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Sexually reproducing organisms produce two very different phenotypes 

(males and females), by differential deployment of essentially the same gene content.   

This dimorphism provides an excellent model to study how transcriptomes are 

differentially regulated, which is one of the central problems of biology.  The core sex 

determination pathway of Drosophila is a well described cascade of transcriptional 

and post-transcriptional regulation, but knowledge of the downstream components is 

largely incomplete.   

High throughput technologies have provided great advances in understanding 

transcriptome regulation, but limits of the technology have lead to a focus on whole 

gene expression measurements, rather than post-transcriptional regulation.  RNA-Seq 

experiments, in which transcripts are converted to cDNA and sequenced, allow the 

resolution and quantification of alternative transcript isoforms, potentially elucidating 

the post-transcriptional network.  However, methods to analyze splicing are 

underdeveloped, and challenges in transcript assembly and quantification remain 

unresolved.   



  

This work describes the development of the Splicing Analysis Kit (Spanki) as 

a fast, open source, suite of tools that uses simulations based on real RNA-Seq data to 

characterize errors in a given dataset, and user tunable filters that minimize those 

errors.  Spanki quantifies splicing differences in transcripts from the same loci within 

a sample, as well as between samples by using only those reads that directly assay 

splicing events (junction spanning reads).   Despite the reliance on a fraction of the 

total data, sequencing depth typically generated in an RNA-Seq experiment is 

sufficient to identify differentially regulated splicing, and error profiles are superior.  

I demonstrate that this computational approach outperforms several commonly used 

approaches in an analysis of sex-differential splicing in Drosophila heads.   

 Next I examine the effects of disrupting post-transcriptional regulation in 

Drosophila heads.  I apply the Spanki software to analyze RNA-Seq data for mutant 

lines of two post-transcriptional regulators: Darkener of apricot (Doa) and found in 

neurons (fne). Doa, a serine-threonine kinase, regulates splicing by phosphorylating 

SR proteins, vital components of the splicing machinery.  Found in neurons (fne) 

binds to transcripts and is involved in RNA metabolism.  I demonstrate sex-

differences in response to disruption of post-transcriptional regulation, and 

hypothesize that they are informative of sex-differentiation pathways.   

Finally, I examine the conservation of splicing regulation within the 

Drosophila lineage.  I show that junction based splicing analysis is effective in 

making interspecific comparisons without the need for complete transcript models.  I 

use these results to demonstrate the conservation of sex-differential splicing across 40 

million years of evolution in 15 species in the Drosophila genus. 
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Preface 

Portions of this dissertation have either been published in peer-reviewed journals or 

are in preparation for submission.  I owe a great debt to each of my co-authors for 

these manuscripts.  Chapter 2 describes the toolkit I built to analyze splicing from 

RNA-Seq data.  I conceived and implemented the computational work for this 

analysis.  This chapter is based on a manuscript (preparing for resubmission at time of 

writing), which is the combined work of myself, and our collaborators.  Chapter 3 

describes an analysis of mutant samples generated by our collaborations.  Chapter 4 

describes comparative analysis of Drosophila species. 

 
 
Drosophila species results are partially described in this modENCODE publication: 
 
The developmental transcriptome of Drosophila melanogaster.  Graveley BR, 
Brooks AN, Carlson JW, Duff MO, Landolin JM, Yang L, Artieri CG, van Baren MJ, 
Boley N, Booth BW, Brown JB, Cherbas L, Davis CA, Dobin A, Li R, Lin W, 
Malone JH, Mattiuzzo NR, Miller D, Sturgill D, Tuch BB, Zaleski C, Zhang D, 
Blanchette M, Dudoit S, Eads B, Green RE, Hammonds A, Jiang L, Kapranov P, 
Langton L, Perrimon N, Sandler JE, Wan KH, Willingham A, Zhang Y, Zou Y, 
Andrews J, Bickel PJ, Brenner SE, Brent MR, Cherbas P, Gingeras TR, Hoskins RA, 
Kaufman TC, Oliver B, Celniker SE.  Nature. 2011 Mar 24;471(7339):473-9. Epub 
2010 Dec 22. 
 
Additional Drosophila species data come from samples prepared previously and 

described here: 

Constraint and turnover in sex-biased gene expression in the genus Drosophila. 
Zhang Y, David Sturgill, Parisi M, and Oliver B. 
Nature. 2007 Nov 8;450(7167):233-7. 
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Chapter 1: Introduction 

Section 1.1 Regulation of the transcriptome 

Complex multicellular organisms such as humans are composed of a variety 

of vastly different cell types.  With few exceptions, each cell type within an organism 

includes the same genetic instructions.  A major gap in our knowledge of biology is a 

thorough understanding of how different cells produce different phenotypes from the 

same genotype. 

Since each cell contains the same genetic information, the difference must 

arise in how this information is decoded and used.   There are many means for 

regulating how the genetic information is used, either by modulating when and how 

much genes get transcribed  (transcriptional regulation) and by altering how 

transcripts are processed to generate protein (post-transcriptional regulation). The 

term used for the complete set of transcripts produced by the cell is the 

“transcriptome” (Figure 1.1).  Each cell may have identical genomes, but very 

different transcriptomes.  These differences can consist of different relative amounts 

of the same transcripts, and/or qualitatively different transcripts that are processed 

and altered differently.     All of these differences can arise by differential deployment 

of regulatory mechanisms by the cell. 
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Figure 1.1: Types of transcriptome regulation 

1.1.1 Transcriptional regulation 

Genes must be transcribed to RNA for their information to be used. One way 

this can be regulated is to modulate quantitatively how much transcript is produced  

(Figure 1.1).  This is accomplished by regulating transcriptional activity at promoters 

(Lee and Young 2000). Quantitative regulation involves up- or down-regulation at 

promoters to alter transcriptional activity, and involves both trans-acting factors and 

cis-regulatory elements.  Transcription can proceed along tightly regulated 

developmental programs, following a cis-regulatory code (FitzGerald, Sturgill et al. 

2006; Sorge, Ha et al. 2012). 

Transcription from alternative promoters of the same gene can also be 

regulated to produce different transcripts, and this is widespread in humans (Davuluri, 

Suzuki et al. 2008; Singer, Wu et al. 2008).  Although this is regulated at the level of 

transcription, alternative first exon events (AFEs) are commonly included as a form 
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of alternative splicing (Black 2003), since it leads to isoform variants that have a 

splicing difference.  

1.1.2 Post-transcriptional regulation  

The other major way cells can shape their transcriptomes is after transcription, 

by alternative splicing (Black 2003, Figure 1.1).  In this process, eukaryotic 

organisms can produce multiple distinct proteins from one type of primary transcript. 

Alternative splicing generates different RNA molecules from identical primary 

transcripts, affecting protein diversity by creating diverse mRNA isoforms and 

modulating regulatory information in non-coding and untranslated regions in mRNAs 

(Black 2003).  This process greatly increases the number of proteins that may be 

produced from a gene by combinatorial complexity.   

Alternative splicing is widespread in eukaryotes, but high-throughput methods 

to provide a complete accounting of it have been lacking.  Estimates suggest that 60-

99% of genes are alternatively spliced in humans (Pan, Shai et al. 2008; Wang, 

Sandberg et al. 2008), but is less prominent in Drosophila (40% of annotated genes) 

(Graveley, Brooks et al. 2011). 

Splicing can be regulated by biological context; such as between tissues, sex, 

and developmental stage; and is an important mechanism for the sexes to produce 

different RNA-output in different cellular and developmental contexts (Black 2003).  

Splicing is precisely regulated, and many human diseases, such as cystic fibrosis, are 

caused by errors in splicing or the presence of specific splice variants (Garcia-Blanco, 

Baraniak et al. 2004).  



 

 4 
 

In Drosophila, alternative splicing is critical to the core sex determination 

pathway (Figure 1.2), but not all downstream targets of splicing regulation are 

known.  One survey of sex-specific alternative transcription estimated that 11-24% of 

Drosophila genes are alternatively spliced in a sex-biased manner (McIntyre, Bono et 

al. 2006), although this study did not consider the entire genome.  To date, there has 

not been a transcriptome-wide comparison of sex-differential splicing in Drosophila 

published. 

Expressed sequence tag (EST) sequencing, and microarrays that target splice 

junctions and exons, have helped elucidate splicing, but have not provided a complete 

picture. High-throughput sequencing of transcripts (RNA-Seq) with short reads 

provides us with the resolution to capture sequence from all isoforms (Marioni, 

Mason et al. 2008; Mortazavi, Williams et al. 2008).   However, computational 

methods to resolve relative abundances of isoforms in a sample, and making 

meaningful comparisons across samples, are currently not fully developed. 

Section 1.2 Drosophila as a model of transcriptome regulation 

Drosophila has been a model organism for over 100 years, and has well 

characterized genetic pathways, making it an excellent system to study transcriptome 

regulation (Bellen, Tong et al. 2010; Yamamoto 2010).  The core sex determination 

pathway, which describes the regulatory mechanisms by which the initial 

developmental decision about gender is initiated and maintained, is an example of a 

particularly well characterized pathway (Venables, Tazi et al. 2011, Figure 1.2). 
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1.2.1 The sex determination pathway 

 

 

Figure 1.2:  Somatic sex determination in Drosophila. Adapted from B. Baker: 
(http://cmgm.stanford.edu/devbio/baker/Hierarchy.htm) and (Verhulst, van de Zande 
et al. 2010). 

 

The sex determination pathway in Drosophila is a regulatory cascade that 

receives a signal (expression dose of X-linked Signal Elements, or XSEs), and 

transmits this decision about sex to direct differentiation in the soma.  Most relevant 

to this study, the Drosophila sex determination hierarchy is also classical model of 

regulated alternative splicing.  Transcripts of three members of this hierarchy, Sex-

lethal (Sxl), transformer (tra), and male specific lethal 2 (msl-2) are broadly 

expressed.  The two terminal members of the hierarchy, doublesex (dsx) and fruitless 

(fru), are transcription factors that regulate expression of downstream targets.  All of 

these sex determination genes are regulated by sex-differential alternative splicing 
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(Venables, Tazi et al. 2011, Figure 1.3).  A close examination of this pathway reveals 

the diverse functional elements and mechanisms at play, including transcriptional 

enhancers, polypyrimidine tracts, in-frame stop codons, and exonic splicing 

enhancers. 

The cascade initiates early in embryogenesis, with a promoter of the Sxl gene 

responding to a signal of X-chromosome dose via expression of the XSEs (unpaired , 

runt, sisA and scute) (Sanchez, Granadino et al. 1994; Salz and Erickson).  In 

females, the X chromosome is present in two copies, and the XSEs are expressed at a 

level that activates the Sxl early promoter.  In males, XSE expression does not reach 

the threshold level, and the Sxl early promoter remains inactive (Salz and Erickson).  

Expression from this early promoter of Sxl represents the initial decision about sex by 

the organism. 

This decision about sex is maintained by an autoregulatory feedback loop.  In 

later developmental stages, constitutive transcription of Sxl occurs from a different 

promoter (Cline 1984).  The absence of pre-existing SXL protein leads to default 

splicing of the Sxl pre-mRNA, which contains a premature termination codon (PTC) . 

In females, pre-existing SXL binds to the pre-mRNA, leading to a splicing variant 

that leads to more functional SXL (Cline 1984; Bell, Horabin et al. 1991). 
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Figure 1.3:  Sex-differential splicing in the sex determination hierarchy.  (A) 
Splice variant in males leads to non-functional protein. (B) Two functional variants of 
DSX., determined by presence of functional TRA. (C) Differential splicing at an 
alternative donor, in transcripts of fru from the P1 promoter.  
 

The presence of SXL in females also turns off dosage compensation, by 

translational control of msl-2 pre-RNA (Bashaw and Baker 1997; Beckmann, 

Grskovic et al. 2005). SXL binds to a polypyrimidine tract in an intron of the 3' UTR 

of msl-2 pre-mRNA , causing this intron to be retained.  Bound SXL then affects 

recruitment of 43s ribosomal preinitiation complexes.  This prevents MSL-2 

translation from occurring, which ensures X-chromosome dosage compensation does 

not occur in females. 

Binding of SXL to pre-mRNA of tra leads to the recognition of an alternative 

3' acceptor site and eventual translation (Sosnowski, Belote et al. 1989).  Without 
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SXL in males, a default splicing of tra occurs that leads to a transcript with a PTC 

(Figure 1.3A).  TRA protein is an essential splicing regulator that guides the sex-

specific splicing of downstream transcription factors (Sosnowski, Belote et al. 1989; 

Salz and Erickson, Figure 1.2). 

The culmination of this initial sex-determination hierarchy is the differential 

splicing of transcripts of dsx and fru, both encoding DNA-binding transcription 

factors (Lynch and Maniatis 1996; Demir and Dickson 2005).  In females, with a 

functional TRA (and along with TRA-2), the transcript from dsx is spliced to DSX-F 

(including exon 4, Figure 1.3B).  The 3’ splice site for exon 4 contains a poor 

polypyrimidine tract that contains several purines, making a splicing enhancer (TRA) 

necessary (Burtis and Baker 1989).  Without TRA, the default splicing is to skip exon 

4 and produce DSX-M.  A different functional protein is then produced in each sex 

from these different processed transcripts.  Both of these proteins have identical 

DNA-binding domains but differ in their carboxy termini (Burtis and Baker 1989; 

Shukla and Nagaraju 2010, Figure 1.3).  

fruitless (fru) transcripts are also targeted by TRA and TRA-2, producing sex-

specific isoforms, but only the male variant from the an upstream promoter (P1) is 

translated (Siwicki and Kravitz 2009, Figure 1.3C).  Like DSX, the FRU protein is a 

transcription factor, with properties of the zinc-finger family of DNA binding 

proteins.  fruitless is active in the central nervous system, and it is an example of a 

current focus of research to identify the genetic basis for reproductive behaviors 

(Moehring, Li et al. 2004; Vosshall 2007). The male-specific splice variant of fru was 

shown to direct male mating behavior, when exogenous expression of the male-
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specific splice variant of fru induced male behavior in female flies (Demir and 

Dickson 2005).   The downstream targets of fru that produce this behavioral 

phenotype remain to be discovered. 

1.2.2 Drosophila as a system for evolutionary divergence 

Drosophila is an ideal model for evolutionary research.  There are many 

Drosophila species distributed globally with diverse morphologies and living in 

tropical, urban, and desert environments.  They are easily culturable with short 

generation times, and are excellent for conducting genetic experiments.  The lineage 

spans an estimated 40 million years (Clark, Eisen et al. 2007); for perspective, the 

estimated divergence time of humans from chimpanzees is 6 million years and from 

New world monkeys is 33 million years (Glazko and Nei 2003).  Reference genomes 

have been sequenced for species from a range of close and distant time scales (Figure 

1.4).  All these characteristics make the Drosophila genus an excellent model system 

to study phylogenetic divergence. 
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Figure 1.4:  The phylogeny of sequenced species of Drosophila (Clark, Eisen et al. 
2007; McQuilton, St Pierre et al. 2012).   
 

Section 1.3 Divergence of the transcriptome 

Species phenotypes diverge over evolutionary time, driven by mutation that 

alters genomically encoded information.  The most familiar way this occurs is by the 

alteration of coding sequence to change the encoded protein.  However, changes in 

gene regulation are also hypothesized to have an important role in species divergence 

(Romero, Ruvinsky et al. 2012). 

Comparative expression analysis is a rapidly growing field that has begun to 

explore gene expression variation over time.  The rise of high-throughput methods 

has recently allowed the comparisons of whole transcriptomes of divergent species.  

These studies have shown that selection pressure acts on gene regulation, and have 
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shown patterns of lineage-specific adaptive change in expression (Romero, Ruvinsky 

et al. 2012).  Results in Drosophila have shown that sex-differential gene expression 

diverges over evolutionary time, so that one can generate a phylogenetic tree using 

measures of expression divergence that mirrors a phylogeny based on sequence 

divergence (Zhang, Sturgill et al. 2007).  At the same time, expression divergence 

patterns for subsets of genes may appear stochastic and not directly correlated with 

sequence divergence (Zhang, Sturgill et al. 2007).   These results suggest that 

variation in gene deployment between species is significant, and that selection acts 

not just on coding sequence but also on transcriptional regulation.   

One major challenge of this growing field is to distinguish changes in 

expression that are adaptive from random variation and drift.  In coding sequence 

evolution, one can compare the rate of change at synonymous and non-synonymous 

sites to infer the type of selection taking place (Hurst 2002), and there is no analogous 

test for gene expression.  A natural place to look for adaptive divergence is in 

sexually dimorphic features, since sexual selection for advantageous adaptations is 

the engine that drives evolution.  

1.3.1 Selection pressure on dimorphic features 

Sexual selection has been known to be major driving force of evolutionary 

divergence for nearly 150 years (Darwin 1871).  Beneficial adaptations that enhance 

mating effectiveness have a selective advantage, and propagate within a population 

(Clutton-Brock 2007). Positive selection on these traits can act on coding sequence, 

cis-regulatory elements for transcription, or post-transcriptional regulatory elements 

(Xing and Lee 2006).  
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Traits that influence reproductive success are prevalent in the Drosophila 

lineage. One example is sperm tail length, which is highly variable in the Drosophila 

lineage, and hypothesized to correlate with reproductive success (Joly, Korol et al. 

2004).  Selection pressure on sperm tail length is substantial enough that one species 

of fly has evolved the longest sperm cell in the animal kingdom, 300 times longer 

than human sperm (Pitnick, Spicer et al. 1995).   

One important force constraining transcriptome divergence is sexual 

antagonism, where gene products are beneficial to one sex and detrimental to the 

other (Innocenti and Morrow 2010).  In these cases of intra-locus conflict, the 

organism must balance the relative costs and benefits to the two sexes, or find some 

means to regulate expression sex-specifically.  This regulation can be transcriptional, 

or post-transcriptional via splicing.  Splicing divergence is a particularly appealing 

mechanism to develop sexually dimorphic features, which may benefit sex over the 

other.  Alternative splicing may enable males and females to generate different 

proteins from the same gene without generating sexually antagonistic effects. 

1.3.2 Splicing divergence 

Conservation of splicing patterns is an important component of stabilizing 

selection pressure acting on genomes, and divergence of splicing patterns is 

hypothesized to be a major mechanism of generating phenotypic complexity (Boue, 

Letunic et al. 2003; Xing and Lee 2006).  By the generation of new exons and 

splicing patterns, and allowing exons within a gene to evolve under different selective 

pressures, it allows a “trial-and-error” approach to generating new gene content 

(Boue, Letunic et al. 2003).  Estimates from human / mouse ortholog pairs suggest 
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that about half have species-specific isoforms (Modrek and Lee 2003), and a 

comparison among Dipteran flies (Malko, Makeev et al. 2006) has also revealed 

extensive isoform species specificity.  In Drosophila, one microarray study examined 

417 genes, and suggested that most sex-differential splicing in Drosophila is 

conserved across species (Telonis-Scott, Kopp et al. 2009), but a more comprehensive 

investigation may uncover many species-specific isoforms. 

There are multiple mechanisms by which splicing may diverge, including 

changes to cis-regulatory elements and trans-factors.  A major path for the evolution 

of new exons is by duplication.  Kondrashov et al. suggest that tandem exon 

duplication followed by alternative splicing has had an important role in expanding 

the functional and regulatory diversity of the genes involved (Kondrashov and 

Koonin 2001; Xing and Lee 2006).  New splicing patterns can arise when entire 

genes duplicate.  When genes duplicate, each copy may diverge to perform different 

functions through subfunctionalization.  This divergence can manifest as differences 

in splicing between the duplicates.  Kopelman et al. show that singleton genes (with 

no duplicates) have more splice forms than those in multigene families, suggesting 

that singletons are more likely to use alternative splicing than genes that have 

undergone duplication (Kopelman, Lancet et al. 2005). Their results are consistent 

with the idea that an alternatively spliced exon may serve as an 'internal paralog' of a 

gene.  This inverse relationship between duplication and splicing can be explained by 

a" balanced fulfillment of a requirement for diversification through either of the two 

mechanisms" (Kopelman, Lancet et al. 2005).   
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Splicing inclusion / exclusion patterns of orthologous exons may also diverge 

by transition (Keren, Lev-Maor et al. 2010) where a constitutive exon can become 

alternative by mutation in intronic or exon splicing enhancers.  If this is the case, 

conservation within introns should also reveal important regulatory sequence.  For 

example, a comparison between human and mouse showed that the flanking regions 

of alternatively spliced exons are significantly more conserved than that of 

constitutive exons (Sorek and Ast 2003).   Higher conservation proximal to introns 

regulated by tissue has also been observed (Sugnet, Srinivasan et al. 2006).  In this 

study, Sugnet et al. also looked in more detail at the conservation pattern of one 

family of genes, and showed that intron sequences have diverged between these 

paralogs, even though they share a regulatory pattern.  In this unusual case, 

orthologous members of the family had highly conserved intron sequence, which 

suggests that the intron sequences are important to regulation.  This example 

demonstrates that a simple positive correlation between splicing regulation and intron 

sequence conservation may not always be evident.  

1.3.3 Evolution of sex determination 

Sexual dimorphism is an ancient feature of the eukaryotic lineage.  Sex 

determination mechanisms however exhibit diversity across phyla despite using 

common conserved components (DM domain genes) (Haag and Doty 2005).  Closely 

linked to sex determination is dosage compensation, which also may use different 

mechanisms to achieve the same goal in different taxa (Deng, Hiatt et al. 2011).  

Even within insects, there is a great variety of sex-determination systems 

(Sanchez 2008).  In Drosophila, it is hypothesized that the sex-determination 
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hierarchy evolved from a “bottom-up” pattern, where the terminal ends of the sex-

determination hierarchy (dsx and fru) are more conserved than their upstream 

regulators.  DM domain proteins (such as DSX and FRU) proteins, are broadly 

conserved across eukaryotes from worms to humans.  Sxl and tra on the other hand, 

are more evolutionarily labile.  Even within flies, it was observed that Sxl, the master 

regulator, does not have a sex-determining role in Houseflies (Meise, Hilfiker-Kleiner 

et al. 1998) and Mediterranean fruit fly (Saccone, Peluso et al. 1998). 

In Drosophila, the leading hypothesis is that the tra – dsx axis was the primary 

regulator of sex determination in a distant common ancestor (Shearman 2002).  Sxl 

was recruited to become the master regular of sex determination later, after their 

divergence from other Dipterans, and is much more evolutionarily labile (Traut, 

Niimi et al. 2006; Sanchez 2008).  A closer examination of each of the pathway’s 

components demonstrates the complexity of their divergence patterns. 

1.3.4 Conservation of the sex-determination pathway components 

Sex-lethal (Sxl)   

Sxl orthologs have been defined in each of the 12 sequenced Drosophila 

species (Clark, Eisen et al. 2007).  However, within the genus, Sxl gene models and 

regulation patterns are not clearly conserved.  In D. virilis, the Sxl ortholog has been 

shown have a different exon-intron structure than D. melanogaster.  Males of D. 

virilis also produce abundant SXL protein (Cline, Dorsett et al. 2010).   

Although Sxl orthologs are present in non-Drosophila flies (Meise, Hilfiker-

Kleiner et al. 1998; Saccone, Peluso et al. 1998), their role in sex determination is not 

conserved.  Orthologs have also been described in the Lepidopteran Bombyx mori, but 
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it is not sex-differentially spliced (Sanchez 2008).  In non-Dipteran insects, Sxl serves 

a non sex-specific regulatory role, with conserved RNA-binding domains but without 

sex-differential splicing.   This suggests that Sxl was co-opted from a general 

regulatory function early in the Dipteran lineage to serve as the master sex-

determination switch (Sanchez 2008). 

DM domain genes: doublesex (dsx) and fruitless (fru) 

The DM domain is zinc-finger DNA binding module that is involved in sex 

determining mechanisms in diverse lineages from worms to humans (Murphy, 

Zarkower et al. 2007; Matson and Zarkower 2012).  DSX and FRU are both members 

of this protein family.   

doublesex is conserved in all sequenced Drosophila species, with a lower rate of 

change than the other sex determination components (Mullon, Pomiankowski et al. 

2012). The genomic binding sites for DSX target genes have also been shown to be 

conserved across Drosophila species (Luo, Shi et al. 2011).  In other species of 

insects, orthologs have been described in mosquito, and sex-differential regulation is 

conserved in Aedes and Anopheles (Salvemini, Mauro et al. 2011).   

FRU also contains a DM domain, and is involved in generating sex 

differences in behavior.  Orthologs have been defined in non-melanogaster 

Drosophilids (D. sechelia, D. pseudoobscura, D. mojavensis, D. erecta, D. simulans), 

and mosquito (Culex quinquefasciatus) (OrthoDB, (Waterhouse, Zdobnov et al. 

2011)).  However, high-confidence alignments have not been possible in current 

genomic assemblies of the other Drosophila species to define orthologs (Mullon, 

Pomiankowski et al. 2012).   In experiments before the sequencing of these genomes, 
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orthologs with conserved molecular structure were identified in D. simulans, D. 

yakuba, D. pseudoobscura, D. virilis, and D. suzuki (Billeter, Goodwin et al. 2002); 

and also in A. gambiae and Tribolium (Gailey, Billeter et al. 2006).  In all cases, sex-

specific splicing was conserved (Sanchez 2008). 

Section 1.4 High-throughput methods for studying the transcriptome 

Experimental methods to analyze gene expression have been in use for 

decades and are now routine. These methods can be used to interrogate transcripts 

(PCR, Northern blots) or proteins (Western blots).  Analysis of entire transcriptomes 

requires more high-throughput methods.  This throughput has been available for the 

past 20 years, and has lead to great advances in biological knowledge.   

1.4.1 Microarrays 

Whole transcriptome studies became possible about 20 years ago with the 

advent of microarrays (Schena, Shalon et al. 1995).  In this method, oligonucleotide 

probes are covalently bound to a glass slide, and fluorescently labeled RNA is washed 

over the slide.  The RNA hybridizes to the oligonucleotide probes, and total 

fluorescence is quantified with a laser scanner.  The transcript abundance in a source 

pool of RNA is measured by fluorescence intensity.  To detect splicing, specialized 

microarrays can be designed that target exons or splice junctions (Cuperlovic-Culf, 

Belacel et al. 2006). 

Microarray technology has lead to great advances in understanding of how 

transcriptomes are regulated, by comparing transcription across tissues, 

developmental stages, disease states, and species.  Microarray experiments are 
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relatively inexpensive and easy to perform, allowing the generation of data for many 

samples. Microarray data have become a great resource for biologists to interrogate, 

with more than half a million experiments archived in the Gene Expression Omnibus 

(GEO) (Malone and Oliver 2011). 

Although the wealth of knowledge from microarrays has been great, there are 

some areas where this technology is lacking.  Prior knowledge of the transcriptome 

being targeted is required, since probes for microarrays must be designed.  This limits 

their use to species for which good genomic reference sequence and annotation 

already exist.  Oligonucleotide probes must also be thoughtfully designed to hybridize 

to their target effectively and specifically, which limits the transcript regions that 

much be targeted.   

For these reasons, microarrays are not effective for comprehensive 

characterization of pools of RNA.  They are limited to only detect what they are 

designed to detect, and therefore can not characterize the transcriptome of 

underannotated species, identify unknown transcribed features, or detect unknown 

aberrant events, such as splicing errors.  For tasks such as this, new next-generation 

sequencing technology is critical (Figure 1.5). 
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Figure 1.5:  Illustration of RNA-Seq 

1.4.2 RNA-Seq 

RNA-Seq allows the analysis of whole transcriptomes at a resolution that was 

not possible with previous technology (Blencowe, Ahmad et al. 2009).  In a typical 

RNA-Seq experiment, Poly-A+ transcripts are enriched from a pool of RNA, from 

which cDNA is generated, amplified, and sequenced (Oshlack, Robinson et al. 2010).  

The reads that are produced contain sequence that originated from transcribed exons, 

some of which contain sequence from two exons spliced together (Figure 1.5).  The 

first step of a typical analysis entails aligning reads to a reference genome, to help 

infer the transcript molecule from which the read originated.  From these results, 

downstream analysis involves estimation of relative abundances of transcribed and 

processed features (Oshlack, Robinson et al. 2010; Martin and Wang 2011).    
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Despite this added resolution, there are important sources of ambiguity, bias, 

and noise in RNA-Seq data that have made accurate abundance estimation of 

isoforms difficult in practice (Malone and Oliver 2011).  These problems arise at 

multiple steps in an RNA-Seq experiment.  For example, at the biological level, 

introns retained in incompletely processed transcripts are difficult to distinguish from 

regulated processing (Filichkin, Priest et al. 2010).  At the library preparation stage, 

sequence-dependent variation in amplification generates heterogeneous coverage 

artifacts (Jiang, Schlesinger et al. 2011; Roberts, Trapnell et al. 2011) that makes 

calling alternative splicing based on exon counts problematic.  At the alignment stage, 

reads with sequencing errors derived from regions that differ in their uniqueness 

relative to the reference genome (such as paralogs and low sequence complexity 

regions) confound abundance differences with alignability (Garber, Grabherr et al. 

2011).   Computational tools to resolve these difficulties are only recently becoming 

available.  In the next chapter, these tools are reviewed, along with a description of a 

novel tool I have developed. 

 

1.4.3 Methods of RNA-Seq analysis 

Tools for analyzing RNA-Seq data are available for several core tasks, such as 

alignment, gene and transcript expression estimation, and assembly (Garber, Grabherr 

et al. 2011).   Several programs perform the task of spliced alignment well, each with 

different error profiles  (Grant, Farkas et al. 2011).  Gene expression estimates for 

annotated genes also perform well, since they rely on enumerating reads within 

defined boundaries (Anders and Huber 2010; Trapnell, Williams et al. 2010).  
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However, there is a dearth of tools that adequately resolve splicing differences 

detected by RNA-Seq experiments.  It is more difficult to quantify splicing is than 

gene level expression because isoform abundance is often convoluted by overlapping 

genomic coordinates.  An additional problem is that splicing variants are more 

incompletely annotated than genes, and the true extent of splicing is unknown.  Since 

RNA-Seq error profiles are also incompletely understood, it is challenging to resolve 

novel detect splicing from technical artifact, particularly when one is analyzing 

mutants where splicing may be aberrant.   

In the next chapter, I describe a tool (Spanki – the Splicing Analysis Toolkit) 

that addresses these challenges.  This tool provides realistic estimates of RNA-Seq 

error profiles, and allows confident analysis of splicing at the level of individual 

introns and at splicing events.  I also show how it can be applied to successfully 

resolve sex-differential splicing in wildtype D. melanogaster, mutant lines, and 

multiple Drosophila species; providing novel insight into this model system of 

transcriptome regulation.   
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Chapter 2: A Junction-based Splicing Analysis Toolkit (Spanki)  
 

Section 2.1 Abstract 

The production of many transcript isoforms from one gene is a major source 

of transcriptome complexity.  RNA-Seq experiments, in which transcripts are 

converted to cDNA and sequenced, allow the resolution and quantification of 

alternative transcript isoforms, however, methods to analyze splicing are 

underdeveloped and errors resulting in incorrect splicing calls occur in every 

experiment.  We demonstrate that these errors include false alignment to minor splice 

motifs and antisense stands, shifted junction positions, paralog joining, and repeat 

induced gaps.  We developed the Splicing Analysis Kit (Spanki) as a fast, open 

source, suite of tools.  Spanki quantifies splicing differences in transcripts from the 

same loci within a sample, as well as between samples by using only those reads that 

directly assay splicing events (junction spanning reads).  Despite the reliance on a 

fraction of the total data, sequencing depth typically generated in an RNA-Seq 

experiment is sufficient to identify differentially regulated splicing, and error profiles 

are superior.  Critically, Spanki uses simulations based on real RNA-Seq data to 

characterize errors in a given dataset, and user tunable filters that eliminate those 

errors.  We demonstrate that our computational approach outperforms several 

commonly used approaches in an analysis of sex-differential splicing in Drosophila 

heads.  Spanki can also be used to improve performance of existing tools.  The 

software is available at http://www.cbcb.umd.edu/software/spanki. 
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Section 2.2 Background  

Alternative splicing generates different RNA molecules from identical 

primary transcripts, affecting protein diversity by creating diverse mRNA isoforms 

and modulating regulatory information in non-coding and untranslated regions in 

mRNAs (Black 2003).  The advance of next-generation sequencing technologies has 

allowed the high-throughput analysis of whole transcriptomes by RNA-Seq.  In a 

typical RNA-Seq experiment, Poly-A+ transcripts are enriched from a pool of RNA, 

from which cDNA is generated, amplified, and sequenced (Oshlack, Robinson et al. 

2010).  Analysis of RNA-Seq data entails inferring the transcript molecule 

corresponding to each read, along with estimation of relative abundances of 

transcribed and processed features (Oshlack, Robinson et al. 2010; Martin and Wang 

2011).  Thus, we now have the tools to make tremendous progress on understanding 

mRNA diversity generated by splicing. 

Despite the promise, there are important sources of ambiguity, bias, and noise 

in RNA-Seq data that have made accurate abundance estimation of isoforms difficult 

in practice.  These problems arise at multiple steps in an RNA-Seq experiment.  For 

example, at the biological level, introns retained in incompletely processed transcripts 

are difficult to distinguish from regulated processing (Filichkin, Priest et al. 2010).  

At the library preparation stage, sequence-dependent variation in amplification 

generates heterogeneous coverage artifacts (Jiang, Schlesinger et al. 2011; Roberts, 

Trapnell et al. 2011) that makes calling alternative splicing based on exon counts 

problematic.  At the alignment stage, reads with sequencing errors derived from 

regions that differ in their uniqueness relative to the reference genome (such as 
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paralogs and low sequence complexity regions) confound abundance differences with 

alignability (Garber, Grabherr et al. 2011).  We describe a pipeline and a suite of tools 

called Splicing analysis kit (Spanki) to make meaningful, comprehensive 

comparisons of splicing regulation from splice junction reads in RNA-Seq data.  

These tools provide estimates of sequencing error, metrics  

to assess variability and uncertainty in junction detection, classifiers for pairwise 

splicing events, and generate significance measures of between-sample differences.  

A common approach to examining splicing is to determine read coverage of 

alternative exons, assemble full length isoform models, and generate probabilistic 

abundance estimates of the alternative forms (Garber, Grabherr et al. 2011).  The 

problem with this type of approach is that reads mapping to exon space may originate 

from multiple alternative exons with different exon boundaries (Figure 1A).  This has 

been recognized as an inherent problem with short read technology (Oshlack, 

Robinson et al. 2010).  In contrast, reads that span splice junctions derive 

unambiguously from one exon join, making this a much more useful measurement 

(Grant, Farkas et al. 2011).  However, mapping these reads is more difficult than 

alignment to a contiguous genomic reference, and high quality junction alignments 

are critical for downstream analyses that use these alignments (Grant, Farkas et al. 

2011).  To ensure accurate junction quantifications, Spanki performs simulations to 

generate sequencing error models, uses novel filtering methods for robust junction 

detection and quantification, and applies standardized splicing event ontologies to 

quantify and compare splicing events between samples using high-confidence 

junction calls.  
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As a test case for Spanki, we analyzed splicing in Drosophila female and male 

heads.  We chose these samples for two reasons.  First, the central nervous system of 

many species is highly complex in architecture and is a rich source of alternative  

transcripts (Li, Lee et al. 2007).  Additionally, the Drosophila sex determination 

hierarchy is a classical model of regulated alternative splicing.  Three members of this 

hierarchy, Sex-lethal (Sxl), transformer (tra), and male specific lethal 2 (msl-2) are 

broadly expressed.  The two terminal members of the hierarchy doublesex (dsx) and 

fruitless (fru) are expressed in a restricted set of neurons, in addition to other non-

neuronal tissues.  All of these sex determination genes are regulated by sex-

differential alternative splicing (Venables, Tazi et al. 2011).  We demonstrate that our 

approach produces alternative splicing measurements that are consistent with the 

literature and quantitative PCR (qPCR) results.  In benchmarking tests, Spanki 

provides more precise estimates of pairwise splicing differences than estimates based 

on transcript level abundances or exon-level counts. 
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Figure 2.1:  Rationale and overview of analysis approach.   
Illustration of an analysis using Spanki.  (A) Cartoon of a hypothetical locus encoding 
alternatively spliced transcripts, illustrating how junction-spanning reads map 
unambiguously to specific introns.  Read 1 could have originated from the 2nd exon of 
isoform A or B, or the intron of isoform C; while read 2 could only have originated 
from isoform A and the indicated splice junction. (B-E) Flowcharts of analysis steps.  
For each step, the input data required is listed at the top, with the required format in 
parentheses.  External programs used are indicated in bold.  (B) Flowchart of 
simulation methods.  A two step process begins with modeling error profiles based on 
a permissive Bowtie (Langmead, Trapnell et al. 2009) alignment.  These error models 
are used by the simulator to generate reads.  Any aligner can be used to align the 
simulated reads to a genomic reference, and the aligned positions are compared to 
known input. (C-E) Flowcharts of quantification and comparison methods.  The first 
step is junction quantification (E), where alignments are performed, junction 
alignments are curated, and junction coverages are calculated.  Splicing event 
quantification (D), where a set of transcript models (from annotation or computed 
using a program such as Cufflinks (Trapnell, Williams et al. 2010)), are used to 
characterize pairwise splicing differences (“splicing events”).  These events are 
merged with junction coverage data to quantify the mutually exclusive paths defined 
for each event.  Splicing event comparison (E) uses these tabulated event-level 
quantifications to compare between replicates, and between pooled results for each 
sample, by Fisher’s Exact Test on inclusion and exclusion junction counts. 
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Section 2.3 Results and discussion  

To generate the biological data for testing Spanki, we produced pools of poly-

A+ RNA from heads of male and female wild-type flies (see Materials and methods 

for details), and generated two biological replicate libraries for each sex.  Sequencing 

was performed on either GAIIx or HiSeq instruments (Illumina, San Diego, CA) to 

yield 200 million mapped 76 bp paired-end reads for the female sample, 202 million 

for the male sample (Table 2.1).  We used Spanki to generate error profiles of our 

data and perform simulations to analyze junction detection performance.  These 

simulations were used to filter false positives and produce a high-confidence set of 

junction coverage values.  We then used Spanki to model, quantify, and classify 

splicing differences in the RNA-Seq data. 

 

Table 2.1:  Mapped reads for Wild type Drosophila heads.  All runs are 2x76bp 
paired-end. 

Lane ID Instrument Sample ID Instrument 

Total 
UNIQUE 
mapping 

GEO 
accession 

R50L5_WT_F GA Iix WT_F_rep1a GA IIx 29,637,147 GSM928376 

R57L4_WT_F HiSeq 2000 WT_F_rep2a HiSeq 2000 62,233,181 GSM928383 

R63L5_WT_F HiSeq 2000 WT_F_rep1b HiSeq 2000 108,172,410 GSM928392 

Total       200,042,738  

R50L6_WT_M GA Iix WT_M_rep1a GA IIx 29,484,201 GSM928377 

R57L5_WT_M HiSeq 2000 WT_M_rep2a HiSeq 2000 61,541,082 GSM928384 

R63L6_WT_M HiSeq 2000 WT_M_rep1b HiSeq 2000 111,146,748 GSM928393 

Total       202,172,031  
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2.3.1 Analysis of junction detection 

Since junction detection is the foundation of our analysis, we undertook 

simulations to quantitatively assess splice junction detection performance so that we 

could characterize and then filter out dubious junctions.  We built simulated datasets 

in two steps:  modeling and read generation.  Spanki automates each of these steps to 

allow the generation of custom simulations to approximate individual RNA-Seq runs 

(Figure 2.1B).  

In the first step, reads from our RNA-Seq experiments were aligned to the 

genome.  We did a first pass alignment with permissive parameters (quality aware 

alignment, with no fixed mismatch cutoff) using Bowtie (Langmead, Trapnell et al. 

2009) in order to estimate total mismatch profiles along the full length of the reads.  

As has been previously reported, we observed increased mismatch rates extending 

through the 3 prime end of the read and a slight increase in mismatch rates in the first 

5 bases of the reads (Mortazavi, Williams et al. 2008; Li, Ruotti et al. 2010; Jiang, 

Schlesinger et al. 2011).  This pattern was consistent with each replicate of our head 

data (Figure 2.2A).  We also determined frequencies of each nucleotide mismatch to 

generate a non-random substitution matrix.    

In the second step, we supplied these error models to Spanki’s read simulator 

so that we could detect errors in a defined known input sample generated in silico 

from annotated transcript models (Ensembl release 67, May 2012; corresponding to 

Flybase 5.39).  We extracted transcript sequence from each of these models and 

generated pools of simulated reads, with each pool containing reads from every 

transcript at the same coverage, using 76 bp paired-end reads to mirror our real data. 
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Thirteen pools were generated, at coverages from 1-30X.  To model retained introns 

due to either regulation or incomplete processing, we generated 20% of the reads 

from each transcript model with introns included.  This is an elevated rate of intron 

retention (empirical estimate is 6.9 - 7.2%, This study), intentionally applied to 

increase aligner error.  For each read pair generated, a fragment size was randomly 

selected from a normal distribution of mean 200bp and standard deviation 20bp, and a 

random start position was selected.  Modeled error frequencies were applied as 

weights for mismatch number, position, and substitution.  To enable the tracking of 

aligner errors, we incorporated the genomic coordinates of origin for each read into a 

unique read identifier.  We calculated two consensus quality scores across all 

positions from the empirical data - one for matched positions, and one for 

mismatched positions, and used these to generate a quality string for each read.  

These components were merged together to output reads in FASTQ format, along 

with a SAM file that represents a perfect alignment of the reads.   We then uniquely 

aligned the reads using TopHat (Trapnell, Pachter et al. 2009), and compared 

alignment results to the known input to explore splice site detection parameters.  This 

two-step process generated a simulated data set that mirrored our experimental data 

and where the true input was known, which provided us a platform for testing RNA-

seq junction alignment.  Both of these steps (error modeling and read generation) are 

integrated within Spanki so that we could evaluate detection and quantify differences 

using the same set of tools (Figure 2.1B-E). 
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2.3.2 Detection sensitivity and accuracy 

Since Spanki is dependent on junction coverage to estimate splicing event 

abundances, we evaluated the quantification accuracy of detected junctions in the 

simulations. We compared junction coverage detected by TopHat with known input 

abundance for all junctions in the 10x transcript coverage pool (Figure 2.2B).  Since  

multiple transcripts at a locus may share a given junction, individual junction 

coverage spanned a range of 1x to 400x (median 8x, 4.2 million read pairs) reflecting 

both the random sampling of read positions and overlapping Drosophila transcript 

models at a given locus.  Our junction coverage measurements had high concordance 

with simulated input (Pearson’s r = 0.99, Figure 2.2B) demonstrating that junction 

coverage closely tracks known input.  A lone outlier in this concordance were 

transcripts from the gene para, a complex locus with known RNA editing (Hanrahan, 

Palladino et al. 2000). 
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Figure 2.2.  Simulation results and junction detection.   
Evaluation of junction detection by simulation and by subsampling of real data. (A) 
Mismatch frequency by position in read in real data.  Results for each replicate 
(technical and biological) of female samples (red lines and symbols) and male 
samples (blue lines and symbols) are indicated. (B) Accuracy of detection at 
annotated junctions.  Recovered junction coverage after mapping simulated reads (y-
axis) is compared to actual coverage in simulated input (x-axis). (C) Sensitivity of 
junction detection.  Receiver operator characteristic (ROC) curve of splice junction 
detection displays sensitivity of junction detection as it relates to sequencing depth.  
Results represent TopHat mapping with a supplied annotation (“Annotation guided”, 
dashed line), and without an annotation (“De novo”, solid line).  (D) Junction 
detection in subsamples of real data.  Junction detection in read pools of increasing 
sequencing depth (10-100 million reads in increments of 10 million).  Junctions 
detected in each pool with at least one read (black line), or robustly detected with 10 
reads (green line) are indicated.  For each pool, the additional junctions detected 
relative to the previous pool are indicated.  Total false positive junction detections in 
each pool (dashed line) are also plotted. (E) Transcript coverage in subsamples of real 
data.  New transcripts detected with at least 6x coverage (black line) in each 
subsampled pool of real data is plotted. (F) Junction detection false positive rate in 
simulated data before filtering by Spanki (solid line) and after filtering (dashed line). 
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Junction spanning reads are a small portion of the total reads in an RNA-Seq 

experiment (9.4 - 12.6% in the six samples used in this study) raising the possibility 

that sufficient coverage for calling junctions would be problematic.  To test for the 

effects of read depth, we generated pools of simulated reads for each annotated 

reference transcript at multiple fixed coverages (1-10x, 15x, 20x, and 30x) and 

aligned these simulated reads with (‘Annotation guided’) or without (‘Denovo’) a 

reference annotation, and compared detection results with known input (Figure 2.2C).   

We detected >90% of junctions with 3x simulated transcript coverage when we 

provided an annotation to the TopHat aligner.  Without the benefit of annotation, we 

found that 6x coverage was required to reach this level of sensitivity.  Reaching this 

level of coverage for each annotated transcript (63 million bp of transcript sequence) 

required 2.5 million read pairs (5 million total reads).  For each sample of our 

experimental data, we obtained at least 200 million total reads.  However, as we 

explain later, real biological samples contain transcripts in unequal proportions, so 

obtaining high coverage of a rare transcript is difficult.  To put this in context of our 

experimental data, we detected 8,266 transcripts at coverage >= 6x with 5 million 

mapped reads. 

To relate our results on sensitivity to real data, we simulated different 

sequencing depths by sampling in 10 million read increments from one high-depth 

experiment (female heads, Sample ID: WT_F_rep1a, Table 2.1) by random selection 

(without replacement), and evaluated junction detection in each pool.  We found that 

> 40,000 junctions (> 65%) were detected in the first 10 million reads and that a 10-

fold greater read depth added ~20,000 more junctions (91% of the total junctions 
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detected at 200 million reads) (Figure 2.2D).  At depths of > 50 million mapped 

reads, the number of false positive detections exceeded the number of new junction 

detections (Figure 2.2D), as well as the number of new junctions detected robustly 

(>10 reads).  This shows that when we exceed this depth, we begin to detect more 

false positives than new true positives.  Also at this depth, the number of new 

transcripts detected with at least 6x coverage begins to level off (Figure 2.2E), and we 

obtain 6x coverage of 95% of the transcripts reliably detected at FPKM >= 1 in the 

full dataset (200 million mapped reads).  These data indicate that simply increasing 

read depth in a sample results in rapidly diminishing returns of detected splice 

junctions.  This has obvious implications for experimental design and sequencing 

strategy.    

2.3.3 False positive junctions and filters 

Since every genome is incompletely annotated, RNA-Seq experiments are 

likely to reveal splice junctions that are not yet annotated.  Distinguishing novel 

detection from experimental error is a major challenge of RNA-Seq analysis.  In our 

simulations of annotated transcripts, any unannotated junction detected was a false 

positive, which allowed us to estimate junction detection false positive rates in real 

data.  We examined the false positive rate at multiple transcript coverages (Figure 

2.2F) and found that the rate increased with greater transcript coverage due to 

cumulative errors in alignment.  These data indicate that greater read depth provides 

more opportunities to call false positives in addition to the diminishing returns 

outlined above.  Even though the false positive rate was < 0.5% of all detected 

junctions (up to 30x transcript coverage), with tens of thousands of junctions detected 
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in an RNA-Seq experiment, even these low error rates generated hundreds of false 

positives.  Junction detection errors have far-reaching downstream effects such as 

calls incorrectly supporting gene merges, antisense transcripts, and alternative 

splicing events.   

 
 
Figure 2.3:  Sequence characteristics of false positive junctions. 
Sequence logos of exon and intron sequence bordering splice junctions in (A) 
annotated GT-AG introns, (B) unannotated GT-AG introns detected that pass 
filtering, and (C) repeat induced false positives.  (D) Cartoon illustrating how false 
positives arise from repetitive sequence and sequencing error.  A transcribed fragment 
from a region of repetitive sequence is incorporated into a library.  A base calling 
error (in red) produces a read with an “A” instead of a “T” at the indicated position.  
This incorrect base call induces an incorrect gapped alignment that minimizes 
sequence mismatches.  
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To lower the false positive rate, it is important to understand the nature of the 

errors.  We therefore examined the sources of alignment error that lead to false 

positives at 30x coverage (Table 2.2).  The dominant source of error was due to the 

aligner using minor acceptor donor motifs rather than the canonical motif because 

mismatch reduction takes precedence over the relative likelihood of motifs.  The most 

common donor / acceptor motif pattern is GT-AG, and these major forms have 

additional well-defined motifs within the intron sequence (Figure 2.3A).  However, 

minor forms have been described (Hall and Padgett 1996) and two of these (GC-AG 

and AT-AC) are detected by TopHat (Trapnell, Pachter et al. 2009).   Although AT-

AC introns are > 100X rarer than GT-AG introns in the annotation, TopHat chose the 

more optimal alignment, resulting in the false placement of a GT-AG spliced 

alignment on a proximal AT-AC site because of an alignment with fewer mismatches 

at a proximal AT-AC site than to the correct GT-AG site. 

The preference for optimal alignment with fewer mismatches also led to false 

positive alignments on incorrect strands.  In RNA-Seq data from non-strand-specific 

protocols, the strand is inferred from the sequence of the interior donor/acceptor 

motif.  We observed 78 cases where an incorrect alignment occurred on the opposite 

strand of the simulated transcript sequence (31.6% of false positives, Table 2.1).  For 

example, a shift in the 3 prime end of the alignment can cause a (+) strand GT-AG 

intron to be read as a (-) strand minor form GT-AT intron.  If uncorrected, errors of 

this type can lead to the false prediction of antisense transcripts. 
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Table 2.2:  Sources of false positive junction detection 
 
Type of 
error 

False 
positives 

Qualitative 
filtering 
strategy 

Removed 
by 
qualitative 
filtering1 

Removed 
by 
quantitative 
filtering2 

False 
alignment 
to minor 
form 

36.40% Remove 
novel minor 
forms 

36.40% 30.70% 

Incorrect 
strand 

31.60% Inconsistency 
with gene 
model 

31.60% 28.80% 

Shifted on 
same 
strand 

13.80% None 0% 12.20% 

Paralog 
joining 

8.50% Inconsistency 
with gene 
model 

8.50% 7.70% 

Repeat 
sequence 
induced 

7.70% Exon-intron 
sequence 
similarity 

7.70% 6.50% 

Unidentifie
d error 

2% None 0% 0% 

Total 
defined 
errors: 

100% Total 
removed 
errors: 

84.20% 75.90% 

 
1False positives removed by Spanki’s qualitative filtering 
2False positives removed by filtering on entropy score (>= 2), calculated by Spanki 
 

A subtler error type we observed was the placement of a junction alignment 

shifted from its correct location on the same strand (13.8% of false positives, Table 

2.1).  In these error types, mismatches induce a misplaced alignment over a major 

form GT-AG intron that is consistent with the strand of the simulated transcript.  

Within this class of errors, 33% of them correctly place at least one end of the 

alignment (the donor or the acceptor) in the correct place, and 12% of them 
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incorrectly join annotated donors and acceptors from different transcripts of the same 

gene. 

Another error class we detected was the joining together of exons in paralogs 

as if they came from one gene, rather than keeping these as distinct transcripts from 

different genes.  Paralogs often reside proximally in the genome and retain a high 

degree of sequence similarity.  This similarity led to errors, where a splice junction 

originating from one paralog was aligned as a join between separate paralogous 

genes.  Although this is a smaller class of errors (8.5% of false positives, Table 2.2), 

they falsely suggest the presence of merges of distinct genes into a single gene model. 

While all the preceding error types resulted from incorrect placement of 

spliced alignments, we also observed cases where spliced alignments were incorrectly 

induced in reads that originated contiguously from the genome, resulting in the 

inappropriate insertion of an intron into an input exon (7.7% of false positives, Table 

2.2).  This error type occurred most frequently (78% of occurrences) in low sequence 

complexity regions with either very high or very low GC% (>70%, or <10%).  In 

these regions, mismatches induced a more optimal alignment when the read was split 

and joined to another segment up or downstream.  This type of error can be clearly 

seen when comparing the extended donor/acceptor sequence motifs of these false 

positives to annotated introns.  False positives occurred in repetitive sequence, where 

the incorrect 5 prime intron sequence was highly similar to the anchor sequence in the 

3 prime exon.  In this type of error, we saw an over representation of the motif  

“GTAG” on both ends of the junction (Figure 2.3C,2.3D).  These are a minor class of 

false positive in simulated transcript sequence (7.7% of false positives, Table 2.2).  
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We performed an additional simulation consisting only of contiguous genomic 

sequence, to estimate the frequency of this class of error should there be 

contaminating intergenic sequence in a sample.  10 million simulated reads from 

contiguous genome sequence resulted in 310 false positive junction alignments.  

Thus, in an RNA-Seq experiment with contamination from genomic DNA, or robust 

intergenic transcription without splicing, repeat-induced errors will be generated at a 

rate of 1 per 36,000 intergenic-derived read.  These errors create the appearance of 

introns in intergenic noncoding RNAs, and given that an intron is often used as 

evidence for a transcript and not contaminating DNA, these errors can lead to false 

calls of intergenic transcription.      

After characterizing the above sources of error, we sought to filter and remove 

as many as reasonably achievable.  We built several filtering criteria into Spanki that 

address the specific error types described above, and examined their effectiveness at 

removing errors. 

We first examined the effectiveness of a simple quantitative cutoff on the 

alignment entropy score (Graveley, Brooks et al. 2011).  This metric quantifies 

alignment complexity based on diversity of alignment offsets.  Requiring a minimum 

entropy score of two for each junction removed 75.9% of the false positives we 

identified (Table 2.2).  However, since quantitative filtering criteria may be overly 

stringent in the case of rare transcripts, we developed qualitative criteria that allow 

filtering of low abundance junctions. 

To prevent strand switches and gene merges at paralogs, we generated gene 

“assignments” for each end of a splice junction, by finding genes that overlap the 
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same region and strand as the putative junction.  An overall gene assignment was 

made from the results for each end of the junction spanning read, and junctions were 

flagged as “ambiguous” and filtered out if each edge was assigned to a different gene 

or if either end was assigned to no gene.  We found that filtering on this simple 

criterion was effective in removing all false positive junction detections in simulated 

data where a junction was called on the wrong strand or if paralogs were incorrectly 

joined (40.1% of false positives, Table 2.2).  To filter repeat sequence induced errors, 

we used the edit distance between exon shoulder sequence and intron sequence.  For 

each junction, Spanki compared 10bp upstream of the donor to 10bp upstream of the 

acceptor, and 10bp downstream of the donor to 10bp downstream of the acceptor, and 

reported the percent identity.  Using a threshold of 80%, this comparison revealed 

cases where similarity between putative exon and intron sequence generated false 

gapped alignments.  We found that filtering junctions where introns were > 80% 

identical to up or downstream exon sequence removed these errors (7.7% of false 

positives, Table 2.2).  To remove cases where mismatches induced alignment to a 

minor form intron, we removed introns of this minor class when they were not 

annotated (36.4% of false positives, Table 2.2).  

Applying the qualitative filtering criteria above removed 84.2% of false 

positive junctions in our simulated data (Table 2.2).  This removed 8.4% more false 

positives than using entropy scores alone, without requiring junctions to be detected 

with high coverage.  This led to an overall false positive rate of < 0.04% across all 

simulated read depths when using Spanki. We next applied these filters to our 

experimental data, to define a set of high-confidence junction detections in female 
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and male heads.  All of these filters are user tunable and can be adapted based on the 

experiment.   

2.3.4 Splicing detection in D. melanogaster heads 

We assayed splicing in D. melanogaster heads by analyzing splice junctions 

detected in our RNA-Seq read alignments.  Spanki quantified 70,827 junctions in 

heads passing our false positive filtering criteria, of which 24,711 were unannotated 

in Flybase r5.39.   We examined the sequence motifs of the major form (GT-AG) 

unannotated junctions detected in heads, and found them to be nearly 

indistinguishable from the motifs of annotated junctions (Figure 2.3A,2.3B), with 

clear branch sites and polypyrimidine tracts.  Using Spanki’s gene assignments for 

these junctions, we found that they arose from 5,329 genes, and no single gene 

contained more than 1% of the total unannotated junctions, showing that novel 

junction detection was not due to under-annotation of a small group of genes.  These 

data suggest that transcript diversity is under-annotated.   

Genes with low abundance transcripts pose a problem for downstream 

differential analysis, as coverage is reduced due to both splicing differences and 

primary transcript abundance.  To determine whether low coverage junctions are due 

to rare splicing or low levels of transcription, we examined the junction-level 

“inclusion rate” calculated by Spanki (see Details of software design, Figure 2.4A).   
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Figure 2.4:  Calculation details and splicing event characterization.   
Details of how Proportion Spliced In (PSI) is calculated, and results for each splicing 
event type.  (A) An example pair of splice junctions, where a donor is shared between 
two alternative acceptors.  For each junction, intron read-through is calculated for the 
five prime (irt5) and three prime (irt3) ends.  A proportion spliced in (PSI) is 
calculated for each junction (PSIjunc ), where exclusion is the number of junction 
spanning reads, and inclusion is the sum of the irt5 value and the number of reads 
spanning the alternative junction from the same donor.  An alternative acceptor 
“event” is defined that composes the two junctions, and a PSI is calculated for the 
event (PSIevent) where the number of junction spanning reads over each join is used to 
define inclusion or exclusion.  In each formula, “I” represents inclusion and “E” 
represents exclusion.  (B) Pairwise splicing events defined for all transcript models in 
Flybase 5.39 annotation (black bars), and the subset of those detected as alternatively 
spliced in female and male Drosophila heads by Spanki (grey bars).  Black bars 
indicate splicing event classes as a percent of all defined pairwise events.  Grey bars 
indicate splicing events detected as a percent of all detected events.  Cartoons of each 
event type are in the leftmost column, with the “inclusion” form indicated in green, 
and the “exclusion” form indicated in orange.  A description of each type is adjacent 
to each cartoon.  The “Unclassified” type includes diverse complex type with no 
concise verbal description.   
 

This value summarizes coverage at each donor to estimate an inclusion rate for each 

junction, to identify those that are rare (approaching 0%) or common (approaching 

100%).  We found that for annotated splice junctions, median inclusion rate was high 
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in females (89%) and males (90%), while for unannotated junctions, median inclusion 

rate was low (1% in females, and 0.5% in males), clearly demonstrating that the 

unannotated junctions were rare events.  Since junction detection in only one sex may 

indicate regulated splicing, we compared junction detection in both sexes.  We found 

that 12.5% of junctions were detected only in females, and 14% were detected only in 

males.  However, this does not necessarily mean that sex-biased splicing occurred at 

this rate, as sex-specific junction detection may result from differences in sampling 

error, sequencing depth, or transcription, not splicing.  Additionally, biological 

variance was high for many of the sex-specific junctions in this first-pass analysis.  

We discuss this further when we directly compare splicing in female and male heads. 

Before comparing female to male heads, we needed to classify events into 

alternative exon sets.  These pairwise classifications can be defined as:  cassette 

exons, mutually exclusive exons, alternative donors, alternative acceptors, alternative 

first and last exons, and retained introns (Black 2003).   However, there are other 

classes of splicing events that do not fit into these categories.   To analyze the full 

repertoire of splicing complexity, we expanded these seven basic types by a 

systematic categorization of all pairwise relationships using the AStalavista tool 

(Sammeth, Foissac et al. 2008), which constructs graphs from transcript models and 

outputs complete and non-redundant sets of splicing differences identified through 

graph alignment (see also Details of software design).  This analysis yielded 13,790 

pairwise-defined alternative splicing events (Figure 4B).  Of these, 9,201 were 

internal events (not involving the first or last exons) and the remaining 4,589 were 

alternative promoter events.  While alternative promoter use is not alternative splicing 
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per se we include these in our analysis, since isoforms from alternative promoters can 

be compared when junctions differentiate them.  1306 internal events (14%) did not 

fit into the seven basic categories.  Of this class, “Skip two exons" (200 events) was 

the largest category, followed by "Alternative donor and acceptor" (two variants, 142 

and 137 events, respectively).  An additional 827 events (125 unique structures) are 

termed "Unclassified" because they cannot easily be described in words.  The top five 

occurring structures in the “Unclassified” category comprise 41.5% of these events, 

each of which represent a variant of a skipped exon event. 

Spanki parsed AStalavista output to obtain sets of junctions that define 

mutually exclusive “paths” (Inclusion and Exclusion, see Details of software design), 

to identify junctions that interrogate each path specifically.  We then used Spanki 

(Figure 1D) to merge junction coverage data and estimate the relative abundance of 

the alternative forms.  Spanki adopts the Percent Spliced In (PSI) metric (Wang, 

Sandberg et al. 2008) to express this quantitatively, but reports this as a proportion 

(ranging from zero to one). Hence, we refer to it here as the Proportion Spliced In 

(PSI).  To find the number of genes alternatively spliced, we selected events for 

which junction coverage was detected over the inclusion path in either sample, and 

over the exclusion path in either sample.  By this criterion, we found that 7,894 events 

in 2,441 genes were alternatively spliced in head samples (5,450 internal events in 

1,852 genes) (Figure 2.4B).   To find events that were sex-differentially spliced, we 

used Spanki to sum junction data for each inclusion and exclusion path across all 

replicates to calculate event-level PSI (Figure 2.4A), and performed Fishers exact 

tests.  After correcting for multiple testing, we found 172 events with significant 
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differences between female and male heads  (adjusted p-value < 0.01, Benjamini and 

Hochberg).   

 

Figure 2.5: Sources of variation in Proportion Spliced-In (PSI).   
Volcano plots where ΔPSI is plotted against the –log10 p-value of the Fisher’s Exact 
Test, to assay variation due to sampling and sequencing error in simulations (A), 
technical RNA-Seq replicates (B), and biological replicates (C).  (A) Plot comparing 
two simulated read sets of equal reads per kilobase (400 RPK).  Since transcript 
abundances are equal, expected ΔPSI is zero. (B) Variation in ΔPSI between replicate 
RNA-Seq runs of the same libraries. (C) Variation in ΔPSI between independent 
biological samples, each with a distinct RNA-Seq library.  Results within each sex 
were similar, results for female samples shown. (D) False positive differential 
splicing calls in a null dataset.  Cufflinks results are shown for both splicing analysis 
(Jensen-Shannon Divergence, JSD), and isoform abundance comparison.  MISO 
results shown are based on isoform-centric analysis. (E) Summary of detection of 
sex-differential splicing in components of the sex-determination pathway in 
Drosophila heads, using Spanki and four other approaches. 
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To examine potentially confounding sources of variation that are independent 

of sex, we generated a null model for splicing differences by simulating two pools of 

reads with equal transcript coverage in Spanki, and also compared technical and 

biological replicates of real RNA-Seq data to each other.  We found minor variation 

due to sampling alone and technical replication (Figure 2.5A,2.5B), but biological 

replication was a  much greater source of variability (Figure 2.5C), particularly at low 

total abundance (< 10 average coverage per site in either path).  To conservatively 

adjust for this, we reduced our query set to only events where average coverage per 

site was > 10 in each path, and the unadjusted p-value for the between-sexes 

comparison was less than the unadjusted minimum p-value between biological-

replicates.  We also set a conservative threshold on the difference in PSI (>= 0.20).  

This filtering yielded 22 events in 17 genes significantly different between the sexes 

(Table 2.3).  The expected members of the sex-determination cascade were identified 

following filtering.  A diversity of splicing types characterizes the core components: 

alternative donors and acceptors, skipped exons, retained introns, and alternative last 

exons (Venables, Tazi et al. 2011).  The additional targets we detect have a similar 

diversity of regulation types, with no over-representation of any particular regulation 

type.  Functional sex-biased splicing events might be associated with genes with roles 

in behavior, as the two terminal sex-determination genes (dsx and fru) encode 

alternatively spliced transcripts.  Indeed, several of the sex-biased splicing events 

occurred in transcripts of genes with roles in sexual behavior (see Conclusions). 

To compare Spanki’s false positive rate relative to other tools, we compared 

the number of differential splicing calls made in our simulated null dataset.  Spanki 
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called zero events differentially spliced in this dataset (Figure 2.5D).  We counted 

reads that map within exons using the script provided with DEXSeq (Anders, Reyes 

et al. 2012), and performed an exon-level differential analysis.  DEXSeq also called 

zero exons differentially expressed.  Next we performed an isoform-centric analysis 

using MISO (Katz, Wang et al. 2010), which called differential splicing in transcripts 

of 222 genes (Bayes factor cutoff > 40).  Analysis with Cuffdiff (Trapnell, Williams 

et al. 2010), with default parameters except for specifying upper quartile 

normalization, called 183 loci as differentially spliced, and 267 isoforms were called 

differentially expressed.  These results showed that Spanki has a low false positive 

rate of differential splicing calls relative to most other tools.  

Since Spanki accurately detected known sex-differential splicing targets, we 

asked how other tools performed at the same task.  Only Spanki detected differential 

splicing in each target of the sex-determination pathway (Figure 2.5E).  DEXSeq 

(Anders, Reyes et al. 2012), which relies only on exon-level counts, detected 

significant differences in fru, Sxl, and dsx, but not in msl-2 or tra.  Similarly, an 

analysis with MISO (Katz, Wang et al. 2010) failed to detect differential splicing in 

msl-2 transcripts.  For Cuffdiff (Trapnell, Williams et al. 2010), we examined results 

for the splicing difference test (Jensen-Shannon Divergence metric), and also for 

isoform abundance differences.  Neither of these metrics detected differential spicing 

in more than three out of five targets. These results clearly show that Spanki is 

superior in quantifying sex-differential splicing in these pathway components. 

Genes are often regulated by feed-forward network motifs (Milo, Shen-Orr et 

al. 2002; Shen-Orr, Milo et al. 2002; Johnston, Otake et al. 2011), so we asked if 



 

 47 
 

genes with sex-biased splicing also showed sex-biased transcription.  We examined 

the gene-level transcriptional characteristics of genes expressed in female and male 

heads and found modest sex-differential expression relative to whole adults, as 

previously reported by SAGE analysis (Fujii and Amrein 2002) (Figure 2.6).  We 

tested for differential expression using Cuffdiff (Trapnell, Williams et al. 2010), 

applying upper quartile normalization, and identified 19 genes with sex-differential 

expression (FDR adjusted p-value < 0.05).  To ensure this sparse differential 

expression was robust to statistical method, we performed a complementary test with 

the count-based method DESeq (Anders and Huber 2010).  Differential expression 

was also modest by this approach (51 genes FDR adjusted p-value < 0.05), and 

included all genes called differentially expressed by Cuffdiff.  We found that by 

either approach, genes with sex-differential splicing did not show sex-biased 

transcript abundance. 
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Table 2.3: Genes sex-differentially spliced in Drosophila heads 
 

Gene ID 
Gene 
name Event type ΔPSI1 

Adj. p-
value2 GO annotation 

FBgn0004652 fru altdonor -1 5.87E-08 Male courtship behavior 
FBgn0003659 Sxl exonskip 0.974 5.87E-08 Sex determination 

FBgn0000504 dsx AltLE 0.939 5.87E-08 
Sex determination, male 
courtship behavior 

FBgn0004652 fru exonskip -0.906 9.90E-08 Male courtship behavior 

FBgn0028341 l(1)G0232 AltFE 0.802 2.98E-08 
Protein tyrosine 
phosphatase activity 

FBgn0086675 fne altdonor -0.656 6.76E-08 
Regulation of RNA 
metabolism 

FBgn0005616 msl-2 retintron 0.565 1.38E-03 Dosage compensation 
FBgn0259923 Sep4 AltFE -0.524 4.79E-04 
FBgn0259923 Sep4 altdonor -0.469 5.87E-08 

GTPase activity 
 

FBgn0053113 Rtnl1 AltFE -0.464 6.39E-08 
FBgn0053113 Rtnl1 AltFE -0.444 5.87E-08 
FBgn0053113 Rtnl1 AltFE 0.426 5.87E-08 

Inter-male aggressive 
behavior, olfactory 
behavior 
 

FBgn0004852 Ac76E exonskip -0.382 5.87E-08 
Intracellular signal 
transduction 

FBgn0086674 Tango13 altdonor 0.372 6.61E-08 Sulfotransferase activity 

FBgn0003741 tra altacceptor -0.371 5.87E-08 
Sex determination, male 
courtship behavior 

FBgn0260660 mp skip2exons -0.252 7.93E-03 Motor axon guidance 
FBgn0259682 CG42351 exonskip -0.242 9.21E-08 none 
FBgn0259214 PMCA mutexcl 0.232 5.87E-08 
FBgn0259214 PMCA exonskip -0.229 5.87E-08 

Calcium  transporting  
ATPase activity 

FBgn0037297 CG1116 retintron 0.229 1.39E-03 none 

FBgn0010482 l(2)01289 Unclass. 0.22 2.98E-08 
Protein disulfide 
isomerase activity 

FBgn0036194 CG11652 AltFE 0.208 8.26E-03 Phagocytosis 
1PSI in females – PSI in males.  Table is sorted by ΔPSI absolute value. 
2p-value from Fisher’s Exact Test, FDR corrected by Benjamini-Hochberg  
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Figure 2.6:  Transcription of sex-differentially spiced genes 
Ratio vs average abundance scatterplots of gene expression in female and male heads.  
Log2 fold change (female vs male) is plotted against the log2 mean FPKM (mean of 
females and males).  Genes with significant sex-biased expression (FDR adjusted p < 
0.05, Cuffdiff) are shown in red (female-biased) and blue (male biased).  Genes with 
significant sex-differential splicing (Table 2.3) are shown in green.  No change in 
expression (solid black line) and two-fold difference (dotted black line) are shown.  
 

Since our splicing event definitions rely on annotated transcript models, we 

asked whether this restriction prevented the detection of sex-differential events.  We 

analyzed the junction level results from Spanki that test for differences at each donor, 

independent of a priori knowledge about up or down-stream exon connections (c.f. 

Figure 2.4A).  We extracted unannotated junctions with an adjusted p-value for 

differential splicing < 0.01, total detected coverage in either sample > 10 reads, and 

where junction coverage was greater than intron read-through.  Through this analysis 

Spanki found three putative sex-differential unannotated junctions, in Epidermal 

growth factor receptor pathway substrate clone 15 (Eps-15), Grunge (Gug), and 



 

 50 
 

bedraggled (bdg).  Thus Spanki can also be useful for identifying unannotated events 

that can then be used to update annotations prior to rerunning the analysis tools.  

2.3.5 Validation of sex-differential splicing 

While our extensive simulations allowed us to tune Spanki using known input, 

biological samples are known to be unknowns.  To test our predictions and 

stringency, we first compared PSI estimates from Spanki with published estimates for 

several components of the core sex determination pathway: dsx, fru, Sxl, tra, and msl-

2 (Figure 2.7).  The transcripts encoded by these genes have been shown to undergo 

sex-biased (tra) or sex-specific (dsx, fru, Sxl, msl-2) splicing events (Venables, Tazi 

et al. 2011).  However, this specificity is not clearly visualized in raw base-level 

coverage results (Figure 2.7A).  Spanki's PSI calculation accurately reflected the sex-

specificity of these splicing events (calling 79%-100% of the sex-specific isoform) in 

dsx, fru, Sxl, and msl-2 (p-value < 5.0E-04) (Figure 2.7B,C).  In the case of the sex-

biased tra splicing event, Spanki detected the presence of the interrupted ORF 

isoform in females (62.5%) and males (99.6%), as previously observed in Northern 

blot experiments (Nagoshi, McKeown et al. 1988).  

Our splicing calls for the sex determination transcripts are more sex-biased 

than previous RNA-Seq experiments (Graveley, Brooks et al. 2011) on whole adult 

flies.  To help determine if this was due to methodology, we also quantified splicing 

events using measurements of exon coverage and isoform abundance estimates (in 

expected fragments per kilobase of transcript per million mapped reads - FPKMs), to 

see if these approaches yielded similar results.   These metrics predicted results that 

were much less sex-specific; for example in the case of dsx sex-specificity was 67.4 - 
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89.2% by exon counts or FPKM, and 94.6- 99.3% by Spanki (Figure 2.7B).  These 

results show that using junction coverage with Spanki results in more switch-like 

splicing difference calls.  The MISO tool (Katz, Wang et al. 2010) also produces PSI 

estimates, so we compared PSI values for all sex-specific splicing events in this 

pathway between the two tools and found that Spanki showed greater sex-specificity 

(Figure 2.7D).   

 
Figure 2.7 (Next page):  Resolution of splicing differences in the sex determination 
pathway.  
Detection and visualization of sex-differential splicing in sex determination pathway 
components (Venables, Tazi et al. 2011) by different methods. (A) Genome browser 
view of alignments within the dsx locus, for female (top) and male (bottom) D. 
melanogaster heads.  Base level coverage from mapped reads (TopHat (Trapnell, 
Pachter et al. 2009)) loaded in BED format and visualized in the UCSC genome 
browser (Kent, Sugnet et al. 2002) (edited for better visibility), for one replicate of 
data for each sex.  Density of reads mapping contiguously to the genome are in blue, 
and junction spanning reads are shown underneath with brackets.  (B) Motif 
representation of the regulated alternative last exons splicing event in dsx, showing 
the splicing difference between the female isoform (top) and male isoform (bottom), 
Mosaic plots display the specificity for the female isoform (red) and the male isoform 
(blue) in each sex, calculated as a proportion from different quantitations of the sex-
specific isoforms: splice junctions counts, qPCR, counts of reads within exons, and 
full length isoform abundance estimates (FPKM). (C) Splicing event motifs for other 
components of the sex determination pathway, along with their sex-differential 
splicing results obtained from junction counts with Spanki in mosaic plots: Sxl, 
skipped exon; msl-2, retained intron, tra, alternative acceptor, and fru, alternative 
donor. Significance measures from Spanki (Benjamini-Hochberg adjusted p-value) 
are shown beneath each mosaic plot.  For each gene, red indicates the female isoform, 
and blue indicates the male isoform. (D) Bar plot of splicing sex-specificity as 
quantified by the PSI values report by Spanki and MISO.  Results for MISO are from 
an event-centric analysis. 
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Increased sex-specificity is only desirable if it truly reflects the biology.  For further 

evaluation of Spanki, we performed quantitative PCR (qPCR) experiments on 

additional biological replicates, in order to measure the amounts of the inclusion or 

exclusion forms, respectively, relative to the level of Actin 5C transcripts.  Within 

each sex, we compared the inclusion / exclusion ratio in females to the inclusion / 

exclusion ratio in males.  We performed these experiments on dsx, fru, and ten 

additional splicing events chosen from among a list of transcripts initially called as 

sex-biased, but rejected following filtering based on variance in biological replicates 

and ΔPSI magnitude (Figure 2.8).  These events represented each of the basic splicing 

types, and covered a broad range of PSI values.  The two methods were quantitatively 

highly similar as proportions (Figure 2.8A), and the median value of ratioqPCR / 

ratioRNA-Seq was close to one (1.16). These experiments confirmed the high degree of 

sex-specificity for the dsx and fru events.  The sex-differential splicing in the other 

transcripts that failed Spanki’s filtering criteria showed low magnitude differences in 

splicing, and sometimes switched direction (e.g. female-biased to male-biased) 

depending on technique and/or biological replicate (Figure 2.8B).  These results also 

underscore the importance of using filters in addition to statistics for producing robust 

differential splicing calls.    
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Figure 2.8:  Results of qPCR validation. 
Comparison of results for alternative splicing quantitation by Spanki (RNA-Seq) and 
by qPCR.  (A)  Scatter plot of proportion spliced in (PSI) by RNA-Seq vs qPCR for 
the inclusion or exclusion form for each event assayed.  Inset is Pearson’s r 
coefficient.  (B) Barplot of ratio/ratio comparison for RNA-Seq and qPCR.  A ratio 
(of the Inclusion value / Exclusion value) is calculated within each sex.  The result is 
then compared ratiometrically ( RatioF / RatioM ) and presented for each method 
(RNA-Seq (Spanki), black) and qPCR (grey), for each splicing event assayed by 
qPCR.  Bars indicate splicing events that passed significance test filtering by PSI 
magnitude and variance in biological replicates, and events that did not pass filtering. 
 

2.3.6 Comparison to other tools 

One strength of Spanki is that is provides diverse functionality in a single 

toolkit, along with novel quantitative and qualitative junction-level analysis.  

Simulation tools are available in other programs, and separately, several tools offer 

differential splicing analysis, using full-length transcript abundances (Cufflinks, 

(Trapnell, Williams et al. 2010)), read counts within exons (DEXSeq, (Anders, Reyes 

et al. 2012)) and Bayesian inference from generative models (MISO (Katz, Wang et 

al. 2010)).  The features in Spanki compared to these tools is described in Table 2.4. 

 
 
 
 
 



 

 55 
 

 
 
 
Table 2.4: Comparison of features among RNA-Seq analysis tools 
 

Feature Sp
an

ki
 

To
ph

at
 

C
uf

fli
nk

s 

M
IS

O
 

D
EX

Se
q 

R
U

M
 

Fl
ux

 
C

ap
ac

ito
r 

M
aq

 

Simulation tools x         x x x 
Empirical error 
modeling x           x x 
Custom simulated 
transcript coverages x               
Junction alignment 
curation x x1             
Gene assignment for 
junctions x   x2           
Qualitative junction 
analysis x               
Junction-level 
comparisons x               
Event-level 
comparisons x   x3 x x4       
PSI metric reporting x     x         

1Tophat offers criteria for filtering what is reported after the alignment stage.  Spanki 
provides additional criteria that can be applied after reporting  
2Cufflinks assembles transcripts and merges with annotated genes 
3Cuffdiff reports differential splicing by TSS group, without specifiying the 
differential splicing event 
4DEXSeq provides results for exon-level abundance differences 
 

To assess Spanki’s false positive rate of differential splicing detection, we 

generated a null dataset using simulated reads and compared differential splicing calls 

using Spanki and other tools.  For this null dataset, we made four read pools, each of 

which contained reads from all annotated transcripts in equal abundances (300 reads 

per kilobase of transcript).  Each read pool was an independent simulation, where 

mismatches were introduced into reads using empirical error models.  We arbitrarily 

divided these pools into two groups, replicate 1 and 2 of “Sample A” and replicate 1 
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and 2 of “Sample B.”  We then mapped each read pool using Tophat (Trapnell, 

Pachter et al. 2009), and fed these alignment files to several tools, to test whether 

calls of differential splicing would result. 

Spanki called zero events differentially spliced in this null dataset.  Next we 

performed an analysis with Cuffdiff (Trapnell, Williams et al. 2010), with default 

parameters except for specifying upper quartile normalization.  This program 

correctly called zero genes differentially expressed.  However, 183 loci were called 

differentially spliced, and 267 isoforms were called differentially expressed.  We 

counted reads that map within exons using the script provided with DEXSeq (Anders, 

Reyes et al. 2012), and performed an exon-level differential analysis.  DEXSeq also 

called zero exons differentially expressed.  These results showed that Spanki and 

DEXSeq correctly call no false positive splicing differences in the null model. 

 We have demonstrated Spanki’s accuracy with quantifying sex-specificity of 

known sex-determination pathway components (Figure 2.7), so we next asked how 

other tools performed at the same task.  Only Spanki detected differential splicing in 

each target of the sex-determination pathway.  DEXSeq, which relies only on exon-

level counts, detected significant differences in fru, Sxl, and dsx, but not in msl-2 or 

tra.  DEXSeq does not report event-level PSI, so we estimated this metric by using 

exon-level counts that were normalize by the program.  doublesex is the only target 

that demonstrates sex-specificity by this metric, owing to the fact that it is the only 

event in this list where mutually exclusive exons can be quantified.  PSI estimates 

were calculated for tra and dsx since there is unique exon space for at least one 

isoform, but the calculation could not be made for msl-2 and Sxl, which lack unique 
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exon space for either isoform.  In the case of fru, DEXseq detects differential 

expression by virtue of higher abundance in the female-specific exon, but reports no 

difference in the exon space that is shared by both isoforms. For Cuffdiff, we 

examined results for the splicing difference test (Jensen-Shannon Divergence metric), 

and also for inter-se isoform abundance differences.  No significant differences were 

detected by sex by either of these tests, for any of these sex determination targets.  

These results clearly show that Spanki is superior in quantifying sex-differential 

splicing in these pathway components. 

Section 2.4 Details of software design  

Spanki is an open-source python package distributed under the GNU public 

license.  It is available at http://www.cbcb.umd.edu/software/spanki and all source 

code can be downloaded from the Github public repository at 

https://github.com/dsturg/Spanki.  It is lightweight and rapid, designed for inter-

operability with other open-source tools, and accepts input data in standardized 

format (BAM, GTF, FASTA), using open-source python modules.  It evaluates 

alignments in BAM format at the rate of 10 minutes per GB, and the remainder of 

processing time for a typical analysis takes less than five minutes (benchmarked on a 

2.8 GHz core i7 iMac with 8GB of RAM).  

A complete analysis using Spanki consists of these major steps (Figure 2.1B-E): 

● Simulation 

● Alignment evaluation and junction quantification 

● Generation of junction sets from precomputed splicing event definitions 

● Differential testing on junctions and events 
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2.4.1 Simulation 

Performing simulations of RNA-Seq data generation is a common approach to 

benchmarking tool performance (Trapnell, Williams et al. 2010; Grant, Farkas et al. 

2011).  Several tools exist to perform simulations with modeled error profiles 

(BEERS, (Grant, Farkas et al. 2011), maq (Heng Li, http://maq.sourceforge.net/), 

Flux Simulator (Michael Sammeth, http://flux.sammeth.net/)).  The read simulator in 

Spanki is unique in that it combines robust empirical modeling with detailed reporting 

that is geared toward evaluating splicing detection performance.  This allows the 

production of simulations that approximate real experimental error profiles, which 

can be done while a pipeline is under development or for every sample. 

Error modeling 

Spanki estimates model parameters from a first pass alignment of real RNA-

Seq reads using permissive quality aware mapping with Bowtie (Langmead, Trapnell 

et al. 2009).  These alignments allow Spanki to estimate the true error rates within the 

experimental reads.  The error modeling function within Spanki parses the alignments 

in Bowtie’s map format, and produces probability weight matrices for mismatches by 

position in the read and by base substitution type, and for quality scores by position.  

The read simulator uses these models to introduce mismatches. 

Read generation 

Spanki’s RNA-Seq simulator function generates simulated reads.  The basic 

input Spanki needs to conduct a simulation is a set of transcripts to simulate, a depth 

of coverage, and models for incorporating error.  Spanki’s simulator takes transcript 

models in GTF format, and extracts transcript sequence from a genomic reference to 
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conduct the simulation.  To simulate intron retention, Spanki generates a fraction of 

simulated reads (specified by the user) from complete transcript sequence where 

introns are retained.  The depth of coverage can be specified by the user in units of 

coverage or reads-per-kilobase (RPK).  For coverage, the number of reads (N) is 

calculated by the formula N = (C * G) / L, where C is the coverage (eg, 2x), G is the 

transcript length, and L is the read length.   Reads-per-kilobase (RPK) normalizes for 

feature length so that reads can be generated for transcripts in fixed proportions, 

creating a null model for splicing differences.  Spanki calculates the number of reads 

to simulate based on the user-specified depth, for each transcript.  Alternatively, 

Spanki accepts a text file where the user can list individual transcripts to simulate at 

different coverages, which allows simulating fixed quantitative splicing differences 

between alternative isoforms.   

Spanki chooses random positions in transcript sequence to extract reads.  

Mismatches are then introduced according to the specified model.  Pre-built error 

models are included for the experiments described in this study, a sample from the 

modENCODE developmental timecourse (Graveley, Brooks et al. 2011) (30-day old 

whole adult male Drosophila), and a simple weighted-random model.  In addition, the 

user can specify a custom model built on the user’s own data.  These modeled error 

frequencies are applied as weights for mismatch number, position, and substitution 

(Figure 2.2B).  Weight matrices of quality scores are used to create a consensus 

quality values across all positions - one for matched positions, and one for 

mismatched positions, which are concatenated to create a quality string for the read. 
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In addition to simulated reads, Spanki reports information that facilitates 

analysis of alignment and detection (Figure 2.2B).  Coverage generated by the 

simulation for each splice junction is reported, along with read counts for each 

transcript.   To enable the tracking of aligner errors, the genomic coordinates of origin 

for each read are incorporated into a unique read identifier.   The true origin of 

simulated reads is also reported in a SAM file that represents a perfect alignment, 

which can be fed to an assembler such as Cufflinks (Trapnell, Williams et al. 2010) to 

allow the evaluation of error in transcript abundance estimates due to assembly 

separately from errors in alignment. 

2.4.2 Alignment evaluation and junction quantification 

Some short-read aligners offer filtering criteria, which are either applied at the 

alignment stage or the reporting stage.  For maximum flexibility, Spanki decouples 

the alignment and filtering steps, with a tool that applies post-hoc analyses of 

alignment files.   This allows alignments to be performed on multiple data sets 

generally, with consistent filtering applied later, and allows changing the filtering 

criteria without re-aligning.  Spanki streams through an alignment file produced by 

any aligner (in standard BAM format), using the Pysam module (Andreas Hager, 

http://code.google.com/p/pysam/) and calculates junction coverage along with 

alignment diagnostic measurements.  These measurements include the number of 

alignment offsets, alignment entropy (Graveley, Brooks et al. 2011), and Minimum 

Match on Either Side (MMES, (Wang, Xi et al. 2010)).   

In addition to alignment diagnostic values, Spanki generates calculations that 

are informative of splicing regulation.  For example, intron retention is estimated.  
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Each junction may exhibit subtle intron retention properties in different biological 

contexts.  For this reason, Spanki counts “intron read-through” reads (Wang, 

Sandberg et al. 2008; Brooks, Yang et al. 2011) for each junction, regardless of the 

presence of an annotated retained intron isoform (Figure 2.4A).  These are read 

alignments that span the exon/intron boundary without gaps on either side.  To ensure 

comparability, Spanki enforces an overhang requirement, which is user-tunable, and 

is applied to both intron read-through and junction calling.  These intron read-though 

values are also used to generate a proportion value for each junction that normalizes 

for differences in transcription and sequencing depth.   For each junction, Spanki 

sums the intron read-through at the donor with junction coverage to all alternative 

acceptors as an “inclusion” value, to calculate the  Proportion Spliced In (PSI) metric 

(Wang et al., 2008, Venables et al., 2009, Brooks et al., 2011; Figure 2.4A). This 

provides an estimate of the parent transcript abundance in the sample where the 

donor/acceptor pair was available to be joined, which Spanki terms the “inclusion 

rate”, calculated as 1 - PSIjunc . 

Generation of junction sets from precomputed splicing event definitions 

Spanki provides utilities for parsing splicing event definitions produced by 

AStalavista (Sammeth, Foissac et al. 2008), and can be adapted to accept event 

definitions from other sources such as Ensembl (Koscielny, Le Texier et al. 2009) and 

Sircah (Harrington and Bork 2008).  The AStalavista algorithm begins by 

decomposing transcript models into “sites,” which are exon boundaries.  Graphs are 

built for each gene, where sites are nodes and edges connect them.  Edges may 

therefore correspond to introns or exons.  Splicing events are found by identifying 
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subgraphs that have identical sites on the ends, but no common interior sites.  This 

process finds regions of the parent transcript where the donor / acceptor sites of two 

alternatives are present on a parent transcript, but utilized mutually exclusively in 

processed transcripts.  Spanki uses these event definitions to build mutually exclusive 

"paths" composed of junctions that interrogate each event specifically.  Spanki will 

also flag and report splicing events that cannot be assayed using only junctions (for 

example, alternative promoters where there is no differentiating junction). 

The terminology of  ‘inclusion’ and ‘exclusion’ has been used in the literature 

to refer to differences in size of the spliced product.  Product length does not matter 

for the purposes of our analysis, so Spanki calls the variant with the most 5 prime 

differentiating site to be the ‘inclusion’ isoform.  This improves consistency, 

guarantees that all events of the same type will have the same inclusion/exclusion 

structure, and avoids confusion in cases where alternatively spliced products are of 

equal length.  An exception is made for retained introns, where the retention event is 

always called the inclusion path. 

Spanki coverage from joins to exons that are outside of the event being 

considered.  This is because many gene models are complex, and splicing events 

cannot always be assayed independently.  For events with multiple exons in the 

inclusion or exclusion paths (such as skipped exons), there may be up- and down-

stream connections to other exons that could confound the results.  To adjust for this, 

Spanki calculates and reports the junction coverage for first-order neighbors of all 

interior exons that extend to exons outside the splicing event.  This coverage may 

lead to over-or under-counting of inclusion or exclusion joins within the splicing 



 

 63 
 

event.  Since our model focuses on discrete and specific measurements, we use this 

information to indicate the presence of potentially confounding coverage for each 

event. 

Since splicing analysis is a comparison of two alternative events, it is 

convenient to compare using proportions.  The PSI metric that Spanki uses to express 

proportions has been applied elsewhere to splicing microarrays and RNA-Seq (Wang, 

Sandberg et al. 2008; Venables, Klinck et al. 2009; Brooks, Yang et al. 2011).  In 

RNA-Seq, the calculated read counts are then divided by the number of ‘sites’ or 

positions in each path, to normalize each side of the ratio (Wang, Sandberg et al. 

2008; Brooks, Yang et al. 2011).   Using only junctions yields more consistent 

comparisons between events than including exon reads, since the number of positions 

is constant for events of the same type.    

2.4.3 Differential testing on junctions and events 

Assessing the significance of differences between samples requires accounting 

for differences in transcription and sequencing depth.  The Fisher's Exact Test (FET) 

is well suited to this task, since testing proportions accounts for differences in sample 

totals due to depth or transcription.  Spanki constructs 2 x 2 contingency tables from 

junction counts for each splicing event, to test the null hypothesis that the two 

samples have equal inclusion/exclusion proportions.  The test is performed using the 

fisher python package v.0.1.4 (Brent Pederson, http://pypi.python.org/pypi/fisher/).  

FDR correction is performed by the Benjamini-Hochberg method implemented in the 

StatsModels package (Skipper Seabold, Josef Perktold, 

http://statsmodels.sourceforge.net/). 
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To help visualize splicing differences, Spanki includes R scripts to produce 

mosaic plots, where the relative size of each cell is proportional to real (non-

normalized) cell counts (Figure 2.7).  Code is also included to produce fourfold plots, 

which provide a visual test of the null hypothesis of the FET. This provides an 

effective simultaneous visualization of normalized proportions and significance.  

These plots are implemented in the “vcd” package for R (Meyer and Hornik 2006). 

 

Section 2.5 Conclusions 

Alternative splicing is clearly an important mode of transcriptome regulation, 

but analysis by RNA-Seq has challenges at multiple levels, with uncertainty at the 

alignment stage, at definition of splicing events, and quantification.   We have 

demonstrated the major sources of variation and error prevalent in an RNA-Seq 

analysis, and shown how using Spanki can mitigate these problems.  Implementation 

of tested filtering steps in Spanki reduces the number of genes called differentially 

spliced.  We argue that without such filtering, variation and error result in over-

estimation of splicing differences in RNA-Seq studies. 

2.5.1 Implications for RNA-Seq experimental design 

Our results provide guidance on the RNA-Seq depth required to analyze 

splicing and the optimum type of experiments to perform at the design phase of a 

project.  Since splice junctions are a small fraction of the total mapped reads, a logical 

course of action is to re-sequence at great depth to improve detection.  Perhaps 

counter-intuitively, our results show that greater depth leads to diminishing returns, as 

the vast majority of sequenced reads originate from highly expressed transcripts.  
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This has been observed previously in data from human samples (Labaj, Leparc et al. 

2011; Tarazona, García-Alcalde et al. 2011).  In our experiments, the vast majority of 

junctions are true positives at 20 million mapped reads, but new junctions detected 

due to increased coverage at 40 million mapped reads and false positive junctions are 

equally frequent.  We show that with proper curation using Spanki, it is possible to 

extract real junctions at high sequencing depths (> 100 million real RNA-Seq reads), 

one can identify rare junctions that are unlikely to be due to experimental error.   

The variance we observe between biological replicates suggests that for 

improving inference on between-sample splicing differences, biological replication in 

RNA-Seq experiments is essential.  Given that junction discovery declines rapidly 

with great sequencing depth, and that current technology allows us to obtain > 100 

million read pairs per lane (Table 2.1, Illumina HiSeq 2000, San Diego, CA), 

sufficient depth can be obtained for greater than one sample per lane.  Multiplexing 

independent libraries in one lane (Wang, Si et al. 2011) is therefore a good strategy 

for obtaining adequate depth and biological replication.   

 

2.5.2 Spanki 

Sequencing technology is rapidly evolving.  One important benefit of Spanki 

is that each experiment can be modeled, to provide more robust inferences based on 

the error characteristics of data at hand as sequencing chemistry, devices, and aligners 

evolve.  Spanki integrates error modeling and detection, to provide a more coherent 

analysis that is adaptable to each experiment.  For example, a variety of spliced 

aligners are available, which offer different strategies for aligning and filtering.  Since 

error profiles may differ by experiment type and sequence characteristics of the 
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reference genome, the Spanki simulation tool allows the comparative assessment of 

alignment strategies with great specificity.  Although the error types we have 

identified using Spanki are generalizable, a specific assessment of error is a critical 

component of any comprehensive analysis.  For our particular experiments, we have 

shown that junction detection by TopHat (Trapnell, Pachter et al. 2009) in Drosophila 

RNA-Seq data is sensitive (> 90% detection at 6x coverage), specific (< 0.5% false 

positives), and accurate (r = 0.99).  Spanki supports results from other aligners that 

produce output in the standardized BAM format (Li, Handsaker et al. 2009). 

Since confidence in an alignment has both quantitative and qualitative 

characteristics, it is preferable to have the flexibility to use different criteria for 

different junctions and experiments.  For example, if one is studying a splicing 

mutant altering splicing fidelity, more permissive criteria for aberrant junctions may 

be required.  As another example, if one is interested in recovering minor form 

introns, additional stringency can be applied. Support Vector Machine (SVM) 

predictions of valid intron sequence have been used as part of an alignment strategy 

(QPALMA, (De Bona, Ossowski et al. 2008)), but minor form introns are a much 

smaller class from which to train.  A post-hoc filtering strategy affords greater 

flexibility to apply more stringent quantitative criteria (such as entropy scores) to 

putative unannotated minor forms.  The filtering criteria generated by Spanki can also 

be used to assess non-canonical junction detections for which little is known about 

intron sequence characteristics (for example from HMMSplicer, (Dimon, Sorber et al. 

2010)).  This added functionality in Spanki fills a crucial gap in curating junction 

alignments to obtain a high-confidence set of junction calls. 
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Several analysis tools, such as JUNCbase, (Brooks, Yang et al. 2011) and 

Splicegrapher, (Rogers, Thomas et al. 2012), produce splicing event definitions into 

basic categories, but transcript diversity requires a more inclusive classification 

ontology.  Our study shows the utility of a systematic classification system using 

AStalavista (Sammeth, Foissac et al. 2008).  Our classification of events found that 

14% of events were of a complex type that did not fall into a basic event category 

(Black 2003), and which would be excluded from a more narrow definition of events.  

In the case of multiple-exon events (such as cassette exons), we found that up- 

and down-stream connections from the internal cassette exons make it difficult to 

quantify the event with specificity.  This potential for confounding is not accounted 

for in other count based approaches such as JUNCbase (Brooks, Yang et al. 2011) or 

DEXseq (Anders, Reyes et al. 2012).  Spanki includes a unique feature where 

junction connections surrounding the event are analyzed, so that events that are 

potentially affected can be flagged. 

When splicing occurs upstream of an alternative promoter, alternate promoter 

use can be estimated with our approach by using junctions that differentiate these 

isoforms.  However, we find this inference is less reliable than for internal events.  In 

simulations, we found PSI estimates for alternative first exon events as a class to have 

more variance than internal splicing events, especially in cases where the first exon is 

short, which gives less territory for read sampling.   Experiments that specifically 

target the 5 prime end of transcripts, such as cap analysis of gene expression (CAGE) 

are better suited for detailed analysis of alternative promoter use (Takahashi, Kato et 

al. 2012). 



 

 68 
 

 

2.5.3 Sex differential splicing in Drosophila heads 

Alternative splicing is widespread in mammals, with estimates suggesting that 

transcripts of 95% of all genes are alternatively spliced in humans (Pan, Shai et al. 

2008; Wang, Sandberg et al. 2008), but is less prominent in Drosophila (%40 of 

annotated genes) (Graveley, Brooks et al. 2011).  In head tissue, we detect alternative 

splicing (where a gene produces > 1 splice variant in either sex) in 16% of all genes.  

However, we also detect extensive low-abundance junctions not incorporated into 

transcript models in an additional 13% of genes.  In mammals, it has been proposed 

that a large class of processed transcripts represent low abundance ‘noisy’ splicing 

(Pickrell, Pai et al. 2010).  We detect low abundance splices in transcripts of 35% of 

genes, suggesting the presence of a similar phenomenon in flies.  This poses a 

difficult problem for annotation of gene models as it is difficult to determine if a high 

confidence junction was obtained from an important, but rare, splicing event; or from 

a tolerated biological error. 

Several high-throughput studies have attempted to globally quantify sex-

differential splicing.  One microarray study examined head tissue specifically and 

identified 12 genes encoding transcripts that were sex-differentially spliced 

(McIntyre, Bono et al. 2006).  However, limitations of microarray platforms without 

complete probesets prevented a full interrogation of all genes in that study.  RNA-Seq 

experiments have no such limitation, and a recent estimate of sex-differential splicing 

in head tissue from RNA-Seq experiments suggested that there are 1,370 sex-

differentially expressed transcripts (Chang, Dunham et al. 2011).   Our results suggest 

that this figure is at least 10- to 100-fold overestimated.  Strikingly, the genes 
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showing sex-biased steady-state transcription profiles are not the same genes that 

show sex-biased splicing.  Like sex-biased splicing, we find that sex-biased gene 

expression is modest in heads (19 genes). 

Many of the sex-biased splicing events we observed could be important for 

sexual behavior.  Reticulon-like 1 (Rtnl1) had significant differences at several 

pairwise defined alternative first exons.  Rtnl1 is a membrane protein localized to the 

endoplasmic reticulum (ER) (Wakefield and Tear 2006) and has a role inter-male 

aggressive behavior (Edwards, Zwarts et al. 2009), olfactory response (Sambandan, 

Yamamoto et al. 2006), and motor axon development (O'Sullivan, Jahn et al. 2012).  

Another gene with sex-differential skipped exons, multiplexin, is involved in motor 

axon guidance (Meyer and Moussian 2009), although without a known link to 

behavior.  We detected sex-differential regulation in transcripts encoded by the found 

in neurons (fne) gene, which encodes a member of the embryonic-lethal abnormal 

vision (ELAV) gene family of RNA-binding proteins (Samson and Chalvet 2003; 

Pascale, Amadio et al. 2008).  Wildtype fne is required for robust male courtship 

behavior (Zanini, Jallon et al. 2012).  

 

Section 2.6 Materials and methods  

2.6.1 Generation of RNA-Seq data 

Sample descriptions and detailed methods for generating RNA-Seq data are 

provided in Gene Expression Ominibus (GEO) accessions (GSM928376, 

GSM928377, GSM928383, GSM928384, GSM928392, and GSM928393).  Briefly, 

RNA samples were prepared from adult Drosophila heads of each sex, for wild type 
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flies.   The wild-type (WT) strain was a white1118, Canton-S (B) isogenic stock 

obtained from Trudy Mackay (North Carolina State University, Raleigh, NC) 

(Edwards, Rollmann et al. 2006; Yamamoto, Zwarts et al. 2008).  Flies were grown at 

low density and were aged for 7 days post-eclosion and flash frozen on dry ice.  

Heads were dissected from frozen flies with forceps on chilled ceramic plates.  Two 

independent collections were performed for each sex, and cDNA libraries were 

prepared. Fly heads were transferred on dry ice into pre-cooled screw-capped 1.5 ml. 

tubes with 1.4 mm diameter ceramic beads, and total RNA was extracted using Trizol 

(Life Technologies (Invitrogen), Grand Island, NY, USA) Mechanical 

homogenization was for two periods of for 30 seconds at 6500 rpm in a Precellys24 

homogenizer (Bertin Technologies, Aix-en-Provence, France), cooled to between 9-

12o C with liquid nitrogen. Exogenous controls from the External RNA Control 

Consortium (ERCC, pool 15) were spiked in at 1% concentration prior to library 

construction (Jiang, Schlesinger et al. 2011).  Paired-end sequencing was performed 

on GAII or HiSeq instruments from Illumina (San Diego, CA) for 76 cycles for each 

read mate. 

 

2.6.2 Read alignments 

Reads that passed Chastity base-calling filtering (Illumina CASAVA pipeline 

1.6.47.1) were used for further analysis. The default Chastity score threshold used 

was > 0.6, and is defined as the ratio of the highest of the four (base type) intensities 

to the sum of highest two (Illumina, San Diego, CA).  Mapping was performed using 

TopHat v1.4.1 (Trapnell, Williams et al. 2010), with Bowtie v0.12.7 (Langmead, 

Trapnell et al. 2009), and samtools 0.1.12a (Li, Handsaker et al. 2009), and 
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parameters “-g 1 –solexa1.3-quals, -i 42.”  A reference annotation (Ensembl release 

67, corresponding to Flybase 5.39) was also supplied in GTF format with the -G 

option.  Briefly, TopHat aligns reads to a reference transcriptome first, setting aside 

unaligned reads as putative splice-junction spanning reads.  It then builds a new 

reference composed of joined exon sequence of all possible putative joins between 

islands of genomic coverage identified in the first-pass alignment.  Supplying the 

reference annotation guaranteed inclusion of annotated junctions into the 

dynamically-generated exon-join reference, but does not limit the algorithm to 

annotated junctions.  TopHat performs these alignments with the Burrows-Wheeler 

aligner Bowtie (v.0.12.7) (Langmead, Trapnell et al. 2009).   

We used D. melanogaster genome release 5 (Celniker and Rubin 2003; BDGP 

2006), as obtained from the UCSC genome browser (excluding "chrUextra”)(Kent, 

Sugnet et al. 2002), for mapping.  We also appended sequence for 96 exogenous 

controls to the genomic reference (Jiang, Schlesinger et al. 2011).  We used the 

reference annotation obtained from Ensembl (release 67, May 2012; imported from 

Flybase release 5.39, July, 2011 (McQuilton, St Pierre et al. 2012)).  A minor 

modification was made to remove only the antisense transcripts of modifier of mdg4 

(FBgn0002781), since the presence within a gene of transcripts on both strands 

caused fatal errors in downstream analysis tools. 

2.6.3 Feature detection and quantification 

To produce estimates of gene and transcript level abundance, we quantified 

based on both full-length transcript assemblies and on discrete counts within 

annotated genomic boundaries, as each approach has different strengths (Anders and 
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Huber 2010; Trapnell, Williams et al. 2010).  Cufflinks (Trapnell, Williams et al. 

2010) (v.2.0.2) was used for generating abundance estimates of full-length isoforms.  

Briefly, Cufflinks performs assembly of putative transcripts de novo, or against a 

supplied annotation.  It then generates maximum likelihood estimates of the expected 

number of fragments in the sample originating from your gene of interest in units of 

expected fragments per kilobase of transcript per million mapped reads (FPKM).  We 

produced FPKM values with Cufflinks using the Ensembl annotation described 

above.  To maximize sensitivity, we turned off minimum isoform fraction filtering, 

and set the minimum intron size to 42 (the size of the smallest annotated intron).   

Transcriptional differences between samples were analyzed using transcript 

abundance estimates from Cuffdiff (Trapnell, Williams et al. 2010), and counts of 

read alignments within genes in HTseq/DEseq (Anders and Huber, 2010).  Briefly, 

Cuffdiff takes as input transcript abundance estimates from Cufflinks.  Gene level 

abundance comparisons are made by t-test, where the variance term is estimated from 

the beta negative binomial distribution.   Cuffdiff v.2.0.2 was used to compare 

between samples, using upper quartile normalization (to improve robustness of calls 

in low-expressed transcripts), and setting “max-bundle-frags” very high (50E06), to 

ensure that very highly expressed features were not excluded.  To provide alternative 

quantifications and comparisons, we used HTseq (Anders and Huber 2010) to 

generate simple counts of reads that fall within discrete features.  The “htseq-count” 

program in HTseq v.0.5.3, with the conservative “union” mode and default 

parameters, was used to generate counts.  We used the R package DESeq (v.1.8.3) to 

test for differential expression by modeling variance with a negative binomial model, 
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while adjusting variance estimates by expression intensity (Anders and Huber 2010).  

"Variance outliers" were identified as contrasts where the maximum residual variance 

is > 15.  This value is exceeded in ~2% of all genes.  These outliers are removed from 

our final list of differential gene expression. 

 

2.6.4 Quantitative Real Time PCR 

Total RNA was extracted with TRIzol reagent (Life Technologies 

(Invitrogen), Grand Island, NY, USA) from heads of 7 day old white1118, Canton-S 

(B) isogenic females and males. One µg of total RNA was subjected to DNase 

treatment (Promega, Madison, WI, USA) followed by reverse transcription, using the 

random primer of the Transcriptor First Strand cDNA synthesis kit according to the 

manufacturer’s instructions (Roche Applied Science, Indianapolis, IN, USA). 

Quantitative real-time PCR was run for 2 independent cDNA preparations, each with 

duplicate quantification (4 measures per primer pair).  cDNA corresponding to 12.5 

ng of total RNA was amplified with Fast SYBR Green Master Mix (Applied 

Biosystems, Carlsbad, CA, USA; 10µl reaction) in a StepOne Real-Time PCR 

machine (Applied Biosystems, Carlsbad, CA, USA). The qPCR program: initial 

activation was performed at 95°C for 20 seconds followed by 40 cycles. DNA strands 

were separated at 95°C for 3 seconds followed by an annealing at 60°C for 30 

seconds.  Then the melting curve was generated ranging from 60°C to 95°C with an 

increment of 0.5°C each 5 seconds. Act5c (Actin 5C) was used as a control.  Primers 

were designed with the web interface of the NCBI Primer-Blast software (Rozen and 

Skaletsky 2000).  All qPCR primer products were verified as possessing a single peak 

during amplification, confirming that only a single product was being produced.  All 
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amplification products were analyzed by agarose gel electrophoresis and produced 

fragments of predicted sizes (not shown).  The relative transcript level was calculated 

using the cycle threshold value (Ct) by the method of 2-ΔCt, where ΔCt = Ct transcript - 

Ct Act5c. qPCR data are provided for each primer pair, after normalization to junction 

coverage of the mutually exclusive isoform. 

 

 Section 2.7 Author contributions 

A version of this chapter was submitted for publication with the following authors: 

 

Sturgill D,  Malone JH, Sun X, Smith HE, Rabinow L, Samson ML, Oliver B (2012). 

A Junction-based Splicing Analysis Kit (Spanki) for RNA-Seq data.  (Submitted 

manuscript) 

 

I developed and implemented all computational methods and was the primary author 

of the text.  Leonard Rabinow, Marie-Laure Samson, and Brian Oliver also 

substantially co-wrote and edited the manuscript.  The project as a whole was 

conceived by myself, Leonard Rabinow, Marie-Laure Samson, and Brian Oliver. 

 

Leonard Rabinow and Marie-Laure Samson provided the biological samples, and 

John H. Malone performed Illumina library construction and performed RNA-Seq 

experiments along with Harold Smith.  Xia Sun designed primers and performed 

qPCR experiments. 
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Chapter 3: Characterization of post-transcriptional regulator 
mutants 

 

Section 3.1 Introduction 

The somatic sex determination cascade in Drosophila is regulated by 

differential splicing, from an autoregulatory loop for the master switch at initiation 

(Sxl) to the production of different isoforms of DNA-binding transcription factors at 

the termination (dsx and fru) (Venables, Tazi et al. 2011).  These splicing differences 

are tightly regulated and highly sex-specific, and dependent on multiple components 

of the splicing machinery.  Downstream targets of sex-differential splicing are not 

widely known, and may consist of many subtle differences regulated in specific 

cellular and developmental contexts, along with multilayered and interdependent 

connections to other regulators.  One way we can gain further insight into regulated 

dimorphic splicing is by finding transcripts that differ between the sexes in their 

response to mutation of post-transcriptional regulators. 

There are many examples of post-transcriptional regulators that play a role in 

sexual differentiation.  One example is Darkener of apricot (Doa), a protein kinase of 

the LAMMER/Clk family that phosphorylates serine - arginine rich proteins (SR 

proteins) such as transformer (TRA) transformer-2 (TRA2) and RBP1 (Rabinow and 

Samson 2010), which are critical for the regulation of sex-differential splicing.  

Mutants of Doa exhibit hypophosphorylation of these proteins and exhibit sex-

reversal phenotypes (Rabinow and Samson 2010).  Doa also produces a sex-specific 

isoform from an alternative promoter proximal to a DSX binding site, suggesting that 
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Doa is part of the ancient sex determination network along with the conserved tra – 

dsx axis (Kpebe and Rabinow 2008; Rabinow and Samson 2010).  Doa is broadly 

expressed (detected in all tissues examined), and Doa mutants are recessive lethal, 

including in individual cell clones (L. Rabinow, personal communication).  

Another post-transcriptional regulator is found in neurons (fne).  fne is a 

member of the embryonic-lethal abnormal vision (ELAV) gene family of RNA-

binding proteins,  involved in the regulation of RNA metabolism (Samson and 

Chalvet 2003; Pascale, Amadio et al. 2008).  The ELAV family is well conserved 

across many eukaryotic lineages, and is required for neuronal differentiation and 

maintenance.  RNA-Seq experiments show that transcripts of fne exhibit sex-

differential regulation at an alternative donor site (Chapter 2), and wildtype fne is 

required for robust male courtship behavior (Zanini, Jallon et al. 2012).   Mutants of 

fne also show brain anatomy defects (fusion of mushroom body neurons), and 

preliminary experiments show fnenull males exhibit little general aggressive behavior 

(M. Samson, personal communication).  Expression of fne occurs only in neurons, 

and mutants are viable and fertile (Zanini, Jallon et al. 2012). 

To better understand the function of these genes as well as place them in 

context of these genes in sexual differentiation, we performed RNA-Seq analysis on 

mutant lines, and analyzed the consequences of disrupting these loci on the 

transcriptome of Drosophila heads.  We performed a thorough characterization of the 

regulatory effects of these mutants, including changes to gene expression, relative 

isoform abundances, intron retention, and aberrant splicing. 
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Section 3.2 Results: Gene expression 

We generated two independent replicate pools of RNA for library 

construction, for female and for male adult heads, for two strong hypomorphic 

heteroallelic mutants of Doa (DoaEMS and DoaHD) (Rabinow and Samson 2010), and 

one null mutant allele of fne, and (See Materials and methods).   

Although neither Doa nor fne regulate transcription directly, downstream 

effects of the transcripts they regulate post-transcriptionally may be evident in the 

global response of the transcriptome.  To examine the transcriptional response of each 

mutant, we compared gene expression for each mutant vs wild type, by generating 

counts of reads in each gene, and testing for differences with DESeq (Anders and 

Huber 2010) (Figure 3.1).    

We observed greater transcriptional differences in Doa mutants relative to 

wild type than in fne mutants, suggesting that pleiotropic effects of targets with 

disrupted splicing in these lines are extensive (Figure 3.1).  In each Doa mutant vs wt 

comparison, a greater number of targets were downregulated in mutants, with the 

exception of DoaHD males, which showed much greater upregulation in mutants (126 

genes upregulated vs 27 genes downregulated). 

Since Doa mutants affect sexual differentiation, we examined the 

transcriptional effects on genes with sex differential expression in wildtype. Rather 

than reversals of sex bias, we observed complex responses to Doa mutation by sex.  

For example, we found significant downregulation of the Turandot family of genes in 

Doa males.  The Turandot family,a set of eight genes involved in the humoral stress 

response, exhibit male biased expression in wildtype males.  In contrast, several 
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odorant binding proteins also exhibit male-biased expression in wildtype, but they 

have different responses to Doa mutation.  One of these genes  (Obp19b) is 

downregulated in Doa males and unchanged in Doa females, while Obp99b is 

upregulated in both Doa males and females.  Genes with significant female biased 

expression in wildtype, including yp1, yp2, yp3, and fit, were unchanged in Doa 

females, but downregulated in Doa males.  These results suggest that complex 

network interactions may be at play in regulating these targets of sex-differential 

transcription. 

 
 
Figure 3.1:  Gene expression differences in mutant vs wild type (WT) in each sex.  
Each panel is an “MA plot,” showing the ratio of gene expression differences (log2 
ratio of mutant/wt expression) on the y axis, and the average total abundance (log2 
mean read counts) on the x-axis.  Inset are numbers of genes differentially expressed 
in each comparison, at 5% false discovery rate (FDR).  Female samples are denoted 
“F” and male samples are denoted “M” in this figure and throughout this chapter. 
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Section 3.3 Results: Splicing 

3.3.1 Effects on splicing events 

RNA-Seq experiments capture detailed information about processed 

transcripts in an RNA sample, allowing us to examine the effects on splicing in Doa 

and fne mutants.  We used the Splicing Analysis Kit (Spanki, see Chapter 2) to 

characterize the post-transcriptional effects of these mutants at multiple levels, by 

comparing pairwise events and individual introns. 

We first generated proportion spliced-in values (PSI) for all annotated splicing 

events and clustered them, to look for general patterns of the metric in each sample.  

This metric expresses the relative proportion of two mutually exclusive splice forms 

(an “inclusion” and “exclusion” form). We found that there was not extensive 

reversal of direction of inclusion / exclusion preference.  We also found that different 

Doa mutant alleles of the same sex clustered together, but apart from wildtype 

(Figure 3.2).  Each wildtype sex clustered with the fne sample of the same sex, while 

the sample from each Doa allele clustered together by sex.  These results show that 

PSI values change broadly in response to Doa mutation, but this response is different 

between the sexes. 
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Figure 3.2:  Clustered heatmap of proportion spliced in (PSI) for splicing events in 
each sample.  Rows and columns are both hierarchically clustered.  
  

Differences in splicing regulation in response to mutation may involve subtle 

differences in either sex or both sexes, and therefore may be difficult to resolve.  

Because of this, multi-way comparisons may be useful.  Figure 3.3 illustrates the 

example of the effect on splicing in the gene jetlag.  This gene is involved in 

circadian rhythm and behavior, and exhibits subtle sex-differential splicing at an 

alternative acceptor event.  Both sexes favor the exclusion form, but this bias toward 

the exclusion form is greater in females.  In Doa mutants of both sexes, the bias 

toward exclusion is diminished.  The net effect in a Doa female vs Doa male 

comparison is to have an equal bias toward exclusion in both sexes, while the subtle 

sex difference in these proportions are still visible in the fne female vs fne male 
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comparison (Figure 3.3).   A splicing effect in jet is consistent with the phenotypes of 

Doa mutants, which are arrhythmic (Francois Rouyer, personal communication). 

 
 
Figure 3.3:  Fourfold plots of an alternative acceptor event in the gene jetlag, in wild-
type and mutant.  The counts for each inclusion or exclusion form are inset, and the 
significance values from a Fisher’s exact test are given below the wildtype female vs 
wildtype male, and mutant female vs mutant male comparisons. 
 

We compared the response to Doa mutation in each sex, to infer the nature of 

the regulated event (Figure 3.4).  In results for fne and Rtnl1, the sex difference in 

splicing was removed Doa males, but not in Doa females.  This suggests that these 

events are regulated in wild-type females, and follow a default splicing pattern in wild 

type males.  This is similar to components of the sex determination pathway, which 

produce a default splice in males in the absence of TRA (Figure 3.4).  However, the 

Rtnl1 splicing event is an alternative first exon, so this difference is more likely 

regulated transcriptionally than by splicing.  It is therefore unlikely to be affected 

directly by Doa, suggesting that a trans-acting transcriptional regulator regulating 

Rtnl1 alternative promoter usage is affected by Doa. 
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Figure 3.4:  Example of changes in sex-differential splicing in mutants.  Changes 
observed in Doa mutants to splicing events in transcripts of fne and Rtnl1.  For each 
event, results in females are given in the first row, and males in the second row, using 
a mosaic plot.  Blue and red colors represent the splice form predominate in wild-type 
males and females, respectively. 
 

3.3.2 Effects on intron retention 

The Spanki toolkit generates junction level results that reflect splicing in 

RNA-Seq data that is not captured from an analysis of annotated splicing events.  For 

example, Spanki calculates intron retention for every splice junction, not just for 

those with an annotated retained intron isoform.  We used these results to estimate 

‘background’ intron retention rates, detect transcriptome-wide intron retention 

differences between samples, and identify subtle changes in intron retention between 

samples.  

We first examined the possibility of a global effect on intron retention in all 

mutant samples.  To estimate global intron retention, we selected junctions that are in 
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constitutively spliced genes, have no joins to novel alternative donors or acceptors, 

and have coverage > 10, for all samples in the highest coverage run (Run 63).  We 

found no significant difference across samples, and the average median intron 

retention was 13.1% (Figure 3.5).  These results suggest there is no significant global 

intron retention difference in mutant samples.  

 

 
 
Figure 3.5: General intron retention.  Median intron retention values for all 
constitutive splice junctions in each sample  
 

Individual introns may be differentially retained by sex and serve a regulatory 

role.  The retained intron may disrupt the reading frame of the processed transcript or 

introduce a premature stop codon, or influence regulation by another means such as 

affecting transcript stability.  We examined retention differences in individual introns 

of specific genes, to see if they had a difference with regard to sex or mutant allele.   

We also analyzed intron retention estimates from Spanki at each intron in 

E2f2, a DNA binding transcription factor that has mutltiple roles in development 

(Dimova, Stevaux et al. 2003). This analysis revealed a significant difference in 

retention for the 2nd intron in wild-type males, that is not observed in Doa mutants 

(Figure 3.6).  Retention of this intron would disrupt the reading frame of the E2f2 

transcript.   Additionally, the fourth intron has many differences between samples, but 

has much more variance (Figure 3.6).  Variance in read coverage at the most three 

prime end has been observed as a general effect previously in RNA-Seq experiments 

(Wang, Gerstein et al. 2009).  Nevertheless, a highly significant increase in intron 
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retention is observed at the intron in DoaEMS males.  Although retention of this intron 

does not alter the reading frame or include an in-frame stop codon, it may still have a 

regulatory role, as splicing of E2f2 transcripts has been shown to be altered in Doa 

mutants (Rasheva, Knight et al. 2006; Ambrus, Rasheva et al. 2009). 

An RNAi screen revealed E2F2 target genes that are sex-differentially 

transcribed and involved in reproductive phenotypes including courtship behavior 

(Dimova, Stevaux et al. 2003).  These results suggest that Doa is involved in indirect 

regulation of these downstream targets by modulating intron retention in transcripts 

of E2f2. 

 
Figure 3.6:  Detailed analysis of E2f2 introns.  The most three-prime intron has the 
greatest variability.  Each box represents three values (for the three replicates).  The 
middle line is the middle value, the filled box is the range from average of the two 
lowest to average of the two highest.  The dotted lines extend to the full range of the 
three values.  
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We also observed differences in intron retention in transcripts of sex specific 

enzyme 2 (sxe2) - a gene that encodes a phospholipase, and that is significantly 

upregulated in wild-type males (Fujii and Amrein 2002) (see also Chapter 2).  There 

are two introns in this gene that are both frame preserving, but each has an in-frame 

stop codon.  Both introns are retained slightly less in wild-type male, while the first 

intron is retained much more frequently in Doa females (Figure 3.7).  These results 

suggest a role for Doa in negative regulation of this transcript in females which is 

already downregulated transcriptionally. 

 

 
Figure 3.7:  Intron retention in sxe2 transcripts. Boxplots of all replicates (see Figure 
3.6 for additional explanation) 

3.3.3 Aberrant splicing 

Unannotated junction detection may be the result of novel discovery of splices 

found in wildtype, or an indication of an aberrant join in mutants.  We detected an 
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increase of 13.5% to 63% more unannotated junctions in Doa mutants than in 

wildtype. The largest increase (63%) was in the DoaHD female vs wildtype female 

comparison.   There was no overall increase in unannotated junction detection in fne 

mutants.  To discern aberrant splicing from alignment artifact is difficult, and the 

criteria often used filter false positives is based on known biology in wildtype 

(Chapter 2).  However, the fact that these junctions were not detected in matched 

wildtype samples, where the parent RNA population is not expected to be radically 

different, suggests that alignment artifact is an unlikely cause.  We further examined 

the characteristics of these junctions that could indicate aligner error, and found that 

removing repeat-induced aligner errors, and alignments to minor-form introns 

removed only a small portion of these detections (for a 52% increase in DoaHD 

females vs wild-type males). 

We examined the detection of aberrant junctions in dsx transcripts, to see how 

this critical transcriptional regulator was affected (Figure 3.8).  We observed four 

aberrant splices with this locus.  Two of these were joins of annotated exons that are 

not seen in wildtype (exon 1 to exon 4, and exon 4 to exon 6).  Another join was 

detected between intron space and intergenic space on the opposite strand proximal to 

exon 1, which was detected only in fne mutants. We can not exclude that these reads 

arose from a neighboring transcript (the three-prime end of CD98hc, and also 

transposable element, are ~7kb from this genomic location).  Finally, we observed a 

join with a ~300 bp gap with exon 3, upstream of the start codon.  These alignments 

were detected in more than one Doa replicate and with multiple reads.  These 

junctions possessed GT/AG motifs, but did not contain sequence characteristics of a 
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true donor site or a polypyrimidine tract (See Chapter 2, figure 2.3).  These results are 

informative of the mutational lability of splicing regulation, and suggest that 

alterations of splicing factors can lead to the generation of new processed transcripts, 

not just changes in amounts. 

 
Figure 3.8:  Aberrant splice junctions in dsx transcripts detected in mutants.  A 
cartoon of the dsx gene model is shown, with the female specific exon shown in red, 
and the male specific exons in blue.  The aberrant junctions are detected only in 
mutants, and are shown in grey dotted lines. 
 

Section 3.4 Discussion and conclusions 

Post-transcriptional regulation is essential to normal development and 

physiology.  We observe extensive effects consequent to disrupting splicing by Doa 

mutation including pleiotropic gene expression changes, alterations in proportions of 

alternative splicing variants, changes in retention of specific introns, and aberrant 

splicing.  We observe all these phenomena in fne mutants as well, but much more 

modestly.  Our results display the huge potential of RNA-Seq analysis to provide a 

complete and multi-faceted picture of differences between transcriptomes, and show 

how the Spanki toolkit can facilitate this analysis. 

We have demonstrated the gain and loss of sex differences in splicing in Doa 

mutants as well.  These results suggest that Doa is operating within sex determination 

pathways.  This is consistent with the hypothesis that Doa is a part of an ancient 
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regulatory pathway that predates the acquisition of Sxl as the master sex-determining 

switch in Drosophila (Rabinow, 2010).  Additional experiments are ongoing to 

provide validation of these effects and to demonstrate phenotypes related to sexual 

development and behavior.  These results will allow us to illuminate regulatory 

connections to other genes, and place Doa in the context of a broader and interacting 

sex determination network. 

Section 3.5 Materials and methods 

Sample descriptions and detailed methods for generating RNA-Seq data are 

provided in Gene Expression Ominibus (GEO) accession GSE37811. Briefly, RNA 

samples were prepared from adult Drosophila heads of each sex, for wild type and 

and heteroallelic mutants for two alleles of Doa (DoaHD /DoaDEM and 

DoaEMS2/DoaDEM), and for fne.  The wild-type (WT) strain was a white1118, Canton-S 

(B) isogenic stock obtained from Trudy Mackay (North Carolina State University, 

Raleigh, NC) (Edwards, Rollmann et al. 2006; Yamamoto, Zwarts et al. 2008).  

Animals were cultured in vials at low density, mixed-sex, 25o C and under 24 hour 

light and in order to keep their behavior and transcript populations as close to normal 

as possible and to ablate circadian rhythm.  Flies were aged for 7 days post-eclosion 

and flash frozen on dry ice.  Heads were dissected from frozen flies with forceps on 

chilled ceramic plates, with 500 heads per sample.  Two pools of RNA were prepared 

for each sample (one for DoaHD /DoaDEM females, due to low viability, to provide 

independent biological replicates, and cDNA libraries were prepared. Fly heads were 

transferred on dry ice into pre-cooled screw-capped 1.5 ml. tubes with 1.4 mm 

diameter ceramic beads, and total RNA was extracted using Trizol (Life Technologies 



 

 90 
 

(Invitrogen), Grand Island, NY, USA). Mechanical homogenization was for two 

periods of 30 seconds at 6500 rpm in a Precellys24 homogenizer (Bertin 

Technologies, Aix-en-Provence, France), cooled to between 9-12o C with liquid 

nitrogen. Exogenous controls from the External RNA Control Consortium (ERCC, 

pool 15) were spiked in at 1% concentration prior to library construction (Jiang, 

Schlesinger et al. 2011).  Paired-end sequencing was performed on GAII or HiSeq 

instruments from Illumina (San Diego, CA) for 76 cycles for each read mate. 

Data processing including alignments were performed as described in Chapter 

2.  Gene level abundances and splice junction coverage were also quantified as 

described in Chapter 2.6.  Hierarchical clustering was performed using the ‘hclust’ 

function in R, called by the ‘heatmap.2’ function in the gplots package (Gregory R. 

Warnes, http://cran.r-project.org/web/packages/gplots/). 

Section 3.6 Author contributions 

I developed and implemented all computational methods and was the primary author 

of the text in this chapter.  The project as a whole was conceived by myself, Leonard 

Rabinow, Marie-Laure Samson, and Brian Oliver. 

 

Leonard Rabinow and Marie-Laure Samson provided the biological samples, and 

John H. Malone performed Illumina library construction and performed RNA-Seq 

experiments along with Harold Smith.   
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Chapter 4: Comparisons within the Drosophila genus 

 

Section 4.1 Introduction 

Phylogenetic divergence is driven by genetic changes, and a major goal of 

evolutionary genetics is to understand the mechanisms by which these changes create 

new phenotypes.  Commonly, this discussion revolves around mutation that changes 

protein coding sequence.  However, gene regulation also diverges, and is 

hypothesized to play a major role in species divergence (Romero, Ruvinsky et al. 

2012). 

Evolutionary divergence of gene deployment can arise from many 

mechanisms, including changes to cis-regulatory elements, alterations to trans-

factors, and sequence divergence of splicing enhancers.  Several comparative 

expression analyses have been performed and lineage specific divergence has been 

identified, but these studies have been primarily on the level of transcription, rather 

than splicing (Romero, Ruvinsky et al. 2012).   

Sexual characters are often under selective pressure at the level of coding 

sequence and expression, which makes sexual dimorphism an excellent model to 

study how transcriptomes diverge (Ellegren and Parsch 2007). Within eukaryotes, 

there are a diverse variety of sex-determination regulatory networks (Williams and 

Carroll 2009), suggesting that these pathways are evolutionary labile.  Gene 

regulation is also evolutionarily labile, and previous studies have shown that sex-
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differential transcription diverges over time (Ellegren and Parsch 2007; Zhang, 

Sturgill et al. 2007; Romero, Ruvinsky et al. 2012). 

To examine the divergence patterns of transcription and splicing, we 

generated RNA-Seq data from multiple species of the Drosophila lineage (Figure 

4.1), and examined differences in their transcriptomes, at the level and transcription 

and splicing. 

 
Figure 4.1  Phylogenetic relationships of species analyzed for expression differences.  
RNA-Seq data from the species in bold are analyzed.  Newly sequenced species that 
are not part of the original 12 sequenced species (Clark, Eisen et al. 2007) are 
asterixed.  Adapted from Flybase, with new species added according to published 
estimates of phylogenetic relationships (Kopp 2006; Piano and Cherbas 2010). 
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Section 4.2 Results 

4.2.1 Gene expression differences 

We generated pools of RNA from sexed whole adults of seven species of 

Drosophila, broadly sampling the phylogeny of the sequenced species.  We produced 

gene level expression estimates using Cufflinks (Trapnell, Williams et al. 2010) in 

units of fragments per kilobase per million mapped reads (FPKM), and tested for sex-

differential expression in each species (Figure 4.2) 

 
 
Figure 4.2:  Sex-differential gene expression in whole adults of seven Drosophila 
species.  Ratio vs intensity plots (“MA-plots”) are shown for each species.  Log2 ratio 
of female vs male expression is plotted on the y-axis, and average abundance is on the 
X-axis in units of FPKM.  Species displayed (in order): D. melanogaster, D. 
simulans, D. yakuba, D. ananassae, D. pseudoobscura, D. mojavensis, and D. virilis. 
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In whole adult tissue, sex-differential transcription is substantial, with 36% of 

genes sex-differentially expressed in D. melanogaster.  As was seen in previous 

experiments with microarrays, the general pattern is for more male-biased expression 

than female-biased expression, with the notable exception of D. pseudoobscura 

(Zhang, Sturgill et al. 2007).  In this species, complex evolutionary forces have 

shaped the transcriptome due to the fusion of an autosomal arm to the X 

chromosome, creating a “neo-X” chromosome (Richards, Liu et al. 2005; Sturgill, 

Zhang et al. 2007). 

Even if gene expression between orthologs is equal, different species may 

generate sex-differential processed transcripts, by employing different post-

transcriptional regulation.  For example, a conserved cassette exon may be included 

in males specifically in one species and in females specifically in another, while 

overall gene expression is the same. To explore this possibility, we examined 

differences in sex-differential splicing between the species. 

 

4.2.2 Interspecific splicing comparison 

To compare splicing events between species, we took a melanogaster-centric 

approach where we used splicing event definitions generated in D. melanogaster and 

projected them onto the other species.  Since each splicing event is defined by sets of 

junctions (Chapter 2), we can quantify homologous events by comparing coverage 

values among homologous junctions.   

To expand our sampling of the Drosophila lineage, we obtained reference 

genome sequence and RNA-Seq data for whole adult males and females of eight 

additional species (Stephen Richards, personal communication; see Materials and 
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methods).  Despite the lack of defined orthologous genes in these species, we can 

assay splicing differences with junction coverages that are matched through whole 

genome alignments (“liftovers”).  Since each splicing event is composed of mutually 

exclusive junctions, we require each path to be detected in either sex.  This 

requirement lends confidence that the event is lifted over accurately between species. 

We first compared splicing using the Proportion Spliced In “PSI” metric 

calculated by Spanki (Chapter 2).  We compared the female vs male ΔPSI values for 

detected orthologous splicing events between D. melanogaster and 13 other 

Drosophila species, including two different strains of D. simulans (Figure 4.3).  Since 

large differences in proportions may result from low abundance events, we required 

each event to have detected coverage >= 10 in both the “inclusion” and “exclusion” 

paths in either sex.  

 
Figure 4.3:  Differences in female vs male proportion spliced in (ΔPSI), between D. 
melanogaster and 14 other species of Drosophila and (including two strains of D. 
simulans).  Colors in each scatter plot represent density, with the greatest number of 
values in red.  The blue represents the diagonal (not a calculated trend line). 
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Comparing events between species revealed ΔPSI to be generally conserved 

between species, with few diametric shifts in proportion (Figure 4.3).  In each 

pairwise comparison, the greatest density of values centered at equal 

inclusion/exclusion proportions in each sex (ΔPSI close to zero), with the remainder 

of values along the diagonal, and few in the upper left and lower right quadrants 

(where dramatic differences would be).   

Since we did not observe large stochasticity in sex-differential PSI between 

species, we asked where this metric may change along a lineage.  This would provide 

evidence that a change is a heritable, adaptive change in splicing regulation, rather 

than random drift.  To see where patterns in PSI might change along a lineage, we 

examined orthologous events across several species, rather than pairwise to 

melanogaster (Figure 4.4). 
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Figure 4.4:  Heatmap of female vs male ΔPSI for 502 events detected in all species 
of the melanogaster subgroup, and 71 events detected in 11 species of the 
melanogaster group.  An asterisk notes one example event with a large change in PSI 
direction (ASTA03460) in the gene Pfk. 
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We extracted splicing events that showed a large sex difference in PSI in D. 

melanogaster whole adults (940 events with |ΔPSI| > 0.2, q-value < 0.05, and 

minimum 10 junction reads in each path).  We then compared splicing events at two 

different phylogenetic resolutions, by compiling data for the same events that were 

confidently detected in each species of the melanogaster group and among the more 

closely related melanogaster subgroup (Figure 4.4).  We clustered these values with 

hierarchical clustering, and looked for events that differed between lineages. We 

observed variation in degree of ΔPSI between species, but few cases of switching 

between inclusion or exclusion form.  One example of a switch in ΔPSI is in the gene 

Phosphofructokinase (Pfk), which is a component of the glycolytic pathway and that 

changes inclusion/exclusion preference in D. ananassae.  This gene encodes an 

estrogen receptor domain that is conserved across Drosophila, and is essential for 

detecting signals for upregulation of carbohydrate metabolism in larval development  

(Tennessen, Baker et al. 2011).  

 

4.2.3 Conservation of sex-determination components 

It has been previously observed that Sxl dimorphic splicing is not conserved in 

all insects (Sanchez 2008; Cline, Dorsett et al. 2010).  Taken with the fact that 

orthologs of dsx are conserved in diverse lineages from worms to human, leads to the 

hypothesis that the tra-dsx axis was the ancient sex-determination mechansism at the 

divergence of Drosophila from the other Dipterans, and that Sxl was recruited later to 

serve as a master switch (Haag and Doty 2005).  To extend these observations, we 
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examined in the conservation of splicing of dsx and Sxl transcripts in other 

Drosophila species. 

 We quantified the dsx and Sxl sex differential splicing events based on lifted 

over junctions, and identified sex-differential regulation in each species (Figure 4.5). 

Since sequencing depth varied between species and between sex, we enforced an 

abundance cutoff of ten junction spanning reads in either inclusion or exclusion form 

in each sex.  This analysis confirmed sex-specific splicing of dsx in eight non-

melanogaster species, spanning the breadth of the Drosophila lineage (~40 million 

years (Clark, Eisen et al. 2007)).  For Sxl, we could confirm sex-differential splicing 

in ten species within the melanogaster group (including the ananassae subgroup).  In 

more distant species, the orthologous splicing event could not be identified using 

liftovers, which may be due to alignment difficulties arising from the rapid 

divergence of this locus (Cline, Dorsett et al. 2010).   By manually curating 

alignments, identification of the orthologous junctions in more distant species was 

achieved, and sex-differential splicing was observed (Figure 4.5). 

 We also examined reference genomes of multiple species, so see if there were 

differences that could affect sex-differential splicing.  We used fuzznuc (Ensembl) to 

count occurrences of the TRA binding site (TC[AT][AT]C[AG]ATCAACA) 

 in each Drosophila species.  We found ~100 occurrences in D. melanogaster, but 

substantially more in some species (~200 in D. grimshawi and D. persimilis) and less 

in others (~50 in D. biarmipes). 
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Figure 4.5  Conservation of dsx and sex-specific splicing in multiple Drosophila 
species. Data are shown for each species where detection was abundant in each sex 
(>= 10 reads in each sex, and in the inclusion and exclusion path of either sex).  
 

Section 4.3 Discussion and conclusions 

In whole adult samples, we identified sex-differential splicing in 940 events, 

and differential gene expression in 4707 genes in D. melanogaster.  This suggests that 

transcriptional differences between sexes are greater than splicing differences in the 

whole animal.  Comparing between species, we find that sex differential splicing of 
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these events does not frequently change direction within the genus, but does vary by 

degree, as was shown previously with sex-biased transcription (Zhang, Sturgill et al. 

2007). 

We also confirm sex-differential splicing of dsx in eight non-melanogaster 

species.  Coverage data from our RNA-Seq data suggest that Sxl orthologs in species 

distant from D. melanogaster have different exon/intron structure, which complicates 

the identification of an orthologous sex-differential splicing event.  Nevertheless, sex-

differential splicing was detectable in these species.  Additional experiments at the 

protein level are required to better understand the role in sex-determination of Sxl in 

these species.   

Section 4.4 Materials and methods 

Annotation 
 

Transcript models were obtained from ENSEMBL, and reference genome 

sequence was obtained from GenBank or the UCSC Genome Browser (Kent, Sugnet 

et al. 2002). Genome references used for each species were: D. simulans (droSim1), 

D. yakuba (droYak2), D. ananassae (droAna3), D. mojavensis (droMoj3) and D. 

virilis (droVir3) from UCSC; and D. pseudoobscura  (Dpse_2.0), D. biarmipes 

(Dbia_1.0), D. bipectinata (Dbip_1.0), D. elegans (Dele_1.0), D. eugracillis 

(Deug_1.0), D. ficusphila (Dfic_1.0), D. kikkawai (Dkik_1.0), D. rhopaloa 

(Drho_1.0) and D. takahashi (Dtak_1.0).  Annotation versions were D. melanogaster 

r5.39 (For ortholog analysis, supplemented with ModEncode v2 for splice junction 

analysis), D. pseudoobscura r2.22 (HGSC2.13 in ENSEMBL), D. simulans r1.3, D. 
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yakuba r1.3, D. ananassae r1.3, D. mojavensis r1.3, and D. virilis r1.2.  Orthology 

relationships were obtained from OrthoDB (Waterhouse, Zdobnov et al. 2011).   

 

Sample collection and library construction 
 

Whole adult sample collection for the D. meanogaster, D. simulans, D. 

yakuba, D. ananassae , D. pseudoobscura, D. mojavensis, and D. virilis samples is 

described in Zhang et al, 2007 (Zhang, Sturgill et al. 2007).  Data for the additional 8 

species were obtained from Baylor (S. Richards, personal communication), and are 

available in the short read archive (SRA).   The additional eight species of Drosophila 

were chosen for genome sequencing and RNA-Seq analysis to support the 

modENCODE project.  They were therefore chosen to fill “phylogenetic discovery 

gaps” in the Drosophila lineage (Piano and Cherbas 2010). 

Most of these new species are in the melanogaster species group.  These 

species are all South Asian.  D. ficusphila, D. biarmipes, D. eugracilis, D. takahashii, 

and D. rhopaloa are fruit-feeding; while D.elegans is flower-feeding.  D. kikkawai is 

the first sequenced member of the montium subgroup, which diverged from the 

melanogaster species group after it’s divergence from the ananassae subgroup.  It is 

originally from south Asia, but invasively widespread in Africa and South America.  

D. bipectinata is related to D. ananassae, in the morphologically diverse ananassae 

lineage. These species have broadly divergent phenotypical characteristics, with 

makes them an emerging model from phenotypic evolution (Matsuda, Ng et al. 2009; 

Piano and Cherbas 2010). 

 
Read alignment and liftovers 
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Read alignments were performed with Tophat v.2.0.4.  Gene level estimates 

were obtained using Cufflinks (2.0.2).  Junction quantifications were obtained using 

Spanki (Chapter 2), and event definitions are defined by AStalavista (Sammeth, 

Foissac et al. 2008).   

We extracted coordinates of all splice junctions from D. melanogaster 

annotation, and generated BED files where each junction was represented by a 20bp 

anchor region in each adjoining exon.  Liftovers were then performed with the 

reference genomes for each non-melanogaster species using the UCSC liftover tools 

(Kent, Sugnet et al. 2002).  Chain files to perform the liftovers were made with lastz 

(an improved successor of blastz,(Harris 2007)). 

We required that each lifted-over junction bordered donor/acceptor motifs 

(GT-AG, GC-AG, or AT-AC).  This process obtained liftovers with valid 

donor/acceptor motifs for 63% (D. mojavensis) to 92% (D. yakuba) of junctions in 

the D. melanogaster reference annotation.  The proportions of lifted-over junctions 

with major form vs minor form donor/acceptor motifs mirrored that of the reference 

annotation (~2 orders of magnitude more major form than minor form).  

Section 4.5 Author contributions 

I performed all computational analyses described in this chapter, with the exception 

of alignments for a subset of these data, which were performed by Zhen-Xia Chen.  I 

am the primary author of the text.  The majority of data used in this chapter was 

generated as part of the modENCODE project (http://www.modencode.org) 
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Biological samples were generated and RNA-Seq experiments were performed in the 

Oliver lab by Carlo Artieri, John H. Malone, Nico Mattiuzo and Harold Smith; and at 

Baylor university (Stephen Richards) and UC Davis (Artyom Kopp).
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Chapter 5: Conclusions and outlook 

Section 5.1 Introduction 

Our results demonstrate the complexity of the transcriptome, and underscore 

the power of RNA-Seq to reveal this complexity.  When microarrays were the 

dominant high-throughput technology, researchers became used to reporting gene-

level fold changes as the primary analysis result.  To take advantage of the additional 

resolution of RNA-Seq, it is now necessary to analyze alternative promoter use, 

relative isoform proportions, and splicing differences at the level of pairwise events 

and individual junctions.  The Spanki toolkit is a big advance toward making these 

analyses possible, but technology continues to change rapidly, and software tools will 

have to continue to change to keep pace.  Below I describe some outlook on the state 

of RNA-Seq technology and its future directions, and describe how this technology 

will provide gains in understanding the sex-determination network.  

Section 5.2 RNA-Seq and analysis methods  

5.2.1  Experimental / sequencing directions 

The first sequencing instrument our lab had access to was an Illumina GAI 

(Illumina, San Diego, CA) and our first RNA-Seq experiments our lab performed 

generated 36bp single-end reads.   These experiments produced 1-2 million unique 

mapped reads (See GEO entry GSE20348) per lane.  More recent experiments (Such 

as the data described in Chapters 2 and 3) use data produced on an Illumina HiSeq 



 

 106 
 

2000 instrument.  These experiments yield about two orders of magnitude more 

usable reads per lane (> 100 million uniquely mapped paired-end reads).   

With this great abundance of reads from one lane, it is now possible to 

multiplex and sequence multiple samples in one lane.  This is made possible with 

indexed barcodes that are built in to Illumina adapter sequences (Wang, Si et al. 

2011).  Illumina kits are available to do 12 samples per lane (Illumina, San Diego, 

CA) but it is possible to do much more.   Some users have reported successfully 

sequencing 96 samples per lane (Li, Schmieder et al. 2012). 

Our own experiments (Chapter 2) and others have made the point the 

replication is very important to reliable inference from RNA-Seq data (Fang and Cui 

2011).  The expense of these experiments has lead many researchers to forgo 

biological replication, but multiplexing will allow greater replication to be possible at 

more reasonable cost. The surprising thing I learned from our experiments is that 

greater sequencing depth is not helpful to detect rare transcripts, as the vast majority 

of reads go to the most abundant transcripts, and read depths greater than 50 million 

reads detect more false positives than new true positives.  These results reinforce the 

conclusion that greater replication at moderate depth is preferable to high depth of 

few replicates. 

Despite the limitations of current sequencing technology, our simulations have 

shown that splice junction detection is highly accurate and sensitive (Chapter 2).  

However, lack of replication remains a problem because variance from biological 

replication is high, confounding estimates of between-sample differences.  
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Further down the road is the next quantum leap in sequencing technology; so 

called ‘third-generation sequencing’ (Schadt, Turner et al. 2010).  In addition to 

longer read lengths, machines using these technologies also provide lower costs, and 

greater ease of use due to fewer reagents and lack of requirements for sophisticated 

optics.  One machine using this new class of technology is from Ion Torrent (Life 

Technologies, Grand Island, NY), and has recently been put into use at the NIH 

Intramural Sequencing Center (NISC, Robert Blakesley, personal communication), 

but use of this technology is not yet widespread. 

The impact of this changing technology on downstream RNA-Seq analysis is 

not clear.  Longer read lengths that approach whole single-molecule sequencing will 

remove the need for transcript assembly and remove the ambiguity with mapping 

reads to transcripts.  Without the need for library construction, there will no longer be 

the biases associated with fragmentation and amplification.  It is a safe bet however 

that as with any new technology, new unanticipated biases will arise to replace old 

ones. 

5.2.2 Future directions for Spanki 

 Software to analyze RNA-Seq data are still not mature, but a great deal of 

progress has been made, and some standards are beginning to emerge.  Primary short 

read aligners perform well, and there are now several options that perform the task 

similarly (Garber, Grabherr et al. 2011; Grant, Farkas et al. 2011).  Gene level 

abundance estimates and comparisons are calculated reliably by DESeq and Cufflinks 

(Anders and Huber 2010; Trapnell, Roberts et al. 2012). 
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 Software to analyze splicing events and junctions are less well developed 

(Chapter 1 and Chapter 2), and this is where Spanki fills a major gap.  I envisioned 

the toolkit to take a place along with other toolkits that have emerged as standards to 

handle particular data types, such as Samtools (Li, Handsaker et al. 2009) for 

alignment files and BEDTools (Quinlan and Hall 2010) for coordinate based 

quantitative data.  Spanki was designed to perform a variety of analyses centered 

along one data type:  a splice junction.  Since Spanki is a modular Python package, 

new tasks can be easily added, along with wrappers for other junction-centered 

analyses.   

A very useful addition to Spanki would be an analysis of intron sequence, 

using a rigorous model of donor and acceptor sites, branch points, and polypyrimidine 

tracts.  This would serve two purposes:  1) provide a measure of splice site “strength” 

to compare with observed rates of inclusion or intron retention, and 2) serve as 

filtering criteria for false positive junctions.   Support vector machines (SVMs) are in 

wide use for this task.  I have built a utility that intersects junction coordinates and 

pre-computed SVM predictions (Sonnenburg, Schweikert et al. 2007), however these 

predictions are out of date.  An alternative approach would be to use a Feature 

Generation Alogorithm (FGA), which has been trained and used successfully in 

Arabidopsis (Dogan, Getoor et al. 2007). 
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Section 5.3 Sex determination 

5.3.1 An expanded sex-determination pathway 

The major challenge to understanding sex-determination in the coming decade 

will likely be to fill in the vast gaps of knowledge about downstream components.   

The results I’ve described suggest that differences in splicing by sex are modest in 

Drosophila heads (Chapter 2), but these results provide strong evidence for several 

novel interesting targets of sex differences in regulation. 

The gene found in neurons (fne) was detected as sex-differentially spliced in 

wildtype heads (Chapter 2).  This regulatory event has also been validated by qPCR 

(Marie-Laure Samson, personal communication).  FNE is a member of the 

embryonic-lethal abnormal vision (ELAV) gene family of RNA-binding proteins, 

which is conserved across diverse eukaryotic lineages (Samson and Chalvet 2003; 

Pascale, Amadio et al. 2008). Wildtype fne is required for robust male courtship 

behavior (Zanini, Jallon et al. 2012).  FNE does not regulate splicing directly, but 

binds RNA and modulates transcript stability(Samson and Chalvet 2003), providing 

an interesting example of sex-differential post-transcriptional regulation through this 

mechanism.   An important analysis that remains is to identify whether this splicing 

event is regulated by TRA, or some other splicing factor. 

Rtnl1 is a membrane protein localized to the endoplasmic reticulum (ER) 

(Wakefield and Tear 2006) and has a role inter-male aggressive behavior (Edwards, 

Zwarts et al. 2009), olfactory response (Sambandan, Yamamoto et al. 2006), and 

motor axon development (O'Sullivan, Jahn et al. 2012). I observed sex differences in 

alternative promoter use in this gene (Chapter 2).  I also observed a loss of this 
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promoter difference in Doa mutants, suggesting that this promoter preference in 

regulated by trans-factors that are regulated by splicing. 

This analysis also identified junction level sex differences in Drosophila heads 

that were not classified as events.  We found that 12.5% of splice junctions were 

detected only in females, and 14% were detected only in males, and these were 

mainly low abundance.  These junction detections passed our qualitative filtering 

criteria, so they are unlikely to be artifact, but their sex-specificity may be due to 

sequencing depth.  To confidently compare rare transcripts between sexes, capture 

based methods to increase their abundance are required (Mercer, Gerhardt et al. 

2012). 

The next step in completing the picture of sex determination is to make the 

transition from the transcriptome to the proteome.  An additional layer of regulation 

may be at work at the level of translation that may be important to sexual 

development.  A novel application of next-generation sequencing technology is 

ribosomal profiling (Ingolia, Brar et al. 2012), which allows a quantitative analysis of 

translation in vivo. 

It is clear that sex-differential transcriptome regulation is an interacting 

network of different types of regulation, which makes them difficult to identify 

individually.  The task of providing evidence for phenotypes and genetic interactions 

of these targets will be a long process, but it will bring us closer to a complete picture 

of the global sex-determination network. 
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5.3.2 Splicing divergence in the Drosophila genus 

The comparison of splicing between species is a new field with many 

challenges in analysis that have not been addressed in the literature (Romero, 

Ruvinsky et al. 2012).  Our results provide a framework for comparing individual 

events between species using detected splice junctions (Chapter 4).  We used this 

approach to compare events in 13 species of Drosophila, and perform additional 

comparisons to help understand the mechanisms that shaped transcriptome 

differences between these species. 

A finer grained analysis of transcript model differences between species will 

require high quality transcript predictions in each species, informed by empirical 

evidence from ESTs and RNA-Seq.  This is a difficult task, and current denovo 

assemblers such as Cufflinks (Trapnell, Williams et al. 2010) and Trinity (Grabherr, 

Haas et al. 2011) have not been able to adequately construct reliable models.  Efforts 

are currently under way to apply NCBI’s annotation pipeline to generate annotation in 

non-melanogaster Drosophila species (GNOMON, Terrence Murphy, personal 

communication).  

The divergence of Sxl within the Drosophila lineage raises the possibility that 

there are diverse sex-determination pathways within the genus itself.  For example, I 

found that there are nearly twice as many TRA binding sites in the D. persimilis and 

D. grimshawi reference genomes than in D. melanogaster, suggesting a possible 

expansion of TRA targets in those species.   

Low abundance ‘noisy’ splicing has been hypothesized to be important in 

humans (Pickrell, Pai et al. 2010), and this may be important in Drosophila evolution 
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as well.  Many low-abundance splicing events were detected in head tissue, often 

occurring in one sex.  I also observed aberrant splicing in dsx transcripts when Doa 

was disrupted by mutation.  This mutational lability of dsx transcript splicing may be 

illustrative of rare splicing errors that can occur in nature that can then be available 

for selection.  This leads to a hypothesis that rare splicing errors are a major source of 

novelty in the transcriptome. 
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Appendices 
 

Appendix 1:  Read quality analysis:  A case study in RNA-Seq QC   
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Appendix 1: Read quality analysis - a case study 

 

Confidence in the quality of the primary data is key to analysis of RNA-Seq data.  

Quality control is not always straightforward, as there are a variety of problems that 

can occur, from problems with reagents to Sequencing errors to sample 

contamination.  This appendix describes a detailed analysis that was performed on 

quality issues with some RNA-Seq samples, to provide a record of this analysis, and 

to illustrate the scope that a thorough quality analysis may take.  This rigorous 

analysis can serve as a general case study on quality analysis for RNA-Seq data, and 

is described below. 

 

Independent mRNA samples were used to prepare libraries as a 2nd biological 

replicate, with the exception of the DoaHD F (female) sample, which was re-run as a 

technical replicate.  For five of these samples, the fraction of reads that uniquely 

mapped to the reference genome was < 50%.  The sample with the fewest reads 

mapping was the DoaHD F sample (Run 57, Lane 1), with 14.6% of reads uniquely 

mapped.  To investigate the cause of this low mapping, I performed an analysis of 

read quality and additional alignments to other references, for the lowest mapping 

sample (Run 57 Lane 1, “R57L1”). 

 

I first analyzed the reads with FastQC (Simon Andrews), to examine basic quality 

characteristics.   These results showed that the three prime ends of reads had low 

quality. 

 
 



 

 115 
 

 
Figure A1.1 Per base quality scores for Run 57 Lane 1.  Note that quality dips to 
below 28 at position 65. 
 

 
Figure A1.2 Per base quality scores for Run 50 Lane 1 (for comparison).  Note that 
quality remains high throughout the read. 
 
 
In addition to this low quality, a small amount ( < 5% of total reads ) was identified as 

adapter contamination (“Illumina Paired End PCR Primer 2” and “Illumina Paired 

End Adapter 2”).  To determine whether there were other sources of contamination, I 

took reads that were unaligned after first-pass unique mapping with Tophat (Trapnell, 
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Pachter et al. 2009), and performed assembly of these reads (Zerbino and Birney 

2008) with default parameters.  I selected the top 20 contigs by length and by 

abundance, and aligned them to the nr (non-redundant) database (NCBI) with 

BLASTN (Altschul, Gish et al. 1990). 

 

This 2nd-pass mapping uncovered contaminating reads from Drosophila A virus 

isolate HD and  Enterobacteria phage phiX174 (phi-X control).  To assess the relative 

amounts of contamination, I created a new reference of these contaminants, along 

with the Illumina adapters and primers, and a set of transposable element Sequences.  

I also trimmed these reads to 50bp and re-aligned them to dm3 using an alternative 

version of Bowtie with reported greater sensitivity (Bowtie2, (Langmead, Trapnell et 

al. 2009)) 

 

From these results, I was able to estimate the various fractions of contamination and 

mappability problems for the set of reads in R57L1 (Table A1.1). 

 
Reads uniquely aligned: 14.6% 
Uniquely aligned at 50bp: 20.9% 
Multi-mapped at 50bp: 14.8% 
Adaptor/primer:  0.5% 
Phi-X, virus:   2.5% 
Ribosomal:   39.1% 
Total explained:  93.4% 

Table A1.1: Estimates of various alignment classes, as a percent of total reads. 
 
These results show that the single largest source of unmapped reads derives from 

ribosomal protein genes.  These reads are only mappable trimmed, and only with the 

alternative version of Bowtie (Bowtie2).  The reason that they could not map with 

Tophat could not be determined.  I also determined that trimming reads to 50bp can 

greatly increase the percent of reads mapping.    

 

Following this analysis of run quality, the next step is to decide whether to use a 

different set of reference alignments for these reads.  For example, I may trim the 

reads for the low mapping runs and obtain more mappings, but I may lose 
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comparability with replicates mapped without trimming.   To help make this decision, 

I performed correlation analysis for R57L1 and its replicate in an earlier run (R50L2). 

 

I determined correlations for both raw read counts (HTSeq (Anders and Huber 2010), 

Figure A1.3), and for FPKMs (Cufflinks, (Trapnell, Roberts et al. 2012), Figure 

A1.4), for full length alignments and trimmed alignments.  I found the highest 

correlation (0.96) for comparing two sets of full-length alignments together, using 

raw counts (Figure A1.3). 

 
 
Figure A1.3  Between replicate correlations of 1million read subsets for doaHD M 
sample, R50L2 (High % mapping) and R57L1 (Low percent mapping) Note that 
correlation is highest (0.96) when both sets are mapped the same way, full length.  
Correlation goes down when the poor quality sample is trimmed (0.82) and when 
both samples are trimmed (0.87).   
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Figure A1.4  Between replicate correlation using gene level abundance estimates (in 
FPKM).  Note that correlations are lower that in the comparison of raw read counts 
(Figure A1.3) 
 
The between replicate correlation analysis showed that raw read counts within genes 

is better correlated between replicates than the probabilistic abundance estimates 

(FPKMs).  It also showed that correlations were highest when using the same read 

length for each dataset, and when using the full length of the reads (Figure A1.3). 

 

 I also compared the percent of reads the map to the genome but do not overlap any 

annotated feature (identified by HTSeq as ‘no_feature’), and reads that map to 
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genomic regions shared by multiple genes (‘indentified by HTSeq as ‘ambiguous’) 

(Figure A1.5).   Flybase release 5.44 was used as the reference in this analysis.   

 

 
 
Figure A1.5  Comparison of the mapped reads that cannot be assigned to a gene 
feature, either due to no feature defined in the mapped location (‘no_feature’) or due 
to multiple overlapping features (‘ambiguous’), for 24 samples. Columns are grouped 
by sample. 
 
 
The low percent mapping in Run 57 is due mainly to transcripts from ribosomal 

protein genes.  Increasing the percent mapping by trimming lowers the between-

replicate correlations.  Abundance estimates of non-ribosomal protein genes are 

replicable, when ribosomal protein genes with high abundance are excluded from 

normalization by Sequencing depth.  For these reasons, the best approach is use full-

length alignments for all samples. 

 

Deciding how to preprocess reads and when to trim them requires careful analysis, as 

this case study illustrates.  The proper course should be driven by the data, to 

maximize comparability between replicates primarily, and to preserve depth and 

resolution secondarily.  Since RNA-Seq experiments are quite costly, few replicates 
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are often generated.  When a first pass alignment generates low percent mapping, this 

does not necessarily mean the data are not usable, and it is a good strategy to use all 

replicates available.  However, all samples with low percent mapping should be 

examined to identify the cause, to identify potential systematic sources of error or 

contamination. 
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