-SQD system,

we will need to account for the interaction of our system with its environment.

With this as motivation we introduce the density matrix formalism of quantum

mechanics. We next concern ourselves with the interaction of light and matter in

order to better understand the interaction of the SQD with the field. We develop

the dynamical equations that govern the time evolution of the system. After a first

attempt to model the interaction, we see that allowing for spontaneous emission is

necessary for the interaction. We then build a quantum theory of open systems in

the Lindblad formalism. The use of the theory is illustrated with a simple system

prior to it being generalized for the quantum optics regime. We then use the tools

we have just developed to model a system consisting of an atom in an oscillating

electromagnetic field. Finally, the chapter is concluded with a discussion on how

numerical calculations were performed to evaluate the set of dynamical equations

we study.

2.1 Metallic Nanoparticles

Although metallic nanoparticles have been used since ancient times to color

glazed pottery and stained glass, it wasn’t until Faraday’s work with gold particles in

an aqueous solution in the 1850s [39] that this effect was attributed to the particles’
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small size. Although Farady was the first to show that these small particles of

gold could have very different optical properties than those of bulk gold, a full

understanding of the process was not presented until 1908 when Mie published his

seminal paper on the scattering of such small objects [40]. This scattering process

later became known as Mie scattering. By considering the scattering of an incident

planewave of light off of a sphere, Mie was able find a series solution to Maxwell’s

equations in the regime where the particle’s size is on the same order as in the

incident light. This is in contrast to Rayleigh scattering which assumes the particle

to be much smaller than the wavelength of incident light [41].

A key feature of MNPs is that they can support surface plasmons. Surface

plasmons are the quasi-particle of coherent oscillations of electron density on the

surface of a metal and were originally studied by Ritchie on the surface of thin

films [42]. On a film or other bulk material, the plasmons propagate along the

surface when excited by incident radiation via a coupler, e.g. a grating. In an

MNP however, because the size of the metal is smaller than the wavelength of the

incident light (often by an order of magnitude or more), the plasmons are unable

to propagate and are thus confined. Because of this confinement, the response of

a MNP is highly dependent on the wavelength of incident light. For a spherical

gold MNP, the response has a maximal peak in the vicinity of 2.3 � 2.5 eV. This

resonance is the dipolar plasmon peak. This resonance causes a build up of charge

on the surface of the particle, enhancing not only the scattering and absorption of

the incident light, but also producing a dipolar response field (in the small particle

limit, in general higher orders of the multipolar expansion are also present). This
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dipole field can display very large enhancement of the incident field near the surface

of the MNP.

2.1.1 Modeling the MNP response to a planewave

To understand how an MNP reacts to an applied optical field, we start with a

simple model. Consider a spherical MNP, of radius a, and we imagine that this small

metallic ball is being driven by an electromagnetic field. We’ll take our driving field

to be an electromagnetic wave propagating in the x̂–direction, with the electric field

in the ẑ–direction. We assume that the particle is solid, homogeneous and isotropic.

Furthermore, we will assume that our particle is a linear dielectric, i.e. D � ǫE.

We place the center of our sphere at the origin of our coordinate system as shown

in Figure 2.2.

Figure 2.2: Spherical MNP in an applied driving field.
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Since our particle is very small, on the order of 10 nm or so, much smaller than

the wavelength of visible light (390–750 nm), we assume that the field, at any partic-

ular moment in time, is approximately constant throughout the MNP. This ‘quasi-

static’ approximation allows us to ignore retardation effects. Thus, we must calculate

the electric field produced by a spherical dielectric particle, Eresponsepx, y, zq, by a

constant applied electric field, Eappliedpx, y, zq � E0ẑ.

Now, if our particle is not a magnetic material, and we are using the quasi-

static approximation, we solve Gauss’ law in the absence of charges, ∇ � ǫE � 0.

To do so, we first define the scalar potential, V, such that E � �∇V. In terms of

V then, we have ∇
2V � 0, which is simply Laplace’s equation. Solving Laplace’s

equation in this case is best done in spherical coordinates. The solution to Laplace’s

equations with azimuthal symmetry is a sum of Legendre polynomials [43],

Vpr, θq � 8̧
n�0

�
Anr

n �Bn

�
1

r


n�1
�
Pnpcos θq (2.1)

where the coefficients An and Bn are determined by the boundary conditions. There-

fore, we can write our solution like this:

V � $'''&'''%°8
n�0

�
An

�
r
a

�n �Bn

�
a
r

�n�1
�
Pnpcos θq for r   a ,°8

n�0

�
A1

n

�
r
a

�n �B1
n

�
a
r

�n�1
�
Pnpcos θq for r ¥ a.

(2.2)

Inside the MNP, nonzero values for the Bn would lead to an unphysical infinite

potential at r � 0, so we can take Bn � 0 for all n. We also require that far from the

MNP, the potential approaches that of the applied field, Eapplied, so V Ñ �E0r cos θ

for r ¡¡ a. Therefore, for r ¥ a we must have A1
1 � �aE0 and, A1

n � 0 for n � 1.
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Our potential is now

V � $'''&'''%°8
n�0An

�
r
a

�n
Pnpcos θq for r   a ,°8

n�0B
1
n

�
a
r

�n�1
Pnpcos θq � E0r cos θ for r ¥ a.

(2.3)

Further boundary conditions that must be met are the continuity of V and the

normal component of D at the dielectric interface. From the first we have8̧
n�0

AnPnpcos θq � 8̧
n�0

B1
nPnpcos θq � E0a cos θ. (2.4)

In regards to the latter, the normal component of D at the MNP surface is pro-

portional to BVBr . So, we must have BVBr ��outside � ǫ
ǫ0

BVBr ��inside, where ǫ is the dielectric

constant of the material the MNP is composed of, and ǫ0 is the vacuum dielectric

constant. From this we can write

ǫ

ǫ0

8̧
n�1

nAn

1

a
Pnpcos θq � 8̧

n�1

�pn� 1qB1
n

1

a
Pnpcos θq � E0 cos θ. (2.5)

Using the orthogonality of the Legendre polynomials, our boundary conditions

term by term become

A0 �B1
0

A1 �B1
1 � E0a

An �B1
n , n ¡ 1

and

ǫ

ǫ0
A1 �� 2B1

1 �E0a

n
ǫ

ǫ0
An �� pn� 1qB1

n , n ¡ 1
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Since A0 is just the value of the potential at the center of the MNP, we can arbitrarily

set this to zero. Therefore, we can finally write

A0 �B1
0 � 0

A1 � �3ǫ0
2ǫ0 � ǫ

E0a

B1
1 � ǫ� ǫ0

2ǫ0 � ǫ
E0a

n� 1

n
An �� ǫ

ǫ0
An , n ¡ 1

If we assume that ǫ is complex, then the relation n�1
n

� � ǫ
ǫ0

does not hold for any

n. Therefore, we must have An � 0 for n ¡ 1. Thus our solution is

V � $'''&'''%� 1
ǫeff

E0r cos θ for r   a ,

γa3E0
1
r2
cos θ � E0r cos θ for r ¥ a,

(2.6)

where we have defined ǫeff � 2ǫ0�ǫ
3ǫ0

and γ � ǫ�ǫ0
2ǫ0�ǫ

.

We now calculate the total electric field, E � Eapplied �Eresponse,

E � $'''&'''% 1
ǫeff

E0

�
cos θ r̂ � sin θ θ̂

	
for r   a ,�

1� 2γa3

r3

	
E0 cos θ r̂ � � γa3

r3
� 1

	
E0 sin θ θ̂ for r ¥ a.

(2.7)

which can be rewritten

E � $'''&'''% 1
ǫeff

E0ẑ for r   a ,

2γa3

r3
E0 cos θ r̂ � γa3

r3
E0 sin θ θ̂ � E0ẑ for r ¥ a.

(2.8)

with use of the identity ẑ � cos θ r̂ � sin θ θ̂ in spherical coordinates. In this form,

it is easy to see that the total field inside the MNP is spatially constant, and equal

to the value of the applied electric field at the center of the MNP, multiplied by a
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‘screening’ factor, 1
ǫeff

. Outside the MNP, the total electric field easily splits into

Eresponse �Eapplied, and we see that Eresponse in this region is

Eresponsepr ¥ aq � 2
γa3

r3
E0 cos θ r̂ � γa3

r3
E0 sin θ θ̂. (2.9)

We can rewrite this as

Eresponsepr ¥ aq �γa3
r3
E0

�
2 cos θ r̂ � sin θ θ̂

	�γa3
r3
E0

�
2 cos θ r̂ � sin θ θ̂ � cos θ r̂ � cos θ r̂

	�γa3
r3
E0 p3 cos θ r̂ � ẑq� 1

r3
p3pµMNP � r̂q � µMNPq (2.10)

where we have defined µMNP � γa3Eapplied. The astute reader will recognize that

equation (2.10) is identical to the field produced by a dipole located at the ori-

gin, with dipole moment equal to µMNP. This means the applied field induces a

polarization in the MNP, equal to γa3Eapplied.

Therefore, we have shown that in this limit, for a particular driving field, the

field inside the MNP is determined by the screening factor 1
ǫeff

. Outside of the MNP,

for a particular driving field and particle radius, the response is determined by γ.

Thus when we speak of the response of an MNP, what we really need to know are

these two functions. Because ǫeff determines the field inside the MNP, we can also

say that it determines the absorption of the MNP. Likewise, since γ determines the

field external to the MNP, it determines the scattering of the MNP.

17



0.0 0.5 1.0 1.5 2.0
-10

-5

0

5

10

Ω

Ωp

Ε
0�
Ε

D
ru

de
HΩ
L

Figure 2.3: The magnitude (solid line), the real part (dotted line) and the imaginary part (dashed

line) of ǫ0
ǫDrude

plotted as a function of ω
ωp

with Γ � 0.1ωp. The plasmon peak (the peak in the

magnitude of ǫ0
ǫDrude

) appears at a dip in the imaginary part at ω
ωp

� 1, where the real part crosses

zero.

2.1.2 The Drude Model

Both γ and ǫeff are determined by the dielectric of the MNP, ǫ. What makes

this particularly interesting is that ǫ is a function of the driving field frequency ω. A

well-known way to model this dependence of ǫpωq is with a Drude model for metal

[44],

ǫDrudepωq
ǫ0

�1� ω2
p

ω2 � iωΓ�1� ω2
p

ω2 � Γ2
� i

Γω2
p

ωpω2 � Γ2q
The bulk plasmon frequency, ωp, is defined as ωp �b

ne2

meǫ0
, where e and me are the

electron charge and mass respectively and n is the density of electrons in the metal.

Damping in the model is accounted for by Γ which is related to the mean free path
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Figure 2.4: The magnitude (solid line), the real part (dotted line) and the imaginary part

(dashed line) of ǫ0
ǫeff

plotted as a function of ω
ωp

with Γ � 0.1ωp. The plasmon peak (the peak in

the magnitude of ǫ0
ǫeff

) is easily seen as a dip in the imaginary part near ω
ωp

� 0.6, where the real

part crosses zero.

of the electrons in the metal and their Fermi velocity.

The Drude model is plotted in Figure 2.3. Shown are the real and imaginary

parts of the dimensionless quantity ǫ0
ǫDrude

, plotted as a function of ω
ωp
. We have

chosen the relaxation rate to be an order of magnitude less than the rate of plasmon

oscillations, i.e. Γ � 0.1ωp. In the plot, we see that an electric field scaled by a

factor of ǫ0
ǫDrude

, would have very large enhancement (about an order of magnitude)

near ω � ωp, where the magnitude of this quantity reaches a resonance peak.

We can now use the Drude model for ǫpωq in order to model γ and 1
ǫeff

. When

we do, we see that the resonance peak in the response of both (see Figures 2.4

and 2.5) occurs at a lower frequency, near ω � 0.6ωp, as opposed to that of 1
ǫDrude

which peaks at ω � ωp. This is a general feature of MNPs, the plasmon peak of
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Figure 2.5: The magnitude (solid line), the real part (dotted line) and the imaginary part

(dashed line) of γ
ǫ0

plotted as a function of ω
ωp

with Γ � 0.1ωp. The plasmon peak (the peak in

the magnitude of γ
ǫ0
) is easily seen as a dip in the imaginary part near ω

ωp

� 0.6, where the real

part crosses zero.

an MNP will appear at a lower energy than the bulk plasmon of the same material.

In fact, it can be shown [44] that for ellipsoidal MNPs, the plasmon peak occurs

at ω � ?
Lωp, where L is a geometrical constant that is easily calculated. For a

sphere (which itself is an ellipsoidal), this geometric factor is L � 1
3
, which would

mean that the resonance should be at ω � 0.58ωp, in good agreement with Figures

2.4 and 2.5.

2.1.3 Numerical Methods

The Drude model is very handy at approximating the response of simple, free

electron-like metals. To go beyond the Drude model and produce more accurate

results specific to a particular metal, we can use experimental data of the dielectric
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constant of bulk metals for various values of the driving frequency. Once this data

is obtained for a particular metal, we can interpolate the data to extend the domain

into the regions between data points, to produce a continuous function, ǫpωq. Once

ǫpωq is known, it is a simple matter to calculate γ and ǫeff.

To model structures more complicated than just spheres, solving Maxwell’s

equations in closed form in order to calculate γ and ǫeff is often not possible. To calcu-

late the optical response of such structures, numerical methods of solving Maxwell’s

equations must be employed. Numerical approaches commonly used include the

finite element method (FEM) [45], finite difference time domain method (FDTD)

[46], and boundary element method (BEM) [47], amongst many others.

In this thesis, when modeling the response of nanorods, we will use the BEM,

which has the advantage that it requires less computing resources than volume-

discretization methods such as the FEM or the FDTD. The BEM begins with the

surfaces that form the interface between regions of differing dielectric materials.

Each surface is divided up into small sections by means of a grid. Solutions to

Maxwell’s equations inside each region impose boundary conditions on the interface

surfaces in terms of surface charges and currents. The surface charges and currents

for each element are then matched in a self-consistent way by inverting a very large

matrix. Once the surface charges and currents are known, Green’s functions allow

for the solution to be propagated away from the surface to any point of interest.

Actual numerical calculations performed for the research presented in this

thesis were done using software written by our collaborators at the Donostia Inter-

national Physics Center in San Sebastian, Spain. The software, written in C++,
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consists of two main programs, the first calculates the response due to a planewave

and the second does the same for a dipole. In both programs, the user specifies

the locations of boundaries between materials of differing dielectric constant. The

location where the resultant field should be calculated is also input. Additionally,

the dipole program requires the location and direction of the test dipole that will

induce the response. Various parameters control the accuracy (and thus run-time)

of the result. Once the BEM software has calculated the response, the fields can

then be used in our models.

2.1.4 Modeling the MNP Response to a Dipole Source

A planewave is not the only type of electromagnetic radiation that our MNP

will be subject to. The field emitted by the SQD will resemble that of a dipole.

To calculate the response of the MNP to a dipole field, we could proceed as before,

by solving Maxwell’s equations in the quasi-static limit. However, the response can

also be quickly approximated using our previous results. If we assume that our

MNP is very small and sufficiently far away from the dipole, then the electric field

has a small variation over the volume of the MNP. If we assume that the field is

approximately constant, then we can approximate the total field inside the MNP

to be Edipole{ǫeff, where Edipole is the value of the dipole field at the location of the

center of the MNP. Likewise, the response field outside the MNP will scale with γ.

In making this approximation, we are only allowing the MNP to have a dipole

response to this dipolar field, but higher order modes in the MNP would be excited
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by the dipole. However, in cases where we need to account for these additional

modes, and go beyond a dipole limit, we can do so by using a multipole expansion

or by the BEM, as we will discuss in Chapter 4.

2.2 Semiconducting Quantum Dots

We begin our examination of the SQD by first looking at semiconductors. A

semiconductor is characterized by the existence of a band gap in its allowed electron

energy levels. Physically, the band gap is the difference in energy between the valence

and conduction electrons. When energy is added to the semiconducting material, for

example when an electric field is applied across it, electrons from the valence band

may move up into the conduction band and can flow through the material, i.e. they

conduct. However, as a semiconductor is made increasingly small, conduction band

electrons increasingly find less room in which to flow. Thus the electrons become

confined.

Since we are imagining that our nanoparticle is very small, we can model

the conduction band as an electron trapped in an infinite square well. Then the

electron’s wavefunction for the state with quantum numbers pnx, ny, nzq is
Ψpnx, ny, nzq �d

8

lx ly lz
sin

nxπx

lx
sin

nyπy

ly
sin

nzπz

lz
(2.11)

with energy

Epnx, ny, nzq � π2
~
2

2m

��
nx

lx


2 � �ny

ly


2 � �nz

lz


2
�
. (2.12)

Thus we see that as lx , ly , and lz are made ever smaller, the spacing between the

energy levels increases (this holds true regardless of particle shape). This allows
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for us to create a quantum dot in which only the lowest energy level is effectively

reachable, with all higher energy levels beyond typical electron energies for the

system. For example, if we irradiate a quantum dot with a field that is on resonance

with the energy gap between the valence and first conduction band state, then once

the first electron is knocked into the conduction band, ignoring the degeneracy of

the electron spin, no further electrons will be excited since the energy gap between

the valence band and the second conduction band state will be far detuned from

wavelength of the applied field.

Once we have a single electron in the conduction band, there is a hole that

is left behind in the valence band, which is also quantized, where the electron once

was. Since the electron has negative charge, the hole has a positive charge and

thus they are attracted to one another and can form a bound state. This bound

pair of an electron and its hole is called an exciton. As this is an attractive force,

it contributes a negative energy to the energy of the excited state. Additionally,

there is an effective confinement energy for both the electron and the hole. Thus we

have three sources of energy contributing to the exciton energy, the band gap, the

confinement and the electron-hole coulomb interaction.

To model an SQD, we assume that it possesses some excitonic energy level,

which is determined by its size and the actual material it is composed of. This

energy is typically in the range of 1�4 eV which makes the quantum dot an excellent

candidate to study in quantum optics. Furthermore, we will assume that any laser

or source of radiation that our SQD is in contact with will be very close in resonance

to this exciton energy. As long as that is the case, we assume that higher energy
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levels are not excited and we effectively have a two level quantum system, i.e. there

is an exciton, or there is not.

2.3 Quantum Open Systems

In order to study realistic quantum systems, it is often necessary to restrict the

size of the system under study. In our case, we will be modeling the interactions of

the MNP and SQD, as they respond to the applied electric field, and to each other.

However, there are other interactions that would have an effect on our system if such

a system were studied in a lab. Both the MNP and SQD would have phonon modes

that could influence behavior. Most importantly, the exciton has a finite lifetime.

It spontaneously decays. In order to account for these effects, all other physical

interactions and processes that are not included in our system are then given as

properties of a reservoir or a “bath”. We will define an open quantum system to

be a quantum system that is found to interact with several other quantum systems,

which we will call the baths. A quantum system which is not influenced by any

outside forces is said to be closed.

One can always take an open system and effectively “close” it by considering

a larger system, consisting of the original system along with its bath, as well as

anything that influences that bath, and continuing that process until the system is

closed. However, this is most often not practical. Typically, the system we wish to

study, an atom for example, will be influenced by its environment through thermal,

vibrational or radiative noise. Including all of the sources of noise in the dynamics
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of our system could drastically increase the complexity of the calculation. Thus, we

need to use techniques to handle open systems in a more reasonable manner.

When an open quantum system interacts with a bath, we will assume this

to be a thermodynamically irreversible process. One effect of such a process on a

quantum system is the loss of information. Specifically, it introduces decoherence

into the system. To proceed further, we need to make clear the distinction between

classical and quantum probabilities. To illustrate the difference, consider a simple

spin-1
2
system. Let |Ò〉x and |Ó〉x be the spin up and spin down eigenvectors of the

x̂-direction spin projection operator, σx, and similarly define the basis vectors for

σy and σz. If we initially prepare our system in the state |Ò〉z, then we can write

that state in terms of the x component spin eigenvectors as |Ò〉z � 1?
2
|Ò〉x� 1?

2
|Ó〉x.

Thus, in this case, a measurement of σz will always result in a value of 1
2
(letting

~ � 1), whereas a measurement of σx will yield 1
2
or �1

2
with equal probability.

Now contrast that with the following. Suppose instead that we initially prepare

our state as |Ò〉x. Further suppose that our system has some probability to decay

from |Ò〉x into |Ó〉x, and let the rate of this transition be γ. Then, after a period

time equal to t 1
2
� lnp2q

γ
(called the half-life), there will be equal probability that

a measurement of σx will yield 1
2
or �1

2
. We might be tempted to write the state

of our system as 1?
2
|Ò〉x � 1?

2
|Ó〉x, like we did before. However, this would be

incorrect. To see why, let’s work in the σz basis, so we can write our initial state as|Ò〉x � 1?
2
|Ò〉z� 1?

2
|Ó〉z and spin down state as |Ó〉x � 1?

2
|Ò〉z� 1?

2
|Ó〉z. Now, after a

half-life of the initial state has passed, and the particle has equal probability to be

in either of these two states, we ask what the result of a σz measurement would give.
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If the particle is in the |Ò〉x state, which it is 50% of the time, then a measurement

in the ẑ-direction yields |Ò〉z and |Ó〉z each with probability of 1
2
. On the other hand,

if the particle is in the |Ó〉x state, which it is 50% of the time, then a measurement

in the ẑ-direction will also yield |Ò〉z and |Ó〉z each with probability of 1
2
. Thus in

this case, our system is equally likely to either spin up or spin down in both the x̂

and ẑ directions, as opposed the previous case, in which the spin of the system was

uncertain in the x̂ direction, but always spin up in ẑ.

In the previous example, the spontaneous decay from |Ò〉x into |Ó〉x introduces a
classical uncertainty which is fundamentally different than the quantum mechanical

uncertainty inherent between non-commuting operators (such as σx and σz). In fact,

the final state of that system can not be written as a conventional wave function.

We call such a state a mixed state, because it consists of a classical mixture of two

quantum states. Conversely, if a state can be written as a single state vector, it

is said to be pure. In order to properly handle such processes in a consistent way,

we need to learn how to do quantum mechanics when mixed states are included,

which will require a more complicated mathematical object to describe the state of

our system. In the quantum mechanics of pure states, the state of the system is

typically described as a vector. However, for an open system, we will see that the

quantum state is most conveniently described as a matrix.
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2.4 The Density Matrix

In the basic formulations of quantum mechanics, the state of the system under

study is assumed to be a pure state, i.e., we may assume that our system can be

fully described by a ket in our Hilbert space, namely, |Ψ〉, and the evolution of our

state is governed by Schrödinger’s Equation,

i~
BBt |Ψ〉 � Ĥ |Ψ〉 . (2.13)

Furthermore, if Â is an observable, then the expectation value of Â when our system

is in the state |Ψ〉 can be calculated as

¯xAy � 〈

Ψ
��� Â ���Ψ〉

. (2.14)

If we expand |Ψ〉 in an orthonormal basis as |Ψ〉 � °
n cn |ψn〉, this becomes,

¯xAy �
ņm

c�mcn 〈ψm

��� Â ���ψn

〉 �
ņm

c�mcnAmn. (2.15)

We now suppose, as we did in the previous section, that our system has some

probability, p1, to be in the state |Ψ1〉 and a probability, p2, to be in the state |Ψ2〉,

with p1 � p2 � 1, and |Ψ1〉 and |Ψ2〉 both separately satisfy (2.13). We can then

calculate the expectation value of Â as

¯xAy � p1

〈

Ψ1

��� Â ���Ψ1

〉� p2

〈

Ψ2

��� Â ���Ψ2

〉�
ņm

�
p1
�
cp1qm

��
cp1qn � p2

�
cp2qm

��
cp2qn



Amn

where |Ψ1〉 � °
n c

p1q
n |ψn〉, and similarly for |Ψ2〉. Since this holds for all Â, we can

thus identify

p1
�
cp1qm

��
cp1qn � p2

�
cp2qm

��
cp2qn
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as the object that allows us to calculate expectation values of mixed states.

We now extend this to include mixtures of more than two pure states. In doing

so, we define the density matrix, ρ, in terms of its components as

ρmn �
i̧

pi
�
cpiqm ��cpiqn (2.16)

where pi is the probability that our system is in the pure state |Ψi〉, and the coeffi-

cients of our expansion are given by |Ψi〉 � °
j c

piq
j |ψj〉. Alternatively, we can also

write this definition in matrix form as

ρ �
i̧

pi |Ψi〉 〈Ψi| . (2.17)

As a quick check to ensure that this definition is what we want, we calculate

¯xAy as the sum of expectation values of pure states, as follows,

¯xAy �
i̧

pi
¯xAyi�

i̧

pi

〈

Ψi

��� Â ���Ψi

〉� ¸
imn

pi
�
cpiqm ��cpiqn Amn.

Because of the cyclic property of the trace, we can also write this as,

¯xAy � TrrρÂs (2.18)� Tr

�
i̧

pi |Ψi〉 〈Ψi| Â��
i̧

pi 〈Ψi| Â |Ψi〉 .

We now need to determine the time evolution of the density matrix. In order
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to do so, lets calculate the quantity 9ρ,9ρ �
i̧

pi
BBt� |Ψi〉 〈Ψi|
�

i̧

pi

�B |Ψi〉Bt 〈Ψi| � |Ψi〉
B 〈Ψi|Bt 	� � i

~
i̧

pi

�
Ĥ |Ψi〉 〈Ψi| � |Ψi〉 〈Ψi| Ĥ	� � i

~

�
Ĥρ� ρĤ

	
or written in a more familiar form,9ρ � � i

~

�
Ĥ, ρ

�
(2.19)

where rÂ, B̂s is the commutator and we have used (2.13) and its Hermitian conju-

gate.

2.5 The Interaction of Light and Matter

We will now investigate the physical processes involved in the interaction of

light and matter, which is central to the study of the behavior of the SQD in the

presence of a field. We first consider the simplest system, that of a single two level

“atom”, isolated from all other matter, and subject to an oscillating electric field.

We will assume that the electric field is spatially constant in the region of space

in which our atom is located, thus we can write the field solely as a function of

time, E � E0 cospωt � φq, where φ is an arbitrary phase that we will typically

take to be zero. Our Hamiltonian consists of three parts, the energy of the atomic

system completely unperturbed, the energy inherent in the electric field and lastly
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the interaction energy between the two. So we can write this as

H � Hatom �Hlight �Hint . (2.20)

For our two level atomic system, we assume the energy levels of interest to be

~ωground and ~ωexcited. Since only differences in energy are of interest, we can take

the ground state energy to be zero, then the energy of the excited state relative to

the ground is ~ω0 � ~pωexcited� ωgroundq. Thus, in the number basis, defined by the

population of the ground and excited states, t|g〉 , |e〉u, we can write Hatom as

Hatom � ~ω0â
:â , (2.21)

where â is the excited state annihilation operator, and conversely, â: is the creation
operator. In reality, an atom will have many more energy levels than two. However,

as long as the frequency of the driving electric field that we consider is close to the

spacing between these two levels, then all other energy levels will be far detuned

and we will populate only these two levels. In this case, ignoring all other atomic

levels is a reasonable approximation.

We next consider the photon energy term, Hlight. Throughout this thesis, the

effect of this term is ignored. This study is focused on the large photon limit, where

the electric field can be modeled as a classical field. Including this term would

require quantizing the electric field and its coupling to the emitters. However, the

goal of this project was to fully explore the regimes of behavior possible in MNP-

SQD hybrid structures when in the classical limit for the field. We treat electric

fields classically, while treating the atom as a quantum system. This is called a

semiclassical approximation, and we make use of it throughout this thesis.
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Lastly, we look at the interaction term of the Hamiltonian, Hint. In systems

that we are most concerned with, the typical size of our atoms, whether true atoms

or effective atomic systems (quantum dots, dyes, etc), will be much smaller than the

wavelength of light we will be concerned with (� 100 � 1000nm). In such a case,

we can make use of the dipole approximation for our interaction term. The classical

expression for the energy of a dipole, with dipole moment µ, in an electric field E,

is just

Eclassical � �µ �E (2.22)

In our case, we do not have a permanent dipole but rather a neutral atom that

can undergo a dipole transition. Thus to arrive at a quantum mechanical version

of (2.22), we replace µ with the dipole operator µ̂ [48]. In the position basis, the

dipole operator is just µ̂ � q � r̂, where r̂ is the usual position operator and q is the

charge.

We now need to calculate µ̂ in the number basis. First consider 〈g| µ̂ |g〉
and 〈e| µ̂ |e〉. For systems, such as atoms or spherical quantum dots, the energy

eigenvectors, written as |g〉 and |e〉, are either even or odd functions of their spatial

coordinates, and thus have definite parity. However, since µ̂ has odd parity, these

diagonal matrix elements must be zero. For the other two matrix elements we

set µge � 〈g| µ̂ |e〉 and note that µeg � µge
�. Thus we can write the matrix

representation of µ̂ in the t|g〉 , |e〉u basis as,
µ̂ � ���� 0 µge

µge
� 0

�ÆÆ
. (2.23)
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Since the annihilation operator has the matrix representation p 0 1
0 0 q, we can write

this as

µ̂ � µgeâ� µge

�â: � µgeâ� h.c., (2.24)

and we can now write Hint as

Hint � �pµge �Eq â� pµge

� � Eq â:. (2.25)

Now, we wish to diagonalize our Hamiltonian in the semiclassical approxima-

tion, H � Hatom �Hint. We take E � E0 cosωt ẑ as the form of our driving field,

where ẑ is the unit vector in the z-direction, and set pµgeqz � µ We then calculate

Hint as

Hint � �µE0 cosωt â� µ�E0 cosωt â
:� �µE0

2

�
eiωt � e�iωt

�
â� h.c.� �~ Ω

�
eiωt � e�iωt

�
â� h.c.,

where we have defined Ω � µE0

2~
, which will be shown to be the usual Rabi frequency.

We now switch over to work in the interaction picture. In the interaction

picture, we transform all of our operators such that

AS Ñ Aintptq � eiHatomt{~ AS e
�iHatomt{~

where we have used an S subscript to denote the operator in the Schrödinger picture.

Because Hatom commutes with eiHatomt{~, it takes the same form in both pictures,
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however Hint is now

Hint � �~ Ω
�
eiωt � e�iωt

�
eiω0â

:
S
âSt âS e

�iω0â
:
S
âSt � h.c.� �~ Ω

�
eiωt � e�iωt

�
e�iω0t âS � h.c.� �~ Ω

�
eipω�ω0qt � e�ipω�ω0qt� âS � h.c.

where we have used the relation eiω0â
:
S
âSt âS e

�iω0â
:
S
âSt � e�iω0t âS. Near resonance,

we can assume pω � ω0q ¡¡ pω � ω0q. Therefore, the e�ipω�ω0qt terms, will oscillate

much faster than the e�ipω�ω0qt terms. Thus on the time scales that we are interested

in, t � 2πpω�ω0q , the effect of the fast oscillating term averages to zero and can be

neglected. This is the rotating wave approximation. Dropping these terms and

moving back to the Schrödinger picture, our interaction Hamiltonian is,

Hint � �~ Ω eiωt â� ~ Ω� e�iωt â:. (2.26)

Now, we solve the master equation,9ρ � � i

~

�
Hatom �Hint, ρ

�
. (2.27)

Working in the basis that diagonalizes Hatom, we can write down the following

differential equations for the components of ρ,9ρgg � i Ω eitω ρeg � i Ω� e�itω ρge9ρge � i Ω eitω p ρee � ρggq � iω0ρge9ρee � i Ω� e�itω ρge � i Ω eitω ρeg.

It is important to remember that because ρeg � ρ�ge, the equation for 9ρeg is

redundant. However, we do have an additional restraint from the normalization of
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the density matrix, ρee�ρgg � 1. The factors of e�itω paired with ρge, as well as the

iω0ρge term in the equation for 9ρge suggests a solution of the form ρgeptq � rρgeptq eiωt,
where we have explicitly factored out the fast oscillating component of ρge by moving

to a rotating frame. Our equations are now,9ρgg � i Ω rρ �
ge � i Ω� rρge9rρge � i Ω p ρee � ρggq � i pω0 � ωq rρge9ρee � i Ω� rρge � i Ω rρ �

ge .

Now, let rρge � A � iB and Ω � ΩR � i ΩI , and also define ∆ge � ρgg � ρee. Then

we have, 9∆ge � �4 ΩI A � 4 ΩR B9A � pω � ω0q B � ΩI ∆ge (2.28)9B � �pω � ω0q A� ΩR ∆ge .

The first equation is the result of taking the difference of the first and third equations

of the previous set of equations.

We can solve these equations for the steady state solution by taking the left

hand side of (2.28) to be zero and solving the resulting homogeneous system of

equations. However, this set of equations for the steady state limit, as a system of

linear homogeneous equations will have either only the null solution (i.e., A � B �
∆ge � 0), or, the null solution along with infinitely more solutions. Thus this model

is rather unphysical. In order to make our model more accurate, we need to discuss

spontaneous and stimulated emission, which evidently must be present in any real
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physical system.

2.6 Stimulated and Spontaneous Emission

As shown in the previous section, an electric field can cause transitions in an

atom system. It also turns out to be true even in the absence of an applied electric

field. This is due to the fact that the atom can emit into the vacuum modes of the

electric field. This interaction with the vacuum (as well as any noise that is also

present) can be modeled by assuming that our atomic system is also interacting

with a reservoir.

Consider the situation in which our (atomic) system is in contact with a reser-

voir which we call the “bath”. The bath may simply be the vacuum fluctuations

of the electric field, or a particularly noisy mode that can induce transitions in our

system. Regardless of the origin of the bath, we first make a few assumptions about

the nature of the bath.

(a) The bath is much larger than the system of interest, i.e., the bath is much

more influential on our system, than our system is on the bath. Thus we take

the statistical properties of the bath to be unaffected by the interaction with

the system.

(b) The bath and our system are weakly correlated (or more precisely, the coher-

ence between the bath and system can be neglected). From this assumption,

we mean that the density matrix describing the combination of the bath and

our system can be factored and we can write ρtotal � ρB b ρS.
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(c) The bath has no memory. Thus the interaction between our system and the

bath is a Markov process, i.e., the future evolution of bath is not dependent

on the past configuration of the bath. Since “memory” in the quantum sense

is given by correlation functions, this means that the correlation time of the

bath is much shorter than the time scales that we are interested in for our

system.

We begin our analysis by writing the Hamiltonian for the combined system,

H � HB �HS �Hint (2.29)

where the B subscript denotes the bath, S denotes our system and “int” is the

interaction between the two. We denote the density matrix for the combined system

as ρtotal, and now move to the interaction picture and write

ρIptq � eipHS�HBq{~ ρtotal e�ipHS�HBq{~
HIptq � eipHS�HBq{~ Hint e

�ipHS�HBq{~
where HIptq is the interaction Hamiltonian in the interaction picture. The density

matrix and Hamiltonian must satisfy the relation9ρIptq � � i

~
rHIptq, ρIptqs . (2.30)

Integrating equation (2.30) from 0 to t, we have

ρIptq � ρIp0q � i

~

» t

0

dt1rHIpt1q, ρIpt1qs . (2.31)

We now iterate this equation for ρIptq by taking tÑ t1 and t1 Ñ t2 and substituting
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for ρIpt1q on the RHS of (2.31) which gives us,

ρIptq �ρIp0q � i

~

» t

0

dt1rHIpt1q, ρIp0qs� 1

~2

» t

0

dt1 » t1
0

dt2rHIpt1q, rHIpt2q, ρIpt2qss .
Finally, differentiating with respect to t, we arrive at9ρIptq � � i

~
rHIptq, ρIp0qs � 1

~2

» t

0

dτ rHIptq, rHIpτq, ρIpτqss , (2.32)

where the integration variable t2 has been renamed as τ .

We pause here for a moment to recall that ρtot and ρIptq are operators on the

combined space of the bath and system variables. This is not a very useful quantity.

The quantity we are actually interested in finding is the reduced density matrix

which is obtained by taking ρtot and tracing over the bath variables,rρtotal � TrBrρtotals . (2.33)

We similarly define the reduced interaction picture density matrixrρIptq � TrBrρIptqs . (2.34)

Now, performing a trace over the bath variables on both sides of (2.32), we

have,9rρIptq � � i

~
TrB

�rHIptq, ρIp0qs�� 1

~2

» t

0

dτ TrB

�rHIptq, rHIpτq, ρIpτqss� . (2.35)

First, we assume that initially, the bath and system are uncorrelated. Thus, ρIp0q �
ρtotalp0q � ρB b ρSp0q. Next, consider the first term. We can assume that this term

is zero if Hint has no diagonal elements over the bath variables (i.e., Hint always
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changes the bath quantum numbers). Although there is no reason to expect that

Hint will not contain any terms with factors of b:b, for example, we assume that

we can do so with a suitable redefinition of Hsys and Hint. By now invoking our

assumption that the bath is relatively unchanged by the interaction with the system,

we can approximate the interaction picture density matrix as the tensor product of

the bath density matrix and the reduced interaction picture density matrix,

ρIptq � ρB b rρIptq . (2.36)

These approximations now allow us to write (2.35) as9rρIptq � � 1

~2

» t

0

dτ TrB

�rHIptq, rHIpt� τq, ρB b rρIpt� τqss� . (2.37)

where we have also made the change in integration variable τ Ñ t � τ .

Lastly, we invoke the Markov approximation which allows us to assume that

over the time scale of the bath correlation time, rρIptq is relatively unchanged com-

pared to the bath variables. This allows us to take rρIpt� τq � rρIptq. Furthermore,

if we assume that t is much larger than the bath correlation time, then we can time

the limit of our integral to infinity and we can write (2.37) now in its usual form

[49], 9rρIptq � � 1

~2

» 8
0

dτ TrB

�rHIptq, rHIpt� τq, ρB b rρIptqss� , (2.38)

which is a first order differential equation in time, showing the Markovian property

of the combined system.
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2.7 Toy Model: Two Level System Interacting with a Single Bosonic

Mode

We now use the formalism we just developed to model the spontaneous emis-

sion from an atomic system. We again consider a two level atom, but now we allow

the atom to interact with a bath consisting of a single bosonic mode. We begin with

the following Hamiltonians,

HS � ~ωsŝ
:ŝ

HB � ~ωbb̂
:b̂

Hint � µ
�
ŝ:b̂� b̂:ŝ	

where ŝ: and ŝ are the (fermionic) raising and lowering operators for the atomic

system, and b̂: and b̂ are the (bosonic) raising and lowering operators for the bath.

Then 9rρIptq � � 1

~2

» 8
0

dτ TrB

�rHIptq, rHIpt� τq, ρB b rρIptqss��� 1

~2

» 8
0

dτ
B̧

�
〈B| HIptq HIpt� τq ρB b rρIptq |B〉� 〈B| HIptq ρB b rρIptq HIpt� τq |B〉� 〈B| HIpt� τq ρB b rρIptq HIptq |B〉� 〈B| ρB b rρIptq HIpt� τq HIptq |B〉

	�� 1

~2

» 8
0

dτ p T1 � T2 � T3 � T4 q . (2.39)
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We now evaluate each term in turn.

T1 �
B̧

〈B| HIptq HIpt� τq ρB b rρIptq |B〉�µ
B̧

eipHS�EBqt{~ � ŝ: ?B � 1 〈B � 1| � ŝ
?
B 〈B � 1| 	�� e�ipHS�HBqτ{~ Hint e

�ipHS�HBqpt�τq{~ ρB b rρIptq |B〉�µ
B̧

eiBωbt

�
e�iωbpB�1qτ eiωst ŝ: e�iHSτ{~ ?B � 1 〈B � 1|� e�iωbpB�1qτ ŝ e�iHSτ{~ ?B 〈B � 1|
�� Hint e

�ipHS�HBqpt�τq{~ ρB b rρIptq |B〉

T1 �µ2

B̧

eiBωbpt�τq�e�iωbτ eiωst ŝ: ?B � 1 〈B � 1|� eiωbτ e�iωsτ ŝ
?
B 〈B � 1|
�� �ŝ:b̂� b̂:ŝ	 e�ipHS�HBqpt�τq{~ ρB b rρIptq |B〉�µ2

B̧

eiBωbpt�τq�e�iωbτ eiωst ŝ: ŝ pB � 1q � eiωbτ e�iωsτ ŝ ŝ: B
�� 〈B| e�ipHS�HBqpt�τq{~ ρB b rρIptq |B〉�µ2

B̧

�
e�iωbτ eiωsτ ŝ: ŝ pB � 1q � eiωbτ e�iωsτ ŝ ŝ: B
�� 〈B|ρB |B〉b rρIptq�µ2

�
e�iωbτ eiωsτ

� sB � 1
�
ŝ: ŝ rρIptq � eiωbτ e�iωsτ sB ŝ ŝ: rρIptq


where we have repeatedly used identities like ŝ eα ŝ:ŝ � eαŝ and eα ŝ:ŝ ŝ � ŝ, and

we have used sB to denote the average population of the bosonic mode, sB �°
B 〈B|ρB |B〉.
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Now turning our attention to T2,

T2 ��
B̧

〈B| HIptq ρB b rρIptq HIpt� τq |B〉�� µ2

B̧

eiBωbt

�
eiωst e�ipB�1qωbt ŝ: ?B � 1 〈B � 1|� e�iωst e�ipB�1qωbt ŝ

?
B 〈B � 1| 
�� ρB b rρIptq�eiωspt�τq eipB�1qωbpt�τq ŝ:?B |B � 1〉� e�iωspt�τq eipB�1qωbpt�τq ŝ?B � 1 |B � 1〉



e�iBωbpt�τq�� µ2

�
eiωsτ e�iωbτ sB ŝ: rρIptq ŝ� e�iωsτ eiωbτ p sB � 1q ŝ rρIptq ŝ: 


where we have we have used that
°

B B 〈B � 1| ρB |B � 1〉 � sB � 1. Also, we have

assumed that terms like
°

B 〈B � 1| ρB |B � 1〉 can be taken to be zero, which is a

safe assumption if our bath is in a thermal state (i.e. has no correlation). However,

this would not hold if our bath was in a squeezed state. The calculation for T3 is

similar,

T3 ��
B̧

〈B| HIpt � τq ρB b rρIptq HIptq |B〉�� µ2

B̧

eiBωbpt�τq�eiωspt�τq e�ipB�1qωbpt�τq ŝ: ?B � 1 〈B � 1|� e�iωspt�τq e�ipB�1qωbpt�τq ŝ ?B 〈B � 1| 
�� ρB b rρIptq�eiωst eipB�1qωbt ŝ:?B |B � 1〉� e�iωst eipB�1qωbt ŝ
?
B � 1 |B � 1〉



e�iBωbt�� µ2

�
e�iωsτ eiωbτ sB ŝ: rρIptq ŝ � eiωsτ e�iωbτ p sB � 1q ŝ rρIptq ŝ: 
 .
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Lastly, a calculation for T4 yields,

T4 �
B̧

〈B| ρB b rρIptq HIpt � τq HIptq |B〉�µ2

�
eiωsτ e�iωbτ sB rρIptq ŝ ŝ: � e�iωsτ eiωbτ p sB � 1q rρIptq ŝ: ŝ 
.

Returning to (2.39) and putting this together,9rρIptq � � 1

~2

» 8
0

dτ p T1 � T2 � T3 � T4 q� � µ2

~2

» 8
0

dτ

�
eiωbτ e�iωsτ sB ŝ ŝ: rρIptq � e�iωbτ eiωsτ

� sB � 1
�
ŝ: ŝ rρIptq� eiωsτ e�iωbτ sB ŝ: rρIptq ŝ� e�iωsτ eiωbτ p sB � 1q ŝ rρIptq ŝ:� e�iωsτ eiωbτ sB ŝ: rρIptq ŝ� eiωsτ e�iωbτ p sB � 1q ŝ rρIptq ŝ:� eiωsτ e�iωbτ sB rρIptq ŝ ŝ: � e�iωsτ eiωbτ p sB � 1q rρIptq ŝ: ŝ 
�� µ2

~2

» 8
0

dτ

�
eipωb�ωsqτ sB� ŝ ŝ: rρIptq � ŝ: rρIptq ŝ�� e�ipωb�ωsqτ sB� rρIptq ŝ ŝ: � ŝ: rρIptq ŝ�� eipωb�ωsqτ p sB � 1q� rρIptq ŝ: ŝ� ŝ rρIptq ŝ:�� e�ipωb�ωsqτ p sB � 1q� ŝ: ŝ rρIptq � ŝ rρIptq ŝ:��� γ sB� ŝ ŝ: rρIptq � rρIptq ŝ ŝ: � 2 ŝ: rρIptq ŝ�� γ p sB � 1q� ŝ: ŝ rρIptq � rρIptq ŝ: ŝ� 2 ŝ rρIptq ŝ:�� i ǫ sB r ŝ ŝ:, rρIptqs � i ǫ p sB � 1q r ŝ: ŝ, rρIptqs

where we have defined µ2

~2

³8
0
dτeipωb�ωsqτ � γ � iǫ. The terms proportional to ǫ sB

and ǫ p sB�1q are the Stark and Lamb shifts respectively. They represent small shifts

in the energy levels of the system and can often be neglected. The term proportional
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to γ p sBq goes to zero as the average excitation population of the bath goes to zero,

and thus would not be present at zero temperature. However, the γp sB � 1q term
is present even at zero temperature and represents transitions in our system from a

state with a higher energy to a lower energy state, while the previous must represent

a transition from a lower energy state to one that is higher.

2.8 Lindblad Master Equation

In this thesis, we will model interactions at optical frequencies. We can further

develop our framework of modeling open systems in such a case. To do so, we return

to the case of an atomic system in an arbitrary bath, at optical frequencies. We

assume only that our interaction Hamiltonian can be written as

Hint � ~

j̧

�
ŝ
:
j b̂j � ŝj b̂

:
j

	
(2.40)

where the b̂j are some set of bath operators, and the ŝj are operators on the system

Hilbert space and satisfy rHsys, ŝjs � �~ωj ŝj . (2.41)

For example, interaction terms with ŝ � â, where â is an annihilation operator

would represent an excitation transfer with the bath. Additionally, terms where

ŝ � â:â (noting that rHsys, â
:âs � 0 trivially satisfies (2.41)) would be indicative of

bath induced scattering processes and would give rise to dephasing in our system.

From (2.41) we can work out the following identity that will be very useful in
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the derivation that follows. Consider the quantity, eαHsys ŝj,

eαHsys ŝj � �
1� α Hsys � 1

2!
pα Hsysq2 � . . .



ŝj� �

ŝj � ŝj αp Hsys � ~ωjq � ŝj
1

2!

�
αp Hsys � ~ωjq�2 � . . .


� ŝj e
αpHsys�~ωjq .

Thus, in the interaction picture,

ŝjptq � eiHsyst{~ ŝj e�iHsyst{~� e�iωjt ŝj (2.42)

and similarly,

ŝ
:
jptq � eiHsyst{~ ŝj e�iHsyst{~� eiωjt ŝ:j . (2.43)

Now, we return our attention to (2.40) and substitute this interaction Hamil-

tonian into (2.38), our master equation for the reduced density matrix. We again

have many terms to evaluate and define T1, T2, T3, and T4 as before. Thus,

T1 � 1

~2
TrBr HIptq HIpt � τq ρB b rρIptqs�

j̧ ķ

TrB

��
eiωjt ŝ

:
j b̂jptq � e�iωjt ŝj b̂

:
jptq
� �eiωkpt�τq ŝ:k b̂kpt� τq � e�iωkpt�τq ŝk b̂:kpt� τq
 ρB b rρIptq��

j̧ ķ

TrB

��
eiωjτ eipωj�ωkqt ŝ:j ŝk b̂jptq b̂:kpt� τq� e�iωjτ e�ipωj�ωkqt ŝj ŝ:k b̂:jptq b̂kpt� τq 
 ρB b rρIptq� ,
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where we have again dropped terms like TrBr b̂jptq b̂kpt � τq ρBs, assuming that

our bath is in a thermal state. We now make the rotating wave approximation by

neglecting terms with j � k. We can do so because if ωj � ωk, then e�ipωj�ωkqt is
a quickly varying function over the time scale of the correlation time, and thus will

make only a minor contribution compared to the term with j � k. However, if j

and k are degenerate energy eigenstates, then this would not hold and care would

need to be taken. Returning to T1, we have

T1 �
j̧

�
eiωjτ TrB

�
b̂jptq b̂:jpt� τq ρB� ŝ:j ŝj rρIptq� e�iωjτ TrB

�
b̂
:
jptq b̂jpt� τq ρB� ŝj ŝ:j rρIptq


Proceeding to T2, we find,

T2 � �
j̧

�
eiωjτ TrB

�
b̂jptq ρB b̂

:
jpt� τq� ŝ:j rρIptq ŝj� e�iωjτ TrB

�
b̂:jptq ρB b̂jpt� τq� ŝj rρIptq ŝ:j
� �

j̧

�
eiωjτ TrB

�
b̂
:
jpt� τq b̂jptq ρB� ŝ:j rρIptq ŝj� e�iωjτ TrB

�
b̂jpt� τq b̂:jptq ρB� ŝj rρIptq ŝ:j
,

where we have used the cyclic property of the trace. Similarly for T3 and T4 we
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have,

T3 ��
j̧

�
e�iωjτ TrB

�
b̂
:
jptq b̂jpt � τq ρB� ŝ:j rρIptq ŝj� eiωjτ TrB
�
b̂jptq b̂:jpt� τq ρB� ŝj rρIptq ŝ:j


T4 �
j̧

�
e�iωjτ TrB

�
b̂jpt � τq b̂:jptq ρB� rρIptq ŝ:j ŝj� eiωjτ TrB
�
b̂:jpt� τq b̂jptq ρB� rρIptq ŝj ŝ:j
 .

We now make the Markov approximation and assume that factors like

TrB
�
b̂jpt � τq b̂:jptq ρB�

are functions of τ only as the bath has very short memory. This allows us to write

this factor as TrB
�
b̂jp0q b̂:jpτq ρB�. Upon transforming all of the terms we’ve

accumulated, our correlation factors all take one of four possible forms,

e�iωjτ TrB
�
b̂
:
jpτq b̂jp0q ρB�

eiωjτ TrB
�
b̂
:
jp0q b̂jpτq ρB�

e�iωjτ TrB
�
b̂jp0q b̂:jpτq ρB�

eiωjτ TrB
�
b̂jpτq b̂:jp0q ρB� .

Noting that the first two of these terms are complex conjugates of each other, and

that the same can be said for the third and fourth terms, we make the following
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definitions, » t

0

dτ eiωjτ TrB
�
b̂
:
jp0q b̂jpτq ρB� � Γj � iǫj» t

0

dτ e�iωjτ TrB
�
b̂
:
jpτq b̂jp0q ρB� � Γj � iǫj» t

0

dτ eiωjτ TrB
�
b̂jpτq b̂:jp0q ρB� � γj � iδj» t

0

dτ e�iωjτ TrB
�
b̂jp0q b̂:jpτq ρB� � γj � iδj .

If the b̂j are creation operators, then at zero temperature both γ and δ are non zero

due to the ordering of b̂jpτq and b̂:jpτq, and are thus the result of vacuum fluctuations.

Now returning to our master equation,9rρIptq � � 1

~2

» t

0

dτ p T1 � T2 � T3 � T4 q� �
j̧

� pγj � iδjq ŝ:j ŝj rρIptq � pΓj � iǫjq ŝj ŝ:j rρIptq� pΓj � iǫjq ŝ:j rρIptq ŝj � pγj � iδjq ŝj rρIptq ŝ:j� pΓj � iǫjq ŝ:j rρIptq ŝj � pγj � iδjq ŝj rρIptq ŝ:j� pγj � iδjq rρIptq ŝ:j ŝj � pΓj � iǫjq rρIptq ŝj ŝ:j 
��
j̧

"
γj
�
ŝ
:
j ŝj rρIptq � rρIptq ŝ:j ŝj � 2ŝj rρIptq ŝ:j�� Γj

�
ŝj ŝ

:
j rρIptq � rρIptq ŝj ŝ:j � 2ŝ:j rρIptq ŝj�� iδj

�
ŝ
:
j ŝj rρIptq � rρIptq ŝ:j ŝj�� iǫj

� rρIptq ŝj ŝ:j � ŝj ŝ
:
j rρIptq � * .

We again identify ǫj and δj as the Lamb and Stark shifts, and note that they play

little role in the analysis that follows and will be neglected from here on out.
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Thus, for each term in our interaction Hamiltonian, ŝ:j b̂j or ŝj b̂
:
j , we have a

term in our master equation, like

ŝ
:
j ŝj rρIptq � rρIptq ŝ:j ŝj � 2ŝj rρIptq ŝ:j ,

or

ŝj ŝ
:
j rρIptq � rρIptq ŝj ŝ:j � 2ŝ:j rρIptq ŝj

which are both of similar form. With this as motivation, we define the Lindblad

operator [50, 51] such that its action on an arbitrary operator ŝ and density matrix

ρ is,

Lpŝq ρ � ŝ: ŝ ρ� ρ ŝ: ŝ� 2ŝ ρ ŝ: . (2.44)

Using this definition allows us to write down the master equation in the fol-

lowing form, 9rρIptq � �
j̧

λj Lpŝjq rρIptq (2.45)

with our interaction Hamiltonian now written as

Hint � ~

j̧

ŝj b̂
:
j . (2.46)

In both (2.45) and (2.46) the summation is expected to now cover over Hermitian

conjugates as necessary.

Having now successfully traced over the bath, we can now return to the
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Schrödinger picture. Since,9rρIptq � BBt � eiHsyst{~ ρS e�iHsyst{~�� i

~
eiHsyst{~ Hsys ρS e

�iHsyst{~ � i

~
eiHsyst{~ ρS Hsys e

�iHsyst{~� eiHsyst{~ 9ρS e�iHsyst{~� i

~
eiHsyst{~ r Hsys, ρS s e�iHsyst{~ � eiHsyst{~ 9ρS e�iHsyst{~

therefore, 9ρS � � i

~
r Hsys, ρS s � e�iHsyst{~ 9rρIptq eiHsyst{~ . (2.47)

Now using our expression for 9rρIptq, (2.45),9ρS � � i

~
r Hsys, ρS s�
j̧

λje
�iHsyst{~pŝ:j ŝj rρIptq � rρIptq ŝ:j ŝj � 2ŝj rρIptq ŝ:jq eiHsyst{~� � i

~
r Hsys, ρS s�
j̧

λj

�
e�iHsyst{~ŝ:j ŝj eiHsyst{~ ρS � ρS e

�iHsyst{~ ŝ:j ŝj eiHsyst{~� 2 e�iHsyst{~ ŝj eiHsyst{~ ρS e�iHsyst{~ ŝ:j eiHsyst{~
� � i

~
r Hsys, ρS s �

j̧

λj

�
ŝ
:
j ŝj ρS � ρS ŝ

:
j ŝj � 2 ŝj ρS ŝ

:
j



, (2.48)

where we have used (2.42) and (2.43) to eliminate factors of e�iHsyst{~. Compar-

ing this expression to that of a closed system, equation (2.19), we see that the

effect of the interaction with the bath is a contribution to the master equation of�°j λj Lpŝjq ρS.
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2.9 The Interaction of Light and Matter: Revisited

To better illustrate the formalism developed in the last section, we now return

to the case of a two level atom interacting with an electromagnetic field. Previously

we found that when treated as a closed system, with no interactions with its envi-

ronment, unphysical solutions arise. We now attack the problem as an open system.

We allow our atom to have three interactions with the bath, the first of which is the

decay of the excited state into the ground state. The second interaction allows the

bath to excite the atom from the ground state to the excited state. Lastly, we allow

for elastic scattering processes between the bath and the atom. Our interaction

Hamiltonian takes the form,

Hint � ~pg1 âb̂: � g3 â
:âb̂:b̂q � h.c. (2.49)

where â is the annihilation operator for the two level atom, and b̂ is the bath an-

nihilation operator for the background electromagnetic field, and the gi are yet

undetermined coupling constants. Since the third term in our interaction Hamilto-

nian conserves the number of excitations in our system and in the bath separately,

it represents scattering and will be shown to give rise to dephasing in the system

(analogous to T2 relaxation in nuclear magnetic resonance, NMR).

We begin by writing down the master equation in the Schrödinger picture,

equation (2.48), with three Lindblad terms, one for each term in our interaction
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Hamiltonian,9ρ � � i

~
r Hsys, ρ s � λ1 Lpâq ρ� λ2 Lpâ:q ρ� λ3 Lpâ:âq ρ� � i

~
r Hsys, ρ s � λ1p â: â ρ� ρ â: â� 2â ρ â:q� λ2p â â: ρ� ρ â â: � 2 â: ρ âq � λ3p â: â ρ� ρ â: â� 2 â: â ρ â: âq,

where we have used pâ: âqpâ: âq � â: â to simplify the last term. Working in the

representation of ρ defined by our basis vectors |g〉 , |e〉, for the ground and excited

states respectively, and once again invoking the rotating wave approximation, the

commutator term of the master equation yields,�i
~

r Hsys, ρ s � i

���� pΩρegeitω � Ω� e�itωρgeq pω0ρge � Ωeitω pρee � ρggqqpΩ�e�itω pρgg � ρeeq � ω0ρegq pΩ�ρgee�itω � Ωρege
itωq �ÆÆ


while the Lindblad terms result in,�λ1 Lpâq ρ� λ2 Lpâ:q ρ�λ3 Lpâ:âq ρ ������ 2λ1ρee � 2λ2ρgg �pλ1 � λ2 � λ3q ρge�pλ1 � λ2 � λ3q ρeg 2λ2ρgg � 2λ1ρee ,

�ÆÆ
.
This second matrix is usually referred to as the relaxation matrix, as it describes

dissipative processes, and we will often denote it as Γ or Γpρq. We again assume

a solution of the form ρgeptq � rρgeptq eiωt for the off-diagonal components, and we

have 9ρgg � iΩrρeg � iΩ�rρge � 2λ1ρee � 2λ2ρgg9ρee � �iΩrρeg � iΩ�rρge � 2λ1ρee � 2λ2ρgg9ρge � iΩ pρee � ρggq � pλ1 � λ2 � λ3 � ipω � ω0qq rρge (2.50)
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We now examine (2.50) in the absence of a driving field (Ω Ñ 0), and in the

steady state limit ( 9ρ Ñ 0). By taking the difference of the first two equations, we

have

λ1ρ
peqq
ee � λ2ρ

peqq
gg , (2.51)

where the peqq superscript is to remind us that this is really an equilibrium equation.

However, if the system is in equilibrium at some temperature, T , the ratio Ne{Ng,

can also be calculated from the Boltzmann factor as Ne{Ng � e�~ω0{kBT . Thus we

must have,

λ2

λ1
� e�~ω0{kBT . (2.52)

We see here, as was mentioned in the previous section, that as T Ñ 8, λ2 Ñ 0. λ2

arises from an interaction Hamiltonian term of the form â: b̂, i.e. excitation from

the bath. At optical frequencies ~ω0 � 1eV, and thus even at room temperature,

kBT � 1
40
, this factor is vanishingly small and λ2 can be taken to be zero.

Returning to (2.50) in the general case, we make the following definitions, let

1
τ
� 2λ1 and 1

T
� pλ1 � λ3q, and as before define ∆ge � ρgg � ρee. Now, we have,9∆ge � 2iΩrρeg � 2iΩ�rρge � ∆ge � 1

τ9rρge � �� 1

T
� i pω � ω0q
 rρge � iΩ∆ge ,

or working in components, rρge � A� iB, and assuming that Ω is real,9∆ge � 4 Ω B � ∆ge � 1

τ9A � pω � ω0q B � A

T9B � �pω � ω0q A � Ω ∆ge � B

T
. (2.53)
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We can solve these equations for the steady state solution by taking the LHS of

(2.53) to be zero, and with some straightforward algebra we find,

∆ge � T 2 pω � ω0q 2 � 1

T 2 pω � ω0q 2 � 4τTΩ2 � 1

B � � Ω ∆ge

T
�

1
T 2 � pω � ω0q2�

A � � pω � ω0qΩ∆ge

1
T 2 � pω � ω0q2 .

When ρ is viewed as a function of ω, the driving field frequency, we see that both B

and ∆ge are peaked at ω � ω0 while A changes sign here. This is the resonance con-

dition for the system and comparing these expressions to the well known Lorentzian

line shape function, T is evidently the half-width at half-maximum.

We now solve (2.53) in the case where the driving field is on resonance with

the atomic transition, so ω � ω0,9∆ge � 4 Ω B � ∆ge � 1

τ9A � �A
T9B � �Ω ∆ge � B

T
. (2.54)

In this case A becomes uncoupled from the other components and we can solve for

it immediately,

Aptq � Ap0qe�t{T .
We see that an effect of the elastic scattering interaction with the bath is to cause an

exponential decay in the real component of the off-diagonal density matrix element.

Since this a measurement of the quantum mixing of the ground and excited states,
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then this is indicative of the system losing quantum coherence, i.e. we can say that

T leads to decoherence as a pure state will decay into a mixed state at a rate of 1
T
.

Although (2.54) can be solved for B and ∆ge in closed form, the solutions are

not very instructive. Instead, we examine the solution in two limits, namely that of

a strong field Ω ¡¡ τ, T and a weak field Ω    τ, T . In the weak field limit, we

neglect the 4 Ω B and Ω ∆ge terms and we find

∆geptq � ∆gep0qe�t{τ
Bptq � Bp0qe�t{T .

Here, because the damping is so much larger than the driving field, the system no

longer has the opportunity to oscillate, and B and ∆ge exponentially decay to zero.

We say that the system in overdamped.

In strong field limit, we instead neglect the terms ∆ge�1

τ
and B

T
in (2.54), and

take |g〉 to be the initial state our system is prepared in, and find,

∆geptq � cos p2Ωtq
Bptq � �1

2
sin p2Ωtq .

Here we see that B and ∆ge oscillate at the frequency 2Ω, which is twice the Rabi

frequency (we could have equivalently chosen Ω � µE

~
instead of Ω � µE

2~
). In

particular, ∆ge alternates between the values of 0 and 1, which implies that the

system oscillates between being fully in the ground state (∆ge � 1) and fully in the

excited state (∆ge � �1), and between these points, in a 50{50 split between the

ground and excited state (∆ge � 0). At the times when ∆ge � 0, B takes on its
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maximal/minimal value of �1
2
which implies that the system is in a pure state which

is consistent with the relaxation terms in (2.54) being ignored. As these oscillations

would continue ad infinitum, we say that the system is underdamped in this limit.

In chapter 3, we will model the response of an SQD (an effective two level

system), in the presence of an MNP and an applied driving field, both of which will

act as a source of electromagnetic radiation incident on the SQD. There, we will see

that many features of this simple model will appear with only slight modification

when we model SQD-MNP system.

2.10 Computational Technique

We finish this chapter with a few words on how calculations performed for

this research were carried out. First, choices are made for the various system pa-

rameters. The next step is to calculate, either with a dipole approximation, or with

the BEM, the response fields of the MNP, at the location of the SQD. With these

fields, along with the Lindblad terms included to model losses, we can write down

a master equation for the SQD. This set of coupled differential equations is then

solved numerically using Mathematica, usually in both the dynamical limit, as well

as the steady state limit. Once these equations are solved, and ρSQD is found in the

desired limit, observable quantities, such as the absorption, can then be calculated.

By then varying the parameters that we are free to choose while repeatedly solving

the master equation, the system behavior can be fully explored.
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Chapter 3

The Optical Response of Strongly Coupled SQD-MNP Systems

In this chapter we are finally ready to theoretically discuss the response of a

hybrid nanostructure molecule consisting of a semiconductor quantum dot (SQD)

and a metal nanoparticle (MNP) subject to an applied electric field (see Figure

3.1). This system has been studied in the weak coupling regime [20] and in the

strong coupling regime [21]. Similar systems have been studied with multiple metal

nanoparticles [25, 52], with a nanowire instead of the spherical MNP [26] and also

with a metal-dielectric nanoshell [53]. The dipole-dipole coupling between two fluo-

rescent molecules mediated by a chain of silver nanoparticles has also been studied

[28]. Plasmon induced transparency has been studied in a system consisting of a

three level SQD interacting with a spherical MNP [29].

Figure 3.1: An applied field polarizes both the MNP and SQD which in turn allows for a dipole-

dipole coupling.
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3.1 Introduction

The optical excitations of the SQD are the excitons, with a sharp, discrete

response. The SQD acts as a quantum emitter. The strong local plasmonic excita-

tions of the MNP offer a continuous spectrum of response. Local field enhancement

in the vicinity of the MNP should provide strong coupling to the neighboring SQD.

There is no direct tunneling of charge carriers between the MNP and SQD. However,

due to the long-range Coulomb interaction, there is a dipole-dipole interaction that

will allow them to couple and will lead to excitation transfer.

The discrete excitons coupled with the broad response of the plasmons should

allow for the appearance of exotic hybrid states and clear signatures for their optical

response. We will see that as a damped driven oscillator, the SQD response to

driving fields changes rapidly from in-phase to out-of-phase near the SQD resonance.

Rapid variations in hybrid response are expected near the SQD resonance. Effects

depending on the interference between applied and induced fields are extremely

sensitive to this change from in-phase to out-of-phase SQD response, providing

dramatic signatures from the hybrid response.

Previously, the weak coupling regime was studied in [20]. In the weak field/weak

coupling limit (driving field of 1W/cm2), a shift and broadening of the peak in the

energy absorption spectrum due to the coupling between the exciton in the SQD

and the plasmon in the MNP was found. In the strong field/weak coupling limit,

an asymmetrical Fano shape, develops in the energy absorption spectrum.

Here, we will examine the strong coupling regimes, in particular probing fur-
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ther the strong applied field limit. We find that the behavior is much more complex

than previously determined [20]. When we explore the relationship between the

size of the constituents and the response of the system, we find that in addition to

the regime for weak coupling which was previously explored, there are three new

regimes of system behavior in the strong coupling limit. These four (in total) dis-

tinct regimes of behavior in the strong field limit each exhibit novel properties and

we will look at each.

In the first regime the energy absorption spectrum displays an asymmetrical

Fano shape (as previously predicted in [20]). It occurs when there is interference

between the applied field and the induced field produced by the SQD at the MNP. As

the SQD is increased in size (thus the coupling is increased), the asymmetrical Fano

effect of region I is modified by the appearance of an additional peak with a deep

minimum between the peaks [21]. Here, the induced local field at the MNP becomes

larger than the applied field, for frequencies near the SQD resonance. As such, the

interference of the the response field of the SQD, with the applied electric field, now

results in a sign change in the net electric field at the MNP above resonance where

the two fields are out-of-phase. An exciton induced transparency (EXIT) arises in

the MNP response when there is nearly complete destructive interference between

these two fields acting on the MNP.

When the MNP and SQD are further increased in size, the hybrid behavior

transitions between regions II and III. In this regime, there is a discontinuous jump

in response of the system (in both the diagonal and off-diagonal density matrix el-

ements) as the driving frequency is varied [22]. Moreover, the response of the SQD
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is highly suppressed above resonance in this transition region. The discontinuous

response and suppression arise because the SQD acts as a driven (quantum) oscil-

lator. Below resonance the dipole moment of the SQD is in phase with the driving

field and above resonance it is 180� out of phase. The phase change at resonance

drastically alters the hybrid response when crossing the resonance.

Finally, in region III, the system response becomes nonlinear. This nonlinear-

ity is due to significant self interaction of the SQD (feedback through the MNP). In

this regime, there exists multiple steady state solutions leading to a bistability with

one of the stable solutions having a discontinuous absorption spectrum [21]. In this

chapter will explore these four regimes in detail and set bounds on each.

The layout of this chapter is as follows. In section 2, we discuss the system

in detail. We use a density matrix approach to treat the SQD, while the MNP is

taken as a classical dielectric. We also calculate the energy absorption of the MNP

and provide details on how numerical calculations were carried out. In section 3

the Fano-like behavior of the system in region I will be discussed. In section 4,

the exciton induced transparency of region II is introduced. We then discuss the

suppressed response of the SQD that occurs in the transition region, in section 5.

In section 6, we look at region III, where the system response is dominated by

nonlinear effects and bistability can occur. In section 7, we will investigate the

roll that the phasors and interaction strengths play in determining which regime

of system behavior is present. In section 8, we examine how the polarization of

the incident light effects the system behavior. Finally, a summary of findings is

presented in section 8.
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3.2 Setup

As in [20], we consider a spherical SQD with radius r interacting with a spher-

ical MNP of radius a, separated by a distance R (as shown in Figure 3.1). The

entire system is subject to an applied electric field E � E0 cospωtq. We assume that

all distances are small enough that retardation effects can be ignored and that the

applied field is large enough to be treated classically.

The SQD is modeled as a spherical semiconductor with dielectric constant ǫS,

and a 2-level atom-like quantum system at the center of it. This dielectric constant

will produce a screening of the field incident on the SQD. We treat the exciton

quantum mechanically in the density matrix formalism with exciton energy ~ω0,

and transition dipole moment µ. In the dipole limit for a spherical dot, only the

three bright excitons (one for each optical axis) participate in the interaction. By

choosing the direction of the applied field to be either perpendicular or parallel to

the axis of our system, we in turn only excite the exciton polarized perpendicular

or parallel to the system axis. Dark excitons do contribute to the exciton lifetime

however. We treat the MNP as a classical spherical dielectric particle with dielectric

function ǫMpωq.
The Hamiltonian for the two level SQD, HSQD, is

HSQD � ~ω0â
:â� µESQD pâ� â:q , (3.1)

where â and â: are the exciton creation and annihilation operators. ESQD is the

total electric field felt by the SQD and consists of the applied, external field, E, and

the induced, internal field, produced by the polarization of the MNP, EMNP,SQD. In
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the dipole limit, ESQD is

ESQD � 1

ǫeffS

�
E � 1

4πǫB

sαPMNP

R3

�
, (3.2)

where sα � 2p�1q when the applied field is parallel (perpendicular) to the major

axis of the system and ǫeffS � 2ǫB�ǫS
3ǫB

accounts for the screening of the dielectric

material. ǫB is a background dielectric constant which we could assume to be from

the material that our system in embedded in. Being careful to separate out the

negative and positive frequency contributions, the polarization of the MNP is (see

[54]),

PMNP � p4πǫBqa3�γ rEp�q
MNP e�iωt � γ� rEp�q

MNP eiωt
�
.rEp�q

MNP and rEp�q
MNP are the positive and negative frequency parts of the electric

field felt by the MNP. Note that the choice of the sign convention is such that

Imrǫmpωqs ¡ 0 for ω ¡ 0. The total field acting on the MNP, EMNP , is just

EMNP � pE � 1

4πǫB

sαPSQD

ǫeffSR3
q , (3.3)

where γ � ǫM pωq�ǫB
2ǫB�ǫM pωq .

We make use of the density matrix ρ to calculate the polarization of the SQD.

We label the ground state of our SQD (no exciton) as level 1 and the excited state

(one exciton) we label as level 2. We then have PSQD � µpρ12 � ρ21q (as we saw in

chapter 2, see also [48]). Factoring out the high frequency time dependence of the

off-diagonal terms of the density matrix, we write

ρ12 � rρ12 eiωt
ρ21 � rρ21 e�iωt . (3.4)
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Putting this into EMNP , we have

EMNP � pE0

2
� 1

4πǫB

sαµ

ǫeffSR3
rρ21q e�iωt�pE0

2
� 1

4πǫB

sαµ

ǫeffSR3
rρ12q eiωt .

Returning to PMNP ,

PMNP � p4πǫBqa3�γ �E0

2
� 1

4πǫB

sαµ

ǫeffSR3
rρ21	 e�iωt� γ� �E0

2
� 1

4πǫB

sαµ

ǫeffSR3
rρ12	 eiωt �.

We can now write the field acting on the SQD as,

ESQD � ~

µ

"pΩ�G rρ21q e�iωt � pΩ� �G� rρ12q eiωt* , (3.5)

where we have defined

G � s2αγa
3µ2

4π ǫB~ ǫ2effS R
6

Ω � E0µ

2~ǫeffS
p1� γa3sα

R3
q.

G arises when the applied field polarizes the SQD, which in turn polarizes the MNP

and then produces a field to interact with the SQD. Note that it is proportional to

µ2 rather than µ as for Ω. Thus, this can be thought of as the self-interaction of

the SQD because this coupling to the SQD depends on the polarization of the SQD.

The first term in Ω is just the direct coupling to the applied field and the second

term is the field from the MNP that is induced by the applied field.

Furthermore, we can see that both of these terms depend on γ, as we first

saw in chapter 2. There, we saw that γ determined the response field outside of the
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MNP, in the case of a planewave source, and in the case of a dipole source. As we

begin to explore the parameter space of this system, it’s important to keep in mind

that these coupling constants, G and Ω, are determined by the product of the MNP

response fields, and the SQD dipole moment.

We solve the master equation,9ρ � i

~
rρ,HSQDs � Γpρq , (3.6)

where Γpρq is the relaxation matrix. To obtain an expression for Γpρq, we will assume

two bath interactions for our SQD. First, we assume the exciton will interact with

phonons inside the SQD through elastic electron-phonon coupling. As this is a

scattering process where energy is conserved, the minimal SQD-phonon coupling

must be of the form â: â b̂: b̂. We saw in chapter 2 that this requires a Lindlad

term of Lpâ: âq. Next, we assume a photon bath can induce emission in the SQD.

Similarly, this leads to a Lindlad term of Lpâq. As we’re considering an optical

system at low temperatures, we can ignore bath induced excitation.

Thus, we can write our relaxation matrix as

Γpρq �λ1Lpâq � λ2Lpâ: âq����� 2λ1ρ22 �pλ1 � λ2q ρ12�pλ1 � λ2q ρ21 �2λ1ρ22 , �ÆÆ
.
To put this in more familiar form, we take τ0 � 1

2λ1
and T0 � 1

λ1�λ2
. This then

becomes,

Γpρq ����� 1�ρ11
τ0

�ρ12
T0�ρ21

T0
�ρ22

τ0
,

�ÆÆ
.
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where ρ11 � ρ22 � 1 has been used in order to write pΓpρqq11 in terms of ρ11 for

the sake of convenience. From this we see that τ0 will lead to a mixing between ρ11

and ρ22. This is spontaneous decay of the exciton. Also, we see that T0 will cause

losses in the off-diagonal density matrix elements, and thus causes dephasing. Both

processes contribute to a loss of coherence in the system.

We now write the density matrix elements asrρ12 � A� iBrρ21 � A� iB

∆ � ρ11 � ρ22 ,

where ∆ is the population difference between the ground and excited states. To solve

(3.6), we make the rotating wave approximation. When changing the Hamiltonian

to the interaction picture we keep terms that oscillate like eipω�ω0qt and neglect

terms that oscillate like eipω�ω0qt. Making use of our definitions and the rotating

wave approximation, we come to the set of coupled differential equations,9A � � A

T0
� pω � ω0qB � �ΩI �GIA �GRB

	
∆9B � �B

T0
� pω � ω0qA� �ΩR �GRA�GIB

	
∆9∆ � 1�∆

τ0
� 4ΩIA� 4ΩRB � 4GIpA2 �B2q, (3.7)

where GR, GI , ΩR and ΩI are the real and imaginary parts of G and Ω respectively.

In the steady state limit we set the left hand side of (3.7) to zero. Due to the

nonlinear nature of these equations, more than one steady state solution can exist

for certain values of the parameters. In these regions we must solve the full set of
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dynamical equations (3.7), allowing them to evolve from the initial conditions for

times on the order of 10 ns to reach the steady state. This allows us to identify

the dependence of the steady state on the starting conditions. Except where noted,

evolution for 10 ns was sufficient to reach steady state in cases considered.

3.2.1 Energy

The rate at which energy is absorbed by our system consists of two parts,

QSQD and QMNP . The SQD absorbs energy by the creation of an exciton which

is followed by a decay. The absorption rate is then just QSQD � ~ω0ρ22{τ0. To

calculate the energy absorbed by the MNP, we take the time average of the volume

integral,
³
j � E dv, where j is the current density and E is the electric field inside

the MNP. The electric field incident on the MNP is the applied field plus the field

due to the polarization of the SQD,

E
poutsideq
MNP � E � 1

4πǫB

sαµ

ǫeffSR3
pρ12 � ρ21q� pE0 � sαµA

2πǫBǫeffSR3
q cosωt� sαµB

2πǫBǫeffSR3
sinωt� EC cospωtq � ES sinpωtq , (3.8)

where

EC � E0 � sαµ

2πǫBǫeffSR3
A

is the component of the field that is in phase with the applied field and

ES � sαµ

2πǫBǫeffSR3
B
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is 90� out of phase with the applied field. Separating the positive and negative

frequency parts of the field, we can write the field inside the MNP as

E
pinsideq
MNP � EC � iES

2ǫeffM
e�iωt � EC � iES

2ǫ�effM eiωt ,

where ǫeffM � 2ǫB�ǫM
3ǫB

.

We calculate the current density of the MNP from the derivative of its polar-

ization, PMNP . Written in terms of EC and ES, PMNP is

PMNP � 2πa3ǫB

�
γ pEC � iESq e�iωt � γ� pEC � iESq eiωt	 .

Since we are assuming that we have factored out the fast varying part of the density

matrix in (3.4) and we are in the steady state limit, we take the time derivatives of

A and B to be zero and we then have for the current density, j,

j � 2πiωǫBa
3

V

�
γ� pEC � iESq eiωt � γ pEC � iESq e�iωt

	
,

where V is the volume of the MNP.

We can now calculate QMNP ptq,
QMNP ptq � » j �E dv� iπǫBωa

3
� γ�
ǫeffM

pEC � iESq2e2iωt � γ

ǫ�effM pEC � iESq2e�2iωt� 2iIm
� γ

ǫ�effM �pEC � iESqpEC � iESq	 .
Taking the time average of this result over the period of fast oscillation yields QMNP ,

QMNP � 2πǫBωa
3Im

� γ

ǫ�effM �pE2
C � E2

Sq . (3.9)

Thus, EC and ES are key in determining the shape of the response. Since

ES is out of phase with the applied field, it will typically be substantially smaller
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than EC . However, in the strongest coupling regime we will look at, EC and ES are

comparable.

3.2.2 Numerical Calculations and Parameter Values

We now focus on the large field limit as defined in [20] (intensity of 103 W/cm2)

with E parallel to the axis of our SQD-MNP molecule i.e., sα � 2 and we take the

dielectric constant of the background to be ǫB � ǫ0. In this limit, most of the energy

of the system is concentrated in the MNP so our focus will be on the field felt by

the MNP. However, at strong coupling, the self-interaction of the SQD is relatively

large and thus will become important in determining the behavior of the system.

For the MNP, we take ǫMpωq as the bulk dielectric constant of gold as found

experimentally [55]. For a small, spherical, gold MNP, the response has a broad

plasmon peak near 2.4 eV with a width of approximately 0.25 eV. We will let the

radius of the MNP vary between 3 and 8 nm.

For the SQD, we take the relaxation times to be τ0 � 0.8 ns and T0 � 0.3 ns,

and we take ǫS � 6 ǫ0. For the exciton resonance frequency we take it to be 2.5 eV

which is near the broad plasmon frequency of gold and will allow for strong coupling

between them. For the MNP size regime we will consider, the plasmon resonance for

a sphere varies little with particle size. However, the size, shape and material of the

SQD strongly determine both the exciton energy level and its dipole moment. We

consider the simplest model and ignore this size dependence. While this is clearly an

oversimplification, it will allow us to identify the range of optical signatures which
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Figure 3.2: µ vs. a phase diagram for R � 13 nm in the strong field limit. Outlined are the

four distinct regions of system response, namely Fano, EXIT, Suppression and Bistability. Points

denote parameter values for which the system response is plotted in Figures 3.3, 3.4, 3.6, 3.8, and

3.9.

are possible in the strong-field limit.

Recent measurements of SQD dipole moments have yielded values of � 1 e�nm
for self-assembled QDs[56] and several times that for interface fluctuation QDs[57].

For the dipole moment of the SQD, we let it vary between 0.25 and 6.0 e�nm, cor-

responding to a SQD size of 2 to 30 nm. For the purposes of our investigation, this

range is a reasonable coverage of the observed values that allows us to test the full

spectrum of behavior.

By manipulating a and µ, which are the sizes of the MNP and SQD respec-

tively, we can change the relative strengths of the local fields, and thus change the
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strengths of the three different couplings (G and the two terms that make up Ω).

Looking at the solutions to the differential equations, (3.7), both dynamically and

in the steady state limit, there are four distinct regimes of behavior in the a vs. µ

parameter space (see Figure 3.2). We now discuss each of these regimes in turn.

3.3 Region I: Nonlinear Fano Effect
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Figure 3.3: Region I. Absorption rate of the MNP, QMNP , shows a Fano shape in the response

due to the phase change in dipole moment of the SQD. This phase change is shown in the real part

of the SQD dipole moment in the right inset. Left inset shows the sharp dip in the population

difference at resonance. Parameter values used in the calculation were R � 13 nm, a � 3 nm, and

µ � 0.25 e�nm.

Region I, the regime of weakest coupling between the SQD and MNP, is dis-

cussed extensively in [20], but here is a brief overview for completeness. In the
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strong field limit, the exciton is strongly driven at resonance, overcomes the damp-

ing, and the population difference, ∆, is zero. The energy absorption spectrum of

the MNP displays an asymmetrical Fano shape (see Figure 3.3). It occurs when

there is interference between the applied field and the induced field produced by the

SQD at the MNP.

In this region, the dominant component of the field acting on the MNP is EC ,

with ES being negligible at weak coupling. It is important to note that in region I,

EC is dominated by the applied field. Although there is interference, E0 is always

greater than sαµ

2πǫBǫeffSR
3A (in region II, the local field can be larger than the driving

field). The interference changes from constructive to destructive at resonance where

the sign of A changes (see Figure 3.3). Below resonance A is positive and above

resonance it is negative. Since A is the real part of the SQD dipole moment it

determines the phase of the local field acting on the MNP. Thus, below resonance

the local field is in phase with the applied field and above resonance the local field

is 180� out of phase with the applied field. This type of phase change is a common

feature of a damped driven oscillator.

3.4 Region II: Exciton Induced Transparency (EXIT)

When the coupling is increased by increasing µ, the character of the Fano

response becomes more complicated. Region II is characterized by an additional

peak that appears in the Fano line shape of region I (see Figure 3.4). This second

peak occurs where the minimum of EC in (3.9) crosses through zero (in this region
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Figure 3.4: Region II. Absorption rate of the MNP, QMNP , shows an exciton induced trans-

parency due to the phase change in the dipole moment of the SQD when the local field incident

on the MNP from the SQD is larger than the applied field. Right inset shows the real part of

the SQD dipole moment which undergoes a phase change at resonance. Left inset shows the dip

in the population difference at resonance. All three plots show a general broadening relative to

region I. The arrow indicates the second dip in QMNP which is cannot be discerned on this scale.

R � 13 nm, a � 3 nm, µ � 2 e�nm.
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of parameter space, ES is still an order of magnitude smaller) (see Figure 3.5). For

this sign change to occur, the magnitude of the local field, sαµ

2πǫBǫeffSR
3A, must be

larger than the applied field, E0, over a range of frequencies and must be out-of-

phase with E0 over these frequencies. As a consequence, EC changes sign just above

resonance (the dip in Figure 3.4). EC changes sign again, well above resonance (the

barely visible second dip in Figure 3.4), when the induced local field again becomes

weaker than the applied field. When EC changes sign at these two locations, the

field on the MNP is nearly completely canceled and the metal becomes reflective.

The absorption remains finite only because the small out-of-phase component ES

is non-zero. Because this is an interference effect between the driving field and the

field produced by the SQD, this is an exciton induced transparency (EXIT) in the

MNP that is due to the phase change at resonance of the driven SQD oscillator.

By setting EC � 0, we find the line separating region I from region II to be

µpaq � �2πǫ0ǫeffSR
3E0

sαA
. (3.10)

A varies with a slowly over the parameter space and thus µpaq is approximately

constant as a function of a. At the frequency where this double peak occurs, A has

a typical value of �0.15. Using this value for A, we can estimate this line to be

approximately µ � 0.59 e nm.

When this line is found by numerically solving the differential equations re-

peatedly for different values of a and µ in this region, this line is determined to

be µpaq � 0.574 e nm plus a small exponential term (negligible for a   10 nm).

This agrees extremely well with the value calculated by analyzing the behavior of
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Figure 3.5: The emergence of the modified Fano shape is due to EC crossing zero. This occurs

when the internal field can be larger than the external field. When this field is then squared to

find the absorption, the location where EC crosses zero can produce a transparency.

EC . Note that for all calculations presented in [20], the value of µ that was used in

numerical calculations was 0.65 e nm, which falls nearly on this boundary.

When we let µ and a vary in such a way as to approach region I from region

II, this second peak decreases in size. Conversely, moving away from region I, just

inside region II, this second peak becomes larger. The transition between these two

regions is smooth i.e., the extra peak vanishes at the transition boundary (see Figure

3.5).

3.5 Transition Region: Suppression

In region I and II, interference between the applied field and the induced

field due to the polarization of the SQD caused a phase shift in the net electric
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field incident on the MNP at resonance and an asymmetry in the response of the

MNP. However, this asymmetry is not manifested in the response of the SQD, i.e.

∆, (see Figure 3.4 for example) because the SQD does not couple directly to the

field produced by the polarization of the SQD. However, this field does couple to

the MNP, which in turn polarizes and produces a field that couples to the SQD.

This self-interaction of the SQD is G in Eq. (3.5). If the self-interaction becomes

significant, there will also be non-negligible interference of the electric fields at the

SQD. The interference then can suppress or enhance the response of the SQD.
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Figure 3.6: Transition region: weak suppression. Here we see the beginning of the suppression in

the response of the SQD, apparent in a slight asymmetry in ∆. Γb � 98 µeV, Γa � 37 µeV, with

suppression factor S � 2.65. The double peaked EXIT structure is still visible, but the second

peak is much smaller relative to the main peak. The system response is also much broader than

in region I or II. Parameter values R � 13 nm, a � 7 nm, and µ � 1 e�nm.
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The transition region between regions II and III is characterized by this sup-

pression of the response of the SQD above resonance. To measure the extent of

the suppression, we measure the width of ∆, both above and below resonance at

half maximum (half width, half max). We label these two half widths, Γa and Γb,

for above and below resonance respectively. We then define the suppression factor,

S, to be ratio of these two widths, S � Γb{Γa. We choose S � 2 to define the

boundary of the suppression region. However, note that the characteristic double

peaked EXIT structure still exists for S values greater than 2. The double peak

structure of region II disappears only once the suppression becomes so strong that

the response function becomes discontinuous.

For a fixed value of the MNP radius (a=7 nm) and with a small value of the

SQD dipole moment (µ � 1 e�nm), we see the beginning of the suppression above

resonance (S � 2.65). The population difference, ∆, is continuous as is the SQD

dipole moment (see Figure 3.6). Furthermore, we see that the double peaked EXIT

structure is still present, but the second peak is much smaller relative to the main

peak, and the window of transparency has shrunk. This last effect is due to the

system response also being much broader than in region I or II.

To see how the suppression develops, we need to look at the composition of

the electric field that is incident on the SQD. The field felt by the SQD, (Equation

(3.5)), is composed of two parts, ρ12G and Ω. Ω consists of the direct coupling

to the applied field, E, as well as the response of the MNP to the applied field.

The self-interaction term scales as � µ2 a3 and the response of the MNP to the

applied field scales as � µ a3. As µ is increased, the self-interaction becomes a
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Figure 3.7: The relative strengths of the two main interactions that drive the SQD. ρ12G, the

self interaction, and Ω, the applied field and the MNP response to the applied field, vs µ for fixed

MNP radius (a � 7 nm) and frequency (ω � 2.5 eV). Note: G and Ω are nearly constant over the

range of frequencies that we are interested in due to the broad plasmon peak.

significant contribution to the total field (see Figure 3.7). For weak suppression,

a � 7 nm, µ � 1 e�nm (as in Figure 3.6) we see that the self-interaction is an order

of magnitude smaller than Ω. Because the phase of the self-interaction depends

on the phase of ρ12, we again have interference, this time at the SQD between the

self-interaction and the driving field (including the indirect contribution through the

MNP).

As µ is increased to 2 e�nm we see the above resonance suppression grows so

strong (S � 72.3) that it forces a discontinuity in response of the MNP and the

diagonal density matrix elements, as well as in the off-diagonal elements (the dipole
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Figure 3.8: Transition region: Strong suppression. Here the suppression has grown large enough

that a discontinuity has developed in the diagonal and off-diagonal density matrix elements as

well as the energy absorption of the MNP. Also, the transparency in the response due to EXIT no

longer approaches zero due to extreme broadening of the response. Γb � 217 µeV, Γa � 3 µeV,

S � 72.3. Parameters: R � 13 nm, a � 7 nm, µ � 2 e�nm.

78



moment of the SQD) (see Figure 3.8). In this regime of strong suppression, we see

that the self-interaction is of the same order of magnitude as Ω (see Figure 3.7).

As µ is further increased, the suppression increases along with the discontinu-

ity, and the resonance of the SQD begins to shift to lower energies. The location

of phase change in ρ12 also splits based on the initial conditions of the system (see

Figure 3.13 and section 3.7.1), much like we will see in region III (which is discussed

in section 3.6). Further increase in µ results in further shifts to the resonance of the

SQD. This causes the suppression to eventually disappear. The discontinuity how-

ever, remains locked in for certain initial conditions, causing the bistability we will

see in the next section. As we will see there, at a large value of the dipole moment,

µ � 3.5 e�nm, which is just inside region III, S is reduced to 1.7 (see Figure 3.9).

3.6 Region III: Bistability

When the coupling is further increased by increasing both µ and a, a region of

bistable response emerges (region III). In this limit, the field that is produced by the

SQD and then reflected off the MNP and back onto the SQD (the self-interaction

of the SQD) is sufficiently strong to introduce nonlinear effects into the response.

This, combined with an increased broadening due to the increased field strength,

causes the double peaked EXIT structure to disappear (see Figure 3.9).

Most importantly, region III is characterized by bistability in the steady state

solutions. For the same values µ and a, different initial conditions of ρ lead to

different steady states (compare Figures 3.9 and 3.10). This bistability only exists
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Figure 3.9: Region III. Power absorption density of the MNP with R � 13 nm, a � 7 nm,

µ � 3 e nm and the initial conditions Ap0q � 0, Bp0q � 0, ∆p0q � 1. Left inset shows a population

difference of about 0.8 at resonance and a very broad and suppressed response in the SQD that is

shifted 0.5meV from the bare resonance of the SQD. Right inset shows that the dipole moment of

the SQD slowly changes sign at this shifted resonance.
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Figure 3.10: Region III. Power absorption density of the MNP with R � 13 nm, a � 7 nm,

µ � 3 e nm and the initial conditions Ap0q � 0, Bp0q � 0, ∆p0q � 0. The bistability causes

discontinuities in the responses of the MNP, the SQD and the population difference.

near the resonance frequency of the SQD, away from resonance all initial conditions

lead to identical steady states. For R � 13 nm, a � 7 nm and µ � 3.5 e�nm the

width of bistability is 0.25meV for the mixed state initial conditions (Ap0q � 0,

Bp0q � 0, ∆p0q � 0) (see Figure 3.10). As the values of a and µ get closer to the

transition region, this window in ω-space shrinks.

Outside the frequency window of this nonlinear behavior, the steady state

equations, which are of third order in ∆, give one physical, real valued solution and

two unphysical, complex valued solutions. Inside this window all three solutions are

real and we must work with the full differential equations to explore the dynamics.

This region is defined by the relative strengths of G and Ω. If these two fields
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are comparable, then Ω
G
� 1 implies that

µpaq � 2πǫ0E0

�ǫeffM ǫeffS

s2αγ

R6

a3
� ǫeffS

sα
R3
	
. (3.11)

Putting in typical values for ǫeffM , ǫeffS and γ and taking the magnitude of the

first term, we get the following approximation

µpaq � 0.22
E0R

6

a3
� 0.46 E0R

3.

A fitting based on data taken from numerical simulations puts this line at

µpaq � 1.10
E0R

6

a3
� 1.54 E0R

3. (3.12)

We see that bistability occurs once G becomes a significant factor when compared

to Ω. When E0 and R increase, this region shrinks and this bistable state eventually

becomes physically inaccessible. It would appear that the easiest way to find this

region of bistability is when E0 becomes small in the weak field limit. However, in

this limit, one finds that while most choices of a and µ lead to a bistability, the

frequency width of the bistability is negligible making this feature experimentally

unmeasurable. Thus this bistable state is only accessible in the regime that has

been discussed here.

As we approach the boundary of Region III from the Suppression Region, the

width of the second peak in the exciton induced transparency shaped response de-

creases, while the magnitude remains. At the boundary, this peak becomes pinched

with negligible width for one of the steady state solutions resulting in the discontin-

uous jump evident in Figure 3.10. This transition is not smooth due to the nonlinear

nature of region III.
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3.6.0.1 Analysis of Initial Conditions

In the region of bistability (both in a vs. µ-space and in ω-space) there are

three solutions. One of these three solutions, which we will call γ1, is smooth and

continuous as a function of ω and displays a very broad asymmetrical Fano shape

(see Figure 3.9). In this steady state, the dot is in the ground state (ρ11 � 1)

when away from resonance and only weakly excited near resonance. The second

solution, similarly named γ2, is the same broad asymmetrical Fano shape away

from resonance with a discontinuous jump near resonance in the energy absorption

spectrum(see Figure 3.10). In this steady state, the dot becomes strongly excited

near resonance (ρ11 � ρ22 � 1
2
). The third solution, γ3, turns out to be unstable

(initial conditions arbitrarily close to this point evolve to a different steady state).

Figure 3.11: Schematic representation of initial conditions vs. frequency. γ1 represents the

continuous steady state, γ2 represents the discontinuous steady state and γ3 represents unstable

steady state. Note that γ2 and γ3 only exist inside the frequency interval pω0� δ, ω0� δq. Arrows
show how particular initial conditions evolve to one of the three solutions. Inset show a cross

section in ω-space. Points arbitrarily close to γ3 evolve to γ2.
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The space of initial conditions can be divided into 2 regions, one for each of the

two possible, stable, steady-state solutions. For a particular choice of parameters

(R � 13 nm, a � 7 nm, µ � 3.5 e nm) the region with the discontinuous solution

is an ellipsoid centered at Ap0q � 0, Bp0q � 0, ∆p0q � 0 and is found through

numerical calculations to be approximately given by the relation

4
�
Ap0q2 �Bp0q2	�∆p0q2 ¤ 0.07 (3.13)

with the region outside this ellipsoid having the smooth solution. The unstable

solution is a line through this space parameterized by ω in the interval pω0�δ, ω�δq.
It can begin inside or outside of the region given by (3.13), but near resonance is

always inside for cases we looked at (see Figure 3.11). For initial conditions exactly

on this line, the state remains unchanged as it evolves in time. All other initial

states evolve to γ1 or γ2.

As the initial conditions get close to the boundary of this region, the width

(δω � 2δ) shrinks. Numerically, the relationship between the initial conditions and

this width was found to be approximately�
4
�
Ap0q2 �Bp0q2	�∆p0q2�2 � � δω

4 � 10�3eV

	2 � 0.005 .

3.6.1 Calculation of the Resonance Shift

We saw in section 3.5 that as the coupling between the SQD and the MNP

is increased and the transition is made into region III, there is a redshift in the

resonance of the SQD. Accompanied with this redshift, there was a broadening of

the response and a small population of the exciton excited state, i.e. ∆ at resonance
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is no longer nearly zero (see Figure 3.9 for an example of both of these effects).

We can model both the redshift and the new minimum of ∆. Starting with

(3.7), we set the left hand side to zero to arrive at the steady state equations. Taking

the first two equations and solving for A and B in terms of ∆ we have

A � �∆�kΩI � δωΩR

k2 � δω2

	
B � �∆�kΩR � δωΩI

k2 � δω2

	
∆ � 1� τ0

�
4ΩIA � 4ΩRB � 4GIpA2 �B2q
 (3.14)

where we have defined

k � ∆GI � 1

T0

δω � ω � ω0 �∆GR .

We now take the derivative with respect to ω for each of the equations in

(3.14). To find the minimum of ∆, we evaluate them at the critical point ω � ωc

and set ∆1pωcq � 0.

A1 � ∆
�2δωkΩI � pk2 � δω2qΩRpk2 � δω2q2 	

(3.15)

B1 � ∆
�2δωkΩR � pk2 � δω2qΩIpk2 � δω2q2 	

(3.16)

∆1 � τ0

�
4ΩIA

1 � 4ΩRB
1 � 8GIpAA1 �BB1q	 � 0 (3.17)

Note that G and Ω are nearly constant over the range of frequencies that we consider

because the plasmon peak is broad in comparison, thus we take their derivatives with

respect to ω to be zero. Putting (3.15) and (3.16) into (3.17), and after a bit of

algebra, we arrive at the result

0 � ∆c δω ,
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where ∆c � ∆pωcq. ∆c cannot take a value of zero in the steady state, except in

the limit that τ0 Ñ 8 (this is easy to check), so we must have δω � 0. Using this

result, we find that at ω � ωc we have A � �∆c
ΩI

k
and B � �∆c

ΩR

k
. Then,

∆c � 1� 4
τ0pΩ2

R � Ω2
Iq

GI

�∆cGI

k
� ∆2

cG
2
I

k2

	
.

Note, that the only assumption we have made thus far is that the steady state

exists. To proceed further, we now look at the region of parameter space where

the resonance frequency shifts relative to the natural frequency ω0. Since we are

interested in the case in which a shift is seen in the resonance frequency (recalling

that this coincides with ∆ no longer being nearly zero), we take ∆c to have a value

greater than 0.01 and we have that 1{T0∆cGI   1. Thus, we can expand k�1 and

k�2. In this case, we have

∆c � 1� 4
τ0pΩ2

R �Ω2
Iq

T0G
2
I∆c

.

Solving this quadratic equation for ∆c and expanding the square root of the dis-

criminant we have

∆c � 1� 4
τ0pΩ2

R � Ω2
Iq

T0G
2
I

� ... (3.18)

So, our resonance occurs at

ωc � ω0 �GR

�
1� 4

τ0pΩ2
R � Ω2

Iq
T0G

2
I

	
. (3.19)

Using these approximations for ∆c and ωc, for typical parameters µ � 4 e�nm
and a � 7 nm, our approximations give ∆c � 0.84 and ωc � ω0 � �0.82 meV.

Solving the differential equations numerically we find these two quantities to be

86



∆c � 0.81 and ωc � ω0 � �0.79 meV, respectively, in excellent agreement with our

approximations.

Looking at our expressions that describe the redshift and the minimum of ∆,

we see that the turning on of these effects is controlled by the ratio pΩ2
R � Ω2

Iq{G2
I .

As we’ll see in the next section, this ratio will largely determine the strength of the

coupling to the imaginary component of the SQD dipole moment, B, with respect

to the coupling to A. This increase in the coupling to the imaginary part of the

SQD dipole moment (which has a damping effect on the system) causes the redshift

in the SQD resonance and the decrease in the exciton population at resonance. In

the next section, we’ll see that this also causes the suppression to turn off.

3.7 Running (the) Interference: Phasors and Interaction Strengths

To better understand these interference effects, it is helpful to view the fields

as phasors in the complex plane (see Figure 3.12). First consider a case of weak

coupling (small µ). For weak coupling, Ω is much larger than G and we can ignore

the effect of G (as was shown in Figure 3.7). Thus our resultant field on the SQD

is mostly in the direction of Ω which is along the real axis both above and below

resonance (see Figure 3.12). This has the effect of driving the SQD mostly by the

real field, i.e. the SQD couples more strongly to A than to B.

However, when the coupling is increased so that G is no longer negligible,

the field the SQD sees from the self coupling is ρ12G. Below resonance, ρ12G is

in phase with the applied field, but above resonance, it is out of phase with the
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Figure 3.12: Depiction of phasors in the complex plane for a � 7 nm. (a. and b.) µ � 2 e�nm.

Suppression region. (a) below resonance (ω � 2.4999 eV) and (b) above resonance (ω � 2.5001eV).

(c. and d.) µ � 3 e�nm. Region III. (c) below resonance (ω � 2.4996 eV) and (d) above resonance

(ω � 2.4999eV) (note: resonance has shifted to 2.49975eV at this point). The phase of G and Ω

are nearly constant. Moving left to right (i.e. below to above resonance), we see the real part of

ρ12 changes sign. This is the phase shift associated with a damped, driven harmonic oscillator.
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applied field. The SQD sees a weaker overall field above resonance than it does

below resonance (where ρ12G and Ω remain relatively in phase) and thus the SQD

response is suppressed above resonance.

Because G is more rotated in the complex plane than Ω, the introduction of G

also has the effect of rotating the net electric field on the SQD toward the imaginary

axis, 90� out of phase with the applied field. This allows a stronger coupling to B,

the imaginary component of the SQD dipole. The increase in B, causes a further

shift in ρ12G towards the negative imaginary axis. This, in effect, decreases the

phase difference in the effective field above and below resonance, shutting off the

suppression. Looking at Figure 3.12 and comparing the two diagrams on top, we

see that the phase difference between ρ12G above and below resonance is � 120�.
When the self coupling becomes stronger (bottom two diagrams), we see the phase

angle between ρ12G above and below resonance is smaller (� 60�).
3.7.1 The Phase Change of ρ12

When the coupling is strong enough to form a discontinuity in the response,

the frequency at which ρ12 changes sign becomes dependent on the initial conditions

of the system. For a � 5.8 nm, µ � 4 e�nm this shift in the crossing at t � 10 ns is

approximately 0.2meV (see Figure 3.13).

To find the location of this phase shift, we begin with our steady state equa-
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Figure 3.13: A, the real part of the SQD dipole moment for µ � 4 e�nm, a � 5.8 nm at t � 10 ns.

Left insert: The system starts in the ground state. Right insert: The system starts in a mixed

state, ∆ � 0. Center: an overlay of the two. The location of the phase crossing for the SQD dipole

moment is dependent on the initial conditions.

tions (Eq. (3.14)). At the phase change, A � 0, and we have the system of equations

0 � B∆GR �Bpω � ω0q �∆ΩI

0 � �∆GIB � B

T0
�∆ΩR

0 � 4GIB
2 � 4ΩRB � 1�∆

τ0
. (3.20)

Solving the first for B, we have

B � ∆ΩI

ω � ω0 �∆GR

.

The solving the second for ∆, we have

∆ � �ΩI � ΩRT0pω � ω0q
T0pGIΩI �GRΩRq .
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Inserting these results in the third equation yields,

0 �4pGIΩI �GRΩRqpΩI � ΩRT0pω � ω0qqpGR �GIT0pω0 � ωqq2 �pGIT0 � 1qΩI � T0pGR � ω � ω0qΩR

T0τ0pGIΩI �GRΩRq . (3.21)

This is a cubic equation in ω � ω0. In general, for the steady state, we will have

either 3 real solutions, or 1 real and 2 complex solutions. For example, we plot the

roots of this equation for a fixed value of µ � 4 e�nm, letting a vary, in Figure 3.14.

When a ¡ 6.3 nm, we do in fact have 3 real solutions (see top of Figure 3.14). For

a   6.3 nm, the only real solution is ω � ω0 � 0.

Looking again at Figure 3.13, it appears that for µ � 4 e�nm, a � 5.8 nm, there

are in fact at least 2 distinct locations where A can change sign at t � 10 ns, even

though only one crossing is predicted for steady state. When we take the calculation

to larger times, we see that not only is there a slight shift in the location of the

crossing for the mixed state initial condition, but that the the crossing becomes

increasing sharp and in the steady state limit (t Ñ 8) this crossing becomes a

discontinuous jump (see bottom of Figure 3.14). There is a second location where

A can undergo a sign change. However, at this second location, in the steady state,

A is not equal to zero.

When all three solutions to equation (3.21) are real, working backwards, we

see that we have then 3 real solutions of A, B, and ∆. This is exactly how we have

defined region III previously, and we let this condition on the solutions to Equation

(3.21) determine the boundary between the suppression regime and region III.
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Figure 3.14: (Top) The real and imaginary parts respectively of solution to the cubic equation

that determines the frequency at which A changes sign (plotted for µ � 4 e�nm). Up to a � 6.3 nm,

there is one real solution and two complex solutions (which are conjugates of each other). In this

region, the only real solution is ω � ω0 � 0. For a ¡ 6.3 nm, three real solutions exist. (Bottom)

The real part of SQD dipole moment for µ � 4 e�nm, a � 5.8 nm, plotted for 10 ns, 20 ns and 40 ns

evolutions respectively. We see that although for finite time, A has a continuous crossing through

zero, as the system evolves to the steady state, the crossing becomes discontinuous.

3.8 The Effect of Polarization

So far, we have taken the applied field parallel to the major axis of the MNP-

SQD molecule (sα � 2). There are two effects when the polarization is perpendicular

to the main axis. First, the shape of the structures are reversed (see Figure 3.15). For

parallel polarization with the induced dipoles of the SQD and MNP aligned end-to-

end, the response is enhanced below resonance. For perpendicular polarization with
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the induced dipoles aligned side-by-side, the response is enhanced above resonance.

This accounts for the shape reversal.
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Figure 3.15: The effect of polarization on the response of the MNP in region II (R � 13 nm,

a � 3 nm and µ � 3 e nm). Curve labeled sα � 2 is for the applied field parallel to the main axis

of the molecule, sα � �1 for perpendicular polarization. Both show an EXIT structure.

Second, is the shift upwards of the boundaries of regions I, II and III, as

described by equations (3.10) and (3.11), by a factor of 2 to 4 (note in (3.10), A

also reverses sign with sα). The boundaries are defined by the relative magnitudes

of the direct coupling, the induced field and the self-interaction. These relative

magnitudes are different for the two polarizations. This results in the existence

of points in parameter space that change from one region to another when the

polarization is switched.
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3.9 A Summary of Findings

To summarize, in this chapter we have investigated the optical response of a

semiconductor quantum dot coupled with a metal nanoparticle. We have probed

the strong applied electric field limit, where local induced fields are comparable

to the driving field. We treated the SQD quantum mechanically in the density

matrix formalism and the MNP as a classical spherical dielectric. We saw that the

behavior of this system is highly dependent on the relative sizes of the MNP and SQD

and by varying, µ and a, we found four distinct regimes of behavior in the strong

field limit which each exhibit novel properties. By numerically probing parameter

space we were able to set bounds on each of these regions. Furthermore, we were

able to connect these numerical approximations of these boundaries to relationships

amongst the various coupling strengths which allowed for a deeper understanding

of how these behaviors emerge.

In the region of weak coupling, region I, we found that the energy absorption

spectrum displays an asymmetrical Fano shape as previously predicted. It occurs

when there is interference between the applied field and the internal field produced

by the SQD at the location of the MNP. In the strong coupling regime, we saw that

the behavior was more complex. As the SQD is increased in size (thus the coupling

is increased), the asymmetrical Fano effect of region I is modified by the appearance

of an additional peak with a deep minimum between the peaks. Here, the induced

local field at the MNP becomes larger than the applied field, for frequencies near

the SQD resonance. As such, the interference of the field from the SQD with the
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applied electric field now results in a sign change in the net electric field at the

MNP above resonance where the two fields are out-of-phase. An exciton induced

transparency (EXIT) arises in the MNP response when there is nearly complete

destructive interference between these two fields acting on the MNP.

A further increase in coupling strength moves the system into a transition

regime, where the EXIT structure is modified with a discontinuous jump in response

of the system (in both the diagonal and off-diagonal density matrix elements) and

the response of the SQD is highly suppressed above resonance in this transition.

This suppression comes about because the response of the SQD is that of a driven,

damped harmonic oscillator. Specifically, this behavior is seen in the response of

SQD dipole moment. As in the case of the classical damped driven oscillator, the

behavior of the system is determined by the whether the driving frequency is above

or below the resonance frequency of the system. Below resonance the dipole moment

of the SQD is in phase with the driving field, and above resonance it is 180� out

of phase. Since the phase of the self interaction of the SQD is determined by the

phase of its own dipole moment, there is destructive interference above resonance

and constructive interference below resonance, between the applied field and the

self interaction field. EXIT is determined by the interference between the fields that

drive the MNP. Suppression is determined by the interference among the fields that

drive the SQD. In both cases, the phase of some of the fields changes at resonance,

leading to a crossover from constructive to destructive interference. The fields that

do change phase at resonance originate from the phase change in the SQD dipole

moment that occurs at resonance.
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As the coupling is further increased by increasing the sizes of both the SQD

and MNP, the self-interaction of the SQD becomes significant in region III. Here,

we found an extreme broadening of the response that washes out the second peak

of the EXIT. More interestingly, we found that the response is nonlinear. This

nonlinearity is due to the significant self interaction of the SQD (feedback through

the MNP). In this regime, we found the existence of multiple steady state solutions

leading to a bistability where one of the two stable solutions has a discontinuous

energy spectrum. Furthermore, we saw that coupling to the imaginary part of the

SQD dipole moment largely determines whether EXIT, suppression or bistability in

the system is visible.

We have predicted phenomena that could emerge from an SQD-MNP hybrid

molecule, and just as importantly, we have located in parameter space where these

phenomena occur, and what causes them to emerge. How the various system fields

interfere, constructively and destructively, is central in determining system response.

This understanding is critical if one is to know how to generalize these results to

similar system and more complicated structures. In the next chapter we will see

how this knowledge could be exploited in order to engineer MNP-SQD systems that

are tailored towards a desired system behavior. In particular, we will show how to

engineer hybrid systems that will best display this behavior.
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Chapter 4

Engineered SQD-MNP Systems with Extended Geometries

So far we have studied the interactions between an SQD and a spherical MNP,

using the dipole approximation for the field emitted from the MNP. The geometry

of these hybrid systems determines the nature of the local fields and couplings,

which in turn determines the system behavior. Useful devices that will utilize these

structures will require more complicated geometries than what we have previously

explored. To consider more complex MNP structures, for example, nanorods and

nanowires, chains of MNPs, and SQDs at various positions in the structure, a more

complete calculational method for the local fields needs to be employed than was

used in the previous chapter (i.e. using a non-retarded, dipole approximation for

the MNP response). In this chapter we will utilize the boundary element method

(BEM) to fully account for the response electric fields of such complex structures.

4.1 Introduction

There are two basic interactions that the SQD participates in. One is the

coupling due to an applied plane wave driving field (both directly with the driving

field and from the response of the MNP to the applied plane wave). The second

is the self-interaction of the SQD in which the MNP responds to the polarization

field of the SQD and in turn produces a field felt back at the SQD. As we saw in
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Figure 4.1: An applied field polarizes both the MNP and SQD which in turn allows them to

couple.

the previous chapter, the behavior of the system is determined by the ratio of these

two couplings. This provides an avenue that can be exploited to engineer systems

(by tuning both the coupling strengths and geometry) to bias the response towards

a particular regime of behavior or to enhance the behavior, as we will discuss here.

In chapter 3, these two coupling strengths were varied by changing the radius

of the MNP as well as the dipole moment of the SQD. However, in practical situa-

tions the SQD dipole moment would be difficult to control. To reach the strongest

coupling regimes discussed in chapter 3, large and perhaps unreasonable values of

the SQD dipole moment were needed. By utilizing structures with a more complex

geometry we will see how even small values of the SQD dipole moment can be used

to reach the strongest coupling regimes. This will allow us to tailor the response of

the system by engineering metal nanoparticle shape and the exciton resonance of an
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SQD in order to control the individual local near-fields that couple the MNP and

the SQD.

The effect of MNP size, shape and SQD placement will be analyzed to deter-

mine the regimes where the local multipolar response becomes significant. We will

identify regimes where dark modes and higher order multipolar modes can influence

the hybrid response. External fields do not directly drive MNP dark modes, so

SQD/MNP coupling is dominated by the local induced coupling, providing a situ-

ation in which the induced self-interaction could be probed using near field tech-

niques. All of these aspects could enhance the capabilities of metal nanostructures

to provide spatial and spectral control of the optical properties of single emitters.

In section 2 we discuss the hybrid molecule in detail, allowing for a more

complex structure. The MNP is taken as a classical dielectric with a response

calculated with the BEM. Upon finding the resultant fields acting on the SQD, we

use a density matrix approach to treat the SQD. Once the behavior of the SQD

is found, we then use that information to calculate the local near fields of our

hybrid molecule. We also calculate the energy absorption of the MNP and provide

details on how numerical calculations were carried out. In section 3 we discuss the

conditions when a full electrodynamical calculation should be used for a spherical

MNP rather than a multipole expansion or dipole approximation. We also apply the

BEM to study the response of a nanorod. In section 4 we discuss how coupling the

SQD to a nanorod allows the system to be engineered toward a particular regime of

behavior. Here we exploit coupling to the dark states of the nanorod to investigate

the self-interaction of the SQD. We present our conclusions in section 5.
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4.2 Setup

We consider hybrid molecules consisting of a spherical SQD, radius r, inter-

acting with a MNP structure which has cylindrical symmetry about the axis joining

the SQD and the MNP structure. The MNP structure could be a nanorod or a

nanosphere, or a linear chain of those. In this chapter we will consider the MNP

to be a nanorod, constructed with a cylinder making up the length of the MNP,

capped with hemispherical ends, with a total length L and width w (see figure 4.1.

As before, the SQD and MNP are separated by a distance R and entire system is

subject to an applied electric field E � E0 cospωtq. We treat the SQD quantum me-

chanically in the density matrix formalism with exciton energy ~ω0, dipole moment

µ and dielectric constant ǫS. In the dipole limit only the three bright excitons (one

for each optical axis) participate in the interaction. By choosing the direction of

the applied field to be either perpendicular or parallel to the axis of our system, we

again only excite one of the three excitons.

The optical response of the MNP is calculated by means of the boundary

element method in a full electromagnetic calculation, including retardation. Retar-

dation must be included because we consider structures with lengths that can be

comparable to the wavelength of incident light. In the BEM, Maxwells equations

for inhomogeneous media with sharp boundaries between regions with different di-

electric constants are solved in terms of charges and currents distributed on the sur-

faces and interfaces. Boundary conditions are imposed via surface integrals along

the boundaries between different media. Each region is characterized by a local
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dielectric function. The external fields interact self-consistently with the induced

boundary charges and currents, which are determined by discretizing the surface

integrals and solving the appropriate matrix equations. In this approach, the scat-

tered field due to an incident external field is calculated directly. We calculate, in

this way, both the near and far fields for a given MNP from both a plane wave

source as well as from a dipole source (the SQD). In handling the dipole source, we

take a quasi-static approach and do not include the time dependence of the dipole

moment in Maxwell’s equations.

As before, our Hamiltonian for the two level SQD, HSQD, is

HSQD � ~ω0â
:â� µESQD pâ� â:q , (4.1)

where â and â: are the exciton annihilation and creation operators. ESQD is the

total electric field felt by the SQD and consists of the applied, external field, E, and

the induced, internal field, produced by the polarization of the MNP. The MNP is

polarized by the applied plane wave and we denote the response field as Eplanewave.

The MNP is also polarized by the dipole field produced by the SQD and this response

field we denote Edipole. Taking into account screening, we can then write ESQD as

ESQD � 1

ǫeffS

�
E � Eplanewave � Edipole

�
, (4.2)

where ǫeffS � 2ǫB�ǫS
3ǫB

. ǫB is a background dielectric constant which would correspond

to the medium in which the system is embedded. Writing the applied field as

E � E0cospωtq � E0

2
e�iωt � E0

2
eiωt and the response from the MNP due to a unit

plane wave with positive frequency as Ep (which will be calculated using BEM),
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then

Eplanewave � E0

2
Ep e

�iωt � E0

2
E�

p e
iωt.

We make use of the density matrix ρ to calculate the polarization of the SQD.

We label the ground state of our SQD (no exciton) as level 1 and the excited state

(one exciton) we label as level 2. We then have for the polarization, PSQD �
µpρ12 � ρ21q (see [48]). Factoring out the high frequency time dependence of the

off-diagonal terms of the density matrix, we define

ρ12 � rρ12 eiωt
ρ21 � rρ21 e�iωt . (4.3)

We write the response of the MNP due to a dipole source with positive fre-

quency at the location of the SQD as Ed (again calculated with BEM and evaluated

at the location of the SQD). Taking into account the screening at the dipole, we

then have,

Edipole � µ

ǫeffS
rρ21Ed e

�iωt � µ

ǫeffS
rρ12E�

d e
iωt.

Putting these expressions for Eplanewave and Edipole into equation (4.2), as well as

writing out the applied field explicitly, we have

ESQD � 1

ǫeffS

�E0

2
p1� Epq � µ

ǫeffS
rρ21Ed

	
e�iωt � h.c., (4.4)

In order to write this in a more familiar form, we make the following definitions

G � µ2

~ǫ2effS
Ed

Ω � µE0

2~ǫeffS
p1� Epq,
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in terms of the responses, Ep and Ed, to a unit plane wave and unit dipole, respec-

tively. Once we know Ep and Ed, the theory proceeds as it did in chapter 3. Again

we can identify G as the self-interaction of the SQD, the first term in Ω as the direct

coupling to the applied field and the second term in Ω as arising from the MNP

response to the applied field. We again write the field acting on the SQD as,

ESQD � ~

µ

"pΩ�G rρ21q e�iωt � pΩ� �G� rρ12q eiωt*. (4.5)

We solve the master equation9ρ � i

~
rρ,HSQDs � Γpρq , (4.6)

where Γpρq is the relaxation matrix with entries Γ11 � ρ11�1

τ0
, Γ12 � Γ�21 � ρ12

T20
and

Γ22 � ρ22
τ0
. Again we separate real and imaginary parts, and write the density matrix

elements as rρ12 � A� iBrρ21 � A� iB

∆ � ρ11 � ρ22 .

To solve (4.6), we make the rotating wave approximation. When changing the

Hamiltonian to the interaction picture we keep terms that oscillate like eipω�ω0qt
and neglect terms that oscillate like eipω�ω0qt. Making use of our definitions and the

rotating wave approximation, we have the same set of coupled differential equations,9A � � A

T20
� pω � ω0qB � �ΩI �GIA�GRB

	
∆9B � � B

T20
� pω � ω0qA� �ΩR �GRA�GIB

	
∆9∆ � 1�∆

τ0
� 4ΩIA� 4ΩRB � 4GIpA2 �B2q, (4.7)
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where GR, GI , ΩR and ΩI are the real and imaginary parts of G and Ω respectively.

We solve this set of differential equations as we did previously in chapter 3.

4.2.1 System Energy

As before, the rate at which energy is absorbed by our system consists of two

parts, QSQD and QMNP . The SQD absorbs energy by the creation of an exciton

followed by a non-radiative decay. The rate is just QSQD � ~ω0ρ22{τ0. To calculate

the energy absorbed by the MNP, we take the time average of the volume integral,³
j �E dv., where j is the local current density. To calculate the fields inside the MNP

we again employ the BEM. We denote the field inside the MNP due to the dipole

field of the SQD as E
pinsideq
dipole . This field includes the field due to the polarization

induced in the MNP as well as the dipole field of the SQD. Similarly, we denote

the field inside the MNP due to the applied plane wave as E
pinsideq
planewave and this field

includes the field due to the polarization induced in the MNP as well as the applied

field. These fields with positive frequency can be determined once Ei
d (the field

inside the MNP due to a unit dipole with positive frequency at the SQD) and Ei
p

(the field inside the MNP due to a unit incident plane wave with positive frequency)

are known. We write

E
pinsideq
dipole � µ

ǫeffS
rρ21Ei

d e
�iωt � µ

ǫeffS
rρ12pEi

dq� eiωt
E
pinsideq
planewave � E0

2
Ei

p e
�iωt � E0

2
pEi

pq� eiωt ,
in a notation similar to what we have previously employed. Thus the field inside

the MNP is just the sum of these two fields. We calculate the current density, j as

104



we did in chapter 3, j � �ǫmpωqBEBt and again take the time derivatives of rρ12 andrρ21 to be zero and we then have for the local current, j,

j � iω

"
ǫmpωq�E0

2
Ei

p � µ

ǫeffS
rρ21Ei

d

	
e�iωt� ǫmpωq��E0

2
pEi

pq� � µ

ǫeffS
rρ12pEi

dq�	eiωt* .
We can now calculate j �E,

j �E �iω#ǫmpωq�E0

2
Ei

p � µ

ǫeffS
rρ21Ei

d

	2

e�2iωt� ǫmpωq��E0

2
pEi

pq� � µ

ǫeffS
rρ12pEi

dq�	2

e2iωt� 2iImrǫmpωqs���E0

2
pEi

pq � µ

ǫeffS
rρ12 pEi

dq���2+ .
Taking the time average of this result over the period of fast oscillation and inte-

grating over the volume of the MNP yields QMNP ,

QMNP � 2ωImrǫmpωq�s » ���E0

2
pEi

pq � µ

ǫeffS
rρ21pEi

dq���2 dv.
We calculate this integral numerically using the BEM to find pEi

pq and pEi
dq and

equation (4.7) to find rρ21 in the steady state limit.

4.2.2 Numerical Calculations in the Large Field Limit

In this paper we take our MNP to have cylindrical symmetry about the z-axis

and we take the dielectric constant of the background to be ǫB � ǫ0. We model the

MNP as a cylinder with hemispherical ends, with total length L and total width w

(see Figure 4.1). Thus, in the case of L � w, we have a sphere of radius w{2. The

SQD is placed on the positive z-axis a distance R from the center of the MNP. We
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consider the large field limit (intensity of 103W/cm2) and we take the polarization

of the applied electric field parallel to the axis of our SQD-MNP molecule (the ẑ

direction) with the propagation along the x̂ direction. We take ǫmpωq as the bulk

dielectric constant of gold as found experimentally [55]. For the SQD, we take

ǫS � 6 ǫ0 and the exciton resonant frequency to be in the range of 1 � 4 eV. For the

relaxation times of the SQD we take τ0 � 0.8 ns and T20 � 0.3 ns.

4.3 Advantages of Using a Full Electrodynamical Description

Previously, calculations have been done on a system consisting of an SQD

interacting with a spherical MNP in the dipole limit[20, 21, 22] as well as in the

multipole limit[23], both of which are a non-retarded approach. In the dipole limit,

the ratio of MNP radius, a, to MNP-SQD separation, R, should be small (as the

multipole expansion is a power series in p a
R
q2). For a � 7 nm, R � 13 nm, the first

order correction is nearly 30%.

In [23] it was shown that for a � 15 nm, R � 20 nm, the sum of the first 10

terms of the multipole expansion of the coupling strength between the MNP and

SQD is almost 7 times greater than that given by only the first term in the series

(the dipole limit). The most interesting hybrid molecules are those with strong

coupling. One manner of increasing the coupling strength between the MNP and

SQD is to place the SQD very close to the MNP, thus, the correction due to higher

order multipole terms will be important in the systems we most wish to study.
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4.3.1 Comparison Between a Full Electrodynamical Calculation and

a Non-Retarded Multipole Expansion for Spherical MNPs

In order to compare the results obtained using the BEM with those given

by the quasi-static multipole expansion, we compare the values of G given by the

two methods, because there is no multipolar correction to the response due to the

applied plane wave. In the multipole limit, G is given by the expression (see ref.

[23])

G � 8̧
n�1

snγna
2n�1µ2

4πǫB ~ ǫ2effSR
2n�4

, (4.8)

where

γn � ǫmpωq � ǫB

ǫmpωq � n�1
n
ǫB
,

and sn � pn � 1q2 or P 1
np1q for polarization parallel or perpendicular to the z-axis

and P 1
n is the first derivative of the Legendre function. When we take only the term

with n � 1, we recover the dipole approximation. In order to calculate the fields in

the multipole expansion for systems where the total separation is very nearly equal

to the radius of the MNP (R � a), many terms are needed for convergence of (4.8).

For a spherical MNP with R � 60 nm and a � 40 nm, we see an enhancement

in the imaginary part ofG of nearly a factor of two. We also see a slight enhancement

of � 25% and a red shift on the order of 0.1 eV in the peak of the real part of G

(see figure 4.2). When this calculation is carried out over a large subset of MNP

sizes and separation, this enhancement increases as the MNP radius is increased for

fixed separation up to a MNP radius of approximately 50 nm (except in the most

extreme cases of very small separation) or if the separation is increased for fixed
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Figure 4.2: The real and imaginary parts of G with R � 60 nm and a � 40nm, shown for both

a full electrodynamical calculation using the boundary element method (labeled as BEM) and a

non-retarded multipole expansion (labeled Multipole). In this case we see an enhancement in the

imaginary part of G, and a slight enhancement and red shift of the peak in the real part of G.

MNP radius (see figure 4.3). However, as the separation between the SQD and the

surface of MNP becomes small (R � a), the calculations from the boundary element

method and the multipole expansion yield the same results. However, note that in

these extreme cases, as many as 500 terms of the expansion are needed for the sum

to converge.

To understand these results, it is beneficial to think in terms of the image

charges induced in the MNP by the SQD rather than the self-interaction. The

image charges induced in the MNP should arise from the polarization of the dipole

mode of the MNP, with image charges at both ends of the MNP, one nearest to the

SQD and one at the furthest point. In the retarded limit, these two image charges

can be out of phase with each other owing to their spatial separation. For very
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small surface to surface separation, the SQD is very near to the closer image charge,

with much stronger coupling to that image charge, and much weaker coupling to

the charge at the other end. In this case, any phase difference is unimportant and

the retarded and non-retarded limits are the same, as seen on the near edge of

figure 4.3. However, as the SQD and MNP are separated, the effect of the image

charge on the backside of the MNP also becomes significant, screening the effect

of the image charge nearest to the SQD. In the retarded limit, when there is a

phase difference between these two image charges, the screening is less effective and

thus a full electrodynamical calculation yields a larger value of the field than the

non-retarded limit.

Figure 4.3: Ratio of the magnitude of G as calculated with a full electrodynamical calculation

using the BEM to that of the multipole expansion at a frequency of 2.5 eV which is near the

plasmon resonance for an Au sphere. The value given by the BEM increases in relation to that of the

multipole as the MNP radius is increased for fixed separation up to a MNP radius of approximately

50 nm (except in the most extreme cases of very small separation) or if the separation is increased

for fixed MNP radius.
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4.3.2 From Spheres to Rods

For most systems of interest involving a spherical MNP and a SQD (i.e. for

small separation), both the multipole method and the BEM will yield similar results.

The main advantage of using the BEM is that we can study any shape of MNP we

choose. Also, one can study the effects of placing the SQD off the symmetry axis.

Moreover, the multipole expansion only has a simple form in the cases that the

applied field is perpendicular or parallel to the molecular axis.

When we replace the spherical MNP with a nanorod the effect on coupling can

be quite dramatic (see Figure 4.4). Holding the width of the nanorod fixed at 14 nm,

as we move from a wire of length 14 nm (which is a 7 nm radius sphere) to a wire

of length 150 nm, we see an enhancement in the value of ΩR of approximately an

order of magnitude, and of ΩI of nearly 25 times at the peak value (see figure 4.4).

Whereas the peak values of G remain relatively unchanged, we do see higher order

modes appear in the spectrum. At L � 150 nm a total of 3 peaks have appeared in

G (at 1.1, 1.7 and 2.1 eV) whereas there are only 2 in Ω (at 1.1 and 2.1 eV). We also

note a redshift in the principle plasmon peak for both G and Ω.

As we saw last chapter, the ratios of the various components of G and Ω are

key in determining the behavior of the SQD-MNP molecule. The more complicated

spectrum provided by a wire, yields a much broader range of system behavior. The

enhancement provided by a wire also allows for the regimes of strongest coupling to

be more easily accessed experimentally.
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Figure 4.4: The real and imaginary components of G and Ω for various values of the wire length.

The width of the wire was fixed at 14 nm, thus the L � 14 nm setup is that of a 7 nm radius sphere.

Ω shows a redshift as well as an enhancement in the response as the length is increased. G shows

a redshift as well as the appearance of higher order modes. For L � 150nm, Ω has 2 peaks, one at

1.1 eV and one close to 2.1 eV. However, in addition to those 2 peaks, G shows an additional peak

around 1.7 eV for L � 150nm.
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4.3.2.1 Coupling to Dark States vs. Bright States
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Figure 4.5: Response of a 70 nm wire. Both G and Ω are peaked near 1.6 eV. However, we also

see a strong response in G between 2� 2.5 eV, whereas there is no appreciable response in Ω over

that range of frequencies. The peak near 2.2 eV in the real part of G is evidently a “dark” mode.

As we increase the length of the nanorod, higher order modes appear in the

response. Even order dipole-forbidden modes do not appear in the response to a

plane wave source (Ω), due to symmetry considerations, but they do appear in the

response to a dipole source (G). Such states are called dark states.

For a 70 nm wire, we see that both G and Ω are peaked around 1.6 eV. How-

ever, we also see a strong response in G between 2 and 2.5 eV, whereas there is no

appreciable response in Ω over that range of frequencies (see Figure 4.5). Thus at

this frequency, the MNP is not polarized by the applied field, so the only coupling
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between the SQD and the MNP is via the self-interaction (G). Coupling to these

dark states will then allow us to study more closely the self-interaction of the SQD

(which is controlled by G).

To better illustrate what occurs here, we next consider the near field response

(magnitude of the time average of the electric field squared) of the nanorod to a

plane wave and dipole source respectively. We place the dipole source 5 nm above

the tip of the wire with a dipole moment of 1 e nm. The coupling to a plane wave

source in this situation can be a full order of magnitude smaller for a dark state

compared to that of a bright state (see figure 4.6). Whereas the bright state has

regions of large electric field in the vicinity of each end of the wire (over 20 times

that of the applied field), the dark state only has a slight increase in field strength

near the wire (about twice that of the applied field). However, the response to

the dipole only shows a drop of approximately a factor of 2, when comparing the

response in the bright state to that of the dark.

4.4 Engineered Systems

Once the values of G and Ω are obtained, the differential equations for the

SQD evolution (equation 4.7) can be solved either dynamically, or in the steady

state limit. Once the density matrix is obtained, those results can then be used to

calculate the SQD polarization, and from that the total electric field at any location

in space, for any particular value of the applied plane wave frequency. Furthermore,

these local fields can be calculated at any instance of the system evolution.
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Figure 4.6: Magnitude of time average of electric field squared of 70 nm nanorod excited by a

planewave and dipole source. The dipole source was placed 5 nm above the tip of the wire with

a dipole moment of 1 e nm. (top) For the bright mode at 1.6 eV, there are hot spots in excess of

20 times the applied electric field for both the dipole and planewave. (bottom) The dark mode at

2.2 eV responds to the dipole source, but shows nearly no response to the planewave.
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Figure 4.7: The ratios of G{Ω and GI{Ω shown for a 70 nm length, 14 nm width nanorod (solid

line) and a 7 nm radius spherical MNP (dashed line), with µ � 1.0 e�nm. These two ratios play a

large role in determining the system behavior.

4.4.1 Dynamics of a 70 nm Nanorod

Last chapter, we showed that by varying the SQD dipole moment and the

radius of a spherical MNP, a large variety of system behavior is achievable. How-

ever, to reach the regimes of strongest coupling, relatively large values of the SQD

dipole moment were needed, µ ¡ 3 e�nm (see Figure 3.2 in chapter 3). Such large

values of the SQD dipole moment might not be experimentally possible due to the

limit imposed by the SQD size and the relationship of SQD size to the exciton res-

onance. We will show for a nanorod rather than a spherical MNP, that the large

local response of the wire makes the strong coupling regime accessible for smaller

SQD dipole moments that are much more experimentally viable.

Here we illustrate a paradigm for designing systems biased towards specific
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behavior with the example of a 70 nm length nanorod with a total width of 14 nm.

We fix the SQD dipole moment at µ � 0.5 e�nm. We have shown previously that

suppression in the response of the SQD is controlled by the ratio of G{Ω and bista-

bility in the system is turned on by the ratio GI{Ω. We thus use the values of these

two ratios to predict system behavior at a given frequency. As shown in figure 4.7,

for a 70 nm nanorod, these two ratios can take on a larger range of values compared

to those of a spherical MNP. In particular, the minimum of the ratio of the self-

interaction to the coupling to the applied field, G{Ω, is nearly a order of magnitude

smaller (9 to 1) for the nanorod, while it’s maximum is approximately 40% larger.

Primary Plasmonic Peak (Bright State)

As shown in Figure 4.6, the bright state exhibits a large response in the MNP

due to the dipole field of the SQD as well as to the plane wave. When the response of

the nanorod is compared to that of a sphere, Ω is much larger than for a sphere (see

figure 4.4). This enhancement of the local fields at the tips of the nanorod is simply

due to a lightening rod effect. On the other hand, the differences in G between a

nanorod and sphere are small compared to those in Ω. Thus, for the bright state, we

expect the SQD to couple more to the plane wave than the self-interaction, and, due

to the local field enhancement, to exhibit characteristics of much stronger applied

field (such as increased broadness in the response).

When we take the exciton resonance to coincide with the bright plasmon peak

(� 1.6 eV), we see a very broad response in the SQD (see figure 4.8), as well as a
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Figure 4.8: Bright state, with an exciton energy level at 1.6 eV, L � 70 nm, w � 14 nm, µ �
0.5 e�nm. Absorption rate of the MNP, QMNP , population difference, ∆, and the real part of the

SQD dipole moment, A, all show a very strong and broad response of the system.

broad Fano-like line shape in the absorption of the MNP, despite a rather modest

value of the SQD dipole moment (µ � 0.5 e�nm). When we compare this to a

system consisting of a spherical MNP and a similarly sized SQD, the width of the

population difference, ∆, is a full order of magnitude larger for a nanorod of this

length (1meV compared to 0.1meV). This is due to the much stronger local near

fields in the vicinity of the MNP incident on the SQD. This enhancement is due

the increased response of the nanorod to a plane wave in comparison to that of a

sphere.
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Figure 4.9: Dark state, with an exciton energy level at 2.2 eV, L � 70 nm, w � 14 nm, µ �
0.5 e�nm. Absorption rate of the MNP, QMNP , and the real part of the SQD dipole moment, A,

both show a bistability in the system. The population difference, ∆, shows a discontinuity and

strong suppression in the excitation of the SQD.

Dark State

As shown in figure 4.6, the dark state is characterized by a large response in the

MNP due to the dipole field of the SQD, but with little response to the plane wave.

When we choose our exciton resonance to coincide with the frequency of the dark

state, the SQD responds strongly to the self-interaction. Because the suppression

regime as well as the bistable regime are controlled by the self-interaction strength

relative to the coupling to the applied plane wave, both regimes of behavior are very

easy to reach in this case.

With an SQD dipole moment of only µ � 0.5 e�nm, we see very strong sup-
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pression in the SQD response as well as the beginnings of bistability (see figure 4.9).

Whereas with a spherical MNP with radius 7 nm would need a SQD with dipole

moment of µ � 3 e�nm to elicit a similar response[22].

Comparing the response of the dark state to that of the bright state, we see

that the MNP absorption is an order magnitude greater for the bright state. For

both the bright and dark states we have a Fano resonance in QMNP , which according

to our previous investigations indicated the weakest level of coupling between the

MNP and SQD. However, suppression and bistability of the SQD response evident

in Figure 4.9 would indicate the strongest coupling regime. Thus, we see that these

different types of hybrid behavior can coexist for an MNP nanorod.

4.4.2 Exciton Induced Transparency in the non-Retarded Limit

We found in the last chapter that for a spherical MNP in the dipole limit, the

appearance of an exciton induced transparency is determined by the relation

µpaq ¥ �2πǫBǫeffSR
3E0

sαA
, (4.9)

which defines when the field from the SQD cancels the applied field inside the MNP.

Note that this approximation applies because the field inside the MNP is constant

and equal to the value at the center of the MNP. It is worth showing that this

feature does in fact survive when a more thorough calculation is performed for a

sphere utilizing a full electrodynamical calculation using the BEM.

For a spherical MNP with a � 7 nm coupled to an SQD with a dipole moment

of µ � 1 e�nm, we plot the square of the time average of the electric field (see figure
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4.10). When the system is below resonance, we see a large response from the SQD

as its dipole moment is very large and in phase with the applied field. We also see

the dipole field extend into the MNP to a depth of � 2 nm. At resonance, as the off-

diagonal density matrix elements are nearly zero, the SQD dipole moment is much

smaller, and we see a weaker dipole moment in the SQD. Also, the interference inside

the MNP now causes a near cancellation of the field inside the MNP and we see an

exciton induced transparency as we have previously predicted. Above resonance,

the dipole field of the SQD is once again strong, but is now out of phase with the

applied field.

For nanorods, the appearance of EXIT is problematic. From the relation

describing the appearance of EXIT (equation 4.9), we expect that, with the large

center to center separation inherent when using a nanorod as the MNP, EXIT will

be attainable only for extremely large values of the SQD dipole moment. Also, the

spatial variation of the field over a nanorod MNP is not properly accounted for in the

dipole limit (which was used to generate this relation). When the full calculations

are performed, EXIT is found to be very difficult to produce in a system with a

nanorod. The spatial variation of the dipole field (from the SQD), over the length of

a nanorod, can no longer cancel out the constant, applied field inside the MNP. The

absorption still has a Fano-like line shape, but now the magnitude of the interference

is too small in comparison to the applied field in order to produce a transparency.
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Figure 4.10: Near field of a 5 nm radius spherical MNP interacting with a SQD located 10 nm

away from center for 3 values of applied frequency. Shown in color is the z component of the electric

field. The first plot shows a strong dipole field from the SQD, in-phase with the applied field that

penetrates the MNP to a depth of � 2 nm. The middle plot show the system at resonance and the

appearance of the exciton induced transparency in the MNP. The third plot shows a strong dipole

field from the SQD, now out-of-phase with the applied field, that again penetrates the MNP to a

depth of � 1 nm.
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4.5 Concluding Remarks

In this chapter, we have employed a full electrodynamical calculations of the

near fields for MNP-SQD hybrid molecules based on the boundary element method

(BEM). The method allows for tackling more complex geometries with a full de-

scription of the retarded optical response. Fields calculated were compared between

those given by the BEM, those from a multipolar expansion, and those from the

dipole approximation, and we examined the limits which can necessitate such a

treatment.

Calculations performed on systems consisting of an SQD and a nanorod MNP

showed that a broad range of system behavior can be reached experimentally much

more easily than previously thought thanks to the field enhancement from the

nanorod geometry. Furthermore, we saw how the response of the system could

be tailored by engineering metal nanoparticle shape and the SQD resonance to ma-

nipulate the individual local near-fields that couple the MNPs and SQDs.

We also identified regimes where dark modes can influence hybrid response.

Strong local field coupling via dark modes changes the interference and self-interaction

effects dramatically. The external applied field does not directly drive this MNP

dark mode, so SQD-MNP coupling is dominated by the SQD self-interaction. All

of these aspects could enhance the capabilities of metal nanostructures to provide

spatial and spectral control of the optical properties of single emitters.
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Chapter 5

Multiple SQD Systems

In the previous two chapters we studied systems consisting of a single SQD

coupled to MNPs of various shape. We now turn our attention to the response of a

hybrid nanostructure molecule consisting of two SQDs and a single MNP. In partic-

ular, we will model the system using different approximation techniques. In doing

so, we will identify and address issues in modeling the system using a semiclassical

approach.

We will see that a semiclassical approach in modeling the coupling between

the SQDs can lead to unstable, oscillatory and chaotic behavior in a strong SQD-

SQD coupling regime. This nonlinear behavior is due to a breaking of the identical

particle symmetry. Additionally, we will see that this chaotic behavior is closely

related to the type of decoherence present in the system, specifically, whether the

decoherence is collective or non-collective between the two SQDs. This provides

insight into proper accounting of these important, but often neglected interactions.

We will then model the system using a more quantum mechanical approach,

and note that this chaotic regime is absent. Finally, we will compare the two models

on a system with a strong plasmon-mediated interaction between the SQDs and a

weak direct interaction between them. In this case, we will see that while the results

of the two models are similar, dipole blockade and the level splitting of the single
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exciton states in the quantum model are non-trivial effects, even in this regime.

The layout of this chapter is as follows. We begin in section 1 with a quick

review of recent work on this and similar systems. In section 2, we look at the

SQD-MNP-SQD molecule in detail and discuss the ways in which we can model

it. In section 3, we use a simple semiclassical approach to model the system and

find a regime of highly chaotic behavior in the case of identical SQDs. We explore

this behavior in detail and see that it is due to a symmetry breaking induced by

non-collective decoherence. Additionally, we find that this chaotic behavior is re-

moved from the system with an increased coupling to the MNP. The coupling to

the classical plasmon of the MNP in this model effectively washes out the nonlinear

effect. In section 4, we replace the semiclassical SQD-SQD direct coupling term with

a quantum mechanical interaction term consistent with molecular quantum electro-

dynamics. In this case, we note the absence of the chaotic behavior. In its place, we

find a dipole blockade induced by the splitting of the symmetric and antisymmetric

SQD eigenstates. We then take a closer look at the dipole blockade and compare

the two models in the weak SQD-SQD coupling regime. Finally, we present our

conclusions in section 5.

5.1 Introduction

Recently, several theoretical investigations have gone beyond the semiclassical

limit in studying this system by treating the plasmon-exciton interaction with quan-

tum mechanical methods, such as treating the plasmon in the quasi-mode formal-
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ism commonly employed in cavity quantum electrodynamics (QED) [58]. When the

semiclassical results of a single quantum dot interacting with a metal nanoparticle

are compared to a cavity QED treatment, the semiclassical results can be corrected

by properly accounting for dephasing by using a random phase jump method [59].

Also, by using a Green’s function approach to study a system comprised of two

quantum emitters coupled through a nanorod, an optimal emitter-wire separation

for excitation-plasmon conversion was found and plasmon mediated coupling be-

tween the two emitters was studied [60]. In addition to quantizing the local field

produced by the metal particle, progress has been made in better understanding the

inherent quantum properties of very small metal particles, including size quantiza-

tion effects [61, 62] and the plasmon coupling to atomic-scale transport [63].

We discuss here the response of a hybrid nanostructure molecule consisting of

two SQDs and a metal nanoparticle (MNP) subject to an applied electric field. The

field couples to both of the SQDs as well as the MNP and all three constituents

interact with each other through a dipole-dipole coupling. In order to model such

a complex system, a number of approximation schemes must be employed. Differ-

ent choices for the approximations made can result in predictions that differ both

qualitatively and quantitatively. Therefore, a careful examination of the various

techniques that are commonly employed is needed.

Furthermore, with two SQDs being considered as part of an open quantum

system, the nature of the coupling to the bath is of increased importance. Two

identical quantum objects, coupled in phase to the same bath mode, will decohere

collectively. However, a slight detuning of their resonances will introduce a deco-
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herence in each object independent of the other (and thus non-collective). Coupling

to bath modes internal to each object respectively (exciton-phonon coupling inside

a quantum dot for example [64]) introduces an additional source of non-collective

decoherence. This question of collective vs non-collective decoherence can determine

if and how a particle exchange symmetry can be broken, further complicating the

modeling of the system.

The focus of this chapter is to identify and address these issues in modeling

hybrid systems. Using a semiclassical approach to model the coupling between

the SQDs, we find that such an approximation can lead to unstable, oscillatory and

chaotic behavior in the strong SQD-SQD coupling regime. This nonlinear behavior is

shown to be due to a breaking of the identical particle exchange symmetry. When the

system is modeled using a quantum mechanical model for the SQD-SQD coupling,

this instability is removed. Additionally, we see that this chaotic behavior is closely

related to the type of decoherence present in the system, specifically, whether the

decoherence is collective or non-collective between the two SQDs.

5.2 SQD-MNP-SQD Hybrid Molecule

Consider a hybrid molecule composed of two SQDs with radii r1 and r2 inter-

acting with a spherical MNP of radius a. The MNP is centrally located between the

two SQDs, which are located at distances R1 and R2 respectively from the center of

the MNP (see Figure 5.1). The entire system is subject to an applied electric field

E � E0 cospωtq.
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Figure 5.1: An applied field induces a polarization in the MNP and both SQDs, which in turn

allows for a dipole-dipole coupling between the three particles.

As in previous chapters, we model the SQDs as spherical semiconductors with

a dipole located at the center of each. We treat each SQD as effective two level

quantum systems in the density matrix formalism with exciton energies ~ω1 and

~ω2, transition dipole moments µ1 and µ2, and dielectric constants ǫ1 and ǫ2. We

treat the MNP as a classical spherical dielectric particle with dielectric function

ǫMpωq.
We now turn our attention to the interactions of our system. Each quantum

dot participates in three interactions. The first is the direct coupling to the applied

field. Second, each SQD interacts with the electric field produced by the MNP. Last,

the SQDs interact with each other. Similarly, the MNP responds to the applied field

as well as to each SQD. We solve the system self-consistently.
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We begin by writing down the Hamiltonian for the system, Htotal, as

Htotal �~ω1â
:
1â1 � ~ω2â

:
2â2 �H1Ø2� µ1ESQD1 pâ1 � â

:
1q � µ2ESQD2 pâ2 � â

:
2q

where â1p2q and â:1p2q are the exciton annihilation and creation operators for SQD1(2)

and H1Ø2 represents the direct coupling between SQD1 and SQD2. ESQD1 is the

electric field at the center of SQD1 that consists of the applied, external field, E,

and the induced field produced by the polarization of the MNP, EM,1. Thus ESQD1

is

ESQD1 � 1

ǫeff1
pE � EM,1q , (5.1)

where ǫeff1 � 2ǫB�ǫ1
3ǫB

is the screening factor of SQD1. The field on SQD1 from the

MNP is

EM,1 � 1

4πǫB

sαPMNP

R3
1

, (5.2)

where sα � 2p�1q when the applied field is parallel (perpendicular) to the major

axis of the system, (ESQD2 is calculated similarly).

As before, working in the dipole limit, the polarization of the MNP is (see

[54]),

PMNP � p4πǫBqγa3pE � 1

4πǫB

sαPSQD1

ǫeff1R
3
1� 1

4πǫB

sαPSQD2

ǫeff2R
3
2

q
where γ � ǫM pωq�ǫB

2ǫB�ǫM pωq . Making use of the density matrix ρ to calculate the polarization

of the SQD, we take the ensemble average of the dipole moment. We take as our

states |1〉 � |00〉, |2〉 � |10〉, |3〉 � |01〉 and |4〉 � |11〉 (where, for example, |10〉
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is the state with SQD1 excited and SQD2 in its ground state). We then have

PSQD1 � µ1pρ12 � ρ21 � ρ34 � ρ43q and PSQD2 � µ2pρ13 � ρ31 � ρ24 � ρ42q(see [48]).

This allows us to write down ESQD1, but we still need an expression for H1Ø2 in

order to complete our calculation of Htotal.

5.2.1 The SQD-SQD Interaction

We have several choices for the SQD-SQD coupling terms in our Hamiltonian.

If we treat the field produced by the SQD1 as a classical electric field produced by

a dipole with polarization, PSQD1 � µ1pρ12 � ρ21 � ρ34 � ρ43q (similarly for SQD2),

as we did in treating SQD-MNP interactions, then we have

H1Ø2 �� µ1
~E2Ñ1pâ1 � â

:
1q � µ2

~E1Ñ2pâ2 � â
:
2q

H1Ø2 �� µ1

1

4πǫB

sαPSQD2

ǫeff2ǫeff1pR1 �R2q3 pâ1 � â
:
1q� µ2

1

4πǫB

sαPSQD1

ǫeff1ǫeff2pR1 �R2q3 pâ2 � â
:
2q .

In taking this approach, we are assuming that we can replace a quantized field,

produced by the exciton, with a mean field value computed by the density matrix.

This is a semiclassical approximation.

Alternatively, we can calculate this interaction with quantum electrodynamics.

Two identical, two-level molecules interacting with a common electromagnetic mode,

with a radiative decay rate, γ � 1
τ
, separated by a distance d, have an interaction

Hamiltonian of the form [65]

H1Ø2 � ~ δ pâ1 � â
:
1q pâ2 � â

:
2q , (5.3)
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where δ, the interaction energy, is calculated in the dipole limit as

δ � 3

4τ

��
cos2pθq � 1

� cospζq
ζ� �1� 3 cos2pθq��cospζq

ζ3
� sinpζq

ζ2


�
,

where ζ � ωd
c
, c is the speed of light, and θ denotes the phase difference of the bath

mode at the locations of the two molecules.

5.2.2 Numerical Calculations

Similar to previous chapters, we take E parallel to the axis of our SQD-MNP-

SQD molecule (unless otherwise noted) i.e., sα � 2, and we take the dielectric

constant of the background to be ǫB � ǫ0. For the MNP, we take ǫMpωq as the

bulk dielectric constant of gold as found experimentally [55]. For a small, spherical,

gold MNP, the response has a broad plasmon peak near 2.4 eV with a width of

approximately 0.25 eV. We let the radius of the MNP vary between 3 and 8 nm.

For the SQDs, we take ǫ1 � ǫ2 � 6 ǫ0 and for the exciton resonant frequency

we take it to be 2.5 eV, which is near the broad plasmon frequency of gold. For the

MNP size regime we consider, the plasmon resonance for a sphere varies little with

particle size. However, the size, shape and material of the SQD strongly determine

both the exciton energy level and its dipole moment. In this chapter, we again

consider the simplest model and ignore this size dependence.
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5.3 Semiclassical Approach to SQD-SQD coupling

We first model the system using the semiclassical approximation for the SQD-

SQD coupling. Our Hamiltonian becomes

Htotal �~ω1â
:
1â1 � ~ω2â

:
2â2� 2~ cosωt Ω1 pâ1 � â

:
1q � 2~ cosωt Ω2 pâ2 � â

:
2q� ~G1pρ12 � ρ21 � ρ34 � ρ43q pâ1 � â

:
1q� ~G2pρ13 � ρ31 � ρ24 � ρ42q pâ2 � â
:
2q� ~F pρ12 � ρ21 � ρ34 � ρ43q pâ2 � â
:
2q� ~F pρ13 � ρ31 � ρ24 � ρ42q pâ1 � â
:
1q

where, similar to previous chapters, we define

G1 � γa3µ2
1s

2
α

4πǫB ǫeff1 ~R6
1

Ω1 � E0µ1

2~
p1� γa3sα

ǫeffMR
3
1

q
F � µ1µ2s

2
α

4πǫB ǫeff1 ǫeff2 ~

�
1pR1 �R2q3 � γa3

R3
1R

3
2



,

and G2 and Ω2 are defined similarly. G1 arises when the applied field polarizes

SQD1, which in turn polarizes the MNP and then produces a field to interact back

on SQD1. This can be thought of as the self-interaction of SQD1 because this

coupling to SQD1 depends on the polarization of SQD1. The first term in Ω1 is just

the direct coupling to the applied field and the second term is the field from the

MNP that is induced by the applied field. F arises from the interaction between the

two dots. The first term is the direct coupling and the second term is the interaction
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mediated by the MNP.

We once again write down the master equation,9ρ � i

~
rρ,HSQDs � Γpρq (5.4)

where Γpρq is now the 4x4 relaxation matrix. To find the entries of Γpρq, we assume

the baths of our SQDs are uncorrelated. For a non-interacting system, we could

write ρ � ρp2q b ρp1q where ρp1q and ρp2q are the 2x2 density matrix in the single

SQD case for SQD1 and SQD2 respectively, and ρ is the 4x4 density matrix for the

combined system. We use this relation and the relaxation matrix for a single SQD

with entries Γ
p1q
11 � ρ

p1q
11 �1

τ1
,Γ
p1q
12 � Γ

p1q�
21 � ρ

p1q
12

T1
and Γ

p1q
22 � ρ

p1q
22

τ1
where the superscript

indicates this is for SQD1 (similarly for SQD2). Making use of the master equation

and ρ � ρp2q b ρp1q, we arrive at the 4x4 matrix, Γpρq for a noninteracting 2 SQD

system

Γpρq �������������
�ρ22

τ1
� ρ33

τ2

ρ12
T1

� ρ34
τ20

ρ13
T2

� ρ24
τ1

ρ14
T1
� ρ14

T2

ρ21
T1
� ρ43

τ2

ρ22
τ1
� ρ44

τ20

ρ23
T1

� ρ23
T2

ρ24
T2
� ρ24

τ1

ρ31
T2
� ρ42

τ1

ρ32
T1

� ρ32
T2

ρ33
τ2
� ρ44

τ1

ρ34
T1
� ρ34

τ2

ρ41
T1
� ρ41

T2

ρ42
T2

� ρ42
τ1

ρ43
T1

� ρ43
τ2

ρ44
τ1
� ρ44

τ2
.

�ÆÆÆÆÆÆÆÆÆÆ

We assume that the same Γpρq applies if the two dots interact and ρ is no longer

separable.

Again, from looking at the single dot case, we make the following factorizations
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analogous to those made in previous chapters:

ρ12 � pA12 � iB12qeiωt
ρ13 � pA13 � iB13qeiωt
ρ14 � pA14 � iB14qe2iωt
ρ23 � pA23 � iB23q
ρ24 � pA24 � iB24qeiωt
ρ34 � pA34 � iB34qeiωt, (5.5)

along with the reminder that ρij � ρ�ji. Making use of these definitions and the

rotating wave approximation, we arrive at a set of 16 coupled, nonlinear differential

equations. For the SQD relaxation times in this model, we take τ1 � τ2 � 0.8 ns

and T1 � T2 � 0.3 ns.

5.3.1 Weak Field Limit

In Figure 5.2, we plot the response of the SQD-MNP-SQD system and that

of the SQD-MNP system in the weak field limit (intensity of 1 W/cm2). For each

system, we plot the absorption of the SQD(s), QSQD, the absorption of the MNP,

QMNP , and the absorption of the total system, Qtotal. In all the plots, we see that the

peak of the response both shifts and broadens for small values of particle separation.

The shift and broadening of this resonance peak when the particles are very close

shows a hybrid excitation with a shortened lifetime.

When we compare the response of the SQD-MNP-SQD system (top of Figure

5.2) to that of the the single SQD coupled to a spherical MNP (bottom of Figure 5.2),
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Figure 5.2: Energy absorption due to the MNP, energy absorption due to the SQD, and the total

energy absorption, respectively, as a function of detuning, for two SQDs coupled to a spherical

MNP (top), and for a single SQD coupled to a spherical MNP (bottom). All calculations were in the

weak field limit and particle separation was varied (the two SQD case was treated symmetrically,

R � R1 � R2, µ � µ1 � µ2 and ω0 � ω1 � ω2). In both sets of plots we take a � 7.5 nm and

µ � 0.5 e�nm.
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we find an overall enhancement of the interaction. We first note that the magnitude

of the absorption is nearly doubled when compared to the single SQD case for most

particle separations. When the particles are far apart, the interparticle coupling is

weak, and most of the absorption is due to the SQDs. Thus, the doubling is simply

the absorption of the additional SQD. When the particles are close together, the

interparticle coupling is strong and most of the absorption is in the MNP. The peak

of the absorption in this case is due to the constructive interference of fields at the

MNP, from the SQDs. Thus, the additional SQD doubles the magnitude of this

field.

In addition to enhancing the magnitude of the absorption, we also have an

increase in the interparticle coupling strength. This is evident in the increased

shifting and slight broadening of the response, for a given R, when compared to

the single SQD case. This shifting of the resonance indicates that a smaller particle

separation is needed in the single SQD-MNP molecule than in the SQD-MNP-SQD

system to achieve a similar hybrid response.

5.3.2 Strong Field Limit: a vs. µ Parameter Space

We now consider the large field limit as previously defined [20] (intensity of

103 W/cm2). As we did previously, by manipulating a and µ (µ � µ1 � µ2), which

are effectively the sizes of the MNP and the SQDs, we can change the relative

strengths of the local fields and, in turn, the strengths of the five different couplings

(G, and the two terms that make up each of Ω and F ). Looking at the solutions to
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Figure 5.3: µ vs. a phase diagrams in the strong field limit for an SQD-MNP system (bottom)

and an SQD-MNP-SQD system (top). Single SQD system shows 4 regimes of behavior and SQD-

MNP-SQD system shows 5 regimes of hybrid behavior. In both plots, the SQD-MNP separation

was 13 nm.
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the differential equations, both dynamically and in the steady state limit, there are

five distinct regimes of behavior in the a vs. µ parameter space for a double SQD

molecule (see the top of Figure 5.3). Regions I, II and III, as well as the Suppression

regime, were discussed in detail for an SQD-MNP molecule in chapter 3 (see also

[21, 22]). The new regime of behavior will be discussed below.

Comparing the parameter space diagram of the SQD-MNP-SQD molecule to

that of the SQD-MNP molecule (bottom of Figure 5.3), we note several differences.

First, we see that the threshold separating Region I and II is at a value of µ which is

about half of that in the single SQD case. We saw in chapter 3 that the appearance

of an exciton induced transparency (EXIT) occurs when the induced electric fields

from the SQD overtake the applied field in magnitude at the location of the MNP.

However, the addition of the second SQD effectively doubles the size of this internal

field, which could equivalently be produced by a single SQD with twice as large of

a dipole moment. There is a similar effect that shifts regions II and III, as well as

shifting the emergence of suppression.

Previously, we have shown that the appearance of bistability in the system is

caused by feedback through the self-interaction of the SQD. With the addition of a

second SQD, there is increased feedback through the SQD-SQD interaction, which

leads to an enlargement in Region III. This SQD-SQD interaction also provides the

feedback for the constructive and destructive interference that leads to suppression.

We see that not only does this enhance these effects, but also allows for the appear-

ance of suppression even without the MNP, which obviously cannot occur in the

single SQD case. For an SQD-SQD molecule, the self-interaction is mediated by the
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Figure 5.4: Density matrix elements plotted as a function of detuning for two interacting, strongly

coupled SQDs (a � 0 nm, µ1 � µ2 � 3.0 e�nm and R1 � R2 � 13nm). The response of the system

shows discontinuity for detunings near 0.05meV. For these frequencies, the system no longer reaches

a steady state.

coupling to the other SQD.

5.3.3 Transition: Chaotic Solutions

In addition to the enhancement in the appearance of EXIT, suppression and

bistability, we also note that the transition region is more complicated than in the

single SQD case: chaotic behavior emerges from a strong SQD-SQD interaction. In

fact, strong coupling to the MNP provides a quenching for this effect. Subsequently,

it is best studied in the limit where there is no MNP (a � 0).

In this transition regime, for a range of frequencies just above the natural
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resonance of the SQDs, the system no longer reaches a steady state (see Figure

5.4). In this frequency range (ω � ω0 � 35 � 50µeV with ω0 � ω1 � ω2, for

a � 0 nm, µ1 � µ2 � 3.0 e�nm and R1 � R2 � 13 nm), the solutions oscillate

within a narrow envelope. We also note that despite the symmetry between the two

SQDs, the population densities for the singly excited SQD states, ρ22 and ρ33, are no

longer identical for these solutions. Thus, we speculate that noise in the numerical

calculations causes the symmetry to be broken. In fact, when the calculations

are performed with increasingly greater numerical precision, much of this chaotic

behavior can be eliminated. However, in all calculations performed, it could never

be removed completely and the numerical precision required (less than 1 part in

1010) far exceeded the amount of natural noise a realistic system would exhibit by

many orders of magnitude.

5.3.3.1 Explicit Symmetry Breaking

In order to explore the effect of the SQD-SQD identical particle symmetry, we

look at the effect of breaking it explicitly. Again, this can best be done without

the presence of the MNP, and by slightly shifting the dipole moment, or the bare

resonance frequency of one of the SQDs. However, care must be taken when detuning

the SQD resonances as too large of a shift could cause them to uncouple.

When the SQD-SQD symmetry is broken explicitly, the chaotic behavior is

amplified. Shown in Figure 5.5 is the response of the system under four different

cases of symmetry breaking. If we compare the responses shown in Figure 5.5 to
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those of Figure 5.4, we can see that the frequency range over which the system

displays this oscillatory behavior increases when the symmetry is broken explicitly.

As noted above, when only numerical rounding provides the symmetry breaking,

the range of driving frequencies over which the system exhibits the chaotic behavior

is only 15µeV. However, when the symmetry is broken explicitly, by either shifting

one of the bare SQD resonances or by increasing one of the SQD dipole moments,

this frequency range increases to around 125µeV, nearly a full order of magnitude

increase. This increase occurs even when the symmetry is broken by a trivial amount

(1 part in 108) and increasing the numerical accuracy of the calculations no longer

has any effect in reducing the chaotic behavior.

We also note that varying the amount by which the symmetry is broken is

largely unimportant on the size of this frequency window. Once a certain threshold

is reached, the frequency range of the chaotic behavior reaches a maximum, as does

the envelope in which the solutions oscillate in. One can notice, however, that there

is a small transition from the behavior shown in Figure 5.4 and that in Figure 5.5,

which can be seen in the two rightmost plots in Figure 5.5. The chaotic oscillations

start from the edges of a frequency window with the innermost points displaying a

more regular oscillatory nature.

If we focus on a particular value of detuning that leads to the chaotic behav-

ior, we see that the time evolution for that particular frequency is complicated, but

more structured than scanning over the detuning would lead one to believe (Figure

5.5). In Figure 5.6 we see that the system initially undergoes fast oscillations due

to Rabi flopping and the slight detuning (t � 0 to � 1 ns). The system then set-
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Figure 5.5: ρ11 plotted as a function of the detuning between the driving field and SQD1 for four

cases of explicit symmetry breaking. In all cases a � 0 nm, µ1 � 3.0 e�nm and R1 � R2 � 13 nm

were held fixed. The top two plots show µ2 Ñ µ1 � δ symmetry breaking with ω1 � ω2. The

bottom two plots show ω2 Ñ ω1 � δ symmetry breaking with µ1 � µ2.

tles into what would be a typical steady state solution. Then, at a point between

2 and 5 ns, the system again acts as though it is far from equilibrium and under-

goes large oscillations. Within a further 2 ns the system then settles into a stable

and undamped oscillatory behavior. So, although the behavior appears to be very

noisy when viewed as a function of driving frequency, for each particular frequency

the behavior is very different than that of the weak coupling regime, but is still

predictable.

Furthermore, the frequency of these secondary oscillations is also unaffected by

the degree of the symmetry breaking present in the system (see insets of Figure 5.6).
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Figure 5.6: Evolution of ρ11 as a function of time, for a � 0 nm, µ1 � µ2 � 3.0 e�nm, R1 �
R2 � 13 nm, and ω1 � 2.5 eV, for a driving frequency in the chaotic regime (ω � ω1 � 0.75meV).

Shown are the oscillations for an explicit symmetry breaking of ω2 � ω1p1 � 10�6q (top) and

ω2 � ω1p1 � 10�8q (bottom). Insets shows that the frequency of oscillation does not appear to

depend on the amount of the symmetry breaking.

From the time evolution of ρ11 (for a � 0 nm, µ1 � µ2 � 3.0 e�nm, R1 � R2 � 13 nm,

and ω1 � 2.5 eV), for a driving frequency in the chaotic regime (ω�ω0 � 0.75meV),

we see that the oscillations for an explicit symmetry breaking of ω2 � ω1p1� 10�6q
and ω2 � ω1p1�10�8q have nearly the same frequency (to better than 1 part in 103).

However, the onset into the oscillatory behavior can be significantly different, even

for these small symmetry breaking terms, with oscillatory behavior onset earlier in
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Figure 5.7: Time evolution of ρ22, ρ33, ρSS and ρAA, for a � 0 nm, µ1 � µ2 � 3.0 e�nm,

R1 � R2 � 13 nm, ω1 � 2.5 eV and ω2 � ω1p1 � 10�6q, for a driving frequency in the chaotic

regime (ω� ω1 � 0.75meV). ρ22, ρ33, and ρSS are initially driven and quickly oscillate, while ρAA

slowly fills due to relaxation.

the case of the larger symmetry breaking (2 ns compared to 4 ns). This remains the

case even for increasingly large symmetry breaking.

5.3.3.2 The symmetric-antisymmetric basis

We now focus on the behavior of the two individual SQDs in this chaotic regime

by looking at the probabilities that each SQD is excited (ρ22 and ρ33 respectively).

In the absence of the MNP, with µ1 � µ2 � 3.0 e�nm, R1 � R2 � 13 nm, ω1 � 2.5 eV

and ω2 � ω1p1� 10�8q, and for a driving frequency in the chaotic regime (ω� ω1 �
0.75meV), we see that the two SQDs beat out of phase (see Fig 5.7).
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Due to the approximate symmetry between the dots, it is worthwhile to con-

sider the symmetric and antisymmetric basis. We define the symmetric and anti-

symmetric states as |S〉 � 1?
2
p|2〉� |3〉q|A〉 � 1?

2
p|2〉� |3〉q .

With these definitions, we can calculate the density matrix components for these

new basis states as,

ρSS � 1

2
pρ22 � ρ33 � ρ23 � ρ32q

ρAA � 1

2
pρ22 � ρ33 � ρ23 � ρ32q .

When the SQD1-SQD2 symmetry is unbroken, |S〉 is coupled to the driving

field, while |A〉 remains uncoupled. However, there is coupling to the antisymmetric

state by means of the relaxation matrix, Γpρq. For example, the double exciton

state, |4〉, relaxes into both the symmetric state and antisymmetric state with equal

probabilities. This can be seen in the right-hand side of Figure 5.7. The symmetric

state initially oscillates as the applied field drives the system, whereas the antisym-

metric state slowly fills due to relaxation of |4〉, on a time scale corresponding to

τ1 � τ2 � 0.8 ns.

In Figure 5.7, we see that initially, the system oscillates until damping causes

it to begin to settle into a semi-stable steady state. At about t � 1 ns, the initial

Rabi oscillations have damped out, ρ22 is nearly equal to ρ33, and ρSS is nearly

equal to ρAA. As the system continues to evolve, ρ33 begins to decrease sharply,
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Figure 5.8: The secondary oscillations occur over a range of the applied frequencies (ω � ω0 �
0µeV to 200µeV, ω0 � ω1 � ω2). The onset of the oscillations occurs sooner for frequencies near

the end points of this window, reaching a maximum onset delay at approximately ω�ω0 � 80µeV.

In all cases the other system parameters and initial conditions are held fixed (µ1 � 3.25 e�nm,

µ2 � 3.27 e�nm, R1 � R2 � 13 nm, ω0 � ω1 � ω2 � 2.5 eV)

while ρ22 starts to climb. Meanwhile, both ρAA and ρSS slowly increase. This

eventually culminates in the oscillations occurring at t � 2 ns. These oscillations

eventually become regular as the system oscillates between two different steady

states indefinitely. Returning to the a vs. µ parameter space (top of Figure 5.3) we

see that the introduction of a small MNP (a � 4 nm) to mediate the interaction is

enough to quench the SQDs from beating.

When the degree of symmetry breaking is held fixed, and the system evolution

is analyzed for particular values of the detuning inside the frequency range of chaotic
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behavior, we see that the onset of the oscillations occurs sooner for frequencies near

the end points of this window (see Figure 5.8). For µ1 � 3.25 e�nm, µ2 � 3.27 e�nm,

R1 � R2 � 13 nm, ω0 � ω1 � ω2 � 2.5 eV the delay reaches a maximum of 4.5 ns

at approximately ω� ω0 � 80µeV. We also note that for detunings near this value,

the magnitude of the oscillations is greater.

The maximum delay in the onset occurs at longer times for smaller symmetry

breaking terms (see Figure 5.9). With µ1 � 3.3 e�nm and µ2 � µ1p1 � 10�10q,
the onset can take up to 40 ns for particular values of the detuning. In fact, with

µ2 � µ1p1 � 10�nq, the peak in the onset appears to increase linearly with n inside

the chaotic regime. Over this range of n shown in the figure, n � p2, 10q, which
covers 8 orders of magnitude in the symmetry breaking term, this relationship is

found to be (including additional intermediate data points not shown in Figure 5.9

for clarity)

t
pmaxq
onset � $''''''''&''''''''%

1.08n� 0.11 for µ1 � 3.0 e�nm,
1.66n� 0.62 for µ1 � 3.1 e�nm,
4.23n� 4.15 for µ1 � 3.3 e�nm.

Thus, not only does onset increase linearly with increasing n, but it also in-

creases with increased coupling strength (larger magnitude of µ1, and thus µ2). In

addition to the increase in onset as the coupling strength increases, we also see that

the detuning at which the peak in the onset occurs, shifts to higher energies for a

fixed value of n. For example, with n � 10, the detuning where the peak is located

shifts from ω�ω0 � 90µeV to ω�ω0 � 100µeV, when µ1 is increased from 3.0 e�nm
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Figure 5.9: The onset of chaotic behavior as a function of detuning for three regimes of symmetry

breaking, µ2 � µ1 p1� 10�nq with n � t2, 6, 10u, plotted for each of µ1 � 3.0 e�nm (bottom),

µ1 � 3.1 e�nm (middle) and µ1 � 3.3 e�nm (top). For each of the three plots, we see that the delay

in the onset increases as the magnitude of the symmetry breaking decreases. When the three plots

are compared, the peak in the onset appears to shift to a larger detuning (from ω � ω0 � 90µeV

to ω � ω0 � 100µeV) as the magnitude of µ1 (and thus µ2) increases from 3.0 e�nm to 3.3 e�nm.

to 3.3 e�nm.

This relationship between the degree of symmetry breaking and the delay in

onset explains what we saw in Figure 5.5. There, we noticed that the plots on the

right-hand side had a more regular behavior towards the middle of the frequency

band that displays the chaotic behavior. However, in Figure 5.9, we see that detun-

ings near these frequencies take much longer for the onset of chaotic behavior. In

these cases, the initial semi-stable state that the system first evolves into is more
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stable than for fields driving the system near the edges of the chaotic regime fre-

quency window. Thus, a larger asymmetry must be built up in the system before

the system can be knocked out of this semi-stable state, which accounts for this

additional time.

Since the antisymmetric state is a higher energy state than the symmetric

state, the location of the antisymmetric resonance is above the bare resonance and

is in fact in this chaotic region. Since the interaction term between the two SQDs

is ~F times the transition dipole moment operator, we can estimate the splitting

between the symmetric and antisymmetric state to be 2~F 〈µ〉. For µ1 � 3.25 e�nm,

µ2 � 3.27 e�nm, R1 � R2 � 13 nm, this splitting is approximately 100µeV, so we

expect the antisymmetric mode to be around ω�ω1 � 50µeV which is very close to

the location of the maximum delay in the onset of secondary oscillations. However,

energy splitting and level repulsion between quantum levels is obviously a quantum

effect, thus we can expect that the semiclassical approximation for the SQD-SQD

coupling breaks down here.

5.4 Towards A More Quantum Mechanical Approach

Previously, we took the single SQD relaxation matrix as a basis to construct

the two-particle relaxation matrix in order to model the interaction with the bath.

If we define the Lindblad operator as

LpÂ, B̂q � ÂρB̂: � 1

2

�
B̂:Âρ� ρB̂:Â	 , (5.6)
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then this method is equivalent to taking 4 Lindblad terms, namely, relaxation of

SQD1, Lpâ1, â1q, relaxation of SQD2, Lpâ2, â2q, dephasing of SQD1, Lpâ:1â1, â:1â1q,
and dephasing of SQD2, Lpâ:2â2, â:2â2q. However, since we are treating the SQDs to

be very closely separated and very near to each other in resonance, they can both in

effect interact with the same bath. For example, both dots would interact with the

same photon modes. As a consequence, spontaneous decay into these modes should

occur due to the coherent response of the two dots (superradiance). Thus, there are

two other Lindblad terms that we should consider, Lpâ1, â2q and Lpâ2, â1q, i.e., a
bath-induced interaction between the two dots. If we allow the two SQDs to interact

with the same bath mode, then this should also be reflected in our Hamiltonian.

5.4.1 Quantum Mechanical SQD-SQD Coupling

We now instead use the quantum mechanical expression for the coupling be-

tween the two dots [65]. Our Hamiltonian is then

Htotal �~ω1â
:
1â1 � ~ω2â

:
2â2� 2~ cosωt Ω1 pâ1 � â

:
1q � 2~ cosωt Ω2 pâ2 � â

:
2q� ~G1pρ12 � ρ21 � ρ34 � ρ43q pâ1 � â

:
1q� ~G2pρ13 � ρ31 � ρ24 � ρ42q pâ2 � â
:
2q� ~FQMpρ12 � ρ21 � ρ34 � ρ43q pâ2 � â
:
2q� ~FQMpρ13 � ρ31 � ρ24 � ρ42q pâ1 � â
:
1q� ~δpâ:1â2 � â

:
2â1q
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where G and Ω terms are defined as before and FQM is defined as

FQM � γa3µ1µ2s
2
α

4πǫB ǫeff1 ǫeff2 ~R3
1R

3
2

. (5.7)

δ was given previously as,

δ � 3

4τ

��
cos2pθq � 1

� cospζq
ζ� �1� 3 cos2pθq��cospζq

ζ3
� sinpζq

ζ2


�
where ζ � ωd

c
, c is the speed of light, and θ denotes the phase difference of the bath

mode at the locations of the two molecules. We still use the semiclassical expression

for the MNP mediated coupling between the dots (FQM), but replace the direct

coupling term with a quantum mechanical form.

To find the relaxation of the system, we now take a more complicated inter-

action Hamiltonian with the reservoir, HR, of the form,

HR �λ1â:1b̂1 � λ2â1b̂
:
1 � λ3â

:
2b̂2 � λ4â2b̂

:
2� λ5â

:
1â1b̂

:
1b̂1 � λ6â

:
2â2b̂

:
2b̂2� λ7pâ:1 � â

:
2qĉ� λ8pâ1 � â2qĉ:, (5.8)

where the b̂i’s are the operators for the internal bath of each SQD respectively

(for example, coupling to the internal phonon modes of each dot), the ĉ operators

denote the bath processes that are common to both SQDs, and λi’s are yet to

be determined constants. The first 4 terms represent the non-collective portion of

spontaneous emission and excitation, due to a possible symmetry breaking between

the two particles as well as optical phonons inside each SQD. The next two terms
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are due to scattering and give rise to pure dephasing. We imagine this process to be

dominated by acoustic phonon-electron coupling[64] within each SQD separately,

and thus treat it completely non-collectively. The final two terms represent the

collective portion of spontaneous emission and excitation.

From equation (5.8), we make 6 Lindblad terms, ignoring those generated by

â
:
1 and â

:
2, as they would represent bath induced excitation and we are imagining

our bath to be at a much lower temperature than needed to induce an excitation at

the optical energy scale. We can now write our relaxation matrix as�Γ � 1

τ1
Lpâ1, â1q � 1

τ2
Lpâ2, â2q � 1

T1
Lpâ:1â1, â:1â1q� 1

T2
Lpâ:2â2, â:2â2q � 1

τc
Lpâ1 � â2, â1 � â2q.

τc is the collective decoherence and can be calculated with molecular QED. For two

identical particles with a spontaneous decay rate 1
τ
, then we find τc as

τc �2τ

3

�
1� �cos2pθq� sinpζq

ζ� �1� 3 cos2pθq��cospζq
ζ2

� sinpζq
ζ3


�
,

with ζ and θ as before.

5.4.2 Numerical Results

Solving the master equation (5.4) with our quantum interaction Hamiltonian,

we find that the system no longer exhibits the behavior of the chaotic regime. For

example, with µ1 � 3.0 e�nm, µ2 � µ1p1 � 10�3q, R1 � R2 � 13 nm, and a=0, the

system shows a broad, smooth response (see Figure 5.10). However, these parameter
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Figure 5.10: Density matrix for a quantum mechanical coupling between the dots. In this model,

the chaotic regime disappears. µ1 � 3.0 e�nm, µ2 � µ1p1� 10�3q, R1 � R2 � 13 nm, ω0 � ω1 � ω2

and a=0. Compare to the plot in the upper left-hand side of Figure 5.5.

values lead to the chaotic behavior in the semiclassical approach, as shown in the

upper left plot in Figure 5.5. The chaotic behavior does not emerge even when a

larger value of µ1 is used or when the symmetry breaking is made arbitrarily large.

This remains true even when the decoherence is treated completely non-collectively,

as it was in the last section.

Also in Figure 5.10, we notice that the response in ρ11 and ρ22 (similarly ρ33)

is much more broad than that of ρ44. Additionally, whereas ρ11 and ρ44 both appear

to reach a resonance value near ω � ω0 � 0, ρ22 has two peaks (similarly for ρ33),

one above and one below the frequency ω � ω0. The reason for this asymmetry of

the density matrix elements is that when a quantum mechanical coupling is used

for the interaction between the two dots, this introduces a splitting between the two
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singly excited states. Thus, the symmetric and antisymmetric states have different

energy eigenvalues, with the symmetric being below the bare resonance, and the

antisymmetric being at a higher energy than the bare resonance. This feature of

the quantum mechanical coupling gives rise to a dipole blockade, which is absent in

the semiclassical model, which we examine here.

5.4.3 Dipole Blockade

As the strength of the dipole-dipole coupling between the SQDs is increased

(either by decreasing their separation or increasing their respective dipole moments),

the symmetric (antisymmetric) eigenstate shifts to a lower (higher) energy. Thus,

each of the single exciton states is further detuned from the bare resonance. However,

the doubly excited state remains located at the bare resonance. Therefore, if the

system is driven at this frequency, ω � ω0, the excitation of the singly excited states

would be suppressed owing to their respective detuning. This loss of population in

the symmetric and antisymmetric states then results in an increase in the ground

and doubly excited states, in the steady state limit. Conversely, if the system is

driven near the symmetric or antisymmetric mode, then the doubly excited state,

being detuned from this frequency, would be suppressed. This suppression of the

doubly excited state due to the increased occupation of the single excited states is

often referred to as a dipole blockade.

To expand on the idea of dipole blockade, we first consider the probability

for each of the SQDs to be excited. From the density matrix, we can say that
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Figure 5.11: Dipole blockade measure, β, as a function of the detuning for various values of

system parameters. Blockade increases with decrease in dot-to-dot separation (increased coupling)

and decreases with response broadening (increased couping to the driving field or MNP). (ω0 �
ω1 � ω2)pρ22 � ρ44q is the probability that SQD1 is excited and pρ33� ρ44q is the probability
that SQD2 is excited. Thus, we expect the product of these two probabilities to

be approximately equal to the probability that both SQDs are excited at the same

time, and therefore equal to ρ44. The difference between these two probabilities can

then be used as a measure of how suppressed or enhanced excitation of the double

excited state is. To quantify the degree of dipole blockade in the system, we define

the following measure, β,

β � 9 � ppρ22 � ρ44qpρ33 � ρ44q � ρ44q . (5.9)

The factor of 9 in the definition of β is chosen so that with full blockade, i.e., ρ44 � 0,
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at saturation (ρ11 � ρ22 � ρ33 � 1
3
), β � 1. This is essentially the maximum value

of β in the steady state limit (without population inversion). Conversely, if the

interaction between the dots is strong enough, then their resonances will be shifted

with respect to their bare resonances. In such a case, with the driving field near the

bare SQD resonance, the excitation of a single SQD, ρ22 and ρ33, will be suppressed

relative to ρ44 and β   0. In the actual calculations performed, values of β   �0.5
were rare.

When we plot β for various values of the system parameters, we find that

blockade increases when the SQD-SQD separation is decreased as expected (see

Figure 5.11). The stronger coupling between the dots increases the splitting between

the two levels. For a detuning near the symmetric mode resonance, that mode is

much more likely to be filled than the antisymmetric state, which is at a much

higher energy. Thus double excitation of the dots is suppressed. When coupling to

the driving field is increased (by increasing µ) or coupling to the MNP is increased

(by increasing a), the SQD response broadens, providing more overlap between the

two single exciton states and thus decreasing the dipole blockade.

5.4.4 Comparison in the Weak SQD-SQD Coupling Regime

When there is strong SQD-SQD coupling, the semiclassical and quantum ap-

proaches produce very different results. However, when the direct coupling between

the SQDs is weaker, the detuning of the symmetric and antisymmetric states is

smaller. Furthermore, in the presence of an MNP, the coupling mediated by the
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plasmons can become more significant than the direct coupling between the SQDs.

It is then expected that two approaches would be more in agreement in this regime.

In Figure 5.12, we plot the results of the two models in the regime with weak

SQD-SQD coupling (µ1 � µ2 � 0.5 e�nm), and strong SQD-MNP coupling (a �
7 nm, R1 � R2 � 13 nm). Shown for each model are the diagonal density matrix

elements of the symmetric/antisymmetric basis (ρ11, ρSS, ρAA, ρ44) and the blockade

measure, β. Also shown are the real and imaginary parts of the transition dipole mo-

ment of the symmetric state, µSS, which we calculate as µSS � ρ1S � ρS1 � ρS4 � ρ4S.

When the two models are compared (top vs bottom of Figure 5.12), we see

similarities between the semiclassical and quantum models in the general shape of

the predicted responses. However, there is significant deviation between the two

models as well. In particular, the semiclassical approach does not account for the

dipole blockade that occurs in the quantum model. Even with weak SQD-SQD

coupling, dipole blockade can still have a significant impact on system behavior.

This leads to noted differences between the two models in the regions just above

and below the SQD bare resonance, where β reaches extreme values.

In the quantum model, the differences highlighted in Figure 5.12 are most

notable in the slight splitting shown in ρ11, very sharp peak of ρ44 and the enhance-

ment in ρSS that occurs just below the SQD bare resonance. These effects are due to

dipole blockade. In the case of ρSS, this enhancement is just the location of the sym-

metric eigenstate. Interestingly, ρAA is also peaked at this same energy and appears

to be identical to ρSS. However, the reason that ρSS � ρAA in the steady state limit

is simply due to mixing between the symmetric and antisymmetric modes from the
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interaction with the bath. Note that there is no corresponding peak in the response

of the system above resonance where the antisymmetric eigenstate is located. This

is because the antisymmetric state is not coupled to the driving field. When the

system is driven near this frequency, the only single exciton state coupled to the

driving field is the symmetric mode, which is far detuned in this case. Thus, the

double exciton state, being closer in resonance with the driving field, is enhanced

compared to ρSS. Thus β   0 above resonance.

5.5 Conclusions

In this chapter, we have studied the response of a hybrid nanostructure molecule

consisting of two SQDs coupled to a centrally located MNP, driven by an applied

electric field. We have focused on identifying and addressing the issues in modeling

such a system. Using a semiclassical approach to model the coupling between the

SQDs can lead to unstable, oscillatory and chaotic behavior in a strong SQD-SQD

coupling regime. This nonlinear behavior was shown to be due to a breaking of

the identical particle symmetry. Additionally, we saw that this chaotic behavior is

closely related to the type of decoherence present in the system, specifically, whether

the decoherence is collective or non-collective between the two SQDs. We then mod-

eled the system using a quantum mechanical expression for the SQD-SQD coupling,

and saw that this instability in the response is absent. Whereas in the semiclassical

model, a large SQD-SQD coupling lead to a chaotic response, in the quantum me-

chanical model, strong SQD-SQD coupling produced a large splitting between the
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Figure 5.12: Comparison of semiclassical model (top 6 plots) and quantum model (bottom

6 plots) in the regime with weak SQD-SQD coupling (µ1 � µ2 � 0.5 e�nm), and strong SQD-

MNP coupling (a � 7 nm, R1 � R2 � 13nm). Shown are the diagonal density matrix elements

(ρ11, ρSS, ρAA, ρ44) and the blockade measure, β. Also shown are the real (solid line) and imaginary

(dotted line) parts of the transition dipole moment of the symmetric state, µSS � ρ1S�ρS1�ρS4�
ρ4S.
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two single exciton states. We then compared the two models on a system with a

strong plasmon mediated interaction between the SQDs and a weak direct interac-

tion between them. In this case, we found that while the results of the two models

were similar, dipole blockade and the level splitting of the single exciton states in

the quantum model are non-trivial effects even in this regime.
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Chapter 6

Concluding Remarks

In this thesis, we have studied hybrid systems consisting of SQDs and MNPs.

Coupling the sharp, discrete resonance of the SQD to the broad continuum of plas-

monic modes supported by the MNP with an applied driving field near the exciton

resonance, should provide for dramatic signatures in the system response. We have

developed theory to identify these signatures. Furthermore, the ability of MNPs

to perform subwavelength confinement of light (in the form of plasmons), MNPs

are a promising candidate to facilitate the directed transport of excitations and/or

quantum information transfer between adjacent SQDs (or other types of quantum

emitters). Our results address the physics that underlies this paradigm.

To exploit this paradigm for quantum, nanoscale transport and communica-

tion, one needs to understand how MNPs act as nanoantennas and nanoguides.

One must understand the coupling between the exciton of the SQD and plasmons

in the MNP. One must also understand how SQD-to-SQD quantum communication

is modified by transfer via plasmons. Finally, one must understand how transfer

is further modified if the metal nanoparticles are small and quantum effects can

influence their response. In this thesis we have focused primarily on the effects of

coupling between the SQDs and the MNPs.

Realization of nanostructures composed of SQDs and MNPs for use in nanode-
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vices will require accurate theoretical models, which can predict the hybrid system

response. Once these models are built, one can then use them to understand how the

coupling introduced between these nano-objects, alters and modifies the behavior of

each. By examining the conditions which cause different phenomena to emerge, one

could then predict regions of parameter space which best exhibit novel properties of

interest.

In this work, we have investigated the modification to the optical response

of SQD-MNP and SQD-MNP-SQD hybrid systems. In particular, we probed the

parameter space of these systems and identified a rich spectrum of phenomena: the

nonlinear Fano effect, exciton induced transparency, suppressed SQD response, and

bistability. We then located the regions of parameter space that lead to these distinct

regimes of system behavior and set bounds on each. By considering the regions of

parameter space where these phenomena occur, we were then able to deduce what

causes them to emerge.

We showed how constructive and destructive interference of the local fields,

internal to the system, with the external fields driving the hybrid structure is central

in determining the system response. Using this knowledge, we then looked at how we

could generalize these results to similar systems and more complicated structures.

We then saw that this knowledge could be exploited to engineer hybrid systems,

by tuning the SQD size and resonance, as well as the MNP geometry, to enhance

or to bias the system response towards a particular, desired behavior. Specifically,

we found that local field enhancement from nanorods can provide easier access to

strong SQD-MNP coupling regimes.
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The effect of MNP size, shape and SQD placement was analyzed to determine

the regimes where the local multipolar response becomes significant. We identified

regimes where dark modes and higher order multipolar modes could influence hybrid

response. Strong, local field coupling via dark modes changes the interference and

self-interaction effects dramatically. External fields do not directly drive this MNP

dark mode, so SQD-MNP coupling is dominated by the local induced self-coupling.

Coupling to higher order modes could be critical for long-range excitation transfer

between different SQDs coupled to a nanorod.

To build realistic models that could allow for the simulation of hybrid nanos-

tructures, we employed many techniques. We examined a number of different ap-

proximation techniques, and discussed the assumptions and implications of each.

Furthermore, we employed these approximations in various coupling regimes and

compared the results against models which utilize differing methods. Such checks of

consistency allowed us to test the validity of our models in various limits. In partic-

ular, we saw that while a dipole approximation was sufficient to model the response

of a spherical MNP with a radius that is small compared to interparticle separation,

for larger spherical MNPs or elongated nanorods or wires, a more complete approach

was needed. This consideration led us to use a full electrodynamical calculation, us-

ing the boundary element method to determine the local induced field produced by

a nanorod. In the SQD-MNP-SQD system, we identified further issues in modeling

such a system. Specifically, we saw that modeling the coupling between the SQDs

semiclassically could lead to unstable and oscillatory behavior in the steady state.

This chaotic behavior which arises in the semiclassical model, required a quantum
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mechanical model to properly account for the coupling between the SQDs.

6.1 Looking Ahead

Work is now in progress to improve upon the models developed in this thesis.

Specifically, the exact quantum nature of the SQD-MNP interaction is being ex-

plored by treating the plasmon quantum mechanically. Such quantum mechanical

corrections to the semiclassical SQD-MNP model would become important for a

number of reasons. For one, very small metallic structures will begin to confine the

plasmons. Recently, it has been shown that even MNPs as large as 10 nm in diam-

eter will begin to exhibit plasmon resonances which diverge from values predicted

classically due to a change in particle permittivity in the quantum regime [66]. Fur-

ther reducing the MNP size will eventually lead to the appearance of sharp, distinct

modes replacing the broad continuous response of larger MNPs [61, 62]. Perhaps

more importantly, a quantum mechanical treatment of the plasmons is necessary if

we wish to investigate corrections introduced by quantum mechanical coupling for

the SQD-MNP interaction. For example, the quantum nature of exciton-plasmon-

exciton conversion (for either transfer between SQDs or the self-interaction of an

SQD) determines the loss of quantum information that occurs in the process.

Recently, several theoretical investigations have gone beyond the semiclassical

limit in studying SQD/MNP hybrids by treating the plasmon-exciton interaction

with quantum mechanical methods, such as treating the plasmon in the quasi-mode

formalism commonly employed in cavity QED [58, 59], or by using Green’s function
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techniques [67]. In the quasi-mode method, the plasmon is modeled as a single,

broad, effective mode which couples to the exciton. This mode is then often traced

out of the problem by invoking the very fast nature of the plasmon relaxation (com-

pared to the relatively long lived exciton). However, in certain situations, this large

hierarchy of time scales might not hold. In fact, since metallic nanostructures can

have large Purcell factors, close proximity of the SQD can greatly enhance the emis-

sion rate of the exciton, by as much as a few orders of magnitude or more. This

can reduce the range of time scales of the system interactions, and could lead to a

more coherent coupling between SQD and MNP. Such a system would provide for

fast excitation transfer, and a reduction in the loss of quantum information.

Currently, work is being done to build more advanced models to more accu-

rately predict SQD-MNP and SQD-MNP-SQD hybrid behavior in the case where

the quantum nature of the coupling is important. These models treat the plasmons

in a quantum mechanical manner with a quasi-mode approach. Rather than trace

over the plasmon mode, which assumes a non-coherent exciton-plasmon coupling,

we retain the plasmon mode in the problem and determine the evolution of both

the exciton and plasmon states. The evolution of the system is calculated using

a quantum trajectory method [68], in which a system’s evolution is governed by a

non-Hermitian, effective Hamiltonian, and spontaneous decay is simulated by Monte

Carlo-determined “quantum jumps”. By treating the exciton-plasmon coupling fully

quantum mechanical, one should be able to answer questions that necessitate a co-

herent exciton-plasmon coupling. The work presented in this thesis has been an

integral component in the building of these models.
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