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Chapter 1: Introduction

A primary goal of social and behavioral scientiaterested in investigating
how human behavior changes or develops is to nrdkeences on features
underlying profiles of continuous repeated measdata for a targeted population
(Cudeck, 1996). Of particular interest is to stiidyv responses for individuals
change over time and to investigate those attrbiltat may account for individual
differences in change characteristics. A distiniginig feature of longitudinal data is
that the repeated observations on the same indivate not independent (i.e.,
repeated measures within the same subject ardated® Furthermore, the variance
of the repeated measurements may not always béacbr@Eross multiple time
points. Thus, statistical methods, like multiplgression using ordinary least squares
estimation, which assumes independent observatioth€onditional homogeneity of
variance, should not be used to estimate modehpasas.

Historically, statistical methods such as repeatedsures ANOVA (RMA),
repeated measures MANOVA (RMM), auto-regressive@nds-lagged multiple
regression as well as methods based on calculatattities or derived values that
summarize the repeated measures (e.g., area Unedeurtve) have been the primary
methods utilized for analyzing longitudinal datagse.g., Collins & Sayer, 2001,
Gottman, 1995). Choosing an appropriate analytithoteoften depends on two
primary considerations. First, the analytic methagst provide direct evidence that
tentatively supports or refutes the research hygsat posited by the investigator.
Hypotheses leading to the use of these more colwvahtanalytic methods tend to

focus on aggregate group differences failing torestslquestions regarding the nature



and determinants of change at the individual Iesetondly, characteristics of the
longitudinal design, the data themselves, and ttetlying assumptions often
dictate which method can be applied in a giverasidmn. Many of these analytic
methods suffer from unrealistic assumptions that lmait their usefulness in real
world situations. For example, technical assumgtsurch as sphericity underlying
RMA are rarely met in practice in the social sces(see, e.g., Howell, 2007). Other
limitations of traditional methods for longitudinahalyses include their inability to
handle missing data or unbalanced designs. Astlatigal data are often collected
with long follow up periods, missing data are ofteavitable. Sometimes the
proportion of missing data can be substantial. Mgtess in longitudinal data is
usually a result of dropout, mortality, charactiéesof the protocol and/or other
subtle events that may occur across the studygddnbalanced designs occur when
not all participants are measured at the samepmn@s. For example, it may be
known beforehand that the participants will enter $tudy at different ages and the
timing of the waves of measurement will depend ocontrollable participant factors
(e.g., vacation time, forgetfulness). In this seendhe times that study participants
are measured could be entirely unique. Traditiomethods like RMA and RMM,
which are often viewed as being less flexible nimi& of design considerations,
would drop cases with missing values (e.g., listvdsletion) at any time point and
do not accommodate unbalanced designs.

In part, an increase in computing power broughtéy technology in the
1980s made it possible to apply more sophisticatediern methods to studying

change or development. A myriad of statistical gileénd methods were proposed



and developed to investigate longitudinal change wide variety of behavior
including human cognition development, crops growatid so on. One such model,
the linear mixed-effects (LME) model (Laird & Wak982), is grounded in the
philosophical and mechanistic underpinnings of@sgion. Unlike its more
conventional counterparts, LME models are flexibl@andle both data that are
missing and observations that are gathered froomaalanced design. Under the
assumption that the mechanism underlying the ngsgiss is missing at random
(MAR, Little & Rubin, 1987; Schafer & Graham, 200#)e mixed-effects modeling
framework provides a platform for implementing apmiate procedures for drawing
valid inferences of model parameters without fogdime researcher to omit cases
thereby losing potentially valuable information (temns, 2010).

As the name suggests, a linear mixed-effects moatehins both fixed and
random effects (the model will explained in moréaden Chapter 2). Random
effects models are often linked to the generalyamabf variance models. For
example, in a one-way between-subjects ANOVA mdugfects, defined as the
differences between the group means and the graad,mare commonly treated as
fixed, yet unknown, finite constants. These eff@ets also be thought of as being
randomly selected from an infinite population deets, and assumed to be
independently and identically distributed with meamno with a certain variance. The
LME model may be viewed as a generalization ofreamae component regression
analysis model. When the number of groups is samallthe number of observations
per group is large, the group-specific coefficieants treated as fixed as in the regular

ANOVA model. When the number of groups is large thetnumber of observations



per cluster is relatively small, a certain numblegroups can be randomly selected
and the group-specific coefficients are treatechadom (Demidenko, 2004).

In the context of longitudinal data analysis, tixed effects are parameters that
describe population growth characteristics, proxgch summary of how a response
variable changes systematically as a functionreétor other condition. The
unobserved heterogeneity of growth among subjeatspresented through the
random effects. The random effects essentiallyalt@ividual subjects to have their
own functional form, and thus their own trajecteribut whose functional
parameterizations are distinct from the populativerage trajectory.

Introducing random effects in a longitudinal modkslo has the advantage of
explicitly acknowledging that variability in thepeated measures can be partitioned
into at least two components: variability that ascletween subjects and variability
occurring within subjects. The variance-covariasitacture of the random effects
describes between-subject variability in the groahhracteristics implied by the
functional form of the model. The variance-covacastructure of the individual-
level residuals represents a measure of misfit @etwndividuals’ data and their own
fitted function. Interestingly, if the data perntjtthe within-subjects covariance
structure can be partitioned further to accounnieasurement error that is separate
from serial correlation induced by within-subjelcictuations accompanying the
responses of individual over time (Fitzmaurice rda& Ware, 2011).

In sum, the LME model allows for individual funati® to differ from the mean
function over the population of subjects, yet chteazes both population and

individual patterns as members of a single resptursstion. Different sources of



variability arising from the repeated measurestaacknowledged and explicitly
modeled. These important facets of change are titadaggummarize growth for a
single population. Yet, in some instances this gdion is too restrictive or

untenable.

1.1 Population Heterogeneity

In a standard LME model, time-specific within-suttjerrors and an
individual’'s coefficients (random effects) are ofi@ssumed to follow a normal
distribution and are indeed subject-specific. Theessumptions imply that the data
are sampled from a single population with commamean and variance-covariance
structure. In some situations, there exist subgjuls that may differ in one or
more population parameters. Sometimes the subpamsaare known by the
researcher and thus can be modeled by adding ai@@vim the model (e.g., adding a
dummy variable indicating subject’s gender) or pexsting with a multiple group
analysis (Singer & Willett, 2003). In other cassshpopulations have not been
identified by researchers a priori even though ttiesoor previous studies may
suggest differences in growth parameters among.t@eaphs in Figure 1 are
hypothetical examples to demonstrate subgrouprdiifees in growth trajectories.
The graph on the left shows the individual trajee®of all people from a target
population which is hard to recognize whether thetist subgroups with different
growth characteristics. The graph on the right usksrent colors to illustrate how
two identified subgroups in this particular popidatdistinguish themselves by their
growth trends. Without any attention on possiblegsaup growth differences, the

conventional mixed-effects model may fail to pra/accurate estimates for any of



the subgroups since it does not take account adubpopulation level heterogeneity
(Jedidi, Jagpal, & DeSarbo, 1997; Muthén, 1989%ea& of research such as biology,
genetics, psychology, social- and cognitive-develept regularly encounter
situations in which theories support distinct depehental trajectories within
unknown subpopulations. For example, Rescorla, ivarad Singh (2000) studied the
development of children’s vocabulary and found tiaat groups of “late-talker”
children showed dramatic vocabulary spurts at tiffeages. The delay in
vocabulary acquisition of one group of children la@@ct clinical implications for

diagnosing language delay among children in general

Score
10
|
Score

Figure 1L An example of hidden subpopulation heterogengityrowth.

In response to the demand of modeling populatiserbgeneity in longitudinal
profiles, LME models, and more broadly growth madalkve successfully
incorporated finite mixture models into this franww (Muthén & Shedden, 1999;
Verbeke & Lesaffre, 1996; Verbeke & MolenberghsD@0 Finite mixture models

have been used to depict a variety of phenomenanrerous fields including



biology, physics, economics, psychology and satances. One of the earliest
studies in mixture modeling was conducted by KadriBon over 100 years ago. In
his classic paper, Pearson (1894) investigatedogaiss among crabs and obtained
estimates for a normal mixture distribution using@ment-based approach. In
longitudinal analyses, a finite mixture model canspecified in situations where a
single parametric family is inadequate to providmasfactory description of change
characteristics or variability in observed repeateghsures data. A finite mixture
model relaxes the assumption of a single populaahallows parameters to vary
across different subpopulations (Muthén, 2004kum, a finite mixture of growth
models has become a powerful tool to detect heta@aus growth trajectories of
unobserved population subgroups. After group mesfiyeidentification, further

analysis on its relation with possible covariatas be carried out.

1.2 The Current Study

Researchers in the field of growth modeling areetomres interested in
investigating the existence of subpopulations widtinctive growth trajectory
characteristics, a model-based post-hoc classditatf subjects, or both. The growth
characteristics refer to both parameters that destne functional form of the
trajectories as well as variance and covariancepom@nts summarizing the patterns
of variability of the repeated measures. Invesiogadf a simple linear growth
model, for example, might hypothesize subpopulatifierences in intercept and
slope parameters. In addition, variability in teee&ated measures modeled through
the random effects and time-specific residuals alay differ by latent

subpopulations. Studies on growth mixture modeliage extensively investigated



issues about parameter recovery of mean structun@anents; model fit indices,
and classification accuracy (Muthén & Shedden, 1888und, Asparouhov &
Muthén, 2007; Tofighi & Enders, 2008; Tolvanen, 20®%/ang & Bordner, 2007).
Real data analyses mainly focus on discoveringlitierences in the mean structure,
in other words, the subpopulation intercepts andesd for the linear model (Colder
et al., 2002; Odgers et al., 2007; Verbeke & Lesaff996) but much less attention
has been paid to the variability of the randomafend residuals. Researchers have
recognized that class separation among clusteraftaet the recovery of parameters
and classification accuracy, but none of them Isystematically investigated how
patterns of variability in the repeated measuremeanh affect class separation,
which in turn impacts the ability of the model tengrate estimates. The major
objective of this study is to focus on the roles tietween-subject and within-subject
variance-covariance structures play in detectifigige mixture of unobserved
groups and parameter recovery in the context of lviglels as a tool for modeling

growth.



Chapter 2: Literature Review

This chapter introduces the linear mixed-effectsleh@nd its extension to
growth mixture models. As mentioned in Chaptehg,linear mixed-effects model
emerged from regular linear regression models.BEwgnning of this chapter will
briefly talk about regular regression models aredréfason why random effects
should be added for repeated measures desigre Riniture distributions will be
discussed along with an introduction of measurefistances among component
distributions. The growth mixture model which isextension of the linear mixed-
effects model through adding mixture componenexdained followed by an

illustration of the estimation and applicationglog model.

2.1 Regression Models

Modern statistical methods of handling longitudidata have a strong
foundation in regression. Before introducing tmeér mixed-effects model for
repeated measures data, a brief discussion ofdahdard linear regression model is

warranted. Consider the following general lineadelp

% =X/B+e @)
wherey; is the response or dependent variablétfosubject, X! = (X, %; ..., %, ) is
alx p vector whose elements are values on a set of andigmt variables or
predictors, an@ = (B, f,,-.-.3,) is a px1 vector of regression coefficients. In the

linear regression model, it is presumed that aivildluals have the same population
regression coefficientp which are often referred to ised parametergKutner,
Nachtsheim, Neter, & Li, 2005). The regression nhad&quation 1 demonstrates

thaty is characterized by a linear combination of tredjotors. The uncertainty in
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the relation is modeled through the error tegnwhich is generally assumed to be

normally and independently distributed with mearoznd common variance;”,

and uncorrelated with the predictors in the mo@el.the right side of Equation &,

is the only random term in the regression moddlithallowed to vary among
different individuals. Since the error or residteaim is randomly distributed among
individuals, it is often referred to as “randomoert

An ordinary regression analysis assumes that teergations are independent
from each other. This assumption is violated witendata are clustered — as they are
when the same individuals are measured repeategdhtione. In studies of
agriculture, behavioral science and educationtetad data are common. For
instance, in the study of crop yield, several indlial plants may be planted within
the same plot. In this way plants are nested wiptoh Other examples of sampling
designs that induce a certain correlation amongl#te include sampling siblings
within the same family or students within the sauleool. Longitudinal data is a
special case of clustered data where the clustersoanposed of repeated
measurements on the same individual across differasions. Observations within
a cluster are not independent and the correlabehseen multiple observations of a

single subject should be accounted for in the amaly

2.2 Sources of Variability in Repeated Measures Dat

Three different sources of variability are ofteentified to have an impact on
correlation among repeated measures: between-siigerogeneity, within-
individual variation and measurement error (Fitzney Laird, & Ware, 2011).

Between-subject heterogeneity reflects the natta@aation in individuals’ propensity
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to respond. Individuals may have different respdrejectories over time. For
example, in a linear growth analysis, individuads different intercepts and
regression slopes. Within-individual variation ¢snconceptualized as
misspecification of different individuals’ resporisajectory over time which will
induce correlation among repeated measures dataoRameasurement error is the
last source of variability in longitudinal data.educational and psychological
studies, it is often that measurement instrumenpacedures are imprecise, which
cause within-subject variation. Reliability is tbensistency, or reproducibility, of an
instrument to measure certain characteristics lojests. Scores gathered repeatedly
from instruments with low reliability have attenedtcorrelations among the data.
Within-individual variation and measurement errag eonceptually two distinct
sources of within-subject variation. However, tlaeg rarely modeled separately in
longitudinal studies (Fitzmaurice et al., 2011}kt&ad, they are often combined into a
single error term. Figure 2 shows how these thoeeces of variability are

represented in longitudinal data.

11



Response
6
1

Time

Figure 2. Three sources of variability represented in lamgjital data.

Figure 2 above shows the growth trend of two irdirals, A and B, at six
measurement occasions. The dotted line is the popalgrowth trend while the
straight lines are the individual trajectory foraAd B. Separation of the true response
profiles (straight lines) for subjects A and B regent heterogeneity (or between-
subject variation) in individuals. The black dote the repeated measures with no
measurement error while the open circles denoteltserved repeated measures with
measurement error. The amount of measurementresolting from using a
particular instrument will largely impact the deg@af correlation among repeated
measures.

The correlated error structure makes repeated mesadata not applicable for

regular regression analysis. Conventional appraatthbandling repeated measures
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data include univariate analysis of variance (ANQViAultivariate analysis of
variance (MANOVA), covariance pattern models, traos models and mixed-
effects models. Mixed-effects models have someradgaes over these other, more
traditional alternatives statistical methods, whealyzing longitudinal data.
According to Blozis and Cudeck (1999), this fanofymodels allowi( both
population and individual patterns of change taharacterized with a common
mathematical function yet whose parameterizatioagldferent; {i) subjects to be
measured at unique occasions of time or condifiof;the number of measurement
occasions to be differeniy] specification of more realistic residual covadan
structures ; andvf missing data when the missing data are missingratom or other
can be handled in a straightforward manner.

To elaborate on this latter point, mixed-effectsdeis are ideal candidates for
longitudinal analyses because they can accommabad#teunbalanced designs and
missing data which are often encountered in pracifibius, occasions which each
individual are measured do not have to be equpkyged, and in fact, can be a
completely unigue sequence. In longitudinal styd@ssing data are almost
inevitable since, for many non-experimental protsecthere is greater chance for
participants to miss one or multiple observatidscourse, missingness can occur
for a variety of reasons including dropout, atbriti or some other unforeseen
circumstance. When there exits missing observatibesdata are unbalanced over
time and not all individuals have the same measen¢mmccasions. Sometimes the
unbalanced data in longitudinal studies is plannethe researchers to reduce the

time span or cut the cost of the study. Thhort sequential desigibuncan, Duncan,
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& Stryker, 2006) is a good example of planned mzsess while theotating panel
(Laird, 1988) design is an example of a plannedhlarized design for longitudinal

studies.

2.3 Linear Mixed Effects Models

The linear mixed-effects (LME) model, first menteshas a two-stage random
effects model by Laird and Ware (1982), evolvedrfriie conventional multiple
linear regression model with the inclusion of aiddial random terms for some or all
of the fixed regression coefficients. Using ve@od matrix notation, the classical
linear mixed-effects model for a typical individisdlected from the population can

be expressed as,

y, =XB+Zb + €&, (2)
wherey; = (Yy,..., Y, ) is ann x1 vector of responses for tith individual,
i=1,...,m, P represents g x1 vector of fixed effectsX, is a design matrix for the
fixed effects specific to thigh individual,b; is agqx1 vector of random effectg, is

ann x g design matrix for the random effects, agds ann x1 vector of regression
errors, which is often assumed to normally and pedelently distributed with medh
and covariance matriR;: € ~N (0, R ). In this modelb; represents the individual
difference in growth, i.e., between-subject vaomafiwhile R, represents the within-

subject variability of data including within-subja@riation and measurement error.

Conditional on the random effects, Equation 2 implies

E(y, [b,)=XB+Zb coy( bl IR
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In practice, in the second stage of linear mixdédaot$ models, thegx1

vector of random effectsd;, is assumed to follow a multivariate normal disiition

with mean0 and q x q variance-covariance matriX, independent of each other and
of thee, . Thatis,
b. ~N(0O, D)

covp, ,b,.)=0 cov(, € )=0 cove,e)=C for i=i".

Given the covariance assumptions aboveflgt |b,) and f (b,) be assumed
multivariate normal density functions. The margidahsity function ofy, is then
given by

fy)=]f @y Ib)f@)db,
which can be specified in a closed form by carrngthe integration of the joint
density function oveb, . Under these assumptions, the marginal mean aratiaoce
fory. is

E(Yi):E{EG/i |bi )}:XiB
cov(y, )= E{ cov;, b }+ coy B( 1 )
=R, +ZDZ!
=%,

As can be seen from the previous individual andgmat mean structures that

the random effects quantify the extent to whichrdgression parameters for fitie

subject depart from the population regression caeffts. As the random effects have

a mean of zero, as shown through matrix integratidtiarring (2005)y; is an
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independent multivariate normally distributed veatith meanX;p and variance-

covariance structurey, =R, +Z,DZ/ .

2.3.1 Estimation of Model Parametersinferences are generally made on the

marginal distribution via maximum likelihood estitiwa. Let & be a row vector of
the unique elements iR, , then® ={p’ & vecl{D)}’, where thevech(:) operator

creates a column vector of a symmetric matrix bgldhg the diagonal and lower
diagonal elements below one another. The resuttamgribution of individual i to the
marginal loglikelihood can then be written as:

m

InL, (6)=In {H{(Zﬂ)_z Sk exf{‘%(yi XB) 5y % B)jH

i=1

320X B 5 (3 ~X ).

n 1
= _Elln(Zﬂ-)_E|2i|_
Estimation can be carried out in a number of wagtuding gradient-based methods
(Demidenko, 2004; Lindstrom & Bates, 1988), theaxtption-maximization (EM)
algorithm (Dempster, Laird, & Rubin, 1977), or reged maximum likelihood

(Harville, 1977; Laird & Ware, 1982).

2.3.2 Example—LME model of Linear ChangeTo make the general
formulation in the previous section more concretasider a basic linear mixed-
effects model for straightline change with randoeicept and slope. For the model

expressed in Equation 2, the design matrifand b are identical:

1 il

1
Xi=Zi=: |2’

1t
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wheret; is the subject-specific measurement occasiond, ... ,n. The response
score for theth subject at thgh time point can be described as:
Yi =B+ A%+ ¢ 3)

In Equation 3, each individuahas a specific intercep#, and regression
slope, S, . As a basic convention, the individual regressioefficientss, and £,
can be decomposed into the sum of fixed and rarefteuts, g, = f,+b, and
By = p,+Db; , where B, and 5, are the population intercept and slope, respdgtive
and b, and b, are deviations of thich individual’s intercept and slope from the
population parameters. In the majority of cases nilimber of columns i, is a
subset of columns iiX, . This allows some regression parameters to b feoss
subjects while others can vary randomly. FurtheempermittingZ, and X, to be

unique allows potentially different static, indivial covariates (i.e., gender, treatment
condition) to be incorporated to explain why inggts and slopes vary among
individuals. For example, if gendgBénde} is added in the model as a person level

covariate, the response model would be specified as

Y; = Bo+ B +r,Gender+y, Gendgrt- o+ p t-; €
where y,and y, are the effects of gender on the intercept andtigeowth rate.
Suppose for persann the non-reference gender group (coded as & )Jéisign
matrix, Z, for the random effectsill not change but the design matrix for fixed

effects becomes
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Recall, that the three sources of variation ancagation among the repeated
measures can be modeled via the LME model, withbjest variation, between-
subject variation and measurement error. An imporfeature of longitudinal data is
that the repeated measures at different occasrensoarelated. For regular repeated
measures model without random effects, differetmaimdividual error structures,
such as an autoregressive structure, can be sgktifiaccount for the serial
correlation among the repeated measures. In LMEelspthe marginal covariance of

response vectoy, has two component® andR;. In general,cov(y, ) has non-zero

off diagonal elements capturing the correlation agwepeated measures and is
decomposed int® andR; whereD accounts for the between-subject variation
which induces the correlations among repeated messily, andR; is the within-
subject variation. In fact, because the randonceffasually account for a large
amount of covariance among the repeated meashegs,is not a great deal of
covariance left among individual errors (Fitzmaeret al., 2011). Therefore in
practice, it is common to adopt a simple structarehe error variance-covariance

matrix like, ol . » Wherel is an identity matrix of dimensiam. This simplified error

structure was coined tle@nditional-independence mods} Laird and Ware (1982)
which indicates that the responses on individuabre independent, conditional bn

andp . In other words, the correlation among the regkabeservations on the same
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individuals is accounted solely by the correlatddmandom effects. Then the

marginal variance-covariance gf could then be defined &DZ| +o? , . To be

specific, for the LME model with random interceptsd random slopes, the variance

of response of subjectt timej can expressed as
var(y; )= varly )+ 2 covly, QR ¥ f varQ ¥o’

and similarly the covariance of andy, is

cov(y; . % )= varly ¥ ¢ + £ Jcovly R Ftit varh
The above variance-covariance structure}@fsuggests that no assumption of

homogeneity over time is necessary for the mixdeets model since this structure
allows the variances and covariances to vary aseibn of time. Thus, the
variances of the repeated measures are alreadylicated functions of time, which
implies that the within-subject component may weg}l be a simple structure.

The proposed model explicated in Section 2.3 assuha the subjects come
from a single population and the random effectssarepled from a normal
distribution. However, the distribution of randofifeets does not necessarily need be
multivariate normal. For example, Pinheiro et 20q1) demonstrated how the
random effects could be modeled with a multivartadestribution with known or
unknown degrees of freedom to obtain more robustraliable estimates from data
with outliers. Oberg and Davidian (2000) propossth@ a transformation of
response and predictors to achieve approximatenastibject normality. Instead of
using the standard logarithmic transformation diintheir model transformed both

responses and regression predictors by a pararfigtigton estimated from the data.
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Arellano-Valle et al. (2005) adopted a skew-nordiatribution for the random
effects and the within-subject errors in mixed-ef$emodels to address non-
normality. Another method that has been suggesteddount for non-normality in
the random effects distribution is to assume adimixture distribution. Muthén and
Asparouhov (2009) demonstrated how to use mixturdaiing with latent classes to
represent non-normality of random effects. Thegnred to their model as a non-
parametric representation of random effects, amogmh that discretized the random
effects distribution into a finite mixture distritbon where the latent class means and
class probabilities are points and weights of th@gonent distributions.

The above mentioned models for non-normal randdecst distributions still
assume all individuals come from a single popufatiad that a single growth
trajectory can adequately depict the entire popariagrowth characteristics. Yet,
existing theories and studies in many fields haxggested different subgroups have
different growth trajectories. For example, a laagsount of literature in human
development have shown people progress differeméyvariety of disciplines, such
as alcohol usage, cognition, and language acauisiti name just a few (Chassin,
Pitts, & Prost , 2002; Connell & Frye, 2006; Nagiiremblay, 2001; Rescorla,
Mirak, & Singh, 2000). The presence of non-nornaaldom effects distributions can
indicate the existence of such sub-populationsedk Whe growth model can then be
combined with latent class analysis or mixture nhéoleapture the unobserved
subgroup heterogeneity within a larger populaterbeke and Lesaffre (1996,
1997) extended the LME model by applying a morilflie distributional assumption

on the random effects. In these papers and the domiter in Verbeke and
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Molenberghs (2000, Chpt. 12), the authors refetwetiis more flexible random
effects modeling as the heterogeneity model, wrasBumes the random effects are
sampled from a mixture of normal distributions. Heterogeneity model assumes
subgroups in the population with distinct growthjéctories and within each
subgroup the random effects form a component ofrtix¢éure distribution with
specific mean and/or variance-covariance structarthis case it would be useful to
classify people into different subgroups and idgritieir unique growth trajectories,
which will be the focal point of this study. As aipt of comparison, if the between-
subject variance and covariance estimates withgh ekass are restricted to zero, then
the model can be conceptualized as a latent ctasgtymodel (Nagin, 1999; Nagin
& Land, 1993). For the latent class growth modklingdividual growth trajectories
within a class are assumed to be homogeneous wgheetlly improves model
convergence in computation. Thus, it can serve@s-@rocess for conducting

growth mixture modeling.

2.3.3 LME Model and LGC Model Equivalency.As was shown by Muthén
and Asparouhov (2009), the LME model defined in &an 2 is statistically
equivalent to the latent growth curve (LGC) modeal{en & Curran, 2006; Preacher
et al., 2008) as implemented in Mplus (Muthén & N&ri, 1999-2010). Consider a
linear latent growth process with continuous outegmthe model can be written as

Yy =1 7,3 +5 (4)

where g indicates the time measurement for subjettoccasion, 7, andn, are

the subject-specific intercept and slope, respelgtifor subject, and g are the time
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specific unique factors. An individual’s growthazhcteristics;, andz,; can be
further expressed as a function of a populatioeragpte, and sloper; and random
residualsg,, andg; with mean zero and certain variability. The decosition can
be expressed in the following equations.
Mo = Qo+ S (5)
i =0, +G5- (6)
In a multilevel modeling framework (Singer & WilteR003), Equation 4
represents the level-1, or subject-specific modhblle Equations 5 and 6 represent

the level-2, or population models. To make theierjancy more explicit, express

the LME model in Equation 2 in the language of lt&C model by defining

1 &,
1 a,
Ai: 1 ai3 H
1 a,
then
Xi :Zi :/\’
B=(aya,),
b, =(S4:61)"s

€ :(‘c"iligiz’---"cflni ).

The LGC model can then be expressed in matrix iootais

Yi=Amn +§

n=a+g.
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For the basic model examined here, any differeeteden the LME model
and LGC model is primarily philosophical and najeddraic. The LME model allows
for more complex (i.e. dependent) data structuyeselparating the covariance
structures among lower and higher levels of dateereas LGC models aggregate
covariance to a single level structure. Neverttslesgthin a two-level growth model,
these two models provide identical solutions. Quf2003) demonstrated the
isomorphism between LME and LGC models analyticaltgd empirically. He
concluded that estimation of any two-level LME wigel-1 and level-2 predictors is
equivalent to a similarly specified LGC model. kmbalanced data LGC models
should be estimated using full information ML tdave identical estimates with
LME models.

Later in this chapter, the LME model will be exteddo finite mixtures and
the extension will be equivalent to the finite nope version of the LGC model. The
statistical connection between LME models and LG&lels makes it convenient to
analyze LME models using SEM software, likglMs which is designed for
analyzing LGC models but has the additional fldk¥oto incorporate finite mixture

models.

2.4 Mixture Distributions

In the past decade, finite mixture models haveivedemore attention than
ever from broad fields in biology, psychology ahd social sciences. A variety of
newer statistical techniques has been created loastaite mixture distributions
such as latent class analysis, cluster analyssridiinant analysis and pattern

recognition. Mixture models are able to model cawplistributions “through an
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appropriate choice of its components to represenurately the local areas of support
of the true distribution” (p. 2) (McLachlan & Pe@000). It is also useful to adopt a
mixture distribution in modeling situations intenld® detect potential heterogeneity
in the population (Everitt & Hand, 1981; McLachl&rPeel, 2000). In this study,
finite mixture distributions will be integrated the LME modeling framework to
investigate different growth profiles among unokiedrsubpopulations. Because of
its algebraic equivalency with latent growth mix@umodel which is a combination of
mixture model and LGC model, this model will beledla growth mixture model

(GMM) for the remainder of the paper.

2.4.1 General Formulation.A mixture distribution is a probability
distribution which can be expressed as a combinatidwo or more conditional
density functions. The underlying assumption ofigtume distribution is that the
random variables are conditionally independentmgiaeother random vector. If the
random vector is a discrete variable, i.e., the lmemof conditional density functions
is finite, the compound distribution is a finitexture distribution (Everitt & Hand,
1981). For example, the population distributiorstafdents’ weight can be expressed
as an infinite superposition of weight density dandal on height or a finite
composition of weight density conditional on genddre present study will focus
exclusively on the finite mixture distributions.tlys ...,y, denotep dimensional
random vectors from a random sample of siz€irst, let any vector belonging to
y1...Yn be a continuous random vector with a probabilgggity function. If y is any

multivariate mixture distribution containirignumber of density functions
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conditional on variabl& from a multinomial distribution witkK categories, the

density f (y) can be written in the form

F) =2 PO Fy 1 %),

where p(x,) is the marginal distribution of varialbkewhich is often namedr, in
the literature of mixture distributions. The cormatiial distribution,f (y | X, ), is often
written as f, (y) which is the density of random variablegiven group membership

and is often called the component densities ofribéure distribution. Thus the
density function of &-component mixture distribution can be expressdtien

following form as well,

()=2 A 00)

K
where0<r, <1and an =1. The valuesr,..., 7, have been referred to in the
k=1

literature as the mixing proportions or weights ({dchlan & Peel, 2000). The

component densityf, (y), can be any type of distribution but in practice exgularly

assumed to come from the same parametric famidy the exponential family.

When the distribution of variabbeis known, we can use the equations above
directly to express the mixture distribution. Faample, people are often interested
in how subjects of different gender would respoiitently to certain treatments or
follow distinct growth trends. Nevertheless, in maeal analytic situations, data for
x is unavailable or latent and the overall mixtuisgrdbution is the only known
guantity. In these cases, it is impossible to olesére underlying variable which

splits the observations into groups. Thus the patara in each conditional
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distribution and the mixing proportions or weightcome parameters that need to be
estimated from the observed data.

Substantial work has been done to study the matie@hand statistical
properties of mixture distributions. Many studiesre/conducted under the
circumstance that the existence of mixture distidms and the number and
functional forms of component densities were alydatbwn. For these applications,
theorists have devised many methods for jointlyresting the parameters of mixture
distributions and the mixing proportions. The mekhoange from Pearson’s (1894)
method of moments, maximum likelihood estimatiorcdchlan & Krishnan, 2008;
Rao, 1973), a fully Bayesian approach (Diebolt &Buas, 1994) and informal
graphical techniques (Fowlkes, 1979). Within maxamlikelihood estimation, the
mixture problem is often tackled by the EM (Expé&otaMaximization) algorithm
and formulated as an incomplete-data problem (Milzec& Peel, 2000). In reality,
the number and functional form of the componensdes are often unknown to the
researcher. Sometimes it is uncertain whether atee c@ome from a mixture
distribution at all. For instance, Bauer and Cui{2003a, 2003b) suggested using
mixture models with great caution to distinguisiwaen a single component LGC
model with corresponding nonnormal random effecfitution and a true mixture
distribution. Their study results showed that therent procedures proposed for
model checking of the mixture status as the datamoaalways effectively
differentiate between these two conditions. Initieal situation, theory would dictate
whether or not a finite mixture is plausible or gagted. In the context of an

exploration of the data, it is crucial to test floe presence of a mixture distribution,
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and if the data support the more sophisticated timalscenario, how should one
proceed to discover the true number of componemgities as well as their real
function forms. The bootstrap likelihood ratio tastl information criteria as AIC and
BIC have been commonly used for choosing the numbeomponents for a mixture
density.

The focus of the present study is on finite mixtonedels with normal
components. In practice it is common for reseacheeassume the mixture
distribution is a composite of multivariate nornsalmponents. Under many
circumstances, a mixture model is built on thedbasnon-normal features in the
data which are presumed to result from existenaandérlying, latent subgroups in
the population. The mixture distribution with nodnsamponents can be generally

defined as
K
f(y)= Zﬂ:k¢k(y;”k72k) ,
k=1

where g, (y;n,,X,) is the multivariate normal density which is chaegsiced by

component mean vectos, and component covariance matr¥,. The multivariate

normal mixture is the basis for growth mixture miotgwith the noted exception
that the mean vector and the variance-covariangaxiiar the latter are structured to
adhere to the growth process and its attributes.cbmbination of the linear mixed-
effects model with a finite mixture model is defiha@s a growth mixture model which

will be introduced in the following section.
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2.5 Growth Mixture Models

Linear mixed effects models are frequently useddogitudinal data analysis.
The random effects define the between-subject negi@ovariance structure while
the regression errors define the within-subjectsanae-covariance structure. In
general, both random effects and residual erreasssumed to be normally
distributed. This assumption is often taken fomged and applied with little thought
as to the consequences of violating this assumpifiois is largely due to the lack of
tools to verify this assumption. In standard linewdels, residuals can be plotted
against predicted values to check the assumptiowmhality, constant variance and
outliers. These techniques can be applied to limeged-effects models for residual
diagnostics as well. However, diagnostics for migéiegcts models are more difficult
to perform and interpret, due to the presencermdam effects and different
covariance structures. The predicted random effedtges are not eligible for
normality assessment since their distribution matyreflect the true distribution of
random effects (Verbeke & Molenberghs, 2000; WAA&t|ch, & Gatecki, 2007).
When the focus is on finding a population growtjdctory, some important factors
that may explain the heterogeneity among indivislmaay be omitted. For example,
studies about human height development commonlygesder, race and other
demographic variables to explain why people groffecgntially. If the variables that
would affect the growth trajectory are well-knovitnwould be easy to include
predictors or covariates in linear mixed effectdeldo explain group differences. In
many research situations, information about supufations is unknown to

researchers. Treating multiple growth trajectoass single trajectory for whole
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population may result in inconsistent researchifigs. As Wang and Bonder (2007)
pointed out, the reason that previous studies atetivees’ psychological well-being
found different change trajectories might be that¢ exists multiple patterns of
retirees’ psychological well-being changes corrasioeg to unobserved
subpopulations.

Arguably, modeling this type of categorical or sl@sformation would help
sharpen an understanding of the repeated measitreere known. That is,
understanding differences in gender would be helpfaxplaining observed
differences in growth of adolescents over timethimevent that classes are unknown,
the existence of genuinely different growth patemthe sample manifested through
the individual trajectories themselves may stillsbiepected. An important relatively
recent development in the research on these methdigis extension to latent classes.
Unknown classes arise when genuinely distinctiustelrs of change exist, but are
embedded within individuals’ growth patterns. Grbwtixture models, which
incorporate heterogeneity in the random effectpeapto be a sensible approach in
uncovering these latent classes (Muthén & Muth8002Nagin, 1999; Verbeke &
Lesaffre, 1996).

A combination of mixture distributions and lineaixed-effects models is not
a new idea in statistics. Verbeke and Lesaffre §19@ve already investigated how to
detect a mixture in the distribution of random ef$ein linear mixed effects model.
They did not use the term “growth mixture model‘their paper but referred to their
model as “heterogeneity model”. However, in Verbakd Lesaffre’s study, only the

means of random effects were assumed to vary acmmgonent distributions but
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not the covariance between random effects. Theeptetudy would extend this
model to a more general form to account for mogsjimlities for heterogeneity of

individual growth.

2.5.1 Growth Mixture Model Specification. The standard linear mixed-
effects model has already been explained in Seet@nin this section, a growth
mixture model based on the linear mixed-effects ehadll be introduced. If there
exist several sub-populations which have diffeggntvth trajectories, the differences
among sub-populations can manifest in differentgdafixed parameters that
describe the mean growth trajectory, the randoecesfdistribution, and residual
distribution. A most relaxed formulation of growttixture model in the linear
mixed-effects framework would be

Yi=XB+Zb, + g (7)

€ ~ZK:7TKN(O’R<) bi"'ZK:”kN(O’Dk)

Equation 7 implies thaE(y, |b, )= X/B, +Zb, . The marginal mean and covariance
for y, is
Ely;)= E{ EY; [b )}zxil}k
CoMy; )= E{ Covy; |b, )}"‘ CO\{' Ed, Ib )}
= Rik + ZkaZi'
=Xy
Therefore the marginal distribution gfis iﬁkN(Xin, Z)

k=1
The above unrestricted model can impose estimdiitinulties since the

likelihood function is unbounded (details forthcowg). In a GMM framework, this

model is unidentified. Naturally, researchers matestraints on parameters to make
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the model identifiable and to smooth the estimagpimtess. In practice it happens
that some parameters in the model may not vary graobgroups. Sometimes
subpopulations differ in terms of their mean inggrtcor slope for a linear model,
sometimes they differ only in correlation of théaircept and slope. An important step
in conducting a growth mixture analysis is to spettie proper growth mixture
model. In this section several possible scenariosrevsub-populations show
different growth patterns will be introduced angrawth mixture model
corresponding to the particular scenario will becsfred.
Case 1. Mean growth trajectories vary among sub-population

The first situation specifies different growth &ejories for each class but
assumes the variance-covariance of random effadtsesiduals remain the same for
all sub-populations. This assumption is commonlypa€eld by many studies in
practice within an interest in investigating sulpplation heterogeneity of
longitudinal data (Colder et al., 2002; DuncanlgtZz®06; Verbeke & Lesaffre, 1996;
Wang & Bodner, 2007). Some of these studies makea#isumption to make the
model identifiable in a latent growth model struetUSome also dictate that they have
less interest in within-class heterogeneity thanpatterns of mean change. Figure 2
shows an example scenario for this case. The graphe left uses red and black
colors to show different subgroup growth profilesile the graph on the right shows
the bivariate distribution of random effects fotercept and slope corresponding to
the data in the left graph. The growth mixture mddethis scenario can be specified

as

Y, =XB +Zb, + ¢
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b, ~N(0,D) ande ~N(0,R )
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Figure 3 Growth trajectories and intercept-slope distifrubf Case 1.

The graph above depicts a popular scenario in aldewmental study where
some subjects start at lower levels on the outdmmegrow faster than those who
start at higher levels, and both group reach simtelzel in the end. Even though the
two subgroups start at different levels and growdifi¢rent constant rates, the relation
between starting point and growth rate remainséme, so does the variability of
data.

Case 2. Variance-covariance of intercept and slope varyragrgub-populations

Even though the first case scenario is popularplia@ in practice, the strong
assumption of component-invariant random effectemae-covariance structure
makes it unrealistic for many real life phenomeRae assumption is usually applied
for convenience or to avoid technical difficultigstimating the model), yet
researchers seldom explore whether this assumatitorally holds. In fact,

heterogeneous variance-covariance structures aswdrggoups are likely to be
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present in real life applications (Connell & Frg®06; deRoon-Cassini et al., 2010;
McCullough et al., 2005; Muthén et al., 2000; Mariket al., 2002; Paririla et al.,
2005; Ram & Grimm, 2009). For example, it is readna to expect that the slopes
vary more for sub-populations with moderate-decnggand high decreasing levels
of depressive symptoms than those at low and hegbigtent levels (Stoolmiller,
Kim & Capaldi, 2005). Another possibility is thdiet covariance between intercept
and slope can vary across subgroups. Figure 3 demates an example of growth
trajectories with these characteristics. The g@pkhe left shows two subgroups of
growth trajectories with different intercepts amhopgs; while the graph on the right
shows the bivariate distribution of random effdotsintercepts and slopes. The
corresponding mixture model can be specified as:

Yy, =XB, +Zb, + €

b ~Zg:7sz(O, D,) ande ~N(0,R)

k=1
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Figure 4.Growth trajectories and intercept-slope distribntof Case 2.
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It is clear that the two subgroups illustrated igufe 4 differ not only in terms
of their intercepts and slopes but also with thatien between intercepts and slopes.
In the graph on the left, the slopes and interceptke red colored group are
positively correlated while those of the black gr@how negative correlation.

Case 3. Error variances vary among sub-populations

The third source of subgroup differences is théwisubject error variances.
As elaborated in Chapter 1, within-subject variatomes from within-individual
variation or measurement error. Even though theyaely modeled distinctively in
longitudinal studies, some researchers still fosigdificant model improvement by
modeling component variant error variances (McGugloet al., 2005; Segawa et al.,
2005). Assuming component-specific error variantesmodel becomes the ultimate
unrestricted model as shown in the beginning &f $leiction. Figure 5 is a scenario
based on the model represented in Case 2 withrtbes &t level-1 coming from a
mixture distribution added to the data. The graphh left of Figure 5 is the mixture
distribution of errors with the same zero mean @différent variance components. It
is clear that the larger error variances of redigrdefinitely increased the data
variances of this sub-population. Thus the witHass variation comes from either
random parameter variation or within-subject varatYet little study has been
conducted to examine how these two types of vagmand provide correct variance

estimates can influence the estimates of GMMSs.
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Figure 5.Growth trajectories and intercept-slope distriboitid Case 3.

2.5.2 Estimation of Growth Mixture Models. The estimation of growth
mixture models are usually implemented via maximikedihood estimation using
the Expectation-Maximization (EM) algorithm. The Elgyorithm introduced by
Dempster, Laird and Rubin (1977) is a class ofrogers tailored to estimate model
parameters via maximum likelihood that can be fdated as a missing data
problem. Each iteration of the algorithm considtsrm steps, an expectation (or E)
step and a maximization (or M) step. The philosopélyind the EM algorithm is to
introduce an intermediate, latent variable z whdis&ibution depends on the
unknown parameters and when the loglikelihood messed in terms of the
distributions of the latent variable, it becomesieato maximize. In the mixture

context, the latent variable is definedgs=1if y,is sampled from thkth

component of the mixture distribution. The prioolpability of an individual to
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belong to componetisP(z, =1)=r, . The likelihood function corresponding to

Equation 7 can be expressed as
m K
L(Oly):H{zﬂk fic (Vi [y )}, (8)
i=1 (k=1

wherey'=(y;,...y,) is a vector of all observed data @hdontains all parameters in
the marginal model including component probabdite = (z,,... 7, )and y, which

represents all unique parametergin D, , andR,.

Rewriting the likelihood function for observed datand for the latent

variablez, the corresponding loglikelihood function is foriamed as

m K

l(elyiz)zzzzik{lnﬂ-k—i—ln fi (v, |7k)}- 9)

i1 ko1
The above loglikelihood function is composed of twdependent parts: the weighted
K density functionf, (y, | v, ) and the weighted class proportions.

Compared to the loglikelihood function correspoigdio Equation 8, the
loglikelihood in Equation 9 is easier to maximi¥¢hen maximizing the
loglikelihood using the EM algorithm, the latentiadlez is considered missing. In
the E-step the expected values of the probabityHeith individual to belong to the

kth component of the mixture should be calculateceéhi andk. Based on the

current parameter estimatésandr,' , the posterior probability is given by

" =E(z |y, 8= P(z =1y, §')
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”k fi (Vi 17) ‘
Z”k fu (Y, |7/k)‘

k=1 A

The conditional expectation of the loglikelihoodtire E-step,

E[I(G|y,z) ly, ,0‘] Jis given by

E[10]y.2)]y, 8']= ifﬂ.k“” [Inz + Infi & v, ) (10)

i=1 k=1
In the M-step, the conditional expectation is maxed to get updated estimaré?.
Since the two parts of the loglikelihood given hyuation 10 are independent,
maximization of these two parts can be carriedseparately. The maximization of
the first part of the loglikelihood can be donelgiieally by setting all first-order

derivatively to be zero and then solve to get

t+1 18 (1)
T, T =— E Ty
mz

The second part of the loglikelihood in Equationca@not be maximized
analytically but require a numerical maximizationgedure such as Newton
Raphson. The necessary first- and second-deriattbrehe Newton Raphson
algorithm within maximum likelihood estimation arektricted maximum likelihood
estimation can be found in Lindstrom and Bates §19894). Once all parameters in

0 in the model have been estimated, the randomteféan be calculated using

empirical Bayes estimates. The posterior densitgoflom effectd, is given by

fi=(b |y, ’O)ZZ”ikefik © 1y v),
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where f, (b, |y, .0) is the posterior density function bf given z, =1. Since the
posterior distribution ob, is a mixture of different component distributiotise

posterior mean ob, is

.~ K
b=>7'Eb Y7, =D
k=1

Based on the formula presented by Lindley and S(i#fi2), the expected value of

b, can be calculated by
Eb |y, v.3 =1)=DZW, ¢ -X B )+ ( -DZWZ, W .

Consequently, the posterior meantpis
~ K
b, =D, ZW,{y;, -X;B)+(-D,ZWZ, )Z@k el'k .
k=1

The present study will usefusfor model estimation although other
software programs have been developed in recerns yea&stimate GMMs (see, e.g.,
Open Mx, Latent Gold, or Flexmix in R). plusis a statistical software package that
estimates statistical models using observed antdsemeed (latent) variables. It has a
built-in estimation procedure for GMMs. As was poasly demonstrated in Section
2.3.2, the growth mixture model based on linearadirffects model is statistically
equivalent to the latent growth model and thus @¢anvenient to carry the estimation
through a well-established and widely used commaesaftware. The specific
method used in [usfor latent growth mixture model is called MLR (Nhéin, 1998-
2010), which uses a more robust method to calcstatadard errors for the MLE
estimates. In addition, pMususes a quasi-Newton method under the full-inforomat

maximum likelihood (FIML) framework instead of thNewton Raphson procedure in
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the M-step (Muthén, 2004). Maximum likelihood esdiion for GMMs in Mplusis a
two stage analysis. In the first stage, the progganerates specified number of sets
of random starting values and run through a smallkenber of iterations with each
set using EM algorithm for more stable estimatiorthe second stage, the program
takes a number of sets with the highest likelihand continues to iterate through a
guasi-Newton algorithm until convergence criteria met.

It is well known that the estimation of mixture nedgloften encounters local
maxima in likelihood function, which may resultbrased parameter estimates (Hipp
& Bauer, 2006; McLachlan & Peel, 2000). In the cakbeteroscedastic normal

componentsy, are unequal covariance matrices and the loglikelihof the above

function is unbounded. Thus, the global maximiZehe loglikelihood function does
not exist. This has brought difficulties in maximuikelihood estimation of
multivariate normal mixture distributions. The cmtsncy of MLE solutions for
normal components with unrestricted component ¢amae matrices is yet not

verified mathematically (McLachlan & Peel, 2000).real data analysis, the
component covariance matricBsare often restricted to being the same.
X=X fork=1, ... K

wherex is unspecified. Then the maximum likelihood estiorahas a global
maximization and is strongly consistent.

The focus of the present study does not allow ach sestriction of
covariance matrices, thus special attention shioeldaid on model estimation issues.
Nitysuddhi and Bohning (2003) investigated the gstytic properties of estimates

computed using the EM algorithm for normal mixtaredels with component
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specific variances empirically through a simulatsdady. They found that EM
algorithm estimates were consistent and had sredldnd mean square error except
when the subgroup means were close to each otltlee @ariance differences among
components were large. As McLachlan and Peel (206@Yed out, even though the
likelihood for these models is unbounded, “there/ stdl, under regularity
conditions, a sequence of roots of the likelihoqdation corresponding to local
maxima with the properties of consistency, efficieand asymptotic normality” (p.
41). The EM algorithm requires the specificatiorstafrting values which to a certain
degree will affect the parameter estimates. A wegvialuate whether the estimates
possess the above properties is to run the estimitom different starting values and
compare the likelihood from different runs. Theta@ire Mplusallows model

estimation using a set of permutated random stpviatues.

2.5.3 Enumeration of Possible Subpopulationgn important issue in
mixture distribution models is how to determine thienber of mixture components.
In the growth analysis case, the question “how matgnt trajectory classes exist”
needs to be addressed. Sometimes a researchean®gma priori theory about the
number of sub-populations, but in many cases finovkdedge about either the
existence of the sub-populations let alone the rmrmobsub-populations is tenuous.
Similar to the field of exploratory factor analysiesearchers and scholars have
developed a series of statistical tests and madelices to facilitate choosing the
correctnumber of classes. Currently, many simulationistiiave shown that the
Bayesian information criterion (BIC) performs betfean other information criteria

across a variety of modeling settings (Jedidi, ddgf Desarbo, 1997; Nylund,
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Asparouhov, & Muthén, 2006; Tofighi & Enders, 200&ing, 2006). Some studies
also found that Akaike’s information criterion (Al@nds to overestimate the
number of components in finite mixture models (Q&l& Soromenho, 1996;
Nylund, Asparouhov, & Muthén, 2006). In additionnimdel fit indices, two type of
likelihood ratio tests, the Lo-Mendell-Rubin (LMBst (Lo, Mendell, & Rubin,
2001) and bootstrap likelihood ratio test (BLRT)qlMchlan & Peel, 2000) have also
been shown to be quite effective in determiningrtbber of correct classes
(Nylund, Asparouhov, & Muthén, 2007; Tofighi & Ende2008). A major
disadvantage of BLRT is that it requires much larmg@ning time than other tests or
indices. For the practitioner who is comparing saleget finite, number of models,
the time to run BLRT is not as much of a conceuwr. iRethodological simulation
studies, however, this is a major drawback, unbéssurse, the focus of the study is
to evaluate the BLRT. Nonetheless, for testing cetng models Nylund,
Asparouhov and Muthén (2007) and Liu (2011) suggkshly using BLRT when
other tests or indices, like BIC, pared down thmher of potential models to just a
small number.

Another method to assess the number of classemirtare model is the
normalized entropy criterion (NEC) proposed by @rland Soromenho (1996). This
criterion measures how well separated the claggefsaan a specific mixture model.

It aims to quantify the uncertainty of classificeatiof subjects into latent classes. The
entropy values range from 0 to 1, with O correspagtb random assignment of class
membership and 1 to a perfect model-based claasdic (Celeux & Soromenho

1996).
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As pointed out by many researchers (Bauer & Cu2@f3a; Jung &
Wickrama, 2008; Muthén, 2003), besides statistiestls and model fit indices, the
number of components of a mixture model shoulddierdhined by a series of factors
including research question, theoretical suppotérpretability of components, and
the rule of parsimony. For the current simulatiardg, and based on evaluation from
previous studies, BIC, LMR, and NEC will be thet@ria for selecting the number of

classes in growth mixture models.

2.6 Previous Simulation Studies in GMM

Previous studies about growth mixture models hagaded mainly on model
estimation and model selection. Muthén and Shet90) described in detail how
the EM algorithm worked in estimating latent growatixture models. Hipp and
Bauer (2006) investigated the local maxima problemslved in GMM estimation
through maximum likelihood. Their simulation stuidyind that the MLE estimates of
GMM through the EM algorithm were very sensitivestarting values assigned in the
beginning of the process. They further proposegstem to select starting values for
better model convergence and fewer occurrencescaf maxima of the likelihood.

Nylund, Asparouhov and Muthén (2007) and Tofighd &nders (2008)
investigated the performance of a variety of mddl@dices and statistical tests on
identifying the correct number of classes in gromikture models. Both simulation
studies adopted relatively simple GMM structured aranipulated such factors as
class separation, sample sizes and mixture propsttNevertheless, in both studies
the concept of class separation was not well spelcéind lacked systematic

definition. The standardized difference betweennleans of two subpopulations is
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not necessarily the best way to clarify how the t@mmponent distributions are
separated from each other.

Another issue that has been overlooked by prewstudies is the roles that
both within- and between-subject variability playGMM. The overlap among
subgroups of growth mixture data depends on tredfparameters (component
specific to defining the functional form of growtag well as the variance-covariance
structure of the data. As was shown in SectioraB@Subsection 2.5.1, the variance-
covariance structure of the data is a compositidche@random effects variance-
covariance structure and the within-subject erasfance structure and the sub-
population distributions may vary in either or boftthese structures. A scientific
way of measuring mixture distribution overlap takinto account of the variance-
covariance structure is necessary if one wishegstematically investigate the
impact of the variance-covariance structures inGMM framework. After reviewing
a series of articles in the methodological literatand studies of class separation and
mixture distribution generation algorithms in aiegy of fields, the present study will
use multiple indices and decompose mixture strastiunto different layers to show a

more holistic picture of growth mixture data.

2.6.1 Measures of Distance between Component Digtutions. An
important factor that influences parameter estismated class membership recovery
for mixture distributions is how the component digitions in a mixture distribution
are separated from (or in other words, overlappighl) wwach other. Several statistical
indices have been proposed to measure the dist@tween mixture components.

Ideally these measures of distance should satisfptoperties of statistical distance.
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Letg(x), f(x), and h(X) be three proper density functions andég, f) be the
distance betweeg(x) and f(x) . It should then follow that
a. D(g,f)=0
b. D(g,f)=0ifandonlyifg=f
c. D(g, f)=D(f,9)
d. D(g, f)<D(g,h)+ D(h f)
The first approach defines the distance betweerdensities as:
D, (9, f)=([190)- f(YP ¥,
wherep is commonly set to be 1 or 2. Wheis equal to 1, it is called Kolmogorov’s
distance (Ullah, 1996). This family of distance sw@as satisfies all four distance
properties but its computation can become unwiaklthe number of dimensions
increases.
The second approach is the family of relative etrar divergence. Among
approaches within this category, Kullback-Leibl€L) distance is the one of great
interest and is regularly used across many dis@plincluding engineering,

economics and educational measurement. The KLndistitom densityf (x) to

density g(x) can be defined by

f(X)
D(f =| f (X)log ——= |dx.
(fllg)=] (x)og[g(X)J X

KL distance does not satisfy the last two propertiesymmetry and triangle
inequality (c and d from the above list) and therefis not referred to as a true metric

of distance. That is, the distance froinix) to g(x) may not be the same as distance
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from g(x) to f(x). In practice, to make this measure symmetric, istamce is often
redefined as
D(f,9)=D(f[lg)+ D(gllf)
If g andf belong to certain parametric families, for ins&tize family of

Gaussian distributions, an analytic expressiorKlodistance is available. Assume
f(X)=N(u,X;) andg(x) = N(p,,X,), then the symmetric version of KL

distance betweet(x) andg(x) is computed as
D(f,g) == (O Y iz 1xy 2
( ,9)—5(%—!19)( f T g)(uf_”g)+_2 X, gt &=g&— dl

wheretr[] denotes the trace of a square matrix.

Another approach that has been regularly used &sune distances between
Gaussian densities is Mahalanobis’ distance (MDppsed by Mahalanobis (1936).
To calculate the distance between two probabikysitiesf (x) and g(X), this

measure can be written as
Dy =, —ng)Taln,—n,),
where X ;; is the pooled covariance betweéfx) and g(Xx) . A major advantage of

Mahalanobis distance is that it satisfies all fproperties of distance. However, this
index is only valid to measure distance betweendistrsibutions with different
means with the same or pooled covariance matrix.

The indices introduced above have been regulapliepin the field of
psychology and social sciences. Nevertheless, Kladce and MD are not suitable in
of themselves to the present study. The major majed this study is to investigate

the influence of differences in covariance struesunn mixture models and
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Mahalanobis’ distance fails this purpose by assgmonsistent covariance structures
across different mixture components. KL distanae loa used to quantify the
distance between two probability distributions asisig one of them is the true
distribution of data. It is not straightforwarddenerate a mixture of distributions
based on this measure. In order to investigate jemameters from mixture
distributions with different amount of overlap angacomponents affect the
estimation results and class membership recovieig/crucial to adopt an index that
can define the separation/overlap of componentsixture distribution and an
algorithm for generating artificial mixtures of wariate or multivariate normal
distribution with controlled overlap quantified bye index.

With the fast development of studies on data ctuggeand finite mixture
modeling, many different algorithms have been psegao generate mixture
distributions according to pre-specified amounbvedrlap in statistical literature.
These methods attempt to manipulate group covaiaratrices and intra-class
correlation, changing standard deviations of megyuiadding random variables with
different expectations to data from the primaryydapon, or altering the means of
different distributions iteratively to reach desireverlap between generated mixture
components (see, e.g., Atlas & Overall, 1994; Hiakh 1976; Gold & Hoffman,
1976; Mcintyre & Blashfield, 1980; Waller et al999). However, these methods
either fail to provide a precise and meaningfuirdgbn of population mixture
overlap or cannot be extended to multivariate nbrmatures.

Recently there has been great improvement on clssparation or mixture

overlap indices. Various algorithms have been agpeal according to the definition
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of the indices. Aitnouri, Dueau, Wang, and Zioud2pused the rate of overlap to
describe how much two univariate Gaussian compsrard mixture are separated
from each other. The rate of overlap was definetth@satio of the height of the
intersection point of the two components to thgheof the intersection point of the
two components with maximum overlap. The maximurartap happens when the
height of the intersection point of the two compasas equal to the minimum value
of the standard deviations of the two componeritidigions. They proposed two
algorithms to generate multivariate normal mixtdigtributions by controlling
overlap using the widths of components or usingctiraponent means. Even though
their definition of overlap is straightforward ine univariate cases, it is hard to
visualize the intersection points in multivariatgmal mixtures. Moreover, their
method of actually simulating data is not done aitftand-alone program, but
instead, must to be combined with Milligan’s (198&%orithm to generate
multivariate mixture data.

Qiu and Joe (2006) defined the degree of separafian univariate mixture
as the difference between the biggest lower geiwtilcluster 2 and the smallest
upper quantile of cluster 1 divided by the diffezerf the biggest upper quantile of
cluster 2 and smallest lower quantile of clusteflie ratio of the difference ranges
from 1 when there is considerable gap between tusiars to -1 when the two
clusters overlap substantially. However, like Aitinicet al. (2002), the index and data
generation algorithm put forth by Qiu and Joe bexanmplicated if extended to
multidimensional clusters greater than two. It barincomplete and even

problematic when multivariate clusters should hentbthrough one dimensional
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projection with the highest separation while theasgairwise separation indices
among neighboring clusters reach the requirememtimimum overlap. This
algorithm is now implemented in R packa@enClus

Another data cluster generation procedure cal@@LlUS” was developed
by Steinley and Henson (2005). The OCLUS procedia® designed to generate
multivariate data from a variety of distributionghvcertain amount of overlap which
was quantified as the percentage of shared demsityeen clusters. The
corresponding data generation algorithm first agsuall dimensions are independent
and all clusters are independent. Parameters bfaasters are then computed based
on the provided overlap, distribution type and c@rece or correlation information.
The data will be generated from the computed tistions. To generate correlated
variables or data with unequal variances amondeisisthe clusters generated from
uncorrelated space and equal variance distributtandoe transformed to get
correlated or unequal variance distributions. Altio the overall overlap will be
retained and the desired correlation and varianaese achieved, the means of
transformed clusters can be shifted due to thejoblrotation of the data.

Maitra and Melnykov (2010) proposed a new methogetoerate sample
multivariate Gaussian mixture distributions. Inithegproach, overlap between two

mixture components is defined as the sum of th&classification probabilities. If

two p dimensional Gaussian components follow the distidim of ¢(X;p,,%,) and
#(X;n;, X;) with mixture proportion ofz, and z; , the two misclassification
probabilities are:

o, =Pz 5)<zsXm T )X N § %)
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and similarly,

ry—1 ry—1 ﬂ-izlzjl
Ay =Pl | B YE O )= (Ko, Y2 K-y )< log 7o
j i

Thus the overlapy; is just the sum ofy; and ;; .

When covariance structures are not the same betimeeciusters, the
misclassification probabilities are not easy taukdte analytically. The-
dimensional Gaussian components are decomposep imie@pendent non-central
chi-square distributed random variables with ongrele of freedom angl
independent standard normal variables multipliednieyan differences, eigenvalues
and eigenvectors. The probabilities are then coatpusing Davies’ (1980)
algorithm AS 155. The overlap index will guide gimulation of Gaussian
components to generate mean and dispersion pamanatelusters to satisfy the
overlap characteristics of mixture distributionbeTdispersion matrices will be scaled
iteratively to ensure the resultant distributiontchethe desired overlap properties.
Both the average overlap and maximum overlap anctuggers are accounted for in
the data simulation process. This method has beplemented in R package
MixSim

For the present study, the method created by MartdaMelnykov (2010) and
outlined above will be adopted to generate multatarnormal mixtures of model
parameters because of the simplicity in their d&din of distribution overlap, the

flexibility to specify a large variety of covariamstructures in different clusters as
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well as the convenience to simulate data usingxiing program package in R. KL
distance will also be used to indicate the degfeeparation of the means of the
intercepts and slopes. The overlap of subgroupksitaf will be dictated in terms of
random effects, residuals and marginal data. Thgnihade of overlap will be
guantified by the index defined by Maitra and Mékoy, which will be calculated
based on certain degree of mean structure sepagitbspecific variance-covariance
structure listed previously.

Equation 11 shows that the overlap in the datafusmetion of mean structure
separation among subgroups as well as how difféhentariance-covariance
matrices of mixture components are. Thus, the &sya in a simulation study to
investigate effect of variance-covariances on ghomvixture model is to separate the
effect of mean differences and variance-covarialiiferences and relate them to the
overall data overlap. A small scale pilot study wasducted to evaluate possible
separation indices for means and variances andrtiation with overlap in the data.
Chapter 3 will outline the specifics of the simidatstudy, the results of the small

pilot study, as well as define the outcome measures

50



Chapter 3: Methodology

The major research question of the current stuthpve within-subject level
and between-subject level variability affect thed@lcestimation of growth mixture
models. As mentioned in Chapter 2, both mean streaifferences and variance-
covariance structure of the random effects (betwsdmnect variability) and residuals
(within-subject variability) affect the overall dabverlap among mixture
components. It is more difficulty for growth mixeumodels to detect underlying
subgroups if the data are less separated acrogeosyis. A simulation study was
conducted to evaluate how variability of growthgraeters and residuals impact a
growth mixture analysis. In Section 3.1, the mdthwat was used for estimating
growth mixture models in the simulation study vad outlined and discussed.
Section 3.2 will introduce the design and data geran processes of the simulation
study. The criteria measures to evaluate the sitiaul results will be defined in

Section 3.3.

3.1 Estimation Method

The current study estimated a growth mixture mogelg maximum
likelihood via the EM algorithm. No constraints wanade on the variance-
covariance matrix of random effects and residualess mixture components (i.e.,
the most unrestricted models were estimated) extbepeach will be positive
definite for the data generation pMis software was used for the model estimation
process. Multiple maxima often exist for mixtureawets as introduced in Chapter 2.
Multiple sets of starting values of from a largaga are regularly utilized to find the

global maximum in mixture model estimationpMs has two stages in ML
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estimation of mixture models. The initial stagegeveral iterations of the same
model using a designated number of starting vadeés A certain number of starting
value sets with the highest loglikelihood values selected for the final stage
estimation which will iterate until converge to,dafully, the same highest
loglikelihood value. If the best loglikelihood va&us not reached, a warning is given
by Mplus that the solution may be at a possiblallotaximum. This warning
statement appears in the output and can be traskeddecorded. The current
simulation study adopted Muthén and Muthén (1998928 recommendations using
100 sets of random initial stage starting values Ehfor final stage optimizations for

growth mixture models.
3.2 Data generation

3.2.1 Population Model.The model of interest in the current study isnadir
GMM. The hypothesis is that there are two subgrafsibjects with different
growth trajectories (assuming both trajectoriesliaesar). Thus, the true number of
classes for the growth mixture model is two. Iné@ts and slopes of the population
model are assumed to follow multivariate normaltome distributions. The mean as

well as the variance-covariance structure of theraepts and slopes may vary across
mixture components. The residuals’ variance-cownagastructure is fixed to be’I

and o? is either component-invariant or component-variant

The model with component-invariant residual vareanan be written as:

Yi =X +Zb; +€ (12)

2
b, ~> 7mN(@©,D,) ande ~N(0,R )
k=1
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wherek is the number of subgroups or latent classes lyidgithe general
population. This model corresponds to Case 2 ini@e2.5.1. The model with
component-variant residual variance depicts thaaoe in Case 3 in Section 2.5.1

and can be written as:

yi =XB.+Zb, +e,

2
b, ~> 7N(@,D,) ande ~22:7rkN (0,R).
k=1 k=1

The list of parameters that will be estimated irrent study are included in
Table 1. All of the data generated based on a &aeowth mixture model will be
fitted with a 1-, 2- and 3-class growth mixture rabtb investigate the accuracy of
class enumeration under a variety of simulatiord@gmns. The number of time
points for growth is fixed to be six and are equalbaced assuming all individual

growth trajectories in each subpopulation startemdl at the same point.

Table 1.

List of Parameter Notations in Current Study

Intercept Slope Proportion Intercept Slope Intercept- Residual
Variance Variance Slope Variance
Covariance
@ @ &) &) ) &a 1
Classl Bo 1 Z ®Poo 2% Po1 &®
() () (2) (2) (2) 2
Class2 Bo 1 Poo P11 Do1 &?

a. & is the residual variance in the first simulationemtresidual variance is the same in two subpojuisti

3.2.2 Manipulated Factors.The first issue to consider for the current
simulation is the mixture proportion of subgroupsrixture components). Several

previous studies have concluded that the mixing@ron plays an important role in
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growth mixture analyses and other types of mixtlat analysis (Nylund,
Asparouhov, & Muthén, 2007; Tofighi & Enders, 2008he current study
investigated the research problem under threerdiftamixture proportion conditions
0.1/0.9, 0.3/0.7 and 0.5/0.5. All other factors evevaluated under each of these
mixture proportion conditions.

Previous studies appearing in the literature (Ever®981; Lubke & Muthén,
2007; Nylund, Asparouhov, & Muthén, 2007; TofighiBaders, 2008) have
concluded that the estimation and classificaticsueacy of growth mixture modeling
analyses and other latent variable mixture modelsaagely affected by how well the
data of subgroups are separated from one anotsenehtioned in Section 2.6.1, a
variety of measures of mixture distribution segarafor overlap) have been
proposed. Previous simulation studies in growthtamexmodels have regularly used
Mahalanobis distance as a measure of class separ@ily a few studies
(Nityasuddhi & Bohning, 2003) used their own measuwf separation. Mahalanobis
distance is based on a standardized mean diffeenoag subgroups assuming
variances among subgroups are the same. This clstiatiex does not specifically
take into account of the differences of variabilitysubgroups. Nityasuddhi and
Bohning’s (2003) D index considered both mean diffiees and variance differences
for a univariate normal mixture scenario. Howevee, D index was not conceived as
a standardized measure, which then makes it difficiquantify the differences. In
their paper, a range of means and variances fogteaps were selected and from the
computation of D, were categorized as resultindpiee coarse levels: low, medium,

and high. The current study hypothesizes that ttethmean structure and covariance
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structure of subgroups can affect how much ovdhape is among the data, and in
turn, will necessarily affect the estimation of gfrewth mixture model. Therefore,
the simulation requires two separate indices tosmeastructural differences in the
mean vectors and the variance/covariance matrices@ subgroups, respectively.

The separation of growth mixture data among suljgg@an be separated into
two sources: distribution of growth parametersleen-subject variability in
growth) and distribution of residuals (within-sutfj@ariation). The current
simulation study was a composite of two smallendation studies. The first
simulation study held the distribution of residuthle same across subgroups and
examined the effects of growth parameters’ (intetresmd slope) distribution on data
overlap, class membership detection and paramstienates. The second simulation
chose some cases in the first simulation with $jgaaiterest and added error
distribution differences to subgroups to examiresittieraction of growth parameter
distribution effects and residual distribution etfe Adding error distribution
differences among subgroups significantly redubedgiobal data overlap. Even
though the separation of error distribution amaumiggsoups helped reduce the
overlap in the data, the effect of error distribng would be entangled with the
growth parameter distribution effect. The invediiga of this effect was decided
upon after an examination of the results of th& Bimulation study.

Of great interest in my study is to investigate hbe variability structure and
mean structure of data interact with each otharltieg in different degrees of
overlap among subgroup data distributions. Fomkasure of data overlap, the

current study adopted the mixture distribution ty@index proposed by Maitra and
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Melnylkov’s (2010), which was introduced in Sectid.1. Both the mean structure,
X.B, , and variance-covariance structuresbaind e influence the overlap in the

growth data. To quantify mean separation, squangtivariate Mahalanobis distance
(SMD) which has been used as a measure of dateasiepan many studies in

relation to mixture distribution analysis (see 8&tR.6.1 for details about this index)
was used here too. The measure of variance-cocariaatrix difference is a revision
of the likelihood ratio statistics proposed by Maahd Rayner (1987). The statistic
for the standard likelihood ratio test for a difece between covariance matrices can

be calculated as

A

T-Snl QO
= oqg| -—
;n‘ | Tsd

" K
where (), :an—ns‘ is the maximum likelihood estimator of the poolednenon
k=1

covariance matrix and, is the sample variance-covariance matrix to compére

current study is not interested to test whetherdample covariance matrices are
statistically different from each other per se, faiher to quantify this difference

between two variance-covariance matrices. The eehilsdex does not account for

the sample size. This index of covariance matrtiffsrences C, ) is thus

A

K QO
Cd ZZEK |Og m

k=1
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The pooled common covariance matrix uses the nexpuoportions as weights in
" K
calculating€2, =Z7ZKSK. The relation betweeng@nd Manly and Rayner (1987)’s
k=1

statistics is linear and has a one-to-one corredgrace as shown in Figure 6.

2000 3000 4000 5000
| | |

Manly and Rayner (1987)'s Likelihood Ratio Test

1000

T T T T T T
0 2 4 6

=)
o

Covariance Matrices Distance

Figure 6 RelationbetweenC, and Manly and Rayner (1987)’s statistics.

3.2.3 Pilot study for relation between distance indes and data overlap.
To connect the mean structure difference and veer@ovariance structure difference
with the overlap in the data, a small-scale simaitatvas conducted to examine their
relations. Because it was not known a priori howouss differences in the mean
structure and variance-covariance structure woalcekated to overlap, the design of
the simulation was based on examining random valleegy a continuum instead of

choosing particular values. Thus, the procedumestdy generating a pool of mean
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structures and covariance matrices with randoneiifices among subgroups. Then,
for each combination of generated means and variaagariances, the overlap of the
data was calculated. The size of the pool wasODOg@mbinations of different mean
structures and covariance matrices of each subgFmrsimplicity, the residual
variance was not considered in this simulations€keparation in the data is only a
result of mean and variance-covariance differenntéise growth parameters. The
results showed that the mean structure and vareonariance structure of subgroup
growth parameters affected the overlap of the gaii@ differently. The interaction
among the three indices also differed across diffemixture proportion conditions.

Figure 7 illustrates the relation between Mahalandistance and distance
between covariance matrices. Since the major parpbthe current study is to
investigate how mean structure and covariancerdifitees of subgroups affect the
growth mixture model analysis, it is crucial to asgde the two sources of differences.
The graph suggests that there is no significardcason between Mahalanobis

distance and covariance matrices distarf&g) (which can support the design of the

current simulation.
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Mahalanobis Distance
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Figure 7. Relation betwee®; and SMD.

The following graph (Figure 8) shows the relati@iviieen overlap of the data
and the mean differences of intercepts and slop@sdacated through Mahalanobis
distance. The graph suggests that at a certaihdéWahalanobis distance between
subgroup growth parameters, the overlap of theiddimited and this limitation
varies for different mixture proportion conditiodr example, given that the mean
structure of subgroups are separated by Mahaladigience of 3, when the mixing
proportion is in the ratio of 0.1/0.9, the maximowrerlap of the data is
approximately 0.3. However, when the mixing proortatio is 0.5/0.5, the

maximum overlap of data is restricted to be leasn h.2.
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Figure 8 Relation between SMD and overlap in the data.
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Figure 9.Relation betweerC; and overlap in the data.

Figure 9 is a demonstration of the relation betwasmrariance matrix distance

among subgroup€, and the overlap in the data. As distance betweear@mce
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matrices becomes larger, the possibility of highrtap among data becomes smaller.
Upon a closer examination of the simulated dataag evident that as proportions of
the two subgroups became more divergent, the qvefldata also depended on
where the differences of subgroup variability ocedr When larger variance was
associated with the subgroup with the larger progoreven when mean structure
difference and the covariance distance were the stra overlap of data was smaller
than when the larger variance was associated hatlsubgroup corresponding to the
smaller proportion. This phenomenon was espeagadigent when class proportions
were very different such as 0.9 and 0.1. FiguresB0contour plot depicting the

relation betweef,, SMD and overlap of random effects when mixtur@pprtion is

0.5/0.5. The figure shows that whé}j is larger than .6, even if the standardized

mean differences of intercept and slope is zemptrerlap of random effects is less

than 0.5.
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Relationship between SMD, Cd and Overlap
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Figure 10.Relation between SMDC, and overlap in the data.

Table 2 summarizes the average overlap in thegiatarated using various
mean structure and covariance matrices with diffieleels of separation. For each

level of separation of SMD, the differences in metxacture can manifest in

intercept differences or slope differences. Sirtyildor each level ofC,, the

separation in variance-covariance matrices canrbsuwdt of covariance differences

or variance differences as well as where largeawaes are located with mixture
proportions that are unbalanced (as mentionedeimiove paragraph). When mixing
proportions are 0.5/0.5, within each level of SMRI&, , how mean structure and
variance-covariance matrices differ did not aftbet overlap of the data very much.
On the other hand, as the mixture proportions becawore unbalanced, the
variability of overlap becomes larger especiallygwhmean structure differences were

not large. Furthermore, unbalanced mixture propostiwere associated with larger
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overlap in the data across all levels of mean avdriance separation. As mean
structure differences increased, especially whehdl#aobis distance was equal to
2.5, the overlap in the data was not significaatfected by other factors. These

results formed the basis of the design structutbeturrent simulations study.

Table 2

Summary Statistics of Overlap by SMD d&gdunder Different Mixture Proportions

Mix Proportion 0.5/0.5 0.7/0.3 0.9/0.1
SMD Cy Mean Std Mean Std Mean Std
0.5 0.5 0.76 0.01 0.87 0.04 0.95 0.04
0.3 0.60 0.03 0.66 0.03 0.67 0.04
0.6 0.44 0.00 0.49 0.00 0.47 0.00
1 0.5 0.60 0.01 0.70 0.03 0.87 0.05
0.3 0.51 0.04 0.57 0.03 0.62 0.03
0.6 0.37 0.00 0.43 0.00 0.44 0.00
1.5 0.5 0.44 0.01 0.51 0.00 0.72 0.04
0.3 0.39 0.03 0.46 0.03 0.55 0.03
0.6 0.29 0.00 0.35 0.00 0.40 0.00
2 0.5 0.31 0.01 0.36 0.01 0.54 0.01
0.3 0.28 0.03 0.34 0.02 0.45 0.02
0.6 0.20 0.00 0.27 0.00 0.35 0.00
2.5 .0.5 0.21 0.01 0.24 0.02 0.37 0.03
0.3 0.19 0.02 0.24 0.01 0.37 0.02
0.6 0.13 0.00 0.20 0.00 0.29 0.00

3.2.4 Population ParametersFive levels of Mahalanobis distance (SMD)
were examined in the current study to measure #ennstructure distance of
subpopulation growth trajectories, .5, 1, 1.5, & arb. Several simulation studies
related to growth mixture modeling analysis oratgass modeling (Everitt, 1981;
Lubke & Muthén, 2007; Nylund, Asparouhov, & Muth@®07; Tofighi & Enders,
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2008) regarded Mahalanobis distance of 2 as barhigative of well-separated
classes. Figure 7 also suggests that when the Ktatiaik distance is at least 3, it is
not possible for the overlap of data to be largant0.5. For each level of mean
structure distance, there are two conditions:r{fiercepts are different across groups
or (2) slopes are different across groups.

There were 3 levels of random effects (intercept $lape) covariance
matrices distance(, ), 0.05, 0.3 and 0.6 which indicate small, mediumd krge
distances between two covariance matrices of supgrdAs shown in Figure 9, as

C, changes from 0.05 to 0.3, and then to 0.6, in mases, there is a dramatic drop

in the overlap of data. Under each level®f, two conditions will be considered: (1)

keeping the variances of the intercepts and sltpesame and varying covariances
between random intercepts and slopes across ligeasips or (2) vice versa. When
varying variances across subgroups, the correlatineen intercepts and slopes is
set to be 0.2 for both subgroups. Further, theamags of the second subgroupl is

times the variances of the first subgroup whki®a constant selected to make the

distance between two variance-covariance matr@césye a certain level &, . The

relation betweerC,; andd is

+7,d)°
Cd=7Z'1|Og(72'1+72'2d)2+7Z2|Og|:(7r1 72 42}

As explained previously, when proportions of the twlogsaups are
considerably different, whether larger variance is aasediwith the subgroup
corresponding to the larger proportion or the subgroulp thiiZ smaller proportion
can cause different overlap in the data given the saesn and covariance
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differences. Empirical data from the small scale simotesiuggested that this
difference in overlap was negligible (about .02) whering proportions were
0.7/0.3 but comparatively large when mixing proporsiorere 0.9/0.1. However,
when mixing proportions were 0.9/0.1 and larger variamag associated with the
larger proportiond had to be very large (>11) to reach the mediumlarmy levels

of C,, which was not realistic in real-world applicatiofierefore, for both
conditions with mixture proportions of 0.7/0.3 and 0.9/ a larger variance was
assigned to the subgroup with the smaller proportiomebnly covariances differed

across subgroups, it was impossible to rea€ly &arger than 0.3. Therefore, there

were only two levels o, under this condition.

Mean structure and variance-covariance matrices for edggraup were set
up to obtain the desired Mahalanobis distance@ndCombinations of mean
structure difference, covariance matrices difference amdikture proportion result
in different overlap in the data--the overlap of data balanother factor to be
evaluated for the simulation results. Figure 9 shovwssaxwamples of generated data
under the simulation condition of mixture proportionaaif 0.5/0.5, Mahalanobis
distance of 1.5 (when slopes are different across supgyoandC, of 0.3. The
graph on the left represents the situation in wktehvariances of intercept and slope
differ in subgroups while the graph on the right represtire situation in which

covariance of intercepts and slopes differ in subgroups.
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Figure 11 Examples of generated data.

For the first simulation study, the residual variantthe observed variables
was held equal across classes in the data genepatioess. The magnitude of
residual variance was selected specifically for eachlation condition to allow the
intraclass correlation coefficient to be 0.45 for intet@em 0.15 for slope. For the
second simulation study, the residual variance diff@aeross classes.

Sample size is another factor that influences the atmof mixture models.
In the current study, the effect of the above mentidaetbrs on growth mixture
analysis was evaluated under 3 choices of sampleZife 500 and 1000. Other
simulation studies have incorporated sample sizdseskEtmagnitudes (see, e.g.,
Nylund et al., 2007). Furthermore, the prevailing nottoet mixture models do not
operate well under smaller sample sizes has been ashémacknowledge that this
conclusion could be mitigated by large class sejmargsee, e.g., Verbeke &

Molenberghs, 2000).
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Overall, the combination of all manipulated factorsulesl in a Monte Carlo
simulation with 540 cells. 20 replications were fist as a pilot study. One-hundred
replications were generated within each design cefulbscale studies. Data used in
the simulation were generated with R 2.14.1 (R Devalagt Core Team, 2011) and
estimated with Ndlus6.2 (Muthén & Muthén, 2010). Details about parametsesd
for this simulation study are listed in Appendix A aaimple Mbluscodes for

estimating the growth mixture model are included ipépdix B.

3.3 Evaluation Criteria

The first step of evaluating a growth mixture modebigiétermine the
number of latent classes in the data. As explain€hipter 2, previous studies have
shown that Bayesian information criterion (BIC) and slensjze adjusted BIC
(ABIC) performed better than other information criteria asr@wariety of modeling
settings (Jedidi, Jagpal, & Desarbo, 1997; Nylundhaksuhov & Muthén, 2007,
Tofighi & Enders, 2006; Yang, 2006). In ABIC, the anigl sample siza was
replace by(n+2)/24. Other studies also found that the Lo-Mendell-RubMR)
test (Lo, Mendell, & Rubin, 2001) was effective irtetenining the number of correct
classes (Nylund, Asparouhov, & Muthén, 2007; TofighE&ders, 2008). The current
study used BIC, ABIC and LMR as criteria to seleet thodel from fitting 1-, 2-, and
3-class growth mixture models. The true model is a @ataodel, i.e., the selection
of 1- or 3-class model demonstrates under-extraction@r@xtraction in model
enumeration.

The next step is to evaluate parameter recovery uhdgroposed estimation

scheme. The evaluation of parameter recovery onludiec those replications in
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which the estimation converged without local maxiffilae performance of model
estimation was examined in terms of both estimatcmuigacy and estimation
efficiency. Relative bias were used to assess theaogof parameter estimates over
the 100 replications at various simulated conditidiney are computed by averaging
each of the values over all parameter estimates a@pksations:

gao,

6
RB R

where R is the total number of replications égds the parameter estimate from a

single replication sample ardlis the population parameter. In the above formula
bias is divided by the true parameter, which implieg tvhen the magnitude of true
parameter is close to zero, the relative bias of paexrmastimates could be artificially
inflated. This issue did not affect the current studges no population parameters
were set to be smaller than 0.2.

The efficiency of parameter estimates is measuredeastéindard deviation of
the sample estimates from their average value, whkialsd known as the empirical

standard error of estimates. The efficiency of parametienaes is calculated as

R .. 2

~ 1 R ~ zer

0= 231 0~
r=1

The accuracy of the standard error estimates wasi@ed by precision of

estimates, which is defined as

_SE(O)
SD(9)

Precision é )
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3 se(6)?

’ﬂT is the standard error of estimamesé) averaged across

where SE(0) =

the 100 replications. If the estimated standardrercomputed based on an approach

are accurateSE(é) should be close tﬁSD(é) and the ratio close to 1 (Lee, Song, &
Poon, 2004).

Entropy values were calculated for 2-class modelguantify the uncertainty
of classification of subjects into different subgps. Entropy values range from O to
1, with O corresponding to assigning subjects cetepf randomly and 1 to a perfect
certain classification (Celeux & Soromenho 199&)otker criterion of classification
quality is the classification accuracy. The accuria evaluated by the proportion of
subjects assigned to their true class accorditige@reatest posterior probability
the current study the correct percentage of classimership assignment is calculated
by averaging the correct classification rates eftthio classes.

Finally, convergence rates have been recordedafdr design cell. The
impact of the manipulated factors was evaluatedagtorial ANOVA to examine the
effects of these factors under different simulatonditions. The model enumeration
accuracy, classification quality as well as paramnestimation accuracy and
efficiency were used as the dependent variablesparate ANOVAs and compared
across different simulation conditions, sample,si@ean structure separation,
variance-covariance differences among subgroupa,aleerlap and mixture

proportions. The interaction effect of these fagtoas also investigated.
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3.4 Possible Problems in Simulation

Convergence and local maxima problems are regui@uiyd in mixture
model studies. Since the current study only exasnypagameter recovery in well-
estimated cases, low convergence rates and higitelwd local maxima will
undermine the evaluation of parameter recoveryfactrial ANOVA analyses of
simulation results. The distribution of estimates limited number of replications
might not represent the true sampling distributbpopulation parameters.
Unbalanced cell sizes within the factorial desigmyrhinder the interpretation of
ANOVA results. For the current simulations studye pilot study provided
preliminary information about difficulties in modestimation and certain simulation
conditions were eliminated from full scale simuatidue to high rates of non-
convergence and local maxima. Cases with non-cgewee and local maxima from
conditions remaining in full scale simulation wepecluded from final results and
more replications were generated until the numbepnoverged replications without
local maxima reached 100. This process providealanbed playing field to evaluate
the simulation results systematically.

There are several possibilities for GMM to be ideed as non-convergence
in current studies. Naturally cases when maximdkelihood fails to find a solution
to meet convergence criteria should be classifeedad converged. It is also possible
for results stemming from GMM analyses to have postive definite covariance
structure for random effects as well as negatigedteal variances. These two
situations are also considered as non-convergenogrient study. As Wothke (1993)

pointed out, many different situations can causeviblation of positive definiteness
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and each situation requires different solutionsetaove the possible cause. The
reasons for nonpositive-definite covariance stmggun GMM are most likely to be
improper starting values and over-parameterizailibwerefore, true parameters were
used as starting values for the two-class GMM anslgnd the weighted average of
subgroup true parameters were used as startings/édu one-class GMM analysis.
For the three-class GMM analysis, there is no §bmsvay to assign appropriate
starting values and the default starting valuesifMplus were used. The non-
convergence rates have been documented and repoieavide some insights for
practitioners.

Another possible problem that often interferes withulation studies
involving mixture models is label-switching. Lalstlitching has been documented
for mixture models when using MCMC estimation iBayesian framework. Since
the current study uses maximum likelihood for eating growth mixture models, the
label-switching issues arising in a fully Bayesaralysis does not exist. However, as
new research has pointed out (McLachlan & Peelp20Qeller, Drotar & Lubke,
2011), the class labels are arbitrary in mixturelet® without previous knowledge of
the subpopulations. In simulation studies, paranestgmates are aggregated over
replications and from replication to replicatior ttame classes may not be labeled
the same. It is critical to avoid aggregating patanestimates over mislabeled
classes. The label-switching problem can be predeby using true parameter values
as the starting values, making model constrainisspecting parameter estimates

after estimation. Since two-class mixture modetstae true model in current study,
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inspecting parameters after estimation before agdiey estimates were used to

ensure correct class labeling.
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Chapter 4 Results

The current study explored many conditions invauitifferences of
variance-covariance matrices among subpopulatibgsoavth mixture data, which
have not been evaluated by other studies. Dueettattk of guidance from the
literature to inform the proposed simulation, ateagive preliminary pilot study was
conducted to assist in selecting levels of the g for the current simulation.
Some of results of the preliminary study, thoughdobonly on 20 replications of
simulated data analyzed under 2-class GMM model/iged valuable insight for
choosing levels of sample size and combination @dmstructure differences

(measured by SMD) and variance-covariance strucifierences (measured Hy, ).

The preliminary results were also helpful in tHayt shed light on data analytic
problems that researchers and practitioners alikg emcounter when applying these
methods in a substantive setting. In the remaioflére chapter, the preliminary
study results will be discussed first followed bgliscussion of the main simulation

results.

4.1 Pilot Simulation Study Results

The main purpose of the pilot study was to invegéghe convergence rates
and frequency of local maxima in estimation. Theuagption was that data generated
from different combinations of simulation condit®owould not have the same
amount of difficulty in estimation. Some combinaisoof mean structure differences
and variance-covariance structure differencesisidimulation may result in data
with a large degree of overlap between latent spbjadions. Analysis of data from

these simulation conditions with medium to largepke size = 500 andN = 1000)
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had large non-convergence rates. The pilot stusiyltesuggested that SMD of 0.5

andC, of 0.2 and 0.4 had particularly large numbers of-nonverged cases. The
average non-convergence rate for cells from thistgpation of SMD andC, was
approximately 0.50. For those cells wifh) of 0.2, only 40% of the iterations
converged. When SMD was equal to 1 &)dvas 0.2, the average convergence rate

was also lower than 0.60. The 72 cells with SMDd.8 andC, of 0.2 or 0.4 (see

Figure 12) encountered some level of estimatioficdity. Overall, 35 out of 72 cells
in this combination have non-convergence rateslattan .40 and 3 of them had no
converged cases at all. The pilot study results stt®wed that there were a large

number of cases with possible local maxima forehmedls. The average percentage

of occurrence of local maxima was as high as 408érdfore, the combination of

SMD andC, as shown in Figure 12 was removed from full scateutation.

SMD
0.3 1
C,=0.2 C,=0.4 C,=0.2

Figure 12 Combination of SMD and, which led to large data overlap.

In addition, the remaining cells with data of saenpize 250 were also

explored in the pilot study as it was thought basedhe literature that computational
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problems occurred with greater frequency when #mepde size was small. The
results suggested that a sample size of 250 maHtenlarge enough to obtain stable
parameter estimates for the majority of the coadgi When sample size was 250,
across all other conditions, the average non-cgerere rate was 0.42. Across
mixing proportions, the average non-convergenceagatells from different

combinations of SMD an&, are listed in Table 3. Forty-seven cells had @& no

convergence rate higher than .40 and 6 of thermbambnverged replicates at all.
The non-convergence rates when the mixing propostias 0.9/0.1 (0.54) was much
higher than when the mixing proportion was 0.5(0.81) or 0.7/0.3 (0.32). The
occurrence of solutions reaching local maxima wss more frequent under the
smaller sample size condition than under the lasgerple size condition. The
average rate of local maxima was .15. Considehedigh non-convergence rate as
well as frequency of local maxima, it would appediicult to obtain 100 converged
replications for so many cells. Thus the full scgilaulation will exclude the

condition of small sample siz®,=250.

Table 3
Non-Convergence Rates Across Levels of Latent ddéarences (SMD) and Latent

Variance-Covariance Differences {lGand Where the Sample Size N = 250

Cq
SMD 0.2 0.4 0.6
1 0.74 0.59 0.33
15 0.63 0.40 0.13
2 0.43 0.33 0.13
2.5 0.28 0.21 0.08
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In summary, when either or both SMD a@gwere very small, the overall
data overlap would be too large for the current ehéadl be estimated without
convergence or local maxima problems. Base onitbegtudy results, the full scale
simulation will no longer examine the combinati@isSMD andC, as shown in
Figure 12. Smaller sample size like 250 also irsedaestimation difficulty and thus
was be included in the final full scale simulatiéter excluding the aforementioned
simulation conditions, there were 228 simulatioltsd®r the full scale simulation

study and conditions of SMD will be nested withewels ofC, . The final decided

conditions for the first simulation are listed infle 3.

Table 4

Final Chosen Conditions for the First Simulationd®t

Factor Levels

Sample Size 500, 1000

Mixing Proportion 0..5/0.5, 0.7/0.3, 0.9/0.1
SMD C,=0.2,15,2,25

(nested withinC, ) C,=0.4,1,15,2,25
d YT y -~y ] .

C,=0.6,05,1,15,2,25

C, Variance Different, 0.2, 0.4, 0.6
Covariance Different, 0.2, 0.4

(nested within Variance-Covariance Condition)
Mean Condition Intercept Different, Slope Different
Variance-Covariance Condition Variance Differenby@riance Different

4.2 Simulation Study-1 Results
Results of main simulation study are reported ia parts, Section 4.2 and

Section 4.3. In Section 4.2.1, convergence ratdgla chance of the occurrence of
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local maxima are presented to provide a generaln@of the efficacy of model
estimation. Model enumeration results will thenrteoduced along with the
performance of different model fit indices in Seat4.2.2. In Section 4.2.3, the
results of parameter recovery in terms of relalives, parameter estimation
efficiency as well as the precision of standarodreestimates will be discussed.

Effects of different factors that are of interestshe current simulation will
be analyzed using a factorial ANOVA with a nestedign. The criteria of judging
the importance of an effect include a combinatibatatistical significance as

measured by comparing tpevalue to the significance levet € 0.05) and practical

importance as measured by a variance accounteffémt size measure;”, with

n° > 0.06. It has been recommended by scholars and resesifch@ver three
decades that a measure of effect size should loetaseterpret the results of
hypothesis testing beyond a test of statisticaliB@ance (Cohen, 1988; Maxwell,
2000; Olejnik & Algina, 2000). Eta-squaregl’, was chosen as a measure of effect
size in the current study because of its additnaperty and comparability for the
effects of different factors within the same stu@pmpared to another popularly
used measure of effect siz€, n? is less sensitive to unequal sample size and
heterogeneous variances which apply to the custeny (Carroll & Nordholm,

1975). According to Cohen (1988)7of 0.06 and 0.14 represent medium and large
effect sizes for factorial ANOVA analysis, respeety. In the following sections,
tables for the ANOVA results will only show thosiéeets that meet these two criteria
at the same time and omit the other effects thata@imultaneously meet these

criteria.
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4.2.1 Convergence and Local MaximaNon-convergence has been a
common problem when fitting growth mixture modetsaay general mixture model
analysis. It is important to discuss the convergaates of data estimation before
making conclusions about parameter recovery, mea@hneration or classification
accuracy. As mentioned in previous sections, thiergyn for a converged replication
in current simulation study is that the estimagmaded by meeting the desired
convergence criterion as well as absence of noitip®slefinite variance-covariance
estimates of random effects and residuals. Theargewnce rates of different

simulation conditions are displayed in Table 5.
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Table 5
2-Class Model Convergence Rates of Growth Mixtuoel®ll Estimation. Blank Cells

Indicate Condition Combinations that were Omittemihrf the Main Simulation

N=500 N=1000
C, C,
& SMD 0.2 0.4 0.6 0.2 0.4 0.6
0.5 0.775 0.960
05 1 0.865  0.885 0.988  0.970
15 0.855 0918 0.905 0.973 1.000 0.985
2 0935 0970 0940 0.998 1.000  0.995
2.5 0970 0973 0.955 0.995 0.998 1.000
0.5 0.950 0.995
07 1 0.845  0.985 0.985  1.000
15 0.793 0973 0.990 0.983 1.000 1.000
2 0930 0.988 1.000 0.990 0.998 1.000
2.5 0983 0995 0995 0.998 1.000 1.000
0.5 0.965 1.000
09 1 0.545 0.985 0.735 1.000

15 0.510 0.665 0.995 0.803 0.833 1.000
2 0633 0.723 1.000 0.888 0.908 1.000
2.5 0.795 0.785 0.995 0.948 0.938 1.000

Recall that the population model used to generat fr the current
simulation was a two-class growth mixture modedl@sonstrated by Equation 12 in
section 3.2.1. To evaluate the accuracy of modemamation, the generated data
were estimated under 1-, 2- and 3-class growthurgxmnodels. The convergence
rates were high for estimating the 1-class growiktume model. In this scenario,

100% of the replications across all simulation ¢boads had converged to a proper
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solution. When fitting 2-class models, the convengerates were also high for most
of the cells. Across all conditions only 8% of tleplications did not converge
properly. Out of 228 full-scale simulation cellgylgy-nine of them had 100%
convergence, fifty-five cells had convergence ratgber than 0.99 while only ten
cells had convergence rates lower than 0.80. Akldmiforeseen, non-convergence
increased when fitting 3-class GMMs. The averagesergence rate for 3-class
models was only 0.035 across all conditions. Thevemgence rate was slightly
higher when the sample size was 1000. However, eveslls where conditions were
deemed more ideal, the convergence rates were tbarr0.10. While somewhat
disappointing, this result is understandable sthee3-class model was attempting to
fit three variance-covariance matrices of the latgowth factors for data that were
generated from a population model with only 2 &as3J his “over-extracting” caused
a large number of cases to converge to a solutlmerevthe variance-covariance
matrix of random effects for at least one class m@gositive-definite.

Sample size has been recognized as important fexctoodel convergence in
previous studies (see e.g., Tolvanen, 2008). Thecustudy also found similar
results to that of Tolvanen. Of all replicationsngsthe 2-class GMM to fit the data,
approximately 77% of non-converged replications aaample size of 500 while
only 24% of them had a sample size of 1000. Thea@esconvergence rate for cells
with a sample size of 500 was 0.87 while the awer@mvergence rate for cells with
a sample size of 1000 was 0.96.

Convergence rates were also closely related toopubation overlap of the

generated data. As described in section 2.6.rati#om effect overlap and overall
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data overlap is the sum of misspecification prolitas of two subpopulations. The
correlation between convergence rate and randogatadfstribution overlap was 0.52
and correlation between convergence rate and dwiat@ overlap was 0.70. All of
the conditions with convergence rates lower th&0 Gad overall data overlap larger
than 0.50. Since the overlap of growth mixture dai@determined by both the mean
structure differences between subpopulations andn@e-covariance structure

differences, as expected, the convergence rataswagp when SMD and/oC,

became larger. The convergence rates were simiianwnixing proportions were
0.5/0.5 and 0.7/0.3 but lower when the mixing prtipas were 0.9/0.1 as

demonstrated in Table 6.

Table 6

Convergence Rate at Different Mixing Proportions

Mixing Proportion Convergence Rate

0.5 0.93
0.7 0.94
0.9 0.73

As expected no local maxima problems were found folass model
estimation. For 2-class GMMs, the number of repiices where the solutions
reached local, not global, maxima was much lowan tthe number (rate) of non-
converged replicates. The average percentage oélnrestimation with possible local
maxima was only 2%. Detailed information about lonaxima rates are shown in

Table 7. The results indicated that data with umhetd subpopulation sample sizes
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were more likely to encounter local maxima problemsreased sample size
definitely decreased the number of local maximae &verage rate of local maxima

for data with sample size of 500 was 0.035 whitertite of converging to a local

maxima for data with a sample size of 1000 wayg 06r008. As SMD andC,

increased, the number of replicates that convetgedocal maxima decreased.

Table 7
Proportions of Replicates that Reached a Local Mexin Fitting a 2-Class Growth
Mixture Model. Blank Cells Indicate Condition Comdiions that were Omitted from

the Main Simulation.

N=500 N=1000
Cd Cd

% SMD 0.2 0.4 0.6 0.2 0.4 0.6
0.5 0.5 0.030 0.000
1 0.010 0.000 0.000 0.000
1.5 0.010 0.015 0.000 0.005 0.000 0.000
2 0.010 0.000 0.000 0.000 0.000 0.000
2.5 0.005 0.000 0.000 0.000 0.000 0.000
0.7 0.5 0.010 0.000
1 0.040 0.000 0.005 0.000
1.5 0.090 0.000 0.000 0.000 0.000 0.000
2 0.015 0.000 0.000 0.000 0.000 0.000
2.5 0.000 0.000 0.000 0.000 0.000 0.000
0.9 0.5 0.010 0.000
1 0.285 0.010 0.105 0.000
1.5 0.235 0.145 0.000 0.065 0.055 0.000
2 0.115 0.130 0.000 0.020 0.035 0.000
2.5 0.035 0.065 0.000 0.000 0.000 0.000
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Because of the over-extraction problem, the nurobsplutions converging
to a local maximum was much higher for 3-class rhedemation. The average rate
of local maxima across all conditions is 0.44. éaged sample size did not help
reduce the number of local maxima as it did whém§ the 1- and 2-class GMMs.
The number of solutions reaching local maxima wghkdr for replicates where the
data were characterized by better class separation.

Replications that did not converge to a propertsmiuor those that reached
local maxima or both were excluded from subseqgpardmeter recovery analysis.
However, unlike the pilot study where convergenes wiuch more problematic,
additional replicates were generated and analynéitithe number of converged

replications reached 100 for each simulation caooralit

4.2.2 ldentification of the Number of Latent Classs. One critical issue in
GMM analysis is to decide the number of latent sydyations in the data. This
decision is typically made by fitting a GMM to tdata with increasing number of
latent classes; choosing the model with the bestdicated by one of a number of
model-fit indices. One research question of theenirstudy was to examine the
performance of several model fit indices in modeiraeration of GMM. As defined
in Section 2.5.3, the indices focused on here & BBIC and LMR, which all have
been suggested to work well for mixture and latdsss analyses in a series of
previous methodological studies (Henson, Reise &,K007; Jedidi, Jagpal, &
Desarbo, 1997; Nylund, Asparouhov & Muthén, 200Gfighi & Enders, 2008;
Yang, 2006). The results of the current work sutggethat both LMR and ABIC

tend to over-extract the number of latent clasdaitevBIC sometimes under-extracts
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the number of latent classes. Overall, however, IB4@ the highest rate of correct
model enumeration (0.876) compared to ABIC (0.588) LMR (0.532). The rate of
over-extraction was not affected by differencemiring proportions, levels of SMD

or C,. When sample size increased, this rate decrebaedpt dramatically. When
SMD andC; increased (i.e., data were better separatedjatheof under-

enumerating using BIC dropped significantly. Degdilnformation of correct class
identification can be found in Table 8. OverallCBiorked the best in detecting the

correct number of latent classes of GMMSs.

Table 8

Identification of Latent Classes Using ABIC, BIGdrMR

Correct ldentification Over ExtracUnder Extract

ABIC 0.536 0.450 0.014
BIC 0.876 0.002 0.122
LMR 0.532 0.424 0.044

4.2.3 Parameter RecoveryThis section will initially discuss the factorial
ANOVA results from analyzing outcome measures tHtnee bias, efficiency of
parameter estimates and precision of standard estonates. The results from the
analysis will be used to inform and focus the déston on only those condition
combinations that demonstrated both statisticaliBag@nce and practical importance.
Bias is the difference between parameter estinatdgopulation parameter values.
Relative bias is bias divided by the true populaparameter value. Compared to

bias, relative bias provides a more relevant intiex can be used as a basis of
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comparison of estimates from true parameters wiherrtie parameters are on
different scales. In general, if the absolute vaitieelative bias is less than 0.10, the
recovery of true parameter from the nominated muo@el considered to be
acceptable. The efficiency of parameter estimats mweasured as the standard
deviation of the sample estimates from their averegue, while the precision of
standard error estimates was computed as theafastandard error estimates and
efficiency of parameter estimates.

In Sections 4.2.3.1, 4.2.3.2 and 4.2.3.3, resliltelative bias, efficiency of
parameter estimates, and precision of standard estnates will be discussed in
detail. The factorial ANOVA results will be repodtéirst to show the effects of
different simulation factors on the outcome vamablin subsequent sections, details
about relative bias, efficiency and precision urgdiferent simulation conditions will
be presented. Only factors that showed signifieffiects on the outcome will be
discussed.

4.2.3.1 Relative Bias of Parameter Estimates. Table 9 and Table 10
summarize the results of the ANOVA analysis ontietaebias of parameter estimates
where effects of manipulated factors that demoteddraimultaneous statistical
significance (at = .05 level) and surpassed thé> 0.06 threshold will be
discussed. Table 9 shows the effects of differacioirs on relative bias of intercept,
slope and mixing proportion estimates. For intetegmd slopes of two classes, the
factor of variance-covariance condition nested withe levels of variance-
covariance structure separation explains the laggyeportion of variation of relative

bias. The mean structure condition, in other wordsther the difference of mean
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structure was on the intercept or slope, was anatigortant factor that affected the
relative bias ofg®, p/* and g{* but not . In addition, there was a significant
interaction effect of the mean structure conditamid variance-covariance structure
condition on relative bias gf", p{* and g/?. The only factor that had significant
influence on relative bias of mixing proportian was the mixing proportion

condition itself which explained approximately 28 2f the variation of relative bias

of x,.

Table 9

Factorial ANOVA Results on Relative Bias of Intptc&lope and Mixing Proportion

Factors 5 5 ) ) i
Data Overlap

V4 28.2%
Sample Size

C

SMD(C,)
VarCond(C,) 249% 19.0% 23.7% 11.9%
MeanCond 14.9% 6.1% 13.4%

VarCondxSMD C,)
MeanCondxVarCond@,) 6.4% 14.4% 10.1%

For the relative bias of variance-covariance stmgcestimates, the mean
structure distance (SMD) nested within varianceatciance structure distanc€)

had a significant effect on the relative bias dfzaliance-covariance components of

the random effects except for class-2 slope vaeianf’ . Differences in the mean

structure as well as their interaction with diffieces in variance-covariance structure
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impacted the relative bias of class-2 interceptslofde variances but not class-1
estimates. Relative bias of residual variance ed@mwas affected by differences in

the mixing proportionC, as well as variance-covariance structure condition

Intercept variance for class 8>, was the only parameter that was affected by the

overall data overlap even though the effect size baely above the evaluation

criteria.

Table 10
Factorial ANOVA Results on Relative Bias of Vares@ovariance Estimates of the

Random Effects

@ (2) () @ (2)

Factors Do Doo (2% (”1(5) @Po1 Do1 &
Data Overlap 6.7%
T 12.2% 13.2%
Sample Size 7.4%
C 8.2% 7.7% 11.1%
SMD(Cy) 17.2% 8.3% 21.7% 16.5% 7.6%
VarCond(C) 13.5% 6.2%
MeanCond 19.7% 16.2%
VarCondxSMD C,)
MeanCondxVarCond@, ) 23.7% 20.3%

The following illustrates the effects of differdiactors on relative bias of
parameter estimates using graphical summaries @&nangl 95% quantiles. Figure 13
shows the variation of relative bias on interceqt alope estimates under different
combinations of variance-covariance conditions \arthnce-covariance distance.
When variances were the same and covariances \wWEnent across classes

(represented by dash lines on the graph in FigByeré&lative bias was much smaller
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than when covariances were different in the twgs®a than when variances were
different. No significant difference was found fdass-1 intercept and slope relative
bias. In general, when variance-covariance matotése random effects of the two

classes were more well-separated(i&,.,was larger), the relative bias of class-2

intercept and slope estimates was smaller. Thisrdifice was only manifest when
variances were different acorss classes since wbnariances were different across
classes the relative bias of the intercept fronh latdsses were very small and close

to zero.

0.05
0.00
-0.05
-0.10
-0.15

-0.20 . . . .
Class 1 Intercept Class 2 Intercept  Class 1 Slope Class 2 Slope

Relative Bias

=4¢— Cd=0.2, cov_diff—=l—Cd=0.2, var_diff Cd=0.4, cov_diff
== (Cd=0.4, var_diff==¥=Cd=0.6, var_diff

Figure 13.Relative bias of intercept and slope across

different variance-covariance conditions.

Based on ANOVA results, the main effect of the mstuacture condition
significantly impacted the relative bias of theeirtept and the slope. As
demonstrated by Figure 14, differences in interoeope across classes led to
larger relative bias of class-2 intercept or slopebe specific, when intercepts were

different acorss classes, which in current simotatiesign meant class-2 intercept
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was smaller than class-1, the relative bias ofselamtercept was larger than the
class-1 intercept but no differences were foundsfope estimates. In this situation,
the model produced accurate (in terms of biasinedés of the class-1 intercept and
tended to underestimate the class-2 interceptsahee phenoma was found when
examining the slope estimates. This pattern wasralsognized across the mixing

proportion conditions.

0.05
0.00 B - —_— - ﬁ
-0.05 —&

-0.10

-0.15

Relative Bias

‘020 T T T 1
Class 1 Intercept Class 2 Intercept ~ Class 1 Slope Class 2 Slope

=4&— Intercept Different == Slope Different

Figure 14.Relative bias of intercept and slope under

different mean structure conditions.

The relative bias of mixing proportion estimateswaly affected by the
mixing proportion condition itself. Figure 15 shotmt relative bias of the mixing
proportion estimates was smaller when the percentdgubjects in the two classes
were more similar (i.e., 0.50/0.50). Similarly teetbias of the intercept and slope
estiamtes, the mixing proportions had larger bsgseeially when class sample sizes
were not balanced. The second class proportiorcamstantly overestimated which

in turn resulted in underestimation of the clagsdportion.
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Figure 15.Relative bias of mixing proportion under

different mixing proprotion conditions.

Figure 16 through Figure 18 demonstate relative bfahe random effects
variances and covariances under different comnatof SMD andC, . For the
current simulation design, SMD was nested wit@jnnot crossedavith C, , which

was due to the deletion of some combinations respilh overly large data overlap
and thus high non-convergence rates. Only SMD®f2and 2.5 were combined
with all levels ofC, . Therefore, only these three levels of SMD wem@shin the
figures. As the results suggested, overall, thatired bias of the random effects
variances and covariances decreased with increasess levels of SMD ang@, ,
especially for class-2 covariance estimates. Iregdnclass-2 covariances had much
larger and negative relative bias than the othedeen effects variance and

covariances. Fo€,; = 0.60, the relative bias of class-2 covariance mach smaller

especially when SMD was 1.5. However, we must keepind that there was only
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variance difference in the random effects acrossdlasses whe; was 0.60. The

model tended to underestimate the class-2 covarjaspecially when data were

more overlapped. To obtain estimates of the classvariance with acceptable

relative bias, SMD had to be larger than 1.8grhad be to be larger than or equal to
0.40. The effects of SMD an@, on other variance and covariance estimates were

not as evident as the class-2 covariance.

0.05

g o \/\ 2

8 — \

@ 505 /‘v\\

o O

= \\.

© -0.10

O]

™ 0.15 N
-0.20 . . . . . .

Cl-Int-Var C2-Int-Var C1-Slp-Var C2-Slp-Var C1-IS-Cov C2-1S-Cov

—4—-SMD=1.5, Cd=0.2 —#-SMD=1.5, Cd=0.4 SMD=1.5, Cd=0.6

Figure 16.Relative bias of random effects variances and

covariances when SMD = 1.5.

91



0.05
.8 0.00
m
» -0.05
=
g -0.10
(O]
X 015
-0.20 T T T T T 1
Cl-Int-Var C2-Int-Var C1-Slp-Var C2-Slp-Var C1-IS-Cov C2-I1S-C
=4—=SMD=2, Cd=0.2 =E=SMD=2, Cd=0.4 SMD=2, Cd=0.6
Figure 17.Relative bias of random effects variances and
covariances when SMD=2.
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® .05 -
° O
=
© -0.10
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Cl-Int-Var C2-Int-Var C1-Slp-Var C2-Slp-Var C1-IS-Cov C2-1S-Co
=—SMD=2.5, Cd=0.2 ——=SMD=2.5, Cd=0.4 SMD=2.5, Cd=0.6

Figure 18.Relative bias of random effects variances and

covariances when SMD=2.5.

The relative bias of the random effects variancesavariances under

different combinations of the mean structure caadiand the variance-covariance

structure condition whe@, =0.20 and C, = 0.40is shown in Figure 19 and Figure

20. The patterns of variation of relative bias wi&nis 0.20 or 0.40 were similar.

When variances were different across classes fibet f the mean structure
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condition (intercept or slope different) on thedam effect variance estimates were
similar to the effect on mean structure estimatéisen intercepts differed across
classes, the class-2 intercept variance had laetgive bias; when slopes differed
across classes, the class-2 slope variance haat ialgtive bias. However, when
differences in the variance-covariance structuceised on covariance differences
instead of variance differences, the effect ofrttean structure was not apparent. In
addition, under this situation, the relative bi&slass-1 variances were larger than in

the situation in which the variances were different

0.05 = &= Intercept Different &
v 0.00 = Y Covariance Different &
8 7 - ™, Cd=0.2
m 1~ | B - :
o “0.05 —— Intercept Different &
2 0.10 \ / \ Variance Different &
« -U. Cd=0.2
] Y \ )
X 0.15 Slope Different &
Covariance Different &
-0.20 . . . . Cd=0.2
KRG KRG G O == Slope Different &
,&*V‘\' ,@\’ J ~J Variance Different &
O & Q\'% C;vc" Cd=0.2

Figure 19.Relative bias of random effects variance unddedg#ht combinations of

mean structure and variance-covariance structusnvis 0.20.
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Figure 20.Relative bias of random effects variance unddeddht combinations of

mean structure and variance-covariance structusnvhis 0.40.

For relative bias of the residual variance, evemugfn the mixing proportion

and C, showed significant effects from the ANOVA analysise influcence was not

detectable in the graphical summaries shown inrgigd and Figure 22. Overall, the

relative bias of the residual variance was quitals(olose to zero).

0.05

Relative Bias
o

-0.05

0.5 0.7

0.9

Figure 21. Relative bias of residual variance urtiéerent mixing proportion.

94



0.05
)
s
m
N
g 0 —— *
IS
Jo)
xx
-0.05 . . .
0.2 0.4 0.6

Figure 22.Relative bias of residual variance under diffetewels ofC, .

Table 11 shows thé"sand 9%' percentile of relative bias of all parameters
under different mixing proportions and sample si@arditions. The range of relative
bias was smaller when the sample size was laN)er 000). The range of relative
bias was much larger when the mixing proportion mast disparate (i.e., 0.9/0.1)
than when the mixing proportions were 0.5/0.5 arfd003. Intervals capturing the

range of relative bias of, and the random effects variance and covariances we

wider than that of relative bias of the mean stiteestimates and residual variance.

95



Table 11.
5" and 98" Percentile of Relative Bias Under Different MixiRgpportions and

Sample Sizes

0.5/0.5 0.7/0.3 0.9/0.1
N=500 N=1000 N=500 N=1000 N=500 N=1000
5 (-0.024,0.014)  (-0.006, 0.008) (-0.007,0.013) .QeJF, 0.008) (-0.001, 0.018) (-0.001, 0.008)
5 (-0.152, 0.005)  (-0.052,0.005) (-0.112,0.021) .Q7®, 0.013) (-0.181,0.049) (-0.11, 0.017)
Y (-0.022,0.017) (-0.012,0.009) (-0.011,0.014) .Qea, 0.008) (-0.004, 0.026) (-0.004, 0.014)
2 (-0.238,0.024) (-0.145,0.146)  (-0.26,0.019) 8@, 0.015) (-0.347,0.037) (-0.239, 0.026)
7 (-0.022,0.094)  (-0.035,0.04)  (-0.23,-0.069) 4B, -0.086) (-0.356, -0.147)-0.356, -0.121)
P8 (-0.072,0.244) (-0.054,0.061) (-0.081,0.065) .0€00.04)  (-0.056,0.739) (-0.023, 0.046)
P50 (-0.155, 0.053)  (-0.079,0.028) (-0.119, 0.066) .Q7®, 0.007) (-0.223,0.129) (-0.126, 0.077)
o (-0.066, 0.154)  (-0.037,0.047) (-0.067, 0.068) .Q4@, 0.054) (-0.069, 0.819) (-0.043, 0.064)
o (-0.128,0.047) (-0.076,0.035)  (-0.16, 0.061) Q7L 0.038) (-0.225,0.056) (-0.182, 0.052)
o5 (-0.219,0.006) (-0.155,0.132) (-0.118, 0.113) .10, 0.116) (-0.07,0.975)  (-0.04, 0.053)
?5; (-0.274,0.179)  (-0.101,0.042) (-0.351,0.087) .13, 0.075) (-0.621,0.122) (-0.212, 0.053)
& (-0.008, 0.004)  (-0.003,0.004) (-0.006,0.019) .Qe3, 0.022) (-0.006, 0.004) (-0.003, 0.004)

Table 12 and Table 13 display the proprotions 4§ e@th unacceptble
relative bias of parameter estimates separatedfieyeht mixing proportion, SMD

and C, . Proportions larger than 0.30 are bolded in théetdn general, there were

more cells with average relative bias of variarees covariances estiamtes greater
than 0.10 than those with unacceptable relative diaany mean structure estiamtes.
For the mean structure estiamtes, no cells hadceptable relative bias for class-1
parameter estimates. Among the 228 simulation,cEN8 cells had acceptable
relative bias for all parameters estimates (extmypthe mixing proportion). Seventy-
two of them were under sample size of 1000 andf%Bemn had different covariances

across classes. Sixty-five percent of cells wiffedént covariances across classes
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had acceptable relative bias of all parametersoahd31% of cells with different

variances across classes had acceptable relatis@ball parameters.

Table 12
Percentage of Cells with Unacceptable Relative Bsd$arameter Estimates Under

Different Simulation Conditions for Intercept, Séognd Mixing Proportion

" (1) (2) 1) (2)
Conditions Level 0 0 1 1 z

Mixing 0.5 0.00 0.12 0.00 0.22 0.00
Proportion 0.7 0.00 0.05 0.00 0.13 0.84
0.9 0.00 0.11 0.00 0.22 0.99
SMD 0.5 0.00 0.00 0.00 0.00 0.67
1.0 0.00 0.06 0.00 0.11 0.67
15 0.00 0.12 0.00 0.18 0.67
2.0 0.00 0.12 0.00 0.25 0.6
2.5 0.00 0.08 0.00 0.23 052
C, 0.2 0.00 0.14 0.00 019 0.61
0.4 0.00 0.08 0.00 0.18 0.61
0.6 0.00 0.05 0.00 0.22 0.60

Table 13
Percentage of Cells with Unacceptable Relative BsdFarameter Estimates Under

Different Simulation Conditions for Variances andv@riances

Conditions Level (”(%) (Dég) (01(1) (01(12 ) (Déll) (ﬂéi)
Mixing 0.00
Proportion 0.5 0.12 0.08 0.08 0.08 0.25 0.21
0.7 0 0.08 0.00 0.09 0.18 0.3 0.00
0.9 0.05 0.22 0.07 0.3 0.05 047 0.00
SMD 05 042 008 042 017 058 025 0.00

1.0 0.08 0.11 0.08 0.19 0.17 0.31 0.00
15 0.02 0.15 0.03 0.18 0.12 0.43 0.00
20 0.03 0.12 0.02 0.18 0.13 0.33 0.00
25 0.03 0.13 0.00 0.08 0.15 0.25 0.00

0.00
Cq 02 003 019 000 017 011 044

0.4 0.02 0.14 0.04 0.20 0.08 0.35 0.00
0.6 0.15 0.03 0.12 0.08 0.35 0.15 0.00
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4.2.3.2 Results of Effieciency of Parameter Estimates. Based on the results
of factorial ANOVA analysis (see Table 14 and Tab#g, efficiency of parameter
estimates was significantly affected by sample,®s8pecially for the class-1
intercept and slope estimates. Efficiency of tlessil intercept and slope estimates
was also affected by the mixing proportion conditemd the distance of variance-
covariance structure. The conditions of the vamaoovariance structure and the
mean structure had significant effects on the elasdercept and slope estimates but
not the class-1 estimates. Efficiency of estimafate mixing proportion was only

affected by the levels of the mixing proportiorelfs

Table 14
Factorial ANOVA Results on Efficiency of Intercegipe and Mixture Proportion

Estimates

@ () @ (2)
Factors 0 0 1 1 7z

Data Overlap
Vid 8.4% 7.7% 24.0%
Sample Size 21.0% 144% 16.9% 12.1%
Ca 6.2% 9.7%
SMD(C,)

VarCond(C,) 11.5%  92%  12.4%
MeanCond 12.3% 15.5%
VarCondxSMD C,)

MeanCondxVarCond(, ) 6.8%

The efficiency of the variance-covariance estimatas mostly impacted by

the mixing proportion, sample size and SMD. Theingproportion andC, only

affect the efficiency of the class-2 variance aodatiance estimates. Overall data
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overlap had some influence on class-2 variancenagtis but not the covariance

estiamtes. Efficiency of the residual variance wesatly affected byC, and

variance-covariance condition nested witkRi.

Table 15

Factorial ANOVA Results on Efficiency of Variancev&riance Estimates

Factors o 0 o) oL o5 057 2
Data Overlap 6.9% 9.2% 6.4%
T 25.9% 28.1% 24.0% 16.2%
Sample Size 7.4% 6.8% 6.2% 14.2% 10.1% 14.4%
C, 11.9% 11.6% 9.2% 41.8%
SMD(C,) 257% 9.0% 29.7% 10.9% 15.6% 6.4%
VarCond(C, ) 26.3%
MeanCond
VarCondxSMD C,)
MeanCondxVarCond(, )

Similarly to the relative bias of the mixing propon estimates, the efficiency
of z, was only affected by the mixing proportion itsélE shown in Figure 23, as the
mixing proportions of the two classes become maoigalanced, the standard
deviation of estimates becomes larger which mdamegfficiency of the parameter

estimates decreases.
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Figure 23.Efficiency of z, estimation under different mixing proportions.

For intercept and slope estimation, the standavdatien of class-2 estimates
were larger than class-1 estimates as demostratéidure 24. In addition, an
unsurprising result was that the larger sampletsizded to lead to more efficient
estimation of the mean structure parameters. Amatigortant factor that impacted
efficiency of the mean structure estimates was/ét@nce-covariance condtions
nested within different levels dE, . In general, the standard deviation of the class-2
intercept and slope estimates were smaller whear@wes were different across
classes than when variances were different (sagd-Rpb for detailed information).
No significant impact was found for the class-limates. Also, a€, increased, the
efficiency of the class-2 parameter estimates ials@ased. Mean structure
differences also affected the efficiency of thessl2 intercept and slopes. When
intercepts were different in the two classes, ffieiency of the intercept estimates

was lower than when the slopes were different. Wherslopes were different in the
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two classes, the efficiency of the slope estimat@s lower than when the intercepts

were different. Please refer to Figure 26 for detai

0.6
0.5

7 a2\
BT TS\ P
oo | | N

Class 1 Intercept Class 2 Intercept  Class 1 Slope Class 2 Slope

Efficiency

=—N=500 =#—N=1000

Figure 24 Efficiency of intercept and slope estimation

under different sample sizes.

Efficiency

=4&= Cd=0.2, cov_diff=l—Cd=0.2, var_diff= A= Cd=0.4, cov_diff
== (Cd=0.4, var_diff==¢=Cd=0.6, var_diff

Figure 25 Efficiency of intercept and slope estimation undferent variance-

covariance conditions nested witkip.
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Figure 26.Efficiency of intercept and slope estimation

under different mean structure condtions.

Due to the fact that the magnitude of the classA@lom effects variances
changed significantly under different conditiongloé mixture proportion an@, ,

the standard deviations of the variance estimaggs wot comparable. However, the

efficiency of residual variances, which were coaisied to be the same across classes
were on the same scale and comparable. As shoftigume 27, as the level &2,

increased, the standard deviation of residual madastimates increased as well.
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Figure 27.Efficiency of residual variance estimation undefedent C, .
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Table 16 shows thésand 98 percentile of efficiency of the mean structure
parameters, the mixing proportions and residuabwae under different mixing
proportions and sample sizes. The range of thelatdrdeviation of parameter

estimates was smaller at the larger sample siz (sv= 1000).

Table 16

5" and 95" Percentile of Efficiency Under Different Mixingdportions and Sample

Sizes

0.5/0.5 0.7/0.3 0.9/0.1
N=500 N=1000 N=500 N=1000 N=500 N=1000

(1)
o (0.141, 0.367) (0.103, 0.237) (0.107,0.32) (0.07,0.174) (0.073, 0.28{).051, 0.107)

(2)
o (0.169, 0.765) (0.106, 0.461) (0.246, 0.798) (0.151, 0.567) (0.428, 1.094) (0.313, 0.827)

1)

1 (0.061, 0.157) (0.046, 0.109) (0.043, 0.141) (0.03,0.079) (0.03,0.148) (0.02, 0.113)
(2)

Pi” (0.08,0.362) (0.047,0.291)(0.11, 0.434) (0.068, 0.307)(0.186, 0.59) (0.148, 0.414)

7 (0.057,0.19) (0.04,0.133) (0.14,0.262) (0.1423D (0.266, 0.384)(0.262, 0.403)
& (0.036, 0.133) (0.024, 0.086) (0.036, 0.096) (0.024, 0.064) (0.035, 0.067) (0.024, 0.047)

4.2.3.3 Results of Precision of Standard Error Estimates. Compared to
relative bias and efficiency of parameter estimgtescision of the standard error
estimates was not as affected by the factors efest in the current study. Table 17
and Table 18 summarize the factorial ANOVA resalirecisions of standard error
estimates. The effect sizes associated with tleetsfiof factors on precision were

only deemed of medium magnitude. Mean structurauice® (SMD) nested within

variance-covariance structure distan€g X had some effect op{?, g, and the
variance-covariance structure condition nestediwi@), affected the efficiency of

(2. There was a significant interaction effect of #agiance-covariance structure
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condition and the mean structure distance (SMDjedesithinC, on g%, A® and

(2)
L

Table 17

Factorial ANOVA Results on Precisions of Interc&pe Standard Error Estimates

(1) () @ )
Factors 0 0 1 1

Data Overlap
V4
Sample Size
Cd
SMD(C,) 7.0% 9.9%
VarCond(C,) 8.4%
MeanCond
VarCondxSMD C,) 6.2% 9.4% 7.8%

MeanCondxVarCond@, )

For the standard error estimates for the variane@tance parameters, only
precision of the class-1 variances was affectethbynixing proportion and mean
structure distance nested with@) , while precision of the class-1 covariance was
affected by the interaction effect of the variacosariance structure condition and
the mean structure distance. No significant effaese found on precision of the
class-2 variances and covariance standard eriionass or residual variance

estimates.
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Table 18
Factorial ANOVA Results on Precisions of Varianaa+s&riance Standard Error

Estimates

()] (2) (1) (2) 1) (2)
Factors Poo Poo (2% Z% Do1 Do1 &

Data Overlap
V/d 11.8% 6.3%
Sample Size
Ca
SMD(C,) 13.2% 13.9%
VarCond(C,)
MeanCond
VarCondxSMD C,) 6.8%
MeanCondxVarCond
(C)

The precision of the standard error estimates, vet@se to one indcated, that
the standard errors estimated by the proposed mneflietted the variation in the

population. Table 19 through Table 21 shdhabid 9%' percentile of precision under

different SMD, C, levels, mixing proportions, and sample sizes. A in Table

21, the precision of standard error estiamtes w#eb(closer to 1) when sample

sizes were large. Table 19 and Table 20 suggest¢ds$ SMD andC, increased,

precision tended toward 1. Even though severabfadtad significant effects on
precision of the standard errors, the effect siee® only moderate and no
reasonable pattern were found when examining th&ore between these factors and
precision. Different parameters did not have thraes&evel of precision on standard
error estimates, however. Among all 228 simulatelts, only 60 of them had

intercept and slope precision between 0.9 andAniang these cells with better
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standard error precision, thirty cells belong te thedium high to high mean structure
separation category, i.e., with SMD of 2 and Ed&. SMD of 2.5. Half of these 60
cells had sample size of 1000 and the other halfshaaple size of 500. Most of these

cells with high precisionhad either high level ®fiS or larger sample size or both.

However, the distribution o€, was not different among these cells.

Table 19

Precision of Standard Error Estimates Under Diffgr&MD andC, for Intercept

and Slope

swo Cq ¥ 5 L 1

05 0.6 (0.795, 1.210) (0.627, 1.081) (0.899, 1)731 (0.334, 1.218)

1 0.4 (0.525, 1.402) (0.644, 1.132) (0.446, 1.243) (0.588, 1.373)
0.6 (0.954, 1.215) (0.691, 1.226) (0.964,1.168) .630, 1.168)

15 0.2 (0.592, 1.417) (0.648, 1.492) (0.487, 1.38) (0.612, 1.655)
0.4 (0.855, 1.168) (0.764, 1.931) (0.683,1.327) .74@, 1.352)
0.6 (0.903, 1.334) (0.766, 1.183) (0.869, 1.223) .74@, 1.118)

2 0.2 (0.831, 1.282) (0.876, 1.196) (0.718, 1.411) (0.744, 1.212)
0.4 (0.91, 1.370) (0.800, 1.207) (0.906, 1.592) 780, 1.245)
0.6 (0.884, 1.189) (0.869, 1.135) (0.928,1.174) .70, 1.157)

25 0.2 (0.922, 1.183) (0.793, 1.238) (0.866, 1)216 (0.778, 1.288)
0.4 (0.949, 1.291) (0.891, 1.284) (0.888,1.231) .866, 1.295)
0.6 (0.850, 1.214) (0.846, 1.267) (0.947,1.163) .810, 1.252)
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Table 20

Precision of Standard Error Estimates Under Difigr&MD andC, for Variances

and Covariances

()] (2) 1) (2) 1) (2)
SMD Cd Poo Poo (2%} P11 Do1 Do1 &

05 06  (0.271, 1.823)(0.652, 1.305) (0.251, 1.246) (0.668, 1.244) (0.675, 1.392) (0.66, 1.358) (0.875, 1.232)

1 0.4 (0576, 1.17) (0.849, 1.417]0.476, 1.18) (0.774, 1.248)0.794, 1.317) (0.745, 1.309) (0.871, 1.213)
0.6  (0.377,1.381)(0.881, 1.191) (0.415, 1.383) (0.821, 1.214) (0.931, 1.26) (0.681, 1.247)0.938, 1.129)

15 02  (0.773, 1.666)(0.827, 1.511) (0.739, 1.245) (0.789, 1.551) (0.812, 1.179) (0.767, 1.521) (0.880, 1.098)
0.4  (0.627,1.192)(0.857, 1.948) (0.787, 1.168) (0.849, 1.192) (0.794, 1.181) (0.816, 1.301) (0.940, 1.096)
0.6  (0.949, 1.166)(0.859, 1.197) (0.869, 1.246) (0.745, 1.134) (0.954, 1.134) (0.845, 1.151) (0.867, 1.075)

2 0.2  (0.831,1.159) (0.876, 1.31) (0.823, 1.196)0.809, 1.304) (0.819, 1.187) (0.86, 1.262) (0.956, 1.130)
0.4  (0.934,1.259) (0.81, 1.263) (0.920, 1.326)0.789, 1.273) (0.973, 1.467) (0.875, 1.231) (0.925, 1.073)
0.6  (0.83,1.227) (0.899, 1.23200.904, 1.157) (0.772, 1.182) (0.951, 1.206) (0.755, 1.137) (0.883, 1.126)

25 02  (0.895, 1.154)(0.836, 1.13) (0.917, 1.151)0.821, 1.148) (0.916, 1.147) (0.848, 1.148) (0.929, 1.113)
0.4  (0.898, 1.268)(0.898, 1.326) (0.900, 1.332) (0.858, 1.301) (0.925,1.13) (0.933, 1.433)0.868, 1.139)
0.6  (0.946, 1.315)(0.854, 1.136) (0.912, 1.291) (0.836, 1.325) (0.95, 1.133) (0.917, 1.215)0.886, 1.117)
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Table 21.
Precision of Standard Error Estimates Under Difigr&lixing Proportions and

Sample Sizes

0.5/0.5 0.7/0.3 0.9/0.1
N=500 N=1000 N=500 N=1000 N=500 N=1000
5 (0.815, 1.273) (0.91, 1.370) (0.592, 1.447)0.832, 1.273)(0.525, 1.245)(0.762, 1.291)
5)  (0.627, 1.267) (0.78, 1.296) (0.751, 1.275)0.78, 1.449) (0.644, 1.78) (0.672, 1.192)
Y (0.647, 1.411)(0.863, 1.452)(0.718, 1.195)(0.899, 1.319) (0.487, 1.731)(0.368, 1.426)
* (0.631, 1.321)(0.713, 1.556) (0.543, 1.285)(0.628, 1.488)(0.599, 1.548)(0.612, 1.288)

)
Poo (0.851, 1.602)(0.928, 1.823)(0.773, 1.315)(0.866, 1.202)(0.396, 1.229)(0.276, 1.183)

(2)
Poo (0.754, 1.31) (0.881, 1.305(0.894, 1.195)(0.846, 1.345)(0.755, 4.963) (0.849, 1.104)

(2)
?1 (0.778, 1.326) (0.88, 1.332) (0.645, 1.2030.92, 1.308) (0.419, 1.185)(0.28, 1.19)

(2)
Pu1 (0.78, 1.275) (0.886, 1.426{0.772, 1.325)(0.783, 1.184)(0.718, 1.551)(0.821, 1.201)

(2)
Po1  (0.839, 1.218)(0.976, 1.392)(0.819, 1.233)(0.934, 1.187)(0.794, 1.661) (0.764, 1.212)

(2)
P01’ (0.681, 1.215)(0.865, 1.358)(0.745, 1.284)(0.849, 1.521) (0.767, 1.73) (0.831, 1.218)

& (0.867, 1.183)(0.931, 1.129)(0.875, 1.213)(0.928, 1.117) (0.88, 1.118) (0.893, 1.158)

4.2.4 Classification Resultsln this section, classification results of the GMM
are provided. Two types of statistics will be apglio evaluate classification quality:
entropy and classification accuracy. First, a faatANOVA model with nested
design will be used to estimate the effect of défe simulation factors on entropy
and classification accuracy. Then results of thesestatistics will be discussed in
details, separately.

Table 22 shows how much of the variance of entanpy classification
accuracy can be explained by each factor. Diffexenthe mixing proportions
explains the majority of the variance (60.9%) @ #ntropy while mean structure

differences nested within variance-covariance stingcdifferences explaining the
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largest proportion (59.9%) of the variance of dfasation accuracy. No interactions

among the factors were found from the ANOVA analysi

Table 22

Proportion of Variance Explained in Entropy and €d#ication Accuracy

Factors Entropy Classification Accuracy
Mixing Proportion 60.9% 23.9%
Cd
SMD(Cy) 25.4% 59.9%
N

Mean Condition
Variance-Covariance Condition

4.2.4.1Entropy. As an indicator of classification quality in mixe models,
entropy is regularly used to evaluate the uncestamclassifying subjects. Entropy,
as defined in Chapter 3, values close to 1 sugmatct classification and values
around 0.8 are usually considered acceptable (Muthél., 2002). Across all
simulation conditions, entropy values ranged fr@2v.to .791. As suggested by the
factorial ANOVA results presented in Table 22, thiging proportion condition had
a significant effect on entropy. Data with largédfedences in class proportion

resulted in higher entropy values. Unsurprisingtiien subpopulations of data were
more separated (larger SMD af@y), the entropy values were higher as well (as
shown in Figure 28 and 29). However, even for oglth the most optimistic
condition combinations, the entropy values werelyaacceptable. Data with larger
sample size resulted in smaller entropy acrossiallilation conditions. Based on

results from this simulation, the benchmark off@:8entropy seems not realistic for
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the proposed models. Entropy values larger thanveré comparatively high for
GMM models in current conditions. Detailed entrapiprmation for different

simulation conditions are listed in Table 23.

110



Table 23

Entropy under Different Simulation Conditions

Entropy

T SMD C N=500 N=1000
0.5 0.5 0.6 0.296 0.227
1 0.4 0.353 0.277
1 0.6 0.340 0.291
1.5 0.2 0.435 0.369
1.5 0.4 0.418 0.368
1.5 0.6 0.421 0.384
2 0.2 0.503 0.463
2 0.4 0.500 0.469
2 0.6 0.521 0.503
2.5 0.2 0.588 0.565
2.5 0.4 0.596 0.576
2.5 0.6 0.602 0.589
0.5 0.6 0.345 0.330
1 0.4 0.422 0.358
1 0.6 0.421 0.384
1.5 0.2 0.512 0.427
1.5 0.4 0.477 0.434
1.5 0.6 0.489 0.450
2 0.2 0.531 0.504
2 0.4 0.544 0.513
2 0.6 0.567 0.528
2.5 0.2 0.603 0.577
2.5 0.4 0.618 0.598
2.5 0.6 0.627 0.609
0.9 0.5 0.6 0.681 0.685
1 0.4 0.645 0.633
1 0.6 0.701 0.696
1.5 0.2 0.662 0.655
1.5 0.4 0.675 0.671
1.5 0.6 0.727 0.729
2 0.2 0.705 0.707
2 0.4 0.712 0.716
2 0.6 0.779 0.759
2.5 0.2 0.747 0.744
2.5 0.4 0.749 0.745
2.5 0.6 0.791 0.785
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Figure 28.Entropy values under different SMD.
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Figure 29.Entropy values under differeft .

4.2.4.2 Classification Accuracy. Classification accuracy was defined in

Chapter 3 as the percentage of correct assignnieaobgects to the latent classes they
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arose from. Across all simulation conditions, tleegentage of correct assignment of
class membership ranged from 0.625 to 0.875. Theage classification accuracy
was 0.742. Details about classification accuracylmfound in Table 24. As
demonstrated in Figure 30, as SMD increased, fieasson accuracy tended to be

higher across all other simulation conditions. Resalso suggested that higher levels

of C, would also help improve correct assignment ofsctagmbership but the

improvement was not as dramatic as the improvesuged by increased levels of
SMD. Unlike entropy values, unbalanced sample a&zess subpopulations did not
lead to better classification accuracy. In genelaksification accuracy from data
with mixing proportions of 0.9/0.1 and 0.7/0.3 wawer than those from 0.5/0.5,

especially when SMD becomes larger. As shown imfei0 and Figure 31,
increment of classification accuracy as increas€ pfvas not as obvious as
increment with SMD. Increasing the sample size &6 to 1000 only improved
classification accuracy slightly (0.739 for samgize 500 vs. 0.746 for sample size
1000). No significant sample size effect was founthe ANOVA analysis (see

Section 4.2.4.1).
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Table 24

Classification Accuracy across Different Simulatf@anditions

Classification Accuracy

7 SMD o N=500 N=1000
0.5 0.5 0.6 0.701 0.720
1 0.4 0.771 0.786
1 0.6 0.836 0.847
15 0.2 0.672 0.689
15 0.4 0.742 0.757
15 0.6 0.810 0.819
2 0.2 0.648 0.637
2 0.4 0.687 0.677
2 0.6 0.736 0.729
2.5 0.2 0.673 0.696
2.5 0.4 0.739 0.751
2.5 0.6 0.802 0.810
0.5 0.6 0.855 0.861
1 0.4 0.650 0.662
1 0.6 0.706 0.714
15 0.2 0.768 0.773
15 0.4 0.823 0.828
1.5 0.6 0.630 0.625
2 0.2 0.662 0.651
2 0.4 0.702 0.684
2 0.6 0.730 0.727
2.5 0.2 0.665 0.694
2.5 0.4 0.720 0.734
2.5 0.6 0.771 0.782
0.9 0.5 0.6 0.833 0.835
1 0.4 0.871 0.875
1 0.6 0.673 0.676
15 0.2 0.702 0.708
15 0.4 0.744 0.755
15 0.6 0.791 0.800
2 0.2 0.837 0.844
2 0.4 0.652 0.689
2 0.6 0.704 0.714
2.5 0.2 0.731 0.735
2.5 0.4 0.759 0.762
2.5 0.6 0.792 0.796
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Figure 30.Classification accuracy under different level$S8D and mixing
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4.3 Simulation Study-2 Results

The purpose of the second simulation was to ingatithe impact of residual
variance on GMM estimation. The target simulationditions were those that were
not included in the first simulation study due aoge overlap between data. The
residual variances of these cells had been modifieckamine whether class specific
residual variances would enlarge the separatiaate#f and improve convergence
rates. Residual variance of the first class wagydaged to remain the same as in the
first simulation while the residual variance of $exond class was doubled. After
adding differences in residual variances, the divdeda overlap have been reduced
significantly. The average overlap of data generftem these simulation conditions
in the first simulation was 0.77. After residuatiaaces were manipulated to be
different across subpopulations, the average daddap became 0.36. Please refer to
Appendix B for parameters used in the second sitoalatudy. The mean structure
conditions for this simulation are 0.5 and 1 whiictlicate very small separation in
mean structure across classes. The levels of waiaovariance distance include 0.2
and 0.4 as small to medium level of separationcé&the impact of mean structure
condition had been evaluated in the first simufagtudy, this part of simulation will
focus on the mean difference on intercept and kieegame slope across classes. In
addition, the sample size for this simulation wiaed to be 500 since the first

simulation had examined the effect of sample size.

4.3.1 Convergence and Local Maximalrhe convergence rates for 1-class
analysis were 100% for all 24 simulation cells. &oo-class GMM analysis (true

model in the current study), the convergence raftéise 24 simulation cells were all
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within 98% to 100% except for the four cells witl.1 mixing proportions as well
as covariance differences in the two classes. Apprately 17% to 21% of the data
in these four cells did not converge. No cases patbsible local maxima were found
for either 1-class or 2-class analysis.

Similar to the results in the first simulation, tt@nvergence rates for 3-class
analysis were extremely low with only a handfutofhverged cases across all 24
simulation cells. Furthermore, about 33% to 60%hefcases under these simulation

conditions encountered local maxima problems.

4.3.2 Identification of Latent ClassesSimilar to the results of first
simulation study, BIC had the best performanceeitecting correct number of
classes. Decisions based on LMR were more liketywtr-extract the number of
latent classes. No significant relation was fouatileen correct class enumeration
rates and other simulation factors. Table 25 tisésclass enumeration information of
all three model fit indices. Since the overall dawarlap of this simulation was on
average higher than the first simulation, the cdrneodel enumeration rates were
higher for both ABIC and BIC. The over-extracti@te for ABIC dropped from 0.45
to 0.086 in the second simulation. The frequencymafer-enumeration using BIC

also dropped. No big difference was found for enatien results from LMR.

Table 25

Identification of Latent Classes Using ABIC, BIGIdrMR

Correct ldentification Over ExtracUnder Extract

ABIC 0.914 0.086 0.000
BIC 1.000 0.000 0.000
LMR 0.574 0.426 0.000
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4.3.3. Parameter RecoveryDue to the simplicity of the design for this
simulation, fewer factors will be evaluated on theffect on parameter recovery.
ANOVA analysis results have shown only a couplsighificant effects of any of the
factors on relative bias, efficiency and precisadiparameters based on the criteria
used in the first simulation study. Therefore, ggstion will not discuss ANOVA
results but present the results of parameter regoneyeneral.

In the second simulation, even though the distabhebseen mean structures
of the two classes were really small (0.5 and 1) the separation of random effect
variance-covariance structures was not large, ifferehce between residual
variances between the two classes significantlyced the overall data overlap. As a
result, the relative bias of parameter estimatesedgsed accordingly. Out of 24
simulation cells, relative bias of all parameteireates (except for mixing proportion
estimates) from 16 of them were smaller than OelafR/e bias larger than 0.1 only
occurred for variance and covariance estimatescedpefor those of the second
class. In the first simulation, the relative biasresidual variances was small and not
affected by any simulation conditions. In the seteimulation, the relative bias for
residual variances was larger when mixing propogiowas more unbalanced
especially for class-2 residual variance. PleaseTsble 26 for the'Sand 95’

percentile of relative bias of parameter estimates.
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Table 26

5" and 98" Percentile of Relative Bias under Different Lexa$lixing Proportions

0.5/0.5 07/.3 0.9/0.1
5 (-0.004, 0.003) (-0.003, 0.002) (0.000, 0.002)
5 (-0.019, 0.002) (-0.006, 0.002) (-0.013, 0.012)
) (-0.003, 0.004) (-0.002, 0.002) (-0.002, 0.002)
A (-0.004, 0.003) (-0.004, 0.005) (-0.006, 0.011)
7, (-0.017, 0.006) (-0.342, -0.125) (-0.401, -0.216)
o8 (-0.019, 0.03) (-0.019, 0.035) (-0.034, 0.009)
o5y (-0.086, 0.014) (-0.047, 0.024) (-0.065, 0.244)
o (-0.039, 0.021) (-0.023, 0.017) (-0.013, 0.011)
o7 (-0.055, 0.008) (-0.053, 0.023) (-0.103, 0.113)
s (-0.117, 0.111) (-0.042, 0.102) (-0.076, 0.049)
Z (-0.094, 0.077) (-0.099, 0.072) (-0.078, 0.27)
g® (-0.004, 0.012) (-0.007, 0.006) (-0.012, -0.002)

@

(-0.003, 0.007)

(-0.012, 0.008)

(-0.041, 0.005)

The efficiency of parameter estimates at differamting proportions are

listed in Table 27. Similar to the first simulatidhe standard deviation of parameter
estimates were higher for class-2 parameter estBithin class-1 estimates. Since

the variances parameters of the second class waehk larger than the first class, the
standard deviations of parameter estimates wereamparable and thus not listed in

the table.
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Table 27

5" and 99" Percentile of Standard Deviation of Parameter sties under Different

Levels of Mixing Proportions

0.5/0.5 07/.3 0.9/0.1
5 (0.093, 0.129) (0.070, 0.088) (0.059, 0.074)
50 (0.123, 0.216) (0.151, 0.268) (0.257, 0.508)
) (0.036, 0.052) (0.029, 0.041) (0.025, 0.03)
A (0.05, 0.091) (0.057, 0.101) (0.107, 0.215)
ﬂl (0.028, 0.042) (0.164, 0.196) (0.341, 0.396)

The precision of standard error estimates werebfit all parameters in the
second simulation with class specific residualaaces. The ranges of precision were
narrower and the values were closer to 1. The gi@tbf standard error was more
stable across all simulation conditions than ttahe first simulation. Table 28
presents the"5and 98 percentile of precision of standard error estimateder

different mixing proportion conditions.

120



Table 28

5" and 99" Percentile of Precision of Standard Error Estinsatader Different

Levels of Mixing Proportions

0.5/0.5 07/.3 0.9/0.1
5 (0.856, 1.232) (0.977, 1.221) (0.909, 1.129)
50 (0.91, 1.146) (0.959, 1.474) (0.952, 1.217)
) (0.928, 1.166) (0.919, 1.15) (0.919, 1.169)
2 (0.938, 1.052) (0.932, 1.194) (0.957, 1.12)
P50 (0.944, 1.093) (0.926, 1.124) (0.91, 1.236)
P50 (0.956, 1.167) (0.981, 1.168) (0.993, 1.266)
o (0.952, 1.215) (0.89, 1.084) (0.97, 1.173)
oL (0.952, 1.133) (0.946, 1.174) (0.894, 1.161)
o5 (0.924, 1.112) (0.946, 1.152) (0.901, 1.161)
057 (0.921, 1.22) (0.886, 1.194) (0.962, 1.29)
&M (0.962, 1.183) (0.995, 1.135) (0.899, 1.197)

e?

(0.898, 1.147)

(0.936, 1.221)

(0.991, 1.156)

4.3.4 Classification ResultsThis section presents the classification results o
the second simulation. The average entropy valuthfe simulation across all
conditions was 0.660. The range of entropy was @ds25 to 0.827. ANOVA
indicated that the mixing proportion was the ordgtor that significantly affected the
entropy values by explaining about 96.6% of theatem. As shown in Table 29,
entropy values were higher when one class has taogér sample size than the other

class.
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Table 29

Entropy under Different Mixing Proportions

& Entropy
0.5 0.560
0.7 0.621
0.9 0.799

Across all simulation conditions, the percentafjecorect assignment of
class membership ranged from 0.760 to 0.879 withvamage classification accuracy
of 0.834. As suggested by factorial ANOVA resulis€ Table 30), two factors that
impacted the accuracy of class membership assignwege the mixing proportions
and distances of mean structure between classealdabout classification accuracy

can be found in Table 30.

Table 30

Proportion of Variance Explained in Entropy and €d#ication Accuracy

Factors Entropy Classification Accuracy
Mixing Proportion 96.6% 71.31%
Cd
SMD(Cy) 13.95%

Variance-Covariance Condition
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Table 31.

Classification Accuracy across Different Simulatf©anditions

7 SMD Classification Accuracy
0.5 0.5 0.850
1 0.866
0.7 0.5 0.845
1 0.856
0.9 0.5 0.768
1 0.817
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Chapter 5 Discussion

Despite of the fast development of growth mixturedel in the past twenty
years, the influence of variance-covariance streston growth mixture analysis
have not been examined systematically. The focusioént study was the
performance of growth mixture models with not odlgss-specific mean growth
trajectories but also class-specific variance-cevae structures. The aim of this
dissertation was to investigate how different ctinds of variance-covariance of
random effects and residuals affect the estimaifdd@MM with or without
interaction with other factors like mean structaomditions, mixing proportion and
sample size. Two simulation studies were conduitexvaluate the impact of random
effects variance-covariance (between-subject vangand residual variance (within-
subject variation) separately. In both simulatidghs, performance of the linear
growth mixture model under a variety of simulatemmnditions was assessed in terms
of the model enumeration, membership classificaai®mell as parameter recovery.
In this chapter, major findings from the two sintidas will be outlined and
discussed, recommendations for researchers antitioraers will be addressed and
limitations of current study as well as suggestifmmguture research will be

presented.
5.1 Summary of Findings

5.1.1 Convergence Rates and Local Maxim&s shown in both of the
simulation studies, convergence rates and the lpbgsof local maxima in GMM
estimation were closely related to global overlapaeen subpopulation data

distribution which is determined by mean structeparation (SMD) and variance-
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covariance structure separatidd,(). Data with more unbalanced subpopulation

sample sizes were more likely to encounter estonatproblems like non-positive
variance estimates and local maxima. The poss#agon was that not enough
information were given from the smaller size clasie® the model to extract two
classes from the population. Previous studies (Nylésparouhov & Muthén, 2007
& Tofighi & Enders, 2008) suggested that over-esticn or in other word over-
parameterization often causes model non-convergdiee3-class GMM estimation
encountered much more non-convergence and locahmassolutions than the 2-class
or 1-class estimation. Increasing sample size aia separation definitely reduced
the chance of these estimation problems. It isse&si the model to detect two
classes when the subpopulations are further apdrtreere are enough data to

provide information for each of the class.

5.1.2 Model Enumeration.The results of current simulation studies
suggested that BIC again had the highest ratesrafat model enumeration (0.876)
compared to ABIC (0.536) and LMR (0.532). ABIC dridR often over-extracted
the number of latent classes while BIC sometimdsdemodel under-enumeration.

The ABIC’s adjustment on sample sizes seemed riotheumodels in current study.

Increasing the sample size and class separatiod (&M/orC, ) help lower the rates

of under-enumerating using BIC and over-enumeraisigg ABIC.

5.1.3 Parameter RecoveryThe relative bias values of most parameters in
GMM of current study were acceptable for data gateer from conditions of more
than half of the cells in the two simulations sagliln general mean structure
parameters, i.e. intercept and slope estimatessinadler relative bias than variance
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covariance estimates. Mixing proportion had thgdat relative bias among all
parameters. The first simulation results suggetstatirelative bias of mean structure
parameters were affected mainly by variance-comaéatructure condition, mean
structure conditions as well as the their intemactMWhen the focus of variance-
covariance difference between subpopulations wawariances, the relative bias of
both class-1 and class-2 intercept and slope weadl.sWhen variances of two
subpopulations are different, however, the relahiies of class-2 intercept and slope
were much larger than class-1 intercept and slbpe.relative bias of variance-
covariance parameters, on the other hand, wereteffédy the level of mean
structure difference in two subpopulations, meamcstire conditions as well as the
interaction between mean structure condition awuel lef variance-covariance
structure separation. The impact of variance-cavee condition on variances
estimates of random effects is similar to that @amstructure estimates. The only
factor that explained the variation of relativesad mixing proportion was the
mixing proportion itself. Larger differences in gapulation sample sizes led to
larger relative bias of mixing proportion estimates

The first simulation results showed that sample significantly affected the
efficiency of most parameter estimates. Larger darsige would reduce the standard
deviation of estimates significantly. Mean struetaondition and variance-
covariance condition also affect class-2 intereemt slope estimates but not class-1
estimates. In general, estimates of class-2 inpeened slope had lower efficiency but
the efficiency improved when covariances insteadapiances were different in

subpopulations. The larger the difference betwedpaspulation sample sizes, the
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larger the variation of mixing proportion estimatBesidual variance estimates had
higher efficiency when variance-covariance strugswf random effect in two
subpopulations were less separated.

The precision of standard error for mean structsteanates was not affected
by the simulation factors as much as the relatiae bnd efficiency. Only standard
error of class-1 variances of intercept and slopesvinfluenced by mixing proportion
and level of mean structure separation betweencpubations. Overall, the precision
of standard error estimates was not satisfactarynfost simulation conditions. Only
less than one third of the simulation cells haceptable intercept and slope standard
error precision. The level of mean structure sdpargplayed important role in
precision. Conditions with medium high to high SMDbDlarge sample size were

easier to obtain more precise standard error essnblo significant impact ot

was found on precision of any parameter.

The second simulation study did not find any spesiimulation factor with
significant and systematic impact on any paranretewvery criteria. The relative
bias of parameters and precision of standard ewers in general, acceptable. Class-
specific residual variances reduced the overall daerlap significantly, which led to

better model estimation results.

5.1.4 Classification ResultsResults of entropy and classification rates were
similar for the two simulations. Mixing proporti@xplained the majority of the
variation of entropy and classification accuracsoas different simulation
conditions. The levels of mean structure separatiawo subpopulations affected

entropy and classification accuracy in the firstgiation but only classification
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accuracy in the second simulation. Entropy valuesevinigher but classification
accuracy was lower when mixing proportions wereangrbalanced. Both statistics

increased when SMD was higher.

5.2 Discussion

As expected prior to conducting the current stuypgerformance of the
proposed model was better when the overlap of ¢éinemgted data is smaller, i.e., the
distributions of the subpopulations were more satear The possibility of non-
convergence which mostly was caused by non-posmaviance estimates and local
maxima was lower when data were less overlappeel oVbrall data overlap is a
result of class specific mean structures and veearvariance structures but neither
convergence rates nor local maxima were affectedt®re the differences of mean
structure or variance-covariance structure weneak also as expected that
increasing sample size reduced model estimatidiculiies especially the
occurrences of local maxima. The results suggdksegdhe most likely explanation
for non-convergence problem may be over-extraatigmarameters in GMMs. When
the data overlapped too much, it was more diffituiextract two sets of mean and
variance-covariance parameters for the subpopuakatio sum, the smoothness of the
estimation of proposed model was more dependentverall data separation and
sample size which are two key factors for the meal@hathematically build two
classes based on the data, and less related tthieatata were separated.

The impact of variance-covariance structures oarpater recovery was one
of the major purposes of current study. The resuitggested that not only the

magnitude of how different the variance-covariastractures in two subpopulations
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affect the accuracy of parameter estimates butvalheye the difference was located,
i.e., variances differences or covariance diffeesndhe average generated data
overlap for cells with variances different acrogb@opulations was similar to those
with covariances different across populations (#870.35). However, the relative
bias of class-2 parameter estimates from “variaddésrent” conditions were larger
than those from “covariances different” conditiombe reason of this scenario may
that the large variation of parameter of the seadasls undermines the estimation
accuracy.

The most difficult parameter to estimate for thegwsed model was the
proportion of sample size of each subpopulations parameter had the largest
relative bias and big variation among iteratiorngeegally when sample sizes were
quite different between two subpopulations. A polesexplanation may be that the
model may have more misclassification of subje€dass 1 to class 2 when class 2
has really small sample size, which in turn affeélcesestimation of mixing
proportion. The random effects variance-covariastogctures also had larger relative
bias. The model slightly overestimated the firsisslintercept and slope variances but
underestimated the second class variances. Thent@wimulation design set the
second class variances to be larger than thecfass but the second class mean
structure to be smaller than the first class. Appty the model tended to magnify
the differences on mean structures between twocpusations but shrink the
differences on variance-covariance structures.

Residual variances estimates were in general nom@ate than the random

effects variances and covariances. The currentlation also found many fewer
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cases with negative residual variance estimatesriba-positive definite variances of
random effects. In both simulation studies, thédted variance has smaller relative
bias and higher precision of standard errbrshe second simulation, two
subpopulations were assigned different residuahmees, which resulted in less
overlap between subpopulation data. Even with gergll mean structure and
random effects variance-covariance structure daiffees, the convergence rates and
parameter recovery have been largely improved.rélagive bias of residual

variances did not increase very much in the sesandlation.

5.3 Recommendations

The current study extends the traditional focugrofvth trajectories
difference on GMM to variances and covariances ansubpopulations. The results
demonstrated that even when the mean growth tosjestare not much different
between two subpopulations; it is still possibleliscover latent classes among
subjects based on differences on variance-covarisinactures of subpopulations.

Data convergence and local maximum can be chahlgrigr GMM
estimation when data of two subpopulations areot@ylapped especially when one
subpopulation has much smaller sample size. ihgortant for practitioners and
researchers to visually explore the data first@ntéin some ideas about whether data
overlap is small enough for GMM to detect two sytdations. Not only the average
growth trajectories of two subpopulations but dlsgir variance and covariances
should be evaluated. Not many methods for explomadi GMM data are available in
literature. Researchers and scholars who are steztén GMM may extent the

methods used for regression diagnostic analysidaid up a complete tool for
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growth mixture data examination. The reason of comvergence can be small
sample size or large overlap. Current simulaticults suggest that for sample size as
small as 250, even data with medium level of sdjparaften cannot converge.

The estimation of GMM with class specific randorfeefs variance-
covariance structures and residual variances pes\adway to study subpopulation
growth differences more thoroughly. The relativasbof intercept and slope
parameters as well as residual variances was iergeacceptable. However,
researchers should be cautious about estimatesddm effects variances and
covariances especially when one class has realyl sample size. If one class has
really large variances of intercept or slope, tlaes lof its intercept or slope should
also be larger. In this situation, the estimateg<€ldifferences in growth trajectory
might be larger population differences while theamces of growth trajectory may
be underestimated. Sample size of 500 seems lamyghk to provide valid estimates.
If data can be properly converged, increasing sarsigke does not seem to improve
estimation accuracy.

Researchers may need to pay extra attention wiggnitsh to assign subjects
to different classes based on the model estim@tesentropy values were not very
satisfying when the two classes were not well spdrespecially when mixing
proportion was 0.5/0.5. The classification accuraa@iso moderate. When mixing
proportion is 0.7/0.3 or 0.9/0.1, the model hadtdm&lency to assign more subjects to
the smaller size class than the true sample siath étropy values and classification
accuracy were not affected by variance-covariatreetsire differences very much

but significantly influenced by the differencesméan growth trajectories. Therefore,
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when two latent classes do not vary much in terfmeesman growth trajectory, making
inferences about subjects being in a particulankatlass is not recommended. The
current study used posterior probability to assigbjects to different latent classes.
Researchers can explore other possible methoasdorbership assignment to see if

they can improve classification accuracy.

5.4 Limitations of Current Study and Implications for Future Studies

The current study explored different variance-c@rare structures on GMM
which have not been studied systematically in pnevistudies. The research design
intended to discover how these variance-covariatrcetures might affect the
estimation of GMM models. Due to the lack of liten@ in qualifying the differences
among variance matrices in two subpopulationsgtimeent study modified Maitra
and Melnykov (2010)’s index to generate a new indexmeasuring distance

between variance matriceS, . The calculation of this index, taking into accbah

mixing proportions, may confound the mixing prapamr factor in analyzing the
simulation results.

Differences in variance-covariance structures Gay in a number of ways
that may affect the estimation of model distindgv@ here are a limited number of
simulation conditions that can be accommodatetercurrent study within certain
amount of time and only two possible patterns &edences have been examined in
the simulation. The results suggested whetherréifiees were on variances or
covariance indeed led to different parameter estomaccuracy. Future studies can
expand the scope on variance-covariance differesmeg®valuate their impact on

GMM estimation.
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Another limitation of this research is that the GMiMbdel applied in the
simulations was simplified to include only timemgdictor and no covariates were
incorporated. Previous study of Lubke and Muthd®{2 suggested that inclusion of
covariates in a growth mixture model may help redine possibility of non-

convergence and improve classification accuracy.

133



Appendix A

Data Generation Parameters for Simulation 1

ClasgClassg|
Class1| Class?2 Class ] Class2 1 2
mix Mean |Variance i- | s | i s- | is- | Is- C Resid; Data
proportion|Condition|Condition| i | s i s |var|var | var | var | cov| cov |SMD| ~d | var |Overlap|
0.5 i_diff |var diff] 5| 2| 072 2 1] 0.255.1 1275 0.2| 02| 25 0.6] 3.7 0.27
05 s _diff | var difff 5| 2 5] -0.141 |0.25 51 [12750.2| 02| 25 0.6 37 0.27
0.5 i_diff |var diff] 5| 2| 141 2 1] 0.255.1[127902]| 02| 2| 06| 3.7 0.33
0.5 s _diff | var difff 5| 2 5| 0281|025 51[127902]| 02| 2| 06| 37 0.30
0.5 i_diff | var diff| 5| 2| 243 2 1) 0.255.1 [12750.2| 02| 1.5/ 0.6 3.7 0.43
0.5 s _diff | var difff 5| 2 5| 0711|025 51[12750.2| 02| 1.5/ 0.6 3.7 0.4d
0.5 i_diff | var diff| 5| 2| 3.28 2 1] 0.255.1|12790.2]| 02| 1| 06| 3.7 0.52
0.5 s _diff | var difff 5| 2 5| 1141 |025 51|127902]| 02| 1| 06| 3.7 050
0.5 i_diff | var diff| 5| 2| 414 2 1] 0.255.1 1275 0.2| 0.2| 05 0.6 3.7 0.58
05 s _diff | var difff 5| 2 5] 151|025 51[12790.2]| 02| 05 0.6 37 0.58
05 i_diff | var diff| 5| 2| 349 2 1] 0.253.7[09250.2| 02| 1| 04| 29 0.57
0.5 s _diff | var difff 5| 2 5] 1241|025 37[092502| 02| 1| 04| 29 055
05 i_diff |var diff| 5| 2| 274 2 1] 0.253.7 {0925 0.2| 0.2| 15 04| 29 047
0.5 s _diff | var difff 5| 2 5] 08y 1 |025 37[09250.2| 02| 15 04 29 044
0.5 i_diff |var diff] 5| 2| 199 2 1] 0.253.7[09250.2| 02| 2| 04| 29 0.38
0.5 s _diff | var difff 5| 2 5] 0491|025 37[092502| 02| 2| 04] 29 0.33
0.5 i_diff |var diff| 5| 2| 1.24 2 1] 0.253.7 {0925 0.2| 0.2| 25 04| 29 0.29
0.5 s _diff | var difff 5| 2 5] 0121 |0.25 3.7[09250.2| 02| 25 04 29 0.24
0.5 i_diff | cov diff| 5 | 2 4 2 11025 1 | 025/055-06] 1| 04| 12| 0.60
0.5 s_diff | cov_difff 5 | 2 5 15/ 1) 0261 |025/055-06] 1| 04| 12| 057
0.5 i_diff | cov diffl 5 | 2| 35 2 1] 025 1 | 025/ 055-06| 1.5| 04| 12| 0.50
0.5 s_diff | cov_difff 5 | 2 5 (125 1025 1 |0.25/055-06| 15| 04| 12| 0.46
05 i_diff | cov diff| 5 | 2 3 2 11025 1 | 025/055-06] 2| 04| 12| 0.40
05 s_diff | cov_difff 5 | 2 5 1 11025 1 | 025/ 055-06] 2| 04| 12| 034
0.5 i_diff |cov difff 5 | 2| 25 2 1] 025 1 [ 025/ 055-06| 25| 04| 12| 0.30
0.5 s _diff | cov_difff 5 | 2 5 (079 1025 1 |025/055-06| 25| 04| 12| 0.24
0.5 i_diff | var diff|] 5| 2| 3.05 2 1] 02525 (0625 0.2| 02| 15 0.2 21 0.5]
0.5 s _diff | var difff 5| 2 5] 1021 |0.25 25(0.625 02| 02| 15 02| 21 0.47
0.5 i_diff | var diff| 5| 2| 24 2 1| 02525 (062502| 02| 2| 02| 21 040
0.5 s _diff | var difff 5| 2 5 074 1 0.2525|0.6250.2| 02| 2| 02| 21 0.35
0.5 i_diff | var diff| 5| 2| 1.75 2 1] 0.2525 (0625 0.2| 02| 25 0.2 21 0.3]
0.5 s _diff | var difff 5| 2 5| 03F1|025 25|06250.2| 02| 25 0.2 21 0.25
0.5 i_diff | cov diffl 5 | 2| 35 2 1] 025 1 | 025/ 046-04| 15| 0.2] 12| 0.54
0.5 s_diff | cov_difff 5 | 2 5 (125 1025 1 |0.25/046-04| 15| 02| 12| 0.49
05 i_diff | cov diff] 5 | 2 3 2 11025 1 [ 025/046-04| 2| 02| 12| 042
05 s_diff | cov_difff 5 | 2 5 1 11025 1 | 025/046-04| 2| 02| 12| 0.36
05 i_diff | cov difff 5 | 2| 25 2 1] 025 1 [ 025/ 046-04| 25| 02| 12| 0.31
0.5 s _diff | cov_difff 5 | 2 5 (079 1025 1 |025/046-04| 25| 02| 12| 0.25
0.7 i_diff |var diff| 5| 2| 427 2 1] 0.254.95(1.23750.2| 0.2| 05 0.6] 2.7 0.63
0.7 s _diff | var difff 5| 2 5] 1681 |0.254.95[1.23750.2| 0.2| 05 0.6 2.7 0.64
0.7 i_diff | var diff|] 5| 2| 355 2 1] 0.254.95(1.237%0.2| 02| 1| 06| 2.7 0.57
0.7 s _diff | var difff 5| 2 5] 1.2 1 |0.254.95(1.23750.2| 0.2| 1| 06| 2.7 0.56
0.7 i_diff | var diff| 5| 2| 282 2 1] 0.254.95(1.23750.2| 0.2| 1.5/ 0.6] 2.7 0.49
0.7 s _diff | var difff 5| 2 5] 0911 |0.254.95(1.23750.2| 0.2| 1.5/ 0.6] 2.7 0.47
0.7 i_diff | var diff|] 5| 2| 21 2 1| 0.254.951.237%0.2| 02| 2| 0.6 2.7 041
0.7 s _diff | var difff 5| 2 5| 0551 |0.254.95[1.23750.2| 0.2| 2| 06| 27 0.38
0.7 i_diff | var diff| 5| 2| 138 2 1] 0.254.95(1.23750.2| 0.2| 25 0.6] 2.7 0.33
0.7 s _diff | var difff 5| 2 5] 0191 |0.254.95(1.23750.2| 02| 25 0.6 27 0.29
0.7 i_diff | var diff| 5| 2| 3.68 2 1] 0.253.709250.2| 02| 1| 04| 22 0.63
0.7 s _diff | var difff 5| 2 5] 1341|025 37[09250.2| 02| 1| 04| 22 0.6]
0.7 i_diff |var diff|] 5| 2| 3.02] 2 1] 0.253.7 {0925 0.2| 0.2 15 04| 22 0.5
0.7 s _diff | var difff 5| 2 5] 1011|025 3.7[09250.2| 02| 15 04 22 05]
0.7 i_diff | var diff| 5| 2| 236 2 1] 0.253.7 0925 0.2| 02| 2| 04| 22 044
0.7 s _diff | var difff 5| 2 5| 0681 |0.25 3.7[09250.2| 02| 2| 04] 22 040
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0.7 i_diff | var diff| 5| 2| 1.7 2 1| 0.253.71092902| 02| 25 04| 22 0.35
0.7 s _diff | var difff 5| 2 5] 03b1 |0.25 3.7[09250.2]| 02| 25 04| 22 0.30
0.7 i_diff | cov_ diff| 5 | 2| 4.03] 2 1] 025 1 | 025/ 062-06] 1| 04| 12| 0.73
0.7 s_diff | cov_difff 5 | 2 5 (153 1025 1 |]025/062-06| 1| 04| 12| 0.70
0.7 i_diff | cov diff| 5 | 2| 354 2 1] 025 1 | 0.25/062-06| 15 04| 12 062
0.7 s_diff | cov_difff 5 | 2 5 (127 1025 1 |]025/062-06| 15 04| 12| 0.57
0.7 i_diff | cov diff| 5 | 2| 3.06] 2 1] 025 1 | 025/ 062-06] 2| 04| 12| 0.50
0.7 s_diff | cov_difff 5 | 2 5 (103 1025 1 |]025/062-06| 2| 04| 1.2 043
0.7 i_diff | cov diff| 5 | 2| 2.58] 2 1] 02p 1 | 0.25/062-06| 25| 04| 12 038
0.7 s_diff | cov_difff 5 | 2 5 10791025 1 |]025/062-06| 25| 04| 1.2 0.3]1
0.7 i_diff | var diff| 5| 2| 321 2 1] 0.2526 | 065 0.2 0.2 15 0. 18 0.5p
0.7 s_diff | var difff 5| 2 5 1.0 1 02526 | 065/ 02 02 15 0. 18 054
0.7 i_diff | var diff| 5| 2| 261 2 1] 02526 | 065 0.2 02 2/ 02 18 04y
0.7 s _diff | var difff 5| 2 5 08 1 02526 | 065 02 02 2 02 18 04p
0.7 i_diff |var diff|] 5| 2| 2.02] 2 1] 0.252.6 | 0.65| 0.2 0.2 25 0. 18 0.3y
0.7 s _diff | var_difff 5| 2 5] 0511|025 26| 065 02 02 25 0. 18 03
0.7 i_diff | cov diff| 5 | 2| 354 2 1] 025 1 | 0.25/051-04|15] 02| 12 065
0.7 s_diff | cov_difff 5 | 2 5 (127 1025 1 |]025/051-04]| 15 02| 1.2 0.60
0.7 i_diff | cov diff| 5 | 2| 3.05| 2 1] 026 1 | 025/ 051-04] 2| 02| 12| 051
0.7 s_diff | cov_difff 5 | 2 51107 1025 1 02505104 2| 02| 12| 044
0.7 i_diff | cov diff| 5 | 2| 257 2 1] 02p 1 | 0.25/051-04| 25| 02| 12 038
0.7 s_diff | cov_difff 5 | 2 5 1078 1025 1 |]025/051-04] 25| 02| 1.2 0.3]1
0.9 i_diff | var diff| 5| 2| 436 2 1 02576 | 19| 021 02 0% 06 20 0.60
0.9 s_diff | var difff 5| 2 5] 1681|025 76| 19| 02 02 0% 06 20 0.60
0.9 i_diff | var diff| 5| 2| 3.73 2 1 02576 | 19| 020 02 1 04 2 0.58
0.9 s_diff | var difff 5| 2 5] 1361|025 76| 19| 02 02 1 04 2 0.5y
0.9 i_diff | var diff|] 5| 2| 3.1 2 1] 02576 | 19| 02 0.2l 1% 06 20 054
0.9 s _diff | var difff 5| 2 5] 1051 |025 76| 19| 02 02 1% 06 20 05
0.9 i_diff | var diff| 5| 2| 247 2 1 02576 | 19| 021 020 2 04 2 0.48
0.9 s _diff | var_difff 5| 2 5] 0781|025 76| 19| 02 02 2 04 2 0.46
0.9 i_diff |var diff| 5| 2| 1.84 2 1 02576 | 19| 02 02 2% 06 20 04p
0.9 s _diff | var_difff 5| 2 5] 04R1 |025 76| 19| 02 02 2% 06 20 04D
0.9 i_diff | var diff| 5| 2| 3.82 2 1] 02555 (137902 02| 1| 04| 1.8 0.67
0.9 s_diff | var difff 5| 2 5] 1411|025 55(137902]| 02| 1| 04| 18 0.64
0.9 i_diff | var diff| 5| 2| 323 2 1] 02555 (137902 02| 15 04| 18 0.61]
0.9 s_diff | var difff 5| 2 5] 1111 (025 55[13790.2]| 02| 15 04 18 0.9
0.9 i_diff | var diff| 5| 2| 264 2 1] 0.2555(137902]| 02| 2| 04| 18 0.54
0.9 s_diff | var difff 5| 2 5] 0821|025 55[137902]| 02| 2| 04| 18 0.52
0.9 i_diff | var diff| 5| 2| 2.05 2 1] 0.2555(13750.2]| 02| 25 04| 18 0.47
0.9 s _diff | var_difff 5| 2 5] 05P1 |0.25 55[13750.2]| 02| 25 04| 18 0.43
0.9 i_diff | cov diff| 5 | 2| 424 2 1] 026 1 | 025/ 08| -06R1 | 04| 12| 0.88
0.9 s_diff | cov_difff 5 | 2 5 (162 1025 1 |025/ 08 0621 | 04| 12| 0.87
0.9 i_diff | cov diff| 5 | 2| 3.87| 2 1] 025 1 | 0.25| 0.8] -0.6R15| 04| 1.2 0.83
0.9 s_diff | cov_difff 5 | 2 5 (143 1 025 1 |0.25| 0.8 -0.6215| 04| 12| 0.81
0.9 i_diff | cov diff| 5 | 2| 349 2 1] 02p 1 | 0.25| 08| -062 2 | 04| 12| 0.77
0.9 s_diff | cov_difff 5 | 2 5 (1241025 1 |]025] 08 0622 | 04| 12| 0.72
0.9 i_diff | cov diff| 5 | 2] 3.11] 2 1] 0.2p 1 | 0.25| 0.8] -0.6R25| 04| 1.2| 0.68
0.9 s_diff | cov_difff 5 | 2 5 (10§ 1025 1 |0.25 0.8 -0.6225| 04| 12| 0.62
0.9 i_diff | var diff| 5| 2| 335 2 1 02536 | 09| 02 02 1% 02 15 0.70
0.9 s_diff | var difff 5| 2 5] 11y1]025 36| 09] 02 02 1% 02 15 0.6
0.9 i_diff | var diff| 5| 2] 279 2 1 02536 | 09] 02 02 2/ 04 15 0.61
0.9 s _diff | var_difff 5| 2 5 09 1 02536| 09| 02 02 2/ 03 1% 057
0.9 i_diff | var diff| 5| 2| 225 2 1] 02536 | 09| 0.2 02 2% 02 15 05p
0.9 s _diff | var_difff 5| 2 5| 06R1 025 36| 09| 02 02 2% 02 15 04y
0.9 i_diff | cov diff| 5 | 2| 3.7 2 1] 025 1 [ 025/ 063-06] 1.5 02| 12| 0.84
0.9 s_diff | cov_difff 5 | 2 5 (135 1025 1 |025/063-06| 15/ 0.2 1.2 0.8]
0.9 i_diff | cov diff| 5 | 2| 3.27| 2 1] 025 1 | 025/ 063-06] 2| 02| 12| 0.75
0.9 s_diff | cov_difff 5 | 2 5 (113 1025 1 |]025/063-06| 2| 02| 1.2 0.70
0.9 i_diff | cov diff| 5 | 2| 2.84] 2 1] 02p 1 | 0.25/063-0.6| 25| 0.2] 1.2/ 0.65
0.9 s_diff | cov_difff 5 | 2 51092 1025 1 ]0.25/063-06] 25| 0.2 1.2 0.57
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Appendix B

Data Generation Parameters for Simulation 2

Class|Class Class
Class 1] Class 2 Class 1 Class2| 1 2 1 |Class2
mix Mean |Variance i-| s- i- s- is- | is- C Resid{Resid{ Data
proportion |Condition|Condition| i | s i s |var| var |var| var | cov | cov|SMD|~d| var | var Overlap
0.5 i_diff | var diff | 5| 2| 424 2| 10.25]| 3.7/0.925| 0.2 | 0.2] 0.50.4]2.87[1149 0.25
0.7 i_diff | var diff | 5| 2| 434 2| 10.25]| 3.7/0.925| 0.2 | 0.2| 0.50.4|2.21|8.85| 0.27
0.9 i_diff | var diff | 5| 2| 441 2| 10.25|55/1375| 0.2 | 0.2] 0504(1.77[7.09| 0.32
0.5 i_diff | cov diff| 5| 2| 45 2| 1025| 1| 025 055 -060.5|0.4[1.22|4.89| 0.28
0.7 i_diff | cov diff| 5| 2| 451 2| 1025 1| 0.25] 0.62 -060.5|0.4[1.22|4.89| 0.30
0.9 i_diff | cov diff| 5| 2| 462 2| 1025 1| 025 0.8 -0.6D0.5|04|1.22|4.89| 0.39
0.5 i_diff | var diff| 5] 2| 435 2| 10.25| 25/0.625| 0.2 | 0.2| 0.50.2|2.14|856| 0.27
0.7 i_diff | var diff| 5| 2| 44 2| 1025]| 26 065 02| 0.2 050.2]1.81|7.24| 0.30
0.9 i_diff | var diff| 5| 2| 445 2| 1025|36 09 | 02| 02 050.2[154|6.16| 0.37
0.5 i_diff | cov diff| 5| 2| 45 2| 1025| 1| 0.25] 0.46 -0405)|0.2(1.22|4.89| 0.29
0.7 i_diff | cov diff| 5| 2| 451 2| 1025| 1| 0.25 051 -0405|0.2]1.22|4.89| 0.32
0.9 i_diff | cov diff| 5| 2| 456 2| 1025| 1| 0.25| 0.63 -0605]|0.2(1.22|4.89| 041
0.5 i_diff | var diff | 5| 2| 3.7 2| 1025| 250625 02| 02| 1| 0.72.14[856| 0.26
0.5 i_diff | cov_diff| 5| 2 4 2| 1025| 1| 025| 046 -041 |02{1.22|489| 0.28
0.7 i_diff | var diff| 5| 2| 3.8 2| 1025|26 065 02| 020 1| 0.21.81|7.24| 0.28
0.7 i_diff | cov diff| 5] 2| 4020 2| 1025| 1| 025/ 051 -041 |02{1.22|489| 0.30
0.9 i_diff | var diff | 5] 2| 3.9 2] 1025|36/ 09| 02| 02 1| 02154|6.16| 0.36
0.9 i_diff | cov diff| 5| 2| 413 2| 1025| 1| 025 063 -0p1 |0.2[1.22|4.89| 0.39
0.5 i_diff | var diff| 5] 2| 349 2| 10.25]| 3.7/0.925| 0.2 | 0.2] 1| 042.87[11.49 0.23
0.5 i_diff | cov_diff| 5| 2 4 2| 1025| 1| 025 055 -0p1 |04[1.22|4.89| 0.27
0.7 i_diff | var diff| 5| 2| 3.68 2| 10.25]| 3.7/0925| 0.2 | 02| 1| 04221[885| 0.26
0.7 i_diff | cov diff| 5] 2| 403 2| 1025| 1| 025 062 -0p1 |04[1.22|489| 0.29
0.9 i_diff | var diff| 5] 2| 3820 2| 1025|55 1375 02|02 1| 04177[7.09| 031
0.9 i_diff | cov diff| 5] 2| 424 2| 1025| 1| 025 0.8 -0.621 |0.4[1.22|4.89| 0.38
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Appendix C

Sample Mplus Codes for Growth Mixture Models

title: two class GMM tryout

data: file=data_cond_5.3.txt;

variable: names are id class y1-y6;
usevariables = y1-y6;
classes=c(2);

analysis: type=mixture;
starts= 100 10;
stiterations=50;
iterations=2000;
miterations=5000;

Model: %overall%
is|yl@0y2@1 y3@2 y4@3 y5@4 y6@5;

y1l-y6*(resvar);
[yl-y6@0];
%Cc#1%

is|yl@0y2@1 y3@2 y4@3 y5@4 y6@5;
[i*]; [s7];

i*; s*: i with s*;

y1-y6*(resvl);

[y1-y6@0];

%cH#2%

is|yl@0y2@1 y3@2 y4@3 y5@4 y6@5;
[i*]; [s™];

i*: s*: i with s*;

y1-y6*(resv2);

[yl-y6@O0];

output: samp techl tech11 techl13 tech14
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