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The current study investigated how between-subject and within-subject 

variance-covariance structures affected the detection of a finite mixture of unobserved 

subpopulations and parameter recovery of growth mixture models in the context of 

linear mixed-effects models. A simulation study was conducted to evaluate the impact 

of variance-covariance structure difference, mean separation, mixture proportion and 

sample size on parameter estimates from growth mixture models. Data were 

generated based on 2-class growth mixture model framework and estimated by 1-, 2-, 

and 3-class growth mixture models using Mplus. Bias, precision and efficiency of 

parameter estimates were assessed as well as the model enumeration accuracy and 

classification quality.  

Results suggested that sample size and data overlap were key factors 

influencing the convergence rates and possibilities of local maxima in the estimation 

of GMM models. BIC outperformed ABIC and LMR in identifying the correct 



  

number of latent classes. Model enumeration using BIC could be improved by 

increasing sample size and/or decreasing overall data overlap, and the latter had more 

impact. Relative bias of parameters was smaller when subpopulation data were more 

separated. Both the magnitude of mean and variance-covariance separation and 

variance-covariance differences impacted parameter recovery. Across all conditions, 

parameter recovery was better for intercept and slope estimates than variance and 

covariances estimates. Entropy values were as high as the acceptable standards 

suggested by previous studies for any of the conditions even when data were very 

well-separated. Class membership assignment was more accurate when mean growth 

trajectories were more different among subpopulations and mixing proportions were 

more balanced. 
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Chapter 1: Introduction 

A primary goal of social and behavioral scientists interested in investigating 

how human behavior changes or develops is to make inferences on features 

underlying profiles of continuous repeated measures data for a targeted population 

(Cudeck, 1996). Of particular interest is to study how responses for individuals 

change over time and to investigate those attributes that may account for individual 

differences in change characteristics. A distinguishing feature of longitudinal data is 

that the repeated observations on the same individual are not independent (i.e., 

repeated measures within the same subject are correlated). Furthermore, the variance 

of the repeated measurements may not always be constant across multiple time 

points. Thus, statistical methods, like multiple regression using ordinary least squares 

estimation, which assumes independent observations and conditional homogeneity of 

variance, should not be used to estimate model parameters.  

Historically, statistical methods such as repeated measures ANOVA (RMA),  

repeated measures MANOVA (RMM), auto-regressive and cross-lagged multiple 

regression as well as methods based on calculated quantities or derived values that 

summarize the repeated measures (e.g., area under the curve) have been the primary 

methods utilized for analyzing longitudinal data (see, e.g., Collins & Sayer, 2001; 

Gottman, 1995). Choosing an appropriate analytic method often depends on two 

primary considerations. First, the analytic method must provide direct evidence that 

tentatively supports or refutes the research hypotheses posited by the investigator. 

Hypotheses leading to the use of these more conventional analytic methods tend to 

focus on aggregate group differences failing to address questions regarding the nature 
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and determinants of change at the individual level. Secondly, characteristics of the 

longitudinal design, the data themselves, and the underlying assumptions often 

dictate which method can be applied in a given situation. Many of these analytic 

methods suffer from unrealistic assumptions that may limit their usefulness in real 

world situations. For example, technical assumptions such as sphericity underlying 

RMA are rarely met in practice in the social sciences (see, e.g., Howell, 2007). Other 

limitations of traditional methods for longitudinal analyses include their inability to 

handle missing data or unbalanced designs. As longitudinal data are often collected 

with long follow up periods, missing data are often inevitable. Sometimes the 

proportion of missing data can be substantial. Missingness in longitudinal data is 

usually a result of dropout, mortality, characteristics of the protocol and/or other 

subtle events that may occur across the study period. Unbalanced designs occur when 

not all participants are measured at the same time points. For example, it may be 

known beforehand that the participants will enter the study at different ages and the 

timing of the waves of measurement will depend on uncontrollable participant factors 

(e.g., vacation time, forgetfulness). In this scenario, the times that study participants 

are measured could be entirely unique. Traditional methods like RMA and RMM, 

which are often viewed as being less flexible in terms of design considerations, 

would drop cases with missing values (e.g., listwise deletion) at any time point and 

do not accommodate unbalanced designs.  

In part, an increase in computing power brought by new technology in the 

1980s made it possible to apply more sophisticated, modern methods to studying 

change or development.  A myriad of statistical models and methods were proposed 
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and developed to investigate longitudinal change in a wide variety of behavior 

including human cognition development, crops growth, and so on. One such model, 

the linear mixed-effects (LME) model (Laird & Ware, 1982), is grounded in the 

philosophical and mechanistic underpinnings of regression. Unlike its more 

conventional counterparts, LME models are flexible to handle both data that are 

missing and observations that are gathered from an unbalanced design. Under the 

assumption that the mechanism underlying the missingness is missing at random 

(MAR, Little & Rubin, 1987; Schafer & Graham, 2002), the mixed-effects modeling 

framework provides a platform for implementing appropriate procedures for drawing 

valid inferences of model parameters without forcing the researcher to omit cases 

thereby losing potentially valuable information (Enders, 2010). 

As the name suggests, a linear mixed-effects model contains both fixed and 

random effects (the model will explained in more detail in Chapter 2). Random 

effects models are often linked to the general analysis of variance models. For 

example, in a one-way between-subjects ANOVA model, “effects”, defined as the 

differences between the group means and the grand mean, are commonly treated as 

fixed, yet unknown, finite constants. These effects can also be thought of as being 

randomly selected from an infinite population of effects, and assumed to be 

independently and identically distributed with mean zero with a certain variance. The 

LME model may be viewed as a generalization of a variance component regression 

analysis model. When the number of groups is small and the number of observations 

per group is large, the group-specific coefficients are treated as fixed as in the regular 

ANOVA model. When the number of groups is large but the number of observations 
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per cluster is relatively small, a certain number of groups can be randomly selected 

and the group-specific coefficients are treated as random (Demidenko, 2004). 

In the context of longitudinal data analysis, the fixed effects are parameters that 

describe population growth characteristics, providing a summary of how a response 

variable changes systematically as a function of time or other condition. The 

unobserved heterogeneity of growth among subjects is represented through the 

random effects. The random effects essentially allow individual subjects to have their 

own functional form, and thus their own trajectories, but whose functional 

parameterizations are distinct from the population average trajectory.  

 Introducing random effects in a longitudinal model also has the advantage of 

explicitly acknowledging that variability in the repeated measures can be partitioned 

into at least two components: variability that occurs between subjects and variability 

occurring within subjects. The variance-covariance structure of the random effects 

describes between-subject variability in the growth characteristics implied by the 

functional form of the model. The variance-covariance structure of the individual-

level residuals represents a measure of misfit between individuals’ data and their own 

fitted function. Interestingly, if the data permit it, the within-subjects covariance 

structure can be partitioned further to account for measurement error that is separate 

from serial correlation induced by within-subject fluctuations accompanying the 

responses of individual over time (Fitzmaurice, Laird, & Ware, 2011).  

In sum, the LME model allows for individual functions to differ from the mean 

function over the population of subjects, yet characterizes both population and 

individual patterns as members of a single response function. Different sources of 
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variability arising from the repeated measures can be acknowledged and explicitly 

modeled. These important facets of change are thought to summarize growth for a 

single population. Yet, in some instances this assumption is too restrictive or 

untenable.     

1.1 Population Heterogeneity 

In a standard LME model, time-specific within-subject errors and an 

individual’s coefficients (random effects) are often assumed to follow a normal 

distribution and are indeed subject-specific. These assumptions imply that the data 

are sampled from a single population with common a mean and variance-covariance 

structure. In some situations, there exist subpopulations that may differ in one or 

more population parameters. Sometimes the subpopulations are known by the 

researcher and thus can be modeled by adding a covariate in the model (e.g., adding a 

dummy variable indicating subject’s gender) or proceeding with a multiple group 

analysis (Singer & Willett, 2003). In other cases, subpopulations have not been 

identified by researchers a priori even though theories or previous studies may 

suggest differences in growth parameters among them. Graphs in Figure 1 are 

hypothetical examples to demonstrate subgroup differences in growth trajectories. 

The graph on the left shows the individual trajectories of all people from a target 

population which is hard to recognize whether there exist subgroups with different 

growth characteristics. The graph on the right uses different colors to illustrate how 

two identified subgroups in this particular population distinguish themselves by their 

growth trends. Without any attention on possible subgroup growth differences, the 

conventional mixed-effects model may fail to provide accurate estimates for any of 
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the subgroups since it does not take account of the subpopulation level heterogeneity 

(Jedidi, Jagpal, & DeSarbo, 1997; Muthén, 1989).  Areas of research such as biology, 

genetics, psychology, social- and cognitive-development regularly encounter 

situations in which theories support distinct developmental trajectories within 

unknown subpopulations. For example, Rescorla, Mirak and Singh (2000) studied the 

development of children’s vocabulary and found that two groups of “late-talker” 

children showed dramatic vocabulary spurts at different ages. The delay in 

vocabulary acquisition of one group of children had direct clinical implications for 

diagnosing language delay among children in general.  

 

Figure 1. An example of hidden subpopulation heterogeneity in growth. 

 
In response to the demand of modeling population heterogeneity in longitudinal 

profiles, LME models, and more broadly growth models, have successfully 

incorporated finite mixture models into this framework (Muthén & Shedden, 1999; 

Verbeke & Lesaffre, 1996; Verbeke & Molenberghs, 2000). Finite mixture models 

have been used to depict a variety of phenomena in numerous fields including 
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biology, physics, economics, psychology and social sciences. One of the earliest 

studies in mixture modeling was conducted by Karl Pearson over 100 years ago. In 

his classic paper, Pearson (1894) investigated subspecies among crabs and obtained 

estimates for a normal mixture distribution using a moment-based approach. In 

longitudinal analyses, a finite mixture model can be specified in situations where a 

single parametric family is inadequate to provide a satisfactory description of change 

characteristics or variability in observed repeated measures data. A finite mixture 

model relaxes the assumption of a single population and allows parameters to vary 

across different subpopulations (Muthén, 2004). In sum, a finite mixture of growth 

models has become a powerful tool to detect heterogeneous growth trajectories of 

unobserved population subgroups. After group membership identification, further 

analysis on its relation with possible covariates can be carried out.  

1.2 The Current Study 

Researchers in the field of growth modeling are sometimes interested in 

investigating the existence of subpopulations with distinctive growth trajectory 

characteristics, a model-based post-hoc classification of subjects, or both. The growth 

characteristics refer to both parameters that describe the functional form of the 

trajectories as well as variance and covariance components summarizing the patterns 

of variability of the repeated measures. Investigation of a simple linear growth 

model, for example, might hypothesize subpopulation differences in intercept and 

slope parameters. In addition, variability in the repeated measures modeled through 

the random effects and time-specific residuals may also differ by latent 

subpopulations. Studies on growth mixture modeling have extensively investigated 
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issues about parameter recovery of mean structure components; model fit indices, 

and classification accuracy (Muthén & Shedden, 1999; Nylund, Asparouhov & 

Muthén, 2007; Tofighi & Enders, 2008; Tolvanen, 2007; Wang & Bordner, 2007).  

Real data analyses mainly focus on discovering the differences in the mean structure, 

in other words, the subpopulation intercepts and slopes for the linear model (Colder 

et al., 2002; Odgers et al., 2007; Verbeke & Lesaffre, 1996) but much less attention 

has been paid to the variability of the random effects and residuals. Researchers have 

recognized that class separation among clusters can affect the recovery of parameters 

and classification accuracy, but none of them have systematically investigated how 

patterns of variability in the repeated measurements can affect class separation, 

which in turn impacts the ability of the model to generate estimates. The major 

objective of this study is to focus on the roles the between-subject and within-subject 

variance-covariance structures play in detecting a finite mixture of unobserved 

groups and parameter recovery in the context of LME models as a tool for modeling 

growth.  
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Chapter 2: Literature Review 

This chapter introduces the linear mixed-effects model and its extension to 

growth mixture models. As mentioned in Chapter 1, the linear mixed-effects model 

emerged from regular linear regression models. The beginning of this chapter will 

briefly talk about regular regression models and the reason why random effects 

should be added for repeated measures design. Finite mixture distributions will be 

discussed along with an introduction of measures of distances among component 

distributions. The growth mixture model which is an extension of the linear mixed- 

effects model through adding mixture components is explained followed by an 

illustration of the estimation and applications of the model. 

2.1 Regression Models 

Modern statistical methods of handling longitudinal data have a strong 

foundation in regression. Before introducing the linear mixed-effects model for 

repeated measures data, a brief discussion of the standard linear regression model is 

warranted. Consider the following general linear model,  

i i iy e′= +X β  (1) 

where iy  is the response or dependent variable for ith subject, 1 2( , ,..., )i i i pix x x′ =X  is 

a 1 p×  vector whose elements are values on a set of independent variables or 

predictors, and 1 2( , ,..., )pβ β β ′=β  is a 1p×  vector of regression coefficients. In the 

linear regression model, it is presumed that all individuals have the same population 

regression coefficients β  which are often referred to as fixed parameters (Kutner, 

Nachtsheim, Neter, & Li, 2005). The regression model in Equation 1 demonstrates 

that y is characterized by a linear combination of the predictors. The uncertainty in 
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the relation is modeled through the error term ie  which is generally assumed to be 

normally and independently distributed with mean zero and common variance, 2σ , 

and uncorrelated with the predictors in the model. On the right side of Equation 1, ie  

is the only random term in the regression model that is allowed to vary among 

different individuals. Since the error or residual term is randomly distributed among 

individuals, it is often referred to as “random error.” 

An ordinary regression analysis assumes that the observations are independent 

from each other. This assumption is violated when the data are clustered – as they are 

when the same individuals are measured repeatedly over time. In studies of 

agriculture, behavioral science and education, clustered data are common. For 

instance, in the study of crop yield, several individual plants may be planted within 

the same plot. In this way plants are nested within plot. Other examples of sampling 

designs that induce a certain correlation among the data include sampling siblings 

within the same family or students within the same school. Longitudinal data is a 

special case of clustered data where the clusters are composed of repeated 

measurements on the same individual across different occasions. Observations within 

a cluster are not independent and the correlations between multiple observations of a 

single subject should be accounted for in the analysis.  

2.2 Sources of Variability in Repeated Measures Data 

Three different sources of variability are often identified to have an impact on 

correlation among repeated measures: between-subject heterogeneity, within-

individual variation and measurement error (Fitzmaurice, Laird, & Ware, 2011). 

Between-subject heterogeneity reflects the natural variation in individuals’ propensity 
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to respond. Individuals may have different response trajectories over time. For 

example, in a linear growth analysis, individuals have different intercepts and 

regression slopes. Within-individual variation can be conceptualized as 

misspecification of different individuals’ response trajectory over time which will 

induce correlation among repeated measures data. Random measurement error is the 

last source of variability in longitudinal data. In educational and psychological 

studies, it is often that measurement instruments or procedures are imprecise, which 

cause within-subject variation. Reliability is the consistency, or reproducibility, of an 

instrument to measure certain characteristics of subjects. Scores gathered repeatedly 

from instruments with low reliability have attenuated correlations among the data. 

Within-individual variation and measurement error are conceptually two distinct 

sources of within-subject variation. However, they are rarely modeled separately in 

longitudinal studies (Fitzmaurice et al., 2011). Instead, they are often combined into a 

single error term. Figure 2 shows how these three sources of variability are 

represented in longitudinal data. 



 

12 
 

 

Figure 2. Three sources of variability represented in longitudinal data. 

 

Figure 2 above shows the growth trend of two individuals, A and B, at six 

measurement occasions. The dotted line is the population growth trend while the 

straight lines are the individual trajectory for A and B. Separation of the true response 

profiles (straight lines) for subjects A and B represent heterogeneity (or between-

subject variation) in individuals. The black dots are the repeated measures with no 

measurement error while the open circles denote the observed repeated measures with 

measurement error. The amount of measurement error resulting from using a 

particular instrument will largely impact the degree of correlation among repeated 

measures.   

The correlated error structure makes repeated measures data not applicable for 

regular regression analysis. Conventional approaches to handling repeated measures 
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data include univariate analysis of variance (ANOVA), multivariate analysis of 

variance (MANOVA), covariance pattern models, transition models and mixed-

effects models. Mixed-effects models have some advantages over these other, more 

traditional alternatives statistical methods, when analyzing longitudinal data. 

According to Blozis and Cudeck (1999), this family of models allow (i) both 

population and individual patterns of change to be characterized with a common 

mathematical function yet whose parameterizations are different; (ii ) subjects to be 

measured at unique occasions of time or condition; (iii ) the number of measurement 

occasions to be different; (iv) specification of more realistic residual covariance 

structures ; and (v) missing data when the missing data are missing at random or other 

can be handled in a straightforward manner. 

To elaborate on this latter point, mixed-effects models are ideal candidates for 

longitudinal analyses because they can accommodate both unbalanced designs and 

missing data which are often encountered in practice. Thus, occasions which each 

individual are measured do not have to be equally spaced, and in fact, can be a 

completely unique sequence. In longitudinal studies, missing data are almost 

inevitable since, for many non-experimental protocols, there is greater chance for 

participants to miss one or multiple observations. Of course, missingness can occur 

for a variety of reasons including dropout, attrition, or some other unforeseen 

circumstance. When there exits missing observations, the data are unbalanced over 

time and not all individuals have the same measurement occasions. Sometimes the 

unbalanced data in longitudinal studies is planned by the researchers to reduce the 

time span or cut the cost of the study. The cohort sequential design (Duncan, Duncan, 
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& Stryker, 2006) is a good example of planned missingness while the rotating panel 

(Laird, 1988) design is an example of a planned unbalanced design for longitudinal 

studies.  

2.3 Linear Mixed Effects Models 

The linear mixed-effects (LME) model, first mentioned as a two-stage random 

effects model by Laird and Ware (1982), evolved from the conventional multiple 

linear regression model with the inclusion of additional random terms for some or all 

of the fixed regression coefficients. Using vector and matrix notation, the classical 

linear mixed-effects model for a typical individual selected from the population can 

be expressed as,  

 ,i i i i i= + +y X β Z b e  (2) 

  
where 1( , , )

ii ny y ′=y K  is an 1in ×  vector of responses for the ith individual, 

1, ,i m= K , β  represents a 1p×  vector of fixed effects, iX  is a design matrix for the 

fixed effects specific to the ith individual, bi  is a 1q×  vector of random effects,iZ  is 

an in q×  design matrix for the random effects, and ie  is an 1in ×  vector of regression 

errors, which is often assumed to normally and independently distributed with mean 0 

and covariance matrix iR : i iNe ~ (0, R ). In this model, bi represents the individual 

difference in growth, i.e., between-subject variation, while iR  represents the within-

subject variability of data including within-subject variation and measurement error. 

Conditional on the random effects, bi, Equation 2 implies 

E( | )                    cov( | ) .i i i i i i i i= + =y b X β Z b y b R                  
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In practice, in the second stage of linear mixed effects models, the  1q×  

vector of random effects, bi, is assumed to follow a multivariate normal distribution 

with mean 0 and q q×  variance-covariance matrix D, independent of each other and 

of the ie . That is,  

~ ( , )i Nb 0 D  

cov( , )i i ′ =b b 0 cov( , )i i′ =b e 0  cov( , )i i ′ =e e 0     for  i i ′≠ . 

Given the covariance assumptions above, let ( | )i if y b  and ( )if b  be assumed 

multivariate normal density functions. The marginal density function of iy  is then 

given by  

( ) ( | ) ( ) ,i i i i if f f d= ∫y y b b b  

which can be specified in a closed form by carrying out the integration of the joint 

density function over ib . Under these assumptions, the marginal mean and covariance 

for iy  is  

{ }
{ } { }

E( ) E E( | )

cov( ) E cov( | ) cov E( | )

.

i i i i

i i i i i

i i i

i

= =

= +

′= +

=

y y b X β

y y b y b

R Z DZ

Σ

 

As can be seen from the previous individual and marginal mean structures that 

the random effects quantify the extent to which the regression parameters for the ith 

subject depart from the population regression coefficients. As the random effects have 

a mean of zero, as shown through matrix integration in Harring (2005), iy  is an 
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independent multivariate normally distributed vector with mean iX β and variance-

covariance structure, i i i i′= +Σ R Z DZ .   

2.3.1 Estimation of Model Parameters. Inferences are generally made on the 

marginal distribution via maximum likelihood estimation. Let ξ  be a row vector of 

the unique elements in iR , then { , , ( ) }vech′ ′ ′=θ β ξ D , where the ( )vech⋅  operator 

creates a column vector of a symmetric matrix by stacking the diagonal and lower 

diagonal elements below one another. The resulting contribution of individual i to the 

marginal loglikelihood can then be written as: 

( ) ( )

( ) ( )

1
12 2

1

1

1

1
ln ( ) ln (2 ) exp

2

1 1
ln(2 ) .

2 2 2

inm

i i i i i i i
i

m
i

i i i i i i
i

L

n

π

π

− − −

=

−

=

   ′= − − −   
    

′= − − − − −

∏

∑

θ Σ y X β Σ y X β

Σ y X β Σ y X β

 

Estimation can be carried out in a number of ways including gradient-based methods 

(Demidenko, 2004; Lindstrom & Bates, 1988), the expectation-maximization (EM) 

algorithm (Dempster, Laird, & Rubin, 1977), or restricted maximum likelihood 

(Harville, 1977; Laird & Ware, 1982). 

2.3.2 Example—LME model of Linear Change. To make the general 

formulation in the previous section more concrete, consider a basic linear mixed-

effects model for straightline change with random intercept and slope. For the model 

expressed in Equation 2, the design matrix for β and bi are identical: 

1

2

1

1
,

1
i

i

i

i i

in

t

t

t

 
 
 = =
 
  
 

X Z
M M
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where ijt  is the subject-specific measurement occasions, j = 1, … , ni . The response 

score for the ith subject at the jth time point can be described as: 

0 1 .ij i i ij ijy t eβ β= + +  (3) 

In Equation 3, each individual i has a specific intercept 0iβ  and regression 

slope, 1iβ . As a basic convention, the individual regression coefficients 0iβ and 1iβ  

can be decomposed into the sum of fixed and random effects, 0 0 0i ibβ β= +  and 

1 1 1i ibβ β= + , where 0β  and 1β  are the population intercept and slope, respectively; 

and 0ib  and  1ib  are deviations of the ith individual’s intercept and slope from the 

population parameters. In the majority of cases, the number of columns in iZ   is a 

subset of columns in iX . This allows some regression parameters to be fixed across 

subjects while others can vary randomly. Furthermore, permitting iZ  and iX  to be 

unique allows potentially different static, individual covariates (i.e., gender, treatment 

condition) to be incorporated to explain why intercepts and slopes vary among 

individuals. For example, if gender (Gender) is added in the model as a person level 

covariate, the response model would be specified as  

0 1 0 1 0 1 ,ij ij i i ij i i ij ijy t Gender Gendert b b t eβ β γ γ= + + + + + +  

where 0γ and 1γ are the effects of gender on the intercept and linear growth rate. 

Suppose for person i in the non-reference gender group (coded as 1), the design 

matrix, iZ  for the random effects will not change but the design matrix for fixed 

effects becomes 
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1 1

2 2

3 3

1 1

1 1

1 1 .

1 1
i i

i i

i i

i ii

in in

t t

t t

t t

t t

 
 
 
 =
 
 
 
 

X
M M M M

 

Recall, that the three sources of variation and covariation among the repeated 

measures can be modeled via the LME model, within-subject variation, between-

subject variation and measurement error. An important feature of longitudinal data is 

that the repeated measures at different occasions are correlated. For regular repeated 

measures model without random effects, different intra-individual error structures, 

such as an autoregressive structure, can be specified to account for the serial 

correlation among the repeated measures. In LME models, the marginal covariance of 

response vector iy has two components, D  and Ri. In general, cov( )iy  has non-zero 

off diagonal elements capturing the correlation among repeated measures and is 

decomposed into D  and Ri where D  accounts for the between-subject variation 

which induces the correlations among repeated measures of iy and Ri is the within-

subject variation. In fact, because the random effects usually account for a large 

amount of covariance among the repeated measures, there is not a great deal of 

covariance left among individual errors (Fitzmaurice et al., 2011). Therefore in 

practice, it is common to adopt a simple structure for the error variance-covariance 

matrix like, 2

inσ I , where I  is an identity matrix of dimension ni. This simplified error 

structure was coined the conditional-independence model by Laird and Ware (1982) 

which indicates that the ni responses on individual i are independent, conditional on bi 

and β . In other words, the correlation among the repeated observations on the same 
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individuals is accounted solely by the correlation of random effects. Then the 

marginal variance-covariance of iy  could then be defined as 2

ii i nσ′ +Z DZ I . To be 

specific, for the LME model with random intercepts and random slopes, the variance 

of response of subject i at time j can expressed as  

2 2
0 0 1 1var( ) var( ) 2 cov( , ) var( ) ,ij i ij i i ij iy b t b b t b σ= + + +  

and similarly the covariance of ijy  and iky  is 

0 0 1 1cov( , ) var( ) ( )cov( , ) var( ).ij ik i ij ik i i ij ik iy y b t t b b t t b= + + +  

The above variance-covariance structure of  ijy  suggests that no assumption of 

homogeneity over time is necessary for the mixed-effects model since this structure 

allows the variances and covariances to vary as a function of time. Thus, the 

variances of the repeated measures are already complicated functions of time, which 

implies that the within-subject component may very well be a simple structure.   

The proposed model explicated in Section 2.3 assumes that the subjects come 

from a single population and the random effects are sampled from a normal 

distribution. However, the distribution of random effects does not necessarily need be 

multivariate normal. For example, Pinheiro et al. (2001) demonstrated how the 

random effects could be modeled with a multivariate t-distribution with known or 

unknown degrees of freedom to obtain more robust and reliable estimates from data 

with outliers. Oberg and Davidian (2000) proposed using a transformation of 

response and predictors to achieve approximate within-subject normality. Instead of 

using the standard logarithmic transformation blindly, their model transformed both 

responses and regression predictors by a parametric function estimated from the data. 
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Arellano-Valle et al. (2005) adopted a skew-normal distribution for the random 

effects and the within-subject errors in mixed-effects models to address non-

normality. Another method that has been suggested to account for non-normality in 

the random effects distribution is to assume a finite mixture distribution. Muthén and 

Asparouhov (2009) demonstrated how to use mixture modeling with latent classes to 

represent non-normality of random effects. They referred to their model as a non-

parametric representation of random effects, an approach that discretized the random 

effects distribution into a finite mixture distribution where the latent class means and 

class probabilities are points and weights of the component distributions.  

The above mentioned models for non-normal random effects distributions still 

assume all individuals come from a single population and that a single growth 

trajectory can adequately depict the entire population growth characteristics. Yet, 

existing theories and studies in many fields have suggested different subgroups have 

different growth trajectories. For example, a large amount of literature in human 

development have shown people progress differently in a variety of disciplines, such 

as alcohol usage, cognition, and language acquisition to name just a few (Chassin, 

Pitts, & Prost , 2002; Connell & Frye, 2006; Nagin & Tremblay, 2001; Rescorla, 

Mirak, & Singh, 2000). The presence of non-normal random effects distributions can 

indicate the existence of such sub-populations as well. The growth model can then be 

combined with latent class analysis or mixture model to capture the unobserved 

subgroup heterogeneity within a larger population. Verbeke and Lesaffre (1996, 

1997) extended the LME model by applying a more flexible distributional assumption 

on the random effects. In these papers and the book chapter in Verbeke and 
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Molenberghs (2000, Chpt. 12), the authors referred to this more flexible random 

effects modeling as the heterogeneity model, which  assumes the random effects are 

sampled from a mixture of normal distributions. The heterogeneity model assumes 

subgroups in the population with distinct growth trajectories and within each 

subgroup the random effects form a component of the mixture distribution with 

specific mean and/or variance-covariance structure. In this case it would be useful to 

classify people into different subgroups and identify their unique growth trajectories, 

which will be the focal point of this study. As a point of comparison, if the between-

subject variance and covariance estimates within each class are restricted to zero, then 

the model can be conceptualized as a latent class growth model (Nagin, 1999; Nagin 

& Land, 1993). For the latent class growth model, all individual growth trajectories 

within a class are assumed to be homogeneous which greatly improves model 

convergence in computation. Thus, it can serve as a pre-process for conducting 

growth mixture modeling.  

2.3.3 LME Model and LGC Model Equivalency. As was shown by Muthén 

and Asparouhov (2009), the LME model defined in Equation 2 is statistically 

equivalent to the latent growth curve (LGC) model (Bollen & Curran, 2006; Preacher 

et al., 2008) as implemented in Mplus (Muthén & Muthén, 1999-2010). Consider a 

linear latent growth process with continuous outcome y, the model can be written as 

0 1 ,ij i i ij ijy aη η ε= + +  (4) 

where ija  indicates the time measurement for subject i at occasion j, 0iη  and 1iη are 

the subject-specific  intercept and slope, respectively for subject i, and ijε are the time 
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specific unique factors.  An individual’s growth characteristics 0iη  and 1iη  can be 

further expressed as a function of a population intercept 0α  and slope 1α  and random 

residuals 0iς  and 1iς  with mean zero and certain variability. The decomposition can 

be expressed in the following equations. 

0 0 0i iη α ς= +  
(5) 

1 1 1 .i iη α ς= +  (6) 

In a multilevel modeling framework (Singer & Willett, 2003), Equation 4 

represents the level-1, or subject-specific model, while Equations 5 and 6 represent 

the level-2, or population models.  To make the equivalency more explicit, express 

the LME model in Equation 2 in the language of the LGC model by defining  
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then 

,i i i= =X Z Λ  

0 1( , ) ,α α ′=β  

0 1( , ) ,i i iς ς ′=b  

1 2( , , , ) .
ii i i inε ε ε ′=e K  

The LGC model can then be expressed in matrix notation as 

i i i i= +Y Λ η ε  

.i i= +η α ς  
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For the basic model examined here, any difference between the LME model 

and LGC model is primarily philosophical and not algebraic. The LME model allows 

for more complex (i.e. dependent) data structures by separating the covariance 

structures among lower and higher levels of data, whereas LGC models aggregate 

covariance to a single level structure. Nevertheless, within a two-level growth model, 

these two models provide identical solutions. Curran (2003) demonstrated the 

isomorphism between LME and LGC models analytically and empirically. He 

concluded that estimation of any two-level LME with level-1 and level-2 predictors is 

equivalent to a similarly specified LGC model. For unbalanced data LGC models 

should be estimated using full information ML to achieve identical estimates with 

LME models.  

Later in this chapter, the LME model will be extended to finite mixtures and 

the extension will be equivalent to the finite mixture version of the LGC model. The 

statistical connection between LME models and LGC models makes it convenient to 

analyze LME models using SEM software, like Mplus, which is designed for 

analyzing LGC models but has the additional flexibility to incorporate finite mixture 

models.   

2.4 Mixture Distributions 

In the past decade, finite mixture models have received more attention than 

ever from broad fields in biology, psychology and the social sciences. A variety of 

newer statistical techniques has been created based on finite mixture distributions 

such as latent class analysis, cluster analysis, discriminant analysis and pattern 

recognition. Mixture models are able to model complex distributions “through an 
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appropriate choice of its components to represent accurately the local areas of support 

of the true distribution” (p. 2) (McLachlan & Peel, 2000). It is also useful to adopt a 

mixture distribution in modeling situations intended to detect potential heterogeneity 

in the population (Everitt & Hand, 1981; McLachlan & Peel, 2000). In this study, 

finite mixture distributions will be integrated in the LME modeling framework to 

investigate different growth profiles among unobserved subpopulations. Because of 

its algebraic equivalency with latent growth mixture model which is a combination of 

mixture model and LGC model, this model will be called a growth mixture model 

(GMM) for the remainder of the paper. 

2.4.1 General Formulation. A mixture distribution is a probability 

distribution which can be expressed as a combination of two or more conditional 

density functions. The underlying assumption of a mixture distribution is that the 

random variables are conditionally independent given another random vector. If the 

random vector is a discrete variable, i.e., the number of conditional density functions 

is finite, the compound distribution is a finite mixture distribution (Everitt & Hand, 

1981). For example, the population distribution of students’ weight can be expressed 

as an infinite superposition of weight density conditional on height or a finite 

composition of weight density conditional on gender. The present study will focus 

exclusively on the finite mixture distributions. Let y1,…,yn  denote  p dimensional 

random vectors from a random sample of size n. First, let any vector belonging to 

y1…yn be a continuous random vector with a probability density function. If y is any 

multivariate mixture distribution containing K number of density functions 
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conditional on variable x from a multinomial distribution with K categories, the 

density ( )f y can be written in the form 

1

( ) ( ) ( | ),
K

k k
k

f p x f x
=

=∑y y
 

 
where ( )kp x  is the marginal distribution of variable x which is often named kπ  in 

the literature of mixture distributions. The conditional distribution, ( | )kf xy , is often 

written as ( )kf y which is the density of random variable Y given group membership k 

and is often called the component densities of the mixture distribution. Thus the 

density function of a K-component mixture distribution can be expressed in the 

following form as well, 

1

( ) ( ),
K

k k
k

f fπ
=

=∑y y  

where 0 1kπ≤ ≤  and 
1

1
K

k
k

π
=

=∑ . The values 1π ,..., Kπ  have been referred to in the 

literature as the mixing proportions or weights (McLachlan & Peel, 2000). The 

component density, ( ),kf y  can be any type of distribution but in practice are regularly 

assumed to come from the same parametric family, like the exponential family.   

When the distribution of variable x is known, we can use the equations above 

directly to express the mixture distribution. For example, people are often interested 

in how subjects of different gender would respond differently to certain treatments or 

follow distinct growth trends. Nevertheless, in many real analytic situations, data for 

x is unavailable or latent and the overall mixture distribution is the only known 

quantity. In these cases, it is impossible to observe the underlying variable which 

splits the observations into groups. Thus the parameters in each conditional 
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distribution and the mixing proportions or weights become parameters that need to be 

estimated from the observed data.  

Substantial work has been done to study the mathematical and statistical 

properties of mixture distributions. Many studies were conducted under the 

circumstance that the existence of mixture distributions and the number and 

functional forms of component densities were already known. For these applications, 

theorists have devised many methods for jointly estimating the parameters of mixture 

distributions and the mixing proportions. The methods range from Pearson’s (1894) 

method of moments, maximum likelihood estimation (McLachlan & Krishnan, 2008; 

Rao, 1973), a fully Bayesian approach (Diebolt & Roberts, 1994) and informal 

graphical techniques (Fowlkes, 1979). Within maximum likelihood estimation, the 

mixture problem is often tackled by the EM (Expectation-Maximization) algorithm 

and formulated as an incomplete-data problem (McLachlan & Peel, 2000). In reality, 

the number and functional form of the component densities are often unknown to the 

researcher. Sometimes it is uncertain whether the data come from a mixture 

distribution at all. For instance, Bauer and Curran (2003a, 2003b) suggested using 

mixture models with great caution to distinguish between a single component LGC 

model with corresponding nonnormal random effects distribution and a true mixture 

distribution. Their study results showed that the current procedures proposed for 

model checking of the mixture status as the data may not always effectively 

differentiate between these two conditions. In the ideal situation, theory would dictate 

whether or not a finite mixture is plausible or suggested. In the context of an 

exploration of the data, it is crucial to test for the presence of a mixture distribution, 
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and if the data support the more sophisticated modeling scenario, how should one 

proceed to discover the true number of component densities as well as their real 

function forms. The bootstrap likelihood ratio test and information criteria as AIC and 

BIC have been commonly used for choosing the number of components for a mixture 

density.   

The focus of the present study is on finite mixture models with normal 

components. In practice it is common for researchers to assume the mixture 

distribution is a composite of multivariate normal components. Under many 

circumstances, a mixture model is built on the basis of non-normal features in the 

data which are presumed to result from existence of underlying, latent subgroups in 

the population. The mixture distribution with normal components can be generally 

defined as  

1

( ) ( ; , )
K

k k k k
k

f π φ
=

=∑y y µ Σ , 

where ( ; , )k k kφ y µ Σ  is the multivariate normal density which is characterized by 

component mean vector, kµ  and component covariance matrix, kΣ . The multivariate 

normal mixture is the basis for growth mixture modeling with the noted exception 

that the mean vector and the variance-covariance matrix for the latter are structured to 

adhere to the growth process and its attributes. The combination of the linear mixed- 

effects model with a finite mixture model is defined as a growth mixture model which 

will be introduced in the following section. 
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2.5 Growth Mixture Models 

Linear mixed effects models are frequently used for longitudinal data analysis. 

The random effects define the between-subject variance-covariance structure while 

the regression errors define the within-subjects variance-covariance structure. In 

general, both random effects and residual errors are assumed to be normally 

distributed. This assumption is often taken for granted and applied with little thought 

as to the consequences of violating this assumption. This is largely due to the lack of 

tools to verify this assumption. In standard linear models, residuals can be plotted 

against predicted values to check the assumption of normality, constant variance and 

outliers. These techniques can be applied to linear mixed-effects models for residual 

diagnostics as well. However, diagnostics for mixed-effects models are more difficult 

to perform and interpret, due to the presence of random effects and different 

covariance structures. The predicted random effects values are not eligible for 

normality assessment since their distribution may not reflect the true distribution of 

random effects (Verbeke & Molenberghs, 2000; West, Welch, & Gałecki, 2007). 

When the focus is on finding a population growth trajectory, some important factors 

that may explain the heterogeneity among individuals may be omitted. For example, 

studies about human height development commonly use gender, race and other 

demographic variables to explain why people grow differentially. If the variables that 

would affect the growth trajectory are well-known, it would be easy to include 

predictors or covariates in linear mixed effects model to explain group differences. In 

many research situations, information about sub- populations is unknown to 

researchers. Treating multiple growth trajectories as a single trajectory for whole 
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population may result in inconsistent research findings. As Wang and Bonder (2007) 

pointed out, the reason that previous studies about retirees’ psychological well-being 

found different change trajectories might be that there exists multiple patterns of 

retirees’ psychological well-being changes corresponding to unobserved 

subpopulations.  

Arguably, modeling this type of categorical or class information would help 

sharpen an understanding of the repeated measures if it were known. That is, 

understanding differences in gender would be helpful in explaining observed 

differences in growth of adolescents over time. In the event that classes are unknown, 

the existence of genuinely different growth patterns in the sample manifested through 

the individual trajectories themselves may still be suspected. An important relatively 

recent development in the research on these methods is the extension to latent classes. 

Unknown classes arise when genuinely distinctive clusters of change exist, but are 

embedded within individuals’ growth patterns. Growth mixture models, which 

incorporate heterogeneity in the random effects, appear to be a sensible approach in 

uncovering these latent classes (Muthén & Muthén, 2000; Nagin, 1999; Verbeke & 

Lesaffre, 1996). 

A combination of mixture distributions and linear mixed-effects models is not 

a new idea in statistics. Verbeke and Lesaffre (1996) have already investigated how to 

detect a mixture in the distribution of random effects in linear mixed effects model. 

They did not use the term “growth mixture model” in their paper but referred to their 

model as “heterogeneity model”. However, in Verbeke and Lesaffre’s study, only the 

means of random effects were assumed to vary among component distributions but 
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not the covariance between random effects. The present study would extend this 

model to a more general form to account for more possibilities for heterogeneity of 

individual growth.  

2.5.1 Growth Mixture Model Specification. The standard linear mixed-

effects model has already been explained in Section 2.2. In this section, a growth 

mixture model based on the linear mixed-effects model will be introduced. If there 

exist several sub-populations which have different growth trajectories, the differences 

among sub-populations can manifest in different places, fixed parameters that 

describe the mean growth trajectory, the random effects distribution, and residual 

distribution. A most relaxed formulation of growth mixture model in the linear 

mixed-effects framework would be  

 i i k i i i= + +y X β Z b e  (7) 

1
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i k k
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=
∑e ~ (0, R )
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Equation 7 implies that E( | )i i i k i i= +y b X β Z b . The marginal mean and covariance 

for iy  is  
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Therefore the marginal distribution of iy is 
1

( , ).
K

k i k ik
k

Nπ
=
∑ X β Σ  

The above unrestricted model can impose estimation difficulties since the 

likelihood function is unbounded (details forthcoming). In a GMM framework, this 

model is unidentified. Naturally, researchers make constraints on parameters to make 
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the model identifiable and to smooth the estimation process. In practice it happens 

that some parameters in the model may not vary among subgroups. Sometimes 

subpopulations differ in terms of their mean intercept or slope for a linear model; 

sometimes they differ only in correlation of the intercept and slope. An important step 

in conducting a growth mixture analysis is to specify the proper growth mixture 

model. In this section several possible scenarios where sub-populations show 

different growth patterns will be introduced and a growth mixture model 

corresponding to the particular scenario will be specified. 

Case 1. Mean growth trajectories vary among sub-populations 

The first situation specifies different growth trajectories for each class but 

assumes the variance-covariance of random effects and residuals remain the same for 

all sub-populations. This assumption is commonly adopted by many studies in 

practice within an interest in investigating sub-population heterogeneity of 

longitudinal data (Colder et al., 2002; Duncan et al., 2006; Verbeke & Lesaffre, 1996; 

Wang & Bodner, 2007). Some of these studies make this assumption to make the 

model identifiable in a latent growth model structure. Some also dictate that they have 

less interest in within-class heterogeneity than the patterns of mean change. Figure 2 

shows an example scenario for this case. The graph on the left uses red and black 

colors to show different subgroup growth profiles, while the graph on the right shows 

the bivariate distribution of random effects for intercept and slope corresponding to 

the data in the left graph. The growth mixture model for this scenario can be specified 

as 

 i i k i i i= + +y X β Z b e  
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~ ( , )i Nb 0 D  and i iNe ~ (0, R ) 

 

Figure 3. Growth trajectories and intercept-slope distribution of Case 1. 

 

The graph above depicts a popular scenario in a developmental study where 

some subjects start at lower levels on the outcome but grow faster than those who 

start at higher levels, and both group reach similar level in the end. Even though the 

two subgroups start at different levels and grow at different constant rates, the relation 

between starting point and growth rate remains the same, so does the variability of 

data.   

Case 2. Variance-covariance of intercept and slope vary among sub-populations 

Even though the first case scenario is popularly applied in practice, the strong 

assumption of component-invariant random effects variance-covariance structure 

makes it unrealistic for many real life phenomena. The assumption is usually applied 

for convenience or to avoid technical difficulties (estimating the model), yet 

researchers seldom explore whether this assumption actually holds. In fact, 

heterogeneous variance-covariance structures among subgroups are likely to be 
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present in real life applications (Connell & Frye, 2006;  deRoon-Cassini et al., 2010; 

McCullough et al., 2005;  Muthén et al., 2000; Muthén et al., 2002; Paririla et al., 

2005; Ram & Grimm, 2009). For example, it is reasonable to expect that the slopes 

vary more for sub-populations with moderate-decreasing and high decreasing levels 

of depressive symptoms than those at low and high-persistent levels (Stoolmiller, 

Kim & Capaldi, 2005). Another possibility is that the covariance between intercept 

and slope can vary across subgroups. Figure 3 demonstrates an example of growth 

trajectories with these characteristics. The graph on the left shows two subgroups of 

growth trajectories with different intercepts and slopes; while the graph on the right 

shows the bivariate distribution of random effects for intercepts and slopes.  The 

corresponding mixture model can be specified as: 

 i i k i i i= + +y X β Z b e  

1

~ ( , )
g

i k k
k

Nπ
=
∑b 0 D  and i iNe ~ (0, R ) 

 

Figure 4. Growth trajectories and intercept-slope distribution of Case 2. 
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It is clear that the two subgroups illustrated in Figure 4 differ not only in terms 

of their intercepts and slopes but also with the relation between intercepts and slopes. 

In the graph on the left, the slopes and intercepts of the red colored group are 

positively correlated while those of the black group show negative correlation. 

Case 3. Error variances vary among sub-populations 

The third source of subgroup differences is the within-subject error variances. 

As elaborated in Chapter 1, within-subject variation comes from within-individual 

variation or measurement error. Even though they are rarely modeled distinctively in 

longitudinal studies, some researchers still found significant model improvement by 

modeling component variant error variances (McCullough et al., 2005; Segawa et al., 

2005). Assuming component-specific error variances, the model becomes the ultimate 

unrestricted model as shown in the beginning of this section. Figure 5 is a scenario 

based on the model represented in Case 2 with the errors at level-1 coming from a 

mixture distribution added to the data. The graph on the left of Figure 5 is the mixture 

distribution of errors with the same zero mean and different variance components. It 

is clear that the larger error variances of red group definitely increased the data 

variances of this sub-population. Thus the within-class variation comes from either 

random parameter variation or within-subject variation. Yet little study has been 

conducted to examine how these two types of variances and provide correct variance 

estimates can influence the estimates of GMMs. 
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Figure 5. Growth trajectories and intercept-slope distribution of Case 3. 

 

2.5.2 Estimation of Growth Mixture Models. The estimation of growth 

mixture models are usually implemented via maximum likelihood estimation using 

the Expectation-Maximization (EM) algorithm. The EM algorithm introduced by 

Dempster, Laird and Rubin (1977) is a class of optimizers tailored to estimate model 

parameters via maximum likelihood that can be formulated as a missing data 

problem. Each iteration of the algorithm consists of two steps, an expectation (or E) 

step and a maximization (or M) step. The philosophy behind the EM algorithm is to 

introduce an intermediate, latent variable z whose distribution depends on the 

unknown parameters and when the loglikelihood is expressed in terms of the 

distributions of the latent variable, it becomes easier to maximize. In the mixture 

context, the latent variable is defined as 1ikz = if iy is sampled from the kth 
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belong to component k is ( 1)ik kP z π= = . The likelihood function corresponding to 

Equation 7 can be expressed as 

11

( | ) ( | ) ,
m K

k ik i k
ki

L fπ
==

 
=  

 
∑∏θ y y γ  (8) 

  

where 1( , )m′ ′ ′=y y yK  is a vector of all observed data and θ contains all parameters in 

the marginal model including component probabilities 1( , )Kπ π′ =π K and kγ which 

represents all unique parameters in kβ , kD , and kR . 

Rewriting the likelihood function for observed data y and for the latent 

variable z, the corresponding loglikelihood function is formulated as  

{ }
1 1

( | , ) ln ln ( | ) .
m K

ik k ik i k
i k

l z fπ
= =

= +∑∑θ y z y γ  (9) 

  
The above loglikelihood function is composed of two independent parts: the weighted 

K density function ( | )k i kf y γ and the weighted class proportions. 

Compared to the loglikelihood function corresponding to Equation 8, the 

loglikelihood in Equation 9 is easier to maximize. When maximizing the 

loglikelihood using the EM algorithm, the latent variable z is considered missing. In 

the E-step the expected values of the probability for the ith individual to belong to the 

kth component of the mixture should be calculated for each i and k. Based on the 

current parameter estimates tθ and t
kπ  , the posterior probability is given by 

( ) ( | , ) ( 1| , )
t t t

ik ik i ik iE z P zπ = = =θ y θ y θ  
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1 ˆˆ ,

( | )

( | )
t t

k ik i k
K

k ik i k
k

f y

f y
π γ

π γ

π γ
=

=

∑
 

The conditional expectation of the loglikelihood in the E-step, 

( | , ) | , ,t
iE l  θ y z y θ is given by 

[ ]( )

1 1

( | , ) | , ln ln ( | ) .
t

m K
t

i ik k ik i k
i k

E l fπ π
= =

  = +  ∑∑ θ
θ y z y θ y γ  (10) 

  
In the M-step, the conditional expectation is maximized to get updated estimate θ

t+1. 

Since the two parts of the loglikelihood given by Equation 10 are independent, 

maximization of these two parts can be carried out separately. The maximization of 

the first part of the loglikelihood can be done analytically by setting all first-order 

derivatively to be zero and then solve to get 

1 ( )

1

1 t
m

t
k ik

im
π π+

=

= ∑ θ  

The second part of the loglikelihood in Equation 10 cannot be maximized 

analytically but require a numerical maximization procedure such as Newton 

Raphson. The necessary first- and second-derivatives for the Newton Raphson 

algorithm within maximum likelihood estimation and restricted maximum likelihood 

estimation can be found in Lindstrom and Bates (1988, 1994). Once all parameters in 

θ in the model have been estimated, the random effects can be calculated using 

empirical Bayes estimates. The posterior density of random effects ib is given by 

1

( | , ) ( | , ),
K

i i i ik ik i i
k

f fπ
=

= =∑ θb y θ b y γ  
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where ( | , )ik i if b y θ  is the posterior density function of ib  given 1ikz = . Since the 

posterior distribution of ib  is a mixture of different component distributions, the 

posterior mean of ib is  

1

ˆ ( | , , 1).
K

i ik i i ik
k

b E zπ
=

= =∑ θ b y γ  

Based on the formula presented by Lindley and Smith (1972), the expected value of 

ib can be calculated by 

( | , , 1) ( ) ( ) .i i ik k i i i i k k i i i kE z ′ ′= = − + −b y γ D Z W y X β I D Z WZ µ  

Consequently, the posterior mean of ib is 

1

ˆ ( ) ( ) .
K

i k i i i i k k i i i ik k
k

π
=

′ ′= − + − ∑ θb D Z W y X β I D Z WZ µ  

The present study will use Mplus for model estimation although other 

software programs have been developed in recent years to estimate GMMs (see, e.g., 

Open Mx, Latent Gold, or Flexmix in R). Mplus is a statistical software package that 

estimates statistical models using observed and unobserved (latent) variables. It has a 

built-in estimation procedure for GMMs. As was previously demonstrated in Section 

2.3.2, the growth mixture model based on linear mixed-effects model is statistically 

equivalent to the latent growth model and thus it is convenient to carry the estimation 

through a well-established and widely used commercial software. The specific 

method used in Mplus for latent growth mixture model is called MLR (Muthén, 1998-

2010), which uses a more robust method to calculate standard errors for the MLE 

estimates.  In addition, Mplus uses a quasi-Newton method under the full-information 

maximum likelihood (FIML) framework instead of the Newton Raphson procedure in 
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the M-step (Muthén, 2004). Maximum likelihood estimation for GMMs in Mplus is a 

two stage analysis. In the first stage, the program generates specified number of sets 

of random starting values and run through a smaller number of iterations with each 

set using EM algorithm for more stable estimation. In the second stage, the program 

takes a number of sets with the highest likelihood and continues to iterate through a 

quasi-Newton algorithm until convergence criteria are met.  

It is well known that the estimation of mixture models often encounters local 

maxima in likelihood function, which may result in biased parameter estimates (Hipp 

& Bauer, 2006; McLachlan & Peel, 2000). In the case of heteroscedastic normal 

components, iΣ  are unequal covariance matrices and the loglikelihood of the above 

function is unbounded. Thus, the global maximizer of the loglikelihood function does 

not exist. This has brought difficulties in maximum likelihood estimation of 

multivariate normal mixture distributions. The consistency of MLE solutions for 

normal components with unrestricted component covariance matrices is yet not 

verified mathematically (McLachlan & Peel, 2000). In real data analysis, the 

component covariance matrices iΣ  are often restricted to being the same. 

k =Σ Σ      for k =1, … ,K  

where Σ  is unspecified. Then the maximum likelihood estimation has a global 

maximization and is strongly consistent.  

The focus of the present study does not allow any such restriction of 

covariance matrices, thus special attention should be paid on model estimation issues. 

Nitysuddhi and Bohning (2003) investigated the asymptotic properties of estimates 

computed using the EM algorithm for normal mixture models with component 
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specific variances empirically through a simulation study. They found that EM 

algorithm estimates were consistent and had small bias and mean square error except 

when the subgroup means were close to each other or the variance differences among 

components were large. As McLachlan and Peel (2000) pointed out, even though the 

likelihood for these models is unbounded, “there may still, under regularity 

conditions, a sequence of roots of the likelihood equation corresponding to local 

maxima with the properties of consistency, efficiency and asymptotic normality” (p. 

41). The EM algorithm requires the specification of starting values which to a certain 

degree will affect the parameter estimates. A way to evaluate whether the estimates 

possess the above properties is to run the estimation from different starting values and 

compare the likelihood from different runs. The software Mplus allows model 

estimation using a set of permutated random starting values.  

2.5.3 Enumeration of Possible Subpopulations. An important issue in 

mixture distribution models is how to determine the number of mixture components. 

In the growth analysis case, the question “how many latent trajectory classes exist” 

needs to be addressed. Sometimes a researcher may have an a priori theory about the 

number of sub-populations, but in many cases firm knowledge about either the 

existence of the sub-populations let alone the number of sub-populations is tenuous. 

Similar to the field of exploratory factor analysis, researchers and scholars have 

developed a series of statistical tests and model fit indices to facilitate choosing the 

correct number of classes. Currently, many simulation studies have shown that the 

Bayesian information criterion (BIC) performs better than other information criteria 

across a variety of modeling settings (Jedidi, Jagpal, & Desarbo, 1997; Nylund, 
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Asparouhov, & Muthén, 2006; Tofighi & Enders, 2006; Yang, 2006). Some studies 

also found that Akaike’s information criterion (AIC) tends to overestimate the 

number of components in finite mixture models (Celeux & Soromenho, 1996; 

Nylund, Asparouhov, & Muthén, 2006). In addition to model fit indices, two type of 

likelihood ratio tests, the Lo-Mendell-Rubin (LMR) test (Lo, Mendell, & Rubin, 

2001) and bootstrap likelihood ratio test (BLRT) (McLachlan & Peel, 2000) have also 

been shown to be quite effective in determining the number of correct classes 

(Nylund, Asparouhov, & Muthén, 2007; Tofighi & Enders, 2008). A major 

disadvantage of BLRT is that it requires much longer running time than other tests or 

indices. For the practitioner who is comparing several, yet finite, number of models, 

the time to run BLRT is not as much of a concern. For methodological simulation 

studies, however, this is a major drawback, unless of course, the focus of the study is 

to evaluate the BLRT. Nonetheless, for testing competing models Nylund, 

Asparouhov and Muthén (2007) and Liu (2011) suggested only using BLRT when 

other tests or indices, like BIC, pared down the number of potential models to just a 

small number.   

Another method to assess the number of classes in a mixture model is the 

normalized entropy criterion (NEC) proposed by Celeux and Soromenho (1996). This 

criterion measures how well separated the classes are from a specific mixture model. 

It aims to quantify the uncertainty of classification of subjects into latent classes. The 

entropy values range from 0 to 1, with 0 corresponding to random assignment of class 

membership and 1 to a perfect model-based classification (Celeux & Soromenho 

1996).  
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As pointed out by many researchers (Bauer & Curran, 2003a; Jung & 

Wickrama, 2008; Muthén, 2003), besides statistical tests and model fit indices, the 

number of components of a mixture model should be determined by a series of factors 

including research question, theoretical support, interpretability of components, and 

the rule of parsimony. For the current simulation study, and based on evaluation from 

previous studies, BIC, LMR, and NEC will be the criteria for selecting the number of 

classes in growth mixture models.  

2.6 Previous Simulation Studies in GMM 

Previous studies about growth mixture models have focused mainly on model 

estimation and model selection. Muthén and Shedden (1999) described in detail how 

the EM algorithm worked in estimating latent growth mixture models. Hipp and 

Bauer (2006) investigated the local maxima problems involved in GMM estimation 

through maximum likelihood. Their simulation study found that the MLE estimates of 

GMM through the EM algorithm were very sensitive to starting values assigned in the 

beginning of the process. They further proposed a system to select starting values for 

better model convergence and fewer occurrences of local maxima of the likelihood.  

Nylund, Asparouhov and Muthén (2007) and Tofighi and Enders (2008) 

investigated the performance of a variety of model fit indices and statistical tests on 

identifying the correct number of classes in growth mixture models. Both simulation 

studies adopted relatively simple GMM structures and manipulated such factors as 

class separation, sample sizes and mixture proportions. Nevertheless, in both studies 

the concept of class separation was not well specified and lacked systematic 

definition. The standardized difference between the means of two subpopulations is 
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not necessarily the best way to clarify how the two component distributions are 

separated from each other.  

Another issue that has been overlooked by previous studies is the roles that 

both within- and between-subject variability play in GMM. The overlap among 

subgroups of growth mixture data depends on the fixed parameters (component 

specific to defining the functional form of growth) as well as the variance-covariance 

structure of the data. As was shown in Section 2.3 and Subsection 2.5.1, the variance-

covariance structure of the data is a composition of the random effects variance-

covariance structure and the within-subject error variance structure and the sub-

population distributions may vary in either or both of these structures. A scientific 

way of measuring mixture distribution overlap taking into account of the variance-

covariance structure is necessary if one wishes to systematically investigate the 

impact of the variance-covariance structures in the GMM framework. After reviewing 

a series of articles in the methodological literature and studies of class separation and 

mixture distribution generation algorithms in a variety of fields, the present study will 

use multiple indices and decompose mixture structures into different layers to show a 

more holistic picture of growth mixture data. 

2.6.1 Measures of Distance between Component Distributions. An 

important factor that influences parameter estimates and class membership recovery 

for mixture distributions is how the component distributions in a mixture distribution 

are separated from (or in other words, overlapped with) each other. Several statistical 

indices have been proposed to measure the distance between mixture components. 

Ideally these measures of distance should satisfy the properties of statistical distance. 
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Let ( )g x , ( ),f x  and ( )h x be three proper density functions and let ( , )D g f be the 

distance between ( )g x  and ( )f x . It should then follow that  

a. ( , ) 0D g f ≥  

b. ( , ) 0D g f =  if and only if g f=  

c. ( , ) ( , )D g f D f g=  

d. ( , ) ( , ) ( , )D g f D g h D h f≤ +  

The first approach defines the distance between two densities as:  

1/( , ) ( | ( ) ( ) | ) ,p p
pD g f g x f x dx= −∫  

where p is commonly set to be 1 or 2. When p is equal to 1, it is called Kolmogorov’s 

distance (Ullah, 1996). This family of distance measures satisfies all four distance 

properties but its computation can become unwieldy as the number of dimensions 

increases.  

The second approach is the family of relative entropy or divergence. Among 

approaches within this category, Kullback-Leibler (KL) distance is the one of great 

interest and is regularly used across many disciplines including engineering, 

economics and educational measurement. The KL distance from density ( )f x  to 

density ( )g x can be defined by 

( )
( || ) ( ) log .

( )

f x
D f g f x dx

g x

 
=  

 
∫  

KL distance does not satisfy the last two properties of symmetry and triangle 

inequality (c and d from the above list) and therefore is not referred to as a true metric 

of distance. That is, the distance from ( )f x  to ( )g x  may not be the same as distance 
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from ( )g x  to ( )f x . In practice, to make this measure symmetric, KL distance is often 

redefined as 

( , ) ( || ) ( || )D f g D f g D g f= + . 

If g and f belong to certain parametric families, for instance the family of 

Gaussian distributions, an analytic expression for KL distance is available. Assume 

( ) ( , )f ff x N= µ Σ  and ( ) ( , )g gg x N= µ Σ , then the symmetric version of KL 

distance between f(x) and g(x) is computed as 

1 1 1 11 1
( , ) ( ) ( )( ) [ 2 ]

2 2f g f g f g f g g f dD f g tr− − − −′= − + − + + −µ µ Σ Σ µ µ Σ Σ Σ Σ I  

where [ ]tr ⋅  denotes the trace of a square matrix. 

Another approach that has been regularly used to measure distances between 

Gaussian densities is Mahalanobis’ distance (MD) proposed by Mahalanobis (1936). 

To calculate the distance between two probability densities ( )f x  and ( )g x , this 

measure can be written as 

1( ) ( ),M f g fg f gD −′= − −µ µ Σ µ µ  

where 1
fg
−

Σ  is the pooled covariance between ( )f x  and ( )g x . A major advantage of 

Mahalanobis distance is that it satisfies all four properties of distance. However, this 

index is only valid to measure distance between two distributions with different 

means with the same or pooled covariance matrix.  

The indices introduced above have been regularly applied in the field of 

psychology and social sciences. Nevertheless, KL distance and MD are not suitable in 

of themselves to the present study. The major purpose of this study is to investigate 

the influence of differences in covariance structures on mixture models and 
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Mahalanobis’ distance fails this purpose by assuming consistent covariance structures 

across different mixture components. KL distance can be used to quantify the 

distance between two probability distributions assuming one of them is the true 

distribution of data. It is not straightforward to generate a mixture of distributions 

based on this measure. In order to investigate how parameters from mixture 

distributions with different amount of overlap among components affect the 

estimation results and class membership recovery, it is crucial to adopt an index that 

can define the separation/overlap of components in mixture distribution and an 

algorithm for generating artificial mixtures of univariate or multivariate normal 

distribution with controlled overlap quantified by the index.  

With the fast development of studies on data clustering and finite mixture 

modeling, many different algorithms have been proposed to generate mixture 

distributions according to pre-specified amount of overlap in statistical literature. 

These methods attempt to manipulate group covariance matrices and intra-class 

correlation, changing standard deviations of mixtures, adding random variables with 

different expectations to data from the primary population, or altering the means of 

different distributions iteratively to reach desired overlap between generated mixture 

components (see, e.g., Atlas & Overall, 1994; Blashfield, 1976; Gold & Hoffman, 

1976; McIntyre & Blashfield, 1980; Waller et al., 1999). However, these methods 

either fail to provide a precise and meaningful definition of population mixture 

overlap or cannot be extended to multivariate normal mixtures.   

Recently there has been great improvement on cluster separation or mixture 

overlap indices. Various algorithms have been developed according to the definition 
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of the indices. Aitnouri, Dueau, Wang, and Ziou (2002) used the rate of overlap to 

describe how much two univariate Gaussian components of a mixture are separated 

from each other. The rate of overlap was defined as the ratio of the height of the 

intersection point of the two components to the height of the intersection point of the 

two components with maximum overlap. The maximum overlap happens when the 

height of the intersection point of the two components is equal to the minimum value 

of the standard deviations of the two component distributions. They proposed two 

algorithms to generate multivariate normal mixture distributions by controlling 

overlap using the widths of components or using the component means. Even though 

their definition of overlap is straightforward in the univariate cases, it is hard to 

visualize the intersection points in multivariate normal mixtures. Moreover, their 

method of actually simulating data is not done with a stand-alone program, but 

instead, must to be combined with Milligan’s (1985) algorithm to generate 

multivariate mixture data.  

Qiu and Joe (2006) defined the degree of separation of an univariate mixture 

as the difference between the biggest lower quintile of cluster 2 and the smallest 

upper quantile of cluster 1 divided by the difference of the biggest upper quantile of 

cluster 2 and smallest lower quantile of cluster 1. The ratio of the difference ranges 

from 1 when there is considerable gap between two clusters to -1 when the two 

clusters overlap substantially. However, like Aitnouri et al. (2002), the index and data 

generation algorithm put forth by Qiu and Joe became complicated if extended to 

multidimensional clusters greater than two. It can be incomplete and even 

problematic when multivariate clusters should be found through one dimensional 
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projection with the highest separation while the set of pairwise separation indices 

among neighboring clusters reach the requirement of minimum overlap. This 

algorithm is now implemented in R package GenClus.  

 Another data cluster generation procedure called “OCLUS” was developed 

by Steinley and Henson (2005). The OCLUS procedure was designed to generate 

multivariate data from a variety of distributions with certain amount of overlap which 

was quantified as the percentage of shared density between clusters. The 

corresponding data generation algorithm first assumes all dimensions are independent 

and all clusters are independent. Parameters of each clusters are then computed based 

on the provided overlap, distribution type and covariance or correlation information. 

The data will be generated from the computed distributions. To generate correlated 

variables or data with unequal variances among clusters, the clusters generated from 

uncorrelated space and equal variance distributions can be transformed to get 

correlated or unequal variance distributions. Although the overall overlap will be 

retained and the desired correlation and variances can be achieved, the means of 

transformed clusters can be shifted due to the oblique rotation of the data. 

Maitra and Melnykov (2010) proposed a new method to generate sample 

multivariate Gaussian mixture distributions. In their approach, overlap between two 

mixture components is defined as the sum of their misclassification probabilities. If 

two p dimensional Gaussian components follow the distribution of ( ; , )i iφ X µ Σ  and 

( ; , )j jφ X µ Σ with mixture proportion of iπ  and jπ , the two misclassification 

probabilities are: 

| Pr ( ; , ) ( ; , ) | ~ ( , )j i i i i j j j p i iNω π φ π φ = < X µ Σ X µ Σ X µ Σ
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2
1 1

( , ) 2

| |
Pr ( ) ( ) ( ) ( ) log ,

| |p i i

j i
N i i i j j j

i j

π

π
− −

 
′ ′= − − − − − < 
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Σ
 (11) 

and similarly, 

2
1 1
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| |
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| |p j j

i j
i j N i i i j j j

j i

π
ω

π
− −

 
′ ′= − − − − − < 

  
µ Σ

Σ
X µ Σ X µ X µ Σ X µ

Σ
 

Thus the overlap ijω  is just the sum of |i jω  and |j iω .  

When covariance structures are not the same between two clusters, the 

misclassification probabilities are not easy to calculate analytically. The p-

dimensional Gaussian components are decomposed into p independent non-central 

chi-square distributed random variables with one degree of freedom and p 

independent standard normal variables multiplied by mean differences, eigenvalues 

and eigenvectors. The probabilities are then computed using Davies’ (1980) 

algorithm AS 155. The overlap index will guide the simulation of Gaussian 

components to generate mean and dispersion parameters for clusters to satisfy the 

overlap characteristics of mixture distributions. The dispersion matrices will be scaled 

iteratively to ensure the resultant distribution match the desired overlap properties. 

Both the average overlap and maximum overlap among clusters are accounted for in 

the data simulation process. This method has been implemented in R package 

MixSim. 

For the present study, the method created by Maitra and Melnykov (2010) and 

outlined above will be adopted to generate multivariate normal mixtures of model 

parameters because of the simplicity in their definition of distribution overlap, the 

flexibility to specify a large variety of covariance structures in different clusters as 
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well as the convenience to simulate data using the existing program package in R. KL 

distance will also be used to indicate the degree of separation of the means of the 

intercepts and slopes. The overlap of subgroups of data will be dictated in terms of 

random effects, residuals and marginal data. The magnitude of overlap will be 

quantified by the index defined by Maitra and Melnylkov, which will be calculated 

based on certain degree of mean structure separation and specific variance-covariance 

structure listed previously.  

Equation 11 shows that the overlap in the data is a function of mean structure 

separation among subgroups as well as how different the variance-covariance 

matrices of mixture components are. Thus, the key issue in a simulation study to 

investigate effect of variance-covariances on growth mixture model is to separate the 

effect of mean differences and variance-covariance differences and relate them to the 

overall data overlap. A small scale pilot study was conducted to evaluate possible 

separation indices for means and variances and their relation with overlap in the data. 

Chapter 3 will outline the specifics of the simulation study, the results of the small 

pilot study, as well as define the outcome measures.  
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Chapter 3: Methodology 

The major research question of the current study is how within-subject level 

and between-subject level variability affect the model estimation of growth mixture 

models.  As mentioned in Chapter 2, both mean structure differences and variance-

covariance structure of the random effects (between-subject variability) and residuals 

(within-subject variability) affect the overall data overlap among mixture 

components. It is more difficulty for growth mixture models to detect underlying 

subgroups if the data are less separated across subgroups. A simulation study was 

conducted to evaluate how variability of growth parameters and residuals impact a 

growth mixture analysis.  In Section 3.1, the method that was used for estimating 

growth mixture models in the simulation study will be outlined and discussed. 

Section 3.2 will introduce the design and data generation processes of the simulation 

study.  The criteria measures to evaluate the simulation results will be defined in 

Section 3.3.  

3.1 Estimation Method 

The current study estimated a growth mixture model using maximum 

likelihood via the EM algorithm. No constraints were made on the variance-

covariance matrix of random effects and residuals across mixture components (i.e., 

the most unrestricted models were estimated) except that each will be positive 

definite for the data generation. Mplus software was used for the model estimation 

process. Multiple maxima often exist for mixture models as introduced in Chapter 2. 

Multiple sets of starting values of from a large range are regularly utilized to find the 

global maximum in mixture model estimation. Mplus has two stages in ML 
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estimation of mixture models. The initial stage runs several iterations of the same 

model using a designated number of starting values sets.  A certain number of starting 

value sets with the highest loglikelihood values are selected for the final stage 

estimation which will iterate until converge to, hopefully, the same highest 

loglikelihood value. If the best loglikelihood value is not reached, a warning is given 

by Mplus that the solution may be at a possible local maximum. This warning 

statement appears in the output and can be tracked and recorded. The current 

simulation study adopted Muthén and Muthén (1998-2010)’s recommendations using 

100 sets of random initial stage starting values and 10 for final stage optimizations for 

growth mixture models.  

3.2 Data generation 

3.2.1 Population Model. The model of interest in the current study is a linear 

GMM. The hypothesis is that there are two subgroups of subjects with different 

growth trajectories (assuming both trajectories are linear). Thus, the true number of 

classes for the growth mixture model is two. Intercepts and slopes of the population 

model are assumed to follow multivariate normal mixture distributions. The mean as 

well as the variance-covariance structure of the intercepts and slopes may vary across 

mixture components. The residuals’ variance-covariance structure is fixed to be 2σ Ι  

and 2σ  is either component-invariant or component-variant.  

The model with component-invariant residual variance can be written as: 

i i k i i i= + +y X β Z b e  (12) 

2

1

~ ( , )i k k
k

Nπ
=
∑b 0 D  and i iNe ~ (0, R ) 
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where k is the number of subgroups or latent classes underlying the general 

population. This model corresponds to Case 2 in Section 2.5.1. The model with 

component-variant residual variance depicts the scenario in Case 3 in Section 2.5.1 

and can be written as:  

i i k i i i= + +y X β Z b e , 

 
2

1

~ ( , )i k k
k

Nπ
=
∑b 0 D  and 

2

1
i k k

k

Nπ
=
∑e ~ (0, R ). 

The list of parameters that will be estimated in current study are included in 

Table 1. All of the data generated based on a 2-class growth mixture model will be 

fitted with a 1-, 2- and 3-class growth mixture model to investigate the accuracy of 

class enumeration under a variety of simulation conditions. The number of time 

points for growth is fixed to be six and are equally-spaced assuming all individual 

growth trajectories in each subpopulation start and end at the same point. 

 

Table 1.  

List of Parameter Notations in Current Study 

 Intercept Slope Proportion Intercept 
Variance 

Slope 
Variance 

Intercept-
Slope 
Covariance 

Residual 
Variance 

Class1 (1)
0β  (1)

1β  1π  (1)
00ϕ  

(1)
11ϕ  

(1)
01ϕ  

ε a (1)ε  
Class2 (2)

0β  (2)
1β  ( 2 )

00ϕ  
( 2 )
11ϕ  

( 2 )
01ϕ  

(2)ε  
a. ε  is the residual variance in the first simulation when residual variance is the same in two subpopulations  

 

3.2.2 Manipulated Factors. The first issue to consider for the current 

simulation is the mixture proportion of subgroups (or mixture components). Several 

previous studies have concluded that the mixing proportion plays an important role in 
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growth mixture analyses and other types of mixture data analysis (Nylund, 

Asparouhov, & Muthén, 2007; Tofighi & Enders, 2008). The current study 

investigated the research problem under three different mixture proportion conditions 

0.1/0.9, 0.3/0.7 and 0.5/0.5. All other factors were evaluated under each of these 

mixture proportion conditions. 

Previous studies appearing in the literature (Everitt, 1981; Lubke & Muthén, 

2007; Nylund, Asparouhov, & Muthén, 2007; Tofighi & Enders, 2008) have 

concluded that the estimation and classification accuracy of growth mixture modeling 

analyses and other latent variable mixture models are largely affected by how well the 

data of subgroups are separated from one another. As mentioned in Section 2.6.1, a 

variety of measures of mixture distribution separation (or overlap) have been 

proposed. Previous simulation studies in growth mixture models have regularly used 

Mahalanobis distance as a measure of class separation. Only a few studies 

(Nityasuddhi & Bohning, 2003) used their own measures of separation. Mahalanobis 

distance is based on a standardized mean difference among subgroups assuming 

variances among subgroups are the same. This distance index does not specifically 

take into account of the differences of variability in subgroups. Nityasuddhi and 

Bohning’s (2003) D index considered both mean differences and variance differences 

for a univariate normal mixture scenario. However, the D index was not conceived as 

a standardized measure, which then makes it difficult to quantify the differences. In 

their paper, a range of means and variances for two groups were selected and from the 

computation of D, were categorized as resulting in three coarse levels: low, medium, 

and high. The current study hypothesizes that both the mean structure and covariance 
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structure of subgroups can affect how much overlap there is among the data, and in 

turn, will necessarily affect the estimation of the growth mixture model. Therefore, 

the simulation requires two separate indices to measure structural differences in the 

mean vectors and the variance/covariance matrices among subgroups, respectively.  

The separation of growth mixture data among subgroups can be separated into 

two sources: distribution of growth parameters (between-subject variability in 

growth) and distribution of residuals (within-subject variation). The current 

simulation study was a composite of two smaller simulation studies. The first 

simulation study held the distribution of residuals the same across subgroups and 

examined the effects of growth parameters’ (intercept and slope) distribution on data 

overlap, class membership detection and parameter estimates. The second simulation 

chose some cases in the first simulation with specific interest and added error 

distribution differences to subgroups to examine the interaction of growth parameter 

distribution effects and residual distribution effects. Adding error distribution 

differences among subgroups significantly reduced the global data overlap. Even 

though the separation of error distribution among subgroups helped reduce the 

overlap in the data, the effect of error distributions would be entangled with the 

growth parameter distribution effect. The investigation of this effect was decided 

upon after an examination of the results of the first simulation study.   

Of great interest in my study is to investigate how the variability structure and 

mean structure of data interact with each other resulting in different degrees of 

overlap among subgroup data distributions. For the measure of data overlap, the 

current study adopted the mixture distribution overlap index proposed by Maitra and 
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Melnylkov’s (2010), which was introduced in Section 2.6.1. Both the mean structure, 

i kX β , and variance-covariance structures  of ib and ie  influence the overlap in the 

growth data. To quantify mean separation, squared multivariate Mahalanobis distance 

(SMD) which has been used as a measure of data separation in many studies in 

relation to mixture distribution analysis (see Section 2.6.1 for details about this index) 

was used here too. The measure of variance-covariance matrix difference is a revision 

of the likelihood ratio statistics proposed by Manly and Rayner (1987). The statistic 

for the standard likelihood ratio test for a difference between covariance matrices can 

be calculated as 

0

1

ˆ
log

K

k
k k

T n
s=

 Ω
 =
 
 

∑  

where 0
1

ˆ
K

k k

k

n s

n=

Ω =∑
 
is the maximum likelihood estimator of the pooled common 

covariance matrix and ks is the sample variance-covariance matrix to compare. The 

current study is not interested to test whether two sample covariance matrices are 

statistically different from each other per se, but rather to quantify this difference 

between two variance-covariance matrices. The revised index does not account for 

the sample size. This index of covariance matrices differences ( dC ) is thus 

0

1

ˆ
log

K

d k
k k

C
s

π
=
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The pooled common covariance matrix uses the mixture proportions as weights in 

calculating 0
1

ˆ .
K

k k
k

sπ
=

Ω =∑  The relation between Cd and Manly and Rayner (1987)’s 

statistics is linear and has a one-to-one correspondence as shown in Figure 6.  

 

 

Figure 6. Relation between dC  and Manly and Rayner (1987)’s statistics. 

 

3.2.3 Pilot study for relation between distance indices and data overlap. 

To connect the mean structure difference and variance-covariance structure difference 

with the overlap in the data, a small-scale simulation was conducted to examine their 

relations. Because it was not known a priori how various differences in the mean 

structure and variance-covariance structure would be related to overlap, the design of 

the simulation was based on examining random values along a continuum instead of 

choosing particular values. Thus, the procedure started by generating a pool of mean 
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structures and covariance matrices with random differences among subgroups.  Then, 

for each combination of generated means and variance-covariances, the overlap of the 

data was calculated.  The size of the pool was 10,000 combinations of different mean 

structures and covariance matrices of each subgroup. For simplicity, the residual 

variance was not considered in this simulation. Class separation in the data is only a 

result of mean and variance-covariance differences of the growth parameters. The 

results showed that the mean structure and variance-covariance structure of subgroup 

growth parameters affected the overlap of the data quite differently. The interaction 

among the three indices also differed across different mixture proportion conditions.  

Figure 7 illustrates the relation between Mahalanobis distance and distance 

between covariance matrices. Since the major purpose of the current study is to 

investigate how mean structure and covariance differences of subgroups affect the 

growth mixture model analysis, it is crucial to separate the two sources of differences. 

The graph suggests that there is no significant association between Mahalanobis 

distance and covariance matrices distance (dC ), which can support the design of the 

current simulation.  
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Figure 7. Relation between dC  and SMD. 

 

The following graph (Figure 8) shows the relation between overlap of the data 

and the mean differences of intercepts and slopes as indicated through Mahalanobis 

distance. The graph suggests that at a certain level of Mahalanobis distance between 

subgroup growth parameters, the overlap of the data is limited and this limitation 

varies for different mixture proportion conditions. For example, given that the mean 

structure of subgroups are separated by Mahalanobis distance of 3, when the mixing 

proportion is in the ratio of 0.1/0.9, the maximum overlap of the data is 

approximately 0.3. However, when the mixing proportion ratio is 0.5/0.5, the 

maximum overlap of data is restricted to be less than 0.2. 
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Figure 8. Relation between SMD and overlap in the data. 

 

 

Figure 9. Relation between dC  and overlap in the data. 

 

Figure 9 is a demonstration of the relation between covariance matrix distance 

among subgroups dC  and the overlap in the data. As distance between covariance 
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matrices becomes larger, the possibility of high overlap among data becomes smaller. 

Upon a closer examination of the simulated data, it was evident that as proportions of 

the two subgroups became more divergent, the overlap of data also depended on 

where the differences of subgroup variability occurred. When larger variance was 

associated with the subgroup with the larger proportion, even when mean structure 

difference and the covariance distance were the same, the overlap of data was smaller 

than when the larger variance was associated with the subgroup corresponding to the 

smaller proportion. This phenomenon was especially evident when class proportions 

were very different such as 0.9 and 0.1. Figure 10 is a contour plot depicting the 

relation between dC , SMD and overlap of random effects when mixture proportion is 

0.5/0.5. The figure shows that when dC  is larger than .6, even if the standardized 

mean differences of intercept and slope is zero, the overlap of random effects is less 

than 0.5.  
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Figure 10. Relation between SMD, dC  and overlap in the data. 

 

Table 2 summarizes the average overlap in the data generated using various 

mean structure and covariance matrices with different levels of separation. For each 

level of separation of SMD, the differences in mean structure can manifest in 

intercept differences or slope differences. Similarly, for each level of dC , the 

separation in variance-covariance matrices can be a result of covariance differences 

or variance differences as well as where larger variances are located with mixture 

proportions that are unbalanced (as mentioned in the above paragraph). When mixing 

proportions are 0.5/0.5, within each level of SMD and dC , how mean structure and 

variance-covariance matrices differ did not affect the overlap of the data very much. 

On the other hand, as the mixture proportions became more unbalanced, the 

variability of overlap becomes larger especially when mean structure differences were 

not large. Furthermore, unbalanced mixture proportions were associated with larger 
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overlap in the data across all levels of mean and covariance separation. As mean 

structure differences increased, especially when Mahalanobis distance was equal to 

2.5, the overlap in the data was not significantly affected by other factors. These 

results formed the basis of the design structure of the current simulations study. 

 

Table 2.  

Summary Statistics of Overlap by SMD and dC  under Different Mixture Proportions 

Mix Proportion 0.5/0.5 0.7/0.3 0.9/0.1 

SMD dC  Mean Std  Mean Std  Mean Std  
0.5 .0.5 0.76 0.01 0.87 0.04 0.95 0.04 

0.3 0.60 0.03 0.66 0.03 0.67 0.04 
0.6 0.44 0.00 0.49 0.00 0.47 0.00 

1 .0.5 0.60 0.01 0.70 0.03 0.87 0.05 
0.3 0.51 0.04 0.57 0.03 0.62 0.03 
0.6 0.37 0.00 0.43 0.00 0.44 0.00 

1.5 .0.5 0.44 0.01 0.51 0.00 0.72 0.04 
0.3 0.39 0.03 0.46 0.03 0.55 0.03 
0.6 0.29 0.00 0.35 0.00 0.40 0.00 

2 .0.5 0.31 0.01 0.36 0.01 0.54 0.01 
0.3 0.28 0.03 0.34 0.02 0.45 0.02 
0.6 0.20 0.00 0.27 0.00 0.35 0.00 

2.5 .0.5 0.21 0.01 0.24 0.02 0.37 0.03 
0.3 0.19 0.02 0.24 0.01 0.37 0.02 
0.6 0.13 0.00 0.20 0.00 0.29 0.00 

 

3.2.4 Population Parameters. Five levels of Mahalanobis distance (SMD) 

were examined in the current study to measure the mean structure distance of 

subpopulation growth trajectories, .5, 1, 1.5, 2 and 2.5. Several simulation studies 

related to growth mixture modeling analysis or latent class modeling (Everitt, 1981; 

Lubke & Muthén, 2007; Nylund, Asparouhov, & Muthén, 2007; Tofighi & Enders, 
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2008) regarded Mahalanobis distance of 2 as being indicative of well-separated 

classes. Figure 7 also suggests that when the Mahalanobis distance is at least 3, it is 

not possible for the overlap of data to be larger than 0.5. For each level of mean 

structure distance, there are two conditions: (1) intercepts are different across groups 

or (2) slopes are different across groups. 

There were 3 levels of random effects (intercept and slope) covariance 

matrices distance (dC ), 0.05, 0.3 and 0.6 which indicate small, medium and large 

distances between two covariance matrices of subgroups. As shown in Figure 9, as 

dC  changes from 0.05 to 0.3, and then to 0.6, in most cases, there is a dramatic drop 

in the overlap of data. Under each level of dC , two conditions will be considered: (1) 

keeping the variances of the intercepts and slopes the same and varying covariances 

between random  intercepts and slopes across the subgroups or (2) vice versa. When 

varying variances across subgroups, the correlation between intercepts and slopes is 

set to be 0.2 for both subgroups. Further, the variances of the second subgroup is d 

times the variances of the first subgroup where d is a constant selected to make the 

distance between two variance-covariance matrices to have a certain level of dC . The 

relation between dC  and d is  

( ) ( )2
2 1 2

21 1 2 2log logd

d
C d

d
π ππ π π π

 +
= + +  

 
. 

As explained previously, when proportions of the two subgroups are 

considerably different, whether larger variance is associated with the subgroup 

corresponding to the larger proportion or the subgroup with the smaller proportion 

can cause different overlap in the data given the same mean and covariance 
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differences. Empirical data from the small scale simulation suggested that this 

difference in overlap was negligible (about .02) when mixing proportions were 

0.7/0.3 but comparatively large when mixing proportions were 0.9/0.1. However, 

when mixing proportions were 0.9/0.1 and larger variance was associated with the 

larger proportion, d had to be very large (>11) to reach the medium and large levels 

of dC , which was not realistic in real-world applications. Therefore, for both 

conditions with mixture proportions of 0.7/0.3 and 0.9/0.1, a larger variance was 

assigned to the subgroup with the smaller proportion. When only covariances differed 

across subgroups, it was impossible to reach a dC  larger than 0.3. Therefore, there 

were only two levels of dC  under this condition. 

Mean structure and variance-covariance matrices for each subgroup were set 

up to obtain the desired Mahalanobis distance and dC . Combinations of mean 

structure difference, covariance matrices difference and the mixture proportion result 

in different overlap in the data--the overlap of data will be another factor to be 

evaluated for the simulation results. Figure 9 shows two examples of generated data 

under the simulation condition of mixture proportion ratio of 0.5/0.5, Mahalanobis 

distance of 1.5 (when slopes are different across subgroups)  and dC  of 0.3. The 

graph on the left represents the situation in which the variances of intercept and slope 

differ in subgroups while the graph on the right represents the situation in which 

covariance of intercepts and slopes differ in subgroups.  
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Figure 11. Examples of generated data. 

 

For the first simulation study, the residual variance of the observed variables 

was held equal across classes in the data generation process. The magnitude of 

residual variance was selected specifically for each simulation condition to allow the 

intraclass correlation coefficient to be 0.45 for intercept and 0.15 for slope. For the 

second simulation study, the residual variance differed across classes.  

Sample size is another factor that influences the estimation of mixture models. 

In the current study, the effect of the above mentioned factors on growth mixture 

analysis was evaluated under 3 choices of sample size: 200, 500 and 1000. Other 

simulation studies have incorporated sample sizes of these magnitudes (see, e.g., 

Nylund et al., 2007). Furthermore, the prevailing notion that mixture models do not 

operate well under smaller sample sizes has been amended to acknowledge that this 

conclusion could be mitigated by large class separation (see, e.g., Verbeke & 

Molenberghs, 2000). 
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Overall, the combination of all manipulated factors resulted in a Monte Carlo 

simulation with 540 cells. 20 replications were first run as a pilot study. One-hundred 

replications were generated within each design cell for full scale studies. Data used in 

the simulation were generated with R 2.14.1 (R Development Core Team, 2011) and 

estimated with Mplus 6.2 (Muthén & Muthén, 2010). Details about parameters used 

for this simulation study are listed in Appendix A and sample Mplus codes for 

estimating the growth mixture model are included in Appendix B. 

3.3 Evaluation Criteria 

The first step of evaluating a growth mixture model is to determine the 

number of latent classes in the data. As explained in Chapter 2, previous studies have 

shown that Bayesian information criterion (BIC) and sample size adjusted BIC 

(ABIC) performed better than other information criteria across a variety of modeling 

settings (Jedidi, Jagpal, & Desarbo, 1997; Nylund, Asparouhov & Muthén, 2007; 

Tofighi & Enders, 2006; Yang, 2006).  In ABIC, the original sample size n was 

replace by ( 2) / 24n+ . Other studies also found that the  Lo-Mendell-Rubin (LMR) 

test (Lo, Mendell, & Rubin, 2001) was effective in determining the number of correct 

classes (Nylund, Asparouhov, & Muthén, 2007; Tofighi & Enders, 2008). The current 

study used BIC, ABIC and LMR as criteria to select the model from fitting 1-, 2-, and 

3-class growth mixture models. The true model is a 2-class model, i.e., the selection 

of 1- or 3-class model demonstrates under-extraction or over-extraction in model 

enumeration.   

The next step is to evaluate parameter recovery under the proposed estimation 

scheme. The evaluation of parameter recovery only included those replications in 
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which the estimation converged without local maxima. The performance of model 

estimation was examined in terms of both estimation accuracy and estimation 

efficiency. Relative bias were used to assess the accuracy of parameter estimates over 

the 100 replications at various simulated conditions. They are computed by averaging 

each of the values over all parameter estimates across replications: 
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where R is the total number of replications and r̂θ  is the parameter estimate from a 

single replication sample and θ  is the population parameter. In the above formula 

bias is divided by the true parameter, which implies that when the magnitude of true 

parameter is close to zero, the relative bias of parameter estimates could be artificially 

inflated. This issue did not affect the current study since no population parameters 

were set to be smaller than 0.2. 

The efficiency of parameter estimates is measured as the standard deviation of 

the sample estimates from their average value, which is also known as the empirical 

standard error of estimates. The efficiency of parameter estimates is calculated as 
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The accuracy of the standard error estimates was evaluated by precision of 

estimates, which is defined as 
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where 

2

1

ˆ( )
ˆ( )

R

r
r

se
SE

R

θ
θ ==

∑

 
is the standard error of estimates ̂( )seθ  averaged across 

the 100 replications. If the estimated standard errors computed based on an approach 

are accurate, ˆ( )SEθ  should be close to ˆ( )SD θ  and the ratio close to 1 (Lee, Song, & 

Poon, 2004). 

Entropy values were calculated for 2-class models, to quantify the uncertainty 

of classification of subjects into different subgroups. Entropy values range from 0 to 

1, with 0 corresponding to assigning subjects completely randomly and 1 to a perfect 

certain classification (Celeux & Soromenho 1996). Another criterion of classification 

quality is the classification accuracy.  The accuracy is evaluated by the proportion of 

subjects assigned to their true class according to the greatest posterior probability. In 

the current study the correct percentage of class membership assignment is calculated 

by averaging the correct classification rates of the two classes. 

Finally, convergence rates have been recorded for each design cell. The 

impact of the manipulated factors was evaluated via factorial ANOVA to examine the 

effects of these factors under different simulation conditions. The model enumeration 

accuracy, classification quality as well as parameter estimation accuracy and 

efficiency were used as the dependent variables in separate ANOVAs and compared 

across different simulation conditions, sample size, mean structure separation, 

variance-covariance differences among subgroups, data overlap and mixture 

proportions. The interaction effect of these factors was also investigated. 
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3.4 Possible Problems in Simulation 

Convergence and local maxima problems are regularly found in mixture 

model studies. Since the current study only examines parameter recovery in well-

estimated cases, low convergence rates and high chance of local maxima will 

undermine the evaluation of parameter recovery and factorial ANOVA analyses of 

simulation results. The distribution of estimates from limited number of replications 

might not represent the true sampling distribution of population parameters. 

Unbalanced cell sizes within the factorial design may hinder the interpretation of 

ANOVA results. For the current simulations study, the pilot study provided 

preliminary information about difficulties in model estimation and certain simulation 

conditions were eliminated from full scale simulation due to high rates of non-

convergence and local maxima. Cases with non-convergence and local maxima from 

conditions remaining in full scale simulation were excluded from final results and 

more replications were generated until the number of converged replications without 

local maxima reached 100. This process provided a balanced playing field to evaluate 

the simulation results systematically.  

There are several possibilities for GMM to be identified as non-convergence 

in current studies. Naturally cases when maximum likelihood fails to find a solution 

to meet convergence criteria should be classified as not converged. It is also possible 

for results stemming from GMM analyses to have non-positive definite covariance 

structure for random effects as well as negative residual variances. These two 

situations are also considered as non-convergence in current study. As Wothke (1993) 

pointed out, many different situations can cause the violation of positive definiteness 
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and each situation requires different solutions to remove the possible cause. The 

reasons for nonpositive-definite covariance structures in GMM are most likely to be 

improper starting values and over-parameterization. Therefore, true parameters were 

used as starting values for the two-class GMM analysis and the weighted average of 

subgroup true parameters were used as starting values for one-class GMM analysis. 

For the three-class GMM analysis, there is no sensible way to assign appropriate 

starting values and the default starting values from Mplus were used. The non-

convergence rates have been documented and reported to provide some insights for 

practitioners.  

Another possible problem that often interferes with simulation studies 

involving mixture models is label-switching. Label switching has been documented 

for mixture models when using MCMC estimation in a Bayesian framework. Since 

the current study uses maximum likelihood for estimating growth mixture models, the 

label-switching issues arising in a fully Bayesian analysis does not exist. However, as 

new research has pointed out (McLachlan & Peel, 2000; Tueller, Drotar & Lubke, 

2011), the class labels are arbitrary in mixture models without previous knowledge of 

the subpopulations. In simulation studies, parameter estimates are aggregated over 

replications and from replication to replication the same classes may not be labeled 

the same. It is critical to avoid aggregating parameter estimates over mislabeled 

classes. The label-switching problem can be prevented by using true parameter values 

as the starting values, making model constraints or inspecting parameter estimates 

after estimation. Since two-class mixture models are the true model in current study, 
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inspecting parameters after estimation before aggregating estimates were used to 

ensure correct class labeling.  
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Chapter 4 Results 

The current study explored many conditions involving differences of 

variance-covariance matrices among subpopulations of growth mixture data, which 

have not been evaluated by other studies. Due to the lack of guidance from the 

literature to inform the proposed simulation, an extensive preliminary pilot study was 

conducted to assist in selecting levels of the conditions for the current simulation. 

Some of results of the preliminary study, though based only on 20 replications of 

simulated data analyzed under 2-class GMM model, provided valuable insight  for 

choosing levels of sample size and combination of mean structure differences 

(measured by SMD) and variance-covariance structure differences (measured by dC ). 

The preliminary results were also helpful in that they shed light on data analytic 

problems that researchers and practitioners alike may encounter when applying these 

methods in a substantive setting. In the remainder of the chapter, the preliminary 

study results will be discussed first followed by a discussion of the main simulation 

results.  

4.1 Pilot Simulation Study Results 

The main purpose of the pilot study was to investigate the convergence rates 

and frequency of local maxima in estimation. The assumption was that data generated 

from different combinations of simulation conditions would not have the same 

amount of difficulty in estimation. Some combinations of mean structure differences 

and variance-covariance structure differences in this simulation may result in data 

with a large degree of overlap between latent subpopulations. Analysis of data from 

these simulation conditions with medium to large sample size (N = 500 and N = 1000) 
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had large non-convergence rates. The pilot study results suggested that SMD of 0.5 

and dC of 0.2 and 0.4 had particularly large numbers of non-converged cases. The 

average non-convergence rate for cells from this combination of SMD and dC was 

approximately 0.50.  For those cells with dC  of 0.2, only 40% of the iterations 

converged. When SMD was equal to 1 and dC was 0.2, the average convergence rate 

was also lower than 0.60. The 72 cells with SMD 0.5 or 1 and dC  of 0.2 or 0.4 (see 

Figure 12) encountered some level of estimation difficulty. Overall, 35 out of 72 cells 

in this combination have non-convergence rates larger than .40 and 3 of them had no 

converged cases at all. The pilot study results also showed that there were a large 

number of cases with possible local maxima for these cells. The average percentage 

of occurrence of local maxima was as high as 40%. Therefore, the combination of 

SMD and dC as shown in Figure 12 was removed from full scale simulation. 

 

 

Figure 12. Combination of SMD and dC which led to large data overlap. 

 

In addition, the remaining cells with data of sample size 250 were also 

explored in the pilot study as it was thought based on the literature that computational 
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problems occurred with greater frequency when the sample size was small. The 

results suggested that a sample size of 250 might not be large enough to obtain stable 

parameter estimates for the majority of the conditions. When sample size was 250, 

across all other conditions, the average non-convergence rate was 0.42. Across 

mixing proportions, the average non-convergence rate of cells from different 

combinations of SMD and dC  are listed in Table 3.  Forty-seven cells had a non-

convergence rate higher than .40 and 6 of them had no converged replicates at all.  

The non-convergence rates when the mixing proportion was 0.9/0.1 (0.54) was much 

higher than when the mixing proportion was 0.5/0.5 (0.31) or 0.7/0.3 (0.32). The 

occurrence of solutions reaching local maxima was also more frequent under the 

smaller sample size condition than under the larger sample size condition. The 

average rate of local maxima was .15. Considering the high non-convergence rate as 

well as frequency of local maxima, it would appear difficult to obtain 100 converged 

replications for so many cells. Thus the full scale simulation will exclude the 

condition of small sample size, N =250.  

 

Table 3. 

Non-Convergence Rates Across Levels of Latent Mean Differences (SMD) and Latent 

Variance-Covariance Differences (Cd) and Where the Sample Size N = 250  

SMD 

dC  

0.2 0.4 0.6 

1 0.74 0.59 0.33 

1.5 0.63 0.40 0.13 

2 0.43 0.33 0.13 

2.5 0.28 0.21 0.08 
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In summary, when either or both SMD and dC were very small, the overall 

data overlap would be too large for the current model to be estimated without 

convergence or local maxima problems. Base on the pilot study results, the full scale 

simulation will no longer examine the combinations of SMD and dC as shown in 

Figure 12. Smaller sample size like 250 also increased estimation difficulty and thus 

was be included in the final full scale simulation. After excluding the aforementioned 

simulation conditions, there were 228 simulation cells for the full scale simulation 

study and conditions of SMD will be nested within levels of dC . The final decided 

conditions for the first simulation are listed in Table 3.  

 

Table 4.  

Final Chosen Conditions for the First Simulation Study 

Factor Levels 
Sample Size 500, 1000 
Mixing Proportion 0..5/0.5, 0.7/0.3, 0.9/0.1 
SMD  

(nested within dC ) 
dC =0.2, 1.5, 2, 2.5 

dC =0.4, 1, 1.5, 2, 2.5 

dC =0.6, 0.5, 1, 1.5, 2, 2.5 

dC
 

(nested within Variance-Covariance Condition)
 

Variance Different, 0.2, 0.4, 0.6 
Covariance Different, 0.2, 0.4 

Mean Condition Intercept Different, Slope Different 
Variance-Covariance Condition Variance Different, Covariance Different 

 

4.2 Simulation Study-1 Results 

Results of main simulation study are reported in two parts, Section 4.2 and 

Section 4.3. In Section 4.2.1, convergence rates and the chance of the occurrence of 
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local maxima are presented to provide a general picture of the efficacy of model 

estimation. Model enumeration results will then be introduced along with the 

performance of different model fit indices in Section 4.2.2. In Section 4.2.3, the 

results of parameter recovery in terms of relative bias, parameter estimation 

efficiency as well as the precision of standard error estimates will be discussed.  

Effects of different factors that are of interests in the current simulation will 

be analyzed using a factorial ANOVA with a nested design. The criteria of judging 

the importance of an effect include a combination of statistical significance as 

measured by comparing the p-value to the significance level (α = 0.05) and practical 

importance as measured by a variance accounted for effect size measure, 2η , with 

2 0.06η > . It has been recommended by scholars and researchers for over three 

decades that a measure of effect size should be used to interpret the results of 

hypothesis testing beyond a test of statistical significance (Cohen, 1988; Maxwell, 

2000; Olejnik & Algina, 2000). Eta-squared, 2η , was chosen as a measure of effect 

size in the current study because of its additive property and comparability for the 

effects of different factors within the same study. Compared to another popularly 

used measure of effect size 2ω , 2η  is less sensitive to unequal sample size and 

heterogeneous variances which apply to the current study (Carroll & Nordholm, 

1975). According to Cohen (1988), 2η of 0.06 and 0.14 represent medium and large 

effect sizes for factorial ANOVA analysis, respectively. In the following sections, 

tables for the ANOVA results will only show those effects that meet these two criteria 

at the same time and omit the other effects that do not simultaneously meet these 

criteria.  
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4.2.1 Convergence and Local Maxima. Non-convergence has been a 

common problem when fitting growth mixture models or any general mixture model 

analysis. It is important to discuss the convergence rates of data estimation before 

making conclusions about parameter recovery, model enumeration or classification 

accuracy. As mentioned in previous sections, the criterion for a converged replication 

in current simulation study is that the estimation ended by meeting the desired 

convergence criterion as well as absence of non-positive definite variance-covariance 

estimates of random effects and residuals. The convergence rates of different 

simulation conditions are displayed in Table 5.  
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Table 5.  

2-Class Model Convergence Rates of Growth Mixture Model Estimation. Blank Cells 

Indicate Condition Combinations that were Omitted from the Main Simulation 

iπ   SMD 

N=500 N=1000  

dC   dC  

0.2 0.4 0.6 0.2 0.4 0.6 

0.5 
 
 
 
 

0.5 
  

0.775 
  

0.960 

1 
 

0.865 0.885 
 

0.988 0.970 

1.5 0.855 0.918 0.905 0.973 1.000 0.985 

2 0.935 0.970 0.940 0.998 1.000 0.995 

2.5 0.970 0.973 0.955 0.995 0.998 1.000 

0.7 
 
 
 
 

0.5 
  

0.950 
  

0.995 

1 
 

0.845 0.985 
 

0.985 1.000 

1.5 0.793 0.973 0.990 0.983 1.000 1.000 

2 0.930 0.988 1.000 0.990 0.998 1.000 

2.5 0.983 0.995 0.995 0.998 1.000 1.000 

0.9 
 
 
 
 

0.5 
  

0.965 
  

1.000 

1 
 

0.545 0.985 
 

0.735 1.000 

1.5 0.510 0.665 0.995 0.803 0.833 1.000 

2 0.633 0.723 1.000 0.888 0.908 1.000 

2.5 0.795 0.785 0.995 0.948 0.938 1.000 
 

 

Recall that the population model used to generate data for the current 

simulation was a two-class growth mixture model as demonstrated by Equation 12 in 

section 3.2.1. To evaluate the accuracy of model enumeration, the generated data 

were estimated under 1-, 2- and 3-class growth mixture models. The convergence 

rates were high for estimating the 1-class growth mixture model. In this scenario, 

100% of the replications across all simulation conditions had converged to a proper 
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solution. When fitting 2-class models, the convergence rates were also high for most 

of the cells. Across all conditions only 8% of the replications did not converge 

properly. Out of 228 full-scale simulation cells, eighty-nine of them had 100% 

convergence, fifty-five cells had convergence rates higher than 0.99 while only ten 

cells had convergence rates lower than 0.80. As could be foreseen, non-convergence 

increased when fitting 3-class GMMs.  The average convergence rate for 3-class 

models was only 0.035 across all conditions. The convergence rate was slightly 

higher when the sample size was 1000. However, even in cells where conditions were 

deemed more ideal, the convergence rates were lower than 0.10. While somewhat 

disappointing, this result is understandable since the 3-class model was attempting to 

fit three variance-covariance matrices of the latent growth factors for data that were 

generated from a population model with only 2 classes. This “over-extracting” caused 

a large number of cases to converge to a solution where the variance-covariance 

matrix of random effects for at least one class was not positive-definite. 

Sample size has been recognized as important factor in model convergence in 

previous studies (see e.g., Tolvanen, 2008). The current study also found similar 

results to that of Tolvanen. Of all replications using the 2-class GMM to fit the data, 

approximately 77% of non-converged replications had a sample size of 500 while 

only 24% of them had a sample size of 1000. The average convergence rate for cells 

with a sample size of 500 was 0.87 while the average convergence rate for cells with 

a sample size of 1000 was 0.96.  

Convergence rates were also closely related to subpopulation overlap of the 

generated data. As described in section 2.6.1, the random effect overlap and overall 
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data overlap is the sum of misspecification probabilities of two subpopulations. The 

correlation between convergence rate and random effect distribution overlap was 0.52 

and correlation between convergence rate and overall data overlap was 0.70.  All of 

the conditions with convergence rates lower than 0.50 had overall data overlap larger 

than 0.50. Since the overlap of growth mixture data is determined by both the mean 

structure differences between subpopulations and variance-covariance structure 

differences, as expected, the convergence rates improved when SMD and/or dC

became larger. The convergence rates were similar when mixing proportions were 

0.5/0.5 and 0.7/0.3 but lower when the mixing proportions were 0.9/0.1 as 

demonstrated in Table 6.   

 

Table 6.  

Convergence Rate at Different Mixing Proportions 

Mixing  Proportion Convergence Rate 

0.5 0.93 

0.7 0.94 

0.9 0.73 

 

As expected no local maxima problems were found for 1-class model 

estimation. For 2-class GMMs, the number of replications where the solutions 

reached local, not global, maxima was much lower than the number (rate) of non-

converged replicates. The average percentage of model estimation with possible local 

maxima was only 2%. Detailed information about local maxima rates are shown in 

Table 7. The results indicated that data with unbalanced subpopulation sample sizes 
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were more likely to encounter local maxima problems. Increased sample size 

definitely decreased the number of local maxima. The average rate of local maxima 

for data with sample size of 500 was 0.035 while the rate of converging to a local 

maxima for data with a  sample size of 1000 was only 0.008. As SMD and dC  

increased, the number of replicates that converged to a local maxima decreased.  

 

Table 7.  

Proportions of Replicates that Reached a Local Maxima in Fitting a 2-Class Growth 

Mixture Model. Blank Cells Indicate Condition Combinations that were Omitted from 

the Main Simulation. 

iπ   SMD 

N=500 N=1000  

dC   dC  

0.2 0.4 0.6 0.2 0.4 0.6 

0.5 
 
 
 
 

0.5 0.030 0.000 
1 0.010 0.000 0.000 0.000 

1.5 0.010 0.015 0.000 0.005 0.000 0.000 
2 0.010 0.000 0.000 0.000 0.000 0.000 

2.5 0.005 0.000 0.000 0.000 0.000 0.000 

0.7 
 
 
 
 

0.5 0.010 0.000 
1 0.040 0.000 0.005 0.000 

1.5 0.090 0.000 0.000 0.000 0.000 0.000 
2 0.015 0.000 0.000 0.000 0.000 0.000 

2.5 0.000 0.000 0.000 0.000 0.000 0.000 

0.9 
 
 
 
 

0.5 0.010 0.000 
1 0.285 0.010 0.105 0.000 

1.5 0.235 0.145 0.000 0.065 0.055 0.000 
2 0.115 0.130 0.000 0.020 0.035 0.000 

2.5 0.035 0.065 0.000 0.000 0.000 0.000 
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Because of the over-extraction problem, the number of solutions converging 

to a local maximum was much higher for 3-class model estimation. The average rate 

of local maxima across all conditions is 0.44. Increased sample size did not help 

reduce the number of local maxima as it did when fitting the 1- and 2-class GMMs. 

The number of solutions reaching local maxima was higher for replicates where the 

data were characterized by better class separation.   

Replications that did not converge to a proper solution or those that reached 

local maxima or both were excluded from subsequent parameter recovery analysis. 

However, unlike the pilot study where convergence was much more problematic, 

additional replicates were generated and analyzed until the number of converged 

replications reached 100 for each simulation condition.  

4.2.2 Identification of the Number of Latent Classes. One critical issue in 

GMM analysis is to decide the number of latent subpopulations in the data. This 

decision is typically made by fitting a GMM to the data with increasing number of 

latent classes; choosing the model with the best fit indicated by one of a number of 

model-fit indices. One research question of the current study was to examine the 

performance of several model fit indices in model enumeration of GMM. As defined 

in Section 2.5.3, the indices focused on here are BIC, ABIC and LMR, which all have 

been suggested to work well for mixture and latent class analyses in a series of 

previous methodological studies (Henson, Reise & Kim, 2007; Jedidi, Jagpal, & 

Desarbo, 1997; Nylund, Asparouhov & Muthén, 2007; Tofighi & Enders, 2008; 

Yang, 2006). The results of the current work suggested that both LMR and ABIC 

tend to over-extract the number of latent classes while BIC sometimes under-extracts 
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the number of latent classes. Overall, however, BIC had the highest rate of correct 

model enumeration (0.876) compared to ABIC (0.536) and LMR (0.532). The rate of 

over-extraction was not affected by differences in mixing proportions, levels of SMD 

or dC . When sample size increased, this rate decreased, but not dramatically. When 

SMD and dC  increased (i.e., data were better separated), the rate of under-

enumerating using BIC dropped significantly. Detailed information of correct class 

identification can be found in Table 8. Overall, BIC worked the best in detecting the 

correct number of latent classes of GMMs. 

 

Table 8.  

Identification of Latent Classes Using ABIC, BIC and LMR 

Correct Identification Over Extract Under Extract 
ABIC 0.536 0.450 0.014 
BIC 0.876 0.002 0.122 
LMR 0.532 0.424 0.044 

 

4.2.3 Parameter Recovery. This section will initially discuss the factorial 

ANOVA results from analyzing outcome measures of relative bias, efficiency of 

parameter estimates and precision of standard error estimates. The results from the 

analysis will be used to inform and focus the discussion on only those condition 

combinations that demonstrated both statistical significance and practical importance. 

Bias is the difference between parameter estimates and population parameter values. 

Relative bias is bias divided by the true population parameter value. Compared to 

bias, relative bias provides a more relevant index that can be used as a basis of 
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comparison of estimates from true parameters when the true parameters are on 

different scales. In general, if the absolute value of relative bias is less than 0.10, the 

recovery of true parameter from the nominated model was considered to be 

acceptable. The efficiency of parameter estimates was measured as the standard 

deviation of the sample estimates from their average value, while the precision of 

standard error estimates was computed as the ratio of standard error estimates and 

efficiency of parameter estimates.  

In Sections 4.2.3.1, 4.2.3.2 and 4.2.3.3, results of relative bias, efficiency of 

parameter estimates, and precision of standard error estimates will be discussed in 

detail. The factorial ANOVA results will be reported first to show the effects of 

different simulation factors on the outcome variables. In subsequent sections, details 

about relative bias, efficiency and precision under different simulation conditions will 

be presented. Only factors that showed significant effects on the outcome will be 

discussed.  

4.2.3.1 Relative Bias of Parameter Estimates. Table 9 and Table 10 

summarize the results of the ANOVA analysis on relative bias of parameter estimates 

where effects of manipulated factors that demonstrated simultaneous statistical 

significance (at α = .05 level) and surpassed the 2 0.06η >  threshold will be 

discussed. Table 9 shows the effects of different factors on relative bias of intercept, 

slope and mixing proportion estimates. For intercepts and slopes of two classes, the 

factor of variance-covariance condition nested within the levels of variance-

covariance structure separation explains the largest proportion of variation of relative 

bias. The mean structure condition, in other words, whether the difference of mean 
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structure was on the intercept or slope, was another important factor that affected the 

relative bias of (1)
1β , (2)

1β and (2)
0β but not (1)

0β . In addition, there was a significant 

interaction effect of the mean structure condition and variance-covariance structure 

condition on relative bias of (1)
0β , (2)

0β  and (2)
1β . The only factor that had significant 

influence on relative bias of mixing proportion 1π  was the mixing proportion 

condition itself which explained approximately 28.2% of the variation of relative bias 

of 1π .  

 

Table 9.  

Factorial ANOVA Results on Relative Bias of Intercept, Slope and Mixing Proportion  

Factors 
(1)
0β  (2)

0β  (1)
1β  (2)

1β  1π  

Data Overlap 
     

π  
    

28.2% 
Sample Size 

     
dC  

     
SMD( dC ) 

     
VarCond( dC ) 24.9% 19.0% 23.7% 11.9% 

 
MeanCond 

 
14.9% 6.1% 13.4% 

 
VarCond×SMD ( dC ) 

     
MeanCond×VarCond (dC ) 6.4% 14.4% 

 
10.1% 

 
 

For the relative bias of variance-covariance structure estimates, the mean 

structure distance (SMD) nested within variance-covariance structure distance (dC ) 

had a significant effect on the relative bias of all variance-covariance components of 

the random effects except for class-2 slope variance, ( 2 )
11ϕ . Differences in the mean 

structure as well as their interaction with differences in variance-covariance structure 
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impacted the relative bias of class-2 intercept and slope variances but not class-1 

estimates. Relative bias of residual variance estimates was affected by differences in 

the mixing proportion, dC  as well as variance-covariance structure condition. 

Intercept variance for class 2, ( 2 )
00ϕ , was the only parameter that was affected by the 

overall data overlap even though the effect size was barely above the evaluation 

criteria. 

 

Table 10.  

Factorial ANOVA Results on Relative Bias of Variance-Covariance Estimates of the 

Random Effects 

Factors 
(1)
00ϕ  ( 2 )

00ϕ  (1)
11ϕ  ( 2 )

11ϕ  (1)
01ϕ  ( 2 )

01ϕ  ε  
Data Overlap   6.7%           

π          12.2%  13.2% 
Sample Size           7.4%  

dC  8.2%         7.7% 11.1% 
SMD( dC ) 17.2% 8.3% 21.7%   16.5% 7.6%  

VarCond( dC )           13.5% 6.2% 
MeanCond   19.7%   16.2%       

VarCond×SMD ( dC )               
MeanCond×VarCond (dC )   23.7%   20.3%       

 

The following illustrates the effects of different factors on relative bias of 

parameter estimates using graphical summaries and 5% and 95% quantiles. Figure 13 

shows the variation of relative bias on intercept and slope estimates under different 

combinations of variance-covariance conditions and variance-covariance distance. 

When variances were the same and covariances were different across classes 

(represented by dash lines on the graph in Figure 13), relative bias was much smaller 
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than when covariances were different in the two classes than when variances were 

different. No significant difference was found for class-1 intercept and slope relative 

bias. In general, when variance-covariance matrices of the random effects of the two 

classes were more well-separated(i.e., dC  was larger), the relative bias of class-2 

intercept and slope estimates was smaller. This difference was only manifest when 

variances were different acorss classes since when covariances were different across 

classes the relative bias of the intercept from both classes were very small and close 

to zero.  

 

 

Figure 13. Relative bias of intercept and slope across  

different variance-covariance conditions. 
 

Based on ANOVA results, the main effect of the mean structure condition 

significantly impacted the relative bias of the intercept and the slope. As 

demonstrated by Figure 14, differences in intercept or slope across classes led to 

larger relative bias of class-2 intercept or slope. To be specific, when intercepts were 

different acorss classes, which in current simulation design meant class-2 intercept 
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was smaller than class-1, the relative bias of class-2 intercept was larger than the 

class-1 intercept but no differences were found for slope estimates. In this situation, 

the model produced accurate (in terms of bias) estimates of the class-1 intercept and 

tended to underestimate the class-2 intercept. The same phenoma was found when 

examining the slope estimates. This pattern was also recognized across the mixing 

proportion conditions.  

 

 

Figure 14. Relative bias of intercept and slope under  

different mean structure conditions. 
 
 

The relative bias of mixing proportion estimates was only affected by the 

mixing proportion condition itself. Figure 15 shows that relative bias of the mixing 

proportion estimates was smaller when the percentage of subjects in the two classes 

were more similar (i.e., 0.50/0.50). Similarly to the bias of the  intercept and slope 

estiamtes, the mixing proportions had larger bias especially when class sample sizes 

were not balanced. The second class proportion was constantly overestimated which 

in turn resulted in underestimation of the class-1 proportion.  
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Figure 15. Relative bias of mixing proportion under  

different mixing proprotion conditions. 
 

Figure 16 through Figure 18 demonstate relative bias of the random effects 

variances and covariances under different combinations of SMD and dC . For the 

current simulation design, SMD was nested within dC  not crossed with dC , which 

was due to the deletion of some combinations resulting in overly large data overlap 

and thus high non-convergence rates. Only SMD of 1.5, 2 and 2.5 were combined 

with all levels of dC . Therefore, only these three levels of SMD were shown in the 

figures. As the results suggested, overall, the relative bias of the random effects 

variances and covariances decreased with increases across levels of SMD and dC , 

especially for class-2 covariance estimates. In general, class-2 covariances had much 

larger and negative relative bias than the other random effects variance and 

covariances. For dC  = 0.60, the relative bias of class-2 covariance was much smaller 

especially when SMD was 1.5. However, we must keep in mind that there was only 
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variance difference in the random effects across two classes when dC  was 0.60. The 

model tended to underestimate the class-2 covariance, especially when data were 

more overlapped. To obtain estimates of the class-2 covariance with acceptable 

relative bias, SMD had to be larger than 1.5 or dC  had be to be larger than or equal to 

0.40. The effects of SMD and dC  on other variance and covariance estimates were 

not as evident as the class-2 covariance.   

 

Figure 16. Relative bias of random effects variances and  

covariances when SMD = 1.5. 
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Figure 17. Relative bias of random effects variances and  

covariances when SMD=2. 

 

Figure 18. Relative bias of random effects variances and  

covariances when SMD=2.5. 
 

The relative bias of the random effects variances and covariances under 

different combinations of the mean structure condition and the variance-covariance 

structure condition when 0.20dC =  and 0.40dC = is shown in Figure 19 and Figure 

20. The patterns of variation of relative bias when dC  is 0.20 or 0.40 were similar. 

When variances were different across classes, the effect of the mean structure 
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condition (intercept or slope different) on the random effect variance estimates were 

similar to the effect on mean structure estimates. When intercepts differed across 

classes, the class-2 intercept variance had larger relative bias; when slopes differed 

across classes, the class-2 slope variance had larger relative bias. However, when 

differences in the variance-covariance structure focused on covariance differences 

instead of variance differences, the effect of the mean structure was not apparent. In 

addition, under this situation, the relative bias of class-1 variances were larger than in 

the situation in which the variances were different. 

 

 

Figure 19. Relative bias of random effects variance under different combinations of 

mean structure and variance-covariance structure when dC is 0.20. 

 

-0.20

-0.15

-0.10

-0.05

0.00

0.05

R
el

at
iv

e 
B

ia
s

Intercept Different & 
Covariance Different & 
Cd=0.2

Intercept Different & 
Variance Different & 
Cd=0.2

Slope Different & 
Covariance Different & 
Cd=0.2

Slope Different & 
Variance Different & 
Cd=0.2



 

94 
 

 

Figure 20. Relative bias of random effects variance under different combinations of 

mean structure and variance-covariance structure when dC is 0.40. 

 

For relative bias of the residual variance, even though the mixing proportion 

and dC  showed significant effects from the ANOVA analysis, the influcence was not  

detectable in the graphical summaries shown in Figure 21 and Figure 22. Overall, the 

relative bias of the residual variance was quite small (close to zero).  

 

 

Figure 21. Relative bias of residual variance under different mixing proportion. 
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Figure 22. Relative bias of residual variance under different levels of dC . 

 

Table 11 shows the 5th and 95th percentile of relative bias of all parameters 

under different mixing proportions and sample size conditions. The range of relative 

bias was smaller when the sample size was larger (N = 1000).  The range of relative 

bias was much larger when the mixing proportion was most disparate (i.e., 0.9/0.1) 

than when the mixing proportions were 0.5/0.5 and 0.7/0.3. Intervals capturing the 

range of relative bias of 1π  and the random effects variance and covariances were 

wider than that of relative bias of the mean structure estimates and residual variance.  
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Table 11.  

5th and 95th Percentile of Relative Bias Under Different Mixing Proportions and 

Sample Sizes 

  
  

0.5/0.5
 

0.7/0.3 0.9/0.1 

N=500 N=1000 N=500 N=1000 N=500 N=1000 
(1)
0β  (-0.024, 0.014) (-0.006, 0.008) (-0.007, 0.013) (-0.007, 0.008) (-0.001, 0.018) (-0.001, 0.008) 
(2)
0β  (-0.152, 0.005) (-0.052, 0.005) (-0.112, 0.021) (-0.076, 0.013) (-0.181, 0.049) (-0.11, 0.017) 
(1)

1β  (-0.022, 0.017) (-0.012, 0.009) (-0.011, 0.014) (-0.004, 0.008) (-0.004, 0.026) (-0.004, 0.014) 
(2)

1β  (-0.238, 0.024) (-0.145, 0.146) (-0.26, 0.019) (-0.084, 0.015) (-0.347, 0.037) (-0.239, 0.026) 

1π  (-0.022, 0.094) (-0.035, 0.04) (-0.23, -0.069) (-0.246, -0.086) (-0.356, -0.147) (-0.356, -0.121) 
(1)
00ϕ  (-0.072, 0.244) (-0.054, 0.061) (-0.081, 0.065) (-0.06, 0.04) (-0.056, 0.739) (-0.023, 0.046) 
( 2 )
00ϕ  (-0.155, 0.053) (-0.079, 0.028) (-0.119, 0.066) (-0.075, 0.007) (-0.223, 0.129) (-0.126, 0.077) 
(1)
11ϕ  (-0.066, 0.154) (-0.037, 0.047) (-0.067, 0.068) (-0.042, 0.054) (-0.069, 0.819) (-0.043, 0.064) 
( 2 )
11ϕ  (-0.128, 0.047) (-0.076, 0.035) (-0.16, 0.061) (-0.071, 0.038) (-0.225, 0.056) (-0.182, 0.052) 
(1)
01ϕ  (-0.219, 0.006) (-0.155, 0.132) (-0.118, 0.113) (-0.117, 0.116) (-0.07, 0.975) (-0.04, 0.053) 
( 2 )
01ϕ  (-0.274, 0.179) (-0.101, 0.042) (-0.351, 0.087) (-0.139, 0.075) (-0.621, 0.122) (-0.212, 0.053) 

ε  (-0.008, 0.004) (-0.003, 0.004) (-0.006, 0.019) (-0.003, 0.022) (-0.006, 0.004) (-0.003, 0.004) 

 

Table 12 and Table 13 display the proprotions of cells with unacceptble 

relative bias of parameter estimates separated by different mixing proportion, SMD 

and dC . Proportions larger than 0.30 are bolded in the table. In general, there were 

more cells with average relative bias of variances and covariances estiamtes greater 

than 0.10 than those with unacceptable relative bias of any mean structure estiamtes. 

For the mean structure estiamtes, no cells had unacceptable relative bias for class-1 

parameter estimates. Among the 228 simulation cells, 100 cells had acceptable 

relative bias for all parameters estimates (except for the mixing proportion). Seventy-

two of them were under sample size of 1000 and 55 of them had different covariances 

across classes. Sixty-five percent of cells with different covariances across classes 
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had acceptable relative bias of all parameters and only 31% of cells with different 

variances across classes had acceptable relative bias of all parameters. 

 

Table 12.  

Percentage of Cells with Unacceptable Relative Bias  of Parameter Estimates Under 

Different Simulation Conditions for Intercept, Slope and Mixing Proportion 

Conditions Level 
(1)
0β

 
(2)
0β

 
(1)

1β
 

(2)
1β

 1π  

Mixing 
Proportion 

0.5 0.00 0.12 0.00 0.22 0.00 
0.7 0.00 0.05 0.00 0.13 0.84 
0.9 0.00 0.11 0.00 0.22 0.99 

SMD 0.5 0.00 0.00 0.00 0.00 0.67 
1.0 0.00 0.06 0.00 0.11 0.67 
1.5 0.00 0.12 0.00 0.18 0.67 
2.0 0.00 0.12 0.00 0.25 0.6 
2.5 0.00 0.08 0.00 0.23 0.52 

dC  0.2 0.00 0.14 0.00 0.19 0.61 
0.4 0.00 0.08 0.00 0.18 0.61 
0.6 0.00 0.05 0.00 0.22 0.60 

 

Table 13.  

Percentage of Cells with Unacceptable Relative Bias  of Parameter Estimates Under 

Different Simulation Conditions for Variances and Covariances 

Conditions Level 
(1)
00ϕ

 
( 2 )
00ϕ

 
(1)
11ϕ

 
( 2 )
11ϕ

 
(1)
01ϕ

 
( 2 )
01ϕ

 ε  
Mixing 
Proportion 0.5 0.12 0.08 0.08 0.08 0.25 0.21 

0.00 

 0.7 0 0.08 0.00 0.09 0.18 0.3 0.00 
 0.9 0.05 0.22 0.07 0.3 0.05 0.47 0.00 
SMD 0.5 0.42 0.08 0.42 0.17 0.58 0.25 0.00 
 1.0 0.08 0.11 0.08 0.19 0.17 0.31 0.00 
 1.5 0.02 0.15 0.03 0.18 0.12 0.43 0.00 
 2.0 0.03 0.12 0.02 0.18 0.13 0.33 0.00 
 2.5 0.03 0.13 0.00 0.08 0.15 0.25 0.00 

dC  0.2 0.03 0.19 0.00 0.17 0.11 0.44 
0.00 

 0.4 0.02 0.14 0.04 0.20 0.08 0.35 0.00 
0.6 0.15 0.03 0.12 0.08 0.35 0.15 0.00 
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4.2.3.2 Results of Effieciency of Parameter Estimates. Based on the results 

of factorial ANOVA analysis (see Table 14 and Table 15), efficiency of parameter 

estimates was significantly affected by sample size, especially for the class-1 

intercept and slope estimates. Efficiency of the class-1 intercept and slope estimates 

was also affected by the mixing proportion condition and the distance of variance-

covariance structure. The conditions of the variance-covariance structure and the 

mean structure had significant effects on the class-2 intercept and slope estimates but 

not the class-1 estimates. Efficiency of estimates of the mixing proportion was only 

affected by the levels of the mixing proportion itself.  

 
Table 14.  

Factorial ANOVA Results on Efficiency of Intercept, Slope and Mixture Proportion 

Estimates 

Factors 
(1)
0β  (2)

0β  (1)
1β  (2)

1β  1π  

Data Overlap 

π  8.4% 7.7% 24.0% 
Sample Size 21.0% 14.4% 16.9% 12.1% 

dC  6.2% 9.7% 
SMD( dC ) 

VarCond( dC ) 11.5% 9.2% 12.4% 
MeanCond 12.3% 15.5% 

VarCond×SMD ( dC ) 

MeanCond×VarCond (dC ) 6.8% 
 

The efficiency of the variance-covariance estimates was mostly impacted by 

the mixing proportion, sample size and SMD. The mixing proportion and dC only 

affect the efficiency of the class-2 variance and covariance estimates. Overall data 
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overlap had some influence on class-2 variance estimates but not the covariance 

estiamtes. Efficiency of the residual variance was greatly affected by dC  and 

variance-covariance condition nested within dC .  

 

Table 15.  

Factorial ANOVA Results on Efficiency of Variance-Covariance Estimates 

Factors 
(1)
00ϕ  ( 2 )

00ϕ  (1)
11ϕ  ( 2 )

11ϕ  (1)
01ϕ  ( 2 )

01ϕ  ε  

Data Overlap 
 

6.9% 
 

9.2%   6.4% 
π  

 
25.9% 

 
28.1%  24.0% 16.2% 

Sample Size 7.4% 6.8% 
 

6.2% 14.2% 10.1% 14.4% 

dC  
 

11.9% 
 

11.6%  9.2% 41.8% 

SMD( dC ) 25.7% 9.0% 29.7% 10.9% 15.6% 6.4% 
 

VarCond( dC ) 
    

  26.3% 

MeanCond 
    

  
 

VarCond×SMD ( dC )               
MeanCond×VarCond (dC )               

 

Similarly to the relative bias of the mixing proportion estimates, the efficiency 

of 1π  was only affected by the mixing proportion itself. As shown in Figure 23, as the 

mixing proportions of the two classes become more unbalanced, the standard 

deviation of estimates becomes larger which means the efficiency of the parameter 

estimates decreases.  
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Figure 23. Efficiency of 1π  estimation under different mixing proportions. 

 

For intercept and slope estimation, the standard deviation of class-2 estimates 

were larger than class-1 estimates as demostrated in Figure 24. In addition, an 

unsurprising result was that the larger sample size tended to lead to more efficient 

estimation of the mean structure parameters. Another important factor that impacted 

efficiency of the mean structure estimates was the variance-covariance condtions 

nested within different levels of dC . In general, the standard deviation of the class-2 

intercept and slope estimates were smaller when covariances were different across 

classes than when variances were different (see Figure 25 for detailed information). 

No significant impact was found for the class-1 estimates. Also, as dC  increased, the 

efficiency of the class-2 parameter estimates also increased. Mean structure 

differences also affected the efficiency of the class-2 intercept and slopes. When 

intercepts were different in the two classes, the efficiency of the intercept estimates 

was lower than when the slopes were different. When the slopes were different in the 
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two classes, the efficiency of the slope estimates was lower than when the intercepts 

were different. Please refer to Figure 26 for details.  

 

 

Figure 24. Efficiency of intercept and slope estimation  

under different sample sizes. 
 

 

Figure 25.  Efficiency of intercept and slope estimation under different variance- 

covariance conditions nested withindC . 
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Figure 26. Efficiency of intercept and slope estimation  

under different mean structure condtions. 
 

Due to the fact that the magnitude of the class-2 random effects variances 

changed significantly under different conditions of the mixture proportion and dC , 

the standard deviations of the variance estimates were not comparable. However, the 

efficiency of residual variances, which were constrained to be the same across classes 

were on the same scale and comparable. As shown in Figure 27, as the level of dC  

increased, the standard deviation of residual variance estimates increased as well.  

 

Figure 27. Efficiency of residual variance estimation under different dC . 
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Table 16 shows the 5th and 95th percentile of efficiency of the mean structure 

parameters, the mixing proportions and residual variance under different mixing 

proportions and sample sizes. The range of the standard deviation of parameter 

estimates was smaller at the larger sample size level (N = 1000). 

 

Table 16.  

5th and 95th Percentile of Efficiency Under Different Mixing Proportions and Sample 

Sizes 

 
 

0.5/0.5
 

0.7/0.3
 

0.9/0.1
 

N=500 N=1000 N=500 N=1000 N=500 N=1000 
(1)
0β  (0.141, 0.367) (0.103, 0.237) (0.107, 0.32) (0.07, 0.174) (0.073, 0.281) (0.051, 0.107) 
(2)
0β  (0.169, 0.765) (0.106, 0.461) (0.246, 0.798) (0.151, 0.567) (0.428, 1.094) (0.313, 0.827) 
(1)

1β  (0.061, 0.157) (0.046, 0.109) (0.043, 0.141) (0.03, 0.079) (0.03, 0.148) (0.02, 0.113) 
(2)

1β  (0.08, 0.362) (0.047, 0.291) (0.11, 0.434) (0.068, 0.307) (0.186, 0.59) (0.148, 0.414) 

1π  (0.057, 0.19) (0.04, 0.133) (0.14, 0.262) (0.149, 0.23) (0.266, 0.384) (0.262, 0.403) 

ε  (0.036, 0.133) (0.024, 0.086) (0.036, 0.096) (0.024, 0.064) (0.035, 0.067) (0.024, 0.047) 

 

4.2.3.3 Results of Precision of Standard Error Estimates. Compared to 

relative bias and efficiency of parameter estimates, precision of the standard error 

estimates was not as affected by the factors of interest in the current study. Table 17 

and Table 18 summarize the factorial ANOVA results on precisions of standard error 

estimates. The effect sizes associated with the effects of factors on precision were 

only deemed of medium magnitude. Mean structure distance (SMD) nested within 

variance-covariance structure distance (dC ) had some effect on (2)
0β , (1)

1β , and the 

variance-covariance structure condition nested within dC  affected the efficiency of 

(2)
1β . There was a significant interaction effect of the variance-covariance structure 
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condition and the mean structure distance (SMD) nested within dC on (1)
0β , (1)

1β  and 

(2)
1β . 

 
Table 17.  

Factorial ANOVA Results on Precisions of Intercept, Slope Standard Error Estimates 

Factors 
(1)
0β  (2)

0β  (1)
1β  (2)

1β  

Data Overlap 
    

π  
    

Sample Size 
    

dC  
    

SMD( dC ) 
 

7.0% 9.9% 
 

VarCond( dC ) 
   

8.4% 

MeanCond 
    

VarCond×SMD ( dC ) 6.2% 
 

9.4% 7.8% 

MeanCond×VarCond (dC )         

 

For the standard error estimates for the variance-covariance parameters, only 

precision of the class-1 variances was affected by the mixing proportion and mean 

structure distance nested within dC , while precision of the class-1 covariance was 

affected by the interaction effect of the variance-covariance structure condition and 

the mean structure distance. No significant effects were found on precision of the 

class-2 variances and covariance standard error estimates or residual variance 

estimates.  
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Table 18.  

Factorial ANOVA Results on Precisions of Variance-Covariance Standard Error 

Estimates 

Factors 
(1)
00ϕ  ( 2 )

00ϕ  (1)
11ϕ  ( 2 )

11ϕ  (1)
01ϕ  ( 2 )

01ϕ  ε  
Data Overlap 

    
    

π  11.8% 
 

6.3% 
 

    
Sample Size 

    
    

dC  
    

    
SMD( dC ) 13.2% 

 
13.9% 

 
    

VarCond( dC ) 
    

    
MeanCond 

    
    

VarCond×SMD ( dC ) 
    

6.8%    
MeanCond×VarCond  

( dC )               

 

The precision of the standard error estimates, when close to one indcated,  that 

the standard errors estimated by the proposed model reflected the variation in the 

population. Table 19 through Table 21 show 5th and 95th percentile of precision under 

different SMD, dC  levels, mixing proportions, and sample sizes. As shown in Table 

21, the precision of standard error estiamtes was better (closer to 1) when sample 

sizes were large. Table 19 and Table 20 suggested that as SMD and dC  increased, 

precision tended toward 1. Even though several factors had significant effects on 

precision of the standard errors, the effect sizes were only moderate and no 

reasonable pattern were found when examining the relation between these factors and 

precision. Different parameters did not have the same level of precision on standard 

error estimates, however. Among all 228 simulation cells, only 60 of them had 

intercept and slope precision between 0.9 and 1.2. Among these cells with better 
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standard error precision, thirty cells belong to the medium high to high mean structure 

separation category, i.e.,  with SMD of 2 and 2.5. For SMD of 2.5. Half of these 60 

cells had sample size of 1000 and the other half had smaple size of 500. Most of these 

cells with high precisionhad either high level of SMD or larger sample size or both. 

However, the distribution of dC  was not different among these cells.  

 

Table 19.  

Precision of Standard Error Estimates Under Different SMD and dC  for Intercept 

and Slope 

 SMD  dC  (1)
0β  (2)

0β  (1)
1β  (2)

1β  

0.5 0.6 (0.795, 1.210) (0.627, 1.081) (0.899, 1.731) (0.334, 1.218) 

1 0.4 (0.525, 1.402) (0.644, 1.132) (0.446, 1.243) (0.588, 1.373) 

0.6 (0.954, 1.215) (0.691, 1.226) (0.964, 1.168) (0.631, 1.168) 

1.5 0.2 (0.592, 1.417) (0.648, 1.492) (0.487, 1.38) (0.612, 1.655) 

0.4 (0.855, 1.168) (0.764, 1.931) (0.683, 1.327) (0.722, 1.352) 

0.6 (0.903, 1.334) (0.766, 1.183) (0.869, 1.223) (0.722, 1.118) 

2 0.2 (0.831, 1.282) (0.876, 1.196) (0.718, 1.411) (0.744, 1.212) 

0.4 (0.91, 1.370) (0.800, 1.207) (0.906, 1.592) (0.780, 1.245) 

0.6 (0.884, 1.189) (0.869, 1.135) (0.928, 1.174) (0.761, 1.157) 

2.5 0.2 (0.922, 1.183) (0.793, 1.238) (0.866, 1.216) (0.778, 1.288) 

0.4 (0.949, 1.291) (0.891, 1.284) (0.888, 1.231) (0.866, 1.295) 

0.6 (0.850, 1.214) (0.846, 1.267) (0.947, 1.163) (0.817, 1.252) 
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Table 20.  

Precision of Standard Error Estimates Under Different SMD and dC  for Variances 

and Covariances 

 SMD  dC  
(1)
00ϕ  

( 2 )
00ϕ  

(1)
11ϕ  

( 2 )
11ϕ  

(1)
01ϕ  

( 2 )
01ϕ  ε  

0.5 0.6 (0.271, 1.823) (0.652, 1.305) (0.251, 1.246) (0.668, 1.244) (0.675, 1.392) (0.66, 1.358) (0.875, 1.232) 

1 0.4 (0.576, 1.17) (0.849, 1.417) (0.476, 1.18) (0.774, 1.248) (0.794, 1.317) (0.745, 1.309) (0.871, 1.213) 

 0.6 (0.377, 1.381) (0.881, 1.191) (0.415, 1.383) (0.821, 1.214) (0.931, 1.26) (0.681, 1.247) (0.938, 1.129) 

1.5 0.2 (0.773, 1.666) (0.827, 1.511) (0.739, 1.245) (0.789, 1.551) (0.812, 1.179) (0.767, 1.521) (0.880, 1.098) 

 0.4 (0.627, 1.192) (0.857, 1.948) (0.787, 1.168) (0.849, 1.192) (0.794, 1.181) (0.816, 1.301) (0.940, 1.096) 

 0.6 (0.949, 1.166) (0.859, 1.197) (0.869, 1.246) (0.745, 1.134) (0.954, 1.134) (0.845, 1.151) (0.867, 1.075) 

2 0.2 (0.831, 1.159) (0.876, 1.31) (0.823, 1.196) (0.809, 1.304) (0.819, 1.187) (0.86, 1.262) (0.956, 1.130) 

 0.4 (0.934, 1.259) (0.81, 1.263) (0.920, 1.326) (0.789, 1.273) (0.973, 1.467) (0.875, 1.231) (0.925, 1.073) 

 0.6 (0.83, 1.227) (0.899, 1.232) (0.904, 1.157) (0.772, 1.182) (0.951, 1.206) (0.755, 1.137) (0.883, 1.126) 

2.5 0.2 (0.895, 1.154) (0.836, 1.13) (0.917, 1.151) (0.821, 1.148) (0.916, 1.147) (0.848, 1.148) (0.929, 1.113) 

 0.4 (0.898, 1.268) (0.898, 1.326) (0.900, 1.332) (0.858, 1.301) (0.925, 1.13) (0.933, 1.433) (0.868, 1.139) 

 0.6 (0.946, 1.315) (0.854, 1.136) (0.912, 1.291) (0.836, 1.325) (0.95, 1.133) (0.917, 1.215) (0.886, 1.117) 
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Table 21.  

Precision of Standard Error Estimates Under Different Mixing Proportions and 

Sample Sizes 

  
  

0.5/0.5
  

0.7/0.3
  

0.9/0.1
  

N=500 N=1000 N=500 N=1000 N=500 N=1000 
(1)
0β  (0.815, 1.273) (0.91, 1.370) (0.592, 1.447) (0.832, 1.273) (0.525, 1.245) (0.762, 1.291) 
(2)
0β  (0.627, 1.267) (0.78, 1.296) (0.751, 1.275) (0.78, 1.449) (0.644, 1.78) (0.672, 1.192) 
(1)

1β  (0.647, 1.411) (0.863, 1.452) (0.718, 1.195) (0.899, 1.319) (0.487, 1.731) (0.368, 1.426) 
(2)

1β  (0.631, 1.321) (0.713, 1.556) (0.543, 1.285) (0.628, 1.488) (0.599, 1.548) (0.612, 1.288) 
(1)
00ϕ  (0.851, 1.602) (0.928, 1.823) (0.773, 1.315) (0.866, 1.202) (0.396, 1.229) (0.276, 1.183) 
( 2 )
00ϕ  (0.754, 1.31) (0.881, 1.305) (0.894, 1.195) (0.846, 1.345) (0.755, 4.963) (0.849, 1.104) 
(1)
11ϕ  (0.778, 1.326) (0.88, 1.332) (0.645, 1.203) (0.92, 1.308) (0.419, 1.185) (0.28, 1.19) 
( 2 )
11ϕ  (0.78, 1.275) (0.886, 1.426) (0.772, 1.325) (0.783, 1.184) (0.718, 1.551) (0.821, 1.201) 
(1)
01ϕ  (0.839, 1.218) (0.976, 1.392) (0.819, 1.233) (0.934, 1.187) (0.794, 1.661) (0.764, 1.212) 
( 2 )
01ϕ  (0.681, 1.215) (0.865, 1.358) (0.745, 1.284) (0.849, 1.521) (0.767, 1.73) (0.831, 1.218) 

ε  (0.867, 1.183) (0.931, 1.129) (0.875, 1.213) (0.928, 1.117) (0.88, 1.118) (0.893, 1.158) 

 

4.2.4 Classification Results. In this section, classification results of the GMM 

are provided. Two types of statistics will be applied to evaluate classification quality: 

entropy and classification accuracy. First, a factorial ANOVA model with nested 

design will be used to estimate the effect of different simulation factors on entropy 

and classification accuracy. Then results of these two statistics will be discussed in 

details, separately.  

Table 22 shows how much of the variance of entropy and classification 

accuracy can be explained by each factor. Difference in the mixing proportions 

explains the majority of the variance (60.9%) of the entropy while mean structure 

differences nested within variance-covariance structure differences explaining the 
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largest proportion (59.9%) of the variance of classification accuracy. No interactions 

among the factors were found from the ANOVA analysis. 

 
Table 22.  

Proportion of Variance Explained in Entropy and Classification Accuracy  

Factors Entropy Classification Accuracy 
Mixing Proportion 60.9% 23.9% 

dC  

SMD( dC ) 25.4% 59.9% 
N 

Mean Condition 
Variance-Covariance Condition 

 

4.2.4.1Entropy. As an indicator of classification quality in mixture models, 

entropy is regularly used to evaluate the uncertainty in classifying subjects. Entropy, 

as defined in Chapter 3, values close to 1 suggest perfect classification and values 

around 0.8 are usually considered acceptable (Muthén et al., 2002).  Across all 

simulation conditions, entropy values ranged from .227 to .791. As suggested by the 

factorial ANOVA results presented in Table 22, the mixing proportion condition had 

a significant effect on entropy. Data with larger differences in class proportion 

resulted in higher entropy values. Unsurprisingly, when subpopulations of data were 

more separated (larger SMD and dC ), the entropy values were higher as well (as 

shown in Figure 28 and 29). However, even for cells with the most optimistic 

condition combinations, the entropy values were barely acceptable. Data with larger 

sample size resulted in smaller entropy across all simulation conditions. Based on 

results from this simulation, the benchmark of 0.8 for entropy seems not realistic for 
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the proposed models. Entropy values larger than 0.6 were comparatively high for 

GMM models in current conditions. Detailed entropy information for different 

simulation conditions are listed in Table 23.  
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Table 23.  

Entropy under Different Simulation Conditions 

Entropy 

iπ  SMD dC  N=500 N=1000 

0.5 0.5 0.6 0.296 0.227 
1 0.4 0.353 0.277 
1 0.6 0.340 0.291 

1.5 0.2 0.435 0.369 
1.5 0.4 0.418 0.368 
1.5 0.6 0.421 0.384 
2 0.2 0.503 0.463 
2 0.4 0.500 0.469 
2 0.6 0.521 0.503 

2.5 0.2 0.588 0.565 
2.5 0.4 0.596 0.576 
2.5 0.6 0.602 0.589 

0.5 0.6 0.345 0.330 
1 0.4 0.422 0.358 
1 0.6 0.421 0.384 

1.5 0.2 0.512 0.427 
1.5 0.4 0.477 0.434 
1.5 0.6 0.489 0.450 
2 0.2 0.531 0.504 
2 0.4 0.544 0.513 
2 0.6 0.567 0.528 

2.5 0.2 0.603 0.577 
2.5 0.4 0.618 0.598 
2.5 0.6 0.627 0.609 

0.9 0.5 0.6 0.681 0.685 
1 0.4 0.645 0.633 
1 0.6 0.701 0.696 

1.5 0.2 0.662 0.655 
1.5 0.4 0.675 0.671 
1.5 0.6 0.727 0.729 
2 0.2 0.705 0.707 
2 0.4 0.712 0.716 
2 0.6 0.779 0.759 

2.5 0.2 0.747 0.744 
2.5 0.4 0.749 0.745 
2.5 0.6 0.791 0.785 
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Figure 28. Entropy values under different SMD. 

 

 

Figure 29. Entropy values under different dC . 

 

4.2.4.2 Classification Accuracy. Classification accuracy was defined in 

Chapter 3 as the percentage of correct assignment of subjects to the latent classes they 
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arose from. Across all simulation conditions, the percentage of correct assignment of 

class membership ranged from 0.625 to 0.875. The average classification accuracy 

was 0.742. Details about classification accuracy can be found in Table 24. As 

demonstrated in Figure 30, as SMD increased, classification accuracy tended to be 

higher across all other simulation conditions. Results also suggested that higher levels 

of dC  would also help improve correct assignment of class membership but the 

improvement was not as dramatic as the improvement caused by increased levels of 

SMD. Unlike entropy values, unbalanced sample size across subpopulations did not 

lead to better classification accuracy. In general, classification accuracy from data 

with mixing proportions of 0.9/0.1 and 0.7/0.3 was lower than those from 0.5/0.5, 

especially when SMD becomes larger. As shown in Figure 30 and Figure 31, 

increment of classification accuracy as increase of dC  was not as obvious as 

increment with SMD. Increasing the sample size from 500 to 1000 only improved 

classification accuracy slightly (0.739 for sample size 500 vs. 0.746 for sample size 

1000). No significant sample size effect was found in the ANOVA analysis (see 

Section 4.2.4.1).  
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Table 24.  

Classification Accuracy across Different Simulation Conditions 

Classification Accuracy 

iπ  SMD dC  N=500 N=1000 

0.5 0.5 0.6 0.701 0.720 
1 0.4 0.771 0.786 
1 0.6 0.836 0.847 

1.5 0.2 0.672 0.689 
1.5 0.4 0.742 0.757 
1.5 0.6 0.810 0.819 
2 0.2 0.648 0.637 
2 0.4 0.687 0.677 
2 0.6 0.736 0.729 

2.5 0.2 0.673 0.696 
2.5 0.4 0.739 0.751 
2.5 0.6 0.802 0.810 

0.5 0.6 0.855 0.861 
1 0.4 0.650 0.662 
1 0.6 0.706 0.714 

1.5 0.2 0.768 0.773 
1.5 0.4 0.823 0.828 
1.5 0.6 0.630 0.625 
2 0.2 0.662 0.651 
2 0.4 0.702 0.684 
2 0.6 0.730 0.727 

2.5 0.2 0.665 0.694 
2.5 0.4 0.720 0.734 
2.5 0.6 0.771 0.782 

0.9 0.5 0.6 0.833 0.835 
1 0.4 0.871 0.875 
1 0.6 0.673 0.676 

1.5 0.2 0.702 0.708 
1.5 0.4 0.744 0.755 
1.5 0.6 0.791 0.800 
2 0.2 0.837 0.844 
2 0.4 0.652 0.689 
2 0.6 0.704 0.714 

2.5 0.2 0.731 0.735 
2.5 0.4 0.759 0.762 
2.5 0.6 0.792 0.796 
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Figure 30. Classification accuracy under different levels of SMD and mixing 

proportions. 

 

 

Figure 31. Classification accuracy under different levels of dC and mixing 

proportions. 
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4.3 Simulation Study-2 Results 

The purpose of the second simulation was to investigate the impact of residual 

variance on GMM estimation. The target simulation conditions were those that were 

not included in the first simulation study due to large overlap between data. The 

residual variances of these cells had been modified to examine whether class specific 

residual variances would enlarge the separation of data and improve convergence 

rates. Residual variance of the first class was designated to remain the same as in the 

first simulation while the residual variance of the second class was doubled.  After 

adding differences in residual variances, the overall data overlap have been reduced 

significantly. The average overlap of data generated from these simulation conditions 

in the first simulation was 0.77. After residual variances were manipulated to be 

different across subpopulations, the average data overlap became 0.36. Please refer to 

Appendix B for parameters used in the second simulation study. The mean structure 

conditions for this simulation are 0.5 and 1 which indicate very small separation in 

mean structure across classes. The levels of variance-covariance distance include 0.2 

and 0.4 as small to medium level of separation. Since the impact of mean structure 

condition had been evaluated in the first simulation study, this part of simulation will 

focus on the mean difference on intercept and keep the same slope across classes. In 

addition, the sample size for this simulation was fixed to be 500 since the first 

simulation had examined the effect of sample size.  

4.3.1 Convergence and Local Maxima. The convergence rates for 1-class 

analysis were 100% for all 24 simulation cells. For two-class GMM analysis (true 

model in the current study), the convergence rates of the 24 simulation cells were all 
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within 98% to 100% except for the four cells with 0.9/0.1 mixing proportions as well 

as covariance differences in the two classes. Approximately 17% to 21% of the data 

in these four cells did not converge. No cases with possible local maxima were found 

for either 1-class or 2-class analysis.  

Similar to the results in the first simulation, the convergence rates for 3-class 

analysis were extremely low with only a handful of converged cases across all 24 

simulation cells. Furthermore, about 33% to 60% of the cases under these simulation 

conditions encountered local maxima problems.  

4.3.2 Identification of Latent Classes. Similar to the results of first 

simulation study, BIC had the best performance in detecting correct number of 

classes. Decisions based on LMR were more likely to over-extract the number of 

latent classes. No significant relation was found between correct class enumeration 

rates and other simulation factors. Table 25 lists the class enumeration information of 

all three model fit indices. Since the overall data overlap of this simulation was on 

average higher than the first simulation, the correct model enumeration rates were 

higher for both ABIC and BIC. The over-extraction rate for ABIC dropped from 0.45 

to 0.086 in the second simulation. The frequency of under-enumeration using BIC 

also dropped. No big difference was found for enumeration results from LMR.  

 
Table 25.  

Identification of Latent Classes Using ABIC, BIC and LMR 

Correct Identification Over Extract Under Extract 
ABIC 0.914 0.086 0.000 
BIC 1.000 0.000 0.000 
LMR 0.574 0.426 0.000 
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4.3.3. Parameter Recovery. Due to the simplicity of the design for this 

simulation, fewer factors will be evaluated on their effect on parameter recovery. 

ANOVA analysis results have shown only a couple of significant effects of any of the 

factors on relative bias, efficiency and precision of parameters based on the criteria 

used in the first simulation study. Therefore, this section will not discuss ANOVA 

results but present the results of parameter recovery in general. 

In the second simulation, even though the distances between mean structures 

of the two classes were really small (0.5 and 1) and the separation of random effect 

variance-covariance structures was not large, the difference between residual 

variances between the two classes significantly reduced the overall data overlap. As a 

result, the relative bias of parameter estimates decreased accordingly. Out of 24 

simulation cells, relative bias of all parameter estimates (except for mixing proportion 

estimates) from 16 of them were smaller than 0.1. Relative bias larger than 0.1 only 

occurred for variance and covariance estimates especially for those of the second 

class.  In the first simulation, the relative bias for residual variances was small and not 

affected by any simulation conditions. In the second simulation, the relative bias for 

residual variances was larger when mixing proportions was more unbalanced 

especially for class-2 residual variance. Please see Table 26 for the 5th and 95th 

percentile of relative bias of parameter estimates.  
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Table 26.  

5th and 95th Percentile of Relative Bias under Different Levels of Mixing Proportions  

0.5/0.5 .07/.3 0.9/0.1 
(1)
0β  (-0.004, 0.003) (-0.003, 0.002) (0.000, 0.002) 
(2)
0β  (-0.019, 0.002) (-0.006, 0.002) (-0.013, 0.012) 
(1)
1β  (-0.003, 0.004) (-0.002, 0.002) (-0.002, 0.002) 
(2)

1β  (-0.004, 0.003) (-0.004, 0.005) (-0.006, 0.011) 

1π  (-0.017, 0.006) (-0.342, -0.125) (-0.401, -0.216) 
(1)
00ϕ  (-0.019, 0.03) (-0.019, 0.035) (-0.034, 0.009) 
(2)
00ϕ  (-0.086, 0.014) (-0.047, 0.024) (-0.065, 0.244) 
(1)
11ϕ  (-0.039, 0.021) (-0.023, 0.017) (-0.013, 0.011) 
(2)
11ϕ  (-0.055, 0.008) (-0.053, 0.023) (-0.103, 0.113) 
(1)
01ϕ  (-0.117, 0.111) (-0.042, 0.102) (-0.076, 0.049) 
(2)
01ϕ  (-0.094, 0.077) (-0.099, 0.072) (-0.078, 0.27) 
(1)ε  (-0.004, 0.012) (-0.007, 0.006) (-0.012, -0.002) 
(2)ε  (-0.003, 0.007) (-0.012, 0.008) (-0.041, 0.005) 

 
 

The efficiency of parameter estimates at different mixing proportions are 

listed in Table 27. Similar to the first simulation, the standard deviation of parameter 

estimates were higher for class-2 parameter estimates than class-1 estimates. Since 

the variances parameters of the second class were much larger than the first class, the 

standard deviations of parameter estimates were not comparable and thus not listed in 

the table.  
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Table 27.  

5th and 95th Percentile of Standard Deviation of Parameter Estimates under Different 

Levels of Mixing Proportions  

0.5/0.5 .07/.3 0.9/0.1 
(1)
0β  (0.093, 0.129) (0.070, 0.088) (0.059, 0.074) 
(2)
0β  (0.123, 0.216) (0.151, 0.268) (0.257, 0.508) 
(1)
1β  (0.036, 0.052) (0.029, 0.041) (0.025, 0.03) 
(2)

1β  (0.05, 0.091) (0.057, 0.101) (0.107, 0.215) 

1π  (0.028, 0.042) (0.164, 0.196) (0.341, 0.396) 
 

 

The precision of standard error estimates were better for all parameters in the 

second simulation with class specific residual variances. The ranges of precision were 

narrower and the values were closer to 1. The precision of standard error was more 

stable across all simulation conditions than that of the first simulation. Table 28 

presents the 5th and 95th percentile of precision of standard error estimates under 

different mixing proportion conditions.  
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Table 28.  

5th and 95th Percentile of Precision of Standard Error Estimates under Different 

Levels of Mixing Proportions 

0.5/0.5 .07/.3 0.9/0.1 
(1)
0β  (0.856, 1.232) (0.977, 1.221) (0.909, 1.129) 
(2)
0β  (0.91, 1.146) (0.959, 1.474) (0.952, 1.217) 
(1)
1β  (0.928, 1.166) (0.919, 1.15) (0.919, 1.169) 
(2)

1β  (0.938, 1.052) (0.932, 1.194) (0.957, 1.12) 
(1)
00ϕ  (0.944, 1.093) (0.926, 1.124) (0.91, 1.236) 
(2)
00ϕ  (0.956, 1.167) (0.981, 1.168) (0.993, 1.266) 
(1)
11ϕ  (0.952, 1.215) (0.89, 1.084) (0.97, 1.173) 
(2)
11ϕ  (0.952, 1.133) (0.946, 1.174) (0.894, 1.161) 
(1)
01ϕ  (0.924, 1.112) (0.946, 1.152) (0.901, 1.161) 
(2)
01ϕ  (0.921, 1.22) (0.886, 1.194) (0.962, 1.29) 
(1)ε  (0.962, 1.183) (0.995, 1.135) (0.899, 1.197) 
(2)ε  (0.898, 1.147) (0.936, 1.221) (0.991, 1.156) 

 

  

4.3.4 Classification Results. This section presents the classification results of 

the second simulation. The average entropy value for this simulation across all 

conditions was 0.660. The range of entropy was from 0.525 to 0.827. ANOVA 

indicated that the mixing proportion was the only factor that significantly affected the 

entropy values by explaining about 96.6% of the variation. As shown in Table 29, 

entropy values were higher when one class has much larger sample size than the other 

class.  
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Table 29.  

Entropy under Different Mixing Proportions 

iπ  Entropy 
0.5 0.560 
0.7 0.621 
0.9 0.799 

 

 Across all simulation conditions, the percentage of correct assignment of 

class membership ranged from 0.760 to 0.879 with an average classification accuracy 

of 0.834. As suggested by factorial ANOVA results (see Table 30), two factors that 

impacted the accuracy of class membership assignment were the mixing proportions 

and distances of mean structure between classes. Details about classification accuracy 

can be found in Table 30. 

 

Table 30.  

Proportion of Variance Explained in Entropy and Classification Accuracy 

Factors Entropy Classification Accuracy 
Mixing Proportion 96.6% 71.31% 

dC  

SMD( dC ) 13.95% 
Variance-Covariance Condition 
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Table 31.  

Classification Accuracy across Different Simulation Conditions 

iπ  SMD Classification Accuracy 
0.5 0.5 0.850 

1 0.866 
0.7 0.5 0.845 

1 0.856 
0.9 0.5 0.768 

1 0.817 
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Chapter 5 Discussion 

Despite of the fast development of growth mixture model in the past twenty 

years, the influence of variance-covariance structures on growth mixture analysis 

have not been examined systematically. The focus of current study was the 

performance of growth mixture models with not only class-specific mean growth 

trajectories but also class-specific variance-covariance structures.  The aim of this 

dissertation was to investigate how different conditions of variance-covariance of 

random effects and residuals affect the estimation of GMM with or without 

interaction with other factors like mean structure conditions, mixing proportion and 

sample size. Two simulation studies were conducted to evaluate the impact of random 

effects variance-covariance (between-subject variation) and residual variance (within-

subject variation) separately. In both simulations, the performance of the linear 

growth mixture model under a variety of simulation conditions was assessed in terms 

of the model enumeration, membership classification as well as parameter recovery. 

In this chapter, major findings from the two simulations will be outlined and 

discussed, recommendations for researchers and practitioners will be addressed and 

limitations of current study as well as suggestions for future research will be 

presented. 

5.1 Summary of Findings 

5.1.1 Convergence Rates and Local Maxima. As shown in both of the 

simulation studies, convergence rates and the possibility of local maxima in GMM 

estimation were closely related to global overlap between subpopulation data 

distribution which is determined by mean structure separation (SMD) and variance-
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covariance structure separation (dC ). Data with more unbalanced subpopulation 

sample sizes were more likely to encounter estimations problems like non-positive 

variance estimates and local maxima. The possible reason was that not enough 

information were given from the smaller size classes for the model to extract two 

classes from the population. Previous studies (Nylund, Asparouhov & Muthén, 2007 

& Tofighi & Enders, 2008) suggested that over-extraction or in other word over-

parameterization often causes model non-convergence. The 3-class GMM estimation 

encountered much more non-convergence and local maxima solutions than the 2-class 

or 1-class estimation. Increasing sample size and data separation definitely reduced 

the chance of these estimation problems. It is easier for the model to detect two 

classes when the subpopulations are further apart and there are enough data to 

provide information for each of the class.  

5.1.2 Model Enumeration. The results of current simulation studies 

suggested that BIC again had the highest rates of correct model enumeration (0.876) 

compared to ABIC (0.536) and LMR (0.532). ABIC and LMR often over-extracted 

the number of latent classes while BIC sometimes led to model under-enumeration. 

The ABIC’s adjustment on sample sizes seemed not suit the models in current study. 

Increasing the sample size and class separation (SMD and/or dC ) help lower the rates 

of under-enumerating using BIC and over-enumerating using ABIC.  

5.1.3 Parameter Recovery. The relative bias values of most parameters in 

GMM of current study were acceptable for data generated from conditions of more 

than half of the cells in the two simulations studies. In general mean structure 

parameters, i.e. intercept and slope estimates, had smaller relative bias than variance 
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covariance estimates. Mixing proportion had the largest relative bias among all 

parameters. The first simulation results suggested that relative bias of mean structure 

parameters were affected mainly by variance-covariance structure condition, mean 

structure conditions as well as the their interaction. When the focus of variance-

covariance difference between subpopulations was on covariances, the relative bias of 

both class-1 and class-2 intercept and slope were small. When variances of two 

subpopulations are different, however, the relative bias of class-2 intercept and slope 

were much larger than class-1 intercept and slope. The relative bias of variance-

covariance parameters, on the other hand, were affected by the level of mean 

structure difference in two subpopulations, mean structure conditions as well as the 

interaction between mean structure condition and level of variance-covariance 

structure separation. The impact of variance-covariance condition on variances 

estimates of random effects is similar to that on mean structure estimates. The only 

factor that explained the variation of relative bias of mixing proportion was the 

mixing proportion itself. Larger differences in subpopulation sample sizes led to 

larger relative bias of mixing proportion estimates.  

The first simulation results showed that sample size significantly affected the 

efficiency of most parameter estimates. Larger sample size would reduce the standard 

deviation of estimates significantly. Mean structure condition and variance-

covariance condition also affect class-2 intercept and slope estimates but not class-1 

estimates. In general, estimates of class-2 intercept and slope had lower efficiency but 

the efficiency improved when covariances instead of variances were different in 

subpopulations. The larger the difference between subpopulation sample sizes, the 
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larger the variation of mixing proportion estimates. Residual variance estimates had 

higher efficiency when variance-covariance structures of random effect in two 

subpopulations were less separated.  

The precision of standard error for mean structure estimates was not affected 

by the simulation factors as much as the relative bias and efficiency. Only standard 

error of class-1 variances of intercept and slope were influenced by mixing proportion 

and level of mean structure separation between subpopulations. Overall, the precision 

of standard error estimates was not satisfactory for most simulation conditions. Only 

less than one third of the simulation cells had acceptable intercept and slope standard 

error precision. The level of mean structure separation played important role in 

precision. Conditions with medium high to high SMD or large sample size were 

easier to obtain more precise standard error estimates. No significant impact of dC

was found on precision of any parameter.  

The second simulation study did not find any specific simulation factor with 

significant and systematic impact on any parameter recovery criteria. The relative 

bias of parameters and precision of standard errors were in general, acceptable. Class-

specific residual variances reduced the overall data overlap significantly, which led to 

better model estimation results.  

5.1.4 Classification Results. Results of entropy and classification rates were 

similar for the two simulations. Mixing proportion explained the majority of the 

variation of entropy and classification accuracy across different simulation 

conditions. The levels of mean structure separation in two subpopulations affected 

entropy and classification accuracy in the first simulation but only classification 
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accuracy in the second simulation. Entropy values were higher but classification 

accuracy was lower when mixing proportions were more unbalanced. Both statistics 

increased when SMD was higher.  

5.2 Discussion 

As expected prior to conducting the current study the performance of the 

proposed model was better when the overlap of the generated data is smaller, i.e., the 

distributions of the subpopulations were more separated. The possibility of non-

convergence which mostly was caused by non-positive variance estimates and local 

maxima was lower when data were less overlapped. The overall data overlap is a 

result of class specific mean structures and variance-covariance structures but neither 

convergence rates nor local maxima were affected by where the differences of mean 

structure or variance-covariance structure were. It was also as expected that 

increasing sample size reduced model estimation difficulties especially the 

occurrences of local maxima. The results suggested that the most likely explanation 

for non-convergence problem may be over-extraction of parameters in GMMs. When 

the data overlapped too much, it was more difficult to extract two sets of mean and 

variance-covariance parameters for the subpopulations. In sum, the smoothness of the 

estimation of proposed model was more dependent on overall data separation and 

sample size which are two key factors for the model to mathematically build two 

classes based on the data, and less related to how the data were separated. 

The impact of variance-covariance structures on parameter recovery was one 

of the major purposes of current study. The results suggested that not only the 

magnitude of how different the variance-covariance structures in two subpopulations 
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affect the accuracy of parameter estimates but also where the difference was located, 

i.e., variances differences or covariance differences. The average generated data 

overlap for cells with variances different across subpopulations was similar to those 

with covariances different across populations (0.37 vs. 0.35). However, the relative 

bias of class-2 parameter estimates from “variances different” conditions were larger 

than those from “covariances different” conditions. The reason of this scenario may 

that the large variation of parameter of the second class undermines the estimation 

accuracy.  

The most difficult parameter to estimate for the proposed model was the 

proportion of sample size of each subpopulation. This parameter had the largest 

relative bias and big variation among iterations especially when sample sizes were 

quite different between two subpopulations. A possible explanation may be that the 

model may have more misclassification of subjects of class 1 to class 2 when class 2 

has really small sample size, which in turn affects the estimation of mixing 

proportion. The random effects variance-covariance structures also had larger relative 

bias. The model slightly overestimated the first class intercept and slope variances but 

underestimated the second class variances. The current simulation design set the 

second class variances to be larger than the first class but the second class mean 

structure to be smaller than the first class. Apparently the model tended to magnify 

the differences on mean structures between two subpopulations but shrink the 

differences on variance-covariance structures.  

Residual variances estimates were in general more accurate than the random 

effects variances and covariances. The current simulation also found many fewer 
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cases with negative residual variance estimates than non-positive definite variances of 

random effects. In both simulation studies, the residual variance has smaller relative 

bias and higher precision of standard errors. In the second simulation, two 

subpopulations were assigned different residual variances, which resulted in less 

overlap between subpopulation data. Even with very small mean structure and 

random effects variance-covariance structure differences, the convergence rates and 

parameter recovery have been largely improved. The relative bias of residual 

variances did not increase very much in the second simulation.  

5.3 Recommendations 

The current study extends the traditional focus of growth trajectories 

difference on GMM to variances and covariances among subpopulations. The results 

demonstrated that even when the mean growth trajectories are not much different 

between two subpopulations; it is still possible to discover latent classes among 

subjects based on differences on variance-covariance structures of subpopulations. 

Data convergence and local maximum can be challenging for GMM 

estimation when data of two subpopulations are too overlapped especially when one 

subpopulation has much smaller sample size. It is important for practitioners and 

researchers to visually explore the data first and obtain some ideas about whether data 

overlap is small enough for GMM to detect two subpopulations. Not only the average 

growth trajectories of two subpopulations but also their variance and covariances 

should be evaluated. Not many methods for exploration of GMM data are available in 

literature. Researchers and scholars who are interested in GMM may extent the 

methods used for regression diagnostic analysis and build up a complete tool for 
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growth mixture data examination. The reason of non-convergence can be small 

sample size or large overlap. Current simulation results suggest that for sample size as 

small as 250, even data with medium level of separation often cannot converge.  

The estimation of GMM with class specific random effects variance-

covariance structures and residual variances provides a way to study subpopulation 

growth differences more thoroughly. The relative bias of intercept and slope 

parameters as well as residual variances was in general acceptable. However, 

researchers should be cautious about estimates of random effects variances and 

covariances especially when one class has really small sample size. If one class has 

really large variances of intercept or slope, the bias of its intercept or slope should 

also be larger. In this situation, the estimated class differences in growth trajectory 

might be larger population differences while the variances of growth trajectory may 

be underestimated. Sample size of 500 seems large enough to provide valid estimates. 

If data can be properly converged, increasing sample size does not seem to improve 

estimation accuracy.  

Researchers may need to pay extra attention when they wish to assign subjects 

to different classes based on the model estimates. The entropy values were not very 

satisfying when the two classes were not well separated especially when mixing 

proportion was 0.5/0.5. The classification accuracy is also moderate. When mixing 

proportion is 0.7/0.3 or 0.9/0.1, the model had the tendency to assign more subjects to 

the smaller size class than the true sample size. Both entropy values and classification 

accuracy were not affected by variance-covariance structure differences very much 

but significantly influenced by the differences of mean growth trajectories. Therefore, 
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when two latent classes do not vary much in terms of mean growth trajectory, making 

inferences about subjects being in a particular latent class is not recommended. The 

current study used posterior probability to assign subjects to different latent classes. 

Researchers can explore other possible methods for membership assignment to see if 

they can improve classification accuracy. 

5.4 Limitations of Current Study and Implications for Future Studies 

The current study explored different variance-covariance structures on GMM 

which have not been studied systematically in previous studies. The research design 

intended to discover how these variance-covariance structures might affect the 

estimation of GMM models. Due to the lack of literature in qualifying the differences 

among variance matrices in two subpopulations, the current study modified Maitra 

and Melnykov (2010)’s index to generate a new index for measuring distance 

between variance matrices, dC . The calculation of this index, taking into account of 

mixing proportions,  may confound the mixing proportion factor in analyzing the 

simulation results.  

Differences in variance-covariance structures can vary in a number of ways 

that may affect the estimation of model distinctively. There are a limited number of 

simulation conditions that can be accommodated in the current study within certain 

amount of time and only two possible patterns of differences have been examined in 

the simulation. The results suggested whether differences were on variances or 

covariance indeed led to different parameter estimation accuracy. Future studies can 

expand the scope on variance-covariance differences and evaluate their impact on 

GMM estimation.  
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Another limitation of this research is that the GMM model applied in the 

simulations was simplified to include only time as predictor and no covariates were 

incorporated. Previous study of Lubke and Muthén (2007) suggested that inclusion of 

covariates in a growth mixture model may help reduce the possibility of non-

convergence and improve classification accuracy. 
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Appendix A 

Data Generation Parameters for Simulation 1 

mix 
proportion  

Mean 
Condition 

Variance 
Condition 

Class 1 Class 2 Class 1 Class 2 
Class 

1 
Class 

2 

SMD dC  
Resid-

var 
Data 

Overlap i s i s 
i-

var 
s- 

var 
i- 

var 
s- 

var 
is-
cov 

Is-
cov 

0.5 i_diff var_diff 5 2 0.72 2 1 0.25 5.1 1.275 0.2 0.2 2.5 0.6 3.7 0.27 
0.5 s_diff var_diff 5 2 5 -0.14 1 0.25 5.1 1.275 0.2 0.2 2.5 0.6 3.7 0.22 
0.5 i_diff var_diff 5 2 1.41 2 1 0.25 5.1 1.275 0.2 0.2 2 0.6 3.7 0.33 
0.5 s_diff var_diff 5 2 5 0.28 1 0.25 5.1 1.275 0.2 0.2 2 0.6 3.7 0.30 
0.5 i_diff var_diff 5 2 2.43 2 1 0.25 5.1 1.275 0.2 0.2 1.5 0.6 3.7 0.43 
0.5 s_diff var_diff 5 2 5 0.71 1 0.25 5.1 1.275 0.2 0.2 1.5 0.6 3.7 0.40 
0.5 i_diff var_diff 5 2 3.28 2 1 0.25 5.1 1.275 0.2 0.2 1 0.6 3.7 0.52 
0.5 s_diff var_diff 5 2 5 1.14 1 0.25 5.1 1.275 0.2 0.2 1 0.6 3.7 0.50 
0.5 i_diff var_diff 5 2 4.14 2 1 0.25 5.1 1.275 0.2 0.2 0.5 0.6 3.7 0.58 
0.5 s_diff var_diff 5 2 5 1.57 1 0.25 5.1 1.275 0.2 0.2 0.5 0.6 3.7 0.58 
0.5 i_diff var_diff 5 2 3.49 2 1 0.25 3.7 0.925 0.2 0.2 1 0.4 2.9 0.57 
0.5 s_diff var_diff 5 2 5 1.24 1 0.25 3.7 0.925 0.2 0.2 1 0.4 2.9 0.55 
0.5 i_diff var_diff 5 2 2.74 2 1 0.25 3.7 0.925 0.2 0.2 1.5 0.4 2.9 0.47 
0.5 s_diff var_diff 5 2 5 0.87 1 0.25 3.7 0.925 0.2 0.2 1.5 0.4 2.9 0.44 
0.5 i_diff var_diff 5 2 1.99 2 1 0.25 3.7 0.925 0.2 0.2 2 0.4 2.9 0.38 
0.5 s_diff var_diff 5 2 5 0.49 1 0.25 3.7 0.925 0.2 0.2 2 0.4 2.9 0.33 
0.5 i_diff var_diff 5 2 1.24 2 1 0.25 3.7 0.925 0.2 0.2 2.5 0.4 2.9 0.29 
0.5 s_diff var_diff 5 2 5 0.12 1 0.25 3.7 0.925 0.2 0.2 2.5 0.4 2.9 0.24 
0.5 i_diff cov_diff 5 2 4 2 1 0.25 1 0.25 0.55 -0.6 1 0.4 1.2 0.60 
0.5 s_diff cov_diff 5 2 5 1.5 1 0.25 1 0.25 0.55 -0.6 1 0.4 1.2 0.57 
0.5 i_diff cov_diff 5 2 3.5 2 1 0.25 1 0.25 0.55 -0.6 1.5 0.4 1.2 0.50 
0.5 s_diff cov_diff 5 2 5 1.25 1 0.25 1 0.25 0.55 -0.6 1.5 0.4 1.2 0.46 
0.5 i_diff cov_diff 5 2 3 2 1 0.25 1 0.25 0.55 -0.6 2 0.4 1.2 0.40 
0.5 s_diff cov_diff 5 2 5 1 1 0.25 1 0.25 0.55 -0.6 2 0.4 1.2 0.34 
0.5 i_diff cov_diff 5 2 2.5 2 1 0.25 1 0.25 0.55 -0.6 2.5 0.4 1.2 0.30 
0.5 s_diff cov_diff 5 2 5 0.75 1 0.25 1 0.25 0.55 -0.6 2.5 0.4 1.2 0.24 
0.5 i_diff var_diff 5 2 3.05 2 1 0.25 2.5 0.625 0.2 0.2 1.5 0.2 2.1 0.51 
0.5 s_diff var_diff 5 2 5 1.02 1 0.25 2.5 0.625 0.2 0.2 1.5 0.2 2.1 0.47 
0.5 i_diff var_diff 5 2 2.4 2 1 0.25 2.5 0.625 0.2 0.2 2 0.2 2.1 0.40 
0.5 s_diff var_diff 5 2 5 0.7 1 0.25 2.5 0.625 0.2 0.2 2 0.2 2.1 0.35 
0.5 i_diff var_diff 5 2 1.75 2 1 0.25 2.5 0.625 0.2 0.2 2.5 0.2 2.1 0.31 
0.5 s_diff var_diff 5 2 5 0.37 1 0.25 2.5 0.625 0.2 0.2 2.5 0.2 2.1 0.25 
0.5 i_diff cov_diff 5 2 3.5 2 1 0.25 1 0.25 0.46 -0.4 1.5 0.2 1.2 0.54 
0.5 s_diff cov_diff 5 2 5 1.25 1 0.25 1 0.25 0.46 -0.4 1.5 0.2 1.2 0.49 
0.5 i_diff cov_diff 5 2 3 2 1 0.25 1 0.25 0.46 -0.4 2 0.2 1.2 0.42 
0.5 s_diff cov_diff 5 2 5 1 1 0.25 1 0.25 0.46 -0.4 2 0.2 1.2 0.36 
0.5 i_diff cov_diff 5 2 2.5 2 1 0.25 1 0.25 0.46 -0.4 2.5 0.2 1.2 0.31 
0.5 s_diff cov_diff 5 2 5 0.75 1 0.25 1 0.25 0.46 -0.4 2.5 0.2 1.2 0.25 
0.7 i_diff var_diff 5 2 4.27 2 1 0.25 4.95 1.2375 0.2 0.2 0.5 0.6 2.7 0.63 
0.7 s_diff var_diff 5 2 5 1.63 1 0.25 4.95 1.2375 0.2 0.2 0.5 0.6 2.7 0.62 
0.7 i_diff var_diff 5 2 3.55 2 1 0.25 4.95 1.2375 0.2 0.2 1 0.6 2.7 0.57 
0.7 s_diff var_diff 5 2 5 1.27 1 0.25 4.95 1.2375 0.2 0.2 1 0.6 2.7 0.56 
0.7 i_diff var_diff 5 2 2.82 2 1 0.25 4.95 1.2375 0.2 0.2 1.5 0.6 2.7 0.49 
0.7 s_diff var_diff 5 2 5 0.91 1 0.25 4.95 1.2375 0.2 0.2 1.5 0.6 2.7 0.47 
0.7 i_diff var_diff 5 2 2.1 2 1 0.25 4.95 1.2375 0.2 0.2 2 0.6 2.7 0.41 
0.7 s_diff var_diff 5 2 5 0.55 1 0.25 4.95 1.2375 0.2 0.2 2 0.6 2.7 0.38 
0.7 i_diff var_diff 5 2 1.38 2 1 0.25 4.95 1.2375 0.2 0.2 2.5 0.6 2.7 0.33 
0.7 s_diff var_diff 5 2 5 0.19 1 0.25 4.95 1.2375 0.2 0.2 2.5 0.6 2.7 0.29 
0.7 i_diff var_diff 5 2 3.68 2 1 0.25 3.7 0.925 0.2 0.2 1 0.4 2.2 0.63 
0.7 s_diff var_diff 5 2 5 1.34 1 0.25 3.7 0.925 0.2 0.2 1 0.4 2.2 0.61 
0.7 i_diff var_diff 5 2 3.02 2 1 0.25 3.7 0.925 0.2 0.2 1.5 0.4 2.2 0.54 
0.7 s_diff var_diff 5 2 5 1.01 1 0.25 3.7 0.925 0.2 0.2 1.5 0.4 2.2 0.51 
0.7 i_diff var_diff 5 2 2.36 2 1 0.25 3.7 0.925 0.2 0.2 2 0.4 2.2 0.44 
0.7 s_diff var_diff 5 2 5 0.68 1 0.25 3.7 0.925 0.2 0.2 2 0.4 2.2 0.40 
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0.7 i_diff var_diff 5 2 1.7 2 1 0.25 3.7 0.925 0.2 0.2 2.5 0.4 2.2 0.35 
0.7 s_diff var_diff 5 2 5 0.35 1 0.25 3.7 0.925 0.2 0.2 2.5 0.4 2.2 0.30 
0.7 i_diff cov_diff 5 2 4.03 2 1 0.25 1 0.25 0.62 -0.6 1 0.4 1.2 0.73 
0.7 s_diff cov_diff 5 2 5 1.51 1 0.25 1 0.25 0.62 -0.6 1 0.4 1.2 0.70 
0.7 i_diff cov_diff 5 2 3.54 2 1 0.25 1 0.25 0.62 -0.6 1.5 0.4 1.2 0.62 
0.7 s_diff cov_diff 5 2 5 1.27 1 0.25 1 0.25 0.62 -0.6 1.5 0.4 1.2 0.57 
0.7 i_diff cov_diff 5 2 3.06 2 1 0.25 1 0.25 0.62 -0.6 2 0.4 1.2 0.50 
0.7 s_diff cov_diff 5 2 5 1.03 1 0.25 1 0.25 0.62 -0.6 2 0.4 1.2 0.43 
0.7 i_diff cov_diff 5 2 2.58 2 1 0.25 1 0.25 0.62 -0.6 2.5 0.4 1.2 0.38 
0.7 s_diff cov_diff 5 2 5 0.79 1 0.25 1 0.25 0.62 -0.6 2.5 0.4 1.2 0.31 
0.7 i_diff var_diff 5 2 3.21 2 1 0.25 2.6 0.65 0.2 0.2 1.5 0.2 1.8 0.59 
0.7 s_diff var_diff 5 2 5 1.1 1 0.25 2.6 0.65 0.2 0.2 1.5 0.2 1.8 0.54 
0.7 i_diff var_diff 5 2 2.61 2 1 0.25 2.6 0.65 0.2 0.2 2 0.2 1.8 0.47 
0.7 s_diff var_diff 5 2 5 0.8 1 0.25 2.6 0.65 0.2 0.2 2 0.2 1.8 0.42 
0.7 i_diff var_diff 5 2 2.02 2 1 0.25 2.6 0.65 0.2 0.2 2.5 0.2 1.8 0.37 
0.7 s_diff var_diff 5 2 5 0.51 1 0.25 2.6 0.65 0.2 0.2 2.5 0.2 1.8 0.32 
0.7 i_diff cov_diff 5 2 3.54 2 1 0.25 1 0.25 0.51 -0.4 1.5 0.2 1.2 0.65 
0.7 s_diff cov_diff 5 2 5 1.27 1 0.25 1 0.25 0.51 -0.4 1.5 0.2 1.2 0.60 
0.7 i_diff cov_diff 5 2 3.05 2 1 0.25 1 0.25 0.51 -0.4 2 0.2 1.2 0.51 
0.7 s_diff cov_diff 5 2 5 1.02 1 0.25 1 0.25 0.51 -0.4 2 0.2 1.2 0.44 
0.7 i_diff cov_diff 5 2 2.57 2 1 0.25 1 0.25 0.51 -0.4 2.5 0.2 1.2 0.38 
0.7 s_diff cov_diff 5 2 5 0.78 1 0.25 1 0.25 0.51 -0.4 2.5 0.2 1.2 0.31 
0.9 i_diff var_diff 5 2 4.36 2 1 0.25 7.6 1.9 0.2 0.2 0.5 0.6 2.0 0.61 
0.9 s_diff var_diff 5 2 5 1.68 1 0.25 7.6 1.9 0.2 0.2 0.5 0.6 2.0 0.61 
0.9 i_diff var_diff 5 2 3.73 2 1 0.25 7.6 1.9 0.2 0.2 1 0.6 2.0 0.58 
0.9 s_diff var_diff 5 2 5 1.36 1 0.25 7.6 1.9 0.2 0.2 1 0.6 2.0 0.57 
0.9 i_diff var_diff 5 2 3.1 2 1 0.25 7.6 1.9 0.2 0.2 1.5 0.6 2.0 0.54 
0.9 s_diff var_diff 5 2 5 1.05 1 0.25 7.6 1.9 0.2 0.2 1.5 0.6 2.0 0.52 
0.9 i_diff var_diff 5 2 2.47 2 1 0.25 7.6 1.9 0.2 0.2 2 0.6 2.0 0.48 
0.9 s_diff var_diff 5 2 5 0.73 1 0.25 7.6 1.9 0.2 0.2 2 0.6 2.0 0.46 
0.9 i_diff var_diff 5 2 1.84 2 1 0.25 7.6 1.9 0.2 0.2 2.5 0.6 2.0 0.42 
0.9 s_diff var_diff 5 2 5 0.42 1 0.25 7.6 1.9 0.2 0.2 2.5 0.6 2.0 0.40 
0.9 i_diff var_diff 5 2 3.82 2 1 0.25 5.5 1.375 0.2 0.2 1 0.4 1.8 0.67 
0.9 s_diff var_diff 5 2 5 1.41 1 0.25 5.5 1.375 0.2 0.2 1 0.4 1.8 0.66 
0.9 i_diff var_diff 5 2 3.23 2 1 0.25 5.5 1.375 0.2 0.2 1.5 0.4 1.8 0.61 
0.9 s_diff var_diff 5 2 5 1.11 1 0.25 5.5 1.375 0.2 0.2 1.5 0.4 1.8 0.59 
0.9 i_diff var_diff 5 2 2.64 2 1 0.25 5.5 1.375 0.2 0.2 2 0.4 1.8 0.54 
0.9 s_diff var_diff 5 2 5 0.82 1 0.25 5.5 1.375 0.2 0.2 2 0.4 1.8 0.52 
0.9 i_diff var_diff 5 2 2.05 2 1 0.25 5.5 1.375 0.2 0.2 2.5 0.4 1.8 0.47 
0.9 s_diff var_diff 5 2 5 0.52 1 0.25 5.5 1.375 0.2 0.2 2.5 0.4 1.8 0.43 
0.9 i_diff cov_diff 5 2 4.24 2 1 0.25 1 0.25 0.8 -0.62 1 0.4 1.2 0.88 
0.9 s_diff cov_diff 5 2 5 1.62 1 0.25 1 0.25 0.8 -0.62 1 0.4 1.2 0.87 
0.9 i_diff cov_diff 5 2 3.87 2 1 0.25 1 0.25 0.8 -0.62 1.5 0.4 1.2 0.83 
0.9 s_diff cov_diff 5 2 5 1.43 1 0.25 1 0.25 0.8 -0.62 1.5 0.4 1.2 0.81 
0.9 i_diff cov_diff 5 2 3.49 2 1 0.25 1 0.25 0.8 -0.62 2 0.4 1.2 0.77 
0.9 s_diff cov_diff 5 2 5 1.24 1 0.25 1 0.25 0.8 -0.62 2 0.4 1.2 0.72 
0.9 i_diff cov_diff 5 2 3.11 2 1 0.25 1 0.25 0.8 -0.62 2.5 0.4 1.2 0.68 
0.9 s_diff cov_diff 5 2 5 1.05 1 0.25 1 0.25 0.8 -0.62 2.5 0.4 1.2 0.62 
0.9 i_diff var_diff 5 2 3.35 2 1 0.25 3.6 0.9 0.2 0.2 1.5 0.2 1.5 0.70 
0.9 s_diff var_diff 5 2 5 1.17 1 0.25 3.6 0.9 0.2 0.2 1.5 0.2 1.5 0.67 
0.9 i_diff var_diff 5 2 2.79 2 1 0.25 3.6 0.9 0.2 0.2 2 0.2 1.5 0.61 
0.9 s_diff var_diff 5 2 5 0.9 1 0.25 3.6 0.9 0.2 0.2 2 0.2 1.5 0.57 
0.9 i_diff var_diff 5 2 2.25 2 1 0.25 3.6 0.9 0.2 0.2 2.5 0.2 1.5 0.52 
0.9 s_diff var_diff 5 2 5 0.62 1 0.25 3.6 0.9 0.2 0.2 2.5 0.2 1.5 0.47 
0.9 i_diff cov_diff 5 2 3.7 2 1 0.25 1 0.25 0.63 -0.6 1.5 0.2 1.2 0.84 
0.9 s_diff cov_diff 5 2 5 1.35 1 0.25 1 0.25 0.63 -0.6 1.5 0.2 1.2 0.81 
0.9 i_diff cov_diff 5 2 3.27 2 1 0.25 1 0.25 0.63 -0.6 2 0.2 1.2 0.75 
0.9 s_diff cov_diff 5 2 5 1.13 1 0.25 1 0.25 0.63 -0.6 2 0.2 1.2 0.70 
0.9 i_diff cov_diff 5 2 2.84 2 1 0.25 1 0.25 0.63 -0.6 2.5 0.2 1.2 0.65 
0.9 s_diff cov_diff 5 2 5 0.92 1 0.25 1 0.25 0.63 -0.6 2.5 0.2 1.2 0.57 
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Appendix B 

Data Generation Parameters for Simulation 2 

mix 
proportion  

Mean 
Condition 

Variance 
Condition 

Class 1 Class 2 Class 1 Class 2 
Class 

1 
Class 

2 

SMD dC  

Class 
1 Class2

Data 
Overlapi s i s 

i-
var 

s- 
var 

i- 
var 

s- 
var 

is- 
cov 

is-
cov 

Resid-
var 

Resid-
var 

0.5 i_diff var_diff 5 2 4.24 2 1 0.25 3.7 0.925 0.2 0.2 0.5 0.4 2.87 11.49 0.25 
0.7 i_diff var_diff 5 2 4.34 2 1 0.25 3.7 0.925 0.2 0.2 0.5 0.4 2.21 8.85 0.27 
0.9 i_diff var_diff 5 2 4.41 2 1 0.25 5.5 1.375 0.2 0.2 0.5 0.4 1.77 7.09 0.32 
0.5 i_diff cov_diff 5 2 4.5 2 1 0.25 1 0.25 0.55 -0.6 0.5 0.4 1.22 4.89 0.28 
0.7 i_diff cov_diff 5 2 4.51 2 1 0.25 1 0.25 0.62 -0.6 0.5 0.4 1.22 4.89 0.30 
0.9 i_diff cov_diff 5 2 4.62 2 1 0.25 1 0.25 0.8 -0.62 0.5 0.4 1.22 4.89 0.39 
0.5 i_diff var_diff 5 2 4.35 2 1 0.25 2.5 0.625 0.2 0.2 0.5 0.2 2.14 8.56 0.27 
0.7 i_diff var_diff 5 2 4.4 2 1 0.25 2.6 0.65 0.2 0.2 0.5 0.2 1.81 7.24 0.30 
0.9 i_diff var_diff 5 2 4.45 2 1 0.25 3.6 0.9 0.2 0.2 0.5 0.2 1.54 6.16 0.37 
0.5 i_diff cov_diff 5 2 4.5 2 1 0.25 1 0.25 0.46 -0.4 0.5 0.2 1.22 4.89 0.29 
0.7 i_diff cov_diff 5 2 4.51 2 1 0.25 1 0.25 0.51 -0.4 0.5 0.2 1.22 4.89 0.32 
0.9 i_diff cov_diff 5 2 4.56 2 1 0.25 1 0.25 0.63 -0.6 0.5 0.2 1.22 4.89 0.41 
0.5 i_diff var_diff 5 2 3.7 2 1 0.25 2.5 0.625 0.2 0.2 1 0.2 2.14 8.56 0.26 
0.5 i_diff cov_diff 5 2 4 2 1 0.25 1 0.25 0.46 -0.4 1 0.2 1.22 4.89 0.28 
0.7 i_diff var_diff 5 2 3.8 2 1 0.25 2.6 0.65 0.2 0.2 1 0.2 1.81 7.24 0.28 
0.7 i_diff cov_diff 5 2 4.02 2 1 0.25 1 0.25 0.51 -0.4 1 0.2 1.22 4.89 0.30 
0.9 i_diff var_diff 5 2 3.9 2 1 0.25 3.6 0.9 0.2 0.2 1 0.2 1.54 6.16 0.36 
0.9 i_diff cov_diff 5 2 4.13 2 1 0.25 1 0.25 0.63 -0.6 1 0.2 1.22 4.89 0.39 
0.5 i_diff var_diff 5 2 3.49 2 1 0.25 3.7 0.925 0.2 0.2 1 0.4 2.87 11.49 0.23 
0.5 i_diff cov_diff 5 2 4 2 1 0.25 1 0.25 0.55 -0.6 1 0.4 1.22 4.89 0.27 
0.7 i_diff var_diff 5 2 3.68 2 1 0.25 3.7 0.925 0.2 0.2 1 0.4 2.21 8.85 0.26 
0.7 i_diff cov_diff 5 2 4.03 2 1 0.25 1 0.25 0.62 -0.6 1 0.4 1.22 4.89 0.29 
0.9 i_diff var_diff 5 2 3.82 2 1 0.25 5.5 1.375 0.2 0.2 1 0.4 1.77 7.09 0.31 
0.9 i_diff cov_diff 5 2 4.24 2 1 0.25 1 0.25 0.8 -0.62 1 0.4 1.22 4.89 0.38 
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Appendix C 

Sample Mplus Codes for Growth Mixture Models 

  title: two class GMM tryout 
  data: file=data_cond_5.3.txt; 
  variable: names are id class y1-y6; 
            usevariables = y1-y6; 
            classes=c(2); 
  analysis: type=mixture; 
            starts= 100 10; 
            stiterations=50; 
            iterations=2000; 
            miterations=5000; 
 
  Model: %overall% 
         i s | y1@0 y2@1 y3@2 y4@3 y5@4 y6@5; 
 
         y1-y6*(resvar); 
 
         [y1-y6@0]; 
 
         %c#1% 
 
         i s | y1@0 y2@1 y3@2 y4@3 y5@4 y6@5; 
         [i*]; [s*]; 
         i*; s*; i with s*; 
 
          y1-y6*(resv1); 
          [y1-y6@0]; 
 
          %c#2% 
 
          i s | y1@0 y2@1 y3@2 y4@3 y5@4 y6@5; 
         [i*]; [s*]; 
         i*; s*; i with s*; 
 
          y1-y6*(resv2); 
          [y1-y6@0]; 
 
  output: samp tech1 tech11 tech13 tech14 
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