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The modification of transcriptional regulation is a well-documented evolutionary 

mechanism in both plants and animals, but post-transcriptional controls have received 

less attention.  The derived hermaphrodite of C. elegans has regulated spermatogenesis in 

an otherwise female body. PUF family RNA-binding proteins FBF-1 and FBF-2 limit XX 

spermatogenesis by repressing the male-promoting proteins FEM-3 and GLD-1.  For my 

dissertation research, I examine the function of PUF homologs from other 

Caenorhabditis species, with emphasis on C. briggsae, which evolved selfing 

convergently. C. briggsae lacks a bona fide fbf-1/2 ortholog, but two members of the 

related PUF-2 subfamily, Cbr-puf-2 and Cbr-puf-1.2, do have a redundant germline sex 

determination role.  Surprisingly, this is to promote, rather than limit, hermaphrodite 

spermatogenesis. I provide genetic, molecular, and biochemical evidence that Cbr-puf-2 

and Cbr-puf-1.2 repress Cbr-gld-1 by a conserved mechanism. However, Cbr-gld-1 acts 

to limit, rather than promote, XX spermatogenesis.  As with gld-1, no sex determination 

function for fbf or puf-2 orthologs is observed in gonochoristic Caenorhabditis.  These 

results indicate that PUF family genes were coopted for sex determination in each 



 

hermaphrodite via their long-standing association with gld-1, and that their precise sex-

determining roles depend on the species-specific context in which they act.  Finally, I 

document non-redundant roles for Cbr-puf-2 in several aspects of somatic development. I 

show Cbr-puf-2 is required for reliable embryonic development, and that it is essential for 

vulval development and normal progression from early larval stage.  I provide evidence 

suggesting that this latter role is related to pharyngeal muscle physiology.  Thus, recently 

duplicated PUF paralogs, while redundant for some roles, can also rapidly acquire 

distinct non-redundant functions. This is consistent with theoretical models for the 

preservation of gene duplicates. 
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Introduction 

 

1. Evolution of Sex Determination 

 

Sexual reproduction is a universal phenomenon in eukaryotes, with very few 

exceptions (e.g. Mark and Curtis, 1995; Mark Welch and Meselson, 2000). Sex promotes 

genetic variability, and facilitates adaptation under stressful conditions (Morran et al., 

2009). Therefore, it’s reasonable to ask: if it’s a widespread phenomenon, does it have a 

single origin? We cannot yet answer this definitively, but if it does, then we must explain 

how and why sex determination is among the least conserved of developmental processes 

(Marin and Baker, 1998).  

Generally, there are two categories of primary sex determination mechanisms: 

environmental sex determination (ESD) systems, in which environmental cues initiate 

sexual differentiation, and genetic sex determination (GSD) systems, in which genetic 

components trigger the sexual fate (Hodgkin, 1992). Even among those animals that 

apply GSD systems, there is a diversity of mechanisms. The two commonest types are 

chromosomal sex determination systems and single-gene segregating systems. The 

former ones involve cyto-differentiated sex chromosomes, but the latter ones do not 

(Wilkins, 2002).  

Further downstream of the variety of primary sex determination systems lies even 

more diversity: the genetic control of sex determination (Marin and Baker, 1998). By a 

comparison of regulatory pathways in roundworms, fruit flies and vertebrates, the great 

divergence of sex determination pathways has been revealed. Although both C. elegans 
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and D. melanogaster utilize X-chromosome dosage as their primary sex determination 

signal, the nematode pathway acts through a negative regulatory cascade of 

transcriptional regulation and cell-cell signaling, but the fly pathway is regulated by 

alternative mRNA splicing and cell-autonomous control (Cline and Meyer, 1996). In 

contrast to both of these, vertebrate sex determination is initiated by the testis-

determining gene on Y chromosome, Sry.  This encodes a transcription factor that acts 

only in the gonad primordium, with non-gonadal sex determination mediated by 

hormones (Swain and Lovell-Badge, 1999).  

Notably few regulatory genes in the sex determination pathway of these three 

animal groups have homologs, even though within each of their phyla strong homology 

can be detected. The isolation of tra-1 from C. elegans and the non-rhabditid 

Pristionchus pacificus provides evidence for the conservation of sex determination over 

the past 100 million years (Pires-daSilva and Sommer, 2004). The equivalence of two 

genes, tra and dsx, in medfly Ceratitis capitata, fruit fly Drosophila melanogaster and 

the silkmoth Bombyx mori suggests sex determination has been controlled by the same 

pathway for at least 280 million years (Ohbayashi et al., 2001; Saccone et al., 1996; 

Saccone et al., 2002). The same is true for vertebrates, where Sry has been involved in 

sex for at least 130 million years (Marin and Baker, 1998). However, the presence of 

homologous genes, dsx, mab-3 and Dmrt1 in D. melanogaster, C. elegans and vertebrates, 

respectively, articulates the potential common ancestry of sex determination in metazoans 

(Raymond et al., 1998; Yi and Zarkower, 1999). 

To truly understand the plasticity of sex determination, a detailed comparison of 

the different sex determination systems of related species is needed. These comparisons 
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can be used to identify the precise differences and provide the insight of the evolutionary 

processes (Wilkins, 2002).  With their simple laboratory culture and powerful genomic 

and experimental tools (Haag et al., 2007; Haag and Liu, 2013), closely related 

Caenorhabditis species can serve as such a comparative animal system. 

 

2. Mating system variation among nematode species 

 

Sexual reproduction is the most common reproductive strategy in nematodes and 

transitions to different systems have occurred many times throughout the phylum 

(Denver et al., 2011; Kiontke and Fitch, 2005).  For example, phylogenetic analysis of 

eighteen species from genus Pristionchus indicated that each of the five androdioecious 

species most likely evolved independently from distinct dioecious ancestors (Mayer et al., 

2007).  The other example is from nematode family Cephalobidae.  Parthenogenetic and 

dioecious species were observed for both genera Acrobeloides and Cephalobus, and they 

demonstrate a remarkably high degree of flexibility in reproductive mode between dioecy 

and parthenogenesis (Smythe and Nadler, 2006).  The evolutionary advantages associated 

with sexual reproduction have been extensively studied.  One major advantage of sexual 

reproduction is the avoidance of deleterious mutation accumulation (Barton and 

Charlesworth, 1998; Otto and Gerstein, 2006).  Moreover, sexual reproduction and 

genetic recombination may be favored by Red Queen coevolution under negative species 

interactions (Bell and Smith, 1987; Otto and Nuismer, 2004). 

However, there are disadvantages related dioecious sexual reproduction, and 

under certain circumstances the transition from dioecious species to self-fertile 
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hermaphrodites or parthenogenetic species may be evolutionary selected.  It was 

suggested that hermaphrodites are better early colonists when population sizes are 

commonly low, such as younger populations colonizing new habitats (Pannell, 2002).  

Previous work has shown that when the chance of encountering a mate is sufficiently low, 

selection can favor hermaphroditism and parthenogenesis (Eppley and Jesson, 2008; 

Tomlinson, 1966).  Short-lived, ephemeral rotten fruits are the typical habitat for 

Caenorhabditis nematodes (Felix and Braendle, 2010).  Likewise, infection of plant or 

animal parasitic nematodes often results in very small population sizes in the host 

environment.  The ability to self-fertilize guarantees the production of offspring, which 

would be extremely beneficial in colonizing transient habitats where population density 

may be low.� 

The presence of both male-hermaphrodite (androdioecious) and male-female 

(gonochoristic) mating strategies in the nematode genus Caenorhabditis provides an 

excellent system to examine how reproductive transitions occur.  With the exception of C. 

elegans, C. briggsae and C. sp. 11, the remaining Caenorhabditis species are 

gonochoristic, and the phylogenetic analysis of nineteen Caenorhabditis species in 

culture suggests the independent origin of self-fertility in these three lineages (Kiontke et 

al., 2011, Figure 1). The ability to form fertile hybrids between two very closely related 

sister species, the androdioecious C. briggsae and newly discovered gonochoristic C. sp. 

9, renders this system even more intriguing for dissecting the mating strategy transition 

(Woodruff et al., 2010).  



5 
 

 

3. Molecular Evolution of Sex determination in Caenorhabditis 

 

Different mating systems allow different developmental strategies for 

reproduction. Gonochoristic species produce XX females that make oocytes and XO 

males that make sperm, and are obligated to outcross for reproduction. For 

androdioecious species, XX hermaphrodites possess a fully female soma, but make sperm 

transiently before switching to produce oocytes for the rest of their lives, and are capable 

of either selfing or of crossing with rare XO males. These phenotypic differences are 

rooted in the developmental programming and genetic interactions in the germ line. By 

scrutinizing the molecular basis of developmental and genetic processes, we can gain 

deep insights of how phenotypes are produced. Then we can compare different molecular 

mechanisms in different lineages and start to understand their evolutionary significance.  

In the best case scenario, changes at the gene and protein level can be causally linked to 

phenotypic changes at the organismal level. 

Figure 1: Phylogeny of 
Caenorhabditis species adapted 
from Kiontke et al., 2011 
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Because of the detailed characterization of its sex determination pathway (Ellis, 

2008; Zarkower, 2006), C. elegans serves as a great reference to identify the precise 

differences in sex determination among Caenorhabditis species (Figure 2). In C. elegans, 

the sex determination cascade is initiated in the early embryo by the ratio between the 

number of X chromosomes and sets of autosomes (X:A ratio) (Nigon, 1951), with a high 

ratio (XX) in hermaphrodite repressing her-1 transcription and a low ratio (XO) in male 

activating her-1 transcription (Dawes et al., 1999; Trent et al., 1991). In the 

hermaphrodite soma, low her-1 expression permits TRA-2 membrane protein activity 

(Perry et al., 1993), and allows it to repress the male-promoting FEM proteins (FEM-1, 

FEM-2, and FEM-3) (Chin-Sang and Spence, 1996; Mehra et al., 1999).  This, in turn, 

allows the transcription factor TRA-1 to repress genes required for male development 

(Chen and Ellis, 2000; Conradt and Horvitz, 1999; Mason et al., 2008; Yi et al., 2000).  

The global sex determination pathway described above functions in all cells, but 

is further modified at the post-transcriptional level in the C. elegans hermaphrodite germ 

line to allow transient spermatogenesis (Puoti et al., 2001). The translational repression of 

tra-2 by FOG-2 and GLD-1 is required to initiate hermaphrodite spermatogenesis 

Figure 2. C. elegans global sex determination pathway.  Genes in their 
inactivated states are greyed.  XO stands for male karyotype, and XX stands 
for female karyotype. 
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(Clifford et al., 2000b; Goodwin et al., 1993), and the translational repression of fem-3 by 

FBF-1/2 is required for the transition from spermatogenesis to oogenesis (Ahringer and 

Kimble, 1991; Zhang et al., 1997). 

With genetic, molecular, and bioinformatic techniques recently made available in 

multiple Caenorhabditis species, comparative studies have already revealed both of the 

functional conservation and rapid co-evolution of protein interactions.  In C. remanei, the 

functions of fog-3 and tra-2 orthologs are conserved (Chen et al., 2001; Haag and Kimble, 

2000), although, interestingly, both the Cr-FEM-3/Cr-TRA-2 and Cr-FEM-3/Cr-FEM-2 

interactions are maintained in somatic sex determination, but with partial or complete 

species-specific affinity (Haag et al., 2002; Stothard and Pilgrim, 2006). In the two 

hermaphroditic species that are the best characterized, C. briggsae and C. elegans, sex 

determination genes generally have corresponding orthologs (Nayak et al., 2005).  

However, this doesn’t mean these orthologs have similar genetic functions and molecular 

interactions. For example, though the functions of the tra genes are conserved between C. 

elegans and C. briggsae (Hodgkin and Brenner, 1977; Kelleher et al., 2008; Kuwabara, 

1996), there are exceptions of species-specific genes and discrepancies of orthologous 

gene functions in the germ line. fog-2 is a recent, C. elegans-specific tandem duplication 

(Clifford et al., 2000b), and there is no fog-2 ortholog in the C. briggsae genome (Nayak 

et al., 2005). There are two cases of changed orthologous gene function. fem genes  

promote male soma formation in both species, however, in the germ line, C. elegans fem 

mutations transform germ cells to female mode in both males and hermaphrodites 

(Hodgkin, 1986), while both XX and XO C. briggsae Cb-fem-2 and Cb-fem-3 mutants 

have hermaphroditic germ lines (Hill et al., 2006). The other case is that of gld-1: gld-1 
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loss-of-function hermaphrodites are Fog (feminization of germline; i.e. with oocytes only) 

in C. elegans (Francis et al., 1995a), but are surprisingly Mog (only sperm) in C. briggsae 

as judged by RNAi knock down or loss-of-function mutations (Beadell et al., 2011; 

Nayak et al., 2005). 

Together, these molecular analyses and functional studies reveal that the sex 

determination pathways of C. elegans and C. briggsae are different in their genetic 

regulation in the germ line.  This provides the molecular support for the phylogenetic 

prediction that C. elegans and C. briggsae independently acquired self-fertility from 

distinct gonochoristic ancestors (Cho et al., 2004; Kiontke et al., 2004). Since the germ 

line is where gametogenesis takes place, and the onset of spermatogenesis and the 

following sperm-to-oocyte switch are key steps of acquiring self-fertility in 

hermaphrodite, it is reasonable to believe that germ line is where the most changes of sex 

determination pathways occur. 

 

4. PUF Protein Family and Translational Control 

 

Two key regulators of the hermaphroditic sperm/oocyte switch in C. elegans are 

FBF-1 and FBF-2 (collectively called FBF), which belong to the PUF (Pumilio and FBF) 

mRNA-binding protein family.  The PUF family is conserved across eukaryotes, 

including fungi, plants and metazoans (Wickens et al., 2002). PUF family members 

typically share a protein domain formed by eight consecutive PUF repeats, which defines 

both their mRNA and protein binding specificities (Edwards et al., 2001; Wang et al., 

2001). PUF proteins regulate a diverse range of developmental processes, such as 

anterior/posterior pattern formation in Drosophila (Barker et al., 1992; Murata and 
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Wharton, 1995), germline stem cell proliferation in C. elegans (Crittenden et al., 2002), 

and mating type switch in S. cerevisiae (Tadauchi et al., 2001).  

PUF family proteins could relate to mating system evolution and its underlying 

molecular causes.  This is likely because of  the involvement of FBF proteins in C. 

elegans germline sex determination and their generally prominent role in controlling 

translational machinery. In the C. elegans germ line, FBF allows the sperm/oocyte switch 

by repressing fem-3 expression post-transcriptionally.  It accomplishes this by binding 

specifically to fem-3-binding elements (FBE) in the 3’ untranslated region (UTR) of the 

fem-3 mRNA (Haag et al., 2002; Zhang et al., 1997). Depletion of FBF in the germ line 

eliminates the hermaphrodite switch from spermatogenesis to oogenesis (Zhang et al., 

1997).  FBF interacts with the nanos homolog NOS-3 and the bicaudal-C homolog GLD-

3 to control the sperm/oocyte switch. NOS-3 acts like a FBF activator, and together they 

repress fem-3 expression to promote oocyte fate (Kraemer et al., 1999). In contrast, GLD-

3 antagonizes FBF function and this interaction de-represses fem-3 expression to promote 

sperm fate (Eckmann et al., 2002).  

fbf-1 and fbf-2 have other important germline functions as well, related to cell 

cycle control. FBF represses gld-1 mRNA translation in the distal niche to maintain 

mitosis of germline stem cells (Crittenden et al., 2002), but is also required for normal 

meiotic entry (Suh et al., 2009). These essentially opposite functions are achieved by 

binding of distinct protein partners of FBF: with CCF-1 it activates gld-1 mRNA 

translation, and with GLD-2 it represses it (Suh et al., 2009). Moreover, the two fbf genes 

are crucial regulators of the size of the mitotic region, but they have opposite roles in 

fine-tuning the size (Lamont et al., 2004). Also, fbf-1 together with another PUF family 
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gene, puf-8, act redundantly to control the hermaphrodite sperm/oocyte switch in C. 

elegans germ line (Bachorik and Kimble, 2005). Overall, it appears that various germline 

patterning systems that rely upon translational controls are mediated by a combinatorial 

network of interactions between a limited set of RNA-binding proteins. 

These C. elegans studies set up a solid base for my comparative study of PUF 

protein function in other Caenorhabditis species. Since the sperm/oocyte switch is a key 

step of acquiring self-fertility in hermaphrodite, by investigating close relatives of FBFs 

we can draw a clearer picture about how selfing was achieved in different lineages of 

Caenorhabditis.  Also, by studying and comparing PUF translational controls in different 

species, we can start to understand how translational networks evolve. Translational 

control and its evolutionary dynamics are presumably important for adaptation in tissues 

like the germ line, yet it has been little explored (Haag, 2009; Haag and Liu, 2013). An 

important underlying hypothesis of this project is that by fine-tuning translational 

efficiency of sex-related mRNA targets through cis-acting structural elements, the 

general translational apparatus, and specific trans-acting factors, organisms can produce a 

number of phenotypic variations. Here, I focus on the germ line of Caenorhabditis 

species, where 3’UTR mediated translational control is the predominant rule of 

controlling gene expression (Merritt et al., 2008), and specifically on  the PUF mRNA 

binding protein family. 

As mentioned above, the general importance of PUF family members in germline 

biology suggested they may be important in C. briggsae germline sex determination. A 

pilot RNAi screen of all C. briggsae PUF family genes found that three related genes, 

Cbr-puf-1.1/1.2/2, showed germline feminization and reduced proliferation phenotypes 
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when they were knocked down simultaneously (S. Feng, unpublished data).  Because C. 

briggsae hermaphrodites lacking Cbr-fem-3 can still produce sperm and are fertile (Hill 

et al., 2006), these three PUF genes likely have novel molecular interactions. The 

different PUF functions in C. briggsae and C. elegans implied by the above suggested 

them as a case study to characterize the similarity (or differences) in the translational 

control networks of these two hermaphrodites.  More generally, comparative study of the 

PUF family allows us to learn how translational controls relate to the evolution of an 

important novel trait.  In my dissertation research, I tried to address these issues through a 

variety of genetic and molecular methods.
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Chapter 1: Context-Dependent Function of A Conserved Translational 

Regulatory Module 

 

1. Summary 

 

In the Introduction Chapter, I mentioned that PUF proteins pattern germline 

development by working with a limited set of other RBPs to form a combinatorial 

network of translational controls.  This important role for translation is consistent with its 

general prominence in regulating gene expression in the C. elegans germ line (Merritt et 

al., 2008).  The comparison of PUF functions in different species thus provides an 

opportunity to study regulatory evolution at the translational level.   In the current 

Chapter, I present genetic and molecular analyses of PUF family genes in C. briggsae 

and other, gonochoristic Caenorhabditis species, focusing on their roles in germline sex 

determination.  I find that two homologs of fbf, Cbr-puf-2 and Cbr-puf-1.2, act 

redundantly to promote hermaphrodite spermatogenesis, much as fbf-1/2 act to promote 

oogenesis in C. elegans.  Cbr-PUF-2/1.2 directly repress the expression of GLD-1, whose 

own role in germline sex is opposite in C. elegans and C. briggsae (Beadell et al., 2011).  

Similar to gld-1, PUF protein involvement in germline sex determination coincides 

phylogenetically with the origin of hermaphrodite development.  Thus, C. briggsae and C. 

elegans PUF genes have opposite effects on germline sex determination because the role 

of a conserved target mRNA has diverged.  Finally, I show that a C. briggsae-specific 

PUF paralog has already acquired additional essential functions, which may explain why 

such duplicate genes are so common.  
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2. Materials and Methods 

 

2.1 Phylogenetic analysis 

Protein datasets for C. elegans, C. briggsae, C. remanei, C. brenneri and C. 

japonica were retrieved from the nematode genome annotation assessment project 

(nGASP: ftp://ftp.sanger.ac.uk/pub/wormbase/WS213/genomes/). A PUF domain Hidden 

Markov Model (HHM; PUF_ls.hmm) from Pfam (Sonnhammer et al., 1998) was used to 

search for PUF domain proteins using HMMER v2.3.2 (Eddy, 1998). Based on test 

searches for known C. elegans PUF homologs, an E-value of 1.0 was used as the cutoff 

threshold. Removal of likely alternative alleles in the C. remanei and C. brenneri 

predictions (Barriere et al., 2009), reduced family sizes to 10 and 9 sequences, 

respectively. To validate predictions with unexpected features, some sequences were 

reverse transcribed using FirstChoice RLM-RACE kit (Ambion) from total RNA, PCR 

amplified, and sequenced.  This revealed errors in the WS213 splicing predictions for 

Cbr-puf-2, Cbr-puf-1.2, and Cja-fbf-1, and confirmed the structure for Cre-puf-1.2.  For 

Cbr-puf-2, earlier WormBase releases (e.g. WS190 and many prior releases) had the 

correct prediction, and Cja-fbf-1 was corrected in WormBase release WS227. The 

corrected coding sequence for Cbr-puf-1.2, however, has not been reported elsewhere, 

and has been submitted to GenBank as accession JQ655294.   

54 Caenorhabditis PUF proteins were aligned with PUMILIO, the unique PUF 

protein in Drosophila melanogaster. Multiple sequence alignment quality was improved 

by first aligning sequences in three separate sub-groups using MUSCLE v3.6 (Edgar, 
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2004) with default settings, after which the three alignments were combined using the 

Profile-profile alignment in MUSCLE v3.6. The combined alignment was manually 

curated using Se-Al v2.0 (http://tree.bio.ed.ac.uk/software/seal/), and PUF domain with 

its flanking regions (335 characters) were extracted according to known PUF protein 

sequence features (Wickens et al., 2002). Maximum likelihood tree search was done 5 

times independently using GARLI 2.0 (Zwickl, 2006), and the tree with the best 

likelihood score was picked. 100 non-parametric bootstrap runs were generated using 

GARLI 2.0.  Trees were read in PAUP* (Swofford, 2002) for majority-rule consensus 

branch values, which were manually mapped onto the best tree and visualized in 

Dendroscope v2.6.1 (Huson et al., 2007). 

2.2 Nematode culture and genetics 

All nematode species were cultured by using standard C. elegans conditions 

(Wood, 1988), with the use of 2.2% agar plates to discourage burrowing. All C. briggsae 

mutants were derived from the wild isolate AF16, and included: LGII: Cbr-puf-2(nm66), 

Cbr-dpy(nm4), Cbr-tra-2(nm1), and Cbr-tra-2(nm9ts); LGIII: Cbr-tra-1(nm2), Cbr-

let(nm28); LGIV: Cbr-fem-3(nm63).  Cbr-tra-2(nm1)/+;Cbr-fem-3(nm63) animals were 

the progeny of Cbr-tra-2(nm1)/+;Cbr-fem-3(nm63)/+ mothers, which came from a cross 

between Cbr-tra-2(nm1)/ Cbr-dpy(nm4) and Cbr-fem-3(nm63)/+ males.  The final 

genotype was confirmed by sequencing of diagnostic PCR amplicons. 

2.3 RNA interference 

Gene-specific templates for in vitro transcription were PCR-amplified from 

genomic DNA (C. briggsae) or cDNA (C. sp. 9, C. remanei, C. brenneri and C. japonica) 

with primers flanked by the T7 promoter and sequenced to verify identity. For C. sp 9, 
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primers designed according to C. briggsae sequences were used. Plasmid pCR50 (gift 

from C. Richie, Natl. Inst. of Health, Bethesda, MD) was used to amplifying green 

fluorescent protein (GFP) coding sequence, and pharyngeal GFP strain CP105 was used 

for the triple RNA interference (RNAi) efficacy test. For all experiments, double-

stranded RNA was introduced by maternal microinjection (Haag et al. 2002). 

2.4 Microscopy 

Worms were mounted for differential interference contrast (DIC) microscopy by 

standard methods (Wood, 1988). For nuclear staining, worms were fixed in cold 

methanol, washed with M9, stained with 7.5µM Hoechst 33258 in M9, rinsed with 

several changes of M9, and mounted in Vectashield (Vector Laboratories) for 

fluorescence microscopy. Images were captured with a Zeiss Axiocam digital camera and 

Open Lab software (Improvision) or an SP5 X confocal microscope (Leica).  In the latter, 

z-stacks were collapsed for presentation. 

2.5 Quantitative RT-PCR 

Total RNA from staged worms was extracted in Trizol (Ambion) and purified 

according to the manufacturer’s instructions. For Cbr-gld-1 expression, RNA from 50 L4 

Cbr-puf-2/1.2(RNAi) worms was extracted. cDNA was reverse-transcribed from total 

mRNA using Superscript III (Invitrogen), and 2µl was used as template for quantitative 

PCR using the LightCycler 480 and SYBR Green I Master (Roche) as described (Hill and 

Haag, 2009). Exon-exon junction primers were used for Cbr-gld-1, Cbr-puf-1.2 and Cbr-

puf-2, and pan-actin was used as internal standard. Raw data were analyzed using 

LinRegPCR (11.0) (Ruijter et al., 2009), which calculates the starting concentration of 

the sample from the mean PCR efficiency per amplicon and the Ct value per sample 
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(Ramakers et al., 2003). For each sample, expression was normalized to actin expression.  

2.6 Deletion mutant screen and transgenic rescue 

A C. briggsae AF16 deletion library was produced and screened following 

standard C. elegans methods (Edgley et al., 2002) without the “poison primer” 

modification. From one million haploid genomes screened, Cbr-puf-2 deletion nm66 and 

Cbr-unc-119 deletion nm67 were isolated. Both alleles were outcrossed 6 times with the 

unmutagenized AF16 strain.  

2.7 Production of Cbr-puf-2 transgene 

Regulatory (5’), coding, and 3’ flanking sequences of Cbr-puf-2 were engineered 

via Gateway cloning technology (Invitrogen) into destination plasmid pCR40 (gift from 

C. Richie, Natl. Inst. of Health, Bethesda, MD), which also contains the wild-type Cbr-

unc-119 gene.  This plasmid was introduced into Cbr-unc-119(nm67) mutants through 

biolistic bombardment (Praitis et al., 2001). Stable non-Unc lines were crossed with Cbr-

puf-2(nm66)/+ mutants to test for rescue of larval arrest. 

2.8 Immunoblots 

Triplicate samples for quantitative Cbr-GLD-1 immunoblots were 50 L4 worms 

of Cbr-puf-2/1.2(RNAi) or AF16 controls in sodium dodecyl sulfate (SDS) sample buffer 

(Russell, 2001). Primary antibodies were rabbit anti-GLD-1 polyclonal antibody (gift 

from T. Schedl, Washington Univ., St. Louis, MO) at 1:2000, and mouse anti-tubulin 

monoclonal antibody (DM1A, Sigma) at 1:1000. Secondary antibodies were HRP-

donkey anti-rabbit IgG (Jackon ImmunoResearch) at 1:1000 and HRP-sheep anti-mouse 

IgG (GE Healthcare) at 1:1600. ECL signal intensity was quantified using ImageJ 



17 
 

(Abramoff, 2004). Cbr-GLD-1 protein expression was normalized to tubulin. 

2.9 Immunohistochemistry 

Immunohistochemistry protocol was slightly modified from that of T. Schedl 

(Washington Univ., St. Louis, MO), using a methanol/formaldehyde fix for 10 min at 

room temperature. For PH3 staining, 1:200 dilution of rabbit-anti-PH3 was applied 

(Upstate). Fluorescently conjugated secondary antibody (goat-anti-rabbit IgG, Alexa 488, 

Invitrogen) was used at 1:2,000 dilution. All gonads were dissected and stained 

simultaneously and in the same conditions. 

2.10 Yeast reporter constructs 

 DNA encoding the PUF domain and flanking regions of Cbr-puf-2 (amino acids 

92-568) and Cbr-puf-1.2 (amino acids 108-554) was cloned into the GST fusion protein 

vector pGEX-4T-1 (GE Healthcare) with XmaI and NotI.  The same fragments were 

cloned into pACT2-AD (Clontech) using NcoI and XmaI to allow activation domain 

fusion protein expression in yeast. Sense and antisense 45bp DNA oligomers (IDT) 

flanking the putative FBF binding element of Cbr-gld-1 and Cbr-fem-3 3’UTR were 

annealed and inserted into pIIIA/MS2-2 vector using XmaI and SphI for hybrid RNA 

expression in yeast. Cbr-gld-1 and Cbr-fem-3 wild-type and ACA mutant forms were 

made similarly. All constructs were confirmed by direct sequencing. pIIIA/MS2-2-Ce-

fem-3, pIIIA/MS2-2-Ce-gld-1, pIIIA/MS2-2-NRE and pACT2-FBF-2 (amino acids 121-

632) are previously described (Bernstein et al., 2005). 

2.11 Gel mobility shift assays 

 GST fusion proteins were isolated from T7 Express lysY Competent E. coli (NEB) 

and purified using the following elution buffer: 1×PBS, 0.2% Tween-20, 150mM NaCl, 
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0.1% 2-mercaptoethanol, and 50 mM glutathione (reduced, pH 8.0). 20 femtomoles 32P-

end-labeled RNA oligoribonucleotides (Dharmacon) were combined with GST-Cbr-PUF-

2 or GST-Cbr-PUF-1.2 at various concentrations as described (Bernstein et al., 2005). 

2.12 Yeast three-hybrid assay 

In all experiments, RNA plasmids and activation domain fusion plasmids were 

cotransformed into YBZ1 yeast strain. The three-hybrid assay was followed as described 

(Stumpf et al., 2008b). The strength of the interaction was measured by beta-Glo Assay 

System (Promega) quantified in a luminometer (Turner 20/20n or Spectra Max M5e).  

2.13 Statistics 

For yeast three hybrid assay data analysis, standard errors for the ratios of test to 

vector RNAs (Figure 4 and Figure S1) were estimated using the “delta method”, which is 

based on Taylor series expansions to account for multivariate nonlinear transformations 

of the data (Powell, 2007). Otherwise, standard two-tail t-testa were applied. 

 

3. Results 

 

3.1 Caenorhabditis PUF family phylogeny reveals ancient sub-family structure 

Preliminary experiments with fbf-related C. briggsae PUF homologs defined by 

Lamont et al. (2004) suggested they were required for XX sperm production (S. Feng, 

QL and ESH, unpublished), the opposite role of C. elegans fbf-1, fbf-2 and puf-8 

(Bachorik and Kimble, 2005; Zhang et al., 1997).  To guide more precise experiments, I 

produced an expanded PUF phylogeny using all homologs from the five currently 

sequenced Caenorhabditis. The most likely tree (Figure 1) divides the PUF family into 9 
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monophyletic subfamilies, two of which, PUF-12 and PUF-13, are newly defined here. 

The previously described C. elegans puf-10 is a pseudogene with stop codons throughout 

 
Figure 1. PUF family phylogeny for five Caenorhabditis species.  Maximum 
likelihood tree based on the PUF domain and conserved flanking regions. 
Bootstrap support is given for internal branches. See Appendices for 
WormBase gene numbers and nomenclature scheme. 
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its former coding region and highly divergent sequence, and thus does not appear in 

Figure 1. Relative to the two-species analysis of Lamont et al. (Lamont et al., 2004), one 

C. elegans gene and three C. briggsae genes are added.  The PUF-9 subfamily is basal, 

with highly conserved orthologs in all sequenced species. The remaining eight 

subfamilies represent a more recent radiation, yet all but one has an ortholog in C. 

japonica, the outgroup to the other species (Cho et al., 2004; Kiontke et al., 2004).  At 

least 8 subfamilies were therefore present in the Caenorhabditis ancestor, and a more 

complete genome assembly for C. japonica may reveal additional PUF family genes. 

Importantly for this study, C. elegans FBF proteins and C. briggsae PUF-2 

proteins belong to two distinct clades. Moreover, C. elegans lacks a PUF-2 subfamily 

member, and C. briggsae lacks an FBF subfamily ortholog.  FBF and PUF-2 subfamilies 

are marginally supported as sister groups.  More certain is that both belong to a well-

supported super-clade of seven PUF subfamilies, two of which (PUF-5 and PUF-6/7) are 

closely related and share a binding preference distinct from FBF (and likely PUF-2) sub-

families (Stumpf et al., 2008a). Thus, the C. elegans and C. briggsae genes whose 

functions are compared below are not orthologous, but belong to subfamilies that are 

relatively closely related.  

3.2 Opposite functions of PUF homologs in convergent hermaphrodites 

Because PUF-2 orthologs are absent from C. elegans, their specific functions in C. 

briggsae are not readily predicted.  Therefore, gene-specific knock-down of Cbr-puf-1.1, 

Cbr-puf-1.2 and Cbr-puf-2 was performed separately and in various combinations (Table 

1). Cbr-puf-2(RNAi) alone had little effect, but simultaneous knockdown of Cbr-puf-2  
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Table 1. RNA interference phenotypes of C. briggsae PUF-2 sub-family paralogs 

target gene(s) [dsRNA] 
(µg/µl) 

Phenotype percentage (N>200/treatment) 

Fog# Other sterile* self-fertile 

Cbr-puf-1.1 ~3.0 - - 100% 

Cbr-puf-2 ~3.0 - - 100% 

Cbr-puf-1.2 ~3.0 - - 100%  
(oocyte defect) 

Cbr-puf-1.1 + Cbr-puf-2 ~4.0/3.0 - - 100% 

Cbr-puf-1.1 + Cbr-puf-
1.2 ~4.0/3.0 - <1% ~100% 

Cbr-puf-2 + Cbr-puf-1.2 0.5/0.5 91% 9% 0% 

Cbr-puf-2 + Cbr-puf-1.2 1.0/1.0 86% 14% 0% 

Cbr-puf-2 + Cbr-puf-1.2 1.5/1.5 80% 20% 0% 

Cbr-puf-2 + Cbr-puf-1.2 2.0/2.0 76% 24% 0% 

Cbr-puf-2 + Cbr-puf-1.2 ~3.0/3.0 53% 41% 6% 

Cbr-puf-1.1 + Cbr-puf-
1.2 + Cbr-puf-2 ~4.0/3.0/3.0 25% 73% 2% 

 
* proximal or whole-gonadal tumor, malformed germ line and oocytes (all lack sperm) 
# Fog animals can produce viable progeny when mated with males 
For some of the RNAi experiments, the efficiency of knockdown was measured by qRT-
PCR and found to range from 10-90% 
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and Cbr-puf-1.2 (but not other combinations) led to a strongly feminized germ line 

(Figure 2B). Cbr-puf-2/1.2 (RNAi) females have normal-sized germ lines, and could mate 

and produce viable progeny. Cbr-puf-2/1.2 (RNAi) males were overtly normal and could 

 
Figure 2. Expression and germline phenotypes of Cbr-puf-2/1.2(RNAi).   A. 
Wild-type C. briggsae adult hermaphrodite, stained with Hoechst 33258 to 
visualize DNA. sp, sperm, do, diakinesis oocytes.  Asterisk marks the distal tip 
of the gonad. B. XX Cbr-puf-2/1.2(RNAi) Fog phenotype, commonly seen in 
low-dose RNAi, revealed by Hoechst staining. C-D. Proximal proliferation (pp) 
of germ line (Pro) phenotype in XX Cbr-puf-2/1.2(RNAi) animals. Tumors were 
observed proximal to either small populations of well-differentiated diakinesis 
oocytes (C) or undifferentiated germ cells (D). E. Developmental profile of Cbr-
puf-1.2 and Cbr-puf-2 mRNA levels using quantitative RT-PCR. Expression 
levels were normalized to total actin expression and scaled (unit for Cbr-puf-2: 
10-3, for Cbr-puf-1.2: 10-4).   
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sire viable progeny (not shown).  Thus, Cbr-puf-2 and Cbr-puf-1.2 act synthetically and 

specifically to promote spermatogenesis in C. briggsae hermaphrodites, but not in males. 

This contrasts with the role of fbfs and puf-8 in C. elegans hermaphrodites, where they 

promote oogenesis (Bachorik and Kimble, 2005; Zhang et al., 1997).  

Cbr-puf-2 and Cbr-puf-1.2 also function in non-sexual aspects of germline 

development (Table 1). A minority of Cbr-puf-2/1.2(RNAi) worms had proximal germ 

cell tumors at low concentrations (0.5µg/µl) of dsRNA (Figure 2C,D). When the 

concentration of dsRNA was increased to 3.0µg/µl, the percentage of Fog animals 

decreased and more proximal tumors were observed (Table 1). In tumorous gonads, 

proximal over-proliferated cells were followed distally by oogenic cells at various 

meiotic stages or abnormal pachytene cells.  This oogenic region is often small and 

located at the bend of the gonad arm, which can be easily missed in whole mounts. This 

tumor phenotype indicates Cbr-puf-2 and Cbr-puf-1.2 are involved in the control of 

meiotic progression and/or the prevention of the return to mitosis. In addition, Cbr-puf-

1.2(RNAi) worms produced fewer and atypically small oocytes, which indicates Cbr-puf-

1.2 is involved non-redundantly in oocyte development. 

The developmental profile of Cbr-puf-2 and Cbr-puf-1.2 mRNA levels (Figure 2E) 

are qualitatively similar to each other, and are typical of germline-expressed genes: low 

expression from embryo to L2 stages, slightly increasing expression at L3 and L4, and 

peak levels in adults.  However, Cbr-puf-2 is over 100-fold more abundant than Cbr-puf-

1.2, whose transcripts are on the order of 10-5 times less abundant (body-wide) than that 

of total actins. 
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3.3 Cbr-puf-2 mutant reveals pleiotropic roles in embryogenesis and larval somatic 

development 

Figure 3. Pleiotropic functions of Cbr-puf-2 in embryogenesis and larval 
growth. A. Structure of Cbr-puf-2 and extent of deletion in allele nm66. 
Rectangles represent exons, with coding sequence for the conserved PUF 
domain and flanking regions stippled, and other coding sequences in gray. B. 
Cbr-puf-2(nm66) embryos hatch normally, but arrest as larvae. Progeny that 
reach adulthood were significantly fewer from nm66/+ mothers than those from 
WT AF16 mothers (p-value: 0.003), nm66 adults were never observed.  Inset: 
arrested nm66 larvae.  C. Maternally deposited Cbr-puf-2 promotes embryonic 
development. CP113 animals hatched at lower rates than AF16 (p-
value<0.0001), and mating with AF16 males failed to rescue lethality (p-value: 
0.0002). Inset: representative dead embryos.  D. Cbr-puf-2(nm66) animals 
harboring a Cbr-puf-2(+) transgene (strain CP113) grow into fertile adults. E-G. 
Low concentrations of Cbr-puf-1.2 dsRNA produces Fog animals (D); while 
higher doses produce tumors (F and G). 
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To further study the function of Cbr-puf-2, two deletion alleles were isolated.  For 

one 1.9kb genomic deletion, I failed to obtain homozygous adults, and eventually it was 

lost. The second allele, nm66, carries a 1.7kb genomic deletion that removes three 

quarters of the coding sequence, including the entire PUF domain (Figure  3A), and is 

thus a likely null allele. Again homozygous adults could not be identified, and close 

inspection revealed that one quarter of progeny from Cbr-puf-2(nm66)/+ mothers were 

arrested at an early larval stage (Figure 3B) five days after hatching at 20°C. Genotyping 

of arrested larvae confirmed they were nm66 homozygotes.  

To confirm that loss of Cbr-puf-2 function causes the larval arrest phenotype in 

nm66, I introduced a wild-type Cbr-puf-2 transgene into nm66 mutants.  This was 

sufficient to allow nm66 homozygotes to develop into fertile adults (Figure 3D). The 

rescued strain, CP113, nevertheless had undetectably low Cbr-puf-2 mRNA level as 

measured by RT-PCR. Since germline transgene silencing is a known phenomenon in C. 

elegans (Seydoux and Schedl, 2001), I hypothesized that CP113 was a somatic-rescued 

but germline-null Cbr-puf-2 mutant. 

In a wild-type genetic background, both Cbr-puf-2 and Cbr-puf-1.2 must be 

knocked down to feminize the germ line and produce tumors (Figure 2B). In CP113, 

however, Cbr-puf-1.2(RNAi) alone produces the Fog phenotype (Figure 3E), and at high 

doses of Cbr-puf-1.2 dsRNA, germ line tumors became common (Figure  3F, G). These 

results are consistent with germline silencing of the Cbr-puf-2 transgene in the CP113 

strain. It also suggests that very low levels of Cbr-puf-2 expression are sufficient in 

somatic tissues to allow progression from larval stages to adulthood. This could also 

explain the observation that Cbr-puf-2 (RNAi) animals did not undergo larval arrest. 



26 
 

XX CP113 animals also have subtle germline defects.  While they are overtly 

normal and fertile, they have delayed gamete maturation.  Newly molted adult CP113 

animals have very few yolky oocytes, and spermatocytes are just beginning to 

differentiate. AF16 animals at this stage generally have fully differentiated sperm, and 

oocytes fill the proximal gonad arms.  Also, about 70% of CP113 eggs died at various 

embryonic stages (Figure 3G), and this embryonic lethal phenotype could not be rescued 

by a paternal copy of Cbr-puf-2(+). I interpret this to be a maternal effect of nm66 caused 

by lack of Cbr-puf-2 activity in the maternal germ line. 

3.4 Cbr-puf-2 and Cbr-puf-1.2 directly repress Cbr-gld-1 mRNA to promote 

spermatogenesis 

In C. elegans, FBF-1 and FBF-2 directly regulate gld-1 and fem-3 mRNA 

translation via FBF-binding elements (FBE) in their 3’ UTRs (Crittenden et al., 2002; 

Suh et al., 2009; Zhang et al., 1997). The binding elements contain a “core” central 

Figure 4. Cbr-gld-1 is a direct target of Cbr-PUF-2/1.2.  A. Alignment of FBF-
binding sites of C. elegans fem-3 and gld-1 with their orthologs from various 
Caenorhabditis species.  Gray: invariant core residues mutated in the ACA variant 
tested in panels D & E. Asterisks: fem-3(gf) point mutations. B.  Masculinization of 
germ line by Cbr-gld-1(RNAi);Cbr-puf-2/1.2(RNAi). Hoechst staining reveals 
spermatocytes (sc) at the gonad arm bend and highly condensed sperm (sp) nuclei at 
the proximal end of the gonad.  C. Cbr-GLD-1 protein level is significantly higher in 
Cbr-puf-2/1.2(RNAi) than in wild-type L4 worms, while Cbr-gld-1 mRNA level is 
not. Error bars show standard errors; p-values (unpaired Student t-test) are 0.006 and 
0.168 for protein level and mRNA level, respectively.  D. Yeast three-hybrid 
interactions among C. elegans and C. briggsae PUF proteins and gld-1 mRNA 
variants.  RNA plasmid pIIIa serves as the plain vector control. E. Cbr-puf-2 and 
Cbr-puf-1.2 bind to the putative Cbr-gld-1 FBE in vitro in a UGU-dependent 
manner. Black arrows indicate mobility-retarded complexes of labeled RNA 
oligomers and pure PUF proteins, while open arrows indicate free RNA oligomers. 
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region (CGUGUAUUAUA: invariable nucleotides underlined) and flanking sequences, 
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and the core is distinct from that of other PUF proteins (Bernstein et al., 2005). The 3’ 

UTR of Cbr-gld-1 bears a 15-nucleotide stretch that is nearly identical to the C. elegans 

gld-1 FBE (Figure 4A). Moreover, loss of Cbr-gld-1 function masculinizes the germ line 

(Beadell et al., 2011; Nayak et al., 2005), suggesting its normal function is to promote 

oogenesis.  I hypothesized that Cbr-gld-1 might be hyperactive in Cbr-puf-2/1.2(RNAi) 

animals, and thus completely repress hermaphrodite spermatogenesis.  

I investigated the epistatic relationship of Cbr-gld-1 and Cbr-puf-2/1.2 through 

triple RNAi knockdown. A preliminary experiment was conducted to demonstrate the 

efficacy of Cbr-puf-2/1.2(RNAi) in a triple knockdown.  A myo-2::gfp transgenic strain 

injected with a mixture of Cbr-puf-2/1.2 and gfp dsRNA had a feminized germ line with 

compromised pharyngeal GFP expression (data not shown).  XX Cbr-gld-1(RNAi); Cbr-

puf-2/1.2(RNAi) adults had masculinized germ lines (Figure 4B), indicating that sperm 

production (to excess) in Cbr-puf-2/1.2 is restored when Cbr-gld-1 function is reduced. 

Also consistent with repression of Cbr-gld-1 by Cbr-PUF-2/1.2, Cbr-GLD-1 protein 

levels at the late L4 stage (when wild type worms are at their peak of sperm production) 

are pproximately twice as high in Cbr-puf-2/1.2(RNAi) worms as in wild-type (Figure 

4C), a statistically significant result (unpaired student t-test; p=0.006). In contrast, there 

is no significant difference in Cbr-gld-1 transcript levels in the two treatments (Figure 3C, 

p=0.168) at this stage. These results are consistent with Cbr-puf-2/1.2 acting at the level 

of translation to promote spermatogenesis via direct repression of Cbr-GLD-1 expression. 

Binding of Cbr-PUF-2/1.2 to the candidate FBE in the Cbr-gld-1 3’ UTR was first 

measured using the yeast three-hybrid assay, in which interaction of an RBP-activation 

domain fusion protein with a “bait” RNA leads to activation of a reporter (Bernstein et al., 
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2002). Reporter activity was much higher with wild-type than with mutated versions of 

Cbr-gld-1 FBE bait RNA (Figure 4D).  C. elegans FBF-2 also interacts strongly and in an 

FBE-dependent manner with the Cbr-gld-1 bait RNA.  To verify that the interactions 

between the Cbr-gld-1 FBE and the Cbr-PUF-2 and Cbr-PUF-1.2 proteins were direct, I 

used synthetic ribo-oligonucleotides encoding the candidate FBE and purified proteins in 

gel mobility shift assays. Both Cbr-PUF-2 and Cbr-PUF-1.2 bind with high affinity to the 

Cbr-gld-1 FBE (Figure 4E), and this interaction required the UGU motif essential for 

FBE binding by FBF in C. elegans (Bernstein et al., 2005).   

The above assays indicate that Cbr-PUF-2 and Cbr-PUF-1.2 interact with the Cbr-

gld-1 FBE directly and with properties similar to those of the FBF subfamily.  The C. 

Figure 5.  Conservation of fem-3 PME binding by C. briggsae PUF proteins.  
Yeast three-hybrid assays were performed to assess interaction of the protein and 
bait RNA fragments indicated.  To account for potential variation in expression 
of a particular test protein, reporter activity for each RNA bait is normalized to 
that of the vector control.   
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briggsae fem-3 3’ UTR also possesses a well-conserved FBF-like binding site, the point 

mutation element (PME) (Haag et al., 2002).  In yeast three-hybrid assays, Cbr-PUF-1.2 

and Cbr-PUF-2 interact specifically with PME-containing fragments from C. elegans and 

C. briggsae fem-3, and C. elegans FBF interacts with C. briggsae and C. elegans fem-3 

PME fragments to a similar extent (Figure 5).  This suggests that both PUF-2 and FBF 

PUF subfamilies can recognize a similar RNA motif conserved in fem-3 orthologs, but 

the biological significance of a Cbr-PUF/Cbr-fem-3 mRNA interaction was initially 

unclear (see below).   

3.5 Nonlinear interactions between Cbr-puf-2/1.2 and the core sex determination 

pathway 

In an effort to place Cbr-puf-2/1.2 activity in the sex determination pathway, I 

performed approximations of epistasis tests by combining Cbr-puf-2/1.2(RNAi) with tra 

(masculinizing) mutants (Table 2).  XX Cbr-tra-2(nm1) homozygotes develop imperfect 

male bodies and produce only sperm (Kelleher et al., 2008), while heterozygotes are 

normal hermaphrodites.  All XX Cbr-tra-2(nm1);Cbr-puf-2/1.2(RNAi) animals developed 

male somas, but roughly half of these had tumorous germ lines lacking differentiated 

gametes, and half produced sperm proximal to a tumor (Figure 6C).  None had obvious 

oocytes.  Using the Cbr-dpy(nm4) marker closely linked to Cbr-tra-2 in trans, Cbr-tra-

2(nm1)/+ and Cbr-tra-2(+/+) could also be scored reliably.  Surprisingly, most Cbr-tra-

2(nm1)/+;Cbr-puf-2/1.2(RNAi) animals (Table 2) had two gonads full of sperm with no 

sign of oogenesis (Figure 6D). Genotyping confirmed that these female soma/Mog 

animals were indeed Cbr- tra-2(nm1)/+. Since Cbr-tra-2 germline masculinization is 
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normally recessive and Cbr-puf-2/1.2(RNAi) has a feminizing effect, the masculinization 

of this combination is unexpected.   

Table 2.  Interactions between sex determination mutations and Cbr-puf-1.2/2 
knockdown.  The first column: the genotypes of the mothers that Cbr-puf1.2/2 RNAi 
knockdown was operated.  The second and third columns: the somatic (2nd) and germline 
(3rd) phenotypes of self progeny from mothers listed in the first column.  The fourth 
column: the germline phenotypes of self progeny with RNAi.  The fifth column: the 
number of animals observed showing the phenotype as the fourth column.  The sixth 
column: confirmed tra lesion by sequencing. 
 
 

genotype of 
injected 
mother 

 

self progeny 
class by somatic 

phenotype1 

self progeny class 
by gonad 

phenotype1: non-
RNAi 

gonad phenotype of 
progeny: RNAi 

 

Number 
scored 

 

genotype 
(T = nm1 
or nm2, C 

= WT) 

Cbr-tra-
2(nm1)/ 

Cbr-dpy(nm4) 

A class: 
Tra pseudo-male 

soma 

One armed gonad 
with sperm only 

Sperm+tumor 
(includes Pro) 38 T/T 

tumor 45 
 T/T 

normal 10 
 

 
N. D. 

B class: 
Non-Dpy female 

soma 
 

Two armed gonads 
with both sperm and 

oocytes 

single gonad arm, tumor 3 
 C/T 

two gonad arms, both 
Mog 

32 
 C/T 

abnormal female2 8 
 C/T 

degenerated germ line 3 
 N. D. 

self fertile 1 
 N. D. 

C class: 
Dpy female soma 

 

Two armed gonads 
with both sperm and 

oocytes 

normal 1 
 

C/C 
 

Mog 3 
 C/C 

degenerated or 
undifferentiated germ 

line 
10 C/C 

Cbr-
dpy(nm4)/+ 

 

A class: 
Dpy Two armed gonads 

with both sperm and 
oocytes 

Fog 
>200 

N. D. 

B class: 
non-Dpy Fog N. D. 
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Table 2.  continued 

Cbr-tra-
1(nm2)/ 

Cbr-let(nm28) 

A class: 
Tra pseudo-male 

soma 

One armed gonad 
with sperm only and 

late oocyte 
production 

tumor 89 T/T 

tumor + oocytes 20 T/T 

oocytes 6 N. D. 

B class: 
female soma 

Two armed gonads 
with both sperm and 

oocytes 
 

tumor 3 N. D. 

abnormal oogenesis 56 T/C 

Cbr-fem-
3(nm63) isogenic 

Two armed gonads 
with both sperm and 

oocytes 
Fog >100 N. D. 

Cbr-tra-
2(nm1); 
Cbr-fem-
3(nm63) 

isogenic 

Two armed gonads 
with both sperm and 

oocytes 
 

self-fertile >100 N. D. 

Cbr-tra-
2(nm1)/+; Cbr-

fem-3(nm63) 

A class3 Two armed gonads 
with both sperm and 

oocytes 

Fog 57 T/C, C/C 

B class3 self-fertile 21 T/T 

1 no RNAi phenotype 
2 poorly formed vulva and tail, undifferentiated germ line  
3 All progeny have female somas due to Cbr-fem-3(nm63) - Not genotyped 
N. D.: not determined 

 

Also unexpected was the lack of differentiated gametes seen in the Dpy progeny 

with two wild-type zygotic copies of Cbr-tra-2.  To control for possible effects of the 

Cbr-dpy(nm4) marker, Cbr-dpy(nm4)/+ mothers lacking any Cbr-tra-2 mutation were 

injected with Cbr-puf-2/1.2 dsRNA.  Here, all selfed progeny, including Dpy 

homozygotes, were Fog. Therefore, the Mog phenotype of Cbr-tra-2(nm1)/+; Cbr-puf-

2/1.2(RNAi) animals requires a maternal nm1 allele, and the poorly differentiated 

germline of their Cbr-dpy(nm4); Cbr-puf-2/1.2(RNAi) siblings is a dominant maternal 

effect of the Cbr-tra-2(nm1) mutation. Another Cbr-tra-2 allele, nm9ts (Kelleher et al., 

2008) produced the same result, suggesting that the interaction between Cbr-tra-2 and 

Cbr-puf-2/1.2 is general.   
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The strong loss-of-function mutation Cbr-tra-1(nm2) causes XX animals to 

Figure 6. Interaction between Cbr-puf-2/1.2 knockdown and masculinizing tra 
mutations. A. Wild-type XX C. briggsae hermaphrodite gonad arm (anterior), 
showing mature oocytes (o), sperm (sp) in the spermatheca, and vulva (v).  The 
distal tip of the reflexed arm is marked with an asterisk.  B.  Wild-type C. briggsae 
XO male testis, labeled as in A.  C.  Cbr-tra-2(nm1);Cbr-puf-2/1.2(RNAi) XX 
animals develop male soma, half of which have sperm (sp) proximal to ectopically 
proliferative (ep) germ line tumor. D. Cbr-tra-2(nm1)/+;Cbr-puf-2/1.2(RNAi) 
animals have two gonads full of sperm with no sign of oogenesis. E. Cbr-puf-
2/1.2(RNAi);Cbr-tra-1(nm2) XX animals have male soma. Among them, 77% 
developed tumorous germ line without apparent gametogenesis. F. Cbr-puf-
2/1.2(RNAi);Cbr-fem-3(nm63) animals are Fog; oocytes (o). G. Cbr-tra-2(nm1)/+; 
Cbr-puf-2/1.2(RNAi);Cbr-fem-3(nm63) are Fog. H. Cbr-tra-2(nm1); Cbr-puf-
2/1.2(RNAi);Cbr-fem-3(nm63) animals are self-fertile hermaphrodites that produce 
embryos (e).  
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develop a male body and a mixture of sperm and endomitotic oocytes (Hill and Haag, 

2009; Kelleher et al., 2008). Similar to Cbr-tra-2(nm1); Cbr-puf-2/1.2(RNAi), all Cbr-

tra-1(nm2); Cbr-puf-2/1.2(RNAi) XX animals had a fully male soma, consistent with 

Cbr-puf-2/1.2 acting to determine sex exclusively in germ cells.  77% developed 

germline tumors without apparent gametogenesis (Figure 6E), 17% had differentiated 

oocytes distal to tumorous germ cells, and the rest had only oocytes with an otherwise 

normal germ line (Table 2). Suppression of the abundant sperm development 

characteristic of Cbr-tra-1(nm2) by Cbr-puf-2/1.2(RNAi) is surprising, since wild-type 

XO males show no such defect.  

I also examined interactions between Cbr-puf-2/1.2(RNAi) and the likely null 

Cbr-fem-3 mutant, nm63, which on its own has no effect on XX hermaphrodites but sex-

reverses XO animals (Hill et al., 2006). XX Cbr-puf-2/1.2(RNAi);Cbr-fem-3(nm63) 

animals are Fog (Figure 6F), suggesting that Cbr-puf-2/1.2 and Cbr-fem-3 do not have 

obvious genetic interaction.  To further test a simple linear model, I reduced Cbr-tra-2 

levels via the nm1 mutation, with the expectation that in the absence of Cbr-fem-3, loss of 

all or part of Cbr-tra-2 activity would have no effect. However, while all Cbr-tra-

2(nm1)/+; Cbr-puf-2/1.2(RNAi);Cbr-fem-3(nm63) animals were Fog (Figure 6G, Table 

2), homozygosity for Cbr-tra-2(nm1) restored self-fertility to the otherwise Fog Cbr-puf-

2/1.2(RNAi);Cbr-fem-3(nm63) animals (Figure 6H). Thus, the germline sex 

determination activity of Cbr-puf-2/1.2 is sensitive to Cbr-tra-2 dose even in the absence 

of Cbr-fem-3, which is inconsistent with a linear epistasis model for gene activity. 

3.6 Functions of puf-2 and fbf orthologs in gonochoristic Caenorhabditis 
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But for the production of sperm, females of gonochoristic Caenorhabditis are 

very similar to C. elegans and C. briggsae hermaphrodites, and males are anatomically 

identical.  I therefore sought to clarify the evolutionary history of FBF and PUF-2 

subfamily genes’ functions in germline sex determination. RNAi knockdown by direct 

injection of dsRNA into the germ line is efficient in a range of Caenorhabditis species 

(Winston et al., 2007), so I applied this to the gonochoristic C. brenneri, C. remanei, C. 

japonica and C. sp 9 (Table 3). In nearly every case, puf RNAi caused pronounced 

germline under-proliferation, ranging from fewer than usual germ cells to complete loss 

(Figure 7C-J).  A notable exception, however, was knockdown of C. brenneri fbf-1.  In 

this case, germ cells appear to exit meiosis and reenter the mitotic cell cycle, producing a 

germ cell tumor (Figure 7E, L).  The phenotype is reminiscent of loss of gld-1 function in 

both C. elegans (Francis et al., 1995a) and C. briggsae (Beadell et al., 2011; Nayak et al., 

2005). However, straightforward germline sex determination phenotypes were not 

observed in either XX or XO animals.  

 

Table 3.  Summary of puf RNAi knockdown experiments in gonochoristic 
Caenorhabditis. 
 

C. sp. 9 Male Female 
Number Phenotype Number Phenotype 

Csp9-puf-1.1/21 65 GD 68 GD, OD 

Csp9-puf-2/1.21 83 GD 68 GD, OD 

Csp9-puf-1.1/1.21 38 GD 58 GD, OD 

Csp9-puf-21 50 Normal 50 Normal 
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Table 3 continued 

C. brenneri Male Female 
Number Phenotype Number Phenotype 

puf-2 50 GD, EL, LA 50 GD, EL, LA 

all puf-2 paralogs N. A. N. A. N. A. N. A. 

fbf 50 tumor 50 tumor 

puf-2 + fbf 50 GD, EL, LA 50 GD, EL, LA 
 

C. remanei Male Female 
Number Phenotype Number Phenotype 

puf-2 95 GD2 98 GD2 

all puf-2 paralogs 72 GD 70 GD 

fbf N. A. N. A. N. A. N. A. 

puf-2 + fbf N. A. N. A. N. A. N. A. 
 

C. japonica Male Female 
Number Phenotype Number Phenotype 

puf-2 26 GD, mild 30 GD, mild 

all puf-2 paralogs N. A. N. A. N. A. N. A. 

fbf 12 GD, mild 9 GD, mild 

puf-2 + fbf 82 GD, severe 85 GD, severe 
  

1 primers designed according to C. briggsae orthologs and dsRNA derived from C. sp. 9 
cDNA  
2 dsRNA derived from Cre-puf-2.1, but also has stretches of high similarity to Cre-puf-
2.2. 
F: female, M: male, GD: germline degeneration, OD: oogenesis defect, EL: embryonic 
lethal, LA: larval arrest, N.A.: not applicable (see Figure 1) 
Numbers account for all observations.
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4. Discussion 
 

4.1 Additional taxa clarify the size and evolutionary history of the Caenorhabditis PUF 

family  

Since Lamont et al. (2004) produced the first phylogeny for C. elegans and C. 

briggsae PUF gene family members, the genomes of three gonochoristic Caenorhabditis   

(C. remanei, C. brenneri, and C. japonica) have been sequenced and annotated (and 

others now have preliminary assemblies). Searches of all five genomes revealed two PUF 

protein families not present in this earlier analysis, PUF-12 and PUF-13. The functions of 

these two newly added PUF sub-families are completely unknown.  Phylogenetic 

reconstruction unambiguously groups PUF proteins into nine distinct subfamilies, and 

shows that Ce-FBF and Cbr-PUF-1.1/1.2/2 are members of different sub-families that 

existed prior to the divergence of C. japonica from the Elegans group species. 

Nevertheless, the FBF and PUF-2 subfamilies retain common RNA binding site 

preferences and roles in regulating germline proliferation.  Their most striking difference, 

in hermaphrodite germline sexual patterning, evolved as the C. elegans and C. briggsae 

lineages adopted self-fertility (Figure 8A). 

Figure 7. PUF family knockdown in gonochoristic Caenorhabditis. 
A, B. Untreated adult C. remanei female and male, with germ lines outlined; e, 
embryo; o, oocytes, spt, spermatheca; v, vulva. B-J, RNA interference directed 
against C. japonica, C. brenneri, C. remanei and C. sp.9 (as indicated). PUF 
homologs generally produced a germline underproliferation (C, D, F, J) or 
abnormal germline degeneration (G-I). In contrast, C. brenneri fbf-1(RNAi) (E) 
produces a germ cell tumor.  K, L. Merged fluorescent images of DNA (gray) and 
phospho-histone 3 (PH3; red) staining of extruded XX C. brenneri gonads from 
untreated (I) or  Cbn-fbf-1(RNAi) (J) animals. Mitotic nuclei are localized to the 
distal stem cell niche (*) in wild-type females (K), but distributed throughout the 
gonad in Cbn-fbf-1(RNAi) (L). 
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4.2 The sex determination function of Cbr-puf-2/1.2 is mediated by a conserved PUF-gld-

1 interaction 

The PUF and GLD-1 RBPs are pleiotropic regulators with complex interactions 

with other factors.  In C. elegans, FBF-1/2 regulate germ cell sexual fate (Zhang et al., 

1997) and the entry into meiosis (Crittenden et al., 2002; Lamont et al., 2004) through 

repression of hundreds of target mRNAs (Kershner and Kimble, 2010).  In addition, in 

the soma FBF-1 can act as a positive regulator of target gene expression (Kaye et al., 

2009). GLD-1 is also a translational repressor (Jan et al., 1999) with many target mRNAs 

(Wright et al., 2010) and roles in both sex determination and meiotic progression (Francis 

et al., 1995b). gld-1 is itself both positively and negatively regulated at the mRNA 

(Crittenden et al., 2002; Suh et al., 2009; Suh et al., 2006) and protein (Clifford et al., 

2000a; Jeong et al., 2010) levels. Further, in a sensitized background C. elegans gld-1 

 mutations can have an unexpected strong masculinizing effect (Kim et al., 2009), and 

FBF associates with molecular complexes that have both repressive and stimulatory 

effects on gld-1 expression (Suh et al., 2009).  These complexities suggest a number of 

ways that a PUF-gld-1 regulatory linkage could be modified such that homologous PUF 

mutants have opposite sexual phenotypes.  However, in this study I tested a simple 

hypothesis based on three initial observations:  

1. gld-1 is repressed by FBF in C. elegans (Crittenden et al., 2002; Suh et al., 2009).  

2. The FBF and PUF-2 subfamilies are related (Figure 1). 

3. The sexual transformations of both gld-1 orthologs and PUF-2/FBF genes (Figure 

2) are opposite in C. elegans (Clifford et al., 2000b; Francis et al., 1995a; Francis 
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et al., 1995b; Goodwin et al., 1993; Jan et al., 1999) and C. briggsae (Beadell et 

al., 2011; Nayak et al., 2005).  

I hypothesized that loss of FBF and PUF-2 family members in C. elegans and C. 

briggsae, respectively, have opposite effects on germline sex primarily because a 

conserved, negatively regulated target mRNA, gld-1, has itself adopted opposite sexual 

roles. 

I have presented several lines of evidence indicating that Cbr-GLD-1 expression 

is indeed repressed directly by Cbr-PUF-2/1.2. First, the conserved Cbr-gld-1 FBE can be 

specifically bound in vitro by Cbr-PUF-2, Cbr-PUF-1.2, and C. elegans FBF-2.  In yeast, 

fem-3 FBEs also interact with both FBF-2 and Cbr-PUF-2 and Cbr-PUF-1.2 (Figure 5). 

Thus, FBF and PUF-2 subfamilies have similar RNA binding properties. Secondly, 

reduced Cbr-puf-2/1.2 function elevates Cbr-GLD-1 levels at the stage when 

spermatogenesis normally occurs.  Though it is possible that this effect is indirect, the 

simplest interpretation is that Cbr-GLD-1 translation is increased.  Finally, Cbr-gld-

1(RNAi) suppression of Cbr-puf-2/1.2(RNAi) feminization is consistent with GLD-1 over-

expression being the chief mechanism by which Cbr-puf-2/1.2(RNAi) feminizes the 

hermaphrodite germ line.  

4.3 Independent recruitment of a PUF-gld-1 regulatory module during evolution of 

hermaphroditism  
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PUF-2 and FBF sub-family gene knockdowns (Figure 7) revealed defects in 

Figure 8.  Models of FBF and PUF-2 subfamily evolution.  A. Cladogram of 
Elegans group Caenorhabditis (Base on Kiontke et al., 2004; Woodruff et al., 
2010) and summaries of knockdown phenotypes for FBF and PUF-2/1.2 sub-
families from this study (GD, germ line degeneration; Mog, masculinization of 
germ line; Fog, feminization of germ line).  Because of lineage-specific subfamily 
loss some species-subfamily combinations have no data. B. Genetic model for 
regulatory interactions between fbf, puf-2, and other sex determination factors in 
the hermaphrodite germ line of C. elegans (left) and C. briggsae (right).  The 
weight of the repression bars downstream of fbf and Cbr-puf-2/1.2 is indicative of 
the relative significance of the interaction for sex determination. Note that C. 
elegans gld-1 promotes spermatogenesis by directly regulating tra-2 (Jan et al. 
1999), but this is not shown here. 
 

- 
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proliferation control, but not in sex determination, in gonochoristic Caenorhabditis, 

whereas both C. elegans and C. briggsae show strong masculinization or feminization, 

respectively.  This could suggest the independent co-option of PUF proteins into C. 

elegans and C. briggsae hermaphroditic germline patterning.  However, I have recently 

described complementary changes in gld-1 function in the same species (Beadell et al., 

2011).  Specifically, the C. elegans tra-2 3’ UTR evolved to support an unusually strong 

in vivo association with GLD-1 that is required for XX spermatogenesis.  In contrast, C. 

briggsae gld-1 evolved to limit XX sperm production through regulation of Cbr-puf-8.  

These changes in the targets of gld-1, when combined with the existence of a conserved 

PUF-gld-1 module described here, are largely sufficient to explain the differences in C. 

elegans fbf and C. briggsae puf-2 phenotypes (Figure 8).   

The repeated recruitment of PUF and gld-1 (Beadell et al., 2011) homologs into 

hermaphroditic germline sex determination may reflect the general reliance of germline 

development on posttranscriptional gene regulation (Leatherman and Jongens, 2003), 

especially via mRNA 3’UTRs (Merritt et al., 2008).  PUF proteins are pleiotropic 

germline mRNA-binding proteins (Ariz et al., 2009; Lublin and Evans, 2007; 

Subramaniam and Seydoux, 2003; Wickens et al., 2002), and are thus a priori on a short 

list of candidates for mediating germline sex determination.  Also, germline sex 

determination has spatial and temporal overlap with events regulating germline meiotic 

entry and gamete differentiation, which predate the origins of self-fertility. This overlap 

may increase the probability of recruiting genes regulating these events into 

hermaphrodite patterning.  Consistent with this, the 3’ UTR motif that allows C. elegans 

FBF repression of gld-1 mRNA to promote germ cell proliferation (Crittenden et al., 
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2002) is conserved among all sequenced Caenorhabditis species, hermaphroditic or not 

(Figure 4A).   

Taken together, it is likely that the last common ancestor of the FBF and PUF-2 

sub-families both repressed gld-1 translation in the service of regulating germline 

proliferation.  Extant Caenorhabditis species have then modified this situation by losing 

one or the other sub-family entirely (but never both) and duplicating genes within a given 

sub-family.   Layered upon this is the cooption of the entire PUF-gld-1 module into 

hermaphrodite development.  Though this happened in both characterized selfing species 

(and may be true of others), the exact role of the module is variable and dependent upon 

the overall context in which it occurs. 

Computer simulations of evolving, unconstrained genetic networks show that 

participation of genes in multiple traits leads to modular regulation, and that pre-existing 

modules have a tendency to be utilized as raw materials for subsequent evolutionary 

innovation (Espinosa-Soto and Wagner, 2011).   The multiple developmental functions of 

PUF family genes and gld-1 (Ariz et al., 2009; Crittenden et al., 2002; Francis et al., 

1995a; Jeong et al., 2010; Lublin and Evans, 2007; Subramaniam and Seydoux, 2003; 

Wickens et al., 2002) may therefore promote their continued regulatory linkage in the 

face of altered germline phenotypes.  

4.4 Evolution of genetic interactions between PUF targets  

C. elegans fbf-1/2 hypomorphs or mutants are Mog (Zhang et al., 1997) due to 

fem-3 hyperactivity (Ahringer and Kimble, 1991; Zhang et al., 1997). C. elegans GLD-1 

is also hyperactive when fbf-1/2 activity is reduced (Crittenden et al., 2002; Jones et al., 

1996), which may synergize with excess FEM-3 to reinforce male fate.  In C. briggsae, 
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conservation of the fem-3 PME (Haag and Kimble, 2000) and its interaction with Cbr-

PUF-2/1.2 (Figure 5) suggest simultaneous up-regulation of Cbr-GLD-1 and Cbr-FEM-3 

may also occur when Cbr-puf-2/1.2 activity is reduced.  If so, why would the GLD-1 side 

dominate phenotypically in C. briggsae?   fem-3 plays a different germline role in the two 

species (Hill et al., 2006), so regulation of Cbr-fem-3 by Cbr-puf-2/1.2 could be 

inconsequential with respect to hermaphrodite sex determination. However, the genetic 

interactions between Cbr-puf-2/1.2 and Cbr-tra-2 suggest an alternative: excess Cbr-

FEM-3 is masculinizing on its own, but the simultaneous hyperactivity of Cbr-GLD-1 

that occurs in the Cbr-puf-2/1.2 knockdown suppresses it via a parallel pathway (Figure 

8B). Consistent with this, loss of a single copy of Cbr-tra-2, which has no effect on its 

own (Kelleher et al. 2008), completely masculinizes the germ line of Cbr-puf-2/1.2(RNAi) 

animals (Figure 6D). I propose that reduced function of both Cbr-tra-2 and Cbr-puf-2/1.2 

synergize to activate Cbr-fem-3 to the point where this dominates over the Cbr-gld-1-

mediated feminizing effect of Cbr-puf-2/1.2 alone (Figure 8B).  This is an interesting 

example of the inherently bi-stable nature of germline sex determination, in which subtle 

differences in dosage cause complete sex reversal. 

4.5 Pleiotropy and redundancy in the PUF family 

The nine PUF subfamilies, while generally stable, show some recent duplications 

and loss in particular lineages.  That germline feminization requires simultaneous loss of 

both Cbr-puf-2 and Cbr-puf-1.2 function initially suggested that these genes would be 

wholly redundant.  However, the nm66 mutation reveals Cbr-puf-2 is required in the 

maternal germline for reliable embryogenesis, and in the larval soma it is absolutely 

essential for progression beyond the L2 stage.  These roles were not apparent in RNAi 
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knockdown experiments, and similar essential roles have not been reported for any C. 

elegans PUF family member. Whether this somatic function represents was ancestral but 

lost in C. elegans, perhaps associated with loss of the PUF-2 sub-family, or a gain in C. 

briggsae is unclear.  What is clear, however, is that not all functions of recently 

duplicated PUF proteins are redundant, and this may explain their evolutionary 

persistence (Force et al., 1999).  

4.6 Dynamic functions of PUF-2 and FBF orthologs in regulation of germ cell 

proliferation  

Cbr-puf-1.2/2 also promote germ cell meiotic progression. This effect is 

independent of sexual fate, as it is not fully suppressed in the XO male germ line and 

never suppressed in Cbr-tra-1 and Cbr-tra-2 pseudo–males. In this respect, the role of 

Cbr-puf-2/1.2 is distinct from C. elegans fbf-1/2, which promote proliferation and repress 

meiotic entry (Crittenden et al., 2002).  With the exception of C. brenneri fbf-1, RNAi 

knockdown of PUF-2 and FBF sub-family genes in gonochoristic species led to germline 

degeneration (Figure 6).  This suggests that the ancestral function of both PUF-2 and FBF 

subfamilies is the maintenance of germline proliferation and/or integrity. If so, then Cbr-

puf-2/1.2 acquired a distinct tumor-suppressing role in the C. briggsae lineage, perhaps as 

it was acquired a role in hermaphrodite sex determination.  Whether these two changes 

were functionally linked is unclear. In addition, in C. brenneri FBF and PUF-2 sub-

families have taken on opposite roles in regulating proliferation, with the former limiting 

it and the latter promoting it.  If they also have similar RNA binding properties, then 

understanding what mediates their apparently antagonistic functions will help clarify the 

overall logic of PUF regulation. 
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4.7 Evolution of gene regulation at the translational level 

Examples of cis-regulatory DNA as the locus of genetic variation underlying 

novel phenotypes are accumulating, presumably because this avoids deleterious 

pleiotropic effects (Carroll, 2008; Stern, 2000; Stern and Orgogozo, 2008). Translational 

control and its evolutionary dynamics are presumably important for adaptation in tissues 

like the germ line, yet it has been little explored (Haag, 2009). The in vitro PUF-gld-1 

cross-species interaction described here suggests that at the protein sequence level, Cbr-

PUF-2/1.2 and FBF are interchangeable. We recently reported similar results for GLD-1 

(Beadell et al., 2011).  These studies provide evidence that conserved RBP-mRNA 

interactions may take on altered significance due to changes in the role of target mRNA 

(as appears to be the case with PUF-gld-1) or to variation in RBP protein cofactors that 

qualitatively or quantitatively modify conserved RBP-mRNA interactions, such as FOG-

2, a GLD-1 cofactor in C. elegans (Clifford et al., 2000b; Nayak et al., 2005).  FBF 

cofactors have also been reported (Kraemer et al., 1999; Suh et al., 2009).  Clarification 

of the precise biochemical roles(s) of such cofactors is an important subject of future 

research. 
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Chapter 2: C. briggsae puf-2 has multiple essential somatic roles in 

postembryonic development 

 

1. Summary 

 

In Chapter 1, I found that Caenorhabditis briggsae mutant animals with a deletion 

in the PUF family RNA-binding protein gene puf-2 fail to reach adulthood and arrest at 

the second larval stage.  This unexpected phenotype has not been reported for any 

characterized C. elegans PUF family member.  In this chapter, I describe my detailed 

characterization of the Cbr-puf-2(nm66) mutant phenotype.  I find that the larval arrest 

phenotype of Cbr-puf-2 mutant animals is caused by inefficient breakdown of bacteria 

food, which leads to insufficient nutrient intake and developmental arrest. A Cbr-puf-2 

promoter reporter shows transient expression only in pharyngeal muscle cell 7 during a 

brief window from the late four-fold embryo to the early first larval stage.  Other data 

suggest that Cbr-puf-2 is involved in sustaining the normal muscular strength of the 

terminal bulb during larval progression, by acting in cell 7.  In addition, I discover that 

Cbr-puf-2 functions in the vulval cell lineage to promote vulval development.  My study 

of Cbr-puf-2 gene unveils a suite of pleiotropic developmental functions, and reveals the 

amazing functional plasticity of PUF RNA binding proteins. 

 

2. Introduction 
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Proper physiological control is vital to maintain normal body function and 

homeostasis.  Malfunction of physiological control early in development usually results 

in severe defects later in life.  Some well-known disorders of this kind are muscular 

dystrophies, genetic diseases that involve progressive muscle weakness and loss of 

muscle tissue over time (Amato and Griggs, 2011).  In Caenorhabditis elegans, the 

pharynx, a bilobed neuromuscular tube that connects stoma to intestine, has been served 

as a powerful model to study mechanisms of organogenesis and physiological control 

(Avery and You, 2012; Mango, 2009).  Towards the end of embryonic development, C. 

elegans embryos complete their pharyngeal organogenesis (Sulston et al., 1983), and 

newly hatched larvae have fully functional pharynxes.  The pharynx is comprised of 

seven distinct but functionally integrated cell types (Mango, 2007), and is capable of 

producing a rapid and coordinated pumping action that is essential for the ingestion and 

mechanical breakdown of food (Avery and You, 2012).  In C. elegans, physiological 

control of pharyngeal function has been understood at the level of firing frequency and 

timing of pharyngeal muscles and neurons (Avery and You, 2012), and behavioral 

features about food ingestion and transportation in the pharynx have also been studied in 

detail (Avery and Shtonda, 2003; Fang-Yen et al., 2009). 

The pharynx has three functional parts, which from anterior to posterior are the 

corpus, the isthmus, and the terminal bulb (Avery and Horvitz, 1989).  Structurally, there 

are eight muscle cell layers extending from anterior to posterior of the pharynx, and each 

muscle layer is composed of muscle cells arranged as a three-fold symmetric tube 

encircling the lumen (Albertson and Thomson, 1976).  Coordinated contraction and 

relaxation of these consecutive muscle sectors produces feeding behavior (Avery and 
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You, 2012).  The radially oriented pharyngeal muscle cells (pm), pm1 to pm5, coordinate 

two sequential pharyngeal motions: pharyngeal pumping and isthmus peristalsis.  Each 

cycle of pharyngeal pumping starts with corpus muscle contraction mediated by pm1 to 

pm4, which opens the pharyngeal lumen and draws in food particles.  Followed by 

relaxation, the pharynx traps food particles in the anterior isthmus and expels liquid.  

Then the contraction of isthmus muscle cell pm5 initiates the second pharyngeal motion, 

isthmus peristalsis.  This motion transports food particles from the anterior isthmus to the 

grinder in the terminal bulb.  It is known that the mechanic force provided by pm6 and 

pm7 in the terminal pharyngeal bulb inverts the plates of the grinder, which breaks up 

bacteria and passes the debris back to the intestine. However, it is not clear that how 

muscular strength of the terminal bulb is established and maintained during larval 

progression and adulthood.   

In my dissertation research, I discovered an unexpected pharyngeal function of C. 

briggsae puf-2.  Cbr-puf-2 belongs to a widespread RNA-binding protein family, the PUF 

family, whose family members control diverse biological processes (Wickens et al., 

2002).  In Chapter 1, I discovered that Cbr-puf-2 is required for reliable embryogenesis, 

and is essential for developmental progression of the newly hatched larva.  Since PUF 

family genes are renowned for their germline functions in C. elegans, and none of them 

are essential in early development, such crucial roles of Cbr-puf-2 in C. briggsae are 

surprising.  In the current research, I find that the larval arrest phenotype of Cbr-puf-2 

mutant animals is caused by inefficient breakdown of bacteria food, which leads to 

insufficient nutrient intake and developmental arrest.  My data suggest that Cbr-puf-2 is 

involved in sustaining the normal muscular strength of the terminal bulb during larval 
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progression, specifically, by acting in pharyngeal muscle cell 7.  In addition, I discover 

that Cbr-puf-2 functions in vulval cell lineage to promote vulval development.  My study 

of Cbr-puf-2 gene unveils a full spectrum of its developmental dynamics, and reveals the 

amazing functional plasticity of PUF RNA binding proteins. 

 

3. Materials and Methods 

 

3.1 Nematode culture and genetics 

All nematode species were cultured by using standard C. elegans conditions 

(Wood, 1988), with the use of 2.2% agar plates to discourage burrowing.  The C. 

briggsae mutant, Cbr-puf-2(nm66), was derived from the wild isolate AF16, and is on 

linkage group II (Liu et al., 2012). nm66 was maintained in a pseudo-balanced strain  

CP102, whose genotype is Cbr-cby(nm15)/Cbr-puf-2(nm66).  Homozygous Cbr-

cby(nm15) mutant animals are dumpy (Dpy).  Strain CP113 (Cbr-puf-2(nm66), 

nmIs4[Cbr-puf-2(+), Cbr-unc-119 (+)]) is transgene-rescued Cbr-puf-2 mutant strain 

(Liu et al., 2012).  The C. briggsae pha-4 reporter strain, RW20019 (Cbr-unc-119, 

stIs20019[pha-4�mCherry, unc-119 (+)]), uses the C. elegans pha-4 promoter and first 

intron to drive red fluorescence in a conserved pattern (Zhao et al., 2010)) to drive.  C. 

briggsae strain CP127, which carried both nmIs4 and stIs20019 reporter transgenes, was 

constructed by crossing RW20019 and puf-2 reporter strain CP126 (described below). 

3.2 Cbr-puf-2 transcription reporter 

For constructing a transcription GFP reporter of Cbr-puf-2, its 5’ and 3’ 

regulatory regions were fused with histone2B-GFP (H2B) chimeric coding sequence via 
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Gateway cloning technology (Invitrogen) into destination plasmid pCR40 (gift from C. 

Richie), which also contains the wild-type Cbr-unc-119 gene.  When combined with the 

complete Cbr-puf-2 coding sequence, these regulatory regions successfully rescue the 

Cbr-puf-2(nm66) mutant phenotype (Liu et al., 2012).  This plasmid was introduced into 

Cbr-unc-119(nm67) mutants through biolistic bombardment (Praitis et al., 2001).  Stable 

non-Unc lines were examined for transgenic expression, and one strain, CP126 (Cbr-unc-

119(nm67), nm5[Cbr-puf-2�H2B, Cbr-unc-119 (+)]), was identified with stable GFP 

expression. 

3.3 Microscopy 

Nematode differential interference contrast (DIC) microscopy was followed by 

standard methods (Wood, 1988).  In brief, worms were put on 2% agarose pad, and 

mounted in M9 buffer or Vectashield (Vector Laboratories) for DIC microscopy or 

fluorescence microscopy, respectively, using an Axioskop2 plus (ZEISS).  Images were 

captured with Axiocam digital camera (ZEISS) and Open Lab software (Improvision) or 

an LSM710 confocal microscope (ZEISS).  In the latter, z-stacks were collapsed for 

presentation using ZEN lite 2011 (ZEISS). 

3.4 Pharyngeal pumping rate assay 

Motions of the grinder plate in the terminal bulb were used to count pumping rate.  

Wild type worms at the second larval stage or Cbr-puf-2(nm66) mutant worms 3-day post 

hatching were placed on a lawn of E. coli OP-50 on an agar plate and allowed to 

acclimate for at least 2 hours.  Counts were made at room temperature.  Each worm was 

observed three times for 20 seconds using Axioskop2 plus (ZEISS) with a 20× objective.  

Pumping rate per minute was calculated.  Videos were taken with an eye-piece digital 
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microscope camera (AM-423X, Dino-Eye) at 15 frames per second speed.  Videos were 

slow-played at one fourth of the recorded speed for accurate pumping rate counting. 

3.5 Feeding assay 

E. coli bacteria strain BL21 expressing recombinant GFP protein (gift from 

Hamza Lab, UMD) was used to assay pharyngeal function.  Wild type AF16 and strain 

CP113 animals at the second larval stage or Cbr-puf-2(nm66) mutant animals 3-day post 

hatching were placed on a lawn of E. coli BL21 strain expressing GFP, and allowed to 

acclimate for at least 3 hours.  Then, worms were put on agarose pad with a drop of 

50mM sodium azide, and mounted in Vectashield (Vector Laboratories).  Images were 

taken using Axioskop2 plus (ZEISS) with a 63× objective with the same setting. 

3.6 Video image analysis 

Using video microscopy, I observed animals for differences in terminal bulb 

grinding behaviors.  The assay was adapted from a developed protocol (Chiang et al., 

2006).  Wild type worms at the second larval stage or Cbr-puf-2(nm66) mutant worms 3-

day post hatching were transferred to bacterial suspension placed on a thin agarose pad, 

and a coverslip was placed on top. I typically waited about 30 minutes before making 

observations to allow animals recovering from the perturbation.  Pharyngeal motions 

were then observed using Axioskop2 plus (ZEISS) with a 63× objective.  Videos were 

taken with an eye-piece digital microscope camera (AM-423X, Dino-Eye) at 30 frames 

per second speed.  I viewed image sequences frame by frame and manually extracted 

consecutive frames corresponding to the cycle of terminal bulb contraction using iMove 

v7.1.4 (Apple). 

3.7 Axenic culture 
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To grow Cbr-puf-2(nm66) mutant animals in axenic culture, I washed embryos 

laid by Cbr-cby(nm15)/Cbr-puf-2(nm66) parents off of NGM plate media with M9 buffer, 

and bleached them with a mixture of sodium hypochlorite and sodium hydroxide.  After 

bleaching, the clean embryos were washed in M9 for three times to remove traces of 

bleach solution.  The embryos were allowed to hatch and grow in axenic modified C. 

elegans habitation and reproduction (mCeHR-2) medium supplemented with hemin 

chloride at 24°C with continuous shaking (Nass and Hamza, 2007).  10 ~ 14 days later, 

worms at the fourth larval and adult stages were collected and singled on fresh agar plates 

for recovery overnight.  On the following day, singled animals were imaged and 

genotyped for the presence of the Cbr-puf-2(nm66) allele using single-worm PCR 

(Kelleher et al., 2008). 

3.8 Phalloidin staining 

Wild-type C. briggsae worms at the second larval stage or Cbr-puf-2(nm66) 

mutant worms three-day after hatching were collected and rinsed with PBS to remove 

bacteria.  The following protocol was adapted from Shaham (2006).  Cleaned worms 

were moved to an eppendorf tube and frozen in liquid nitrogen, followed by an 

immediate lyophilization in a speedvac.  Then, worms were treated with 3–4 drops ice-

cold acetone for 3 minutes.  After the removal of acetone and vacuum-dry, 2U 

fluorescein-conjugated phalloidin (Molecular Probes) diluted in 20ul S mix (0.2M Na-

phosphate, pH 7.5; 1mM MgCl2; 0.004% SDS) was added to the dry worms.  Worms 

were stained at room temp in the dark for1 hour.  At the end of staining, worms were 

washed twice in PBBT (PBS + 0.5% BSA+0.5% Tween-20), and mounted for 

microscopy. 
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4. Results 

 

4.1 Cbr-puf-2 sustains adequate pharyngeal function in C. briggsae 

 Shortly after hatching, homozygous Cbr-puf-2(nm66) mutant animals moved 

actively and looked overtly normal, although they had reduced movement when aged.  I 

followed their development for two weeks after hatching, and found that they 

accumulated refractile vacuoles in their intestine, which increased with time (Figure 1C - 

1E). These phenotypes might result from starvation caused by defective pharyngeal 

function (Schroeder et al., 2007).  However, the pharynx of mutant animals did not 

display morphological abnormalities, and the coordinated pharyngeal pumping 

movement was also maintained.  I hypothesized that Cbr-puf-2(nm66) mutants have 

subtle pharyngeal defects at the cellular or physiological level.  To test this, I first 

examined the frequency of pharyngeal pumping.  Since terminal pharyngeal bulb powers 

the breakdown of food particles, and its movement is coordinated with the whole pharynx 

(Avery and Horvitz, 1989), I compared the terminal bulb grinding rates of Cbr-puf-

2(nm66) mutant animals three-day after hatching with wild type animals at the second 

larval stage.  Mutant animals three-day after hatching are developmental equivalents of 

wild type animals at the second larval stage.  While the average grinding rates of wild-

type animals were 263±10/min, the average grinding rates of 3-day-old mutants were 

slightly lower, 215±20/min (Figure 2).   

While intriguing, the relatively minor shift of the grinding rate noted above 

seemed insufficient to cause complete developmental arrest.  It also may reflect a side 
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effect of some more fundamental defect, or of starvation, rather than being the cause of 

Figure 1.  Cbr-puf-2(nm66) mutant animals manifest starvation phenotype. (A 
and B) Wild-type animal at adult stage (A) and the second larval stage (B), 
scale bar: 50µm. (C-E) Cbr-puf-2(nm66) mutant animals of 3 days (C), one 
week (D) and two weeks (E) after hatching, scale bar: 10µm. 
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the dramatic arrest phenotype. To further test the pharyngeal defect hypothesis, I fed Cbr-

puf-2(nm66) mutants with E. coli. expressing green fluorescent protein (GFP), and 

analyzed by fluorescence microscopy.  For wild-type animals, GFP labeled E. coli. cells 

were drawn in and transported to the terminal bulb, where they were ground open when 

passing through the grinder.  The process was accompanied by the disappearance of 

intense GFP signal, since constrained GFP molecules became diffused once cell wall was 

broken up (Figure 3A and 3B).  While wild-type C. briggsae efficiently swallowed and 

Figure 2.  Pharyngeal pumping rates between wild-type animal 
at the second larval stage (WT column) and their developmental 
equivalent Cbr-puf-2(nm66) mutant animals 3 days after 
hatching (Mutant column).  ** indicates the pumping rates are 
significantly different (two-tailed P value equals 0.0004, N=5). 
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broke up ingested bacteria and then expelled the debris and contents back to the intestine, 

Cbr-puf-2(nm66) mutants stuffed their intestine with intact E. coli. cells (Figure 3C and 

3D).  This grinding defect was able to be rescued by introducing a wild-type copy of Cbr-

puf-2 gene into Cbr-puf-2(nm66) mutants.  Cbr-puf-2(nm66;nmIs4) animals, which were 

transgenic-rescued Cbr-puf-2(nm66) mutant animals (Liu et al., 2012), could crack open 

E. coli. efficiently (Figure 3E and 3F).  These results suggest Cbr-puf-2 is involved in the 

physiological function of terminal pharyngeal bulb in order to support robust food 

grinding. 

4.2 Cbr-puf-2 expresses in the muscle cells of terminal pharyngeal bulb in C. briggsae 

Figure 3.  Bacteria grinding efficiency of wild-type and Cbr-puf-2(nm66) mutant 
animals. GFP-expressing BL21 Escherichia coli were fed to wild-type animal at 
the second larval stage (A and B), Cbr-puf-2(nm66) mutant animals 3 days after 
hatching (C and D) and Cbr-puf-2(nm66;nmIs4) transgenic rescued animals at 
the second larval stage (E and F), respectively. The anterior of the worm is 
facing right.  Note that wild-type and Cbr-puf-2(nm66;nmIs4) animals are able to 
mechanically break up bacteria leading to loss of fluorescence in the intestinal 
tract (B and F). In contrast, Cbr-puf-2(nm66) mutant animals are unable to do so 
leading to accumulation of intense GFP signal in the intestinal tract (D). Arrow 
indicates intact E. coli in the intestinal tract. 
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To investigate where expression of Cbr-puf-2 occurs, I introduced a Cbr-puf-2 

reporter plasmid to wild-type C. briggsae.  This plasmid carries a chimeric gene with 

Cbr-puf-2 promoter and 3’UTR regions fused to a fragment coding for histone2B-GFP.  I 

found that the stable transgenic strain CP126 expressed GFP in the terminal bulb of the 

pharynx (Figure 4B).  The GFP signal could only be detected during a brief window from 

the late four-fold embryo to the early second larval stage.  These signals showed 3-fold 

symmetry, and specifically labeled three nuclei at the posterior part of the terminal bulb 

 
Figure 4.  Cbr-puf-2 expresses in the pharyngeal muscle 7. (A) DIC 
microscopy of the pharyngeal region of a worm at the second larval stage.  
The white box highlights the terminal bulb, which is the area shown in figure 
4B-4D. (B) Cbr-puf-2 expresses in three cells at the posterior part of the 
terminal bulb. (C) Expression pattern of pha-4 in the terminal bulb. (D) The 
merge of figure B and C. 
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(Figure 4B).  To further facilitate cell identification, I constructed another strain CP127, 

which introduced another nuclear localized reporter, Ce-pha-4::Histone2B-mCherry 

(Zhao et al., 2010), into strain CP126 (Figure 4C).  pha-4 is the master cell fate regulator 

of the pharynx and expresses in all pharyngeal cells, whose expression pattern and 

function is conserved between C. elegans and C. briggsae (Mango, 2007; Zhao et al., 

2008). I detected that Cbr-puf-2::GFP signals overlapped with part of red nuclear signals 

of pha-4::mCherry (Figure 4D).  It is known that the pharyngeal cell lineage is conserved 

between C. elegans and C. briggsae (Zhao et al., 2008), therefore, as C. elegans, C. 

briggsae possesses eight rings of pharyngeal muscles (pm), and its terminal bulb is 

mainly comprised of pharyngeal muscle pm6, pm7 and pm8 (Avery and Thomas, 1997).  

Since pm7 muscle cells are located at the posterior of terminal bulb and have three large 

non-syncytial nuclei, these three Cbr-puf-2::Histone2B-GFP cells are pharyngeal muscle 

7.  My transgenic reporter assay strongly supports the notion that Cbr-puf-2 is involved in 

the terminal pharyngeal bulb to promote pharyngeal function. 

4.3 Cbr-puf-2 promotes robust muscle contraction of pharyngeal terminal bulb 

Because of the grinding defect and the specific expression pattern, I sought to 

identify the abnormalities associated with the terminal pharyngeal bulb.  As I mentioned 

above, I did not see developmental aberration of the pharynx.  Phalloidin staining showed 

well organized pharyngeal actin filaments in Cbr-puf-2(nm66) mutant animals (Figure 5), 

and the grinding rate of mutants was only slightly less than wild-type animals (Figure 2).   

These observations indicate the overall integrity of the pharyngeal apparatus, and suggest 

potential subtle changes that could result in a profound phenotypic consequence.  

Intuitively, a grinding defect could be a consequence of the malfunction of the “teeth”, a 
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thick and ridged cuticle layer located at the grinder region of the terminal bulb (Zhang et 

al., 2005), which is refractile under DIC microscopy.  However, I did not find the chitin 

layer to be missing or obviously different in mutants and wild-type animals by direct DIC 

imaging (Figure 6).   

I next examined the grinding behavior of wild-type and mutant animals in detail 

by analyzing videos frame-by-frame.  These observations first established a normal 3-

step stereotypic movement of the pharyngeal grinding action.  At the resting state, the 

grinder is closed, and each cycle of grinding starts with a coordinated contraction of 

pharyngeal muscle cells, which opens the lumen of the grinder, and pulls originally 

separated chitin teeth close together (Figure 6B).  Following this initial contraction, 

 
Figure 5.  Phalloidin staining of pharyngeal act filament.  (A and B) Wild-
type C. briggsae strain, AF16, at the second larval stage.  (C and D) Cbr-puf-
2(nm66) mutant animals. 
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pharyngeal muscle cells contract further, which tightly seals the chitin teeth together, and 

also opens the valve leading to the intestine lumen (Figure 6C).  Afterwards, muscle 

relaxation returns the grinder back to its rest position (Figure 6D).   

For Cbr-puf-2(nm66) mutant animals, even though they were able to initiate 

muscle contraction and open the lumen of the grinder (Figure 6F), they were neither able 

to fully seal the chitin teeth nor open the pharyngeal-intestinal valve most of time (Figure 

6G).  This deficiency may be a consequence of the weakening of pharyngeal muscle 7 

because they lack a robust pulling force that pushes the posterior of the grinder further 

backwards, which appears a wider space at the position of pm7 showing in Figure 6G.  

Nevertheless, occasionally, the grinder of Cbr-puf-2(nm66) mutant animals did form 

small cleft or opening that led to intestinal lumen, which explains how bacteria could still 

be delivered to the intestine.  The incomplete muscle contraction of Cbr-puf-2(nm66) 

mutant animals most likely explains the dramatic deficiency of bacteria grinding I 

reported above.  
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4.4 Cbr-puf-2 promotes faithful vulval development 

To confirm that the Cbr-puf-2(nm66) larval arrest phenotype was due to 

starvation, I attempted to rescue development by simply growing mutant animals in 

Figure 7.  Genotyping results: axenic and transgenic rescues.  (A) Genotyping 
results for axenic rescued Cbr-puf-2(nm66) mutant animals.  Cbr-puf-2 PCR 
primers specific for deletion region (lanes on the left) or intact genomic region 
(lanes on the right) were used.  Lanes are: nm66(axenic), adult nm66 growing in 
axenic culture; AF16, wild-type C. briggsae; H2O control, no-template control; 
nm66/cby-15, parental strain for axenic culture; nm66, arrested Cbr-puf-2 mutant 
growing on regular bacteria food; cby-15, Dyp mutant, pseudo-balancer for nm66.  
(B) Genotyping results for transgenic rescued Cbr-puf-2(nm66;nmIs4).  Lanes are: 
nm66;nmIs4, adult nm66 with integrated wild-type Cbr-puf-2 genomic region; 
nm66/+, Cbr-puf-2 mutant allele carrier; +/+, wild-type progeny from nm66/+; 
nm66, arrested Cbr-puf-2 mutant progeny from nm66/+; H2O control, no-template 
control. 
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axenic liquid medium.  This eliminates the link between nutrition and food grinding.  

Indeed, the mutants could reach adulthood in axenic medium, as confirmed by single-

worm PCR genotyping of rescued animals (Figure 7A).   

  

Figure 8. Cbr-puf-2 is involved in vulval development in C. briggsae.  (A) Wild-
type adult C. briggsae hermaphrodites have a vulval opening at their ventral 
middle body region.  Insert, vulval opening of a wild-type animal at L4 stage.  
Arrow indicates the vulva.  (B) Cbr-puf-2(nm66) mutant animals are able to 
complete larval development and reach adulthood in axenic culture.  Arrow 
indicates protruding vulvae.  (C)  Cbr-puf-2(nm66) mutant animal at the same size 
of wild-type L4 stage animal.  Arrow indicates an incomplete vulva.  (D) Cbr-puf-
2(nm66) animal stably transformed with Cbr-puf-2(+) transgene (strain CP113) 
have normal vulval development and are fertile.  (E-M) Cbr-puf-2 transcriptional 
reporter expresses in the vulval cells.  Blue, DAPI nuclear DNA signal.  Green, 
Cbr-puf-2 reporter signal.  (E-G) At the second larval stage, Cbr-puf-2 expresses 
in one cell of the vulval lineage.  (H-J) At the early fourth larval stages, the green 
signal expanded to two cells around the vulval opening.  (K-M) At the late fourth 
larval stage, Cbr-puf-2 expresses in four cells peripheral of vulval opening. 
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Surprisingly, axenic rescued Cbr-puf-2(nm66) animals had severe developmental 

defects.  In wild-type hermaphrodites, each animal possesses a single centrally located, 

“Christmas tree”-like, vulval opening at the fourth larval stage (Figure 8A, insert), and at 

the adult stage it develops to a fully functional vulva (Figure 8A).  The vulva is the egg-

laying and copulatory organ of Caenorhabditis species, which is highly conserved 

developmentally and specified from six vulval precursor cells during larval development 

(Kiontke et al., 2007; Sternberg and Horvitz, 1986; Sulston and Horvitz, 1977; Sulston 

and White, 1980).  By contrast, axenic rescued Cbr-puf-2(nm66) animals had incomplete 

vulval opening at the fourth larval stage (Figure 8C).   At the adult stage, they also had 

very few germ cells in their gonads, and a protruding vulva in their ventral mid-body 

region (Figure 8B).   

By introducing a wild-type copy of Cbr-puf-2 gene, vulval and germline 

phenotypes of Cbr-puf-2(nm66) mutant animals could be rescued (Figure 8D and 7B).  

These data indicate that Cbr-puf-2 is involved in both vulval and germline development.  

Supporting this hypothesis, I found that Cbr-puf-2 reporter gene expressed in the vulval 

cells.  In transgenic C. briggsae expressing GFP-H2B driven by Cbr-puf-2 regulatory 

regions, animals at the second larval stage showed GFP signal from one cell located at 

the ventral middle-body region (Figure 8E-8G), and then at the early and late fourth 

larval stages, the green signal expanded to two and four cells around the vulval opening, 

respectively (Figure 8H-8M).  Judged from the localization of these cells, Cbr-puf-2 

likely functions in 2° vulval cells to promote vulval fate or morphogenesis. 
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5. Discussion 

 

5.1 C. briggsae puf-2 gene is required to maintain pharyngeal muscle function. 

In the first Chapter, I identified an essential role of C. briggsae puf-2 in larval 

progression.  In this Chapter, I find that the larval arrest phenotype of Cbr-puf-2 mutant 

animals is caused by inefficient breakdown of bacteria food, which leads to insufficient 

nutrient intake and developmental arrest.  My data suggest that Cbr-puf-2 is involved in 

sustaining the normal muscular strength of the terminal bulb during larval progression.  

Since I can only detect Cbr-puf-2 gene expression in three pharyngeal muscle cells 

during a very narrow range of development, it is surprising to see such a profound 

consequence of Cbr-puf-2 function.  However, I provide three lines of evidence to 

support the notion that Cbr-puf-2 gene expression pattern correlates its in vivo function.  

Firstly, my GFP-labelled E. coli feeding assay shows that Cbr-puf-2 mutant animals 

accumulate intact bacteria cells in their intestine, which pinpoints the defect is the food 

grinding.  Supporting this conclusion, I did not see any feeding defect by video taping 

mutant animals.  Secondly, axenic growth medium rescues Cbr-puf-2(nm66) larval arrest 

phenotype, which means that by eliminating the requirement for grinding mutant animals 

can overcome the arrested state and reach adulthood.  Thirdly, I identify the obvious 

grinding defect at muscle cell behavior level.  The model for Cbr-puf-2(nm66) 

malfunction is illustrated in Figure 9: mutant animals can’t provide the robust muscle 

contraction that brings pharyngeal teeth tightly together and break up food particles.  This 

sealing force, I suspect, is mainly provided by pharyngeal muscle 7, which are Cbr-puf-2 

expressing cells.   
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The general morphology of the pharynx in Cbr-puf-2(nm66) mutant animals is 

normal, and no pharynx muscle cell abnormalities are detected by DIC microscopy. It is 

possible that the loss of Cbr-puf-2 has a subtle effect on muscle filament structure, but the 

well-formed pharyngeal actin cytoskeleton structure in Cbr-puf-2(nm66) mutant animals 

(Figure 5) is inconsistent with this hypothesis.  Alternatively, Cbr-PUF-2 may regulate 

genes participating in muscle physiological functions, such as titin, myosin-binding 

Figure 9.  Model of pharyngeal grinding and Cbr-puf-2(nm66) mutant defect.  The 
model shows the zoomed view of pharyngeal terminal bulb.  The proximal 
location of pharyngeal muscle cells are marked on the far left side.  For wild-type 
C. briggsae strain, AF16, the natural grinding motion starts with a pulling force 
that seals the teeth together (position 1), follows by a continuing pulling mainly 
operated by pm7, which not only further seals the teeth but also opens the 
pharyngeal-intestinal valve (position 2).  After that, the grinder returns back to its 
resting position (position 0).  For Cbr-puf-2(nm66) mutant animals, the major 
defect is that the grinder lumen can’t be further opened (positon 2’), which may 
result from the weakening of pm7.  As a consequence, the teeth can’t be tightly 
sealed leading to inefficient food process.  Red arrows indicate the defective 
region. 
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protein C, and myosin light chain kinase, which are structural proteins in establishing the 

muscle sarcomere or regulators of muscle contraction (Benian et al., 1996).  Another 

likely hypothesis is that Cbr-puf-2 is involved in some specific aspect of neuromuscular 

function in pm7.  RNA-binding proteins are renowned for their roles in synaptic plasticity 

(Richter, 2010), and PUF family members have been found to be essential for synapse 

formation and maintenance in fly, rodents and human (Dubnau et al., 2003; Marrero et al., 

2011; Menon et al., 2004; Siemen et al., 2011; Vessey et al., 2010).  A unifying thought 

is that Pumilio modulates synaptic function in neurons or muscle cells via direct 

repression of mRNA targets including eIF4E and AChE (Marrero et al., 2011; Menon et 

al., 2004).  Interestingly, in C. elegans, mutations of either dystrobrevin gene dyb-1 or 

dystrophin gene dys-1 cause muscle degeneration in a sensitized genetic background as 

well as hyperactivity and increased sensitivity to the neurotransmitter acetylcholine and 

its inhibitor (Bessou et al., 1998; Gieseler et al., 1999a; Gieseler et al., 1999b; Giugia et 

al., 1999).  In C. briggsae, pm7 receive synapses from motor neuron M5, and Cbr-puf-2 

may participate in post-synaptic gene regulation to control cholinergic transmission.    

5.2 C. briggsae puf-2 gene controls vulval development 

In C. elegans, PUF genes function in the soma to control cell fate specification 

during larval development.  In particular, PUF-8, FBF-1 and FBF-2 negatively regulate 

vulval development in the hermaphrodite (Thompson et al., 2006; Walser et al., 2006).    

Here, my data suggest that Cbr-puf-2 functions in 2° vulval cells to promote vulval fate 

completion.  In C. elegans, vulval development has been studied extensively, and the 

process is divided into five steps (Sternberg, 2005):  (1) Generation of Vulval Precursor 

Cells (VPCs) during the L1 and L2 stages;  (2) Vulval Precursor Patterning during the L3 
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stage through a signal from the gonad and signaling among the VPCs;  (3) Generation of 

the adult vulval cells;  (4) Anchor cell invasion to form a hole in the epidermis. (5) 

Morphogenesis of the vulva.  Caenorhabditis species follow the same conversed vulval 

fate patterning process (Kiontke et al., 2007).  Since axenic rescued Cbr-puf-2(nm66) 

animals are still able to form vulval openings, even though incompletely, it implies that 

Cbr-puf-2 most likely functions at the later stage of vulval development to promote 

faithful morphogenesis. 

The vulval fate specification relies on two major evolutionarily conserved 

signaling pathways, EGF/Ras/MAP Kinase and Notch (Sternberg, 2005), and 2° vulval 

cell fate adoption requires Notch signaling (Greenwald et al., 1983; Sternberg and 

Horvitz, 1989).  Caenorhabditis species use the same conversed signaling network for 

vulval fate specification (Felix, 2007; Sommer, 2005).  In C. elegans, fbf-2 gene has been 

identified as a GLP-1/Notch target in distal germ line to promote mitotic decision, and as 

a pleiotropic gene, it also functions in the vulval precursor cells or their descendants to 

negatively regulate vulval development (Walser et al., 2006).  Interestingly, C. briggsae 

puf-2 possesses putative LAG-1 binding sites at its 5’ regulatory region (Lamont et al., 

2004).  Therefore, it is reasonable to speculate that, in C. briggsae vulva, the activation of 

Notch signaling pathway in 2° vulval cells leads to nucleus translocation of LAG-1, 

which turns on Cbr-puf-2 gene expression.  In those cells, Cbr-puf-2 may regulate genes 

that promote proper attachment of the vulva to the uterine cells or to the seam cells 

because of the Protruding vulval phenotype in mutant animals. 

5.3 Functional evolution of pleiotropic genes 
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Together with Chapter 1, my studies unveil the pleiotropic effects of Cbr-puf-2 

function.  During early development, maternally deposited Cbr-puf-2 is important for 

embryogenesis, and depletion of the gene’s transcript in the parental germ line leads to 

embryonic lethality (Liu et al., 2012).  Later in larval development, Cbr-puf-2 is required 

for proper physiological control of pharyngeal muscle contraction, and loss of Cbr-puf-2 

results in early larval arrest.  In adulthood, Cbr-puf-2 acts redundantly with Cbr-puf-1.2, 

a closely related paralogous gene, to promote meiotic entry and spermatogenesis in the 

germ line (Liu et al., 2012).  Remarkably, axenic culture of Cbr-puf-2(nm66) mutants 

bypasses the larval arrest phenotype to reveal another novel function of Cbr-puf-2 in 

vulval development. Reporter transgene expression suggests that this role of Cbr-puf-2 is 

played in vulval precursor cells.   

As a member of the regulatory PUF RNA-binding protein family, it is perhaps not 

surprising that Cbr-puf-2 can affect multiple traits.  Both loss-of-function studies and 

recent genome-wide systematic surveys show that PUF proteins function in many aspects 

of tissue development and physiology through translational control of a variety of mRNA 

targets (Bachorik and Kimble, 2005; Crittenden et al., 2002; Kershner and Kimble, 2010; 

Lamont et al., 2004; Merritt and Seydoux, 2010; Subramaniam and Seydoux, 2003; Suh 

et al., 2009; Zhang et al., 1997).  Structural and biochemical studies provide further 

information on how its multi-target association is established at atomic level (Bernstein et 

al., 2005; Dong et al., 2011; Wang et al., 2009).  Therefore, their pleiotropic nature stems 

from their powerful biochemical ability of physical interactions.  Pleiotropy potentially 

restricts evolution over the long term because of constraints, an effect known as 

“antagonistic pleiotropy” (Hodgkin, 1998).  Nevertheless, in Caenorhabditis species, we 
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see that in the PUF protein family radical differences in gene function have evolved.  

Understanding how constraint and flexibility are achieved at the molecular level is an 

interesting topic of future research. 

The Pumilio and FBF (PUF) family proteins are known for their regulatory roles 

in various aspects of germ cell development in C. elegans and C. briggsae by 

translational repression of target mRNAs (Ariz et al., 2009; Crittenden et al., 2002; 

Kalchhauser et al., 2011; Liu et al., 2012; Subramaniam and Seydoux, 2003; Suh et al., 

2009; Zhang et al., 1997).  However, it is surprising that, as a recent duplicated gene, 

Cbr-puf-2 plays multiple essential and non-redundant roles in somatic tissues.  According 

to evolutionary theory, recent duplicated genes usually have overlapping roles (Ohno, 

1970; Zhang, 2003).  In C. elegans, FBF-1 and FBF-2 do have largely redundant 

functions in the germ line and in somatic tissues (Kalchhauser et al., 2011; Kraemer et al., 

1999; Lamont et al., 2004; Merritt and Seydoux, 2010; Thompson et al., 2006; Zhang et 

al., 1997).  This phenomenon is also true for additional PUF subfamilies, PUF-3, PUF-5 

and PUF-6 (Hubstenberger et al., 2012; Lublin and Evans, 2007).  However, for the C. 

briggsae PUF-2 subfamily, which is comprised of three lineage-specific duplicates, one 

(Cbr-PUF-2) has already acquired non-redundant functions in somatic development.   It 

is not clear whether these functions are ancestral to the subfamily and now uniquely 

performed by Cbr-puf-2, or if they represent novel roles that evolved recently. In either 

case, it is very likely that gene duplication relaxes the constraints on Cbr-PUF-2, 

allowing it diverge functionally from the two other subfamily members (Cbr-PUF-1.1 

and Cbr-PUF-1.2).  Since Cbr-PUF-2 and Cbr-PUF-1.2 still maintain very similar 

biochemical binding properties (Chapter 1, Figure 4), their functions seem to be 
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conserved at the coding sequence level.   Therefore, their functional divergence might 

largely be a process of gaining or losing mRNA targets as well as changing gene 

expression. 

Developmental system drift (DSD) is an evolutionary phenomenon in which 

divergent genetic variations underlie constant phenotypic traits (True and Haag, 2001).  I 

suggest that, because of the ease with which PUF proteins can gain and lose target 

mRNAs through changes in cis-regulatory RNA and/or changes in PUF protein 

expression, they may be frequent participants in DSD events.  In nematodes, one well-

studied case of DSD is the vulval fate determination (Kiontke et al., 2007; Sommer, 

2005).  The rhabditid nematode vulva is a homologous, highly conserved egg-laying 

organ.  However, significant developmental differences have been uncovered in 

comparative studies at the resolution of different genera (Kiontke et al., 2007).  My 

current study adds PUF gene function to the variation of nematode vulval development 

within an even smaller evolutionary divergence.  As I discussed before, C. elegans fbf-2 

and puf-8 genes function in the vulval precursor cells or their descendants to negatively 

regulate vulval development (Walser et al., 2006).  Here, I showed that C. briggsae puf-2 

is involved in positively promoting vulval development.  It is intriguing that, although 

they are all PUF homologs, the detailed genetic networks in which they function are 

potentially very different.  Overall, this work suggests that PUF proteins with 

conservative biochemical activities can be rapidly incorporated into developmental 

processes both new (e.g. hermaphrodite germ line development) and ancient (e.g. vulval 

morphogenesis). 
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Conclusions 

 

For my dissertation research, I investigated the functional evolution of PUF gene 

family in Caenorhabditis with respect to their roles in germline development and sex 

determination.  Specifically, I provide genetic, molecular, and biochemical evidence to 

demonstrate that PUF-2 and FBF sub-family genes were involved in promoting germline 

proliferation ancestrally, but not in sex determination, in Caenorhabditis species. 

Nevertheless, they are independently co-opted into hermaphroditic germline sexual fate 

patterning to either promote sperm/oocyte switch or spermatogenesis in C. elegans or C. 

briggsae, respectively.  Moreover, I found that PUF family genes were coopted for sex 

determination in each hermaphrodite via their long-standing association with gld-1, and 

that their precise sex-determining roles depend on the species-specific context in which 

they act.  Combined with data from our previous work on the evolution of gld-1 (Beadell 

et al., 2011), my research indicates that the last common ancestor of the FBF and PUF-2 

sub-families repressed gld-1 translation in the service of regulating germline proliferation, 

and later, the entire PUF-gld-1 module was co-opted into hermaphrodite development.   

Computer simulations of evolving, unconstrained genetic networks show that 

participation of genes in multiple traits leads to modular regulation, and that pre-existing 

modules have a tendency to be utilized as raw materials for subsequent evolutionary 

innovation (Espinosa-Soto and Wagner, 2011).   The multiple developmental functions of 

PUF family genes and gld-1 (Ariz et al., 2009; Crittenden et al., 2002; Francis et al., 

1995a; Jeong et al., 2010; Lublin and Evans, 2007; Subramaniam and Seydoux, 2003; 
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Wickens et al., 2002) may therefore promote their continued regulatory linkage in the 

face of altered germline phenotypes.  

Aside from PUF genes’ redundant germline functions, I was surprised to find that, 

as a recent duplicated gene, Cbr-puf-2 plays multiple essential and non-redundant roles in 

somatic tissues.  During early development, maternally deposited Cbr-puf-2 is important 

for embryogenesis, and depletion of the gene’s transcript in the parental germ line leads 

to embryonic lethality.  Later in larval development, Cbr-puf-2 is required for proper 

physiological control of pharyngeal muscle contraction, and loss of Cbr-puf-2 results in 

early larval arrest.  Remarkably, axenic culture of Cbr-puf-2(nm66) mutants bypasses the 

larval arrest phenotype to reveal another novel function of Cbr-puf-2 in vulval 

development.  According to evolutionary theory, recent duplicated genes usually have 

overlapping roles (Ohno, 1970; Zhang, 2003).  In C. elegans, PUF proteins do have 

largely redundant functions in the germ line and in somatic tissues (Kalchhauser et al., 

2011; Kraemer et al., 1999; Lamont et al., 2004; Merritt and Seydoux, 2010; Thompson 

et al., 2006; Zhang et al., 1997).  Although, it is not clear whether these functions are 

ancestral to the subfamily and now uniquely performed by Cbr-puf-2, or if they represent 

novel roles that evolved recently, it is very likely that gene duplication relaxes the 

constraints on Cbr-PUF-2, allowing it diverge functionally from the two other subfamily 

members (Cbr-PUF-1.1 and Cbr-PUF-1.2). 

Overall, my work suggests that PUF proteins with conservative biochemical 

activities can be rapidly incorporated into developmental processes both new (e.g. 

hermaphrodite germ line development) and ancient (e.g. vulval morphogenesis).  It may 

be an consequence of evolutionary phenomenon called developmental system drift (DSD) 
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in which divergent genetic variations underlie constant phenotypic traits (True and Haag, 

2001).  I propose that, because of the ease with which PUF proteins can gain and lose 

target mRNAs through changes in cis-regulatory RNA and/or changes in PUF protein 

expression, and because of the relaxed functional constraints through gene duplication, 

they may be frequent participants in DSD events. 
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Appendices 

 
Appendix 1: List of primers 

 
Cbr-puf-2 allele nm66 deletion amplification:  
Inner primers: 
QL1: CAGCGAGCCACCGTAATACTTTC 
QL4: CTACAGAGCTGATGACACTCGAG 
Outer primers: 
QL5: GCAGCTGGAACAAACGCTTGGA 
QL6: GACTGGGTAGGACACATAACAG  
 
Cbr-puf-2 rescue proof (amplify band: w/ WT chromosome, can’t amplify: homozygous) 
Inner primers: 
QL21: GTAACGCCATCATCGAGACCTG 
QL53: GAAATCGGCTGAAGATGGCGAC  
Outer primers: 
QL51: AAGCAATCGCCTCTCGAGTCTTC  
QL54: GGACTCCTCATGAATGGGATCG 
 
Cbr-puf-1.2 in vitro mRNA synthesis primers: 
QL22: TAATACGACTCACTATAGGGATGCCACCGTACGACGACTCTTC 
QL23: TAATACGACTCACTATAGGGATGGCCTATGGGATGGGTGGTAC 
 
Cbr-puf-2 in vitro mRNA synthesis primers: 
QL24: TAATACGACTCACTATAGGGCCAGCTTCGATCTTCACTCTCC 
QL25: TAATACGACTCACTATAGGGGTAGGCGGGTCAACAGTGTAAG 
 
New Cbr-puf-1.2 N-terminal in vitro mRNA synthesis primers 
QL47: TAATACGACTCACTATAGGGAATAGCCAATCTTCGTCGTCCGG 
QL48: TAATACGACTCACTATAGGGTCCGCGTCGATTTCCTGAGTGTT 
 
Gateway expression construct primers: 
 
Cbr-puf-2 promoter 840bp 
QL 59 
attB4forward 
GGGGACAACTTTGTATAGAAAAGTTG CTCCATCGTTCATCCGTTTCGG 
QL 60 
attB1reverse 
GGGGACTGCTTTTTTGTACAAACTTGT  
ATCGCGATCCATTTCCTCCTGG 
 
GFP w/ intron 826bp 
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QL 61 
attB1forward 
GGGGACAAGTTTGTACAAAAAAGCAGGCTCC 
AGTAAAGGAGAAGAACTTTTCAC 
QL 62  
attB2reverse 
GGGGACCACTTTGTACAAGAAAGCTGGGTC  
CAAACTCAAGAAGGACCATGTG 
 
Cbr-puf-2 coding + 3’UTR 2880bp 
QL 63 
attB2forward  
GGGGACAGCTTTCTTGTACAAAGTGGGA GATCGCGATACATTTTCAGACAGC 
QL 64 
attB3reverse 
GGGGACAACTTTGTATAATAAAGTTG  
TCGTCGACTGTTTGAAAACGAACC 
 
Cbr-puf-1.2 promoter 694bp 
QL 65 
attB4forward 
GGGGACAACTTTGTATAGAAAAGTTG GCTGTCGCACTTTCTCTTCTCG 
QL 66 
attB1reverse 
GGGGACTGCTTTTTTGTACAAACTTGT 
TGAGCCGCGGTCCATGTTTTTCC 
 
mCherry w/ intron 861bp 
QL 67 
attB1forward 
GGGGACAAGTTTGTACAAAAAAGCAGGCTCC  
GTCTCAAAGGGTGAAGAAGATAAC 
QL 68 
attB2reverse 
GGGGACCACTTTGTACAAGAAAGCTGGGTC  
CTTATACAATTCATCCATGCCACC 
 
Cbr-puf-1.2 coding + 3’UTR 3556bp 
QL 69 
attB2forward  
GGGGACAGCTTTCTTGTACAAAGTGGGA  
GACCGCGGCTCATTCTCGAACA 
QL 70 
attB3reverse 
GGGGACAACTTTGTATAATAAAGTTG  
GTGAACTACGCTTTTGCCCGCG 
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New Cbr-puf-1.2 coding+ 3’ 
QL71 
attB2forward 
GGGGACAGCTTTCTTGTACAAAGTGGGA 
AACAGCCGAAGAGCCAGACAC 
QL72 
attB3reverse 
GGGGACAACTTTGTATAATAAAGTTG 
CCGCATGGTGTAGTGGTTAGTG 
 
New Cb-puf-2 promoter 1380bp(expanded promoter region) 
QL 86-2 (pair with QL60) 
attB4forward 
GGGGACAACTTTGTATAGAAAAGTTG  
GAGCTCATTGCTCCAGATGAGTAC 
 
Cb-puf-2 genomic region(expanded promoter) 4237bp 
QL 87-2 (pair with QL86-2) 
attB1reverse 
GGGGACTGCTTTTTTGTACAAACTTGT  
TCGTCGACTGTTTGAAAACGAACC 
 
In situ mRNA synthesis primers: 
Cbr-puf-1.2 
QL73: ATGCCACCGTACGACGACTCTTC 
QL74: ATGGCCTATGGGATGGGTGGTAC 
 
Cbr-puf-2 
QL75: CCAGCTTCGATCTTCACTCTCC 
QL76: GTAGGCGGGTCAACAGTGTAAG 
 
Cbr-puf-1.1 
QL77: AACTCCTACCACTTTCCATACGGAG 
QL78: TGGGACCGATACAAGAAATAAAGGCG 
 
Cbr-puf-8 
QL86: TGCGACTTCAGATGACCTGCTAAC 
QL87: CGGTTGACTACATGCAGCTCTCAC 
 
SL1: GGTTTAATTACCCAAGTTTGAG 
SL2: GGTTTTAACCCAGTTACTCAAG 
QL88: TACTCGCTACTACTAGTTTCAC (pair with SL sequences, cross the junction of 
exon2 and exon3 of Cbr-puf-2) 
QL89: TCTCGCTTGAATAGATTCTCTTCT (pair with polyT primer, cross the junction 
of exon8 and 9 of Cbr-puf-2) 



 79 

 
pCR50 BamHI flanking site sequencing primers: 
QL90: TTGCGCAGCCTGAATGG (forward) 
QL91: TGTCCTGTCACACTCGCT (reverse) 
 
Multisite Gateway expression vector junction sequencing primers (for GFP-PUF-2 fusion, 
w/in GFP sequence, both are forward facing) 
QL92: GGAAGCGTTCAACTAGC 
QL93: ACTCCAATTGGCGATGG 
 
Cbr-puf-8 RT-PCR primers (~320bp): 
 
QL94: GGCTCACCATTAAAGTCCTACGG (exon1-2 junction) 
QL95: AGATCGGAACATGCGTGTGACG (exon2-3 junction)  
 
Cbr-puf-1 RT-PCR primers (~475bp): 
QL96: ACATCCCTCATCCAGAGACTGG (exon5-6 junction)  
QL97: GGTGTCGGTTCATCCATTGACG (exon9-10 junction) 
QL 98: ACCGGTCAACGTGATACATTGG (exon6-7 junction, pair with QL97, 372bp) 
QL122: GACAATCGATCTCCATTGGTGG (pair with QL98: 215bp, or with QL96: 
322bp) 
 
Cbr-glp-1 RNAi fragment (1kb, in exon 7) 
QL99: TAATACGACTCACTATAGGGAGAGATTTATCCCAGGACGCTGGC 
QL100: TAATACGACTCACTATAGGGCGTGGATCTGGTTGTGGTACTTCAG 
 
Cbr-puf-1 RT-PCR primers (RT-PCR: 193bp; PCR: 1142bp) 
QL101: ATACGGAGACTCTCCGTCAGCATC (w/in exon 8) 
QL102: CAT TGA CGG AGT ATC CGG GTT CAG (w/in exon 9) 
 
PCR50 Ampcilin resistance sequence (265bp) 
QL111: GGTTGAGTACTCACCAGTCACAGA 
QL112: GCAACGTTGTTGCCATTGCTACAG 
 
Cbr-puf-2 RT-PCR (transgene expression) 
QL114: ACACCAGCTTCAGTCCGATGAACAC 
QL115: TTGAAGGAAGTGGCAACCGGACTTG (pairs with QL114; 311bp) 
QL116: AGGCTCGAGTTTCTCCAACGCA (pairs with QL49; 514bp) 
 
Primers for RT-PCR Cbr-puf-2 transgene mutation 
QL117: GCTTGGAACTTCTGCTAGTAGTC (FP) 
QL118: TTTGAAGGAAGTGGCAACCGGAC (RP) 
QL119: CGATCTCGAATGTATGGATCCACG (RP) 
 
Yeast three hybrid pACT2 AD constructs: NcoI-HF+XmaI 
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Cbr-puf-2 (274-1704bp/92-568a.a.) 
QL154: TATCCATGGAGAGAAAAATGCTTGGAACTTCTG 
QL155: GCCCCGGGCTAGTCATAGTCGAAATGAGGCTC 
 
Cbr-puf-1.2 (322-1662bp/108-554a.a.) 
QL156: TATCCATGGAGAAGAGAACGGCGTCGTCGTC 
QL157: GCCCCGGGCTATGAAGAAATCGACGATCGACGTG 
 
PUF domain recombinant protein expression: pGEX-4T-1 constructs: XmaI+NotI-HF 
 
Cbr-puf-2: 
QL158: GCCCCGGGCAGAAAAATGCTTGGAACTTCTG 
QL159: GCGCGGCCGCCTAGTCATAGTCGAAATGAGGCTC 
 
Cbr-puf-1.2: 
QL160: GCCCCGGGCAAGAGAACGGCGTCGTCGTC 
QL161: GCGCGGCCGCCTATGAAGAAATCGACGATCGACGTG 
 
C. species 9 cDNA cloning 
 
PUF-2 clade: 
QL162: GGTTGCCACTTCCTTCAAAGTAACTAC (outer) 
QL163: CTCCCGTCTGGCTCTCACGTAGAGCTT 
 
QL164: CTCCCGGCGTGGGCGCTCGATGAAAAT (inner) 
QL165: GTCTAGGATCTTCTTGCCAGAAGAGAA 
 
FBF clade: 
QL166: CTGCCAACCTGGTCCTTGGATTCCAAT (fbf-1) 
QL167: CTCGATCATCTTTTTGCCGGATGAGAA 
 
QL168: CTCTCTGAAGTTTTGGATAGTGGCGAT (fbf-1) 
QL169: AACTCTCGAGTGCAACTTTTTGAGCCA 
 
PUF-8 clade: 
QL170: GCTCAACAAATAGTCGATAGCGTCTG 
QL171: CTTATCAAGCTTTGCGAGAATGTGCTT 
 
QL172: TTCGGTACACCTCCATCATGCGCGTG 
QL173: GACGGTTAGAATCAGTTCACGACGTTG 
 
PUF-9 clade: 
QL174: AGTGCGTTCAATGGAATGGTCGATAA 
QL175: GTCAGTGTGATCTTCTTGCGATGCTG 
 
QL176: CCACAGGGCACTCCTGACTTCCAGAT 
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QL177: ATTTGAAGCAATGGAGGGGATGGATC 
 
PUF-5 clade: 
 
QL178: TTCGATGGAGGAGTCTTCTCATCCAAC 
QL179: GATCTTCTTTCCAGAGGAGAAGCGCTC 
 
QL180: CTTGACTCCAGCTGACTTCGGTCTCG 
QL181: GAACCATTTTGCGTAGAGTCGCATCTC 
 
PUF-3 clade: 
QL182: GACAAAAATGGTTGTCGTTTCCTGC 
QL183: GACATAGTTTCCGTATTGGTGGAACAG 
 
QL184: ACATGTTCGGAAACTTCTTTGTCCAGC 
QL185: GGTGTGGAATGTAACCTTCGAAGATTTC 
 
PUF-6/7 clade: 
QL186: CCGATTCGGGAAGTTTCTTTTTCAAC 
QL187: CAAATCGTTATCATCTGTTGAACGAC 
 
QL188: ACGGAGTGAAGTTCCTGGAGATCCAC 
QL189: AGTGCATCGCGATTCGTCCCATGATC 
 
Cbr-gld-1 pIIIA/MS2-2 cloning (direct annealing) 
WT form 
QL190: 
CCGGGCAGTGCTAGCATAGAATCATGTACCATATATCGTGTATCCATCACGC
ATG 
QL191: CGTGATGGATACACGATATATGGTACATGATTCTATGCTAGCACTGC 
 
Mutant form 
QL192: 
CCGGGCAGTGCTAGCATAGAATCAACAACCATATATCGTGTATCCATCACGC
ATG 
QL193: CGTGATGGATACACGATATATGGTTGTTGATTCTATGCTAGCACTGC 
 
Cbr-gld-1 gel shift RNA oligo 
WT 
QL194: UAGAAUCAUGUACCAUAUAUCGUGUAU 
 
Mutant 
QL195: UAGAAUCAACAACCAUAUAUCGUGUAU 
 
Vector sequencing primers: 
pGEX 5’: GGGCTGGCAAGCCACGTTTGGTG 
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pGEX 3’: CCGGGAGCTGCATGTGTCAGAGG 
 
pACT2 5’: TACCACTACAATGGATG 
pACT2 3’: TGAGATGGTGCACGATG 
 
pIIIa 5’: CTGTAATCATTGTCAACAGG 
pIIIa 3’: AGACATGGGTGATCCTCATG 
 
pCITE-4a-F, CGGGGACGTGGTTTTCCTTTG 
pCITE-4a-R, GCTAGTTATTGCTCAGCGGAC 
 
Cbr-gld-1 3’UTR ACA (NheI-PstI fragment) 
 
QL196: CGCTAGCATAGAATCAACAACCATATATCGTGTATCCATCAC 
QL197: ATTTGCCAAGAATCTCCTTCTGCAG 
 
dsRNA fragment amplification for PUF-2&FBF clades RNAi 
 
CBN01481 (C-terminus, 730bp) 
QL198: TAATACGACTCACTATAGGGCTAATGACATCCGTCACATCCCGT 
QL199: TAATACGACTCACTATAGGGGACGAGAAGACTTCAGCTTCATCG 
 
CBN20762 (N-terminus, 610bp) 
QL200: TAATACGACTCACTATAGGGACCGCGACACGTTCTCGAATAG 
QL201: TAATACGACTCACTATAGGGCTTCTCTCGAACTTGTGGATCCAC 
 
CJA08591 (N-terminus, 614bp) 
QL202: TAATACGACTCACTATAGGGATGGACAGTGACTCGTTTTCGAAC 
QL203: TAATACGACTCACTATAGGGTTGCATATCGTGAGGAACACTTCG 
 
CJA06848  (N-terminus, 602bp) 
QL204: TAATACGACTCACTATAGGGATGGATCAGTCGAAAACGCGAG 
QL205: TAATACGACTCACTATAGGGTTGGCCAATTGCATTCTAGCACGC 
 
CRE13610  (C-terminus, 625bp; from the alignment with CRE09826, this primer pair 
most likely only targets CRE13610) 
QL206: TAATACGACTCACTATAGGGATCCAACACATCATCGAGACGCC 
QL207: TAATACGACTCACTATAGGGATGGCCAGTCGACGCTTGAAGT 
QL242, TAATACGACTCACTATAGGGAAACTCGCGTCCAACGAGTTCG (pair 
with QL207) 
 
New CBN20762 (Cbn-PUF-2) RNAi fragment C terminus 573bp: 
QL210: 
TAATACGACTCACTATAGGGCCTATCGAAATGCCAAAAGCTG 
QL211: 
TAATACGACTCACTATAGGGTCATAATCGACATGTTGTTCGG 
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Sp.9-PUF-1 (~1078bp) 
QL212: AAAGAGTAGTCCATGAGGATCTG 
QL213: GAAGAGAATCTCATCAATCGCGC 
 
Sp.9-PUF-12 (~1010bp) 
QL214: AGAACACTCAGGAAATCGACGCG 
QL215: CGACGAGAATCTTGTCAAACGGC 
 
Sp.9-PUF-2 RNAi: ~900bp 
QL216: TAATACGACTCACTATAGGGTTCAACAACTACGGTCGATCGG 
QL217: TAATACGACTCACTATAGGGATCTTATGGATCGGCTCCTCAG 
 
Sp.9 PUF-2 clade RNAi: 
QL218: TAATACGACTCACTATAGGGCGAGATCGAGTTTCCAGAGAAG 
QL219: TAATACGACTCACTATAGGGATGTGTGTATCTCGCTGTCCAG 
 
Sp.9-PUF-1 RNAi (~1078bp) 
QL220: TAATACGACTCACTATAGGGAAAGAGTAGTCCATGAGGATCTG 
QL221: TAATACGACTCACTATAGGGGAAGAGAATCTCATCAATCGCGC 
 
Sp.9-PUF-12 RNAi (~1010bp) 
QL222: TAATACGACTCACTATAGGGAGAACACTCAGGAAATCGACGCG 
QL223: TAATACGACTCACTATAGGGCGACGAGAATCTTGTCAAACGGC 
 
Cbr-tra-2 (nm1) lesion sequencing primers: 
QL234, ACCTGGCGCAGTAACACTCCATTG (pair with DK12, 273bp) 
 
Cbr-tra-1 (nm2) lesion sequencing primers: 
QL235, CGCTGCTCTGATGGATCCGAATGG (pair with DK35, 486bp) 
 
Total actin primers: 
EH37, TACCTCATGAAGATCCTCACCG 
EH38, CATACCCAAGAAGGATGGCTGG 
 
GFP RNAi: 
QL244, TAATACGACTCACTATAGGGAGTAAAGGAGAAGAACTTTTCAC 
QL245, TAATACGACTCACTATAGGGCAAACTCAAGAAGGACCATGTG 
 
Ce-fem-3 pIIIA/MS2-2 cloning (direct annealing) 
WT form 
QL248: 
GGGTCTATCTCACTAACGCTTCTTGTGTCATTCACTTTCGAATCCTCTGCATG 
QL249: 
CAGAGGATTCGAAAGTGAATGACACAAGAAGCGTTAGTGAGATAGACCC 
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Mutant form 
QL250: 
GGGTCTATCTCACTAACGCTTTTTGTGTCATTCACTTTCGAATCCTCTGCATG 
QL251: 
CAGAGGATTCGAAAGTGAATGACACAAAAAGCGTTAGTGAGATAGACCC 
 
C. briggsae-fem-3 pIIIA/MS2-2 cloning (direct annealing) (match to Kimble lab 
construct) 
Mutant form 
QL252: GGGCCCACCTCATCCCATCTCCTGTGTCATTGTTCGCATG 
QL253: CGAACAATGACACAGGAGATGGGATGAGGTGGGCCC 
 
C. brennei-fem-3 pIIIA/MS2-2 cloning (direct annealing) 
WT form 
QL254: GGG 
CCCCGATCACTCATTCTTCTTGTGTCATTTTTTGATTCGCTTCCTGCATG 
QL255: C 
AGGAAGCGAATCAAAAAATGACACAAGAAGAATGAGTGATCGGGGCCC 
 
C. remanei-fem-3 pIIIA/MS2-2 cloning (direct annealing) 
WT form 
QL256: GGG 
ACGTCTTATACCCCCACTATTGTGTCATTTCCTCCCTGTGTCTTAGCATG 
QL257: 
CTAAGACACAGGGAGGAAATGACACAATAGTGGGGGTATAAGACGTCCC 
 
C. sp 9-fem-3 pIIIA/MS2-2 cloning (direct annealing) 
WT form 
QL258: 
GGGCACCTCATCCCATCATCTTCTGTGTCATTTGTTCAATTTTCTACAGCATG 
QL259: 
CTGTAGAAAATTGAACAAATGACACAGAAGATGATGGGATGAGGTGCCC 
 
C. japonica fem-3 3’RACE 
QL260, AGTTATCCGCCTGACCAGCACAAC 
QL261, CGGTTGGTATCACGTGTCAATCG 
 
New C. japonica fem-3 cloning (both pair with QL260), RNA or cDNA as the template  
QL262, TGAGTGGGTGTACAGTCTCG 
QL263, ATTAGAAGGGGGTGGGTGAG 
 
Verify PUF gene sequences 
 
CRE10385 (RP30447) 
QL276, ACAGCGTTGGAGACTCTCGACC 
QL277, CGCCAATCATGTCATCCAAAAG 
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QL278, TTCTGATCACTTACCTGTGC 
 
CJA06848 
QL279, GGCTGTCCAGGTTTTCCTCCGG 
QL280, GAGATCGAAGAGAGCCGAATG 
QL281, GAAGCCACGCCCACGACGGG 
 
CJA08591 
QL282, ACGTTCCTCATCCAGACACCGG 
QL283, TGGACATTCTGATCTTCCACC 
 
Sequencing CRE10385 (Reverse primer, designed according to 3’RACE: 278.1_RF file) 
QL284, AGACACGTCACGATGATGGC 
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