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News sources on the Web generate constant streams of information, describing the

events that shape our world. In particular, geography plays a key role in the news, and

understanding the geographic information present in news allows for its useful spatial

browsing and retrieval. This process of understanding is called geotagging, and involves

first finding in the document all textual references to geographic locations, known as topo-

nyms, and second, assigning the correct lat/long values to each toponym, steps which are

termed toponym recognition and toponym resolution, respectively. These steps are difficult

due to ambiguities in natural language: some toponyms share names with non-location en-

tities, and further, a given toponym can have many location interpretations. Removing these

ambiguities is crucial for successful geotagging.

To this end, geotagging methods are described which were developed for streaming

news. First, a spatio-textual search engine named STEWARD, and an interactive map-

based news browsing system named NewsStand are described, which feature geotaggers

as central components, and served as motivating systems and experimental testbeds for de-

veloping geotagging methods. Next, a geotagging methodology is presented that follows



a multifaceted approach involving a variety of techniques. First, a multifaceted toponym

recognition process is described that uses both rule-based and machine learning–based

methods to ensure high toponym recall. Next, various forms of toponym resolution evi-

dence are explored. One such type of evidence is lists of toponyms, termed comma groups,

whose toponyms share a common thread in their geographic properties that enables correct

resolution. In addition to explicit evidence, authors take advantage of the implicit geo-

graphic knowledge of their audiences. Understanding the local places known by an audi-

ence, termed its local lexicon, affords great performance gains when geotagging articles

from local newspapers, which account for the vast majority of news on the Web. Finally,

considering windows of text of varying size around each toponym, termed adaptive con-

text, allows for a tradeoff between geotagging execution speed and toponym resolution

accuracy. Extensive experimental evaluations of all the above methods, using existing and

two newly-created, large corpora of streaming news, show great performance gains over

several competing prominent geotagging methods.
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Chapter 1

Introduction

Today’s increasingly informed and connected society demands ever growing volumes of

information and news. Thousands of newspapers, and millions of bloggers and tweeters

around the world post the latest news updates continuously, and the demand for such data

is skyrocketing as people strive to stay up-to-date. Blogs, tweets, and other social media

have also expanded the realm of news to include citizen journalism. The rise of the Web

has allowed their access from anywhere in the world through publishers’ online presence,

and has fueled intense competition as evidenced by a swift and sometimes tempestuous

information cycle. Also, Web-enabled mobile devices are increasingly common, which ex-

pands the requirement for location-based services and other highly local content—news

that is relevant to where users are, or the places in which they are interested. Our goal is

to collect, analyze, and comprehend this streaming, ever-changing mass of information, to

make it easily retrievable and accessible by humans. Specialized techniques are required to

achieve this goal.

Importantly, news often has a strong geographic component. News sources often char-

acterize their readership in terms of where their readers live, and include articles describ-

ing events that are relevant to geographic locations of interest to their readers. To allow

readers to retrieve the news that is geographically relevant to them by executing news re-

trieval queries with a geographic component, we must first understand the geographic con-

tent present in the articles. However, currently, online news sources rarely have articles’
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geographic content present in machine-readable form. We could assign humans to hand-

annotate each article with their geographic content, but this is not scalable with regard to

the amount of information being generated all the time. As a result, we must design algo-

rithms to understand and extract the geographic content from the article’s text. This process

of understanding is known as geotagging of text, and amounts to identifying locations in

natural language text, and assigning lat/long values to them. Systems using geotagging

have recently flourished and have been implemented and used for a wide variety of textual

and media domains, such as Web pages [7, 95, 118, 155], blogs [119, 165], encyclopedia

articles [62, 109, 141], tweets [130], spreadsheets [4, 75], the hidden Web [78], news pho-

tos, and of most relevance to this work, news articles [22, 30, 42, 80, 81, 120, 129, 143].

The methods in this work were developed in tandem with the STEWARD [78], News-

Stand [143], TwitterStand [130], and PhotoStand1 systems, all of which leverage a geo-

tagger to associate unstructured text documents with the geographic locations mentioned

in them, thereby enabling users to explore these document collections visually using map

query interfaces. STEWARD was constructed as a system for spatially browsing static col-

lections of documents from the hidden Web, while NewsStand and TwitterStand operate on

streaming data, namely streaming news and tweets. In addition, several commercial prod-

ucts for geotagging text are available, including MetaCarta’s Geotagger [99], Thomson

Reuters’s OpenCalais [147], and Yahoo!’s Placemaker [162].

The process of geotagging consists of finding all textual references to geographic lo-

cations, known as toponyms, and then choosing the correct location interpretation for each

toponym (i.e., assigning lat/long values); these two steps are known respectively as topo-

nym recognition and toponym resolution. As with many other problems involving natu-

ral language, the central challenge associated with geotagging lies in linguistic ambiguity,

in that toponym recognition and resolution involve resolving several kinds of ambiguity

present in location names. In particular, many names of places are also names of other

1http://photostand.umiacs.umd.edu
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type of entities, called geo/non-geo ambiguity (e.g., “Stanley Jordan”, “Bristol Palin”, and

“Paris Hilton” are persons, while “Bristol”, “Paris”, and “Jordan” are also toponyms), and

many different places have the same name, called geo/geo ambiguity (e.g., over 40, 50, and

60 places around the world named “Jordan”, “Bristol”, and “Paris”, respectively). Resolv-

ing these ambiguities requires a good understanding of the document’s content to make

informed decisions as to which words are toponyms, as well as which of the many pos-

sible interpretations for a toponym is correct. In addition, the particular text domain may

involve other ambiguities that pose additional challenges for geotagging. For example, geo-

tagging blogs may be more challenging than geotagging newswire simply because blog text

may have more misspellings and grammar mistakes. Likewise, geotagging tweets would be

even more difficult, due to the size limit of 140 characters and potential total disregard of

linguistic norms. Section 1.1 elaborates on these types of ambiguity and contains several

prominent examples of toponym ambiguity found in news articles. While humans are gen-

erally good at resolving these ambiguities, replicating or exceeding their performance with

a fully-automated algorithm turns out to be a challenging task.

Put another way, geotagging can be considered as enabling the spatial indexing of un-

structured or semistructured text. This spatial indexing provides a way to execute both

feature-based queries (“Where is X happening?”) and location-based queries (“What is

happening at location Y?”) [12]. Executing these queries involves the efficient retrieval of

spatial data, which in turn requires the construction of appropriate spatial indexes, some

examples of which are R-trees and quadtrees [127]. These indexes are relatively easy to

construct when such data is readily available. However, this is not the case when the data

consists of unstructured text, where the spatial data is really words of text that can be (but

are not required to be) interpreted as the names of locations. In other words, the spatial data

is in the form of toponyms rather than geometry, which implies the ambiguity mentioned

earlier. This ambiguity has an advantage in that from a geometric standpoint, the textual

specification captures both the point and spatial extent interpretations of the data. On the
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other hand, the disadvantage is that we are not always sure which of many instances of

geographic locations with the same name is meant, and geotagging is meant to overcome

this disadvantage.

As an aside, note that any representation chosen for location interpretations will nec-

essarily have some intrinsic spatial ambiguity. For example, when geotagging a particular

toponym corresponding to a city, the centroid of the geographic region covered by the city

may be used as the interpretation. This level of precision may or may not be useful, given

the application. For reading news about the city, a city-level resolution is probably enough,

but for geotagging individual buildings, road intersections, or addresses, a finer resolution

is needed. Thus, technically, geotagging’s task is to reduce the ambiguity present in topo-

nyms to an acceptable level, dependent on the application in which it is used.

The geotagging process selects location interpretations for each toponym from a gazet-

teer, a database of locations and associated metadata. A gazetteer contains at a minimum

the latitude and longitude for each toponym, but usually includes additional information

that is useful for geotagging. For example, our gazetteer contains alternate names for each

location in various languages, population data, and hierarchical information indicating the

country and administrative divisions that contain the location. Note that the choice of ga-

zetteer plays a large role in the quality of geotagging, as well as the geotagging method’s

apparent performance under evaluation. Since the geotagger can only choose interpreta-

tions from the gazetteer, a small gazetteer limits the possible interpretations which must be

considered in the toponym resolution procedure, which makes the task easier. On the other

hand, a small gazetteer excessively penalizes the effectiveness of the entire geotagging

procedure, if it is not complete enough. For example, the Web-a-Where system [7] uses a

gazetteer containing 40,000 locations and 70,000 location names. The small size of Web-a-

Where’s gazetteer effectively reduces the ambiguity present in the toponyms that they can

recognize and resolve, which means that Web-a-Where misses many toponyms present in

real world articles. In addition, any evaluation of Web-a-Where’s geotagging procedure will
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be made difficult because it must acknowledge this gazetteer limitation. On the other hand,

our methods use a gazetteer based on the GeoNames database [43], which is a compre-

hensive collection of geographic data from over 100 sources, including the GEOnet Names

Server (GNS) [105] and Geographic Names Information System (GNIS) [152]. Our gazet-

teer contains over 8 million geographic locations, and over 10 million location names from

around the world. This large gazetteer makes the geotagging process more difficult, but at

the same time more flexible due to its ability to decide among many more interpretations.

Our primary focus in this dissertation concerns the geotagging of news articles. In par-

ticular, we advocate a combined, multifaceted approach to geotagging these articles using a

variety of techniques and many different rules and heuristics, a philosophy which is impor-

tant in the context of the working systems for which our algorithms were developed. These

rules include both domain-independent and domain-specific heuristics, and are based on

the content and structure of typical news articles. By understanding this structure, we take

advantage of rich contextual clues to effect improved geotagging. One such contextual ge-

ographic clue is the article’s dateline. If present, the dateline appears at the beginning of

the news article, and indicates when the article was written, usually not long after the de-

scribed news event. It can also include geographic information, namely where the author

wrote the article or where it was submitted for publication. Because it appears prominently

at the beginning of the article, it establishes a geographic context for the article as a whole.

A location present in the dateline tends to correspond to the principal or most important

location in the article. More generally, news articles are often written in an inverted pyra-

mid [131] style, with the most important details (i.e., who, what, where, when, why, how)

appearing early in the article, often in the first one or two sentences. Since geography is

a major part of many news articles, important geographic details are also likely to appear

early in the article. Further details are added in subsequent sentences, in decreasing order

of importance. By placing salient details first, the author establishes a global framework for

understanding the remainder of the story, including the article’s geographic focus.
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Other contextual clues serve to establish and specify geographic relationships between

specific toponyms, usually nearby in the article’s text. One common relationship found

in news articles is that of a location paired with its container, termed an object/container

form, as in “[College Park], [MD]” or “[College Park] in [Maryland]”. Furthermore, certain

cue words help the reader determine that a given word or phrase is a toponym, and may

also provide assistance in resolving the toponym. For example, a mention of “Franklin

County” can be recognized as a toponym by its “County” suffix, and further constrains

the set of possible resolutions to only those locations that are counties. Other cue words

include direction-based language, such as “[Iskandariyah], 30 miles south of [Baghdad]”,

which allows for recognition of both “Iskandariyah” (the Arabic name for “Alexandria”)

and “Baghdad” as toponyms, and furthermore establishes a spatial relationship between the

two toponyms that will aid in resolving them. We also look at nearby terms for evidence

that certain terms are not toponyms and instead are of a different nature. Some examples

include “Mr.”, indicating a person, and “University of”, indicating a school (organization).

An outline of our methodology which takes advantage of these and other contextual clues

is presented in Section 1.3.

The rest of this chapter has the following organization. First, to illustrate the difficulties

of performing effective geotagging, we present some examples of toponyms with signif-

icant ambiguity, and show real-world news articles prominently featuring toponym am-

biguity (Section 1.1). Next, we provide an overview of STEWARD and NewsStand, two

systems using geotagging as a central component, that served as motivation for our research

(Section 1.2). We then describe the methodology used in our toponym recognition and res-

olution methods (Section 1.3). After, we provide pointers to related work in geotagging

(Section 1.4). We conclude the chapter with a summary of this dissertation’s contributions

(Section 1.5) and an outline of the remainder of the dissertation (Section 1.6).
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1.1 Toponym Ambiguity

As mentioned earlier, removing ambiguity in toponyms is the goal of geotagging. We con-

sider the following forms of ambiguity in toponyms:

1. Geo/non-geo. Toponyms may share names with non-location entities.

2. Geo/geo. Toponyms may refer to any of multiple places with the same name.

3. Aliasing. A given location may have many corresponding toponyms.

4. Nesting. Toponyms may be nested within non-location entities.

The first two forms of ambiguity are frequently considered in geotagging research and are

the main focus of this work. Resolving geo/non-geo ambiguity involves distinguishing be-

tween non-location names and toponyms. For example, as we pointed out earlier, “Stanley

Jordan”, “Bristol Palin”, and “Paris Hilton” are names of persons, while “Bristol”, “Paris”,

and “Jordan” are also toponyms. Resolving geo/geo ambiguity involves distinguishing be-

tween different interpretations for a given toponym. For example, over 40, 50, and 60 places

around the world are named “Jordan”, “Bristol”, and “Paris”, respectively. The remain-

ing two forms of ambiguity are not as problematic, but nonetheless require consideration.

Aliasing must be accounted for in geotagging by considering alternate names used for lo-

cations. For example, “New York City” may be additionally referred to as “NYC” or sim-

ply “New York”. Furthermore, vernacular aliasing frequently occurs as in nicknames such

as “Big Apple” and “Gotham”. The gazetteer should include location aliases to account

for these variations. In addition, toponyms may be nested inside entities of other types,

which imparts a shade of geographic meaning to these entities. For example, “University

of [Maryland]”, “[New York] Police Department”, and “Mayor of [El Cenizo]” all contain

toponyms, but as a whole refer to a different entity. This problem is further exacerbated

by toponyms that are also instances of metonyms—i.e., toponyms that frequently refer to
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other entities instead of their nominal locations. For example, “Washington”, “Westmin-

ster”, and “Hollywood” are prominent locations, but are also frequently used to refer to the

US Government, the UK Parliament, and US cinema, respectively. In this work, we limit

our analysis to non-nested toponyms.

To illustrate the widespread ambiguity present in location names, we present Figure 1.1,

which shows a collection of ambiguous or otherwise unusual toponyms present in the

United States. The displayed toponyms all correspond to populated places such as cities

and towns. These toponyms are of many categories, and show both geo/geo and geo/non-

geo ambiguity in their naming. Note that we found many more such toponyms, but we

selected only a subset to display to avoid excess clutter on the map. We include some

examples of these toponyms below, with each toponym followed by the US state abbrevi-

ation in which it is located. Some categories of geo/geo ambiguity in these toponyms in-

clude cities that have names of countries (e.g., “Belgium, FL”, “Canada, KS”, “Chad, KY”,

“China, LA”, “Cuba, AL”, “Denmark, AR”, “Egypt, GA”, “Finland, MN”, “Germany, IN”,

“Greece, NY”, “Ireland, OH”, “Italy, TX”, “Japan, MO”, “Lebanon, PA”, “Mexico, KY”,

“Norway, NE”, “Panama, CA”, “Peru, MA”, “Poland, WI”, “Sweden, SC”, “Togo, MS”),

cities that are also names of US states (e.g., “Arizona, LA”, “California, ME”, “Montana,

NJ”, “Nevada, OH”, “New York, TN”, “Ohio, TX”, “Oregon, MD”, “Tennessee, TN”,

“Texas, GA”, “Wyoming, IA”), cities that share names with other, more prominent cities

(e.g., “Alexandria, VA”, “Berlin, PA”, “Cairo, OK”, “Geneva, NE”, “Havana, FL”, “Lon-

don, KY”, “Paris, TX”, “Rome, KS”, “Tripoli, IA”, “Zurich, CA”), and even names of

celestial bodies (e.g., “Venus, CA”, “Earth, TX”, “Moon, MS”, “Mars, PA”, “Jupiter, NC”,

“Saturn, TX”, “Pluto, WV”, “Planet, AZ”). A wide variety of toponyms exhibit geo/non-

geo ambiguity as well (e.g., “Admire, PA”, “Advance, MI”, “Appeal, MD”, “Bath, NY”,

“Bland, FL”, “Cash, MS”, “Climax, KY”, “Cricket, IA”, “Experiment, AR”, “Gas, KS”,

“Golf, IL”, “Gravity, PA”, “Igloo, AK”, “Ink, OH”, “Kite, GA”, “Not, MO”, “Okay, OK”,

“Racy, MI”, “Roach, NE”, “Rural, WI”, “Santa Claus, AZ”, “Stop, GA”, “Unicorn, MD”,

8
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“Waterproof, LA”, “Why, AZ”, “Zulu, AL”). These toponyms give insight as to the extreme

ambiguity of toponyms and hint at the difficulty of automatic geotagging, where it is crucial

to understand enough context to resolve these ambiguities correctly.

Next, we provide several examples of geo/non-geo and geo/geo ambiguity found in real

news articles. These examples are from articles whose subjects reflect the difficulty of geo-

tagging toponyms, and would be especially challenging for a fully automated geotagging

process. In some cases, leveraging the streaming aspect of news can resolve the ambiguity

present in these toponyms, as explained below.

Our first example, shown in Figure 1.2, comes from an article published in November

2008 in Variety [58] about Batman, a small city in southeastern Turkey. In this case, the

success of the 2008 movie “The Dark Knight”, about Batman, the comic book superhero,

prompted a lawsuit from the mayor of Batman, Turkey. Geotagging this article correctly

involves distinguishing between the Turkish city and the superhero for each instance of

“Batman” present in the article, which could be accomplished by observing contextual

clues such as “town of [Batman]”. However, “Batman” presents an interesting case in that

most articles in the news published at the time of the Dark Knight’s movie release that

mentioned “Batman” would be referring to the superhero, and so “Batman” is likely not a

location. In other words, taking advantage of the streaming, ever-changing aspect of news,

and knowing that there is a recent movie about Batman the superhero, provides evidence

against the interpretation of Batman as the name of a city.

A similar case can be seen in Figure 1.3, showing a Reuters article published in Novem-

ber 2008 [86] describing celebrations in the town of Obama, Japan due to the election of

President Barack Obama, which offered business opportunities due to their shared names.

In this case, understanding that Obama refers to a politician of great influence in the news

offers a strong source of evidence in determining whether “Obama” refers to the politician

(likely) or the location (unlikely).
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Figure 1.2: An example of geo/non-geo ambiguity in “Batman”, which can refer to the

movie hero or a city in southeastern Turkey.
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Figure 1.3: An example of geo/non-geo ambiguity for “Obama”, referring to the American

President or the town of Obama, Japan.

Figure 1.4: An example of geo/geo ambiguity in “Java, Georgia”. In this article, “Java”

referred to a town in Georgia in the Caucasus region, while the associated map, presum-

ably generated automatically without human intervention, incorrectly shows a resolution to

“Java Court”, a street in Hinesville, Georgia, US.
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Our third example shows the difficulty of resolving geo/geo ambiguity. Figure 1.4 con-

tains an excerpt from an article published in August 2008 [5] about the 2008 war in South

Ossetia, Georgia, in the Caucasus region. For this example, the article’s dateline contains a

reference to “Java, Georgia”, which refers to a town in Georgia, the country. However, the

map associated with this article, shown in bottom left, indicates that “Java, Georgia” was

geotagged to a small city southwest of Savannah, Georgia, the US state. In fact, upon closer

examination, it turns out that “Java” was placed at “Java Court”, a street in Hinesville,

Georgia. Clearly, this map was the output from an automated geotagging algorithm whose

output was not manually checked by a human. Note that this error is not overly surprising

given that the instance of “Georgia” appearing in the US news usually refers to the US

state, and the relative lack of prominence of the US “Java” interpretation when compared

to the Caucasus “Java” was not enough to deter a US interpretation. Contemporary news

stories also indicate that many humans also were confused about the proper interpretation

of “Georgia” in articles about the South Ossetia war. Knowing that the Caucasus “Georgia”

interpretation was frequently in the news at the time would allow correct resolution of these

toponyms.

Our last example, shown in Figure 1.5, contains an excerpt from an article published in

February 2010 [24] about problems resulting from the geo/geo ambiguity of “Vancouver”.

In particular, during the 2010 Winter Olympics in Vancouver, British Columbia, Canada,

many tourists who bought travel tickets and made hotel reservations actually did so for the

US city of Vancouver, Washington. This ambiguity is even more interesting given that the

Canada and US interpretations of Vancouver are relatively proximate to each other, with

Washington state, US being adjacent to British Columbia, Canada. This example shows

that even humans sometimes have difficulty with correctly resolving toponyms.
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Figure 1.5: An example of geo/geo ambiguity in “Vancouver”. During the 2010 Winter

Olympics in Vancouver, Canada, many tourists mistakenly booked hotel rooms in Vancou-

ver, Washington state.

Figure 1.6: Locations mentioned in news articles about the May 2009 swine flu pandemic,

obtained by geotagging related news articles. The larger red circles indicate frequency,

with larger circles indicating more frequency, and small circles are color coded according

to recency, with lighter colors indicating the newest mentions.
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1.2 STEWARD and NewsStand

In this section we describe two systems that leverage geotagging technology, and served

as motivations for our research. As noted earlier, we emphasize the use of multifaceted

geotagging techniques, and it was primarily for these systems that our algorithms were

developed. As a first system, we designed a spatio-textual search engine called STEW-

ARD [78]. STEWARD was developed as a search engine where the query string contains a

geographical entity, and we wish to find documents that are related to the location by spa-

tial proximity, rather than exclusively by keyword containment. For example, a document

containing “Los Angeles” is deemed relevant to a query string containing “Hollywood”,

even though the query string “Hollywood” might not even be mentioned in the document.

Note that most search engines rank documents based on their relevance to a user’s search

string, which consists entirely of keywords. In particular, strict keyword searches involving

location names, such as “College Park, MD”, would search for that exact phrase in docu-

ment text, being completely ignorant of the underlying geographic information present in

such a phrase. On the other hand, STEWARD does not collapse spatial searches into the

framework of keyword searches. Instead, it makes use of the spatial information present in

the location search to retrieve documents which are both textually and spatially relevant.

Geotagging is a core component of STEWARD, and is necessary to judge a given doc-

ument’s relevance to the query’s geographic component. STEWARD was also leveraged

to create a disease monitoring system [79] by geotagging disease incidence reports from

around the world. On a related note, Figure 1.6 illustrates worldwide outbreaks of swine

flu in May 2009, obtained by geotagging news articles written about that topic, which can

then be indexed spatially. The STEWARD system is described in detail in Chapter 2.

While STEWARD was originally designed for processing documents from the hidden

Web, it was easily applied to collections of news articles. Eventually, this led to the develop-

ment of another fully-automated system called NewsStand [143] (denoting “Spatio-Textual

Aggregation of News and Display”). NewsStand’s geotagger, which uses the methods de-
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scribed in this dissertation, associates news articles with the geographic references men-

tioned in them, and groups articles into story clusters based on their textual and geographic

content. It then places markers representing story clusters on an interactive map interface,

thereby allowing meaningful, visual exploration of the news.

NewsStand is designed to be scalable, responsive, and modular, with article process-

ing divided among many independent modules. Central to NewsStand’s operation is its

pipe server, which acts to coordinate NewsStand’s many backend processing modules by

assigning batches of processing work via a communication protocol, and also monitors

the system’s health by verifying that documents are being processed in a timely manner.

Whereas the pipe server directs modules to perform work, NewsStand’s SQL database,

based on PostgreSQL, stores information about documents present in the system, as well as

the results of their processing, which enables NewsStand’s Web interface to easily retrieve

location-associated news clusters for display by executing variants of what are known as

top-k window queries. NewsStand’s architecture, design, and implementation are described

extensively in Chapter 3.

1.3 Methodology

In this section, we briefly describe the techniques and geotagging methodology that will be

explored in later chapters. Our goal is to design and implement a fully-automated, multi-

faceted geotagging process, with no humans involved in any phase of processing. As noted

earlier, geotagging consists of toponym recognition, wherein all toponyms in the docu-

ment are found, and toponym resolution, where location interpretations are selected for

each toponym. To understand our strategy for toponym recognition, consider that toponym

recognition can be viewed as a subset of a more general problem studied in natural lan-

guage processing, called named-entity recognition (NER). Whereas toponym recognition

involves finding entities in text that correspond to geographic location names, named-entity

recognition involves finding entities of several types, often including locations (e.g., names
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of people, organizations, locations, dates and times, businesses, stock symbols, genes and

proteins). For example, in the sentence “Jordan visited London last Friday”, the output from

a toponym recognizer would include the location “London”, while correct output from a

named-entity recognizer would also include “Jordan” as a person, and possibly “Friday” as

a day of week. Sometimes evidence is stronger for a particular entity interpretation versus

another interpretation. For example, in the pattern “X visited Y”, the “visited” verb lends

credence to X being a person and Y being a location, since locations are visited by people.

Machine learning-based NER systems will often discover patterns like these from corpora

of entity-annotated documents, and use them to build a language model through which

entities and entity types can be predicted, given the linguistic context.

Given toponym recognition’s status as a subproblem of NER, tools developed for the

more general problem of NER can be used as a means of toponym recognition, or at least

as processing filters. In this case, the general strategy is to take an input document, exe-

cute an off-the-shelf NER system on the document (e.g., LingPipe [6], Stanford NER [37],

ANNIE [31]), and retrieve location entities as the output. Once location entities are found,

location interpretations are assigned from a gazetteer, and in the toponym resolution step,

one of the interpretations is chosen for each toponym. However, this simple strategy is

problematic. Because NER is a more general problem, systems developed for NER tend to

be tuned for this more general problem, rather than specifically for locations and location-

based evidence. As a result, they may be less accurate in detecting locations. Second, this

strategy is inflexible in that the toponym recognition and toponym resolution procedures

are completely independent, and thus cannot share evidence. For example, it may happen

that a supposed toponym t found by the toponym recognition procedure is incorrect, i.e., t

should not have been selected as a toponym. However, the toponym resolution procedure

is then forced to consider t as a toponym and select one of the incorrect location interpre-

tations of t, even if none of these interpretations are evidenced by t’s context. Returning

to our example, in the sentence “Jordan visited London last Friday”, if “Friday” were in-
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correctly recognized as a toponym, the toponym resolution procedure would necessarily

select the interpretation in Texas. A better option would be to allow the toponym resolution

procedure to drop toponyms discovered by the toponym recognition method that are not

evidenced. Also, on a practical note, when evaluating NER systems on our domain of news

articles, we found that they tended to be biased toward precision, at the significant expense

of recall. This may be due to the small size and homogeneity of corpora used in training

NER systems, which do not adequately capture the fast moving and ever changing nature

of the streaming news cycle. While this bias is not unacceptable for the NER problem, it is

problematic when used in a system for geotagging, since the toponym recognition proce-

dure imposes an upper bound on the recall for the entire geotagging process (i.e., toponym

recognition and toponym resolution). Put simply, a prerequisite for the geotagging proce-

dure’s correct resolution of a toponym is its recognition of the toponym. Thus, any missed

toponyms in the initial toponym recognition phase will negatively impact the recall for the

entire process. As a result, the low recall of these NER systems imposes a severe limit on

the entire geotagging process’s recall. Of course, it is worth noting that information about

entities other than toponyms is useful for toponym recognition, since it may offer a means

of resolving type ambiguities.

Bearing these considerations in mind, the toponym recognition process we designed for

processing streaming news has a considerably more flexible architecture. Rather than solely

relying on an off-the-shelf NER system, we include NER software as part of a multifaceted

toponym recognition system involving many recognition methods, of potentially varying

quality. We include rule-based recognition in the form of entity dictionary tables, cue word

matching (e.g., “X County”), and toponym refactoring. In addition, we leverage statisti-

cal NLP tools in the form of NER software with postprocessing filters, and part-of-speech

(POS) tagging with additional recognition rules. Essentially, we designed this multifaceted

toponym recognition procedure in keeping with our goals to be flexible enough to capture

variations that occur in streaming news, as well as to be as inclusive as possible when rec-
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ognizing toponyms, in order to maximize the toponym recognition procedure’s recall (i.e.,

to miss as few toponyms as possible). Our toponym resolution methods, described in Chap-

ters 5–7, serve to restore precision to the process by dropping supposed toponyms with no

supporting evidence for any of their possible interpretations. In this way, we treat topo-

nym recognition as only the first part of an integrated geotagging process also involving

toponym resolution, rather than simplistically treating each step independently. Further-

more, during and after the recognition procedure, we allow entities to overlap, and even to

exactly cover the same words in the text but with different types. For example, consider a

document containing “Chad”. We may have evidence that “Chad” is a person entity, as well

as different evidence that “Chad” is actually a location entity. Rather than keeping only one

type, we create two entities with the same boundaries but different types. In other words,

we defer the resolution of entity and interpretation conflicts to later stages of processing, so

that we leverage as much evidence as possible to resolve these conflicts. Of course, recall

is not the only factor in designing a robust toponym recognition system, and precision also

plays a role. In our example document, if we came across a sentence containing “Mr. Chad

Johnson”, the “Mr.” and “Johnson” provide strong evidence that “Chad” is a person entity

and can be safely disregarded. However, in general, recall must be emphasized over preci-

sion due to toponym recognition’s aforementioned status as the initial stage of a combined

geotagging process.

After toponym recognition, we use several toponym resolution methods. The central

theme underlying these methods stems from the observation that news articles (and more

generally, documents on the Web) are written to be understood by a human audience, and

therefore geotagging will benefit from processing (i.e., reading) the document in the same

way as an intended reader. Good writers understand what their audiences know, and will

tailor their writing to appropriately address their audiences’ knowledge. By understanding

the assumptions made by the writer about what the reader knows, and how they exploit that

relationship, we leverage this knowledge for proper toponym resolution.
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One type of resolution evidence that we use leverages a technique that is commonly

used by article authors: lists, which for the purposes of exposition we refer to as comma

groups (though commas need not always separate list items). Comma groups are a natural

way to organize groups of related information. In fact, we note that each comma group uni-

fies the entities it contains via a common thread—attributes that are shared by all entities

in the group. This reasoning leads to our observation that for comma groups of toponyms,

these common threads greatly aid in resolving the toponyms correctly. For example, de-

spite each toponym in the comma group “Rome, Paris, Berlin and Brussels” having many

possible interpretations (over 40, 60, 130, and 10, respectively), recognizing that these are

large, prominent capital cities allows us to select the correct interpretations. Similarly, the

group “Hell’s Kitchen, Chinatown, Murray Hill, Little Italy, and SoHo”, despite containing

individually ambiguous location names, exhibits the common thread of neighborhoods in

southern Manhattan, New York City, and this knowledge allows for their correct resolution.

Comma groups are explored in detail in Chapter 5.

Another form of evidence we use for toponym resolution makes use of other assump-

tions made by article authors about their audiences. In particular, writers know the approxi-

mate boundaries of their audiences’ geographic knowledge, and will use toponyms in ways

that are easily understood by their audiences. For example, a common method of referring

to locations that are unfamiliar to the audience is the object/container form described ear-

lier, where a pair of toponyms exhibit a containment relationship (e.g., “Paris, Texas”). On

the other hand, toponyms that are well known to the audience will frequently be used in

isolation (e.g., “Paris”), which can be troublesome due to their frequent ambiguity. How-

ever, by understanding the geographic knowledge of the intended reader, the geotagger’s

seemingly daunting task of identifying the correct instance of “Paris” out of the more than

60 possible interpretations will be much easier when we note that the reader is unlikely to

even be aware of most of these interpretations, and thus there is no need to even consider

them as possibilities in the toponym resolution step.

20



This leads to a key point in our toponym resolution method which is that the reader’s

spatial lexicon—those locations that the reader can identify and place on the map with-

out any evidence—is very limited. In fact, even more importantly, this inherent limitation

means that a common spatial lexicon shared by all humans cannot exist. Unfortunately,

virtually all existing geotagging systems assume the existence of such a common lexicon.

On the other hand, in our system, a key premise is the existence of a reader’s local spa-

tial lexicon or simply local lexicon that differs from place to place, and that it is separate

from a global lexicon of prominent places known by everyone. In other words, to readers

in Texas, “Paris” primarily implies a reference to “Paris, Texas”, rather than to the distant,

but more prominent, geographic location—“Paris, France”. Furthermore, in most cases, the

local lexicon supersedes the global lexicon. Our detailed exploration of local lexicons in

Chapter 6 shows their great utility in correct toponym resolution.

As a third source of evidence, we note that the two steps comprising geotagging can

be considered as classification [36] problems: Toponym recognition amounts to classify-

ing each word in the document’s text as part of a toponym or not, and toponym resolution

amounts to classifying each toponym interpretation as correct or incorrect. With this un-

derstanding, and with appropriately annotated datasets, we leverage techniques from su-

pervised machine learning to create an effective geotagging framework. In particular, we

consider a new class of machine learning–based features to improve the accuracy of topo-

nym resolution, termed adaptive context features [77]. These features construct a window

of variable size around each toponym t, and use the other toponyms in the window to aid

in resolving t correctly by considering the geographic relationships between interpretations

lt of t and those of other toponyms in the window. In particular, we search for interpreta-

tions that are geographically proximate to lt, or are siblings of lt in terms of a geographic

hierarchy (e.g., cities in the same state). The more such relationships appear in the win-

dow, the greater evidence there is that lt is the correct interpretation of t. We call these

features adaptive because the window’s parameters can be varied for different domains, or
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to achieve different ends, which affords us flexibility. We set parameters which we term

the window’s breadth and depth, named analogously to breadth-first and depth-first search,

which control the number of toponyms in the window and the number of interpretations

examined for each toponym in the window, respectively. By varying these parameters, we

control a tradeoff between feature computation time and resolution accuracy, which be-

comes important in the context of scalable streaming data processing. We describe our

adaptive context features in more detail in Chapter 7.

1.4 Related Work

Recall that geotagging consists of toponym recognition and toponym resolution. We now

provide a survey of existing work related to geotagging; for further overviews, refer to the

surveys by Leidner [69] and Purves et al. [118]. Prior to our discussion, note that geotag-

ging researchers have not yet settled on a uniform terminology, which reflects the different

fields in which their work is rooted. Toponym recognition has also been called geopars-

ing [28, 60, 117, 118], toponym extraction [35, 132, 167], toponym detection [140], and

georeferencing [27]. Similarly, toponym resolution has a variety of names, including to-

ponym disambiguation [42, 78, 110, 132, 134, 135, 143, 167], geocoding [28, 117, 118],

grounding [19, 60], and location normalization [35, 72]. Confusingly, a variety of names

have also been given to the entire geotagging process, including georeferencing [134, 160],

geoparsing [96], and geocoding [9]. To avoid confusion, in this work we use the terms

toponym recognition, toponym resolution, and geotagging.

To be effective, a toponym recognition procedure must cope with geo/non-geo ambi-

guity, i.e., deciding whether a mention of “Paris” refers to a location or some other entity

such as a person’s name. Many different approaches to toponym recognition have been

undertaken, but share similar characteristics. The most common strategy is simply to find

phrases in the document that exist in a gazetteer, or database of geographic locations, and

many researchers have used this as their primary strategy [7, 19, 117, 132, 154, 155, 160].
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Many of the gazetteers used by these researchers have small sizes, which in turn impose

serious limitations on these systems’ practical geotagging capabilities, as they are unable to

recognize the small, highly local places that are commonplace in articles from local news-

papers. In contrast, our own gazetteer contains over 8 million locations and thus is suitable

for recognizing highly local toponyms.

To deal with the ambiguity inherent in larger gazetteers, researchers (e.g., [42, 73, 96,

121, 134, 135, 140]) have proposed a variety of heuristics for filtering potentially erroneous

toponyms. MetaCarta [121] recognizes spatial cue words (e.g., “city of”) as well as certain

forms of postal addresses and textual representations of geographic coordinates. Unfortu-

nately, this strategy causes serious problems when geotagging newspaper articles, as often

the address of the newspaper’s home office is included in each article. Given MetaCarta’s

primary focus on larger, prominent locations, these properly-formatted address strings play

an overly large role in its geotagging process, resulting in many geotagging errors.

Other approaches to toponym recognition are rooted in solutions to related problems

in natural language processing (NLP), namely named-entity recognition (NER) and part-

of-speech (POS) tagging [61]. These approaches can be roughly classified as either rule-

based [9, 23, 27, 28, 35, 60, 118, 124, 167] or statistical [69, 70, 72, 78, 97, 143] in nature.

While statistical NER methods can be useful for analysis of static corpora, they are not well-

suited to the dynamic and everchanging nature of the news, as has been noted by Stokes

et al. [140]. Therefore, for our own toponym recognition procedure, we do not overly rely

on any single method, instead opting for a hybrid approach involving multiple sources of

evidence (see Chapter 4).

Once toponyms have been recognized, a toponym resolution procedure resolves geo/geo

ambiguity, i.e., decides which “Paris” is the correct interpretation. Perhaps the simplest

toponym resolution strategy is to assign a default sense to each recognized toponym, us-

ing some prominence measure such as population, and many researchers (e.g., [7, 19, 27,

28, 72, 73, 96, 118, 121, 140, 167] have done so in combination with other methods.
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MetaCarta [121] assigns default senses in the form of probabilities based on how often

each interpretation of a given toponym appeared in a precollected corpus of geotagged

documents. It then alters these probabilities based on other heuristics such as cue words

and cooccurrence with nearby toponyms. This probability-based paradigm makes it nearly

impossible for the less prominent places that so often frequent articles in local newspapers

to be selected as correct interpretations, since these smaller places will have appeared in

very few existing corpora of news articles. By contrast, our understanding of readers’ lo-

cal lexicons captures these smaller locations and allows their use for toponym resolution

(described in Chapter 6).

Another very popular [7, 19, 28, 60, 73, 96, 117, 118, 132, 140, 155] strategy for to-

ponym resolution is to settle on a “resolving context” within a hierarchical geographic on-

tology, which involves finding a geographic region in which many of the document’s topo-

nyms can be resolved. Web-a-Where [7] searches for several forms of hierarchical evidence

in documents, including finding minimal resolving contexts and checking for containment

of adjacent toponyms (e.g., “College Park, Maryland”). Note that the central assumption

behind finding a minimal resolving context is that the document under consideration has a

single geographic focus, which will be useful for resolving toponyms in that focus, but will

not help in resolving distant toponyms mentioned in passing. Our adaptive context features

(described in Chapter 7) capture a variant of this idea such that the windows of context

can vary with the situation or application. Window-like features and heuristics have been

used in other work related to geotagging (e.g., [70, 72, 97, 121, 135]), but these features’

adaptive potential has not been explored elsewhere. Other resolution strategies involve the

use of geospatial measures such as minimizing total geographic coverage [69, 70, 135] or

minimizing pairwise toponym distance [72, 78]. Our own toponym resolution methods use

a variety of heuristics inspired by how humans resolve toponyms.

Inferring local lexicons for a given news source’s audience is related to finding the ge-

ographic focus of a document, i.e., the geographic coverage of toponyms in the document.
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A number of approaches [7, 35, 134, 155], including Web-a-Where [7], again use a hierar-

chical ontology to determine geographic focus, with each resolved toponym contributing a

score to its parents in the hierarchy, and settling on the ontology node with highest score

as the geographic focus. This approach suffers from the same problem outlined above for

situations where the document contains multiple geographic foci. Another common strat-

egy is to select the most frequent toponyms as geographic foci [35, 73, 78, 143, 154]. Our

local lexicon inference procedure, described in Section 6.1, which essentially determines

the geographic focus of a news source, relies on several innate properties of local lexicons

to aid in their discovery.

1.5 Summary of Contributions

In summary, the main contributions of this dissertation include:

• The design and development of the STEWARD system, a spatio-textual search engine

that uses geotagging methods to extract toponyms from unstructured text documents.

Contributions include the design of an initial geotagger, spatio-textual query process-

ing, an intuitive user interface, and several novel applications, including tracking the

spread of infectious diseases by geotagging PubMed and ProMED-mail documents.

• Contributions to the design and development of the NewsStand and its sister Twit-

terStand systems that enable the spatio-textual processing and retrieval of streaming

news and tweets, respectively. Innovations include:

– A highly modular and scalable processing architecture with modules for geo-

tagging, and also for online clustering, image understanding, document topic

classification, and disease and person name recognition.

– The design and implementation of a central pipe server and a communication

protocol to coordinate and delegate processing to individual modules.
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– An SQL database design with appropriate schemas, tables and indexes that en-

hance spatio-textual query optimization, and facilitate the mapping of actions

in these systems’ Web interfaces to SQL queries.

• A multifaceted toponym recognition procedure, using a combination of rule-based

and machine learning–based methods to ensure high toponym recall.

• Toponym resolution algorithms that incorporate several novel types of evidence that

improve resolution accuracy, including:

– Recognizing and resolving lists of toponyms, termed comma groups, that share

geographic characteristics and can be resolved simultaneously.

– Automatically establishing and using the geographic knowledge of intended

readership, termed local lexicons, to improve geotagging accuracy.

– Considering windows of text of varying size around individual toponyms, termed

adaptive context, which improve resolution of toponyms in the windows via

shared geographic attributes.

• Encoding the above recognition and resolution evidence and algorithms both as se-

quences of rules and also as features to be used in machine learning–based geotag-

ging frameworks.

• Detailed and comprehensive evaluations of all the above methods, including:

– Data volume and throughput statistics for NewsStand, as well as database query-

ing performance that characterizes NewsStand’s ability to support large num-

bers of users.

– Two new corpora of streaming news articles that are hand-annotated with cor-

rect toponyms and their proper interpretations, which can be used to test geo-

tagging performance. These corpora are much larger than typical collections
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and are more focused on local news, which is much more representative of the

vast majority of news on the Web.

– Comparative evaluations of geotagging performance with state-of-the-art sys-

tems such as Thomson Reuters’s OpenCalais, Yahoo! Placemaker, and others,

showing large improvements over these systems.

– Investigations of the relative utility of each heuristic used for toponym recogni-

tion and resolution, in terms of toponym accuracy and machine learning–based

importance scores.

1.6 Dissertation Outline

The remainder of this dissertation has the following organization. First, we describe two

systems that use geotagging as central components, and thus serve as useful platforms on

which to test geotagging methods. Chapter 2 provides an overview of STEWARD, a spatio-

textual search engine served as the initial impetus for developing our geotagging methods.

Next, Chapter 3 describes various aspects of the NewsStand system for processing stream-

ing news, including detailed descriptions of the system’s many processing modules, its

central pipe server and SQL database design, its Web interface, and several experiments

designed to test its scalability and querying capabilities. After describing these systems,

we continue with techniques used in our geotagging methods. We begin in Chapter 4 with

a detailed description of our multifaceted toponym recognition methods. The following

chapters expound on our toponym resolution methods, beginning with Chapter 5, which

explores and describes our methods for recognizing and resolving comma groups of topo-

nyms, and shows how to incorporate them into our overall geotagging procedure. Next, in

Chapter 6, we describe our methods for toponym recognition and toponym resolution, and

show how to discover and incorporate local lexicons into the geotagging process. Evalua-

tions on corpora of news shows that understanding local lexicons is crucial to correct geo-
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tagging of streaming news from smaller, local newspapers which dominate the news land-

scape on the Web. Chapter 7 contains a description of our methods for leveraging adaptive

context features in a machine learning–based geotagging process. Each of the above chap-

ters also contain descriptions of potential extensions to the work described in each chapter.

Finally, Chapter 8 concludes the dissertation with a review of our main contributions, and

poses additional open problems for future research.
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Chapter 2

STEWARD: A Spatio-Textual Document Search Engine

Search technology today is dominated by search engines such as the one provided by

Google, where documents are retrieved with the aid of an algorithm that ranks documents

related to the query string on the basis of how many other documents link to it [21]. We

are interested in developing a search engine where the query string contains a geographi-

cal entity, and we wish to find other documents that are related to it by spatial proximity.

For example, a document containing “Los Angeles” is deemed relevant to a query string

containing “Hollywood”, even though the query string “Hollywood” might not even be

mentioned in the document.

In this chapter, we describe the anatomy of STEWARD [78, 128] (denoting “Spatio-

Textual Extraction on the Web Aiding the Retrieval of Documents”), a spatio-textual doc-

ument search engine which uses a geotagger as its primary component. STEWARD was

developed as a search engine where the query string contains a geographical entity, and

we wish to find documents that are related to the location by spatial proximity, rather than

exclusively by keyword containment, as is the case with most search engines, which rank

documents based on their relevance to a user’s search string. In particular, strict keyword

searches involving location names, such as “College Park, MD”, would involve searching

for that exact phrase in document text, being completely ignorant of the underlying ge-

ographic information present in such a phrase. On the other hand, STEWARD does not

collapse spatial searches into the framework of keyword searches. Instead, it makes use of
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the spatial information present in the location search to retrieve documents that are both

textually and spatially relevant.

Existing work on spatio-textual search engines generally focuses on finding the geo-

graphic scope of websites containing multiple documents, and is usually done by examining

their link structure. Instead, STEWARD’s focus is on the contents of individual documents.

Moreover, STEWARD also tries to identify as many toponyms as possible, rather than sim-

ply finding a geographic focus sufficiently general to span the entire document. Browsing

through documents in order of proximity to the query string and specified query locations

is also a major focus.

Queries to STEWARD can have a purely geographical component, a keyword com-

ponent, or a combination of both. When the query string is purely a geographical entity,

STEWARD finds documents that are related to it by spatial proximity. The documents that

are returned are ranked by the extent to which STEWARD determines that the geographic

entity in the query is relevant to the document. This is based on many factors, including the

number of times that the proximate geographic locations are mentioned in the document,

as well as their distribution throughout the document. On the other hand, when the queries

consist only of non-geographic keywords, STEWARD ranks result documents according to

the frequency and distribution of the keywords. After STEWARD’s document standardizer

converts each input document to a standard format for processing, STEWARD’s geotagger

identifies all of the toponyms in each document. This geotagger served as an initial foray

into geotagging, which inspired the geotagging techniques described in later chapters.

STEWARD also ranks the locations found in each document in order of importance

within the document’s content. Rankings are based, in part, on the frequency of their occur-

rence, and the distribution of their occurrences in the document. When both a geographic

location and input keywords are provided to STEWARD in a query, relevant documents

(i.e., those containing the input keywords) are ranked in increasing order of distance of

their geographic focus from the geographic location component of the query string. The
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geographic location component of the input query can be expressed in terms of lat/long, or

as a textual reference to a spatial object. For example, the user could search for “housing

projects” in the vicinity of “College Park, MD”. The results would only return such docu-

ments that qualify both the content and location specifier that was provided to the system

by the user.

STEWARD was initially developed for geotagging, browsing, and exploring reports

on HUDUSER.ORG [54], a website provided by the Department of Housing and Urban

Development (HUD) that distributes reports, periodicals, and other data published by HUD.

It was later extended [79] for the geotagging of various other collections of documents,

including PubMed abstracts [104] and ProMED-mail reports [55] in a disease monitoring

role. It was also briefly used for geotagging collections of news articles, though NewsStand

(described in Chapter 3) has since superseded its function in that domain. STEWARD is

accessible on the Web at http://steward.umiacs.umd.edu.

In the rest of this chapter, we first describe the overall architecture of STEWARD (Sec-

tion 2.1). Next, we delve into the details of STEWARD’s document standardizer, geotagger,

and Web interface (Sections 2.2–2.4). We then discuss potential applications of STEW-

ARD, including an application for disease monitoring (Section 2.5). Finally, we discuss

open problems for future research (Section 2.6) and conclude the chapter (Section 2.7).

2.1 Architecture

Figure 2.1 shows an overview of STEWARD’s architecture. STEWARD is divided into

several processing stages, with each stage having data independence. This architecture has

the desirable property that each module in STEWARD can be stopped, resumed, or replaced

without affecting the workings of the other modules. STEWARD’s first processing module

is its Web crawler, which traverses and downloads all of a website’s public Web pages.

Each document i is then passed to the document standardizer, which converts i into text

and HTML formats, so that later processing stages work with a uniform set of data. Next,
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Figure 2.1: STEWARD’s architecture. STEWARD is a pipelined system divided into sev-

eral data independent modules, so that each stage of processing can be assigned to a differ-

ent computer.

STEWARD’s geotagger processes the text version of document i, recognizing and resolving

toponyms. All output from these modules is stored in STEWARD’s central PostgreSQL

database. Finally, users query STEWARD’s collection of processed documents through its

Web interface. In the following sections, we describe these various modules in more detail.

2.2 Document Standardizer

Once a document is downloaded by STEWARD’s Web crawler, it is first processed through

STEWARD’s document standardizer, which converts the document from its original for-

mat to a text version for geotagging and indexing, and an HTML version for display. The

document standardizer ensures that later processing of documents is not dependent on their

initial format. For example, further processing of PDF documents should not be different

from that of plain text, HTML, Microsoft Word, or Microsoft Excel documents. When-

ever possible, additional metadata is extracted from the document, including the title of the

document, authors, publication time stamp, and modification date.

After a document has been standardized, it is stored in STEWARD’s database along

with its URL, any available metadata, and the text and HTML versions of the document.
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2.3 Geotagger

Once a document has been converted to text, STEWARD’s geotagger process is executed

on the document. This process was the precursor to the geotagging methods described

in later chapters. STEWARD’s geotagging process consists of toponym recognition, dur-

ing which toponyms and other entities (e.g., people) in the document are identified. Next,

the identified toponyms are resolved by selecting one of the location interpretation corre-

sponding to each toponym. Finally, toponyms are ranked in order of decreasing importance

to the document’s content. The resolved and ranked toponyms are stored in STEWARD’s

database along with a link to the document in which they were found. The following sec-

tions describe STEWARD’s geotagging process in more detail.

2.3.1 Feature Vector Extraction

Rather than processing every word in a document, we wish to discard most of the words in

the document that most likely are not textual references to geographic locations (e.g., “the”,

“and”). Removing such words substantially reduces the amount of work required to process

a document. To this end, this stage in the STEWARD pipeline focuses on identifying and

extracting only those words and phrases from the document that are most likely toponyms,

and are referred to as the features of the document. Collectively, the set of features is

referred to as the feature vector of the document, and the process of extracting the feature

vector of a document is termed feature vector extraction.

The most popular method for feature vector extraction of a document d is to compute

the Term Frequency-Inverse Document Frequency (TF-IDF) [125] measure for each word

in the document. The TF-IDF measure emphasizes those words and phrases which are

frequent in d, but appear infrequently in a document corpus, which is a set of representative

documents from the collection of documents. Given a set of words in d, the TF-IDF of a

word w can be computed as the ratio of the number of times w appears in d to the number
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of documents in the corpus containing w. Only those words that occur frequently in d, but

are infrequent in the corpus, have a large TF-IDF score. The feature vector of a document

can be obtained by extracting only those words whose TF-IDF score is greater than a pre-

determined minimum threshold. The biggest drawback of this method is that it does not

take linguistic cues, such as some of those described in Chapter 4, into account, which can

be deduced by parsing the sentence constructs in d.

To account for this, we use techniques from Natural Language Processing (NLP). One

easy way to extract a document’s feature vector is to choose only those words in the

document that are proper nouns. To this end, we examined the use of a Part-Of-Speech

(POS) [61] tagger to aid in feature vector extraction. A POS tagger examines a stream

of words and assigns a part-of-speech label (e.g., verb, noun, adjective) to each word in

the stream. One typical approach implemented by POS taggers is using a n-gram Hidden

Markov Model (HMM) [61], and assigns part-of-speech labels based on the most likely

path through the HMM, given the input sentence’s word sequence. The states of the HMM

correspond to part-of-speech labels, while the assignment of labels to words in a sentence

corresponds to the most probable path through the HMM, given the input term sequence.

The advantage of this method over TF-IDF–based extraction is that the words or phrases

in the feature vector are more likely to be toponyms, although the POS tagger cannot dis-

tinguish between names of people, organizations, or other entities, which are also proper

nouns. Furthermore, because of the n-gram nature of the HMM, a POS tagger is adept in

identifying word phrases—a substantial improvement over TF-IDF based extraction. The

HMM POS tagger, similar to TF-IDF, relies on a corpus of documents to build the HMM,

and may require extensive training. The POS tagger used in STEWARD was trained on the

Brown language corpus [39].

We also examined using a Named-Entity Recognition (NER) [61] tagger to aid doc-

ument feature vector extraction. The NER tagger overcomes some of the POS tagger’s

limitations by providing further classification of proper nouns into categories, including
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person, organization, and most importantly, location. As a result, a feature vector extrac-

tion algorithm that uses the NER tagger outputs the words or phrases in a document that

have been classified as locations by the NER tagger. In spite of the apparent advantages

of the NER based feature extraction over the POS-based feature extraction, we point out

that POS is generally much faster and more accurate than NER. We used the NER package

from the LingPipe toolkit [6], which was trained on the MUC-6 news dataset [26].

In consideration of the above, we adopt a hybrid approach that makes use of both a POS

and NER based tagger. All words in a document are first tagged with their corresponding

part-of-speech labels. Next, only the proper noun phrases are extracted, along with their

context, and passed through a NER tagger. If the proper noun phrase is then tagged as

a location, it is added to the feature vector for that document; otherwise, it is ignored.

Combining these two methods exploits the strengths of both approaches—the speed of the

POS tagger, and the specificity of the NER tagger.

Once the feature vector has been extracted, it is stored in a database as a separate rela-

tion. For a document d, each feature f in the feature vector of d is first assigned a unique

feature id. The feature id is stored with the starting offset of f in d, the length of f , the

context of f , and the doc id of d.

2.3.2 Feature Record Assignment

After extracting the document’s feature vector, STEWARD checks to see if any of the

features, which may or may not be toponyms, actually are toponyms, by searching in a

large gazetteer of toponyms. STEWARD uses a freely-available database, provided by the

US Board of Geographic Names, known as the Geographic Names Information System

(GNIS) [152]. At the time of writing, the GNIS contains approximately 2.06 million lo-

cations in the US, including classification labels for locations, such as populated place,

landmark, and park. The gazetteer provides the name and lat/long values of each location,

along with associated location data, such as a hierarchical categorization of the location by
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state and county, as well as population data.

If a feature is found in the gazetteer, then STEWARD designates the feature as a to-

ponym, and extracts all the possible matching interpretations. As noted earlier, a toponym

may be associated with any of several interpretations. The problem of determining which

interpretation is the correct one is deferred to the next stage in the processing pipeline,

described in Section 2.3.3. Those features that do not have a toponym interpretation are

dropped, as they are probably not toponyms.

2.3.3 Disambiguation via Semantic Analysis

We now present a brief outline of our disambiguation algorithm, whose primary objective

is to assign the correct location interpretation for each toponym feature f in a document d.

Note that at this point, most of the features in d have one or more toponym interpretations

from the gazetteer. This can be problematic when using a gazetteer as large as ours, since

features in d may have multiple location interpretations, even when they are not toponyms.

Moreover, some features in d may have a long list of location interpretations, only one

of which is correct. As a result, the disambiguation algorithm has the added challenge of

identifying those features that are not locations, as well as the added computational costs

of identifying the correct interpretation from large sets of potential interpretations.

A key observation, exploited in our algorithm, is that when referring to a relatively un-

known geographic location, it is a common practice to provide nearby references to more

identifiable geographic locations or hierarchical context. These additional locations pro-

vide readers with a familiar geographic context, so they have a notion of the location’s

general area. For example, when referring to a location “Catonsville”, it is common prac-

tice to mention that it is near “Baltimore”, or is located in “Maryland”—the state containing

“Catonsville”. Here, the presence of the locations “Baltimore” and “Maryland” give evi-

dence to the location of “Catonsville” and vice versa. Furthermore, it is unlikely to find

another pair of “Catonsville” and “Baltimore” in some other part of the world, such that
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they are geographically close, and at least one of them is a familiar place. In STEWARD,

the population serves as a substitute for the place’s familiarity.

This leads to a simple algorithm which we term the pair strength algorithm. Pairs of

location interpretations are compared to determine whether or not they give evidence to

each other, based on the familiarity of each location, frequency of each location, as well as

their document and geodesic distances. We define document distance as follows: given two

features f1 and f2 in d, their document distance is the difference in the offsets of f1 and f2

from the start of the document. Given a pair of location interpretations, the algorithm de-

termines the pair’s strength based on the frequency, document distance, geodesic distance

and the populations of the pair of locations. The higher the score of a pair, the more likely

it is that the interpretations of the pair are correct. The pair strength algorithm generates

all possible pairs of location interpretations, which are then sorted in decreasing order of

the strength of the pairs and stored in a list L. At each iteration, the pair with the highest

pair strength is chosen and removed from L. This effectively assigns one or more features

to one of its location interpretations. Each assignment may cause some of the pairs in L to

become infeasible, in which case they are removed from L. For example, if “Springfield”

is assigned to “Springfield, IL”, all instances of pairs with “Springfield, MA” are removed

from L. Finally, when L is empty, each feature has been assigned to one of its location in-

terpretations, and the disambiguation phase is complete. The list of assigned interpretations

and pair strength scores are then stored in the database with the document’s doc id. Note

that the pair strength algorithm and its computations bear similarity to the adaptive context

features, described in Chapter 7, which generalize the notion of pair strength to multiple

proximate toponyms.

2.3.4 Geographic Focus Determination

The next stage of processing computes the geographic focus of a document, as determined

from the locations identified in the document. The geographic focus serves as an ordering
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of the resolved toponyms in a document, and is presented in decreasing order of their rele-

vance to the document’s content. We compute the focus score of a location l in a document

d, which is the measure of the relevance of l to d.

Several methods can be used for determining the focus scores of all locations in d. A

simple measure of l’s focus score can be the frequency of occurrence of l in d. The problem

with this measure is that each location in the document is considered in isolation, so the

algorithm does not account for the fact that d may also contain a number of spatially prox-

imate locations to l. For example, a document that mentions several locations in “Texas”

should probably give more importance to the places in “Texas”, even though each of them

may be mentioned only a few times. A more sophisticated algorithm may use a container

based [7] or hierarchical clustering technique, which groups the locations in d based on

their classification in a container hierarchy. The advantage of this clustering technique is

that the locations are grouped according to a natural and logical division method, easily

understood by humans. However, if a document contains only a few important locations

spread over a large area, then the container object may become too large to be useful.

STEWARD uses an algorithm termed Context-Aware Relevancy Determination (CARD).

The rationale behind the CARD algorithm is as follows. Two locations l1 and l2 are said to

be contextually related in a document d, if l1 and l2 frequently occur in each other’s context

in d. A location l is said to be important to d if l is well distributed throughout d, as well

as contextually related to several spatially proximate locations in d. The CARD algorithm

is an improvement over other proposed techniques, as it combines both the geodesic and

the document distances between locations in d, and arrives at a focus score that is more

relevant to the content of d.

2.4 Web Interface

Users interact with STEWARD through its Web interface. This interface was developed to

support document browsing and exploration tasks that leverage STEWARD’s geotagger.
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One key idea present in STEWARD’s design is to separate spatial and non-spatial aspects

of the documents being browsed, to permit parallel spatial and non-spatial exploration of

a single document or collection of documents. In addition, several features allow users

to traverse relevant portions of documents without leaving STEWARD’s interface, which

makes for a more cohesive user experience.

When users first connect to STEWARD, they are presented with the interface shown

in Figure 2.2. Constructed using HTML and using Ajax, STEWARD’s interface is divided

into three portions: a top pane used for search inputs, referred to as the search pane, and

two bottom panes which will serve as the output for the search results. The search pane con-

tains several search options. The primary search filters include specifying search keywords,

a search location, or both keywords and a search location. To specify a location, users can

enter a textual location in the “Location” text box, and then click “Lookup” to retrieve

the location’s lat/long values. This functionality is provided by a geocoding service that

makes use of Google’s API. Alternatively, users can manually enter lat/long values in the

“Lat/Long” input fields, or they can click “Capture” and then click a location on the map to

save the clicked location as lat/long search parameters. To remove the keyword or location

filters for subsequent searches, users can click the “Clear Keywords” or “Clear Location”

buttons as appropriate. Users can also select one of several document collections processed

by STEWARD to restrict the search to the chosen collection. In Figure 2.2, the user has se-

lected “HUD USER”, a collection of reports present on the HUDUSER.ORG [54] website.

In addition, the “Search” button executes the search using the specified search parameters,

and “Reset Search” affords users a quick way of returning STEWARD to its initial loading

state. The four boxes below “Reset Search” serve as a search progress indicator, which will

be filled once the search has completed. At the top, the “Advanced” tab gives users access

to more advanced spatial query parameters that control the spatial search radius, search

shape, and so on.

Figure 2.3 shows the results of a keyword search for “colonias”, which are rural hous-
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ing settlements lying along the US/Mexico border, a topic of interest to HUD researchers.

The bottom two panes provide query results. The left pane, termed the textual pane, con-

tains a list of documents that matched the query parameters, and a variety of information

about each match. Below the title of each document result, the document ranking score is

given, which is an indication of how well the document matched the query parameters. This

score is computed as a combination of the TF-IDF score computed over the document and

keywords (described in Section 2.3.1) as well as the distance of the document’s geographic

locations from the spatial query point, if one was specified. Next to the ranking score, a

“Georefs” link allows users to display the collection of locations geotagged in the docu-

ment. In the first result in Figure 2.3, 21 such locations were found. A “Focus” link also al-

lows users to enter focus mode, where they can explore the locations found in the document

in greater detail. Additional links point to the original version of the document (“Original”

link) as well as a highlighted copy of the document (“Highlighted”), wherein query key-

words are highlighted so users can find their relevance. The focus mode and highlighted

copy functionality will be described shortly. Finally, a snippet of text from the document

containing the query keywords is also shown with the query keywords highlighted, and

arrows above the snippet allow users to navigate through all document snippets that con-

tain the query keywords. These controls enable users to navigate through relevant portions

of the document without disruptively forcing them into a different window or application.

In Figure 2.3, the lower right pane, termed the spatial pane, contains a map display that

indicates the geographic foci of documents in the search results. The most prevalent loca-

tion from each document is displayed as a numbered flag, corresponding to the numbered

result in the textual pane. In addition, STEWARD has zoomed in to the smallest bound-

ing box containing all search results. Notice that in the example, most search results have

geographic foci that are clustered in Texas and Arizona, even though the query was not

specified with a spatial component. This geographic distribution of search results reflects

the geographic distribution of colonias in the real world, which serves to affirm the quality
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of our geotagging algorithms, and demonstrates one of the knowledge discovery aspects of

STEWARD.

Figure 2.4 shows STEWARD’s focus mode, which allows users to select a single docu-

ment to browse all locations found in the document. In Figure 2.4, the user has entered focus

mode for the first search result, “Capacity Building and Governance in El Cenizo” [158],

as visually indicated by its highlighted title in the textual pane. This document is a HUD

report about El Cenizo, a small city along the Texas/Mexico border. When entering focus

mode, the set of locations found in the selected document are displayed on the map as a set

of color-coded markers whose color indicates each location’s relative importance within

the document, as measured by STEWARD’s focus algorithm (described in Section 2.3.4).

Red indicates high importance, while blue denotes low importance. For this report, the

highest-ranked location was El Cenizo, as might be expected given the report’s title. Click-

ing on a marker shows an info bubble containing various information about the clicked

location, including its name, lat/long values, and a snippet from the document that contains

the clicked location. Two sets of arrows in the upper right and lower left allow users to

navigate through the document’s locations. The upper right set of arrows allows browsing

of different locations in the document, in order of decreasing importance. In Figure 2.4, 21

such locations were found in the document. The lower left arrows enable users to navigate

through all snippets in the document that contain the current location, which in Figure 2.4

is El Cenizo. Like the arrows in the textual pane, these spatial pane arrows allow spa-

tial browsing of the document without interrupting the user’s experience. The info bubble

also contains a link to open a highlighted copy of the document being browsed, with all

instances of the current location highlighted.

Note that the textual and spatial panes amount to parallel, though different, views of the

same search results. The textual pane is a mostly textual view of the documents, contain-

ing titles and snippets matching query keywords. On the other hand, the spatial pane is a

spatial view of documents, with info bubbles containing location information and snippets
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containing locations. In addition, these parallel views are further reinforced through the

numbered flags representing documents, which serve to tie together elements from both

panes. Clicking on one of the numbered flags in the textual pane will highlight the corre-

sponding marker in the spatial pane. Similarly, clicking on a numbered flag in the spatial

pane will cause the textual pane to scroll to the corresponding search result.

If users click on the “Highlighted” link in the textual pane, or “Jump to Highlighted

Copy” in the spatial pane, they are taken to STEWARD’s highlighted copy browser, which

is shown in Figure 2.5 after clicking these links for the selected document in Figure 2.4.

The “Highlighted” link results in a display of the document with all instances of the query

keywords highlighted. Figure 2.5a shows this mode after clicking on the “Highlighted” link

for the selected document in the textual pane, where all instances of the query keyword

“colonias” are highlighted. Similarly, clicking on the “Jump to Highlighted Copy” link in

the info bubble in Figure 2.4 displays a copy of the document with all instances of “El

Cenizo” highlighted. This highlighting is done on an HTML version of the document in

question, which is generated and stored in STEWARD’s database during the document’s

processing. Various arrows in the interface allow for easy navigation between instances of

the location. The currently-highlighted location is shown in red, while remaining instances

of the location are shown in yellow. Clicking on the arrow to the right of a highlighted

location moves the page to the next instance, while clicking on the left arrow moves to

the previous instance. The arrows in the upper right corner results in the same navigation

actions of moving to the previous or next location instance. However, unlike the arrows

surrounding specific instances of highlighted locations, this upper right set of arrows is

intended to allow easy and rapid navigation, since they do not move when the page scrolls.

Users can thus continue clicking an arrow and navigating to the next location instance

without moving the mouse.
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(a) Query keywords

(b) Locations

Figure 2.5: STEWARD’s highlighted copy browsing mode. This mode shows a version of

the processed document with either (a) query keywords or (b) locations highlighted. The

report on colonias in El Cenizo selected in Figure 2.4 has all instances of “colonias” and

“El Cenizo” highlighted. Arrows allow navigation between instances.
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2.5 Application: Disease Monitoring

The STEWARD system can be leveraged in a number of new application scenarios. For

example, it was briefly used as a tool for reading news articles. Instead of organizing arti-

cles solely on topics, as done in, e.g., Google News [45] and MSN Newsbot, STEWARD

can embed news articles on a map, representing each article by its principal location as

determined by its toponym ranking algorithm. However, this functionality was somewhat

superseded by the development of the NewsStand system, described in Chapter 3.

In this section, we focus on one such application of STEWARD to create an infec-

tious disease monitoring system [79] that automatically classifies and organizes disease

incidence reports, based on geographic location and type, for analysis by domain experts.

The system searches documents on the Web for references to infectious disease names, as

well as references to geographic locations. In particular, the documents searched include

PubMed [104], which are papers published in biomedical journals, and ProMED-mail [55],

a mailing list for doctors and other medical professionals around the world to report disease

outbreaks. If a document mentions “cases of avian influenza in Indonesia”, our system is

able to identify “avian influenza” as an infectious disease and “Indonesia” as a geographic

location. The system then associates that document with the appropriate disease type, as

well as the set of lat/long values of the geographic locations found in the document, after

which the document is displayed on the map interface.

This disease monitoring system identifies textual references to infectious diseases by

using an ontology of infectious diseases. An ontology is a hierarchical database of the

important concepts and relationships in some knowledge domain, which in this case is in-

fectious diseases. For a particular infectious disease, the ontology includes the disease’s

medical name, common name, scientific classification of the disease-causing pathogen (in

terms of class, order, and genus), common symptoms, and relationships to other diseases.

Note that identifying references to diseases and selecting the corresponding ontology con-

cepts suffers from similar ambiguity problems as those seen in geotagging. For a more
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detailed description of the disease monitoring system, refer to Lieberman et al. [79].

One example query to STEWARD in its disease monitoring role is presented in Fig-

ure 2.6. The figure shows query results after a search for “avian influenza” in ProMED-

mail [55] disease reports. The geographic distribution of locations found in result doc-

uments indicates contemporaneous (May 2007) patterns of outbreaks of avian influenza.

In addition, the marker colors indicate the importance of each location within the disease

report, with Thailand and China prominent among geotagged locations, as shown by the

marker colors.

2.6 Open Problems

Developing STEWARD has highlighted a number of directions for future research. First,

STEWARD’s geotagging and focus determination algorithms (described in Sections 2.3.3

and 2.3.4 respectively) could be empirically validated using annotated datasets of docu-

ments, as well as compared with other systems that perform similar functions, such as

MetaCarta [121] and Web-a-Where [7]. Such validations would study the tradeoff between

geographical locations in documents that have been missed versus the keywords in docu-

ments that have been incorrectly identified as locations.

One potential improvement for STEWARD’s geotagging algorithm is the identifica-

tion of publisher addresses and citations within documents. We found that oftentimes in

the scholarly articles processed by STEWARD, lists of references are often provided, and

publishers (e.g., Prentice-Hall, Springer) have their addresses mentioned in citations. Our

geotagger found these locations, and if there are enough of them, finding the geographic

focus can be more difficult because of these noisy locations, which are not truly relevant to

the document’s content. Given that STEWARD was initially designed to process documents

in the hidden Web, it is reasonable to account for these locations and addresses in citations

by detecting and discounting them. For example, some aspects of these locations can be

exploited, such as their appearing in a separate “References” section, or more generally at
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the tail end of a document. Citation detection in documents is an active area of research

(e.g., [18, 32, 51, 63, 166]) and given our data domain, some of these approaches, or novel

ones, could be applied within STEWARD. Similarly, STEWARD could be leveraged in

other domains if combined with suitable ontologies. For example, STEWARD could be

used to collect and organize tourist, historical, or recreational information about a city or a

region.

STEWARD also presents several new challenges in the database field, in that it enables

spatial and spatio-textual queries on document collections. These queries can be under-

stood as variants of top-k queries that return the k most relevant documents, based on the

textual and spatial query parameters. While spatial queries have been researched exten-

sively, methods of efficiently executing spatio-textual queries in a database needs investi-

gation. Currently, when undertaking a spatio-textual query, STEWARD initially applies a

keyword search, followed by the spatial search on the resulting document collection. This

method slows the search considerably, as an index can only speed up the keyword search. If

STEWARD had a hybrid index designed for spatio-textual queries, executing queries would

see substantial speed improvements. The proper way to build such an index, as well as its

properties, need further investigation. Furthermore, an important aspect of STEWARD’s

querying involves understanding the mechanics of spatio-textual query processing, in order

to optimize retrievals for speed, efficiency, and a smaller memory footprint. This is usually

a question of determining which component of the search (i.e., textual or spatial) should

be performed first. A good search strategy should also take into consideration the size of k

when performing top-k queries, the average cost of performing a textual search, the cost of

performing a spatial search, and the cost of parallel vs. sequential algorithms. STEWARD

provides an ideal platform to test various such indexing and querying algorithms.
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2.7 Summary

In this chapter, we discussed the architecture of the STEWARD system, which is a spatio-

textual search engine for documents on the Web that served as the original impetus for

developing NewsStand, described in Chapter 3, as well as the geotagging algorithms de-

scribed in Chapters 4–7. STEWARD opens up exciting new possibilities for GIS researchers

by providing the ability to extract and query geographical information from unstructured

text documents, which is a cumbersome and difficult medium with which to work. Some

of the challenges in designing a system like STEWARD include being able to correctly

identify most georeferences in a document, and to reduce the occurrences of false posi-

tives that occur when a word is incorrectly identified as a location. This problem is further

complicated by correctly identified georeferences which are not relevant to the document’s

content; such georeferences should be assigned a low focus score. For example, locations in

the bibliography of a document are not relevant to the content of the document. There is also

a problem of dealing with names of organizations and persons, as well as addresses, which

contain geographical locations (e.g., “University of [Maryland]”, “Mayor of [El Cenizo]”).

On another level, and an important contribution of this work, is that we have highlighted

the need for Web-based publication standards that would facilitate and enhance spatio-

textual querying and browsing capabilities. Adoption of such standards would enable more

up-front rather than backend processing approaches, which would resolve some of the am-

biguities mentioned above, and hence greatly improve text mining capabilities on the Web.
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Chapter 3

NewsStand: Map-Based Exploration of Streaming News

With the explosion of digitization in the Internet age has come a deluge of user-consumed

and user-generated data. One major domain that has been affected considerably is that of

the news media. Newspapers that were previously published on a weekly or daily basis due

to distribution limitations can now be accessed around the clock on the Web, and hence have

moved toward a continuous publishing model. Furthermore, non-traditional news sources

such as blogs and Twitter have grown in importance so that they now compete with the

traditional news media for audience attention. Web-capable mobile devices, recently com-

ing into their own right, provide an additional, powerful means of accessing and generating

news on the Web. This new, collective, and collaborative news media generates a constant

supply of streaming news for information consumers. Our goal is to automatically collect,

organize, understand, and index these many sources of streaming news so as to facilitate

news exploration and retrieval by end users, specially with the aid of a map query inter-

face. Furthermore, since streaming news appears and fades from relevance so rapidly, we

likewise wish to make this streaming news available to end users as fast as possible. Given

the amount of streaming news on the Web, and the considerable recent attention given by

researchers to continuous queries over streaming data (e.g., [50, 53, 59, 74, 82, 102, 108])

and the many systems exploring streaming news as well as other media such as images,

audio and video (e.g., PersoNews [14], Newsjunkie [41], Europe Media Monitor [64],

HealthMap [40], and Perseus [65]), this is clearly a significant challenge.
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Importantly, in the news domain, the so-called Five Ws (and H)—who, what, when,

where, why, and how—are key to a well-written and comprehensible news article. In par-

ticular, a news article usually emphasizes the “Where”, reporting events in a certain geo-

graphic region. However, popular news aggregators such as Google News, Yahoo! News,

and Microsoft Live News have only a rudimentary understanding of the implicit geographic

content of news articles, usually based on the address of the publishing newspaper. Further-

more, these systems present articles grouped by keyword or topic, rather than by geography.

Given that much of the interest in news is motivated by location-related attributes of readers

(e.g., where readers are situated, hail from, aspire to be), it is somewhat surprising that they

cannot deal easily with the two most common types of spatially-related queries:

1. Feature-based: “Where is story X happening?”

2. Location-based: “What is happening at location Y?”

We focus on enabling readers to answer these queries and we do so by presenting the

responses using a map query interface, rather than the conventional linear interface that

mimics a traditional newspaper, where the articles are presented in order of their importance

as deemed by an editor with no attention to location. This layout forces readers to perform

a brute force sequential search (i.e., read the various articles while looking for mentions

of the locations which interest them). It is also noteworthy that this interface is linear and

static, whereas the map query interface is dynamic, in that the articles associated with a

particular location can vary over time without disturbing the positioning of other articles.

To answer the above and related queries, we present an automated system called News-

Stand [143] (denoting “Spatio-Textual Aggregation of News and Display”) that uses trans-

actional database technology and is available on the Web1. NewsStand automatically as-

sociates news articles with the geographic references mentioned in them (i.e., performs

geotagging on them), and groups articles into story clusters based on their textual and ge-

ographic content. It then places markers representing story clusters on an interactive map

1http://newsstand.umiacs.umd.edu
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query interface, thereby allowing meaningful, visual exploration of the news. For example,

stories mentioning “College Park, MD” are represented by suitably-placed markers on the

map at the location corresponding to College Park in Maryland. NewsStand originated as

an outgrowth of STEWARD (described in Chapter 2), and its success led to the creation of

a sister system, TwitterStand [130], which gleans news events from tweets.

Note that readers may not initially see stories on the map due to several factors, such

as their relative significance to other stories, and the current pan position or zoom level.

The interplay between significance and zoom level is an important feature of NewsStand,

and differentiates it greatly from existing spatially-referenced news reading systems (e.g.,

MetaCarta GeoSearch News [100], which maps locations in stories using MetaCarta [121]).

The absence of dynamic zooming in these systems means that the set of stories presented

to readers is static, rather than dynamic as in NewsStand. NewsStand’s use of the map as

the medium for spatial news aggregation also differentiates it from Google News [45], Mi-

crosoft Bing News [101], and Yahoo! News [163], all of which feature limited local news

coverage, usually accessible by entering a city or postal code. However, the presented list of

articles appears to be based primarily on the publication location of the newspaper, rather

than story content. The AP Mobile News Network [13] exemplifies an even coarser deter-

mination of geography, based on where the story was filed. For example, a story submitted

to the Maryland news wire would be associated with all postal codes in Maryland.

NewsStand is designed to be scalable, responsive, and modular, with article processing

divided among many independent modules (Section 3.2). The system collects and prepro-

cesses news articles from over 10,000 news sources on the Web. Articles are grouped into

story clusters using an online clustering algorithm. NewsStand’s geotagger then assigns ge-

ographic locations to each article. Articles are also geographically aggregated and ranked

by story significance, as measured by the number of distinct news sources mentioning the

story and several other factors. In addition, news stories are spatially aggregated, ranked,

and displayed based on the current position and zoom level in the map query interface. For
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example, when viewing the entire world in the map, users only see markers corresponding

to stories that are significant to an international audience, thus imparting a sense of the

major news events happening around the globe. As users zoom and pan to different geo-

graphic areas, NewsStand continuously updates the map to keep the display full of relevant

story markers. Users can zoom in to a country, state, or city level to see increasingly local

stories. Just by extracting geographic content from news stories, this relatively sparse set

of controls gives users the power to better understand current events in terms of geography.

We also dedicate space here for explanation of the framework that enables the smooth

and rapid operation of these modules, and how our design goals of scalability, reliability,

and interactivity shaped its construction. In particular, central to NewsStand’s operation

is its pipe server, described in Section 3.3, which acts to coordinate NewsStand’s many

backend processing modules by assigning batches of processing work via a communica-

tion protocol, and also monitors the system’s health by verifying that documents are being

processed smoothly. Where the pipe server directs modules to perform work, NewsStand’s

SQL database, based on PostgreSQL and described in Section 3.4, stores information about

documents present in the system, as well as the results of their processing. This database

design evolved from that used in STEWARD [78] (described in Chapter 2), a spatio-textual

search engine with similar processing and querying capabilities. After processing the input

news documents, NewsStand’s user interface retrieves location-associated news clusters to

display in its map user interface by executing variants of what are known as top-k win-

dow queries. These queries, described in Section 3.6, retrieve the k highest scoring news

clusters in NewsStand’s database that are located in the map’s current viewing window.

Experiments in Section 3.7 illustrate the voluminous nature of streaming news processed

by NewsStand, and demonstrate its ability to rapidly process and retrieve streaming news.

In the rest of this chapter, we first provide a high level overview of NewsStand’s archi-

tecture (Section 3.1). Next, we delve into the details of NewsStand’s processing modules

(Section 3.2). We then describe NewsStand’s pipe server and its communication protocol
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(Section 3.3) as well as NewsStand’s SQL database, including its data schema (Section 3.4).

We introduce and describe NewsStand’s Web interface (Section 3.5), which is supported

by SQL queries for streaming news retrieval (Section 3.6). Next, we present the results of

several experiments that characterize NewsStand’s processing and querying time of stream-

ing news (Section 3.7). Finally, we discuss open problems (Section 3.8) and conclude the

chapter (Section 3.9).

3.1 Architecture

In this section we present a high level overview of NewsStand’s current architecture. News-

Stand captures the latest news from thousands of individual news sources, and processes

about 50,000 new articles every day (as of January 2012). Therefore, the most important

criteria in designing NewsStand’s architecture were scalability of the system and the fast

processing of individual articles. Additional goals included presenting the latest news as

quickly as possible, within minutes of online publication, and being robust to failure.

Figure 3.1 shows a graphical overview of NewsStand’s architecture. NewsStand’s back-

end processing is organized as a pipeline, with documents entering and streaming through

the pipeline and being processed as they flow through the pipeline’s various stages. To en-

able efficient distributed processing of articles, NewsStand’s collection and processing of

news is divided into several modules, shown in Figure 3.1 as rounded rectangles in blue.

Each module performs a different type of processing on documents added to the system,

with later modules in the pipeline often depending on results of earlier modules. Arrows

indicate data flow through NewsStand through these modules, each of which process their

data independently. This independence allows many instances of modules to be run on

separate computing nodes in a distributed computing cluster. Because each module might

execute on a different node, a given article might be processed by several different com-

puting nodes in the system. In addition, we designed the modules in a way that allows for

multiple instances of any module to run simultaneously on one or more nodes. As a result,
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NewsStand is able to execute as many instances of modules as are required to handle the

volume of news received.

A significant challenge in designing NewsStand’s architecture was coordinating its pro-

cessing modules so that they execute simultaneously without excessive idle time. To ad-

dress this challenge, NewsStand features two centralized sources of control and synchro-

nization:

1. A pipe server tracks documents as they flow through the processing pipeline and

assigns documents to processing modules.

2. An SQL database stores information about documents and results of each processing

stage.

These are shown in the center of Figure 3.1. Each module receives assignments of work

from the pipe server, and receives data input and sends data output to the SQL database.

Notice that this arrangement decouples NewsStand’s control channel (pipe server) from its

data channel (database). Both the pipe server and database have specific communication

protocols to which processing modules must adhere. Also, using transactions, the database

ensures that the overall system state changes atomically and is never internally inconsistent.

Furthermore, the database system can be replicated across multiple nodes as necessary

to handle increased system load. For our database, we use the open source PostgreSQL

package. The pipe server and its communication protocol are described in more detail in

Section 3.3, while the database layout is presented in Section 3.4.

Document processing proceeds as follows. When a processing module instance starts,

it connects to both the pipe server and the database. The pipe server then sends a batch of

document identifiers, or docids, to the module instance. For each document, the module

instance retrieves relevant information about that document from the database, performs

its processing on the document, and stores the results back in the database. When all doc-

uments in the batch have been processed, the module reports back to the pipe server that
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the batch is finished, and receives another batch of documents to work on. docids are

added to the pipe server by the first module in the pipeline, namely the RSS grabber. Note

that individual instances of modules are directed by the pipe server to work on independent

batches of documents. In this way, processing bottlenecks are avoided by starting additional

instances of processing modules that require more processing time, allowing greater scal-

ability. Finally, NewsStand’s Web interface accesses the central database to retrieve data

for display. Each retrieval action is posed in terms of a corresponding SQL query within

NewsStand’s database. These queries are detailed in Section 3.6.

Notice that NewsStand’s architecture bears some similarity to that of STEWARD (de-

scribed in Chapter 2), which is not surprising given that it evolved from STEWARD. One

key difference from STEWARD is that in addition to a central database, NewsStand has

a central pipe server that serves to coordinate all modules by passing docids between

modules, thus controlling the work flow. In addition, NewsStand has many more modules

than STEWARD, and in particular an online clustering module, which all contribute more

evidence to improve geotagging. Also, note that NewsStand’s architecture can be mod-

eled as a directed graph, where nodes are modules and links describe data flows between

modules. This model of NewsStand’s operation is similar to that of other distributed data

flow architectures, such as that of Dryad [57]. NewsStand differs in that it has a central pipe

server and database, while Dryad and other distributed systems tend to avoid central control

points, which are essentially single points of failure. However, the central synchronization

database makes the data processed by NewsStand much easier to access with more tradi-

tional applications, at the expense of some scalability. In addition, one potential drawback

in NewsStand’s architecture is that as a work pipeline, the system’s continued functioning

relies on all modules in the pipeline working properly and reliably, since later modules

necessarily depend on output from earlier modules. However, this is mitigated somewhat

by the high degree of automation in monitoring NewsStand’s system status through its pipe

server protocol (described in Section 3.3).
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In subsequent sections, we present NewsStand’s architecture in more detail by describ-

ing its processing modules, pipe server, and database layout. Knowing the details of these

components will clarify the evidence available to NewsStand’s geotagger, and aid in un-

derstanding our toponym recognition and resolution algorithms (described later in Chap-

ters 4–7).

3.2 Processing Modules

In this section, we provide more detail about the workings of NewsStand’s many process-

ing modules, illustrated in Figure 3.1. Knowing these details will aid the understanding of

NewsStand’s database design (described in Section 3.4), as well as our toponym recogni-

tion methods (Chapter 4) and toponym resolution algorithms (Chapters 5–7). NewsStand’s

processing modules include:

1. RSS Grabber: Polls RSS feeds and retrieves URLs to news articles.

2. Downloader: Downloads HTML news articles from URLs.

3. Cleaner: Extracts article content from source HTML.

4. Clusterer: Groups together articles about the same story.

5. Topic Classifier: Assigns general topic types to articles (e.g., “Business”, “Sports”).

6. Geotagger: Finds textual mentions of geographic locations and assigns lat/long val-

ues to each.

7. Disease/People Finder: Finds textual mentions of people, diseases, and other entities.

8. Media Extractor: Extracts images and videos, and captions associated with them.

9. Image Clusterer: Finds clusters of images and also detects duplicate images within

news clusters.

Below, we provide more detail about each module type.
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3.2.1 RSS Grabber

Myriad reputable newspapers, news organizations, and blogs make their news and com-

mentary publicly available on the Web. However, automating the collection and standard-

ization of large volumes of news articles from such a diverse array of sources can be chal-

lenging. While the Web is certainly an abundant source of news, the various sources of news

are by no means uniform. Articles from major newspapers are generally well-formatted and

internally consistent, while the quality of news from blog websites may be suspect. At a

lower level, news articles may be written in a variety of languages, and may be stored in

different character encodings. Also, with few exceptions, the majority of newspapers tend

to be local in scope, and thus mostly publish stories about a limited geographic area. Thus,

we must be concerned with collecting stories from news sources geographically situated

all over the world, and not just from the largest or most-circulated news sources.

To address these issues, NewsStand uses a large set of Really Simple Syndication (RSS)

feeds as its primary source of data. RSS is a widely-used XML protocol for online pub-

lication and is ideal for NewsStand, as it requires at least a title, short description, and

web link for each published news item. RSS 2.0 also allows an optional publication date,

which helps determine the age and freshness of stories. By using RSS, we need not extract

story metadata from news articles themselves, which may be difficult due to inconsistent

webpage formatting among different news sources.

Retrieving data from RSS feeds is the task of NewsStand’s first module, its RSS grab-

ber, which connects to news source websites’ RSS feeds and retrieves a list of URLs point-

ing to news articles to be downloaded. To collect the set of RSS feeds, NewsStand’s RSS

feeds were bootstrapped by crawling several aggregation websites that contained lists of

newspapers, along with links to their websites and the newspaper names. Then, each news-

paper website was crawled in turn to search for links to the newspaper’s RSS feeds. Each

found RSS feed was added to NewsStand’s database, along with the newspaper name and

feed name, if applicable. Many newspapers had multiple RSS feeds corresponding to indi-
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vidual sections of the newspaper (e.g., top stories, international, business, sports. . . ), and

each was added as a separate feed to NewsStand’s database for use by the RSS grabber.

Oftentimes the same article appears in multiple feeds from the newspaper, a form of redun-

dant information. This procedure resulted in a set of over 10,000 active RSS feeds from

online news sources from all over the world.

Several design criteria went into NewsStand’s RSS grabber. The first and most impor-

tant criterion for the RSS grabber is to retrieve news in a timely fashion, as soon as possible

after the time of publication. This is necessary because stories may continually change

and be updated, even after they have been published in an RSS feed, which may result in

mismatched story metadata if they are not processed quickly. However, quickly retrieving

articles using RSS is problematic due to the nature of RSS as a “pull” protocol, since it

requires the retrieving client to initiate the data transfer. As a result, an RSS client must

constantly poll the RSS feed to determine whether any new data is available. On the other

hand, NewsStand’s RSS grabber must poll thousands of feeds, which takes time and band-

width, so the naive solution of a tight polling loop is not suitable. Ideally, the RSS grabber

would adapt to each RSS feed, polling more responsive and faster-moving RSS feeds more

quickly, while polling slower feeds less frequently, and dropping bad RSS feeds altogether.

However, the poll time cannot be too infrequent, since RSS feeds usually limit the number

of articles that can be retrieved at a time to 10 or 15 articles, to prevent resource exhaustion.

NewsStand’s RSS grabber was designed using these guidelines. For each RSS feed f

in NewsStand’s database, the RSS grabber records the last time that f was polled, as well

as a poll interval for f which indicates how long to wait before polling f again. The RSS

grabber proceeds by retrieving a list of feeds whose poll time and poll interval indicate

that the feed is ready to be polled. When the RSS grabber polls a feed f , it checks to see

whether any new article URLs were retrieved by comparing the URLs found in the poll

against existing entries in NewsStand’s database. New URLs are added to the database,

assigned doc ids, and reported to the pipe server (described in Section 3.3) for further
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processing. The RSS grabber then updates the poll interval for f via a simple exponential

backoff feedback scheme, inspired by those used in networking protocols [112]: f ’s poll

interval is multiplied by a random value selected uniformly from [0.5,0.6] if new data was

found, and [1.0,1.2] otherwise. Note that currently, the RSS grabber makes no provision

for articles that were previously published on the Web and hence added to NewsStand’s

database, but were since updated.

This adaptive polling scheme captures many desirable qualities for NewsStand. Over

time, the polling interval for a feed f will tend to converge on and remain near f ’s update

rate, since it is decreased when new data is found, and increased otherwise. This has the ef-

fect of polling each RSS feed at an appropriate rate that minimizes wasted bandwidth, while

still ensuring that news is retrieved in a timely manner. Figure 3.2 shows article counts for

RSS feeds in NewsStand compared to the RSS grabber’s poll interval for each feed. Each

data point corresponds to an RSS feed. These counts were collected over one month of

news articles in September 2010. As the figure shows, the RSS grabber’s poll interval is

generally adapted to the article rate of each RSS feed, with poll intervals decreasing with

article count, and vice versa.

The random values used for increasing and decreasing poll intervals introduces vari-

ations in polling times, so that poll times are spread out, which avoids bandwidth spikes.

Furthermore, notice that the multiplicative factor used in lowering a feed’s poll interval

(i.e., in the range [0.5,0.6]) is relatively stronger than the factor used for raising it (i.e.,

in the range [1.0,1.2]). In other words, these value ranges are tuned so that RSS feeds are

rewarded faster for having new data than punished for not having new data—that is, they

reflect a “forgiving” rather than “vengeful” philosophy. Because RSS polls are limited in

the number of articles that are returned from a single poll, this forgiving outlook ensures

that as little data from RSS feeds are missed as possible.

As an additional benefit, this scheme allows for the detection and suppression of du-

plicate or redundant RSS feeds, since on each poll, NewsStand’s database is consulted to
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Figure 3.2: Number of new articles posted by RSS feeds versus the RSS grabber’s poll

interval, measured over one month of news. Poll intervals are adapted to each feed’s update

rate.

determine whether the feed contained any new data. In addition, because poll intervals will

tend to match RSS feeds’ update rates over time, these intervals provide a means of quickly

ranking feeds based on responsiveness or post speed. For example, users may be more in-

terested in news from a very fast or voluminous source than from a slower source, since a

rapidly updating news source may be in closer contact with the “pulse” of the news. As a

result, NewsStand can give a higher rank to stories from these fast news sources.

3.2.2 Downloader

After URLs have been collected and added to the database, NewsStand’s downloader is re-

sponsible for downloading the HTML pages corresponding to these URLs. The downloader

retrieves these pages and stores them in NewsStand’s database. All downloaded pages are

reported to the pipe server, which forwards them to later processing modules.

Though the downloader is a relatively simple module, several issues were addressed in

its design. In particular, at times the URLs gleaned from RSS feeds are actually redirects,
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pages that serve only to redirect the accessing browser to the true URL of the news article.

Redirects are a common occurrence in RSS news aggregators, since they collect URLs

from many websites and serve links to them, and furthermore allow aggregators to track

the popularity of links served by them. If a redirect is found, the downloader retrieves the

URL at which the redirect points, and stores it explicitly in the database.

Another issue with downloading articles from many thousands of news websites is

that websites serve data in different data encodings (e.g., ISO-8859-1, CP-1252, UTF-8).

Furthermore, many websites report different data encodings via HTML meta tags than

they actually use. For example, one commonly reported encoding is ISO-8859-1, while

the actual content served is encoded with CP-1252. These encoding mismatches cause

problems when attempting to standardize document data for later processing stages. The

downloader attempts to determine each page’s encoding, and convert the data to UTF-8,

so that it can be stored in NewsStand’s database. If the conversion fails, the document is

dropped from NewsStand.

Finally, note that websites often cater to different users by serving different versions

of pages depending on the particular browser and platform. For example, a news article in

the New York Times may be accessed by a multitude of mobile devices (e.g., BlackBerry,

iPhone, Android, numerous others) in addition to traditional desktop users. In particular,

versions of webpages intended for mobile devices tend to be simpler in structure and con-

tain less extra content, such as advertising and links to related pages, due to mobile devices’

premium on screen space. Figure 3.3 illustrates the differences between desktop and mo-

bile versions of a news article [161] published by the New York Times in September 2010.

Notice that the large advertisements present in the desktop version are missing from the

mobile version, which has only a single, small advertisement. In addition, links to other

articles, pages, and websites are not present in the mobile version. Clearly, the mobile ver-

sion has a much simpler structure and little extra content other than the article itself, which

makes automated processing of these articles much easier. NewsStand’s downloader takes
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(a) Desktop

(b) Mobile

Figure 3.3: Two versions of an article [161] from the New York Times published in Septem-

ber 2010, demonstrating the different pages served to (a) Mozilla Firefox on a Linux desk-

top and (b) the same browser, but masquerading as a BlackBerry device. The large adver-

tisements and multitude of links present in the desktop version are absent in the mobile

version, which eases the cleaner’s task.
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advantage of this by masquerading as a mobile device, so that downloaded pages will have

a simpler structure, and will be easier to process by later modules (in particular, the cleaner

module, described in Section 3.2.3). Note that such masquerading does not limit the num-

ber of news articles that we retrieve, and only affects the method of retrieval and resulting

content delivery. We found that for most news sites, the major difference was that adver-

tising and distracting links were significantly reduced, while article content did not change

significantly between the versions.

3.2.3 Cleaner

After an article is downloaded, it is next processed by NewsStand’s cleaner module, which

serves to extract the content from the article, thereby “cleaning” it for later stages of pro-

cessing. This cleaning process allows later modules to not be led astray by the many types

of content present in HTML pages, such as advertising, links to irrelevant content, and

reader comments. The latter are especially problematic due to comments often mentioning

elements from the story itself, though in a much noisier manner (e.g., with misspellings)

which can mislead document processing algorithms. Note that humans have little trouble

picking out content from HTML using visual characteristics, since HTML is essentially a

visual medium. However, for an automated algorithm, finding content in a raw string of

HTML is much more difficult. In addition, due to the large and ever-growing number of

news sources on the Web, and since each individual website places content within the page

differently, it is infeasible to create custom extraction rules for each website, so the content

extraction algorithm must work regardless of the source website.

Many algorithms have been developed for extracting content from HTML documents

(for an overview, refer to Gupta et al. [47]). One common approach (e.g., [38, 83, 90]) is to

search for long sequences of unbroken text, or sequences with relatively few HTML tags,

and some success has been reported for a variety of websites. However, these algorithms

have little sense of context, in that they do not understand or make use of the article’s textual
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content itself. That is, they are overly general, rather than tuned for cleaning news articles.

For example, news articles are generally written in the inverted pyramid style [131], with

the first several sentences containing most details needed to understand the article, as well

as features such as the article’s dateline, if present. Therefore, from a utility standpoint, it

is more important to capture the first few sentences of the news article correctly than the

remaining portions of the article.

NewsStand’s cleaner takes advantage of knowledge about the article’s content obtained

with metadata about the article. In particular, the cleaner uses information contained in the

RSS feed from which the article was discovered. Initially, strings of text are chosen us-

ing high-confidence evidence from the RSS feed, and uses successively lower-confidence

evidence based on what was previously found. In this way, the cleaner’s content extrac-

tion algorithm is analogous to seed-filling, with initial seeds of content chosen with high

confidence, and the seeds used to find lower-confidence strings of text.

To begin, the cleaner generates a parse tree of the article’s HTML. Each node in the tree

corresponds to an HTML element. In addition, strings of text in the article correspond to a

subset of leaf nodes in the parse tree. The cleaner’s task is then to select the nodes of the

parse tree that correspond to the article’s content, and to ignore the nodes that are not. One

complication is that article sentences do not correspond directly with individual leaf nodes.

That is, a single text node in the parse tree may contain a single word, a part of a sentence, a

single sentence, or many sentences, depending on the website’s page layout. For example,

if the article contains a sentence that contains one or multiple links to other HTML pages,

the sentence’s text will be broken across multiple text nodes in the parse tree.

After generating a parse tree from the article’s HTML, the cleaner algorithm proceeds

by collecting a set of anchor nodes, which serve as an initial, high-confidence set of text

nodes that are likely part of the article’s content. Put another way, the anchor nodes serve as

the initial seeds for our flood-filling content extraction algorithm. The cleaner finds anchor

nodes by searching for keywords gleaned from article metadata present in the RSS feed

68



entry for the article In particular, the article’s title and description fields are used for this

purpose. As a result, these keywords are article-specific, and since they are of limited size,

they are highly tuned to the important content of the article. Any text nodes in the parse tree

that contain a keyword and are of sufficient length are likely highly related to the article’s

content, and are added to the set of anchor nodes.

Note that the RSS metadata is very concise and is not likely to contain enough keywords

to capture all the article’s content. This process might find text nodes near the article’s

beginning, due to the inverted pyramid structure, but later details will be missed. To find

more detailed text, the cleaner next draws upon the anchor nodes to find a larger set of

lower-confidence adjunct nodes. These adjunct nodes are found by collecting additional

keywords from the anchor nodes, and searching for these keywords among the remaining

nodes. Text nodes containing enough keywords are added to the set of adjunct nodes.

Finally, to gather the remaining article content, the spatial characteristics of the anchor

and adjunct nodes are used. In particular, the cleaner leverages the fact that most text in the

article’s content will be nearby within the structure of the parse tree. Accordingly, nodes

that are nearby the anchor or adjunct nodes in terms of the parse tree, termed proximate

nodes, are collected to be part of the content. Similarly, nodes that are “sandwiched” be-

tween anchor or adjunct nodes, termed sandwich nodes, are likewise collected. To produce

a final cleaned text, the cleaner gathers all anchor nodes, adjunct nodes, proximate nodes,

and sandwich nodes, and sorts them by their starting offsets in the document. The text is

then extracted from these sorted nodes, and stored in NewsStand’s database.

Note that to be effective, the cleaner relies on accurate RSS metadata. As a result, it de-

pends on the RSS grabber (described in Section 3.2.1) and downloader (Section 3.2.2) hav-

ing been executed on the processed articles in a timely fashion. If an article is downloaded

long after it was entered into NewsStand via the RSS grabber, a later, updated version of

the article with different title and content may be retrieved, which could limit the cleaner’s

effectiveness. For example, title changes to articles are common as the story evolves and
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more details are revealed, which could be problematic if the new article’s title (retrieved

with the downloader) does not match the old (retrieved by the RSS grabber).

In addition to the above algorithm, NewsStand’s cleaner is also enhanced by several

means. Websites often have text that is part of the site layout, and is common to a large

number of pages. To avoid considering this text as potentially part of article content, part

of NewsStand’s cleaner collects and incorporates website-specific stop words, which are

sequences of text that appear in many articles retrieved from the website. Any text nodes

containing these stop words are removed as potential candidates for the content extraction.

In addition, to provide for better content extraction, NewsStand executes the cleaner twice

in the article processing sequence: once before the clusterer (see Section 3.2.4), and again

afterward. This multiple execution allows the cleaner to make use of cluster terms, key-

words which appear in many articles in the cluster. In particular, in addition to the RSS

metadata, cluster terms are used for the initial collection of anchor nodes. As a result, the

set of anchor nodes is more complete, which provides a more complete extracted content.

Finally, as mentioned earlier, the downloader (see Section 3.2.2) masquerades as a mobile

device, since some websites will serve simpler pages, with less advertising and other irrel-

evant items, to mobile devices. This simplifies the cleaner algorithm’s task, since there are

fewer potentially false-positive text nodes to consider.

3.2.4 Clusterer

After being passed through the cleaner, the resulting content text is next used by News-

Stand’s clusterer [144] to group it with other articles containing the same story. Broadly,

a news story is defined in terms of both story content and story lifetime—that is, articles

in the same cluster should share important keywords, and should have temporally proxi-

mate dates of publication. Time is an essential part of grouping news articles, since two

articles may contain similar keywords but describe vastly different news events. For exam-

ple, two stories about separate attempted assassinations in Iraq may share many keywords,

70



but should be placed in separate clusters if one story was breaking news and the other was

several days old. In addition, we want new or breaking articles to be clustered quickly, so

that breaking stories can be presented immediately to users.

This speed requirement precludes the use of traditional, offline approaches to clustering.

For every new article downloaded, the entire news collection would have to be clustered

again, incurring unacceptable performance penalties for voluminous news days. Instead,

NewsStand’s clusterer takes an incremental or online approach to clustering that reuses ex-

isting clusters, and requires significantly less computation time. Furthermore, the clusterer

uses the above temporal constraint and several optimizations to effect fast processing of

thousands of articles per day. The potential drawback of the online approach is that since

it uses imperfect information, the resulting clustering may not be of the same quality as an

offline counterpart. However, we found that NewsStand’s output clusters were of generally

good quality.

Upon receiving a new article to be clustered, the clusterer first normalizes the article’s

content by stemming [115] input terms and removing punctuation and other extraneous

characters. It then generates a feature vector from the document’s text via the well-known

TF-IDF score [125] for each term in the article. This score emphasizes those terms that

are frequent in a particular document and infrequent in a large corpus D of documents. For

the corpus, the clusterer simply uses the collection of news articles present in all current

clusters in NewsStand. Note that even though this corpus constantly evolves with each new

article processed, the clusterer computes the feature vector for a particular article only once,

upon its addition to the system, for performance reasons. In practice, this optimization does

not affect clustering noticeably.

The clustering algorithm is a variant of leader-follower clustering [36] that permits on-

line clustering in both the term vector space and the temporal dimension. For each cluster,

we maintain a term centroid and time centroid, corresponding to the means of all feature

vectors and publication times of articles in the cluster, respectively. To cluster a new arti-
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cle a, we check whether there exists a cluster where the distance from its term and time

centroids to a is less than a fixed cutoff distance ǫ. If one or more candidate clusters exist,

a is added to the closest such cluster, and the cluster’s centroids are updated. Otherwise,

a new cluster containing only a is created. The clusterer uses the cosine similarity mea-

sure [139] for computing term and time distances between the new article and candidate

clusters. In addition, the clusterer computes cluster terms for each cluster, which amount to

the most heavily weighted keywords in the cluster. These cluster terms are used in several

later modules as a summary of the important content in the cluster.

To improve performance, cluster centroids are stored in an inverted index that contains,

for every term t, pointers to all clusters that have non-zero values for t. The clusterer uses

this index to reduce the number of distance computations required for clustering. When a

new article a is clustered, we compute the distances only to those clusters that have non-

zero values in the non-zero terms of a. As a further optimization, we maintain an active list

of clusters whose centroids are less than a few days old. Only those clusters in the active

list are eligible to receive a new article. We remove clusters from the active list after several

days, since the values for the distance function will be negligible. Together, these opti-

mizations allow the clustering algorithm to minimize the number of distance computations

necessary for clustering articles.

One interesting observation is that the act of online clustering is strongly analogous

to a newspaper editor’s job of deciding whether a story is new enough to deserve its own

headline, or not. In the paper publishing model, editors make the decision whether to run

a story with even a small amount of detail. This makes breaking news difficult to report

accurately since details could change in the course of printing (hence, “stop press!”). On

the other hand, in the case of online news publishing, updates are essentially free, and the

change can be seen by the news audience immediately. When a story is first reported, it

tends to be reported with a smaller amount of detail, especially in the case of breaking

news. As more details are revealed and the story evolves, editors must decide whether to
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simply update the already-run story with the newer details and post a notice that the story

has been updated, or whether the new details that have been revealed deserve their own

headline, in their own right.

Our online clustering algorithm makes the same decisions, but on a global scale, across

all news feeds. In NewsStand, each cluster can be thought of as a single story. Individual

articles, part of a cluster, might be thought of as sentences or paragraphs, part of a news

story. When a new article is added to NewsStand, the clusterer decides whether there is

enough overlap with an existing cluster (i.e., an existing story), and if so, simply adds the

article to that cluster (i.e., adding more sentences to the story). On the other hand, if the

article is different enough in content and detail from NewsStand’s current set of clusters, a

new cluster is created (i.e., publishing a new story). In essence, the online clusterer acts as

an editor for a single global newspaper consisting of all newspaper articles aggregated by

NewsStand.

3.2.5 Topic Classifier

One module that makes use of clustering information is NewsStand’s topic classifier, which

takes each article and assigns a general topic according to the type of article (e.g., business,

health, sports). These article types generally correspond to the newspaper section in which

the article would appear. Assigning topics to articles allows filtered browsing of articles

based on a particular topic. Topics are also useful for further automated processing of ar-

ticles, since they provide a preliminary indication of the type of content that might be

present in the article. For example, a mention of “Toyota” in a business article is more

likely to be a car company, rather than a city east of Nagoya, Japan. Similarly, in a sports

article, a mention of “Barcelona” might be the name of a soccer team, rather than a city

in Venezuela. The topics used in the topic classifier include business, science/technology,

entertainment, health, sports, and general (the default topic, in case none of the others

matched well enough).
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To compute topics for articles, the topic classifier uses a naive Bayes classifier [61],

well-known in the text classification literature. The naive Bayes classifier chooses the most

likely class for a document using words in the document as features, and furthermore, as-

sumes independence among the words. That is, the classifier does not consider dependen-

cies between words in natural language, which considerably simplifies the classification

model, and speeds up training and classification. Despite these rather strong independence

assumptions, it has been shown to work well for text classification. This speed is useful

in the case of NewsStand, since we wish to process news and make it available as quickly

as possible. For more details of the naive Bayes classifier, refer to Jurafsky and Martin

[61]. NewsStand’s topic classifier was trained on a manually-created corpus of articles. The

classifier generally works well, so these topics can be used as a high-confidence source of

evidence in geotagging and other modules.

In addition, after selecting a topic for an individual article, an overall topic for the

article’s cluster is also selected as the most common topic present in articles in the cluster.

In this way, an overall cluster topic is found, which is used by later modules as well as the

user interface when querying for news by topic.

3.2.6 Geotagger

After clustering, NewsStand’s geotagger module executes toponym recognition and resolu-

tion on the article to find and resolve locations in the document. In addition, since each ar-

ticle is associated with a cluster, the geotagger selects the most prominent locations present

in articles in the cluster and associates them with the cluster. Since geotagging comprises

a significant portion of this dissertation, we defer descriptions of the geotagger’s toponym

recognition and toponym resolution methods to Chapter 4 and Chapters 5–7, respectively.
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3.2.7 Disease Finder / People Finder

Two other of NewsStand’s modules are its disease finder and people finder, which search

for mentions of diseases and person names in articles, respectively. These modules allow for

querying of diseases and people, and, in combination with NewsStand’s geotagger, finding

their association with particular locations via the news. In addition, they allow for querying

trajectories of particular diseases or people. For diseases, trajectory querying corresponds to

tracking the incidence, outbreak and spread of various diseases, by observing the locations

in which a diseases is found over time. For people, we might be interested in tracking

politicians as they travel and visit various areas. In addition, finding mentions of people and

diseases can be used to benefit geotagging as well, by filtering out location interpretations.

As with several other of NewsStand’s modules, the disease and people finder evolved from

corresponding functionality in STEWARD, in particular STEWARD’s disease monitoring

capabilities (described in Section 2.5). In its disease monitoring role, NewsStand bears

some similarity to systems such as BioCaster [29], HealthMap [40], and EpiSPIDER [149,

150], though these latter systems do not offer the same levels of ontological detail and

dynamic querying capabilities as those in NewsStand.

To find diseases, the disease finder searches the article’s text for entries in a disease

lexicon. This lexicon was created by collecting lists of diseases from Wikipedia [157] as

well as the Centers for Disease Control and Prevention (CDC) diseases and conditions

website [25]. In total, the disease lexicon contains about 150 diseases and conditions, which

generally correspond to large families of diseases. Of course, the number of individual

diseases and conditions is ever-growing and numbers far more than 150. For example, the

human disease ontology available from the Open Biological and Biomedical Ontologies

Foundry [107] contains over 14,000 diseases. However, many of these diseases are never

reported in the news, since the news is intended for a more general readership, rather than

medical specialists. In addition, the disease lexicon could be augmented with additional,

more specific names for more specialized use. When searching in article text for names
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from the disease lexicon, the search is case-sensitive for acronyms (e.g., “HIV”), and case-

insensitive otherwise. Output from the disease finder is displayed in NewsStand’s disease

layer (shown later in Figure 3.10a).

Note that diseases, like many other entities, exhibit various forms of ambiguity. In par-

ticular, certain disease specifications might refer to any of a family of diseases. For exam-

ple, “cancer” is frequently mentioned in the news even though there are many types and

subtypes of cancer. At times, this ambiguity is intended, as when a person specifically refers

to the entire family of diseases, but other times it may not be. The disease finder sidesteps

these general ambiguity problems by dealing with a small, high-level disease lexicon. That

is, considering a hierarchical ontology of diseases, only nodes that are near to the root are

included in the lexicon, i.e., “cancer” is recognized without regard to its particular type. In

a geotagging context, this would be equivalent to using a small, unambiguous gazetteer.

Similar to the disease finder, the people finder’s task is to search for person names

in news articles. This module finds prominent people such as national politicians, sports

figures, and celebrities, but also searches for less-prominent or relatively unknown people

that often appear in news. As a result, the people finder’s task is more complex than that of

the disease finder, since people vastly outnumber diseases in the news and in general. That

is, there are a much greater variety of person names, in many different combinations, than

disease names. Thus, a small, limited lexicon approach is not applicable here.

However, it is not enough to simply find mentions of people; to be useful, the peo-

ple finder needs to merge repeated mentions of the same person into the same entity, a task

known as coreferencing. As with other problems in entity recognition, finding people in text

is hampered by various forms of ambiguity. A given person can be referred to in several

forms, even within the same article. For example, an initial mention of President “Barack

Obama” may be followed by mentions of “Obama” only, even though both instances re-

fer to the same person. In addition, if the article’s text contains both “Barack Obama” and

“Michelle Obama”, it may not be clear to which person “Obama” refers. For the people
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finder, we assume that a mention of a lone surname refers to the first person mentioned

in the article with that surname, i.e., the first person’s name with matching suffix. This as-

sumption is consistent with the inverted pyramid style of news articles, which recommends

introducing important details early, and proscribes redundant information.

The people finder’s basic algorithm is to search for particular cue words that signal

person entities. Once an initial set of person entities are found, surnames are derived by

collecting the last word of each entity. This step is necessary because news articles often

refer to individuals by surname only. Finally, to collect person entities which may have been

missed by the initial cue word search, a search is performed for these surnames throughout

the article. This final search collects person entities that are not flagged by a cue word.

Table 3.1 contains a set of cue word classes used by the people finder, along with some

illustrative examples of each class. Notice that cue words can appear as both prefixes (e.g.,

honorifics, job titles) and suffixes (e.g., generational suffixes, some declaratory words). In

addition, both full and abbreviated forms of cue words are included in the search (e.g.,

“Senator” and “Sen.”). Spelling and usage differences also factor in the search. For exam-

ple, in US news sources, the abbreviation “Mr. X” is commonly used, while British sources

often refer to “Mr X” without a terminating period. Finally, another consideration is that

some cue words are considered part of the person entity (e.g., generational suffixes, given

names), while others are not (e.g., honorifics, job titles). The list of given names was ob-

tained from the Social Security Administration’s popular baby names website [137]. Output

Table 3.1: Cue words used by the people finder to discover person entities.

Cue Type Examples

Honorifics Mr. X; Ms Y; Dr. Z

Generational suffixes X, Jr.; Y III

Postnominals X, KBE; Y, M.D.

Job titles Sen. X; President Y; Sgt. Z; Det. W

Declaratory words X said; added Y

Common given names John X; Michael Y; Jennifer Z; Lisa W
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from the people finder is shown in NewsStand people layer, which will be described later

(shown in Figure 3.10b).

After finding disease and people mentions in an article, the cluster associated with the

article is reprocessed. The most frequent disease and person occurrences in articles in the

cluster are collected and associated with the cluster. An additional optimization is that the

cluster is not reprocessed in this manner if its size has not changed since it was last pro-

cessed. This can happen if the disease finder or people finder is given multiple documents

from the same cluster in the same work batch. In this case, reprocessing the cluster would

be redundant work, which would substantially retard article processing speed for large clus-

ters. Finally, note that the disease and people finders are currently limited to the English

language due to the language-specific disease lexicon and cue words. However, lists might

be gathered and used for other languages.

3.2.8 Media Extractor

Another module that executes after clustering is NewsStand’s media extractor, which pro-

cesses the HTML versions of articles in the cluster by searching for various types of em-

bedded media that are related to the story, including images, video, and audio clips such as

sound bites. While seemingly trivial, websites contain many types of media that are unre-

lated to the news story. For example, the vast majority of images on a typical news article’s

webpage are not images related to the news story, but instead are related to advertising,

page layout, and visitor tracking (i.e., Web bugs [94]). Thus, the media extractor must de-

termine which images, video, and audio clips are associated with the news story, and filter

out the rest. In addition, media found in news articles tend to have associated metadata in

the form of image and video captions that provide more information to readers about what

is contained in the media. The media extractor must find these captions and associate them

with the media in question. Doing so enables the retrieval of media independently of the

article from which it was obtained. Finally, webpage structure varies significantly among
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websites, and different websites embed media in different ways. For example, video em-

bedded in news articles may be using any of several video plugins and services, each with

their own structure and parameters. In addition, image captions may be associated directly

with an image via an HTML attribute, or may be present in a nearby paragraph. Ordinarily,

for humans, this structure variation does not cause a problem for finding media captions,

since humans find these captions by relying on visual and contextual characteristics (i.e.,

knowing that the caption appears nearby to the image, and knowing the entities that appear

in the image and finding them in the caption’s text). However, an automated algorithm such

as the media extractor must account for this varied structure.

Finding images is relatively simple, in that the media extractor simply searches for

HTML <img> tags, each of which corresponds to an image. To find image captions, the

media extractor checks for a title or alt attribute (indicating text explicitly associated

with the image), or a parent container element (e.g., <div>, <p>, <a>) containing a mod-

erate amount of text. The text associated with the image using the above procedure will

serve as the image’s caption. However, this process results in many spurious images that

are unrelated to the news article’s content. To filter out these unrelated images, the me-

dia extractor uses the cluster terms computed by the clusterer (described in Section 3.2.4).

Only images with associated text containing at least one of the cluster terms are kept, and

the remainder are dropped. Figure 3.4 is an example of an image found by the media ex-

tractor, along with its associated HTML code. Notice that the image caption is present in

the alt attribute of the image’s HTML code. This image was selected due to its caption

having several cluster terms, namely “Hurricane Igor”.

Extracting video and audio clips are more involved, because methods for embedding

these types of media are much more varied than for images. Different websites use different

tags and software plugins to display video and audio, each customized for the particular

website’s visitors, and also with captions embedded in a variety of ways. As a result, the

media extractor currently recognizes video on a per-site basis, with each website for which
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(a) Story image

(b) HTML code

Figure 3.4: An image extracted from a news article [16] about Hurricane Igor in September

2010. Notice that the caption is present in the image’s alt attribute.
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video are recognized requiring its own recognition pattern. This arrangement is not scalable

for large numbers of websites due to the manual effort involved. However, we can still

capture a good number of video and audio by noting that many news websites are local

affiliates of large television and news networks (e.g., in the US, ABC, NBC, CBS), and use

the same infrastructure to serve video and audio. That is, these local affiliates use the same

software plugins, with the same, consistent parameters, so the recognition pattern used for,

say, WUSA9, a CBS affiliate in Washington, DC, can also be used for the CBS 2 station

in New York. In the future, greater acceptance of current HTML standards may allow for

easier recognition of embedded media (e.g., <video> and <audio> tags). For captions,

video and audio captions are generally present as parameters in the applet tag, and like the

image extraction, one or more cluster terms must be present in the caption for the video to

be accepted.

Because news websites often update articles, links to media sometimes become stale be-

cause the corresponding media is removed or changed. To account for these potentially stale

and broken links, NewsStand also has a media cache module, which downloads and stores

media locally on NewsStand’s servers. In addition, recall that NewsStand’s downloader

module masquerades as a mobile device when downloading articles, so that NewsStand

receives simpler versions of webpages that are easier for automated processing (see Sec-

tion 3.2.2). While this is useful in processing the article’s text, one potential consequence

is that there may be fewer instances of media present in pages intended for mobile de-

vices, due to mobile platforms’ limitations in screen size and power, and hence the amount

of media served by NewsStand could be likewise limited. However, we found that over a

month’s worth of news in September 2010, consisting of about 1.6 million articles, over

280,000 images were downloaded, quite a sizable number.
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3.3 Pipe Server

As noted earlier, NewsStand’s modules are orchestrated by a central, master pipe server

that serves as the control system and is responsible for delegating work to NewsStand’s

processing modules. It maintains a collection of work queues called pipes, with one pipe per

module type. Each pipe contains a number of document identifiers, referred to as docids,

which correspond to documents moving through stages of processing. Each processing

module connects to the pipe server to receive work batches of docids that are intended

for an instance of that module type.

Several factors influenced the pipe server’s design. First and foremost, being the central

controlling software in NewsStand, it must be highly reliable, and never go down or crash. It

should have reasonable memory usage and not have significant external dependencies, such

as requiring a full-fledged database to function properly. Furthermore, it should be resilient

to unreliable processing modules, which could disconnect at any time, either explicitly, or

due to software bugs or networking problems. All of these cases must be handled gracefully.

In addition to reliability, speed of processing is a key factor in the design. Because new

articles are constantly streaming in to NewsStand, the pipe server must not be a bottleneck

in articles’ processing time.

The pipe server and its communication protocol (described in Section 3.3.1) have sev-

eral features that address these goals. First, the pipes and the docids contained in them are

stored in a disk-based hash, which does not depend on NewsStand’s database. As a result

the docids move very quickly through the pipes so that they can keep up with the very

rapidly incoming new data. Also, when communicating with processing modules, rather

than waiting for immediate responses from each module, which could slow processing, the

pipe server employs non-blocking input/output and buffering. Each connected module is

tracked individually with regard to the work batch sent to it, and this work does not move

to the next pipe until the module sends back a valid work complete response. Note that

this design assumes that modules are not malicious (e.g., reporting that work was finished
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when it was not). The main drawback of this design is that the pipe server amounts to a

single point of failure. If the pipe server does halt, NewsStand’s processing will also cease.

However, over months of measurement, we found that the pipe server’s stopping was due to

rebooting the server on which it runs, rather than reliability issues introduced by its design.

Note that the docids traveling through these pipes correspond to documents in News-

Stand’s database. However, it is interesting that from the perspective of the pipe server,

these docids are simply numbers to be tracked, because the pipe server does not connect

to the database directly for reliability reasons. That these numbers correspond to database

documents is incidental to its operation.

Upon creation, processing modules connect to the pipe server and initiate a handshake

that announces an instance of the module’s presence and in what role the instance will

function. The pipe server then pushes a block of docids to be processed to the module,

and waits for a return message indicating the work has been finished. If no such response is

received after a set time limit, the pipe server assumes that the module instance somehow

failed. The pipe server then requires the failed module to resend the handshake before it

will delegate additional work to that module. However, if the return message is received

in time, the pipe server forwards the completed docids to the next set of work pipes, as

determined by NewsStand’s data flow graph. In addition, along with the return message,

the pipe server protocol allows sending a list of docids for which processing somehow

failed. If such a list is present in the return message, the pipe server drops the failed docids

from the system, effectively ending processing for these docids, the failed doc ids, and

forwards the remaining docids to the appropriate work pipes.

In addition to handling the distribution and flow of work, the pipe server serves a num-

ber of other useful functions within NewsStand. For each module type, the pipe server

tracks statistics such as the total number of documents processed by the module and the

number of documents that failed processing (i.e., which were dropped as a result of that

module), and allows for individual modules to track custom statistics by reporting them
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along with work completion messages. These statistics are useful for diagnosing problems

with individual modules (e.g., determining that a particular module is dropping too many

documents), or for learning about the nature of the data flowing through the system and

how algorithms interact with the data (e.g., for the geotagger, learning which types of evi-

dence are most useful in toponym recognition and resolution). In addition, the pipe server’s

“info” function within the protocol exposes the list of modules that are connected, as well

as their work status and system-specific information such as process id and username that

executed the module instance. The info function allows for a high level of automation in

monitoring NewsStand’s system status, such as checking for crashed modules or backed

up work pipes. For example, an automated script runs hourly which connects to the pipe

server and uses the info function to get NewsStand’s system status. If a work pipe backup

is detected, emails are dispatched to alert the system maintainers of this condition. These

features allow NewsStand to be easily kept in a consistently running state.

We continue with a description of the pipe server’s communication protocol (Sec-

tion 3.3.1) as well as the techniques used to check connected clients’ status (Section 3.3.2).

3.3.1 Communication Protocol

The pipe server communicates with slaves using a simple protocol that allows for a variety

of tracking and maintenance features. The protocol messages themselves are presented in

Figure 3.5, formatted in BNF notation, with messages corresponding to 〈*-msg〉 nontermi-

nals. This section describes the protocol in greater detail and lays out the reasoning behind

each message. Slaves that connect to the pipe server must adhere strictly to this protocol, or

they are promptly disconnected, along with a message explaining the reason for the discon-

nection. All slave messages undergo data validation (e.g., ensure that docids are integers)

for extra caution, and acknowledgment messages are required after each message as well.

This policy lies in keeping with our goal of maximum reliability.
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〈module-msg〉 ::= ‘MODULE’ slavetype processid username

〈insert-msg〉 ::= ‘INSERT’ pipename docid. . .

〈work-msg〉 ::= ‘WORK’ workid docid. . .

〈response-msg〉 ::= ‘RESPONSE’ workid 〈drop〉 〈stats〉
〈drop〉 ::= ∅ | ‘DROP’ docid. . .

〈stats〉 ::= ∅ | ‘STATS’ key=val. . .

〈info-msg〉 ::= ‘INFO’

〈clear-pipe-msg〉 ::= ‘CLEARPIPE’ pipename

〈reset-stats-msg〉 ::= ‘RESETSTATS’ pipename

Figure 3.5: The pipe server’s protocol messages, specified in BNF notation, with 〈*-msg〉
nonterminal symbols corresponding to protocol messages.

Module identification When slave modules first connect to the pipe server, they iden-

tify themselves so the pipe server can assign appropriate work to them (“〈module-msg〉”

in Figure 3.5). This information is presented in the slavetype parameter. In addition,

each slave is required to report the processid and username under which it is run-

ning. Crucially, this extra information enables the quick and easy stopping and starting of

slave modules that may be misbehaving or unresponsive, because it is a simply a matter of

logging in to the machine from which it is running and killing the reported process id.

Insert work to pipe This message (“〈insert-msg〉” in Figure 3.5) instructs the pipe

server to add a list of docids to a given pipename. This is used by the RSS grabber

module, which retrieves article links from RSS feeds, creates initial entries for these articles

in the database (assigning a docid in the process), and directs the pipe server to insert the

docid in the download pipe.

Assign work Should a pipe have unassigned docids, and a slave of that pipe type is

not working, then the pipe server sends a batch of work to the idle slave using this message
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(“〈work-msg〉” in Figure 3.5). A work batch consists of a workid, an identifier for this

work batch, as well as a list of docids to be processed. The workid will be required to

be returned along with the work response message (described in the next section).

Since work is sent in batches, one question to consider is how many documents to send

out in each batch. Clearly, we want a blocksize that maximizes the processing through-

put for the system. Since the pipe server protocol’s overhead is minimal compared to the

actual document processing, the blocksize value will not make much difference when

processing individual documents. However, many of NewsStand’s processing modules op-

erate on clusters of documents, rather than on individual documents. As a result, with a

larger blocksize, there are more opportunities for documents that appear in the same

cluster together to be processed at the same time, thus enhancing the system’s throughput.

One downside with a large blocksize is that some documents and clusters take much

longer to process than others (e.g., longer documents with more entities, large clusters), and

if too many of these documents are sent in the same work batch, then the slave may time

out, causing wasted work and potentially stale data. Currently, NewsStand’s pipe server is

configured with a blocksize of 100 documents, arrived at through trial and error.

Work response When a slave is finished with a batch of work, it sends a work response

message (“〈response-msg〉” in Figure 3.5). The message contains at least the workid that

was originally sent with the work batch. This requirement acts as a sanity check that the

slave had finished the same work that was handed out by the pipe server, which may not

always happen due to slaves becoming unsynchronized from the pipe server as a result of

network instability or other problems. In addition, the work response message can contain

optional clauses that expose additional functionality. The first clause is a 〈drop〉 clause,

where slaves can inform the pipe server of documents whose processing resulted in errors

of some kind, and should not be processed by later modules in the processing pipeline.

If a drop clause is present, then docids listed in the clause are dropped from the pipe,

86



rather than being forwarded to the next pipe. The second optional clause is a 〈stats〉 clause,

through which slaves can report module-specific statistics in the form of key-value pairs,

which are aggregated by the pipe server. For example, the geotagging module might track

separately the number of toponyms recognized or resolved using each type of evidence.

In addition to slave-specified statistics, the pipe server automatically tracks the number of

documents that were sent to a specific type of slave, and how many of them were dropped.

In this way, slaves that drop too many documents are easily found and investigated.

Pipe information The pipe server contains an info facility for reporting the current sta-

tus of pipes, as well as modules connected to the pipe server (“〈info-msg〉” in Figure 3.5).

This facility allows for easy monitoring of the system’s status. Figure 3.6 shows the infor-

mation returned by the info command. The pipe server reports for each pipe (Figure 3.6a)

the number of documents yet to be processed, the last time a work batch was completed for

the pipe, and the number of documents processed versus the number of those passed (i.e.,

not dropped via a drop clause). In this way, if a pipe is getting clogged (i.e., a large amount

of work is waiting to be processed), it can be readily observed and dealt with appropriately

(e.g., by starting additional module instances for that pipe). In addition, for each connected

module (Figure 3.6b), several data are reported: the module type, hostname from where the

module connects, current work batch size, timestamp of when the work batch was assigned

(“Gave Work At”), timestamp of when the previous work batch was completed (“Heard

At”), and the module’s process id.

In combination with pipe information, these statistics allow for quick diagnosis of any

backups in the document flow. Also, since the pipe server reports information in machine-

readable format, the pipes and modules are monitored by a script that emails alerts about

such backups in the data flow. Because the hostname and process id are reported with each

connected module, should the module type need to be restarted, running modules can be

stopped cleanly by terminating using the process id, thus preventing resource exhaustion.
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(a) Pipe status

(b) Slave status

Figure 3.6: NewsStand’s (a) pipe status and (b) module status screen, as reported by the

pipe server through its info facility.
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Pipe maintenance The final pipe server protocol commands are those used for pipe

maintenance (“〈clear-pipe-msg〉” and “〈reset-stats-msg〉” in Figure 3.5). These commands

allow for clearing a pipe of work, and for resetting the statistics associated with the pipe.

3.3.2 Checking Module Status

Every so often, the pipe server checks on the connected module processes to determine their

status. For modules that have completed their work batches or are otherwise currently idle,

the pipe server allocates a new work batch if any documents are waiting in the module’s

pipe. In addition, if a module is taking too long in processing a work batch, the module is

considered to have failed, and is disconnected and the work batch assigned to it returned to

the pipe. Each module receives a fixed amount of time per document, doctime, to com-

plete a work batch. As with blocksize, choosing an appropriate doctime involves a

tradeoff. A small doctime ensures that buggy modules are disconnected quickly, but may

not allow enough time for legitimate modules to finish their work batches, while a large

doctime would allow buggy modules to clog their pipes, but also allow legitimate mod-

ules to finish their work batches. Currently, doctime is set to 30 seconds per document.

3.4 Database Design

This section presents NewsStand’s database design. There are two, somewhat disparate

main goals behind this design:

1. Managing the large amount of data streaming through NewsStand and derived from

its processing.

2. Serving NewsStand’s map query interface quickly to facilitate interactive browsing

and exploration of news.

To address the first goal, NewsStand employs a central PostgreSQL [116] relational

database that holds all data downloaded and generated from processing. Due to our domain
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of streaming news, data is constantly being added to and deleted from this database, unlike

typical SQL databases where the data is mostly static. This data churn can wreak havoc on

performance and must be managed carefully. For example, database query planners track

statistics about data value distributions within these tables to determine efficient query ex-

ecution plans given a particular query. Heavy data churn means that these statistics will

quickly go out of date and must be updated frequently. In PostgreSQL, this operation is

known as vacuuming, and we perform vacuuming regularly in the database. To address the

second goal of serving NewsStand’s map query interface quickly, we maintain a separate

cache database containing only the most recent data, which improves querying perfor-

mance (see Section 3.6 for a description of such queries).

Figure 3.7 provides an overview of NewsStand’s database schema, showing the tables

used for NewsStand’s core data processing. Tables are color coded by purpose: Red relates

to individual documents (feeds, docs, doc text, media), blue for clusters of docu-

ments (clusters, cluster locs), and because locations play such an important role

in all of NewsStand’s querying, we give special attention to geotagging tables, shown in

green (entities, doc locs). Also, indexed attributes are indicated by filled circles

next to the attribute names. Each table’s tuples have one identifier as primary key (shown

as filled diamonds next to attribute names), and these identifiers are used in numerous for-

eign key constraints, shown as arrows, which enforce data integrity. Note that Figure 3.7

is a simplified depiction of NewsStand’s database, which currently contains over 100 ta-

bles, but these few serve as a useful illustration of the core data and functionality present

in NewsStand, as well as the general design strategy.

In subsequent sections, we describe the tables for documents (Section 3.4.1), geotag-

ging (Section 3.4.2), and clusters (Section 3.4.3), as well as how they are populated by

NewsStand’s processing modules (see Section 3.2 for descriptions of these modules). Also,

we describe NewsStand’s cache database in Section 3.4.4.
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3.4.1 Documents

Tables related to document processing are shown in red in Figure 3.7. Document process-

ing begins with the feeds table, which holds information about the RSS feeds that News-

Stand’s RSS grabber polls to inject new documents into the system. Along with a feed

name and url, a timestamp last retrieved and time interval last interval

are stored with each feed. The latter two attributes are used by the RSS grabber to ad-

just the polling intervals of RSS feeds. If the RSS grabber polls a given feed and finds

new data, then the polling interval is decreased; otherwise, it is increased. In this way, a

feed’s polling interval gradually moves toward its data generation rate. Finally, an addi-

tional parent id field stores an optional pointer to a “parent” RSS feed. This field is

filled for multiple RSS feeds that belong to the same news source (e.g., a single newspa-

per with multiple feeds corresponding to different newspaper sections), and allows quick

retrieval of all feeds from a single news source.

While polling RSS feeds, the RSS grabber populates the docs table, which holds infor-

mation about individual documents. For each document, the feed id value is set to that

of the feed from which it came, and the document’s publication date, source URL, title, and

snippet of text, all of which come from the RSS feed, are stored in the pub date, url,

title, and snippet attributes, respectively. The cluster id and topic fields are

populated by NewsStand’s clusterer and topic classifier, to be described shortly.

The next phases of processing for a document involve the doc text table, which

stores text versions of the document. After the docs entry for a given document d has been

created, d is downloaded by NewsStand’s downloader module, and this HTML version of d

is added to the html field for d. Next, NewsStand’s cleaner module takes the downloaded

HTML version, and produces a cleaned version, storing the result in the clean field.

Finally, the document’s clean text is mapped to its vector space representation [126] and

stored in the vector field, which allows full text indexing and keyword searching. Queries

involving keywords that leverage this vector are described in Section 3.6.
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After retrieving the document’s text, images, videos, and other media are found by

NewsStand’s media extractor, and stored in the media table. Several relevant attributes are

stored along with each media entry, including the media’s type (e.g., “image”, “video”),

url, embedding html, caption as determined from the embedding structure or other

methods (e.g., image alt tags), and width and height.

3.4.2 Geotagging

Several tables in NewsStand’s database are populated by the geotagger module. The most

important of these are the entities and doc locs tables, shown in green in Fig-

ure 3.7, which contain entities and locations found during toponym recognition and resolu-

tion, respectively. entities is populated with entities found in the toponym recognition

process, such as person names, organizations, and locations. Each entity is associated with

the doc id of the document from whence it came, as well as the start and end offsets

within the document, the type of entity, the text phrase of the entity, and the entity’s

score which is determined during the entity recognition process. This score can reflect,

for example, the confidence that the given entity is correct. Of course, toponym recogni-

tion is nominally only concerned with location entities; however, in the course of toponym

recognition, knowledge that a given term or pattern often signals an entity of some other

type can aid in distinguishing locations from non-locations (e.g., knowing that “Mr.” often

precedes a person’s name), and these entities are stored as well. Other modules, such as the

people finder and disease finder, also store output entities in the entities table.

After finding entities during toponym recognition and populating the entities ta-

ble, the geotagger proceeds with toponym resolution to resolve any geo/geo ambiguities

and assign final lat/long values to each location entity in entities (i.e., the document’s

toponyms). Lat/long values are obtained from a gazetteer, a list of locations and associ-

ated metadata, which is stored in the gazetteer table. Our gazetteer is based on GeoN-

ames [43], a crowdsourced gazetteer containing over 8 million locations. The output from
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the toponym resolution process is stored in the doc locs table, which serves to tie to-

gether a toponym entity (ent id) and a gazetteer entry (gaz id). Also, a toponym

score reflects the importance of the toponym within the document, which is based on

frequency and distribution, and is used to determine the document’s geographic focus (i.e.,

central location associated with it). Note that the doc locs table does not store location

information explicitly (e.g., lat/long values), which is instead stored in the gazetteer

table. This design serves to centralize location information so that it can be easily updated,

which occurs nightly when the gazetteer table is synchronized with GeoNames.

3.4.3 Clusters

NewsStand’s clusterer plays a central role in processing streaming news. Tables involved

with clusters of documents are shown in blue in Figure 3.7. The clusters table aggre-

gates information about clusters. It contains the cluster’s importance score, computed as

a combination of several factors such as freshness of the documents in the cluster, clus-

ter size, rates of growth such as velocity and acceleration, and diversity of news sources

within the cluster. The score is used extensively when retrieving clusters to display in

NewsStand’s user interface (described in Section 3.6). Additional information stored with

each cluster includes the time centroid of documents in the cluster (time centroid),

last time the cluster was updated (last update), and number of documents, images,

and videos in the cluster (num docs, num images, num videos). Also, the cluster’s

topic is computed based on the topics of documents contained within it, and a represen-

tative document and image are chosen to display along with the cluster (rep doc id,

rep media id).

After geotagging the documents in the cluster, the cluster itself is associated with lo-

cations found in the documents. These locations are stored in the cluster locs table,

which, analogously to doc locs, ties together a cluster (cluster id) and a location

(gaz id). Also stored are the number of times the location appears in documents in the
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cluster (count), how relevant the location is to the cluster as a whole, determined by the

scores of instances of that location in the cluster (score), and a text snippet from the

cluster’s representative document that contains the location. This snippet is shown in News-

Stand’s interface, to give users an understanding of the location’s relevance to the story.

3.4.4 Cache Database

NewsStand’s main database serves as a central data repository, where the main goals are

internal consistency, reliability, and enough space to hold the large amount of news flowing

through NewsStand. NewsStand downloads approximately 50,000 new documents each

day, and stores the most recent four months’ of news, including the documents’ actual

text rather than simply a URL, at any given time. In addition, documents are processed

extensively, generating much additional data to be stored in the database. NewsStand’s

processing modules constantly communicate with the database, resulting in heavy query

traffic involving many tuple modifications (i.e., inserts, updates, and deletes). These modi-

fications could cause select statements to block while waiting for transactions to complete.

As a result, this database is not suitable for serving NewsStand’s user interface, where the

key goal is interactive query speed.

Instead, for serving the user interface, we maintain a separate, smaller cache database

containing only the most recent news data (several days’ worth). The cache database has

mostly the same schema as the main database, except with less data. Smaller tables result

in more table rows residing in the database’s cache buffers, rather than having to go to disk

to respond to queries. In addition, since NewsStand’s user interface does not modify the

main database, queries will not block on waiting for modifications. Of course, the cache

database needs to be updated from the main database in a timely manner so that the latest

news is always being served. A special cache updating module continually polls the main

database for clusters whose last update value is newer than the previous update time,

and copies the cluster and its associated information to the cache. In this way, updates to
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the cache database are minimized and more database query processing resources are used

for serving the interface.

3.5 Web Interface

In this section, we describe the capabilities and design criteria that went into creating News-

Stand’s Web interface. Our main goal in designing NewsStand’s user interface was to con-

vey as much geographic and non-geographic information about current news as possible.

The interface consists of a large map on which stories are placed, and the viewing window

serves as a spatial region query on the geotagged news stories. Users interact with News-

Stand using pan and zoom capabilities to retrieve additional news stories. As users pan and

zoom on the map, the map is constantly updated to retrieve new stories for the viewing

window, thus keeping the window filled with stories, regardless of position or zoom level.

A given view of the map attempts to produce a summary of the news stories in the view,

providing a mixture of story significance and geographic spread of the stories. Users inter-

ested in a smaller or larger geographic region than the map shows can zoom in or out to

retrieve more stories about that region.

Recall that there are two basic types of spatial queries:

1. Feature-based: “Where is story X happening?”

2. Location-based: “What is happening at location Y?”

Corresponding to these query types, there are two basic modes of using NewsStand, termed

top stories mode and map mode. The distinction between top stories mode and map mode

can be understood in terms of the map’s purpose in answering queries in each mode. In

top stories mode, when hovering on a topic in the left pane, the map is populated with

the locations associated with that topic. In other words, in this mode, when answering the

query “Where is story X happening?”, the map is used for output. On the other hand, in map

mode, the map is used for both input (specifying a query window) and output (showing the
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clusters associated with locations in the window). Thus, the map is used both to pose the

query “What is happening at location Y?” and to display the results.

Figure 3.8a shows NewsStand’s main Web interface in top stories mode. In this mode,

a list of news clusters is presented in the text (left) pane, while the locations associated

with a news cluster are shown in the map (right) pane. Other information in the cluster list

includes the news source for the article, time the cluster was last updated with a new article,

and links to the other articles, images, and videos in the cluster. In addition, a number of

controls in NewsStand’s top pane allow for controlling various other aspects of querying. A

set of topic links at top left allow for filtering of the displayed clusters by general topic (e.g.,

business, entertainment, sports), and a search box at top right allows for filtering clusters

by keyword. Also, a drop down list allows one of various mapping APIs to be selected, and

an “Options” link lets users filter stories by newspaper source. Notice that the top stories

mode bears similarity to STEWARD’s user interface (described in Section 2.4), though

in STEWARD, each entry in the left list is a single document, while in NewsStand each

entry corresponds to a cluster of news articles. NewsStand also offers a much richer set of

querying capabilities due to the greater variety of processing performed by NewsStand’s

processing modules.

Hovering on a cluster in the text pane, as is done in Figure 3.8a for a news cluster about

the US Republican Party’s 2012 primary elections, results in the locations associated with

that cluster being displayed as location markers on the map. In other words, the feature-

based query “Where is story X happening?” is executed, where X is the cluster that the

mouse hovers on. This action also opens an info window for the most prominent location

in the cluster, which shows a mention of the location within the context of a news article

in the cluster. This allows users to understand not simply that a location was associated

with the cluster (e.g., in Figure 3.8a, “South Carolina”), but also why it was associated with

the cluster by displaying the context. Also, links allow users to navigate through different

instances of the location that are present in the article, to show other contexts in which
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(a) Main user interface

(b) Images in a news cluster

Figure 3.8: NewsStand’s Web interface in top stories mode, showing (a) the main user

interface, and (b) browsing images for a single news cluster.
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the location appeared. Hovering on a different map marker opens an info window for the

corresponding location. Figure 3.8b shows the set of images extracted from articles in the

elections cluster, which were found using the media extractor (described in Section 3.2.8).

Each image is associated with a caption which can be accessed by hovering the mouse over

the image.

Figure 3.9a shows NewsStand when browsing in map mode. In this mode, the map ex-

pands to the entire screen and is used for executing location-based queries—that is, “What

is happening at location Y?”, where Y is the geographic region displayed in the map. Re-

sults of one such query covering the United States is shown in Figure 3.9a. Marker icons

corresponding to news clusters are displayed at the principal locations associated with each

cluster. When several clusters are associated with a single location, a small “+” is displayed

above the marker icon at that location. Also, several different marker icons are used, which

indicate the general topic of news stories (e.g., business, entertainment, sports). Hovering

on a marker icon opens an info window showing the information associated with the clus-

ter tagged to that location. Several additional controls allow other querying and navigation

capabilities. At top right, “Local” and “World” links and a “Locate” box allow users to

automatically pan and zoom the map to their present location, a world view, or a user-

specified location, respectively. Also, a slider allows the number of icons displayed on the

map to be changed dynamically to suit users’ needs.

While in map mode, different layers of data can be displayed on the map, with each

layer having been generated by a different type of processing in NewsStand. While Fig-

ure 3.9a shows the map mode’s icon layer, where cluster locations are represented by story

icons, Figure 3.9b shows the map mode’s location layer, where locations are represented

textually. The location layer allows faster discovery of specific locations mentioned in the

news, rather than the general areas of interest shown by the icon layer. However, because

the keywords take up more screen space than the markers, it is difficult to place many

stories on the map without introducing clutter.
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(a) Icon layer

(b) Location layer

Figure 3.9: NewsStand’s Web interface in map mode, showing (a) its icon layer, where

cluster locations are represented by icons, and (b) its location layer, where cluster locations

are represented textually.
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Interestingly, rather than only being useful for end users, the textual representation also

allows for rapid “eyeballing” of the geotagger’s quality of output by leveraging humans’

advanced visual understanding. For example, in Figure 3.9b, one article mentioned “Chad”,

which was tagged to the African country. However, as the snippet shows, “Chad” actually

is used as a person’s name in the article, so this is a geotagging error—in particular, an error

in toponym recognition, which involves resolving geo/non-geo ambiguity (see Chapter 4).

To aid in the development of our geotagging algorithms, NewsStand allows human users

to provide feedback via the error feedback menu in each info window. Users can specify

whether the tagged location is in reality “not a location” (geo/non-geo error) or “wrong lo-

cation” (geo/geo error), and can enter a textual comment as well. Our toponym recognition

and toponym resolution algorithms (described in Chapters 4–7) use this feedback to retrain

and hopefully improve its accuracy in the future.

Figure 3.10 shows NewsStand’s people and disease layers, which are generated from

the output of NewsStand’s people finder and disease finder modules (described in Sec-

tion 3.2.7). As with the location layer, people and diseases are shown textually in these

layers, and in some cases, errors can be found. For example, nicknames and titles are

sometimes mistakenly tagged as person names, such as “America”, corresponding to “Mr.

America”, in Figure 3.10b. As before, the slider dynamically changes the number of entities

displayed on the map.

3.6 Database Queries

Here, we describe some of the database queries used in NewsStand’s Web interface, de-

scribed in Section 3.5. With NewsStand’s database schema (described in Section 3.4), each

interface action is easy to cast in terms of an SQL query. Recall that the two main modes

of using NewsStand correspond to the two main types of SQL queries that it supports: top

stories mode, used to answer feature-based queries (“Where is story X happening?”), and

map mode, which answers location-based queries (“What is happening at location Y?”).
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(a) Disease layer

(b) People layer

Figure 3.10: NewsStand’s (a) disease and (b) people layers.
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Note that NewsStand’s database contains far more information than is feasible to send

over a network connection and display in a client’s user interface. Instead, we are only

interested in the top few results for each query. To this end, as we will see in the follow-

ing sections, the queries used within these two modes are all variants of what is known in

database parlance as top-k queries, i.e., queries that return the first k ranked results accord-

ing to some ranking function, which varies depending on the particular query. In addition,

many more queries are used throughout NewsStand’s interface than are presented here, due

to lack of space. Instead, we present only the queries associated with story and location

retrieval, though these queries will serve to illustrate the principle of top-k retrieval that

applies to all of NewsStand’s interface queries.

Additionally, the queries introduced below feature joins among multiple tables in the

database, which often hinder query performance. However, these joins are presented for

conceptual understanding rather than reflecting the actual implementation of these queries.

As noted in Section 3.4.4, in order to improve the speed of querying and hence improve

interactivity, the queries that serve the user interface are executed in the cache database

rather than in NewsStand’s main database. When executing the queries below, we use what

are called materialized views of the query results, which amount to precomputation and

storage of the query results (without any filtering conditions) prior to runtime. For example,

consider the query “SELECT * FROM a, b WHERE a.id = b.id AND a.val1

= ’X’ AND b.val2 = ’Y’”. Join queries in NewsStand have a similar form, though

they are much longer, and so for the sake of brevity we omit the full text of these queries.

Creating a materialized view of this query would involve executing the join portion of

the query, namely “SELECT * FROM a, b WHERE a.id = b.id”, and storing the

result. Henceforth, when executing the original query, the filter conditions (“a.val1 =

’X’ AND b.val2 = ’Y’”) would only need to be applied to the materialized view

result, without any joins at runtime. This additional optimization further improves cache

query performance.
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Below, we continue with descriptions of NewsStand’s interfaces and queries that return

clusters in top stories mode (Section 3.6.1) and map mode (Section 3.6.2), as well as queries

involving a single cluster that are used in both modes (Section 3.6.3).

3.6.1 Top Stories Mode

Answering queries of the form “Where is story X happening?” is the purview of News-

Stand’s first mode, referred to as “top stories mode” or “text mode”. This query is also

known as a feature-based query. Figure 3.8a shows NewsStand’s interface in top stories

mode. In this case, assuming a landscape display, the left pane shows the top-k story clus-

ters, ranked in importance from top to bottom of the visible part of the display screen. This

pane is populated by one of several queries presented in Figure 3.11, depending on filtering

parameters. Figure 3.11a is the basic query to populate the pane, which retrieves clusters

in order of cluster score. Additionally, several links at the top left allow for filtering of the

top-k clusters according to their topic types (e.g., “Business”, “Sports”), while at top right,

a menu allows selecting clusters with articles from particular news feeds, and a keyword

search allows the selection of clusters relevant to particular keywords. These operations

are implemented using the SQL presented in Figures 3.11b, 3.11c, and 3.11d, respectively,

which are all variants of the basic top-k query of Figure 3.11a except with additional con-

straints. For the keyword search query of Figure 3.11d, the cluster rankings are modified to

include a keyword relevance measure in addition to the cluster’s score.

As the mouse is hovered over the clusters in the left pane, the most relevant locations

in the selected cluster are displayed on the map in the right pane of the display using what

we term “markers”, which are icons corresponding to the most dominant topic type of the

elements of the cluster. This action corresponds to the feature-based query of “Where is

story X happening?”, in that its input is one of the news clusters, and its output is the set of

locations that are relevant to the cluster. Also, note that a slider is present at the top of the

right pane, whose movement to the right (left) allows the maximum number of locations
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SELECT c.cluster id FROM clusters c

ORDER BY c.score LIMIT k

(a) Get top clusters

SELECT c.cluster id FROM clusters c

WHERE c.topic = t

ORDER BY c.score LIMIT k

(b) Get top clusters of a given topic t

SELECT DISTINCT c.cluster id

FROM clusters c, docs d

WHERE c.cluster id = d.cluster id

AND d.feed id = fid

ORDER BY c.score LIMIT k

(c) Get top clusters with articles from feed fid

SELECT DISTINCT c.cluster id

FROM clusters c, docs d, doc text dt

WHERE c.cluster id = d.cluster id

AND d.doc id = dt.doc id

AND match(dt.vector, kw)

ORDER BY kwrank(c.score, dt.vector, kw) LIMIT k

(d) Get top clusters with keyword kw

Figure 3.11: SQL queries used to populate the left pane of top stories mode.

105



for which icons are displayed for the highlighted cluster to be increased (decreased). The

identity of the locations for which icons are present depends on the number of times the

location is mentioned in the articles that make up the cluster, with priority given to those

that are mentioned most frequently. The presence of this slider is precisely the novel aspect

of NewsStand that enables it to answer the top-k version of the feature-based query of

“Where is story X happening?” The algorithm that performs the display ensures that all of

the desired locations can be seen, and thus the area displayed is the minimum bounding box

of the locations. In database parlance, what we have here is an instance of a top-k query

where k corresponds to the number of visible locations for a particular cluster or a cluster

that contains a particular keyword. That is, we have a “top-k locations” query. This query

is implemented in SQL as shown in Figure 3.13a, to be described shortly.

3.6.2 Map Mode

NewsStand’s second mode, used for answering queries of the form “What is happening at

location Y?”, is termed map mode and is shown in Figure 3.9a. This query is also known

as a location-based query. In this case, NewsStand provides the capability of reading over

8,000 newspapers (RSS feeds) by using a map. As mentioned earlier, the result of process-

ing the RSS feeds is a set of clusters of articles by topic. Initially, the map contains topic

icons at locations corresponding to those in the k most representative clusters, where “rep-

resentative” takes into account factors such as importance measured by currency, size and

rate of growth of the cluster in terms of velocity and acceleration, as well as a desire to have

a good spatial distribution in the area being displayed. A variant of the feature-based query

can also be executed in map mode. This is done by entering a keyword in the “search” box

at upper right. The result is a set of k clusters relevant to the keyword, and displayed using

topic icons at the clusters’ locations. Once a search has been activated, all later searches will

be restricted to the keyword. However, the searches are restricted to the displayed part of

the map—that is, they are spatially restricted and are analogous to a spatial join operation.

106



Again, while in map mode, a slider is present at the upper right corner of the map whose

movement to the right (left) effectively allows the maximum number of different clusters

for which topic icons are displayed at their representative locations to increase (decrease).

Although this feature seems very similar to its analog in top stories mode, its semantics are

actually very different. In particular, each additional location corresponds to potentially in-

creasing the number of viewable clusters although this is achieved by increasing the number

of locations for which icons are displayed. The presence of this slider represents a second

novel aspect of NewsStand as it enables it to answer the location-based query of the form

“What is happening at location Y?” where, contrary to conventional assumptions, Y is not

a location, but is actually a region corresponding to the part of the world that is viewable.

Thus, moving the slider to the right increases the number of clusters that could be viewed,

as these clusters are associated with the various locations, although the clusters associated

with the additional location could be the same as the clusters associated with the existing

viewable locations. Thus, we see that the number of viewable clusters resulting from mov-

ing the slider to the right is non-decreasing. In database parlance, what we have here is

an instance of a top-k query where k corresponds to the number of viewable clusters. In

other words, we have a “top-k clusters” query. Again, we could say that the resolution (also

referred to as the zoom level, but measured here in terms of the number of clusters that are

visible, again in contrast to the conventional definition which is in terms of visible area)

also increases.

Another database analog of the top-k clusters query is a ranked spatial range query or

a ranked spatial join query. The challenge in implementing this query lies in deciding on

the order in which the locations corresponding to clusters are delivered to the user, which

is a function of their importance. This need not necessarily be the number of times they are

mentioned. For example, it could be based on the number of clusters in which they appear

at least once. Another factor could be their currency in terms of the time at which they

arrive, and the velocity and acceleration of the cluster’s rate of growth. Again, these issues
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arise because our data is dynamic on account of our streaming environment. Given the

above analogies of top stories mode and map mode with the top-k query, it is also natural

to let k vary, where k denotes the number of markers (topic type icons), which is achieved

by using the slider.

Figure 3.12 presents examples of top-k cluster queries used in map mode. Figure 3.12a

illustrates the default mode, where a set of clusters are used to populate the visible map

window. The clusters table is joined with cluster locs to retrieve the cluster lo-

cations, as well as with the gazetteer table to retrieve lat/long information, which in

turn is used to filter the clusters to only those that lie within the query window qw. Results

are ordered by the cluster’s score. Notice that this query is related to that of Figure 3.11a,

except with an additional query window constraint on the cluster’s locations. Also, as be-

fore, we use variants of this query to incorporate additional query constraints involving

topics, source feeds, and keywords, which are shown in Figures 3.12b, 3.12c, and 3.12d.

3.6.3 Single-Cluster Queries

In this section, we present queries that retrieve information about a single cluster. These

queries are used in both top stories mode and map mode, since both modes involve the re-

trieval and display of news clusters and information associated with them. As with previous

Web interface operations, these actions are easy to cast in terms of SQL using NewsStand’s

database schema. These queries are presented in Figure 3.13, and are described in detail

below.

Recall from Section 3.6.1 that the primary form of queries in top stories mode is “Where

is story X happening?”, where X corresponds to a cluster of news. This query corresponds

to Figure 3.13a, which retrieves the top-k locations associated with a given cluster with

identifier cid. The locations are retrieved in order of their relevance score to cluster cid.

In addition, several queries are used to render cluster information in NewsStand’s user

interface. In both top stories mode and map mode, summary information about each cluster
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SELECT DISTINCT c.cluster id

FROM clusters c, cluster locs cl, gazetteer g

WHERE c.cluster id = cl.cluster id

AND cl.gaz id = g.gaz id

AND contains(qw, g.latitude, g.longitude)

ORDER BY c.score LIMIT k

(a) Get top clusters in query window qw

SELECT DISTINCT c.cluster id

FROM clusters c, cluster locs cl, gazetteer g

WHERE c.cluster id = cl.cluster id

AND cl.gaz id = g.gaz id

AND contains(qw, g.latitude, g.longitude)

AND c.topic = t

ORDER BY c.score LIMIT k

(b) Get top clusters in query window qw with topic t

SELECT DISTINCT c.cluster id

FROM clusters c, cluster locs cl, gazetteer g

WHERE c.cluster id = cl.cluster id

AND cl.gaz id = g.gaz id

AND c.cluster id IN (

SELECT d.cluster id FROM docs d

WHERE d.feed id = fid

)

AND contains(qw, g.latitude, g.longitude)

ORDER BY c.score LIMIT k

(c) Get top clusters in query window qw with articles from feed fid

SELECT DISTINCT c.cluster id

FROM clusters c, cluster locs cl,

doc text dt, gazetteer g

WHERE c.cluster id = cl.cluster id

AND cl.gaz id = g.gaz id

AND c.rep doc id = dt.doc id

AND contains(qw, g.latitude, g.longitude)

AND match(dt.vector, kw)

ORDER BY kwrank(c.score, dt.vector, kw) LIMIT k

(d) Get top clusters in query window qw with keyword kw

Figure 3.12: SQL queries used in map mode.
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SELECT * FROM clusters c, cluster locs cl, gazetteer g

WHERE c.cluster id = cl.cluster id

AND cl.gaz id = g.gaz id

AND c.cluster id = cid

ORDER BY cl.score LIMIT k

(a) Get top locations for cluster cid

SELECT * FROM clusters c, docs d,

feeds f, media m

WHERE c.rep doc id = d.doc id

AND d.feed id = f.feed id

AND c.rep media id = m.media id

AND c.cluster id = cid

(b) Get cluster summary for cluster cid

SELECT * FROM docs d

WHERE d.cluster id = cid

ORDER BY d.pub date LIMIT k

(c) Get all articles in cluster cid

SELECT * FROM docs d, media m

WHERE d.media id = m.media id

AND d.cluster id = cid

AND m.type = t

ORDER BY d.pub date LIMIT k

(d) Get media of type t for cluster cid

Figure 3.13: Queries to retrieve single-cluster information.
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is displayed, in different ways. In top stories mode, each cluster is shown with the title of its

representative article, along with a snippet of text from the article, when it was last updated,

total number of documents in the cluster, and so on. This information is retrieved with the

query presented in Figure 3.13b. Additional links in the left pane allow users to retrieve

all documents, images, or videos associated with a single cluster. Documents are retrieved

using the query in Figure 3.13c which takes data from the docs table, while the retrieval of

images and videos is accomplished with the query of Figure 3.13d, which retrieves media

of the appropriate type from the media table.

3.7 Experiments

This section describes the results of several experiments designed to characterize the perfor-

mance of various parts of the NewsStand system. We investigate the amount of streaming

news collected over time (Section 3.7.1), the numbers of geotagged toponyms found by

NewsStand’s geotagger and images found by its media extractor (Section 3.7.2), and the

size of components in NewsStand’s database (Section 3.7.3). We also investigate the time

required for processing articles (Section 3.7.4) as well as the execution speed of database

queries to retrieve information for NewsStand’s Web interface (Section 3.7.5). Note that

unlike typical system evaluations on news data, which use small, static corpora of news

from a single generally prominent source (e.g., Reuters, New York Times), these experi-

ments were conducted on the live NewsStand database system over several months’ worth

of streaming news data. As a result, they better characterize NewsStand’s long term perfor-

mance on streaming news.

3.7.1 Data Collection

First, we measured how frequently articles are collected and entered into the NewsStand

database through the many RSS feeds that it polls. Figures 3.14a and 3.14b present statistics
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Figure 3.14: Number of articles retrieved by NewsStand (a) per hour and (b) per day, as

well as (c) the number of unique feeds supplying these articles.
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about the number of articles retrieved by NewsStand from RSS feeds per hour (measured

using Eastern Standard Time) and per day, respectively, as measured over a five month pe-

riod from January to May, 2011. Both figures show the large volume of news processed

by the NewsStand database every day, which dwarfs typical corpus sizes (i.e., hundreds of

documents) used in information retrieval and geotagging research (e.g., [7, 42, 68, 97]).

They also show the generally cyclical publishing rate of sources polled by NewsStand,

with most articles being published during daytime hours and during the week, rather than

on weekends. The clustering of article publishing times between the hours 11–13 in Fig-

ure 3.14a is also a byproduct of NewsStand’s current focus on US-based news sources.

Figure 3.14b shows that the NewsStand database ingests on the order of 50,000–60,000

articles on weekdays, and about 30,000 articles on weekends. Also, Figure 3.14b demon-

strates dips in article counts followed by peaks near 26 Feb and 25 Apr, which are due to

system downtime at those times, and subsequent catching up of the system. We also mea-

sured the number of unique feeds that supply these articles over time, and these feed counts

are shown in Figure 3.14c. Over all measured days, NewsStand processed and displayed

articles of around 2,000–3,000 distinct news sources, indicating the breadth and variety of

news sources and data available in NewsStand.

3.7.2 Data Content

While a primary goal of NewsStand is to deliver as much news as possible to its users, the

actual content of such news is important as well. Here, we present measurements of the ex-

tracted content found by NewsStand in the articles that it retrieves from news sources. For

this experiment, we measure content in terms of the number and types of locations found

by NewsStand’s geotagger, as well as the amount of multimedia items found by News-

Stand’s media extractor. These measurements were made over a month’s time, and are

shown in Figures 3.15a and 3.15b. The number of locations and media follow the charac-

teristic week-versus-weekend pattern seen earlier, with around 130,000 extracted locations
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Figure 3.15: Different types of content found by NewsStand in articles, including (a) num-

ber and types of locations, and (b) amount of multimedia items (images and videos).

and 11,000 extracted media during the week. With about 40,000 articles downloaded daily,

this corresponds to 3–4 locations per article on average, which indicates the usefulness

of NewsStand’s map-based interface, since it will be filled with a large number locations

and thus there is much data to query. Further, examining the breakdown of location types,

smaller places including states and small cities (under 100,000 population) dominate the

location type counts, followed by larger places including large cities (over 100,000 popula-

tion) and countries. These type counts show NewsStand’s focus on highly local streaming

news which is more difficult to geotag automatically, but results in a much richer, local

news experience. On the other hand, the relatively low number of images and videos, about

1 image per 3–4 articles, shows the difficulty of extracting relevant images and image cap-

tions while also filtering for advertising and other spurious media.

3.7.3 Data Size

Next, we examined the sizes of tables and indexes present in NewsStand’s database. The

sizes of the tables shown in Figure 3.7 are listed in Table 3.2. For each table, we include the

number of rows, the total disk space consumed by the data in the rows, and the total disk

space of data plus the indexes present in the table (“D + I”). We see that the doc text
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Table 3.2: Database object sizes.

Rows Data D + I

cluster locs 4.0M 8GB 15GB

clusters 2.8M 1.9GB 4.5GB

doc locs 25.8M 5GB 12GB

docs 6.3M 20GB 81GB

doc text 5.5M 83GB 87GB

entities 207M 25GB 38GB

feeds 10k 200MB 350MB

gazetteer 8.0M 1.5GB 4.2GB

media 1.4M 4GB 9GB

table is by far the largest in terms of raw data amount, 83GB, which is not surprising given

that it contains the full text of articles in the database. However, the docs table rivals

doc text in size when accounting for the index space as well, since the docs table

has many more columns and indexes on these columns, including a full-text index on the

snippet attribute for keyword searches. In terms of number of rows, the doc locs and

entities tables (containing data for locations and entities in documents, respectively)

have many rows, reflecting the many locations and other entities found by NewsStand’s

geotagger and other processing modules.

3.7.4 Processing Time

Next, we examined the times required for a new article ingested into the NewsStand database

to be completely processed by all its modules, as well as the time for the article to become

available in the Web interface. For the backend processing time, we summed the time taken

by each module to process the document. On the other hand, the times to become available

in the Web interface include the total module processing time, as well as the time neces-

sary for pipe server communication and cache database updates. As a result, we studied

both times to provide both backend and frontend performance evaluations. Figure 3.16a

presents the total module processing times as measured over one month’s worth of news.
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Figure 3.16: Backend processing time in terms of (a) median processing time per document,

measured over a month’s worth of news, and (b) time for articles to appear in NewsStand’s

Web interface, measured over a day’s worth of news.

On most days, articles were fully processed within a few minutes, demonstrating that News-

Stand’s database architecture is well adapted for processing streaming news. However, sev-

eral spikes in the processing time appear as well, with a large spike on 1 Jun. These spikes

are due to downtime and maintenance for the machines executing NewsStand’s database

modules, which due to being a research system are somewhat unavoidable.

We also directly measured the amount of time it took for articles to appear in News-

Stand’s Web interface. Over a day’s time, we executed a query through the Web interface

every 5 minutes to retrieve the 30 most recent articles, and measured how long it took for

those articles to be processed. We took these measurements during a day where NewsStand

was processing documents under typical daily loads—i.e., not during processing spikes due

to downtime or other factors. Figure 3.16b shows the results, with most retrieved articles

taking between 3–5 minutes to appear on the Web interface. This result corroborates our

previous finding that NewsStand processes streaming news quickly.

We further characterized article processing times in terms of how much time is spent in

each of NewsStand’s processing modules. These times are listed in Table 3.3. Processing

times per document are rather low, with the total processing time for a single document on

average being just over 6 seconds. As work is batched in groups of at most 100, a given
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Table 3.3: Time required by each module to process single documents, in seconds.

Downloader 1.024 Geotagger 2.961

Cleaner 0.098 People finder 0.535

Clusterer 1.648 Disease finder 0.125

Topic classifier 0.047 Media extractor 0.166

Total 6.604

work batch would travel through the system and be fully processed by NewsStand’s mod-

ules in at most 10 minutes, at full load. Of course, if the system is not saturated with work,

then articles can be fully processed in a shorter time, and as demonstrated by Figure 3.16b,

we typically observe articles in NewsStand that are only a few minutes old. Examining

individual processing times in detail, the geotagger, clusterer, and downloader modules are

bottlenecks in processing time, accounting for fully 85% of the total processing time for a

document. Reasons for the slowness of these modules vary, but can generally be accounted

for by the number of database queries that they make. The geotagger and clusterer mod-

ules execute a large number of database queries to draw in additional evidence for use in

geotagging and clustering. On the other hand, the downloader module’s primary bottleneck

is the time required to download articles from websites. Note that despite their slow pro-

cessing times, we avoid slowing the system as a whole by starting more instances of these

modules, thus increasing the system’s processing throughput. We also start more instances

when a large amount of work is waiting in pipes, due to modules having been stopped for

some time.

3.7.5 Query Performance

Our final set of experiments were designed to test the interactivity of NewsStand’s Web

interface, as measured by the time required to execute database queries generated by the

interface, especially in NewsStand’s map mode. As outlined in Section 3.6.2, these queries

are all variants of top-k window queries. Recall that Figure 3.12 shows examples of this
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type of query, which all contain a query window qw expressed in lat/long values, and return

the k clusters with highest scores that fall within qw. We generated queries by randomly

creating query windows over land masses with a variety of sizes. Each window consists

of lower left lat/long values, width, and height. We executed these queries in NewsStand’s

cache database (described in Section 3.4.4), and measured query performance over time. In

this way, we tracked live performance fluctuations that arise from the NewsStand database

operating on streaming news.

Our first set of query performance experiments tested the number of top-k window

queries per second that could be sustained by NewsStand’s cache database, which should

be roughly proportional to the number of users that could be simultaneously browsing news

in NewsStand’s interface. For each experiment, we created several test processes, each of

which would connect to the database and execute queries as quickly as possible. By increas-

ing the number of processes and hence database connections, we saturated the database’s

query capacity to determine an upper limit on the number of queries per second that can be

handled simultaneously. For this experiment, k was fixed at 200, matching the value used

in NewsStand’s user interface. Though this value may seem small, especially compared to

the database’s size, it is actually reasonable given limited bandwidth and screen space.

Figure 3.17a presents the queries per second (qps) rate delivered by NewsStand’s cache

database, as measured over one minute of processing. As the number of test processes in-

creased, the qps rate likewise increased, to a ceiling of about 100, as shown by the flattening

of the qps curve at around 8–9 test processes. If we consider that a user of NewsStand could

generate at most two queries per second, via continuous actions such as scrolling, panning,

and zooming, the system as-is can support up to 50 users at a time. These performance re-

sults are respectable, especially given that they were executed on a live system, constantly

being updated with additional streaming news. To gain additional performance when scal-

ing the system up to support larger numbers of users, further options such as database

replication and round-robin scheduling could be considered.
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Figure 3.17: Query performance as measured by (a) the sustained number of queries exe-

cuted by NewsStand’s database, and (b) median query times for top-k window queries with

various additional constraints.

Our next query time experiment combined the top-k window queries described above

with additional constraints that are added by certain queries available in NewsStand’s in-

terface. We tested the following additional constraints:

1. Topic: Retrieve stories relevant to a given topic (e.g., “Business”, “Sports”).

2. Feeds: Retrieve stories with articles from a given set of news feeds.

3. Keyword: Retrieve stories relevant to a keyword.

To select topics, feeds, and keywords to use in these queries, we randomly sampled query

values present in NewsStand’s query log files. Furthermore, in keeping with our goal of

benchmarking streaming news, we executed a set of these queries every five minutes over

a one month period, to track performance of the live NewsStand system over time. Fig-

ure 3.17b contains performance results for these queries, shown as the median query time

per day for each query type, with constraints specified as letters: “W” for window, “T” for

topic, “F” for feeds, and “K” for keywords, and combinations such as “W+F” referring to a

window query with a feed constraint. Examining the results, we see that query times fluc-

tuate from day to day, but tend to fall under 1 sec. The plain top-k window query was faster
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than the other query types, with additional constraints generally slowing the query time.

Further, the feeds query was consistently slower than the other query types, most likely

due to the requirement that query results be from a set of feeds, rather than a single value.

Nonetheless, query performance was relatively consistent across all dates and times tested,

reflecting NewsStand’s stability as a live system.

For our final query time experiments, we examined the execution time for queries

placed in a particular region or zoom level. Figure 3.18a presents query times for ran-

dom window sizes and positions categorized by the location of the query region, as a box

and whisker plot. For all regions, query times were again respectable, with all medians

being under 0.2 sec. Furthermore, notice that the query times tended to have skewed dis-

tributions, with most query times being low, but with high outliers. We also observed that

query performance for query windows in the US region is significantly higher than in other

areas. This is likely due to NewsStand’s source bias for newspapers in the US rather than

other areas. Figure 3.18b explores query performance differences by varying the zoom level

where again both query window size and positioning were randomized and no distinction

was made for different regions of the world. As might be expected, as the zoom level in-

creases (thus decreasing the query window size and hence the number of markers present in

the window), query times decreased. As before, query times are generally low, with some

larger outliers.

3.8 Open Problems

Several aspects of NewsStand could benefit from further improvement. NewsStand tends to

exhibit a geographic bias toward the areas about which news stories are usually written, so

a more uniform coverage of the news is needed. Also, the system currently only processes

articles written in English, so it could be improved by adding articles and news sources

in other languages. Some of NewsStand’s modules could be further improved, such as its

cleaner module which would incorporate some kind of advertising detection and removal,
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Figure 3.18: Region and zoom level versus query time.

as well as a more generic media extractor which searches for specific plugin controls (e.g.,

videos embedded in Flash) and retrieves information from them. Video captions could be

recognized using cluster terms. Additionally, as mentioned previously, the RSS grabber

adds documents to NewsStand’s database only once, as they are published, rather than re-

processing articles which were previously published but since updated. Provisions could

be made to update and reprocess these articles by, for example, observing a different pub-

lication date, even for articles with the same URL. Improvement of these modules would

improve in turn the input, and hence performance, of our geotagging methods (described in

Chapters 4–7). We also plan to place other media on the map itself, such as representative

pictures, videos, and audio clips. We must therefore examine methods for determining the

best representative picture for a cluster of news articles. We could also develop methods for

finding and searching for quotes in news articles, and associate them with their speakers.

In addition to module improvements, NewsStand’s architecture could be improved to

increase its reliability and stability. NewsStand’s modules currently run on a collection of

workstations and are started and restarted manually with the aid of administrative scripts.

However, it could be made more robust by designing a system to automatically restart

crashed modules. In addition, NewsStand’s architecture makes it suitable for processing

documents using cloud computing, since multiple instances of processing modules can
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execute simultaneously. As a result, a high reliability system, perhaps involving MapRe-

duce [34] could decentralize processing and ensure work completion in a timely man-

ner. Also, there are several problems using NewsStand’s PostgreSQL database, in that

the database, and especially the cache database, involve a large amount of data churn.

This SQL-style database, along with others such as MySQL, were not designed to han-

dle large volumes of streaming data, such as streaming news, and thus require constant

maintenance in the form of vacuum cycles, which in turn use up the database server’s re-

sources and impact query performance. The problem is exacerbated for domains such as

Twitter which involves a much larger data stream. To accommodate these data streams,

we may be able to leverage the emerging trend of NoSQL databases [67], such as Mon-

goDB [1], CouchDB [10], HBase [11], or one of many others, to reduce such maintenance

penalties on query performance. Also, rather than having a single cache database, several

such databases on separate computers could allow greater scalability and a larger eventual

user base. With a larger user base, additional analytics can be used to improve querying per-

formance. For example, the geographic location of users (as determined by IP addresses),

or their most frequent window queries, can be used to inform caching strategies.

Another interesting aspect of the news is its temporal nature. We could explore use

NewsStand’s archive of news through time to examine which locations and other entities

were in the news in given windows of time. Also, note that news stories evolve over time,

and newspapers update news articles as new details of the story emerge. Ideally, NewsStand

would be updated with the latest version of articles as they are updated. Handling news

article updates by downloading later versions of pages and incorporating them into the

system. The basic problem is again the “pull” nature of webpages in that we don’t want to

poll too often because it will waste bandwidth. For example, we might check for duplicate

URLs in RSS feeds, and check whether the title, description, or publication date has been

updated since we last saw it, which can indicate whether new data is present in the article.
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3.9 Summary

NewsStand, along with STEWARD, described in Chapter 2, provides an important mo-

tivation for the development of our geotagging algorithms presented in Chapters 4–7.

NewsStand demonstrates that extracting geographic content from news articles exposes

a previously unseen dimension of information that aid in understanding the news. Indeed,

“NEWS” can be succinctly described as an acronym of “North, East, West, South”. We have

also shown that NewsStand’s architecture and database design support rapid processing and

querying of streaming news. We believe that the increasing prevalence of geotagged con-

tent on the Web will enable compelling applications for systems like NewsStand in other

knowledge domains. Also, it is clear that as the prevalence of streaming data on the Web

increases, systems such as NewsStand that are capable of quickly processing this streaming

data will have ever increasing importance.
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Chapter 4

Multifaceted Toponym Recognition

Now that we have introduced frameworks for using geotagging in the form of the STEW-

ARD (Chapter 2) and NewsStand (Chapter 3) systems, we proceed with performing the

geotagging itself. As noted earlier, the first step toward successful geotagging is finding to-

ponyms within the document to be geotagged, referred to as toponym recognition, which is

the subject of this chapter. Toponym recognition is difficult because many names of places

are also common names of people and other entities. For example, “Paris” can refer to the

French capital and many other places in the USA, but can also be a person’s given name

(e.g., “Paris Hilton”).

Some variants of the toponym recognition problem consider other ambiguities occur-

ring in natural language, such as the use of different words to refer to the same toponym in

the same text, and require that these ambiguities be resolved. This situation can arise in his-

torical texts concerning places whose names have changed over time. Another possibility is

considering such phrases as “my house” versus “a house”—the first might be considered a

toponym, since it is definite, referring to an actual place with geographic coordinates, while

the second is indefinite. In the following discussion, we restrict ourselves to considering

only toponyms consisting of proper names. Our techniques further make the simplifying

assumption that within a single text, toponyms with the same name refer to the same place,

sometimes called one sense per discourse [164]. Also, note that while geotagging relies

on toponym recognition, it is only one stage in the process and should be regarded as a
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means to an end. Therefore, we do not overly concern ourselves with toponym recognition

performance in isolation, but rather with the performance of our geotagging system as a

whole. This observation informs us against overly relying on algorithms specifically tuned

for the toponym recognition problem.

Toponym recognition can be considered as a subset of a more general problem studied

in natural language processing, called named-entity recognition (NER). Whereas toponym

recognition involves finding entities in text that correspond to geographic location names,

named-entity recognition involves finding locations, as well as entities of other types (e.g.,

names of people and organizations). In our example sentence “Jordan visited London last

Friday”, the output from a toponym recognizer would include the location “London”, while

correct output from a named-entity recognizer would also include “Jordan” as a person, and

possibly “Friday” as a day of week. Sometimes evidence is stronger for a particular entity

interpretation versus another interpretation. For example, in the pattern “X visited Y”, the

“visited” verb lends credence to X being a person and Y being a location, since locations are

visited by people. Machine learning–based NER systems will often discover patterns like

these from corpora of documents that are annotated with entities, and use these patterns

to build a language model by which entities and entity types can be predicted, given the

linguistic context.

Given toponym recognition’s status as a subproblem of NER, tools developed for the

more general problem of NER can be used for toponym recognition. In this case, the gen-

eral strategy is to take an input document, execute an off-the-shelf NER system on the

document (e.g., LingPipe [6], Stanford NER [37], ANNIE [31]), and take the location en-

tities. State-of-the-art NER systems typically use statistical machine learning methods to

train a language model from an annotated language corpus. These systems usually employ

generative models such as hidden Markov models (HMMs) or discriminative models such

as conditional random fields (CRFs). Once trained, the model is used to determine the most

likely sequence of parts of speech, or most likely set of named entities. Of course, these
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models will be inherently limited by the size, contents, and availability of suitable training

data, which in many cases is quite limited.

Once location entities are found, location interpretations are assigned from a gazetteer,

and in the toponym resolution step, one of the interpretations is chosen for each toponym.

However, this simple strategy is problematic. Because NER is a more general problem,

systems developed for NER tend to be tuned for this more general problem, rather than

specifically for locations, so they may be less accurate in detecting locations. Second, this

strategy is inflexible in that the toponym recognition and toponym resolution procedures are

completely independent, and thus cannot share evidence. For example, it may happen that a

supposed toponym t found by the toponym recognition procedure is incorrect, i.e., t should

not have been selected as a toponym. However, the toponym resolution procedure is then

forced to consider t as a toponym and select one of the incorrect location interpretations

of t, even if none of these interpretations are evidenced by t’s context. Returning to our

example, in the sentence “Jordan visited London last Friday”, if “Friday” were incorrectly

recognized as a toponym, the toponym resolution procedure would necessarily select the

interpretation in Texas. A better option would be to allow the toponym resolution procedure

to drop toponyms discovered by the toponym recognition method that are not evidenced.

Also, when evaluating NER systems on our domain of news articles (described in Sec-

tion 4.3), we found that they were biased toward precision at the expense of recall. In other

words, they miss many toponyms so that the ones that they report are valid. Also, statisti-

cal NER systems are usually trained on corpora of tagged news wire text that contain few

less-prominent toponyms. As a result, the toponyms in an NER training corpus essentially

serve as a very limited gazetteer, which in turn limits the breadth of a toponym recognizer

using models trained on the corpus. This limitation drastically reduces their performance

on articles from local newspapers, as also noted by Stokes et al. [140]. Also, the generally

small size and homogeneity of corpora used in training NER systems do not capture the

fast moving and ever changing nature of the news cycle. While this bias is not unacceptable
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for NER, it is problematic when used in a geotagging system, since toponym recognition

imposes an upper bound on recall for the entire geotagging process (i.e., toponym recogni-

tion and resolution). In other words, the geotagging procedure only has a chance to geotag

a toponym correctly if it was recognized during toponym recognition, and any missed to-

ponyms in the initial toponym recognition phase will negatively impact the recall for the

entire process. As a result, the low recall of typical NER techniques severely limits the

entire geotagging process’s recall, and thus we saw the need for more comprehensive tech-

niques. Of course, it is worth noting that information about entities other than toponyms is

useful for toponym recognition, since it may offer a means of resolving type ambiguities.

Bearing these considerations in mind, the toponym recognition process we designed for

processing streaming news has a considerably more flexible architecture. Our multifaceted

toponym recognition process uses standalone NER software as only one of many recogni-

tion methods, of potentially varying quality. We include rule-based recognition in the form

of entity dictionary tables, cue word matching (e.g., “X County”), and toponym refactoring.

In addition, we leverage statistical NLP tools in the form of NER software with postpro-

cessing filters, and part-of-speech (POS) tagging with additional recognition rules. These

methods are described in detail in later sections, but we provide a brief overview here.

After an initial tokenization step, our method proceeds by performing lookups into vari-

ous tables of entity names, including location names and abbreviations (e.g., “Maryland”,

“Md.”), business names (e.g., “Apple”, “Toyota”), common person names (e.g., “Chad”,

“Victoria”), as well as cue words for the above types of entities (e.g., “X County”, “Mr.

X”, “X Inc.”). We also refactor geographic names by shifting particular cue words (e.g., “X

Lake” to “Lake X”).

In addition to the above rule-based methods, we leverage statistical NLP tools. We use

an NER package to recognize toponyms and other entities, and perform extensive post-

processing on its output to ensure higher quality. We also perform part-of-speech (POS)

tagging to find phrases of proper nouns, since names of locations (and other types of en-
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tities) tend to be composed of proper nouns. The POS tagging also provides a means of

recognizing additional grammatical forms that hint at entities’ types, including active verbs

and noun adjuncts, which we use as signals to adjust entity types. Furthermore, we incor-

porate evidence from other documents in the document’s news cluster. At the end of the

entire procedure, we attempt to reconcile entity types, and establish groups of entities to

be resolved concurrently, by grouping textually similar entities together. Essentially, we

designed this multifaceted toponym recognition procedure in keeping with our goals to be

flexible enough to capture variations that occur in streaming news, as well as to be as all-

inclusive as possible when recognizing toponyms, in order to maximize the procedure’s

recall (i.e., to miss as few toponyms as possible). Our toponym resolution procedures, de-

scribed in later chapters, serve to restore precision to the process by dropping supposed

toponyms with no supporting evidence for any of their possible interpretations.

Furthermore, during and after the recognition procedure, we allow entities to overlap,

and even to share boundaries but with different types. For example, consider a document

containing “Chad”. We may have evidence that “Chad” is a person entity, as well as differ-

ent evidence that “Chad” is actually a location entity. Rather than keeping only one type,

we create two entities with the same boundaries but different types. In other words, we

wait to resolve entity and interpretation conflicts as late as possible, so that we leverage

as much evidence as possible to resolve these conflicts. Of course, recall is not the only

factor in designing a robust toponym recognition system, and precision also plays a role.

In our example document, if we came across a sentence containing “Mr. Chad Johnson”,

the “Mr.” and “Johnson” provide strong evidence that “Chad” is a person entity and can be

safely disregarded. However, in general, recall must be emphasized over precision due to

toponym recognition’s status as the initial stage of a combined geotagging process.

Our recognition procedure can be broken into two stages, around which this chapter

is organized. First, we generate an initial set of possible entities using many sources of

evidence (Section 4.1). Second, we execute a variety of postprocessing filters that attempt
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to resolve entity types using additional forms of evidence (Section 4.2). Next, we describe

how we incorporated our toponym recognition method into NewsStand, and evaluated it

by comparing it against two state-of-the-art competing systems (Section 4.3). Finally, we

discuss several open problems with regard to our methods (Section 4.4) and conclude the

chapter (Section 4.5).

4.1 Finding Toponyms

In this section, we describe several methods of finding an initial set of potential toponyms,

including both rule-based and statistics-based methods. At this point we are concerned

mainly with finding as many potential toponyms as possible. Later, we apply additional

filtering rules to remove some erroneous patterns while still maintaining overall high recall

(described in Section 4.2). Note that in recognizing toponyms, we only consider exact, case-

sensitive matches for groups of tokens. This strategy is acceptable for text domains such

as news articles and the hidden Web, because documents in these domains tend to follow

linguistic and grammatical rules for writing, but exact matching would be less suitable for

other domains where these rules are followed less closely (e.g., blogs, tweets).

We begin with a description of tokenization (Section 4.1.1), followed by our methods

for lookup into entity tables (Section 4.1.2) and an entity dictionary (Section 4.1.3). We

then describe methods based on natural language processing, namely finding proper nouns

(Section 4.1.4 and named-entity recognition (Section 4.1.5).

4.1.1 Tokenization

The first step in recognizing toponyms is to tokenize [61] the input document’s text. To-

kenization involves breaking the text into meaningful parts, referred to as tokens, and a

useful tokenization is more than simply splitting on whitespace. Consider the following

dateline from a news article:
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ALBANY, N.Y. (BP) — In a lengthy debate . . .

A useful tokenization of this text would result in tokens such as “ALBANY”, “(comma)”,

“N.Y.”, “(open parenthesis)”, and so on, which is markedly different from a simple tok-

enizer based on whitespace. We use the regular expression–based tokenizer provided as

part of the Stanford NLP package [37], which contains a grammar with a large number

of rules for English natural language tokenization. After tokenization, we determine sen-

tence boundaries in the text so that we avoid constructing comma groups across sentence

boundaries. Like tokenization, finding these boundaries is ordinarily not simply a matter

of finding periods. As our example above shows, periods and other punctuation sometimes

appear in acronyms, abbreviations, and other linguistic forms. However, the tokenizer dis-

tinguishes in-token punctuation such as those present in acronyms from lone punctuation

which makes sentence splitting trivial. Once we have tokens and sentence boundaries, to-

ponym recognition becomes a matter of grouping adjacent tokens into toponyms.

4.1.2 Entity Tables

After tokenization, we proceed with toponym recognition by looking for a curated, small

set of well-known locations and other entities appearing in the document’s text, which

serves as a convenient baseline for toponym recognition. This set of entities is gathered

from several tables in our gazetteer, which is based on GeoNames [43], and is updated and

kept current on a daily basis. In particular, we collect lists of continents, countries, and

top-level administrative divisions (e.g., states, provinces), and search for them among the

document’s tokens. In addition, we search for common abbreviations for all of the above

(e.g., “California” can be abbreviated as “Calif.” or “CA”). We also search for demonyms,

which are words used to refer to people from a particular place (e.g., “German”, “Mary-

lander”). Demonyms, while not locations proper, have some aspect of location that can

be useful in recognizing and resolving toponyms, in that the location they represent can

contribute to an overall sense of locality for the document. We iterate over the document’s
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tokens, looking for groups of tokens that match an entry in an entity table, and if we find

such a match, we create an entity of the corresponding type. For location entities, we also

associate each entity with the proper location interpretation from the gazetteer.

4.1.3 Entity Dictionary

Next, we recognize additional entities of many types by using an entity dictionary, contain-

ing names of entities that commonly appear in the news. We use this dictionary to recognize

both toponyms and non-toponyms, because knowing that a particular entity strongly refers

to a non-toponym is useful in resolving geo/non-geo ambiguities. For example, knowing

that “Apple” is a famous brand name allows us to discount the possibility that “Apple”

refers to a small city in Ohio, in the absence of strong evidence. In addition to particu-

lar instances of entities, the entity dictionary also contains many cue word patterns which

serve as keywords to identify entities of various types. For example, the phrase “County of”

strongly indicates that one or more following tokens corresponds to a location. We search

for entities and cue words among the document’s tokens, and collect matches as entities.

For cue words in the dictionary, we search for adjacent capitalized tokens as the corre-

sponding entity. Our entity dictionary was constructed by observing the output from our

toponym recognition and resolution processes and checking for recognition errors, to dis-

cover which geo/non-geo ambiguities proved most problematic in our domain. The entity

dictionary is by no means complete, but it serves as a useful starting point for a toponym

recognition process in the news domain. In addition, as we discover new sources of ambi-

guity, the dictionary is updated with new classes of entities, so it is always evolving.

Table 4.1 contains a set of entity types, examples of entities, and entity cue words

present in the entity dictionary. All examples shown in the table are also names of various

locations around the world, indicating the high degree of geo/non-geo ambiguity present

in toponyms. In addition, we added many different forms of spatial cues to account for

minor variations in how the cue words are used. For example, both “X Lake” and “Lake X”
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Table 4.1: Sample entity patterns and types from our entity dictionary. In cue word patterns,

X and Y refer to variables that will match words. Each non-cue example in the table is also

the name of multiple locations present in our gazetteer, indicating the high level of geo/non-

geo ambiguity in location names.

General entities: Religions Christian, Islam, Hindu

Seasons Spring, Fall

Directions South, Northeast, Midwest

Days Monday, Friday

Months March, August

Timezones EST, WEST

Colors Gray, Navy, Lime

Organization entities: Brand names Apple, Coke, Toyota

News agencies AP, UPI

Terror groups Hamas, Taliban

Unions NEA, PETA

Government orgs Congress, Army

Postnominals X Corp., Y Inc.

Spatial cues: Populated regions State of X

Populated places Town of X, Y City

Comma groups X and Y counties

Water features Gulf of X, Y Lake

Spot features X School, Mt. Y

Universities University of X at Y

General X-based, Y-area

Person entities: Honorifics Mr. X; Ms Y; Dr. Z

Generational suffixes X, Jr.; Y III

Postnominals X, KBE; Y, M.D.

Job titles Sen. X; President Y; Sgt. Z

Declaratory words X said; added Y

Common given names John X; Jennifer Y
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are common variants of the “Lake” cue. Universities are another special case because of

the many ways in which they are specified in text, especially with multi-campus university

systems. For example, “University of Maryland at College Park” might be written “Univer-

sity of Maryland, College Park”, “University of Maryland in College Park”, “University of

Maryland—College Park”, or other similar ways. Each of these variants are encoded into

the entity dictionary’s matching rules.

4.1.4 Proper Nouns

Next, we use a POS tagger to find proper noun phrases, which are useful in recognizing

locations because locations tend to consist of proper nouns. We search for sequences of

proper noun tokens, and consider them as locations. In addition, because our tokenizer

considers possessive forms (i.e., “’s”) and hyphens as distinct tokens, we include these el-

ements in location names if they connect sequences of proper nouns as well. These are

useful for capturing locations such as “Prince George’s County”, in which “’s” separates

the proper noun sequences “Prince George” and “County”. In addition, we also consider

simple prepositional modifiers as proper noun separators, which will capture phrases such

as “University of Texas at Arlington”. For each proper noun phrase we find, we add an

entity of type “proper noun phrase” to the entity pool for this document, since we cannot

determine a more specific type using POS tags alone. Typical state-of-the-art POS tag-

gers generally train and use statistical language models, such as hidden Markov models

(HMMs), decision trees, and other techniques. We use TreeTagger [133], a decision tree-

based POS tagger, trained on the Penn TreeBank corpus [91].

Obviously, not all proper noun phrases are locations, so this technique will be under-

precise for toponym recognition in that it will capture many noun phrases that are not

locations, such as names of people, organizations, and other entities. However, despite its

lack of precision, finding proper noun phrases is consistent with our goal of high recall—

that is, not missing any locations present in the document. At this stage of processing, we
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are not overly concerned with precision in location recognition, since that will be restored

in the toponym resolution step, where erroneous location interpretations will be filtered.

4.1.5 Named-Entity Recognition

As a final toponym recognition method, we leverage tools developed to address the problem

of named-entity recognition (NER). NER seeks to discover typed entities present in an

input text, which usually includes at a minimum entities such as people, organizations, and

importantly, locations. As noted earlier, NER methods have their limitations when used

for toponym recognition, due to NER being a more general problem. However, in keeping

with our philosophy of multifaceted toponym recognition, we include NER in our toponym

recognition procedure. As an NER package, we use the Stanford NLP Group’s NER and

IE package [37], which is built around a conditional random field (CRF) classifier [66].

We used the language model included with the Stanford NER distribution, a three-class

classifier to find persons, organizations, and locations, which was obtained by training on a

mixture of CoNLL, MUC-6 and MUC-7, and ACE corpora.

We feed the article text to the NER system, and save the person, organization, and

location entities into our entity pool. To avoid frequently noisy output entities, we only

keep the entities that have a minimum score of 0.95. One observation is that this NER

method captured similar entities as found by collecting proper noun phrases (described

in Section 4.1.4), a result which is not overly surprising as named entities tend to consist

of proper nouns. However, using the NER system offers the benefit of determining entity

types, in addition to simply finding entities. Knowing entity types helps to avoid geo/non-

geo errors, as non-location entities can generally be disregarded.

Rather than simply using the output entities from the NER system directly, we perform

a number of postprocessing steps that serve to avoid some common pitfalls with which the

Stanford NER system has trouble. These postprocessing steps are executed sequentially

and act as entity filters. For example, we found that some output entities were fragmented,
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in that the boundaries were chosen incorrectly, erroneously including or excluding nearby

tokens, and we created filters to address this and other problems. Each filter is described be-

low. Note that scores and score thresholds mentioned in each filter’s description correspond

to scores assigned by the Stanford NER package.

The following sections contain examples of entities presented within their textual con-

text. For ease of presentation, we visually distinguish these entities using brackets. For

example, in the text “In [College Park], the mayor. . . ”, “[College Park]” refers to the entity

under consideration, while the surrounding text serves as context. Capturing the distinction

between entity and context will be important for several filters described below.

4.1.5.1 Boundary Expansion

Oftentimes, the NER system will find an entity in the proper context, but select the en-

tity boundaries incorrectly. For example, it may select “Equatorial [Guinea]” rather than

the correct “[Equatorial Guinea]”. In this example, the selected entity was correct, but the

boundaries were not correct. Furthermore, the specific context in which an entity was found

can effect how the NER system selects boundaries for the entity. In other words, the NER

system may extract e1 “[Equatorial Guinea]” in one part of the document, and e2 “Equa-

torial [Guinea]” in another, simply due to the linguistic context in which e1 and e2 were

found. This filter attempts to correct these fragmentation errors by expanding entity bound-

aries using other entities found in the text. In particular, we try to expand entities that

are substrings of other entities. In our example, we expand e2 (“Guinea”) to “Equatorial

Guinea” because e2’s preceding token, “Equatorial”, matches the initial portion of e1. Note

that we do not expand across sentence boundaries.

In general, to accomplish this entity boundary expansion, we search for entities that are

substrings of other entities. We say that an entity e1 dominates another entity e2 if e2 is a

substring of e1. First, we group entities together based on domination, so that entities which

are substrings of each other are grouped together. Algorithm 4.1 provides a pseudocode
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Algorithm 4.1 Group entities according to dominance.

1: procedure GROUPENTITIES(E)

input: List of entities E

output: Set of entity buckets B

2: Initialize set of entity buckets B ← {}
3: Sort entities E by decreasing length

4: for i← 1 . . . |E| do
5: for k ← 1 . . . |B| do
6: if HEAD(Bk) dominates Ei then

7: Bk ← Bk ∪ Ei

8: break to next i

9: else if Ei dominates HEAD(Bk) then
10: Bk ← Bk ∪ Ei

11: HEAD(Bk)← Ei

12: break to next i

13: end if

14: end for

15: Add new bucket b to B with HEAD(b) = Ei

16: end for

17: return B

18: end procedure

listing for this procedure, named GROUPENTITIES. The output for GROUPENTITIES is

a set of entity buckets B, with each bucket b containing a set of entities, one of which

dominates all entities in b and is designated b’s bucket head, and is denoted HEAD(b). After

initializing the set of output buckets B (line 2), we sort the entities in decreasing order of

length (3). We iterate over each entity Ei and bucket Bk—note that initially, since |B| =

0, the inner loop is not entered when i = 1 (4–16). First, we check whether HEAD(Bk)

dominates Ei, and if so, we add Ei to Bk (7). Otherwise, if Ei dominates HEAD(Bk), we

add Ei to Bk, and set HEAD(Bk)← Ei (11), since the dominance property is transitive and

hence Ei will also dominate all entities in Bk. If we find an appropriate bucket b for Ei, we

continue with Ei+1; otherwise, we create a new bucket b with HEAD(Bk) = Ei, and add b

to B (15). Eventually, all entities in E will have been placed into appropriate bucket.

Now that entities have been grouped into buckets based on dominance, we attempt to

expand entities within buckets. We implemented two strategies for entity expansion, which
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we term strict and loose expansion. Put simply, strict expansion means that we only expand

entities in a bucket b if they contain enough nearby tokens so that they can be expanded

to match HEAD(b). On the other hand, loose expansion attempts to expand each entity in b

using other entities in b. In particular, we compare each entity e ∈ b to each longer entity

e′ ∈ b in order of decreasing length, and we expand e to e′ if the proper nearby tokens exist

that make it equivalent to e′.

The advantage of strict expansion is that it ensures greater accuracy for expanded en-

tities, since if expansion succeeds, it is unlikely that the expanded entity is erroneous, due

to the larger number of tokens required for a successful expansion. However, strict expan-

sion’s major drawback is that the head entity of each entity bucket may be unique in the

document, affording no opportunity to correct fragmentation errors present in entities in

the bucket. That is, simply because an entity is long does not make it very relevant for the

document as a whole. For example, consider a document where the NER system collected

entities e1 “[College Park]” (correct), e2 “College [Park]” (incorrect), and e3 “[College

Park’s Fire Department]” (correct). All these entities would be placed in the same entity

bucket, with e3 as the bucket head. Under strict expansion, each of e1 and e2 would be

compared with e3 only. Neither would be expanded, which is fine for e1, but e2 would

remain unexpanded and erroneous, since it could not be expanded to match e3. However,

under loose expansion, in addition to a comparison with e3, e2 would be compared to e1

and hence would be correctly expanded due to the appropriate preceding token “College”.

To capture more of these cases, we use loose expansion in our entity expansion filter.

4.1.5.2 Entity Prefixes/Suffixes

One problem with NER systems is that entity types may be chosen incorrectly—even for

multiple instances of the same entity in the same document—due to differences in the way

that entities are referenced. This problem is also known as coreferencing. In a linguistic

context, this is known as coreferencing. For example, an article may initially mention the
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person “Paul Washington”, and simply “Washington” later, though both refer to the same

person. While the first can easily be recognized as a person due to the presence of both a

given name and surname, the second entity may be incorrectly typed as location because

it only consists of a surname that is also a common location name. Articles can also refer

to people by their given name alone, especially when mentioning childrens’ names or the

names of celebrities, since referring to a person by their given name reflects a higher level

of familiarity or empathy. At times, organization names may also be typed incorrectly, as

in “Kia Motor Cars” which is frequently referred to as simply “Kia”. The former is more

easily recognized as an organization than the latter, which may be mistaken for a person’s

name or even a location.

This filter attempts to correct these NER type errors for fragments of larger entities

found elsewhere in the document. The filter proceeds by selecting source entities from

which entity types will be propagated. The selected entities include person entities consist-

ing of at least two tokens (given name and surname), and organization entities consisting

of at least three tokens. Furthermore, only entities with scores of above 0.90 are selected,

ensuring high quality among the source entities. After selecting the source entities, the first

and last tokens are taken from each entity and associated with the source from which they

were taken. Finally, entity types are propagated to low scoring entities by searching for

entities with scores below 0.60 and containing one of the tokens extracted above. If such

an entity e contains one of the tokens t, e’s type is set to the type of the entity from which

t was taken. This procedure captures given names and surnames of person entities, as well

as the primary portion of organization names. Because only the first and last tokens of each

source entity are matched, the filter allows for partial matching of entities, which is useful

given the NER system’s penchant for entity fragmentation.
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4.2 Filtering Toponyms

After finding entities using a combination of the methods described above, we proceed with

a sequence of filters that act as postprocessing to remove potential errors. Filters are applied

in the order listed and are described in detail below.

4.2.1 Toponym Refactoring

Oftentimes, location names can be referred to in multiple ways. For example, locations of

a particular type such as “county” often have the word “County” in their names. However,

the position of “County” in the location name can vary by locale. For example, in the US,

“County” often appears as a suffix, as in “Prince George’s County”. However, counties of

Ireland often feature “County” as a prefix, as in “County Kildare”. In addition, abbrevia-

tions of “County” such as “Co.” are not uncommon in news articles. Furthermore, a specific

type of spot location frequently mentioned in local newspapers are local public and private

schools, and these may be written in any number of ways (e.g., “Walter Johnson HS”, “Wal-

ter Johnson High”). This filter’s purpose is to account for these entity name variations, and

refactor (i.e., restructure) entity names to generate extra query names that will be matched

properly in our gazetteer. The filter contains a list of regular expressions to match against

entity names, and if a match is made, suitable substitutions are performed.

Table 4.2 contains some of the entity name patterns that are refactored by this filter.

“⇒” indicates that a name matching the first pattern will be refactored to a name matching

the second pattern, with X indicating the word or phrase that is maintained. “⇔” indi-

cates that names matching the first pattern will be refactored to the second, and vice versa.

The patterns fall into four main classes: prefix abbreviations, suffix abbreviations, suffix

shifting, and school expansion. In prefix and suffix expansion, common abbreviations used

in location names are expanded. For example, “Ft. Meade” would be expanded to “Fort

Meade”. For suffix shifting, location suffixes such as “County” are shifted before and af-
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Table 4.2: Entity names modified by the name refactoring filter. Cue words are expanded

and shifted within the entity to generate new query names for each entity. Arrows indicate

the match and action performed for each pattern.

First name Second name

Co. X ⇒ County X

Dr. X ⇒ Doctor X

Ft. X ⇒ Fort X

Mt. X ⇒ Mount X

St. X ⇒ Saint X

X Co. ⇒ X County

X Twp. ⇒ X Township

X County ⇔ County X

X County ⇔ County of X

X Lake ⇔ Lake X

X Parish ⇔ Parish of X

X Township ⇔ Township of X

X SchType ⇒ X SchType School

ter the main location name, so a location such as “County Kildare” would be expanded to

“Kildare County” and “County of Kildare”. Finally, school expansion searches for partial

names of schools, which are indicated by a school name and a school type keyword, such

as “Primary”, “Middle”, “MS”, or “High”. Note that the filter may erroneously match and

expand query names for entities that are not locations. For example, “Co.” is also a com-

mon abbreviation of “Company” and as such frequently appears in business names. Thus,

“Ford Motor Co.” will be incorrectly expanded to “Ford Motor County”. However, this er-

roneous expansion will not be overly problematic as it is in keeping with our goal of high

recall in toponym recognition. That is, having erroneous query names such as “Ford Motor

County” will not cause problems because they will be corrected by the toponym resolution

procedure, either by not being present in the gazetteer, or by having little evidence for such

interpretations.
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4.2.2 Active Verbs

To distinguish between toponyms and other types of entities, we note that many entities

tend to be active, in that they perform actions (e.g., people, organizations), while locations

tend to be passive, in that they do not. For example, it would make sense for a person to

“say” something, while in general it would not for a location to “say” something. Generally,

the grammatical subject of an active voice verb can be thought of as performing the action

described by the verb. We use the part-of-speech tags assigned by the POS tagger to find

entities that perform actions, which in turn disqualifies them as toponyms.

To find active entities, the filter searches for entities followed by an active voice verb, or

by an adverb and an active voice verb. In this way, the method effectively performs a limited

shallow parsing of the sentence. For each such entity of type “LOC” (location), the type is

reset to “NNPP” (proper noun phrase). In other words, the entity is no longer considered as

a location. Note that this method does not provide evidence for a particular entity type—

e.g., determining whether such an entity is a person or organization. However, since we

are primarily concerned with distinguishing between toponyms and non-toponyms, this

lack of evidence can be overlooked. Another caveat with this method, which we do not

address here, is that it does not properly account for metonymy—toponyms that refer to

non-location entities—which will be described further in Section 4.4.

4.2.3 Noun Adjuncts

Sometimes, the correct interpretation of toponym evidence itself is in question. For ex-

ample, consider a sentence beginning: “In Russia, U.S. officials. . . ” In this sentence, both

“Russia” and “U.S.” refer to countries. However, consider that the form “Russia, U.S.”

might be mistaken for a particularly common form of evidence termed object/container

evidence, which can be briefly described as a pair of toponyms, one of which contains the

other in a geographic sense. Considering this evidence interpretation, we might erroneously

think that the phrase “Russia, U.S.” might refer to any of several populated places named
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Russia in the US in New York, New Jersey, or Ohio.

To help clear up this evidential ambiguity, we use evidence by taking note of another

grammatical concept, that of the noun adjunct. Noun adjuncts are nouns that function as

adjectives by modifying other nearby nouns. In our example sentence, “U.S.” is a proper

noun adjunct that modifies the plain noun “officials”. Because of its primary connection

with “officials” through the noun adjunct relationship, using it in object/container evidence

would not be warranted. By detecting noun adjuncts, we prevent toponyms acting as noun

adjuncts from participating in other filters used in toponym resolution. We detect them by

finding entities followed by a plain noun.

4.2.4 Type Propagation

Having grouped entities into equivalence classes in the previous step, we now leverage

these entity groups to improve the overall quality of entity and toponym recognition. Note

that in a group of entities as determined above, some entities will have more specific types

than others, due to the heterogeneous nature of our toponym recognition methods. For

example, entities found using the POS tagger (i.e., selecting proper nouns, described in

Section 4.1.4) will have an unknown type, while entities found using the NER system

(described in Section 4.1.5) will have more specific types. We propagate entity types within

each group to make the types within a group consistent, in a similar fashion as was done for

the NER system’s postprocessing. Having consistent entity types is useful because though

the entities in a group have the same referent, the context in which each entity reference

appears differs. To propagate entity types, we examine entity types within each group. If a

group g contains untyped entities as well as entities all of a single type t, we set the untyped

entities to type t. However, if there are more than one type of entities in g, the types are

not propagated. Compared with a simple type voting scheme (e.g., setting the types of all

entities in a group to the most frequent entity type), this scheme ensures a high quality of

type propagation, since conflicts disqualify type propagation.
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4.2.5 Lat/Long Assignment

Once we have groups of tokens that were recognized as potential toponyms, we assign loca-

tion interpretations to toponyms in the form of latitude/longitude values and other location

metadata by lookup into a large primary gazetteer of locations. For each toponym, we keep

all possible matches from the gazetteer. We currently use the GeoNames [43] gazetteer, a

collaborative gazetteer project which contains as of this writing over 8 million entries for

locations around the world. In addition to lat/long values, each entry contains additional

metadata that will be useful in toponym resolution (Chapters 5–7), such as feature type

(e.g., country, city, river, mountain), population, elevation, and positions within a politi-

cal geographic hierarchy. For example, the “College Park” entry contains pointers to its

containers at increasing levels of scope: Prince George’s County, Maryland, United States,

North America. We store and query the GeoNames gazetteer in a PostgreSQL database.

We also impose a default ordering for the location interpretations of individual toponyms

according to our notion of the “prominence” of location interpretations—based on their

population. GeoNames also contains over 5 million alternate names, or aliases for loca-

tions, in a variety of different languages (though we currently only process English text). In

addition to a lookup of each toponym, we also use particular cue words to perform keyword

expansion on the recognized toponyms. For example, on finding a phrase such as “X, Y,

and Z counties”, we would lookup “X County”, “Y County”, and “Z County”, rather than

simply “X”, “Y”, and “Z”. As the example shows, this expansion is necessary because re-

dundant or implied toponym types are often omitted from text where the linguistic context

makes the types clear. After this final gazetteer lookup, we have a set of toponyms with

associated location interpretations. In subsequent toponym resolution steps, described in

later chapters, we use various techniques to decide which interpretation for each toponym

is correct.
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4.3 Evaluation

We incorporated our own toponym recognition methods into the NewsStand system [143],

and compared with those of two prominent competitors: Thomson Reuters’s OpenCalais

and Yahoo!’s Placemaker. Although both OpenCalais and Placemaker are closed-source

commercial products, and do not make public how they work, they provide public Web

APIs which allow for automated geotagging of documents, with relatively liberal rate lim-

its. As a result, they have been used extensively in state-of-the-art geotagging and entity

recognition research (e.g., [3, 97, 119, 148, 156]). Placemaker provides a toponym recogni-

tion service, while OpenCalais performs recognition of toponyms, and recognition of other

types of entities as well. In addition, both OpenCalais and Placemaker are full geotagging

systems—that is, they perform toponym resolution as well. While toponym resolution is

an important problem in its own right, in this chapter, we are only concerned with topo-

nym recognition, and instead defer evaluation of toponym resolution to later chapters. As

a result, even though OpenCalais and Placemaker assign lat/long values to each toponym

reported as output, we disregard these lat/long values in our evaluation. In other words,

we use OpenCalais and Placemaker in their toponym recognition capacity only, and do

not include toponym resolution in their performance scores. Also note that at the time of

writing, neither OpenCalais nor Placemaker offered a means of tuning the precision/recall

balance, so we could not explore this aspect of the systems. From our experimental results

described in Section 4.3.4, it appears that these systems are tuned for precision, but we

could not verify this over a range of precision/recall values due to lack of tuning capability.

We continue by first describing existing geotagged corpora (Section 4.3.1). Next, we

examine toponyms in a large subset of NewsStand’s collection, as measured by our own

toponym recognition method as well as OpenCalais and Placemaker (Section 4.3.2). Then,

we describe a new corpus of annotated news articles that we created from NewsStand’s

streaming news collection (Section 4.3.3). We conclude with accuracy measurements for all

methods in two corpora of annotated news articles, and in streaming news (Section 4.3.4).
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4.3.1 Existing Corpora

To get a sense of the corpora used in geotagging research, we present Table 4.3, which

contains a listing of researchers and the corpora they used in their geotagging-related re-

search. For each corpus, we give the source and total number of annotated documents and

toponyms. In some cases, the exact numbers of documents and toponyms were not pos-

sible to determine due to lack of detail, and are shown in the table as “?”. Also note that

the sources listed in the table were often used by multiple researchers, and here we present

only an example usage of each source. The table reveals the relatively small sizes of an-

notated corpora used in geotagging research, with the number of annotated documents and

annotated toponyms having averages of about 347 and 2,811 and maxima near 1,000 and

7,000, respectively. These numbers stand in stark contrast to the huge volume of news re-

trieved by NewsStand in just a single day, which is roughly 40,000 documents and 250,000

toponyms. Furthermore, most corpora include articles from only one or two news sources,

usually newswire, which amounts to a heavily biased sample, given the variety and num-

ber of news sources and writing styles all over the world. Finally, the sources chosen for

annotation reveal a prevalent English language bias.

However, one commonality that is apparent from the values in Table 4.3 is that the aver-

age number of toponyms in each article is remarkably consistent, with each article having

7–8 toponyms with few exceptions. This range is especially prevalent for corpora consist-

ing of news articles, which is our domain of interest. One exception includes the Wikipedia

corpus of Overell and Rüger [110], with an average of 1.4 toponyms per article. However,

Overell and Rüger only considered toponyms in each article that also correspond to links

to other Wikipedia pages; since generally only the first instance of an entity mentioned in

an article is linked, this explains the seeming lack of toponyms. Other anomalous measures

are the 15.1 and 15.2 toponyms per article reported by Roberts et al. [123] and Zong et al.

[167]. In the former case these are likely due to the consideration of locations nested within

other entities as toponyms (e.g., “[New York] Police Department”). Another, unfortunate
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Table 4.3: Corpora used in geotagging-related research, showing sources, and document

and toponym counts. Note that document and toponym counts refer to annotated counts,

not total counts. Unknown values are denoted with “?”.

Work Source Docs Topos T / D

Amitay et al. [7] Web pages 600 7,082 11.8

Buscaldi and Magnini [22] L’Adige 150 1,042 6.9

Buscaldi and Rosso [23] GeoSemCor 186 1,210 6.5

Garbin and Mani [42] Gigaword 165 1,275 7.7

Gouvêa et al. [46] Folha 230 ? ?

Leidner [68] RCV1 946 6,980 7.4

Lieberman et al. [81] LGL 588 4,793 8.2

Liu and Birnbaum [84] Google News 24 33 1.4

Manov et al. [89] News 101 792 7.8

Martins et al. [97] CoNLL’02/’03 ? 2,813 ?

Overell and Rüger [110] Wikipedia 1,000 1,395 1.4

Roberts et al. [123] ACE’05 369 5,562 15.1

Sobhana et al. [136] IITKGP-GEOCORP 200 ? ?

Volz et al. [154] Reuters 250 ? ?

Weichselbraun [156] Reuters ? ? ?

Zong et al. [167] DLESE 50 760 15.2

Average 347 2,811 8.1
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commonality among the corpora used in geotagging research is that most are unavailable

due to copyright restrictions, thereby making direct algorithmic comparisons on the same

data generally not possible. In addition, a better measure for how frequently toponyms

occur in text would be the ratio of toponyms to words, which would better account for

variations in news article length. However, this data was not often presented by authors.

Nonetheless, 7–8 toponyms serves as a useful rule of thumb for the number of toponyms

expected in articles of reasonable length.

4.3.2 Toponym Statistics

Now that we have characterized typical toponym counts in news articles, our next exper-

iment determines whether NewsStand’s geotagger has performance that approaches our

expectations in terms of toponym recall. To measure performance, we sampled seven days’

worth of news from various days in November 2010, and executed NewsStand’s geotag-

ger on the news articles collected on each day. The days were chosen randomly, except

we ensured that we had at least one of each day of the week, to account for the typically

lower volume of news published on weekends. We collected articles from news feeds that

published at least five articles on each sampling day, to ensure a measure of consistency

among the collected data. Furthermore, we limited the sampling to articles with at least a

word count of 300, which ensures a reasonable minimum length for the news articles and

served to filter out erroneously-processed documents (e.g., articles that had been improp-

erly extracted from their HTML source). Sampling in this fashion resulted in filtering out

about half of each day’s articles.

For each set of sampled articles, we tabulated the total number of toponyms recognized

by NewsStand’s toponym recognition process. Table 4.4 reflects these counts. “Sources”

indicates the number of sampled news sources from which sampled articles were taken.

For each day, we include the total number of toponyms reported by our recognition method

that have at least one interpretation in our gazetteer. The last column contains the toponym-
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Table 4.4: Counts of articles, distinct sources, and geotagged toponyms for several days’

worth of news, sampled at different time periods.

Date Docs Sources Topos T / D

02 Nov 2010 27,591 2,086 207,110 7.5

06 Nov 2010 13,355 1,245 124,430 9.3

10 Nov 2010 28,795 2,182 208,366 7.2

15 Nov 2010 26,052 1,952 195,669 7.5

19 Nov 2010 24,193 2,018 173,630 7.2

23 Nov 2010 26,937 2,067 194,804 7.2

28 Nov 2010 14,245 1,250 148,996 10.5

document fraction—the number of toponyms with gazetteer interpretations over the num-

ber of sampled articles containing those toponyms.

We make several interesting observations from these statistics. First, and most impor-

tantly, we see that the majority of sampled days have toponym fractions between 7.2 and

7.5, which fall precisely in our expected range of 7–8 toponyms. The outliers of 9.3 and

10.5 are not totally unexpected given that they were measured on weekends which imply a

different pattern of news publication. Overall, the measured toponym fractions are strong

indications that our toponym recognition method identifies an appropriate number of topo-

nyms. Next, in examining the number of articles and sources, the numbers show that our

sampling resulted in a large number of articles from a variety of sources on each day, which

demonstrates the extreme variety in our article samples. This stands in contrast to the small

size and homogeneity of corpora used in previous geotagging-related research (described

in Section 4.3.1), and the large number and variety of articles lends weight to the credence

of our measured toponym fractions.

This evaluation method can be easily applied to very large collections of articles, mak-

ing it ideal for continual testing of performance on streaming and ever-changing collections

of news. Of course, it says nothing of how many of the toponyms are correct, which is ad-

dressed in Section 4.3.4.
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4.3.3 CLUST: A New Corpus of Streaming News

As outlined in Section 4.3.1, existing corpora used in geotagging research tend to have

small sizes and are usually only from one or two news sources, and these deficiencies limit

their power in characterizing toponym recognition performance. As a result, we leveraged

NewsStand’s constantly streaming news data to create our own corpus. We used two cor-

pora in our evaluation. For the first corpus, we used LGL, introduced in previous work [81]

and used for evaluating toponym resolution on the local scale. This corpus consists of 621

articles from 114 local newspapers, with a total of 4,765 annotated toponyms. The cre-

ation and content of LGL is described in more detail in Chapter 6, but we provide a brief

overview here. The goal in creating LGL was to create a collection of news from smaller

news sources, rather than the major news sources typically used in creating article corpora,

since the former significantly outnumber the latter on the Web. As a result, LGL is useful

for testing the accuracy of our toponym recognition method for a variety of smaller news

sources. However, it does not capture the larger, major news stories that are often described

and published in multiple news sources. Note that these major news stories naturally form

clusters in NewsStand, and it is not unusual to have clusters of 100, 200, or even 1,000

articles for especially major and ongoing news stories.

To capture these stories, we created another corpus consisting of sizable clusters of

news articles found by NewsStand, and termed CLUST. To create CLUST, we selected

clusters that had sizes of 5–100 articles, and contained articles from at least four unique

news sources. The clusters were sampled between January and April 2010. This sampling

strategy ensures reasonable cluster sizes which allows for enough variation among arti-

cles in the cluster. Furthermore, having multiple news sources ensures that different news

sources are used, rather than many copies of the same article everywhere, which might re-

sult from erroneous preprocessing. In total, we sampled 1,080 clusters containing a total

of 13,327 news articles, from 1,607 distinct news sources. For each cluster, we randomly

selected one article for manual annotation, resulting in 1,080 annotated articles containing
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11,962 toponyms, with a median of 8 toponyms per article. Because multiple news sources

and by extension their audiences are represented in each cluster, we expect the stories in

CLUST to have more journalistic impact, as well as a wider geographic significance, than

the stories in LGL.

Table 4.5 summarizes and compares statistics for the LGL and CLUST corpora. CLUST

has roughly twice as many annotated articles, and toponyms, as LGL. However, the most

striking difference between LGL and CLUST is the composition of toponym types in

each corpus. Since LGL was created as a corpus of articles from smaller newspapers, and

CLUST as a corpus of larger news stories, we expect the toponyms in LGL to correspond to

smaller places, and those in CLUST to correspond to larger places. The type statistics in Ta-

ble 4.5 reflect these expectations. Nearly half of annotated toponyms in LGL correspond to

cities, and of those toponyms, two-thirds are cities under 100,000 population. On the other

hand, CLUST, consisting of larger news stories, has only 33% of toponyms corresponding

to cities, and of those toponyms, nearly two-thirds are cities over 100,000 population. In

addition, the fractions of country and state toponyms in CLUST are larger than those in

LGL, while the fraction of county toponyms in LGL is larger than those in CLUST. These

measurements reflect our motivations for using LGL and creating CLUST, and show that

these corpora, used together, allow for an effective evaluation on both smaller and larger

news stories from a variety of news sources.

Next, we characterized the geographic distribution of annotated toponyms in LGL and

CLUST. Figure 4.1 contains two maps of toponym lat/long values present in the annotated

articles of LGL and CLUST. The maps show a clear bias toward English-speaking areas,

which reflects NewsStand’s English bias. Despite this bias, the map illustrates that our

corpora contain toponyms from all over the world, and experiments on these corpus will

show the toponym recognition method’s effectiveness for a variety of geographic areas.
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(a) LGL

(b) CLUST

Figure 4.1: Geographic distribution of annotated toponyms in the LGL and CLUST cor-

pora.
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Table 4.5: Content of the LGL and CLUST corpora, used for evaluating recognition accu-

racy.

LGL CLUST

Articles 621 13,327

News sources 114 1,607

Annotated docs 621 1,080

Annotated topos 4,765 11,564

Distinct topos 1,177 2,320

Median topos per doc 6 8

Location types:

Total topos 4,765 11,564

City 2,287 3,837

≥ 100k pop 756 2,377

< 100k pop 1,531 1,460

Country 911 3,540

State 784 2,487

County 525 519

4.3.4 Toponym Accuracy

Having established the credibility of our two evaluation corpora, we next examine our

toponym recognition method’s accuracy and compare its performance to that of OpenCalais

and Placemaker. For each of NewsStand, OpenCalais, and Placemaker, we consider two

versions of each method: the original algorithm, referred to as, e.g., “NewsStand”, and the

original algorithm with a postprocessing filter that removes output toponyms if they have

no interpretations in our gazetteer, denoted with a subscript G, e.g., “NewsStandG”. By

doing so, we determine the effect of using a gazetteer on toponym recognition, as well as

characterize to some extent the gazetteers used by OpenCalais and Placemaker.

Like many natural language and text processing problems, toponym recognition perfor-

mance can be cast in terms of two widely-used measures called precision and recall [153].

For a set of ground truth toponyms G and a set of system-generated toponyms S, precision
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and recall are defined as:

P (G,S) =
|G ∩ S|

|S|
, R(G,S) =

|G ∩ S|

|G|

Put simply, precision measures how many reported toponyms are correct, but says nothing

of how many went unreported. In contrast, recall measures how many ground truth topo-

nyms were reported and correct, but does not indicate how many of all reported toponyms

are correct.

An ideal toponym recognition system would have perfect precision and recall. How-

ever, implementations of such systems often exhibit a tradeoff between precision and recall

that can be adjusted by tuning one or more system parameters. To illustrate this tradeoff,

consider a toponym recognition system that finds and reports toponyms from an article,

along with a confidence score indicating its level of certainty that the reported toponym is

correct. The system’s output can then be filtered using a threshold score St by dropping

output toponyms whose confidence scores fall below St. Precision can be favored by set-

ting St to a large value, while recall is favored with a small value of St. Thus we see that

St can be varied according to which measure is more important for a given application.

In our geotagging system, toponym recognition precedes toponym resolution. Thus,

the toponym recognition stage has the effect of providing an upper bound on the recall for

the entire geotagging process, since toponyms can only be resolved correctly if they were

recognized. We therefore seek to maximize the recall for this stage, possibly at the expense

of precision errors. In our toponym resolution stage, we make use of local lexicons and

other contextual clues to improve toponym resolution precision (see Section 6.2).

To combine these measures into a single score, we rely on another commonly-used

derived measure, the Fβ-score [153]:

Fβ =
(β2 + 1)PR

β2P +R
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The Fβ-score allows us to allocate the importance between precision and recall via the β

parameter. For example, F0.5 allocates more importance to precision, as might be needed

for an information retrieval application for the general public, while F2 allocates more

importance to recall, which might be needed for expert data analysts who can tolerate

precision errors. To combine precision and recall into a single measure for comparative

purposes, we use the F1-score [153], which is simply the harmonic mean of P and R:

F1 =
2PR

P +R
.

In addition, we consider two different criteria for determining whether a ground truth

toponym g matches a system-generated toponym s. The first, termed exact matching, states

that g and s are equivalent if the starting and ending offsets of each are equal. The second,

termed overlap matching, relaxes this criterion by allowing g and s to simply overlap in

their offset ranges for them to match. Both are useful in characterizing the performance

of toponym recognition. Exact matching could be considered the gold standard for mea-

suring performance. However, overlap matching is sometimes necessary to avoid improper

penalization due to gazetteer differences and other factors. For example, consider a ground

truth toponym “[New York state]” and system-generated “[New York] state”, which is cor-

rect, but is not an exact match and is an overlap match. Overlap matching serves a similar

purpose as methods such as BLEU [111], in that partial matches are not overly penalized.

We measured all algorithms’ performance over both the LGL and CLUST corpora. Ta-

ble 4.6 contains results for the LGL corpus. In addition, for |G ∩ S|, P , and R, exact and

overlap matching are reported as two numbers in the table in “E/O” form (|S| is unaffected

by the matching method used). Comparing NewsStand against OpenCalais and Placemaker

reveals that both NewsStand variants greatly outperform their competitors in terms of to-

ponym recall, having at least 0.10 and in some cases 0.20 or higher recall over OpenCalais

and Placemaker, when measured using both exact and overlap matching. NewsStand’s high
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Table 4.6: Toponym recognition performance for the LGL corpus (|G| = 4,765). In all

cases, the NewsStand variants have highest toponym recall.

|S| |G ∩ S| P R

(E/O) (E/O) (E/O)

NewsStand 23,345 3,879/4,645 0.166/0.199 0.814/0.975

NewsStandG 5,960 3,619/3,738 0.607/0.627 0.759/0.784

OpenCalais 1,959 1,830/1,871 0.934/0.955 0.384/0.393

OpenCalaisG 1,873 1,757/1,791 0.938/0.956 0.369/0.376

Placemaker 4,593 3,129/3,683 0.681/0.802 0.657/0.773

PlacemakerG 3,796 3,013/3,112 0.794/0.820 0.632/0.653

recall comes at the expense of toponym precision; however, remember that in NewsStand,

toponym recognition is only considered one stage of an integrated geotagging process, and

toponym precision is restored by later stages of processing. The gazetteer postprocessing

done for NewsStandG demonstrates this effect, dramatically improving precision with little

corresponding decrease in recall. In addition, as mentioned earlier, our geotagging pro-

cedure is based on that of Lieberman et al. [81], who report a precision over 0.80 and

correspondingly high recall for LGL, thus showing that precision is indeed restored.

Examining OpenCalais’s and Placemaker’s performance, we see that these methods are

much more biased toward toponym precision at the expense of recall, which is taken to the

extreme in the case of OpenCalais (i.e., at least 50% less than NewsStand). Note that News-

Stand and Placemaker are comparable in terms of F1-score, while OpenCalais’s is lower,

illustrating the potential precision/recall tradeoff. Also, performing gazetteer postprocess-

ing for OpenCalaisG has little effect, while for PlacemakerG, a significant boost in precision

is noted using exact matching, along with a significant decrease in recall when using over-

lap matching. These results seemingly indicate that Placemaker’s toponym matching rules

differ from our own, though we cannot be sure due to the closed-source nature of Place-

maker. Examining differences between exact and overlap matching, we see that NewsStand

and Placemaker are significantly affected by allowing overlap matches, while OpenCalais

and all the gazetteer-filtered algorithms (i.e., NewsStandG, OpenCalaisG, PlacemakerG) are
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mostly unaffected. For NewsStand, this is likely due to dropping many non-toponyms that

were selected by NewsStand’s filters (e.g., proper noun phrases not present in the gazet-

teer). Comparing |S| of NewsStand and NewsStandG, a very large number of toponyms

were dropped by the gazetteer filtering, which accounts for the hefty precision increase.

For Placemaker, gazetteer and matching differences can account for the performance dif-

ference.

Table 4.7 contains performance results for the CLUST corpus. The NewsStand algo-

rithms again outperform their competitors in terms of recall, by an even larger margin than

was seen for LGL, while OpenCalais and Placemaker are tuned for toponym precision. In

addition, examining differences between LGL and CLUST, we see that the performances

scores for CLUST are generally higher across all algorithms than the corresponding scores

in LGL, with the only exception being Placemaker’s recall. This difference indicates that

in some sense, CLUST’s toponyms are easier to recognize than those of LGL, likely due to

the greater presence of large, easily recognized toponyms such as country names.

4.3.5 Streaming Evaluation

We have shown that NewsStand’s multifaceted toponym recognition procedure has a high

recall for articles from both small, local news sources (LGL) as well as larger, better-

known sources (CLUST). However, measuring performance over an entire static corpus

Table 4.7: Toponym recognition performance in the CLUST corpus (|G| = 11,564). As

with LGL, NewsStand had highest recall.

|S| |G ∩ S| P R

(E/O) (E/O) (E/O)

NewsStand 44,184 10,243/11,330 0.232/0.256 0.886/0.980

NewsStandG 13,589 9,909/10,036 0.729/0.739 0.857/0.868

OpenCalais 6,452 6,208/ 6,326 0.962/0.980 0.537/0.547

OpenCalaisG 6,060 5,843/ 5,941 0.964/0.980 0.505/0.514

Placemaker 9,796 6,782/ 8,549 0.692/0.873 0.586/0.739

PlacemakerG 7,466 6,469/ 6,593 0.866/0.883 0.559/0.570
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does not well reflect day-to-day toponym recognition performance on a constant stream of

news data. To better characterize day-to-day performance, we split the CLUST corpus into

weekly samples of articles, and measured precision and recall for NewsStandG using over-

lap matching over each sample. Effectively, this test determines whether the NewsStand

method would perform well if executed within that time range.

Figure 4.2 shows the performance of our toponym recognition procedure on the CLUST

corpus, measured over time. Performance in terms of both precision and recall is relatively

consistent over all time periods tested, with a mean of 0.739 precision and 0.868 recall. In

addition, the standard deviations of precision and recall are 0.029 and 0.018, which serve

as further evidence of the method’s performance stability. These results indicate that the

NewsStand toponym recognition process is well suited for streaming news.

4.4 Open Problems

Recall that our multifaceted toponym recognition procedure includes methods for recogniz-

ing active verbs following entities, and disqualifying the entity as a location if it is followed

by an active verb. For example, for the phrase “[Paris] said”, we would consider “Paris” to

be a non-location, since in general, locations do not perform actions, while other entities

do, such as people and organizations. However, this method has a significant caveat in

that it does not properly account for metonymy associated with toponyms. Metonyms are a

frequent occurrence in articles about, for example, local or international politics, where a

government may be referred to by the city of its primary geographic presence. For example,

toponyms such as “Washington”, “Westminster”, and “Hollywood” do have location inter-

pretations, but are often used to refer to non-location entities—i.e., the US Government,

the UK Parliament, and US cinema, respectively. These organizations can be considered

active entities, as opposed to passive locations. As a result, in a sentence such as “Wash-

ington stated on Monday. . . ”, “Washington” would be disqualified as a toponym. However,

we note that repeated instances of “Washington” would likely provide a means of correct-
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Figure 4.2: Toponym recognition performance for the CLUST corpus measured over time.

ing this error, as metonymic references are relatively uncommon in text [71]. As a result,

additional instances of “Washington” would not likely be metonymic, and could be used

to correct the earlier error through a voting scheme. Alternatively, we could incorporate

a metonymy recognition method into this filter, such as that proposed by Leveling and

Hartrumpf [71].

Additionally, we could leverage other tools from natural language processing, in partic-

ular by performing a shallow parse of each sentence, resulting in groups of nouns, verbs,

and other relatively simple structures. Shallow parsing creates additional linguistic struc-

ture which can be used in geotagging algorithms, to create groups of tokens that is a step

above the simple tokenization that we currently perform, all while retaining relatively good

structural accuracy as compared to full sentence parsing. Such parsing would allow associ-

ation of verbs with their subjects, which would further aid in correct toponym recognition.

Also, by extracting sentence clauses, we make evidential ties between toponyms present in

the same clause. In our example fragment “In [Russia], [U.S.] officials. . . ”, “Russia” and

“U.S.” are present in separate clauses, which would preclude their incorrect association.
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Further, we plan to perform a more in-depth investigation of the individual components

of toponym recognition used in our procedure, to determine their overall utility, as well as

their performance for specific classes of toponyms (e.g., countries, states, large cities). We

could also incorporate additional rule-based filtering into a framework such as ANNIE [31],

which contains facilities for rule-based matching via grammars. We also plan to investigate

our heuristics’ use within other NLP applications, such as coreference analysis [98], to

determine their suitability in this domain, as well as incorporate them within a machine

learning framework. Our toponym recognition methods could be recast in terms of these

frameworks, which would allow easy extension and modification for matching parameters.

4.5 Summary

In this chapter, we introduced a toponym recognition method that serves as the initial step

of a two-part geotagging process, and is followed by the toponym resolution methods de-

scribed in Chapters 5–7. This multifaceted toponym recognition method is especially suited

for the streaming news domain, which poses special challenges. In particular, streaming

news is constantly in motion and ever-changing, which advises against the sole use of

methods based on static corpora of news. Our recognition method involves many sources

of evidence, and in our evaluation, was shown to outperform its competitors in terms of

toponym recall, the crucial measure of success.
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Chapter 5

Comma Groups

In Chapter 4, we described our methods of multifaceted toponym recognition—that is, dis-

covering which words in the article correspond to location names—which serves as the

first part of a two-stage geotagging process. Here, we shift our attention to toponym res-

olution—choosing the correct geographic interpretation for each toponym—and explore

different types of evidence used by writers to express geographic information about topo-

nyms.

As outlined in Chapter 1, many systems and methods have been developed for geo-

tagging text. These methods tend to apply a variety of heuristics modeled on the evidence

typically provided by document authors to help their human readers recognize and resolve

toponyms. For example, one very common technique is to search the text for names of es-

pecially large or populous places (e.g., country names), as listed in an external database of

geographic locations, and resolve them immediately. Another common strategy is to recog-

nize “object/container” pairs of toponyms within the text (e.g., “Paris, France”). Of course,

these and other strategies cannot be used in isolation because of the significant potential for

errors. Consider the following opening sentence from a news article [44] in the Paris News,

a small newspaper based in Paris, Texas:

Madison Sikes, a 5-year-old from Paris, is receiving one Christmas present

early this year.

Clearly, resolving “Paris” to the most populous interpretation in France would result in an
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error, and additional information is needed to resolve it correctly—in this case, using other

toponyms in the article, or using information about the source newspaper’s geographic

location. More evidence is needed for most such heuristics used in geotagging text.

In this chapter, our aim is to recognize and resolve toponyms organized using another

method commonly employed by authors: lists, which for the purposes of exposition we

refer to as comma groups (though commas need not always separate list items). Comma

groups are a natural way to organize groups of related information. In fact, we note that

each comma group unifies the entities it contains through a common thread—attributes

that are shared by all entities in the group. This reasoning leads to our observation that

for comma groups of toponyms, these common threads greatly aid in resolving the topo-

nyms correctly. For example, despite each toponym in the comma group “Rome, Paris,

Berlin and Brussels” having many possible interpretations (over 40, 60, 130, and 10, re-

spectively), the common thread of large, prominent capital cities allows us to select the

correct interpretations. Similarly, the group “Hell’s Kitchen, Chinatown, Murray Hill, Lit-

tle Italy, and SoHo”, despite containing individually ambiguous location names, exhibits

the common thread of neighborhoods in southern Manhattan, New York City, and this al-

lows their correct resolution.

Furthermore, and even more importantly, we observe that unlike typical forms of heuris-

tic evidence used in recognizing and resolving toponyms, comma groups are often self-

specified, in that they can be resolved reliably and accurately by inferring their common

threads. That is, for a comma group of toponyms, if the common thread is identified cor-

rectly, the group’s toponyms can be resolved without relying on other, potentially erroneous

toponym resolutions made in the rest of the document. This identification is made easier

because of the large number of toponyms in the comma group (three or more). Since all

toponyms exhibit the group’s common thread, each additional toponym acts as another

sample against which a potential common thread can be compared. These comparisons are

especially useful for large comma groups of five, ten, or even twenty toponyms, which are
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not uncommon in a variety of text documents on the Web. Thus, despite their seeming triv-

iality, comma groups deserve special attention when geotagging documents, because they

offer a means of high quality toponym resolution.

In this chapter, we study comma groups in their own right. We describe methods to rec-

ognize comma groups of toponyms and to identify their common threads to effect correct

toponym resolution. To do so, we first recognize comma groups of toponyms (Section 5.1)

by searching for toponyms in the input text using several methods developed for geotagging

text, and then finding toponyms joined by suitable separator tokens. Next, we resolve these

comma groups (Section 5.2) by identifying their common threads using one of three heuris-

tics based on the geographic attributes of each group’s contained toponyms: their promi-

nence, their proximity, and sibling relationships in a geographic hierarchy. Being heuristic

in nature, these techniques do result in errors from time to time, and for each heuristic we

provide examples of successes and errors found in news articles taken from the NewsStand

system [143] (Chapter 3). We also present the results of a comma group usage evaluation

(Section 5.3) for a sampled portion of a large dataset of news articles collected over a two

month period from online news sources, indicating the utility of each heuristic for recog-

nizing and resolving comma groups of toponyms. In particular, the proximity and sibling

heuristics play a large role in recognizing and resolving comma groups of toponyms. Fi-

nally, we present some open problems related to this work (Section 5.4) and conclude the

chapter (Section 5.5).

5.1 Comma Group Recognition

Our comma group recognition process is intended as a way to find comma groups of en-

tities, regardless of the entities’ types. Later, in our comma group resolution procedure

(Section 5.2), we determine whether comma groups contain toponyms or non-toponyms,

and if they contain toponyms, to choose the correct interpretations of each toponym using

comma group heuristics. Note that prior to recognizing comma groups, we perform a topo-
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nym recognition step and assign lat/long values for interpretations from our gazetteer, both

of which are described in detail in Chapter 4.

We employ several strategies to recognize comma groups, drawing on a variety of inter-

nal linguistic structure and external knowledge sources. In general, we found that the more

sources of evidence used for recognizing toponyms and comma groups, the better the final

results will be. In other words, toponym and comma group recognition most benefit the

entire comma group geotagging process by having high recall at the cost of precision—that

is, reporting as many potential comma groups as possible, even potentially erroneous ones.

Furthermore, because written language found on the Web and in hidden Web text reposito-

ries varies in the way that comma groups are written (e.g., “X and Y and Z” versus “X, Y,

and Z”), some looseness in toponym and comma group recognition rules is also warranted.

Our recognition procedures reflect this requirement.

Our comma group recognition process searches for groups of three or more toponyms,

all separated by suitable separator tokens, and all in the same sentence. The separator tokens

used include commas and conjunctions, such as “and” and “or”. At times, articles such

as “the” and “a” also appear before toponyms in comma groups, such as in “France, the

USA, and Singapore”. These words are also allowed after separator tokens by our group

recognition rules. Despite its simplicity, this recognition process is fairly robust to errors

because of the requirement for multiple toponyms in the group. Furthermore, it is not used

in isolation, but is the first step in a combined recognition and resolution process. In other

words, groups of toponyms erroneously tagged as comma groups will be filtered in the

comma group resolution stage (Section 5.2), when no suitable common thread can be found

for the comma group.

To ease our exposition, we present pseudocode for our group recognition algorithm,

named FINDCOMMAGROUPS and listed as Algorithm 5.1. Input for FINDCOMMAGROUPS

includes an input document and list of toponyms T recognized for the sentence under con-

sideration, and it produces a set of comma groups O as output. To find the groups, toponyms
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Algorithm 5.1 Find comma groups.

1: procedure FINDCOMMAGROUPS(E)

input: Input document, list of toponyms T

output: Set of comma groups O

2: E ← SORTBYSTARTOFFSET(T )
3: G← {T1}
4: for i← 2 . . . |T | do
5: if SUITABLESEPARATOR(Ti, G−1) then
6: G← G ∪ {Ti}
7: continue

8: end if

9: O ← O ∪ {G}
10: G← {Ti}
11: end for

12: O ← O ∪ {G}
13: return {g ∈ O : |g| ≥ 3}
14: end procedure

are first sorted by their starting offset position within the document (represented by SORT-

BYSTARTOFFSET in line 2). A single pass is then made through the toponyms in order of

increasing offset, creating comma groups along the way (4–11). In the loop, G refers to the

current comma group that we are constructing, and is initialized to the first toponym T1 (3).

For each toponym Ti, we check whether Ti is separated from the last toponym added to G

(denoted as G−1) by suitable separator tokens, i.e., a comma or coordinating conjunction

(shown as SUITABLESEPARATOR in line 5), and if so, we add Ti to G and continue with

the next toponym (6–7). Otherwise, we terminate the comma group G, adding it to the

output set O, and reinitialize G to the single toponym Ti (9–10). After all toponyms have

been examined and groups added to O, we simply return the groups in O with at least three

toponyms as true comma groups, and disregard the rest (13).

FINDCOMMAGROUPS makes one pass over the toponyms T and thus has runtime

O(T ). Also note that FINDCOMMAGROUPS does not impose strict rules on the individual

group separators used: Any combination of separators are allowed in constructing comma

groups, so that “V, W and X, Y, or Z”, “X or Y or Z”, and “X, Y, and Z” would all be recog-

nized and analyzed. This reasoning contrasts with a recognition process that, e.g., searches
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for toponyms strictly of the form “X, Y, and Z”. Furthermore, our process does not consider

differences in the particular conjunctions, articles, or other separators being used. That is,

“and” is equivalent to “or” for the purposes of comma group recognition.

However, for comma group recognition, the above looseness is intentional and is nec-

essary because of the difficulty in predicting the way individual authors construct comma

groups. Various writing styles and editorial standards dictate a surprising variety of ways

in which comma groups are written, even for the relatively limited domain of news articles.

However, as noted earlier, enough evidence is given by the multiple toponyms in comma

groups to choose the proper interpretations for spatial comma groups, and incorrect inter-

pretations can be quickly filtered.

Furthermore, this comma group recognition procedure is not necessarily exclusive of

other types of recognition processes. Geographic language and spatial forms abound in

most news articles and in many other document domains. For example, another common

type of geographic evidence that appears frequently in the news is the “object/container”

form, where a geographic place is suffixed by its container, as in “Zurich, Switzerland”.

Clearly, this type of evidence overlaps and may be confused with comma groups, since

their separators (commas, conjunctions) and toponyms may coincide. Authors also mix

comma groups with object/container forms, as for “Chicago, Atlanta, Louisville, Ky., and

Buffalo, N.Y.”. We present further examples of mixed evidence used in comma groups

in the comma group resolution section (Section 5.2). Therefore, in a system for correctly

geotagging this text, the process of recognizing and resolving comma groups should be

done in parallel with other processes for examining different types of evidence, and the

most-evidenced result used for output.

5.2 Comma Group Resolution

Resolving comma groups amounts to finding the common thread binding the group to-

gether. Finding this common thread may be quite difficult for an arbitrary comma group, as
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the contained entities may be of any type and have any connection. However, for comma

groups of toponyms, the situation is more manageable, as we have observed that for much

text on the Web, toponyms related through comma groups tend to share geographic at-

tributes as well. As a result, our strategy for resolving comma groups involves check-

ing whether the toponyms in each group follow particular toponym heuristics. In Sec-

tions 5.2.1–5.2.3, we present three heuristics harnessing useful geographic attributes of

location interpretations for toponyms in comma groups:

1. Prominence of location interpretations, based mainly on population, where larger is

better;

2. Proximity in terms of the geographic distance between location interpretations, where

closer is better;

3. Sibling location interpretations that share a parent in a geographic hierarchy.

To resolve toponyms in a comma group, we check the toponyms using each of these heuris-

tics in the order listed, stopping when we find a set of location interpretations that satisfies

the heuristic under consideration. If no such interpretations are found for any of the three

heuristics, we consider the comma group to contain non-toponyms.

Note that our resolution checks are done without knowing the true types of entities in

each comma group. However, if the entities in the group truly are toponyms, their types

will be readily apparent due to the mutual evidence imparted by the heuristic checks. That

is, the evidence given by location interpretations of toponyms in comma groups tends to

be apparent, and hence it is difficult to mistake non-toponym comma groups for toponym

comma groups and vice versa. Furthermore, the geographic evidence for particular inter-

pretations of the toponyms is mostly independent of global or external evidence such as the

overall geographic focus of the document being geotagged. That is, the comma group can

be thought of as a highly local, self-specified form of geographic evidence. Furthermore,

these interpretations are much clearer with a large number of entities in the comma group,
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since the additional toponyms and toponym interpretations serve as more evidence toward

a location interpretation of the comma group. Large comma groups of five, ten, and even

twenty toponyms are not uncommon in textual domains such as news articles.

In addition, for each of our three heuristics described in the following sections, we

provide several examples of comma groups in news articles from the NewsStand system

(Chapter 3) that were resolved using the heuristic, including examples of where an initial

geotagging using the heuristic caused toponym resolution errors. These examples are in-

tended to illustrate that our heuristics, while useful for a large number of comma groups

found in text, are not infallible and are not intended to be used completely in isolation from

additional geographic evidence. The resolution errors presented here were later fixed using

additional evidence, such as additional gazetteers and geographic information about the

source document, and we describe how each was addressed.

5.2.1 Prominence

Our first test is for collective prominence of location interpretations within the comma

group. This prominence check is intended to select interpretations in the global lexicons

(see Chapter 6) of most readers—that is, locations that would be known to a majority of

readers without additional qualifying evidence. For the purposes of this work, we deem

continents, countries, and other places with a population greater than 100,000 as “promi-

nent”. We check whether all toponyms in the group have a prominent location interpreta-

tion, and if so, resolve the toponyms in the group accordingly.

Obviously, this definition of prominence based primarily on population has its prob-

lems, as many large places around the world would not be considered prominent and lead

to erroneous location interpretation selection when used with large gazetteers. For example,

for US readers, “Salem” would most likely be interpreted as a city in Massachusetts (fa-

mous for the eponymous witch trials of the late 17th century) or as the capital of Oregon.

However, the most populous interpretation of “Salem” is actually a city in Tamil Nadu,
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India, with over 1.5 million population. This India interpretation dwarfs those of Mas-

sachusetts and Oregon, which have about 40,000 and 150,000 residents, respectively. From

this example we see that the concept of prominence is more nuanced than simply raw pop-

ulation, and that a more involved measure is needed to capture these cases.

Note that simply checking for consistent—i.e., prominent—interpretations of all topo-

nyms in the group will be problematic for large comma groups. As the number of toponyms

in the group increases, the likelihood also increases that one or more toponyms will not be

matched properly, due to a variety of reasons. For example, the gazetteer may be incomplete

and not contain location records for a given toponym, or it may not contain all aliases of a

given toponym, such as “Big Apple” when referring to New York City. Other mismatches

can result from typos, misspellings, and other language errors, which, though uncommon

in the news articles we examined, did appear from time to time.

To account for these possibilities, note that the requirement for all comma group topo-

nyms to have a prominent location interpretation is overly strict. For example, if we found

18 of 20 toponyms in a comma group have a prominent interpretation, we should still con-

sider the comma group as one of prominent locations. In particular, if we find a subset Gp

of the toponyms G in the comma group that have a prominent location interpretation, such

that
|Gp|

|G|
≥ 0.75, we resolve each toponym in Gp to its prominent interpretation, and sup-

press all interpretations for the remaining toponyms Gp = G \ Gp as erroneous. In other

words, for the toponyms in Gp, we do not choose e.g. the most populous interpretation, but

instead do not report them as locations. This suppression may result in geotagging recall er-

rors, since the toponyms in Gp go unreported. However, given that comma group evidence

is self-specified, and that we have determined the comma group’s common thread of promi-

nent locations, suppressing these non-prominent interpretations is a reasonable action. This

action also avoids potential precision errors, which are undesirable for casual usage.

Figure 5.1 contains several examples of prominence comma groups from various sam-

pled news articles and containing a variety of prominent locations around the world. The
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Shot in Las Vegas, Mumbai, New Mexico and Los Angeles, Kites also stars

. . .

. . . as well as distinctive parks in Boston, Detroit, Milwaukee, Chicago, Atlanta,

Louisville, Ky., and Buffalo, N.Y.

. . . in and around Louisville and Lexington, Kentucky, Nashville and Cordova,

Tennessee, Richmond, Virginia, Fort Lauderdale and Orlando, Florida, Indi-

anapolis, Indiana and Atlanta, Georgia.

Figure 5.1: Examples of prominence comma groups.

first example comes from an article [145] in The Hindu about a movie called Kites and

contains a comma group of prominent locations where the filming took place. Notice that

this group’s locations are well-known, prominent places, rather than sharing geographic

characteristics such as proximity or containment. The second example, taken from an Asso-

ciated Press article [114] about the landscape architect Frederick Law Olmstead, mentions

multiple US cities in which Olmstead designed urban parks. In addition to having promi-

nent cities, this comma group contains two object/container references, namely “Louisville,

Ky.” and “Buffalo, N.Y.” which were resolved separately. This example illustrates the mixed

forms of location resolution evidence that sometimes appear together—in this case, comma

group and object/container. Our final example, from a press release [106] posted in the

Earth Times online newspaper, shows where relying on prominence evidence alone can

go wrong. This document contains another mixture of comma group and object/container

evidence that caused our geotagger to erroneously tag “Cordova” to Córdoba, Spain, in-

stead of the correct interpretation of Cordova, Tennessee. The error was caused by initial

improper recognition of the type of evidence intended to be used to resolve the locations in

the comma group. However, note that this comma group as written is difficult to parse even

for humans, and especially so for humans unfamiliar with the locations in the group.

The notion that comma group evidence is self-specified may not be strictly true, and

an improved comma group geotagging algorithm could use knowledge from additional

sources. For example, if we know that the article in question comes from the local news
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section of a newspaper, we might instead not allow the above global prominence measure

to play a role, since comma groups of prominent places tend not to appear in these articles.

Furthermore, for these articles, we might take into account other meanings of prominence

rather than simply global prominence. For example, locations in the reader’s local lexi-

con—smaller, local places that the reader and other nearby readers know about (further

described in Chapter 6)—could be considered “prominent” and might appear in these ar-

ticles. However, given that these locations will tend to be geographically proximate, this

case will be covered by the proximity rule described in the following section.

5.2.2 Proximity

Our second comma group rule involves a test for mutual geographic proximity of toponyms

within a comma group. That is, we wish to find a set of interpretations for all the comma

group toponyms that meet some test for proximity. In contrast to the prominence comma

groups described previously, proximity comma groups tend to appear frequently in news

articles about smaller, local places.

For our proximity test, we iterate over potential location interpretations for the first

toponym t1 in the comma group G, and check whether the remaining toponyms ti, 2 ≤ i ≤

|G| have an interpretation within a distance threshold d of the first. In each iteration, we

initialize an output set of interpretations L to the single pair (t1, loc1). Next, we iterate over

the remaining toponyms ti, 2 ≤ i ≤ |G| in the group. For each such toponym, we check

whether ti has an interpretation loc2 where DISTANCE(loc1, loc2) ≤ d, and if so, we add

(ti, loc2) to the set of output interpretations L. We currently use a threshold of d = 50 miles.

Finally, after all toponyms ti have been examined, we check whether all toponyms in the

group have a viable, proximate location interpretation (i.e., whether |L| = |G|), and if so,

use L as the interpretations for this comma group. Note that for each toponym, we check

and add location interpretations to L according to the default ordering from our gazetteer

lookup. This ordering ensures reasonable results despite the greedy nature of our algorithm.
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This simple resolution algorithm does have its drawbacks in that it applies a uniform

distance test, without regard to a human perception of nearness. Different humans tend

to have different ideas about what is near and far [93, 103]. For example, a person from

Manhattan, New York, who is accustomed to walking or subways for transportation, would

have a different conception of distance than a person from, e.g., Helena, Montana. The

proximity algorithm could reflect these differences by having a variable distance threshold

based on, e.g., the geographic area of interest. We plan to evaluate various other factors to

determine an appropriate, human-based conception of proximity.

Figure 5.2 contains two examples of comma groups resolved correctly using geographic

proximity, and one where the proximity test resulted in errors. The first excerpt comes from

an article [15] in ThisWeek of central Ohio, and mentions three cities in Delaware County,

Ohio, namely Delaware, Powell, and Sunbury. Note that despite the city of Delaware shar-

ing its name with the better-known state of Delaware, its presence in the comma group and

its common thread of geographic proximity allowed us to select the correct interpretation.

Our second example, from an article [138] in the Santa Cruz Sentinel, contains a comma

group of several small cities in Santa Cruz County, including “Ben Lomond”. Here, even

though “Ben” is a common given name, we recognized and resolved “Ben Lomond” using

the proximity rule. However, the third example shows the limitations of naively applying

proximity. This example, an excerpt from an article [85] about stargazing in HeraldNet, an

online newspaper based in northwest Washington state, mentions several stars and constel-

lations, including Vega, Altair, and Deneb. Interestingly, these are also the names of three

. . . and all three Delaware County historical societies — in Delaware, Powell

and Sunbury.

It took more than an hour for fire crews from Boulder Creek, Ben Lomond,

Felton and Zayante to control the blaze.

. . . you can still see the Summer Triangle of stars, Vega, Altair and Deneb,

which are the brightest stars in their respective constellations.

Figure 5.2: Examples of proximity comma groups.
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mountains in the Star Mountains range of Indonesia and Papua New Guinea, which also

contain a number of other peaks named after stars, and it is this range to which the star

names were initially tagged. We later resolved these errors by discounting the mountain

interpretations as highly unlikely, given that HeraldNet is a small news source based in

Washington state.

5.2.3 Sibling

Our third and final comma group check is for toponym interpretations that are of the same

geographic type and share a parent container within a geographic hierarchy, which we term

sibling interpretations. Siblings include states in the same country, counties in the same

state, and so on down the geographic hierarchy. We found that sibling comma groups ap-

peared in a variety of contexts, whether local, national, or international. Siblings that are

high in the hierarchy, such as countries, are already recognized properly by the prominence

test described earlier, so the sibling test is intended mainly for smaller location interpreta-

tions such as counties. Note that sibling locations need not be proximate. For example, New

York and California are siblings, both being US states, but are not geographically proxi-

mate. Likewise, proximate locations are not necessarily siblings, as in the case of Ontario, a

Canadian province, and New York, a US state, despite their being geographically adjacent.

The sibling test can be best viewed as a counterpart to the proximity test described

in the previous section, and the algorithm is likewise similar. As before, we iterate over

interpretations loc1 of the first toponym t1 in the comma group G. For each remaining

toponym ti, 2 ≤ i ≤ |G|, we check whether ti has an interpretation loc2 that is a sibling

of loc1—that is, loc2 is of the same type and has the same parent as loc1—and if so, select

it as the interpretation for ti. If we find suitable interpretations for all toponyms in G, we

select these interpretations as the correct resolutions for the toponyms. We again check

interpretations using the default ordering imparted by our gazetteer lookup.

In Figure 5.3, we present excerpts from articles where the sibling rule was applied,
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The California Zephyr stops in Burlington, Mount Pleasant, Ottumwa, Osceola

and Creston.

. . . as well as the Athens, Macon and Columbus areas.

But the Hawks persevered, earning big wins over Taylorsville, Skyline and

Jordan.

Figure 5.3: Examples of sibling comma groups.

two of which were correct, and the last was initially wrong. The first excerpt, from an

article [113] in the Des Moines Register about passenger trains, contains mentions of a

number of cities in southern Iowa served by a train route called the California Zephyr.

Even though the correct interpretations of these cities straddle southern Iowa and are not

considered proximate, and furthermore the word “California” appears close by, suggesting

(erroneous) interpretations of place names in the state of California, the fact that all lie

in Iowa, and hence that all are sibling cities, allowed their correct resolution. Our second

example comes from an article [2] from 11alive.com, an NBC affiliate in Atlanta, Geor-

gia. This article mentions three relatively distant cities, but since all are siblings with a

parent of Georgia, correct resolutions were achieved. Furthermore, note that Athens and

Columbus have much more prominent interpretations in Greece and Ohio respectively, but

their presence in the comma group allowed us to select the correct interpretations. Our final

example is from an article [48] in the Salt Lake Tribune in Salt Lake City, Utah, concern-

ing high school basketball competitions. The excerpt mentions “Taylorsville”, “Skyline”,

and “Jordan”, which in fact refer to high schools in a local school district, rather than lo-

cation names. However, they were initially erroneously tagged to three small localities in

Kentucky. This example demonstrates a situation where relying solely on sibling evidence

can be misleading. As with the previous proximity errors, these were resolved by incorpo-

rating extra filtering based on the source newspaper’s location, which would not warrant

interpretations in Kentucky for a story highly local to Salt Lake City.
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5.3 Usage Evaluation

To further investigate our comma group heuristics’ utility for geotagging text on the Web,

we implemented them in a geotagger. Note that this geotagger was designed only to rec-

ognize and resolve comma group toponyms, and did not incorporate any other methods of

recognizing and resolving toponyms. Normally, comma group geotagging would be incor-

porated into a larger geotagging framework that draws on a wider variety of evidence. In

this fashion, we tested comma group geotagging’s utility as an isolated process. In later

chapters, we explore comma groups’ utility when compared to other sources of evidence

in a full geotagging process.

Using the geotagger, we processed a sample of two months’ worth of news articles gath-

ered from RSS feeds of English language news sources on the Web. These news sources

include newspapers large and small, newswire feeds, and blogs of various types, mostly

based in the US. Table 5.1 presents several statistics about our dataset of articles and comma

group usage within these articles as determined by the geotagger. In total, our sampled

subset consisted of approximately 87,000 articles that were geotagged with at least one

comma group of toponyms. Furthermore, in this sampled subset, 106,000 comma groups

and 435,000 comma group toponyms were resolved using our heuristics. These counts

demonstrate that comma groups play a nontrivial role in resolving toponyms from news ar-

ticles. One caveat with these measurements is that they only reflect comma groups that were

recognized and resolved by the geotagger, and says nothing of how many were missed. Fur-

thermore, comma groups incorrectly recognized as containing toponyms instead of other

entity types are also included in these counts. Further experiments with annotated articles

are needed to better determine the frequency of comma groups in this text.

Table 5.1: Comma group usage statistics.

Sampled articles 87,405

Comma groups of toponyms 105,701

Toponyms part of a comma group 434,657
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Figure 5.4: Comma group sizes for our article dataset.

We also measured the sizes of comma groups in our article dataset, and these measure-

ments are presented in Figure 5.4. Note the log scale for both axes. As the figure shows,

a large number of comma groups have relatively small sizes, and a smaller number are

exceptionally large. However, note that a sizable number of comma groups are quite large,

with about 25% of the 106,000 recognized comma groups having five or more toponyms,

and the largest—from a report [122] posted on the Earth Times website—having 82 topo-

nyms. As noted earlier, these large comma groups prove especially useful in resolving the

contained toponyms correctly, since each additional toponym provides additional evidence

toward determining the correct common thread.

Next, to investigate the accuracy of our three comma group heuristics, we randomly

selected three samples of 20 articles that contained at least one prominence, proximity,

and sibling comma group, respectively. For each sample, we manually verified whether

the comma groups present in each article contained correctly or incorrectly resolved to-

Table 5.2: Heuristic precision measurements.

Heuristic P(Groups) P(Toponyms)

Prominence 19/20 (0.95) 135/136 (0.99)

Proximity 18/20 (0.90) 67/ 71 (0.94)

Sibling 19/20 (0.95) 71/ 74 (0.96)

Total 56/60 (0.93) 273/281 (0.97)
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ponyms as a measure of our comma group geotagging’s precision. If an article contained

several comma groups, we randomly chose one to evaluate. For this evaluation, a comma

group was considered correct if all its toponyms were recognized and resolved correctly,

and incorrect otherwise. Table 5.2 contains the results of this verification, with precision

numbers reported both in terms of comma groups and comma group toponyms. Bearing in

mind our somewhat small sample size, overall precision of these heuristics in our sample

of documents is quite high, at about 95% or higher for all three heuristics, indicating that

inferring common threads of comma groups can be a source of highly accurate evidence

for geotagging toponyms. As before, recall was not tested, so these measurements carry the

same caveat described earlier. Interestingly, the toponym counts reflect the considerably

larger comma groups present in the prominence sample, which were due to large comma

groups of countries present in those articles.

Finally, for the 106,000 comma groups recognized by the geotagger, we measured

how often each resolution heuristic was employed to resolve comma group toponyms.

For comma groups where more than one heuristic applied to the contained toponyms, we

give priority for the most specific (i.e., geographically local) heuristic used to resolve the

toponyms, since geographic locality is additional evidence for the correct toponym inter-

pretations. In particular, for comma groups to which both the prominence and proximity

heuristics applied, we counted the group for proximity. Similarly, for comma groups con-

taining both prominent and sibling toponyms, we counted the group toward the sibling

heuristic, since siblings tend to more geographically localized. Our usage results are listed

Table 5.3: Heuristic usage measurements.

Heuristic Count Fraction

Any 105,701 1.000

Proximity 12,728 0.120

Sibling 51,423 0.486

Prominence 41,550 0.393
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in Table 5.3. From our measurements, we found that 51,000, or approximately 49%, of

comma groups were resolved using the sibling heuristic. Of the remaining comma groups,

about 42,000 (39%) were resolved using prominence, and 13,000 (12%) were resolved us-

ing the proximity heuristic. These counts demonstrate that while prominence plays some

role in recognizing and resolving comma groups, proximity and sibling evidence cannot be

ignored. All three heuristics are needed to resolve comma groups correctly.

5.4 Open Problems

In this section, we describe some open problems related to comma groups. Note that cur-

rently, the prominence and proximity heuristics use static thresholds to identify common

threads. However, human notions of prominence and proximity vary depending on con-

text [93, 103], and these variations may be reflected in comma groups intended for readers

in different geographic regions. For example, locations considered to be prominent in a ru-

ral area may not be thought to be prominent in urban areas. Similarly, the concept of “far”

for a person living in an urban area may be on the order of blocks, while in a rural area,

“far” may signify tens of miles. Extending this idea, it may be natural and correct to allow

looser interpretations of prominence and proximity for comma group interpretations of ru-

ral places, and this looseness could be determined by factors such as population density or

region sizes. Thorough investigations of these ideas are warranted.

Also, on a more basic level, it would be interesting to see how many different structural

varieties of comma groups are present in news articles, to see whether more general recog-

nition rules can be devised to capture them. In some sense, the adaptive context methods

described in Chapter 7 generalize the comma group methods described in this chapter, but

are somewhat overkill in that the former also match toponyms that are more distant than

those in comma groups. In general, these methods need to be reconciled to determine at

what point they become alike.

177



5.5 Summary

In combination with our other geotagging heuristics described in the subsequent chap-

ters, comma groups are important and useful sources of evidence that aid the accurate

geotagging of text, and recognizing and resolving comma groups is greatly aided using

distance-based proximity and container hierarchy-based sibling heuristics, in addition to

population-based prominence.
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Chapter 6

Local Lexicons

In the previous chapter, we explored one type of evidence we use to correctly resolve

comma groups of toponyms. Here, we introduce another such form of evidence. First, re-

call that there are many approaches to the geotagging process (e.g., [7, 69, 78, 118, 121]).

Two prominent ones are MetaCarta [121] and Web-a-Where [7]. MetaCarta assumes that

a toponym such as “Paris” corresponds to “Paris, France” approximately 95% of the time,

and thus reasonably good geotagging can be achieved by placing it in “Paris, France”, un-

less there exists strong evidence to the contrary. On the other hand, Web-a-Where assumes

that the text document being geotagged contains a number of proximate geographic loca-

tions often of the nature of a container (e.g., the presence of both “Paris” and “Texas”) that

lend supporting evidence to each other. These approaches performed quite poorly in our

evaluation domain of corpora of news articles, which motivated our research.

The key observation that we make in this chapter is that news articles (and more gen-

erally, documents on the Web) are written to be understood by a human audience, and

therefore geotagging will benefit from processing (i.e., reading) the document in the same

way as an intended reader. In doing so, the geotagger’s seemingly daunting task of identi-

fying the correct instance of “Paris” out of the more than 60 possible interpretations will be

much easier when we note that the reader is unlikely to even be aware of most of these in-

terpretations, and thus there is no need to even consider them as possibilities in the toponym

resolution step.
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This leads to the key point in this chapter which is that the reader’s spatial lexicon—

those locations that the reader can identify and place on the map without any evidence—is

very limited. In fact, even more importantly, this inherent limitation means that a common

spatial lexicon shared by all humans cannot exist, which is one of the key principles used

by systems such as MetaCarta and Web-a-Where. To illustrate the importance of under-

standing readers’ spatial lexicons, consider the following opening in an online May 2009

newspaper article [151]:

PARIS — Former champion Serena Williams and Jelena Jankovic led Satur-

day’s women’s winners at the French Open tennis tournament in Paris.

For this article, “Paris” does refer to “Paris, France”. However, consider the following con-

temporary article [146] published in the Paris News, a local newspaper in Texas:

Restoration of the historic Grand Theater marquee in downtown Paris is gain-

ing momentum.

This instance of “Paris” actually refers to the city in “Texas”, which typical readers would

recognize immediately, since the correct interpretation of “Paris” exists in their spatial lex-

icon. For these articles, MetaCarta would erroneously place “Paris” in “France” as it as-

sumes that “Paris” refers to “Paris, France” 95% of the time, even to readers living in

“Paris, Texas”, which is clearly not true. On the other hand, Web-a-Where assumes a sin-

gle spatial lexicon consisting only of very prominent places around the world and does not

consider local possibilities, such as “Paris, Texas”, at all.

In essence, our key premise is the existence of a reader’s local spatial lexicon or simply

local lexicon that differs from place to place, and that it is separate from a global lexicon of

prominent places known by everyone. In other words, to readers in Texas, “Paris” refers pri-

marily to “Paris, Texas”, rather than the distant, but more prominent, geographic location—

“Paris, France”. Furthermore, in most cases, the local lexicon supersedes the global lexi-

con. For example, as shown in Figure 6.1, the local lexicon of readers living in “Columbus,
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Figure 6.1: The local lexicon for readers living in the vicinity of Columbus, Ohio, USA.

Notice the many local places that share names with more prominent places elsewhere.

Figure 6.2: Traffic hotspots in the Washington, DC area obtained by geocoding address

intersections from tweets.
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Ohio” includes places such as “Dublin”, “Amsterdam”, “London”, “Delaware”, “Africa”,

“Alexandria”, “Baltimore”, and “Bremen”. In contrast, readers outside the Columbus area,

lacking the above places in their local lexicons, would think first of the more prominent

places that share their names. The local lexicon is even more necessary when geographi-

cally indexing locations with smaller spatial extent which correspond to address intersec-

tions as shown in Figure 6.2, since street names are even more ambiguous than regular

toponyms. In this chapter we present algorithms developed in tandem with the NewsStand

system (Chapter 3) that automatically identify the local lexicons of document sources on

the Web, which, according to our experimental analysis, leads to significant improvements

in geotagging accuracy.

In the rest of this chapter, we first describe our methods for automatically inferring the

local lexicons associated with news sources (Section 6.1). Next, we describe how to lever-

age these local lexicons within the context of a rule-based toponym resolution framework,

and how local lexicons affect other sources of resolution evidence (Section 6.2). After, we

describe experiments to evaluate our methods for inferring local lexicons, toponym recog-

nition, and toponym resolution, using existing and new corpora of streaming news for this

purpose (Section 6.3). Finally, we discuss some open problems related to local lexicons

(Section 6.4) and conclude the chapter (Section 6.5).

6.1 Inferring Local Lexicons

As noted earlier, audiences’ local lexicons play a key role in how news authors write for

those audiences. Toponyms are usually underspecified when they exist in the audience’s

local lexicon (i.e., referring to simply “Paris”, rather than “Paris, Texas”), so simply using

contextual clues in the article text will not suffice to recognize and resolve them. Using

the local lexicon will improve geotagging on articles from a given news source. There-

fore, given such a source, we must employ a method to infer the intended audience’s local

lexicon, if one exists. For a newspaper, we might consider simply using the postal ad-
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dress of the newspaper’s headquarters to determine the local lexicon of its audience, as

lists of such addresses are available commercially. However, the address alone gives no

hint as to the geographic distribution of the newspaper’s audience, and will therefore not

help in determining whether a local lexicon exists for the newspaper. Also, for newspapers

with multiple sections and multiple RSS feeds, it will not aid in determining which feeds

are meant for a local audience. Also, even if we manually determined local lexicons for

newspapers—NewsStand currently indexes over 10,000 newspapers—it would be infea-

sible to do the same for purely online newspapers, as well as user-oriented news sources

such as the multiple millions of blogs and Twitter users. We therefore require an automated,

scalable method for extracting local lexicons from online news sources, which includes not

only online newspapers, but also the multiple millions of blogs and Twitter users.

To automatically infer local lexicons, we rely on three key characteristics of them:

1. Stability: A local lexicon is constant across articles from its news source.

2. Proximity: Toponyms in a local lexicon are geographically proximate.

3. Modesty: A local lexicon contains a considerable but not excessive number of topo-

nyms.

The first property tells us that by observing and analyzing toponyms in a collection of ar-

ticles from a news source, we should be able to determine the local lexicon as a common

geographic theme among these articles. Note that this stability applies not only to local

lexicons, but also to global lexicons as well. We must therefore use the second property of

proximity to distinguish between local lexicons and more general spatial lexicons. In other

words, a spatial lexicon can be classified as a local lexicon if and only if the toponyms

within it are geographically proximate. The proximity property thus serves as a means of

filtering and validation on an audience’s local lexicon. The final modesty property high-

lights the notion that a person’s local lexicon, while limited geographically, should at least

contain several toponyms. In other words, it would be rare for a person to know of only one
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or two local toponyms. We enforce the modesty property by specifying a minimum local

lexicon size.

Note that we may infer local lexicons for a news source in a way analogous to geotag-

ging a single article, but on a larger scale. In other words, we may perform collection-wide

analogs of toponym recognition and resolution as a means of inferring local lexicons. We

may first recognize a spatial lexicon by observing the toponyms in a collection of articles,

and retaining those that are common to the collection. We then resolve the spatial lexicon

in a geographic sense by classifying it as a local lexicon if the toponyms are geographically

proximate, and if it has a reasonable size.

This analogy suggests a simple way to determine a collection’s local lexicon: we sim-

ply geotag each article in the collection, thereby collecting a set of resolved toponyms,

select the most frequent toponyms in the collection, and check whether the toponyms are

geographically proximate and reasonable in number. However, this presents a bootstrap-

ping problem, in that determining a local lexicon relies on correct geotagging of individual

articles in the collection, but correct geotagging relies on knowing the local lexicon.

To break this dependency cycle, we use a geotagging process termed fuzzy geotagging

that does not fully resolve toponyms in a single article. Instead, this process determines a

weighted set of possible resolutions for each toponym in an article. Note that we do not

expect perfect geotagging accuracy from fuzzy geotagging, since we lack an established

local lexicon, and we are therefore missing an important and necessary source of evidence

for correct geotagging. Instead, because of the local lexicon’s stability property, we only

require that fuzzy geotagging performs adequately across the entire set of articles A used

to infer a local lexicon.

Fuzzy geotagging can best be understood as a variant of a traditional heuristic-based

geotagging process. In such a traditional process, a toponym recognition system first finds

the toponyms T in an article a. A gazetteer is then used to associate each t ∈ T with the set

of all possible resolutions Rt for t. Next, the geotagging process uses toponym resolution
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heuristics to filter resolutions from the set of Rt. Finally, for all t that are still ambiguous

(i.e., |Rt| > 1), all but a single “default sense” r are filtered from Rt. This default sense is

usually based on another heuristic, such as the resolution with largest population or largest

geographic scope in terms of a geographic hierarchy. In this way, each recognized toponym

t is resolved to a single pair of geographic coordinates. To accomplish fuzzy geotagging,

for each recognized toponym, we do not assign the toponym with its final default sense at

the end of the resolution process. Instead, for each t and r ∈ Rt, we assign a weight wr to

r, either uniformly or using default sense heuristics. Finally, we sum the weights for each

r ∈ Rt across all articles in A.

An attractive feature of fuzzy geotagging is that even though it depends on an underly-

ing geotagging process, it is mostly independent of the underlying geotagging implemen-

tation. Because of a geographic averaging effect across all articles in A, any geotagger can

be used, as long as it performs reasonably. Furthermore, probabilistic geotagging meth-

ods (e.g., [73]) can be adapted for fuzzy geotagging by simply using each resolution’s as-

signed probability as its weight. Of course, a high quality underlying geotagger will result

in better performance when inferring local lexicons. For fuzzy geotagging, we use our own

toponym recognition methods (described in Chapter 4) and toponym resolution methods

(Section 6.2), respectively.

One concern is that the geotagging process might assign a large weight to an incorrectly

resolved toponym. For example, there exist over 60 locations named Paris in our gazetteer,

but a naive underlying geotagger would assign any mention of Paris to the French capital,

due to its relative prominence. For news sources with a different Paris in their local lexi-

cons, this will be a consistent error in the fuzzy geotagging process. However, note that it

is not likely for several distinct prominent locations to coexist within a single local lexicon,

because larger places tend to be geographically distributed. Also, proximate geographic

locations with the same name would cause confusion among local residents. For example,

given a small geographic area, it is unlikely to find prominent places named Paris, Athens,
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Dublin, and Alexandria, and even less likely to find multiple places named Paris. There-

fore, errors of assigning large weights to incorrectly resolved toponyms will be committed

infrequently for a single news source.

Algorithm 6.1 Infer an intended audience’s local lexicon.

input: Set of articles A, maximum diameter Dmax, minimum lexicon size Smin

output: Local lexicon L, or ∅ if none

1: procedure INFERLOCALLEXICON(A,Dmax, Smin)

2: G← ∅
3: L← ∅
4: for all a ∈ A do

5: G← G ∪ FUZZYGEOTAG(a)
6: end for

7: G← ORDERBYWEIGHT(G)
8: for i ∈ {1 . . . |G|} do
9: H ← CONVEXHULL(L ∪Gi)

10: if DIAMETER(H) > Dmax then

11: break

12: end if

13: L← L ∪Gi

14: end for

15: if |L| < Smin then

16: L← ∅
17: end if

18: return L

19: end procedure

With the above in mind, we infer local lexicons using procedure INFERLOCALLEXI-

CON, listed as Algorithm 6.1. The procedure takes as input a set of articles A from a single

news source, as well as parameters Dmax, used to determine the measure of geographic lo-

cality of an inferred spatial lexicon, and Smin, the minimum allowed size of a local lexicon.

We determined appropriate values for these parameters experimentally (described in Sec-

tion 6.3.3). We begin by initializing a set of resolved toponyms G and the eventual inferred

local lexicon L to the empty sets (lines 2–3). Next, we loop over all articles a ∈ A (4–6),

recognizing and resolving toponyms from each article in turn. We subject each article a

to the aforementioned fuzzy geotagging process with Procedure FUZZYGEOTAG, which

returns a set of toponyms found in a, and their potential interpretations and weights (5). We
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aggregate these resolved and weighted toponyms into G, merging repeated interpretations

and summing their weights. For example, if articles a1 . . . ak in the collection each contain

a mention of “College Park”, and the fuzzy geotagging process assigned these toponyms

to College Park, MD with weights w1 . . . wk (not necessarily equal), we merge these k

interpretations in G to a single grounded toponym with weight
∑

i wi.

At this point, G serves as a weighted spatial lexicon for the articles in A. We proceed to

extract a local lexicon from the resolved toponyms r ∈ G by noting that the most heavily

weighted r ∈ G are common to a large number of articles in A, and should be considered

as part of a potential local lexicon. To this end, we first order the resolved toponyms in G

by decreasing order of weight (7), and consider adding each toponym in turn to the local

lexicon L (8–14). For each resolved toponym Gi, we determine the convex hull H of the

geographic coordinates of the toponyms in L combined with the new toponym Gi (9). We

then measure the diameter of H , and check whether it exceeds Dmax; if so, we cease adding

toponyms to L (10–12). We do so to enforce the proximity property of local lexicons.

Otherwise, we add Gi to L (13), and continue with Gi+1. After G’s toponyms have been

considered, we check whether the collected lexicon is larger than Smin, which qualifies it as

a true local lexicon, and nullify L if it does not reach our minimum limit (15–17). Finally,

we return L, which is the extracted local lexicon, or ∅ if no local lexicon was found (18).

To illustrate this procedure, Figure 6.3 shows the local lexicon inferred by INFER-

LOCALLEXICON for 137 articles from the Paris News, a small newspaper in Paris, Texas,

which is approximately 100 miles northeast of Dallas, Texas. In the figure, Paris lies in the

northeast quadrant of the inset. Each point represents a toponym found in an article pub-

lished in the Paris News, with the color indicating its frequency across all articles in the

collection. By far, the most frequently geotagged toponym was Paris (22 mentions). Other

toponyms included Lamar County (13 mentions) and Dallas (5 mentions), in addition to a

variety of toponyms unrelated to the local lexicon. Starting with Paris, the most frequently

occurring toponym, we add toponyms to L in decreasing order of frequency until the di-
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Figure 6.3: The local lexicon inferred for the Paris News, a small newspaper in Paris, Texas

(upper right in inset), with Dmax = 150 miles and Smin = 5. The final convex hull (dashed

red) has a diameter (solid red) of about 130 miles.

ameter of the convex hull of L > Dmax (for this example, Dmax was set to 150 miles).

The final convex hull is shown in dashed red, with its diameter of approximately 130 miles

highlighted in solid red. A final test ensures that |L| > Smin (for this example, Smin was

chosen to be 5).

By considering resolved toponyms in order of decreasing weight, INFERLOCALLEXI-

CON makes use of the stability property of local lexicons, since the most heavily weighted

toponyms will have been resolved consistently across many articles in A. It also ensures

that the returned local lexicon L falls within a geographic footprint with diameter smaller

than Dmax, thus enforcing the proximity property, and nullifies L if it violates the modesty

property by having |L| < Smin. In our evaluation of INFERLOCALLEXICON (see Sec-

tion 6.3.3), we determine suitable parameter values for Dmax and Smin and find that the

overall procedure performs well.

6.2 Resolution with Local Lexicons

Having established a method for determining local lexicons, we now apply these lexicons

for toponym resolution. The main idea behind our geotagging process is to model how an
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article author establishes a geographic framework within an article, to make it easier for hu-

man readers in the author’s intended audience to recognize and resolve toponyms. Authors

create this framework by using linguistic contextual clues that we detect using heuristic

rules. Furthermore, readers are expected to read articles linearly, so article language has a

contextual and geographic flow. Toponyms mentioned in a sentence will establish a geo-

graphic framework for subsequent text. To ensure correct geotagging, we therefore process

the article text in a linear fashion.

Finally, and of greatest importance, an article author will keep in mind the nature of

the expected audience’s spatial lexicon, and in particular the local lexicon, to underspec-

ify those toponyms in situations where adding geographic context would be redundant.

For these underspecified toponyms, we only consider those possible interpretations that are

known to intended readers, either due to relative prominence (such as countries and capital

cities) or existence in their local lexicon, rather than all possible interpretations from the

multiple millions of entries in our gazetteer, which is a much larger set of locations than

any human could possibly know. If no resolution is found that satisfies our constraints, then

we drop the toponym as a false positive (i.e., ignore it), rather than assuming the toponym

recognition process was correct and hence assigning it a default sense (e.g., the most pop-

ulous interpretation). This procedure restores the precision lost in our high recall toponym

recognition process, described in Chapter 4, by retaining interpretations that have some in-

ternal or external supporting evidence. Thus, unlike many existing geotagging approaches,

we view successful geotagging as a single integrated process, rather than as separate topo-

nym recognition and resolution systems that are chained together.

After recognizing toponyms from an article to be geotagged (see Chapter 4), we proceed

to resolve toponyms using a number of heuristic rules. Table 6.1 lists the set of heuristics

used in our toponym resolution process, as well as examples of when each heuristic would

be applied. These heuristics are inspired by how humans normally read news articles. We

apply the heuristics in the order listed in Table 6.1. For toponyms that can be resolved by
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Table 6.1: Heuristics used in our toponym resolution process.

H1 Dateline Resolve dateline toponyms using:H4,H5,H6.

Resolve other toponyms proximate to resolved dateline.

LONDON, Ont. - A police...

Paris, TX (AP) - New...

H2 Relative Geog. Resolve anchor toponym using:H1,H4,H5,H6.

Resolve toponyms proximate to defined geographic region.

...4 miles east of Athens, Texas.

...lives just outside of Lewistown...

H3 Comma Group Resolve toponym group using:H6,H5, Geographic Proximity.

...California, Texas and Pennsylvania.

H4 Obj/Container Resolve toponym pairs with a containment relationship.

...priority in Jordan, Minn., ...

H5 Local Lexicon Resolve toponyms proximate to local lexicon centroid.

(Examples are news source dependent)

H6 Global Lexicon Resolve toponyms in a list of well known places.

...issues with China, knowing...

H7 One Sense Resolve toponyms sharing names with already-resolved ones.

(Examples are article dependent)
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multiple heuristics, we use the resolution suggested by the highest ranked heuristic. Our

highest-ranked heuristics establish a geographic context for large portions of the article,

i.e., Dateline (H1) and Relative Geography (H2). We continue with heuristics favoring

contextual language clues, namely Comma Group (H3) and Object/Container (H4). Finally,

we conclude with default sense heuristics using the reader’s Local Lexicon (H5) and Global

Lexicon (H6). In addition, we use a One Sense (H7) heuristic modeled after the one sense

per discourse assumption [164] that all instances of a repeated toponym will have the same

resolution. We apply H7 after each of H1–H6, which propagates a toponym resolution to

all later repeated mentions of the toponym. This heuristic enforces a consistent resolution

of the same toponym in the same article. Note that despite the Local Lexicon heuristic’s

low ranking as H5, several other heuristics, namely H1–H3, appeal to the Local Lexicon

heuristic for correct resolution. The local lexicon thus plays a large role in our toponym

resolution procedure. In our evaluation, we measure how often each heuristic was used in

geotagging our evaluation corpora (see Section 6.3.5).

For the sake of clarity, we now provide more detailed descriptions of heuristicsH1–H6,

and give examples of each.

6.2.1 H1: Dateline

We examine the article, checking for the presence of dateline toponyms, which if present

appear at the article’s beginning and establish the general geographic locality of the events

described in the article. If happening in a place unfamiliar to the author’s audience, then

authors generally use object/container clues (e.g., “LONDON, Ont. —”). Otherwise the

location will be underspecified (e.g., “LONDON —”), since it already exists in the audi-

ence’s spatial lexicon. Therefore, we attempt to resolve dateline toponyms using the Ob-

ject/Container (H4), Local Lexicon (H5), and finally Global Lexicon (H6) heuristics. If

we can successfully resolve dateline toponyms, then we resolve more toponyms from the

article that are geographically proximate to the resolved dateline toponyms.
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6.2.2 H2: Relative Geography

Certain phrases in article text denote relative geography, which is language that defines

a usually imprecise geographic region in terms of distance from or proximity to another

geographic location. These imprecise regions are important because they usually target the

geographic areas where the events in an article took place, and therefore are useful for

resolving the article’s toponyms. Example instances of relative geography include “4 miles

east of Athens, Texas” and “just outside of Lewistown”. We refer to the toponyms in such

phrases as anchor toponyms, and we term the resulting regions as target regions.

Notice that anchor toponyms follow the same specification patterns as those used for

dateline toponyms. Therefore, to resolve target regions, we first resolve the anchor to-

ponyms, using the same heuristics as used for the Dateline (H1) heuristic, namely Ob-

ject/Container (H4), Local Lexicon (H5), and Global Lexicon (H6). After resolving the

anchor toponym, we set the target region in terms of proximity to the anchor toponym (as

in “just outside of Lewistown”) or proximity to a geographic point defined relative to the

anchor toponym (as in “4 miles east of Athens, Texas”). Finally, we resolve all toponyms

in the article that are geographically proximate to the target region.

6.2.3 H3: Comma Group

Recalling the discussion in Chapter 5, lists of toponyms in articles are a frequent occurrence

in news articles, and we refer to these lists as comma groups. Authors generally organize

toponyms into concise groups when they share a common characteristic, such as all be-

ing prominent places (e.g., “California, Texas and Pennsylvania”, all states in the USA) or

all being mutually geographically proximate (e.g., “College Park, Greenbelt and Bladens-

burg”, all small places near College Park, MD). We resolve all toponyms in comma groups

by applying a heuristic uniformly across the entire group. First, we check whether all topo-

nyms exist in the Global Lexicon (H6) or the Local Lexicon (H5). We also check whether

interpretations exist that are all constrained to a small geographic area, not necessarily the
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same as the local lexicon region. Finding and using comma groups is described in detail in

Chapter 5.

6.2.4 H4: Object/Container

Authors commonly provide contextual evidence for a toponym by specifying its containing

toponym, in terms of a geographic hierarchy. For example, an author might mention “Col-

lege Park, Maryland”, which indicates that the correct instance of College Park lies within

its container toponym, Maryland. They may also use abbreviations for the container, such

as “Jordan, Minn.” (referring to Minnesota). To resolve these toponyms, we appeal to our

gazetteer and choose a pair of interpretations that satisfies the hierarchy constraint.

6.2.5 H5: Local Lexicon

If we inferred a local lexicon for the article’s news source (see Section 6.1), we now use

the local lexicon to resolve article toponyms. We first compute the geographic centroid of

the source’s inferred local lexicon, which has meaning because of the proximity property

of toponyms in the local lexicon. We then resolve those toponyms that are geographically

proximate to the centroid. If the news source has no local lexicon, as would occur for a

newspaper with a widely dispersed audience, then we do not apply this heuristic.

6.2.6 H6: Global Lexicon

Our final heuristic uses a curated global lexicon of toponyms which we regard as prominent

enough to be known by audiences regardless of their geographic location. We created an

initial global lexicon by adding prominent geopolitical divisions such as continents and

country names, as well as large regions and cities with over 100,000 population. Note that

population is a coarse measure and finally serves as a substitute for “prominence”, but

works adequately for our purposes.
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6.2.7 Postprocessing

We perform several postprocessing measures after the geotagging process. Once we have

settled on a set of resolved toponyms for the article, we next determine the article’s geo-

graphic focus and scope by selecting a subset of prominent resolved toponyms from the

article. One simple measure to use is the frequency of each distinct toponym’s occurrence

within the article. We modify this frequency measure to better account for the inverted

pyramid [131] structure of news articles. Each resolved toponym occurrence is assigned a

weight based on its distance from the beginning of the article, with weights linearly de-

creasing with distance from the beginning. This scheme will assign the highest weights to

toponyms in the dateline and first few sentences, and lower weights to tangential toponyms

mentioned later in the article. We then aggregate weights for distinct toponyms, and rank

them using the resulting weight sums.

In addition, we draw on our online clustering algorithm (detailed in Section 3.2.4) to

mitigate potential geotagging errors. If the article was placed in a cluster with other geo-

tagged articles, we take advantage of a geographic averaging effect, similar to that used

for establishing local lexicons. Each article in the cluster will be composed slightly differ-

ently by different authors, some of whom may provide additional contextual evidence in

an article that our geotagger can use for the entire cluster. These slight differences between

articles about the same news story provide multiple, somewhat independent trials for our

geotagger and can be used to correct geotagger errors. Consider a cluster containing two

articles mentioning “College Park”, which is underspecified as “College Park” in the first

article, but is more fully specified as “College Park, MD” in the second. If we found that

geotagging resulted in a different sense of College Park in the first article, we would correct

it based on the better-specified mention in the second.

Also, if we have determined that the article’s focus and scope are limited to a small ge-

ographic area, we perform an additional hyperlocal geotagging process, where we examine

the set of recognized toponyms and consider very small geographic features that ordinar-
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ily would be unknown except to people living in the vicinity. These features include spot

features such as schools, churches, and other buildings, hydrographic features such as local

rivers and lakes, and other regions such as parks.

6.3 Experiments

In this section, we describe the results of experiments performed to determine the efficacy

of our local lexicon inference, toponym recognition, and toponym resolution methods, as

measured over two datasets of hand-geotagged news articles. After describing the eval-

uation measures used to report performance (Section 6.3.1), and our test datasets (Sec-

tion 6.3.2), we show experimental results for local lexicon inference, toponym recognition,

and toponym resolution (Sections 6.3.3–6.3.5). We also measure how often our heuristics

were used to resolve toponyms, to determine their relative importance (Section 6.3.6).

6.3.1 Evaluation Measures

To evaluate the performance of a toponym recognition system on a given document, we

must decide what constitutes a match between a system-generated toponym and a ground

truth toponym from the document. Henceforth, in the context of toponym recognition, we

consider toponyms to match if their constituent words match exactly, even if their positions

in the document are different. To measure performance, we use the well-known measures

precision and recall, which for a set of ground truth toponyms G and a set of system-

generated toponyms S, are defined as

P (G,S) =
|G ∩ S|

|S|
, R(G,S) =

|G ∩ S|

|G|
.

We also make use of the F1-score, defined as the harmonic mean of precision and recall:

F1 =
2PR

P +R
.
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These measures are described in more detail in Section 4.3.4.

6.3.2 Datasets

We used two datasets of news articles in our evaluation. The first is a subset of the ACE

2005 English SpatialML Annotations [87], available from the Linguistic Data Consortium,

which we refer to as ACE. ACE contains 428 documents in total that represent a variety

of spatially-informed data sources, including news wire and blog text, as well as online

newsgroups and transcripts of broadcast news. Each document is annotated using Spa-

tialML [88], an XML-based language which allows the recording of toponyms and their

geographically-relevant attributes, such as their lat/long position, feature type, and corre-

sponding entry in a gazetteer. For this evaluation, we limited our test collection to news

stories, resulting in 104 news articles from prominent newspapers and news wire sources.

Unfortunately, since news wire is usually written and edited for a broadly distributed

geographic audience, the ACE corpus is quite limited for the purposes of evaluating local

lexicons’ impact on geotagging, and is hardly representative of data from smaller news-

papers with a more localized audience, which have a large presence on the Web. As a

result, we created our own corpus of news articles by sampling from the collection of

over 4 million articles indexed by the NewsStand system [143], which we call the Local-

Global Lexicon corpus, or simply LGL. We focused on articles from a variety of smaller,

geographically-distributed newspapers. To find this set of smaller newspapers and thereby

ensure a more challenging toponym resolution process, we first ranked toponyms in our

gazetteer by ambiguity, and selected highly ambiguous toponyms such as Paris and Lon-

don. We then selected newspapers based near these ambiguous toponyms. For example,

some US-based newspapers located near a Paris include the Paris News (Texas), the Paris

Post-Intelligencer (Tennessee), and the Paris Beacon-News (Illinois). For each newspaper,

we chose several articles to include in LGL, and manually annotated the toponyms in these

articles, including the corresponding entries from our gazetteer.
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Table 6.2: Comparison of the ACE and LGL corpora.

ACE LGL

Number of data sources 4 78

Number of articles 104 588

Number of tokens 48,036 213,446

Number of toponyms 5,813 4,793

Distinct toponyms 915 1,297

Prevalent Toponym Types

Countries 1,685 961

Administrative divisions 255 1,322

Capital cities 454 318

Populated places 178 1,968

Table 6.2 summarizes statistics for the ACE and LGL corpora. These statistics show the

limitations of ACE in terms of source breadth, as only four news sources are represented in

the corpus—Agence France-Presse (AFP), Associated Press World, New York Times, and

Xinhua—with 42, 40, 5, and 17 annotated articles from each source, respectively. On the

other hand, LGL contains 588 articles from 78 newspapers, with an average of 5 articles

per newspaper. Also, as the toponym counts show, the articles in ACE tend to be more

toponym-heavy, with over 50 toponyms per article, in contrast to LGL articles with an

average of 8 toponyms per article. Examining the prevalent toponym types in both data

sources reveals that the ACE collection is also very international in scope, with 1,685 of

5,813 toponyms (29%) corresponding to country names. In contrast, LGL’s set of toponyms

are more local. Out of 4,793 total toponyms, 1,968 (41%) are smaller populated places, and

1,322 (28%) are administrative divisions such as states and counties. These statistics show

that the ACE corpus is better suited for evaluating geotagging on an international scope,

while LGL is better-suited for testing geotagging on a local level.
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6.3.3 Inferring Local Lexicons

We tested our local lexicon inference procedure with fuzzy geotagging, described in Sec-

tion 6.1. The idea behind our evaluation procedure is that for a small, local newspaper,

the newspaper’s audience will be geographically proximate to the newspaper’s geographic

focus. As a result, the local lexicon of the newspaper’s audience will consist of multiple

places near the newspaper’s geographic focus. We measure how successful we are in es-

tablishing a given newspaper’s audience’s local lexicon by checking whether the centroid

of our inferred local lexicon is within a given distance δ to a ground truth annotation of the

newspaper’s geographic focus. For larger newspapers annotated with no geographic focus

and hence no assumed local lexicon, we check that our local lexicon inference procedure

also returned no local lexicon. In other words, we test our inference procedure first in terms

of binary classification (“has local lexicon” or “no local lexicon”) and second in terms of

geographic distance from the ground truth focus. As earlier, we use precision and recall to

measure performance, with the ground truth foci and the local lexicon foci returned by our

inference procedure serving as the ground truth and system-generated sets, respectively.

Table 6.3 summarizes the situations in which we consider the ground truth NG to match

our system-generated local lexicon NS for a given news source N . We consider the results

to match if both NG and NS do not exist (i.e., the ground truth had no geographic focus

for news source N and our inference procedure did not return a local lexicon). Also, the

results match if both NG and NS exist, and further, that the distance between the geographic

Table 6.3: For a given news source N , situations in which we consider our local lexicon

inference procedure’s focus NS to match the ground truth focus NG.

NG exists NS exists D(NG, NS) ≤ δ Match

No No — Yes

Yes No — No

No Yes — No

Yes Yes No No

Yes Yes Yes Yes
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centroids of NG and NS is less than a distance threshold δ. Otherwise, we consider the

results to differ, and penalize precision and recall as appropriate.

To establish our ground truth, we examined each of the 4,867 active newspaper sources

in the NewsStand system, and manually annotated news sources with geographic foci as

appropriate. Figure 6.4 shows the mapped geographic foci of news sources in the USA,

highlighting those with articles in LGL. To create a collection of news stories to use for

determining local lexicons, we gathered approximately two months’ worth of news stories

in February and March 2009, resulting in a total of 1,266,119 articles. From this large col-

lection of articles, 7,654 were from the 78 news sources in LGL. However, the distribution

of articles in sources is highly skewed, with over half of 78 news sources having under 50

articles total. For each news source (regardless of whether it is in LGL) we then tried to

detect a valid local lexicon using INFERLOCALLEXICON (described in Section 6.1).

For each such local lexicon found, we selected the geographic centroid of all locations

in the lexicon as its geographic focus. For a given news source, our inference procedure

was deemed to match the ground truth in one of two cases:

1. The news source had a large geographic scope (and therefore no local lexicon) and

no local lexicon was found by our procedure;

2. The news source had a local geographic scope (and consequently a local lexicon), and

a local lexicon was found by our procedure, and the geographic distance between our

found local lexicon and the ground truth was less than a distance threshold δ.

The goal for our first test is to evaluate the efficacy of INFERLOCALLEXICON in terms

of determining how far, measured by δ in the ranges [0,50), [50,100), and [100,∞), it

placed the geographic focus of a source’s local lexicon from its ground truth value, while

also varying the maximum diameter Dmax of the convex hull of the locations in the lex-

icon found between 50 and 1,000 miles in 50 mile increments. Note that setting δ = ∞

effectively results in a test for local lexicon inference without regard to its distance from
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Figure 6.4: Local lexicon foci for news sources in the USA (LGL in red).
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the true geographic focus, i.e., whether the corresponding source was classified correctly as

having a local lexicon or not. For this test, we kept the minimum lexicon size, Smin, fixed

at 5 for our test on all feeds and 3 for our test on only LGL feeds. Figure 6.5 shows our

performance results for inferring local lexicons on all news sources and only those sources

in LGL, respectively. In Figure 6.5a, the point where all three lines coincide corresponds

to the minimum value of Dmax tested, namely 50 miles. Each successive plotted point

corresponds to a 50 mile increase in Dmax. Also, the points with maximum F1-score are

highlighted. Observe that a smaller value of Dmax results in higher precision at the expense

of recall, corresponding to the high precision points in the left portion of each plot. For

all sources and Dmax values tested, we obtained precision between 0.65–1.00, and recall

between about 0.65–0.85. The performance results indicate that our local lexicon inference

procedure tends to have high precision overall, with values well above 0.90 for both sets

for relatively small Dmax < 200 miles. Above this value, precision suffers, but with little

corresponding gain in recall. In fact, for Dmax > 150 (δ = 50) and Dmax > 250 (δ = 100),

both precision and recall decrease, because any gains in recall from detecting a local lexi-

con are more than offset by penalties from having local lexicon centroids too distant from

the ground truth. Figure 6.5b shows a plot of Dmax values and the corresponding precision

of our inference process for news sources in LGL. Recall was omitted because all sources

in LGL were marked with a geographic focus in the ground truth, and furthermore, our

local lexicon inference procedure always found a local lexicon for all sources as well. As

a result, recall always equaled precision in this test. We found that the minimum value of

Dmax tested, 50 miles, resulted in the best precision of 0.46 for δ = 50 and 0.66 for δ =

100. In general, our inference algorithm performed well when simply detecting the pres-

ence of a local lexicon, as evidenced by the high precision and recall values of the δ = ∞

curves in both figures. Also, performance was better across all news sources than for those

only in LGL, mainly due to the relative scarcity and highly skewed distribution of stories

produced by the LGL news sources. The tests indicate that a value of Dmax = 200 miles is
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reasonable for inferring local lexicons with INFERLOCALLEXICON.

For our second test of INFERLOCALLEXICON, we varied the minimum acceptable local

lexicon size, Smin, between 4–15, while keeping the maximum convex hull diameter Dmax

fixed at 200 for all feeds and 150 for LGL feeds, to discover a suitable value for our use.

Figure 6.6 shows the results of our tests. The smallest value of Smin tested (4) corresponds

to the rightmost points of each curve in the graphs, which demonstrates that small Smin

results in higher recall at the expense of precision. For all feeds (Figure 6.6a), a small

increase in Smin to the range of values 5–7 results in a large jump in precision with little

drop in recall, and for larger values of Smin, the inference procedure quickly converges to

near 1.00 precision and about 0.70 recall. Similar results can be seen for only LGL sources

(Figure 6.6b), where the points with smallest value of Smin (4) have the highest recall and

also highest F1-scores. When increasing Smin, precision rapidly jumps, but at the heavy

expense of recall, since a larger Smin will result in fewer local lexicons being found. Again,

we attribute the relatively low recall numbers for LGL sources to the skewed distribution

of news articles in LGL. In general, both plots show that INFERLOCALLEXICON is a high

precision procedure, so small values of Smin such as 5 are best. This relatively small number

makes sense when considering that it is rare for even a few toponyms to occur frequently

in articles from a given news source to also be geographically proximate, unless the news

source’s geographic focus is in the area.

6.3.4 Toponym Recognition

Next, we evaluated our multifaceted toponym recognition procedure described in Chapter 4

(denoted here as the “hybrid” method) against a simpler method using only the Stanford

named-entity recognizer, trained on a variety of news corpora. For the named-entity rec-

ognizer, we varied a threshold parameter that controls the minimum confidence level of

output by the recognizer. Varying this parameter allowed control over whether precision

or recall was to be favored. As is typical for statistical named-entity recognizers, setting a
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Figure 6.6: Performance on local lexicon inference by varying minimum lexicon size Smin

between 4–15 and keeping maximum hull diameter Dmax fixed at (a) 200 and (b) 150.

high value for the threshold parameter favors precision at the expense of recall, while a low

threshold value favors recall at the expense of precision. Also, we considered toponyms to

match only if they coincided exactly in the text; partial or otherwise overlapping toponyms

were considered errors.

Figure 6.7 details performance results of the hybrid (H) and named-entity (NE) recog-

nition procedures in the form of precision-recall diagrams. We also tested variants of the

hybrid and named-entity procedures where the system-generated toponyms were filtered to

only those toponyms that have entries in our gazetteer, labeled as HG and NEG, respectively.

In other words, rather than blindly using the set of toponyms returned by the recognition

process as our system-generated set, we remove those toponyms that are not present in the

gazetteer. We do so to test our toponym recognition procedure as a standalone process, sep-

arate from its purpose as the first stage in a combined geotagging process. This is necessary

in order to take into account the possibility that some of the toponyms are not in the gazet-

teer, which can happen in the case of names of regions that do not have specific boundaries

on account of not being formal entities such as “New England” and “Upper West Side”. In

this way we avoid penalizing the precision for these gazetteer failures. Note that our hybrid

recognition procedure (H and HG) does not have an explicit tuning parameter to adjust the

precision/recall tradeoff, and so Figure 6.7 contains a single data point for each.
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Figure 6.7: Precision-recall diagrams for toponym recognition performance using both our

hybrid procedure (H) and a statistical named-entity recognizer (NE).

Figure 6.7a shows recognition results on the ACE corpus. As can be seen, the named-

entity recognizer is highly tuned for precision. At all values of the threshold parameter,

recognition precision was above 0.920, with the corresponding recall ranging between

0.490–0.787. Notice that gazetteer filtering did not have much of an effect on the NE

method. This is not surprising, because in essence the training set which it uses plays a

similar role to a gazetteer, but is very limited in scope. This limitation serves to ensure high

precision but at the expense of recall as we have observed. In contrast, our hybrid recog-

nition procedure emphasized toponym recall, with 0.369 precision and 0.851 recall before

and 0.758 precision and 0.823 recall after gazetteer filtering. Though the precision greatly

increases by almost 0.39, recall drops slightly by about 0.03, due to fewer toponyms being

recognized because they do not exist in our gazetteer. This drop reflects the fact that most

gazetteers are still rather incomplete or at least not in sync with the frequency of use of

location descriptions that do not have formally defined boundaries.

Figure 6.7b shows similar results from our LGL corpus, although the difficulty of rec-

ognizing smaller, less prominent toponyms is reflected in both methods’ decreased perfor-

mance relative to the ACE corpus. The named-entity recognizer again garnered high preci-

sion, varying between 0.892–0.969, and had recall between 0.262–0.617. In contrast, our

hybrid recognition method, in combination with gazetteer filtering, resulted in 0.762 recall

204



and 0.573 precision. These performance numbers indicate clearly that our hybrid procedure

is much better-suited for toponym recall than purely statistical recognition methods.

6.3.5 Toponym Resolution

Our measure of correctness for toponym resolution is the same as that in our toponym

recognition evaluation, except that in addition to an exact toponym match, for a grounded

toponym to be considered correct, it must have been placed a maximum of 10 miles from

the ground truth toponym. This small distance range is required to account for small lat/long

differences in the gazetteers used in annotating our evaluation corpora (IGDB [92] for ACE,

GeoNames [43] for LGL). Exceptions to this rule include features with extent, such as

countries and states. We measured precision, recall, and F1 of the entire toponym recogni-

tion and resolution process. In addition, we took two sets of measurements using different

toponym recognition procedures to evaluate different stages of our geotagging process. Our

first set of measurements used our own toponym recognition procedure, described in Chap-

ter 4, which resulted in measurements of our entire geotagging procedure’s accuracy. For

our second set of measurements, we assumed a toponym oracle for toponym recognition

that ensures perfect toponym recognition by using the annotated ground truth toponyms,

which effectively tests our toponym resolution procedure in isolation.

We also took two sets of measurements that deal with repeated toponyms in a single ar-

ticle differently, to reflect the different needs of different geographic information retrieval

applications. Our first set of measurements considered all toponyms in an article separately,

regardless of whether they had been repeated (labeled “All toponyms” in our performance

tables), while our second set of measurements merged repeated instances of the same to-

ponym in both ground truth and system-generated toponym sets, resulting in only distinct

toponyms in the final toponym sets (labeled “Distinct toponyms”). To help illustrate these

measurement strategies, consider an article containing three mentions of “Paris”, and the

correct sense of all three mentions was Paris, Texas. In other words, the ground truth reso-

205



lution set for this article would be G = {Texas, Texas, Texas}. Furthermore, assume that a

toponym resolution procedure assigned two of these mentions to Paris, Texas, and the third

to Paris, France, resulting in a system-generated resolution set S = {Texas, Texas, France}.

Using the first measurement, all repeated instances would be considered separately, result-

ing in precision P = 2

3
and recall R = 2

3
. Under the second measurement, repeated inter-

pretations in G and S would be merged to form G′ = {Texas} and S ′ = {Texas, France},

yielding precision P = 1

2
and recall R = 1. More concisely, the first measurement strategy

treats G and S as multisets, while the second treats them as normal sets.

We compared our own geotagging procedure, referred to as IGeo, with implementations

inspired by other noted geotagging methods. In particular, we created implementations us-

ing MetaCarta’s [121] confidence-based toponym resolution, Web-a-Where’s [7] gazetteer

hierarchy resolution procedure, and the class-based weight heuristics of Volz et al. [154],

henceforth referred to as MC, WaW, and VKM, respectively. In cases where the authors’

implementations were loosely specified, we used defaults that ensured reasonable perfor-

mance. Also, despite our best efforts, we were unable to obtain the annotated corpora used

by these previous researchers, either due to inactivity or restrictive copyright policies, and

hence could not directly validate our implementations.

Table 6.4 details toponym resolution performance across both the ACE and LGL cor-

pora. Maximum values for each evaluation method and corpus are highlighted in the table.

For LGL, we also tested our IGeo procedure without using local lexicon evidence, listed

as IGeoNL. Using our own toponym recognition, IGeo outperformed the other implementa-

tions across both corpora, in terms of precision, recall, and F1-score. For the ACE corpus,

all the geotagging methods performed reasonably, with precision and recall values gener-

ally above 0.70. WaW most closely approached IGeo’s precision and recall, with nearly

identical values. These performance numbers reflect the relative ease of geotagging news

wire text, since toponyms are usually prominent places or well-specified with geographic

contextual clues. However, examining performance in the LGL corpus, we see significant

206



Table 6.4: Toponym resolution performance results.

Toponym recognition Toponym oracle

P R F1 P R F1

ACE

IGeo 0.800 0.774 0.787 0.968 0.890 0.928

WaW 0.795 0.773 0.784 0.962 0.891 0.925

MC 0.731 0.752 0.741 0.945 0.870 0.906

VKM 0.603 0.709 0.652 0.859 0.816 0.837

LGL

IGeo 0.826 0.654 0.730 0.964 0.817 0.885

IGeoNL 0.698 0.450 0.548 0.788 0.546 0.645

WaW 0.651 0.452 0.534 0.761 0.628 0.689

MC 0.477 0.494 0.485 0.712 0.629 0.668

VKM 0.351 0.475 0.404 0.590 0.567 0.578

performance penalties for competing methods that neglect the local lexicon. IGeo outper-

forms its nearest competitor WaW by almost 0.20 in terms of precision, recall, and F1-

score. Notice that adding the local lexicon caused a large increase of about 0.13 precision

and 0.20 recall over IGeoNL. This increase in both precision and recall stands in contrast to

many information retrieval techniques, which usually increase either precision or recall at

the expense of the other.

With a toponym oracle, performance results for all resolution methods are much higher,

with F1-scores for ACE approaching or exceeding 0.90. In particular, WaW’s performance

nearly matched that of IGeo, in some cases being slightly better. However, when moving to

the more difficult LGL, we again see a large performance difference of about 0.20 in terms

of F1-score between IGeo and competing methods. Again, for LGL, both precision and

recall improve as a result of using local lexicon evidence. Interestingly, we see that IGeo’s

precision for both the ACE and LGL corpora stays constant at approximately 0.96, which

indicates that local lexicons serve as a high precision source of evidence for geotagging.

Comparing performance results between our own toponym recognition procedure and the

toponym oracle, IGeo’s performance gain using the toponym oracle in terms of F1-score

was about 0.10 for ACE, and about 0.15 for LGL. This difference reflects the greater dif-

207



ficulty in toponym recognition and resolution of the smaller, less prominent toponyms in

LGL, which affects the performance of the non-IGeo methods. Furthermore, IGeo’s perfor-

mance difference in terms of F1-score between using toponym recognition and the toponym

oracle was the least of all resolution methods (excepting IGeoNL), being 0.141 for ACE and

0.155 for LGL. This finding indicates that of all resolution methods, IGeo depended the

least on using the toponym oracle for toponym recognition, which is artificial.

We also measured toponym resolution performance in terms of Fβ , for values of β

between 0.25–2.0, presented in Figure 6.8. The left portion of each figure corresponds to

values of β favoring precision, while the right portion shows values favoring recall. As in

Table 6.4, IGeo outperforms competitors across all values of β, but especially so for the

LGL corpus.

6.3.6 Heuristic Usage

Our final experiment measured how much each heuristic listed in Table 6.1 played a part in

geotagging precision across our evaluation corpora. Figure 6.9 shows our usage results. In

the figures, each column represents a different heuristic, labeled H1–H6, and corresponding

to H1–H6 in Table 6.1. The One Sense heuristic (H7) is not shown as it was applied after

each of H1–H6. Toponyms resolved using H7 were counted toward whichever of H1–H6

was responsible for the propagated resolution. Figure 6.9a shows the usage distribution for

ACE. In each column, the first bar (+) shows how often the heuristic contributed to a cor-

rectly resolved toponym, while the second bar (−) counts instances where the heuristic led

to an error. Examining Figure 6.9a reveals that the most important heuristics for toponym

resolution were Global Lexicon (H6) and Dateline (H1). This is not overly surprising, as

ACE consists mostly of news wire of international scope, so most toponyms mentioned

in ACE articles will be prominent places. Also, being news wire, the Local Lexicon (H5)

played no role in toponym resolution.

Figure 6.9b shows heuristic usage in the LGL corpus. In each column, the first two
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Figure 6.8: Toponym resolution performance measured with Fβ for 0.25≤ β ≤ 2.0, in 0.25

increments.
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Figure 6.9: Heuristic usage in toponym resolution for both ACE and LGL corpora.
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bars are successes (+) and errors (−) as before, while the second two show successes

(+NL) and errors (−NL) when disregarding local lexicon evidence. It is clear that the Local

Lexicon (H5) plays a large role in correct toponym resolution, and suffers from relatively

few errors. This result is in keeping with our earlier observation that using the local lexicon

affords high precision. Interestingly, the Global Lexicon (H6) plays an even larger role in

correct toponym resolution when used without a Local Lexicon (H5) but it also causes even

more errors, but the relative difference is surprisingly the same as when used with a Local

Lexicon (H5). Also, the Dateline heuristic (H1) has less use in LGL than in ACE, which

reflects the lack of dateline toponyms in many smaller newspapers. From both figures, we

note that Relative Geography (H2) provides some resolution benefit, but is also noisy in

that it causes almost as many precision errors as successes in the case of ACE and in LGL

when ignoring the Local Lexicon (H5). We also observe that for LGL, using the Local

Lexicon (H5) slightly improved the performance of the Dateline (H1) and Comma Group

(H3) heuristics, which partly rely onH5.

6.4 Open Problems

Here, we discuss several open problems related to local lexicons. First, associating a single

local lexicon with each data source allows for a variety of applications. However, it may

be possible to fine-tune the use of spatial lexicons in situations involving different types

of content. For example, a blog may track several different topics simultaneously, and use

different spatial lexicons for each topic. Furthermore, individual authors may write for

specific audiences as well, as in the case of journalists stationed in certain geographic areas

and concentrating on stories in that area. It thus might be beneficial to determine separate

spatial lexicons assumed by different authors, and further improve geotagging performance.

More generally, we might associate a particular spatial lexicon with any type of entity

found in each document, be they authors, persons, organizations, or particular keywords.

For example, upon finding a mention of “Robert Mugabe”, we might assume a spatial
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lexicon including Zimbabwe and nearby locations, even without mentions in the text.

It would also be interesting to detect and observe evolving spatial lexicons over time

for data sources with evolving geographic interests, thus further improving geotagging on

these sources. For example, the first few articles of an ongoing, prominent news story will

often fully specify the toponyms relevant to the story. Later articles in the series, however,

will often underspecify the same toponyms, since they had already been introduced into the

audience’s spatial lexicon and been fully resolved in earlier articles.

Finally, we plan to further investigate improvements to our heuristics for better perfor-

mance on a variety of data sources, such as mailing lists (e.g., ProMED [55]) and custom

document repositories. Each different data source has different structure and a different

audience, which will in turn affect any resulting spatial lexicon. We plan to develop more

annotated corpora to allow measurement of heuristic performance across several domains.

6.5 Summary

We have shown that modeling and using spatial lexicons, and in particular local lexicons,

are vital to ensure successful geotagging. As newspapers and other data sources continue

to move into the virtual space of the Web, knowing and using spatial lexicons will be ever

more important. Previously localized newspapers will cater to a broader, global audience,

and thus will adjust their notion of their audiences’ spatial lexicons, perhaps limiting or do-

ing away with an assumed local lexicon altogether. On the other hand, as more people pub-

lish highly individual and geographically local content, inferring individual local lexicons

will be a necessity for correct geotagging. Geotagging with knowledge of local lexicons

will thus continue to play a large role in enabling interesting geospatial applications.
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Chapter 7

Adaptive Context Features

In the previous two chapters we explored two forms of toponym resolution evidence in

the form of comma groups and local lexicons. In this chapter, we introduce another such

form of evidence. As a first reminder, recall that geotagging consists of two steps: find-

ing all textual references to geographic locations, known as toponyms, and then choosing

the correct location interpretation for each toponym (i.e., assigning lat/long values) from a

gazetteer (database of locations). These two steps are known as toponym recognition and

toponym resolution, the second of which we investigate here, and are difficult due to am-

biguities present in natural language. Importantly, both these steps can be considered as

classification [36] problems: Toponym recognition amounts to classifying each word in the

document’s text as part of a toponym or not, and toponym resolution amounts to classifying

each toponym interpretation as correct or incorrect. With this understanding, and with ap-

propriately annotated datasets, we leverage techniques from supervised machine learning

to create an effective geotagging framework. These techniques take as input sets of val-

ues known as feature vectors, along with a class label for each feature vector, and learn a

function that will predict the class label for a new feature vector. Many such techniques for

classification, and other machine learning problems, exist and have been used for geotag-

ging purposes, including SVM [8, 56, 97], Bayesian schemes [33, 52, 159], and expectation

maximization [17].

The effectiveness of such techniques for a given problem domain depends greatly on
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the design of the input features that comprise each feature vector. One common feature

used for geotagging is the population of each interpretation, since larger places will tend to

be mentioned more frequently and are more likely to be correct. However, using population

alone or overly relying on it, as many methods do, resulted in greatly reduced accuracy in

our experiments, especially for toponym recall. Instead, in this chapter, we consider a new

class of features to improve the accuracy of toponym resolution, termed adaptive context

features. These features construct a window of variable size around each toponym t, and

use the other toponyms in the window to aid in resolving t correctly by considering the

geographic relationships between interpretations lt of t and those of other toponyms in the

window. In particular, we search for interpretations that are geographically proximate to

lt, or are siblings of lt in terms of a geographic hierarchy (e.g., cities in the same state).

The more such relationships appear in the window, the greater evidence there is that lt

is the correct interpretation of t. These window features are a natural extension of other

context-sensitive features which depend on other words nearby the toponym, such as ob-

ject/container and comma group [80] evidence (see Chapter 5), as well as pairing notions

such as pair strength (part of STEWARD’s [78] disambiguation algorithm, described in

Section 2.3.3).

We call these features adaptive because the window’s parameters can be varied for dif-

ferent domains, or to achieve different ends. Some relatively small windows can contain

a significant number of highly ambiguous toponyms, and considering all possible com-

binations of interpretations places inhibitive penalties on feature computation speed. For

. . . in and around [Louisville 17] and [Lexington 31], [Kentucky 6],

[Nashville 27] and [Cordova 55], [Tennessee 5], [Richmond 69], [Virginia 42],

[Fort Lauderdale 1] and [Orlando 9], [Florida 96], [Indianapolis 3], [Indiana 8]

and [Atlanta 22], [Georgia 12].

Figure 7.1: Excerpt from an Earth Times press release [106] with toponyms and their num-

ber of interpretations highlighted, showing the extreme ambiguity of these toponyms and

illustrating the need for adaptive context features.
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example, consider Figure 7.1, which is an excerpt from a press release [106] published

in the Earth Times newspaper, with toponyms highlighted and the numbers next to each

toponym indicating the number of interpretations in our gazetteer for the toponym. If we

consider all possible combinations of resolutions for these toponyms, this results in about

3·1017 possibilities, an astonishingly large number for this relatively small portion of text,

which is far too many to check in a reasonable time. Instead, we set parameters which we

term the window’s breadth and depth, named analogously to breadth-first and depth-first

search, which control the number of toponyms in the window and the number of inter-

pretations examined for each toponym in the window, respectively. The adaptive context

features thus afford us flexibility since by varying these parameters, we control a tradeoff

between feature computation time and resolution accuracy. The more toponyms and topo-

nym interpretations we examine, the more likely we are to find the correct interpretation,

but the longer resolution will take, and vice versa. Some textual domains such as Twitter,

where tweets arrive at a furious rate, demand faster computation times, while in other, of-

fline domains, the time constraint is relaxed and we can afford to spend more time to gain

higher accuracy. While window-like features and heuristics have been used in other work

related to geotagging (e.g., [70, 72, 97, 121, 135]), these features’ adaptive potential has

not been explored.

In the rest of this chapter, we first introduce the geotagging framework that enables us to

test our adaptive context features, and describe our toponym recognition and resolution pro-

cesses as a whole (Section 7.1). We also introduce several other features that complement

our adaptive context features and serve as baselines for comparison. Next, we describe our

new adaptive context features, as well as algorithms for their computation (Section 7.2). We

detail extensive experiments showing our methods’ performance benefits over OpenCalais

and Placemaker, that also test various feature combinations and parameters (Section 7.3).

Finally, we offer potential avenues of future work (Section 7.4) and conclude the chapter

(Section 7.5).
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7.1 Geotagging Framework

In this section, we present the framework that enables testing of our geotagging methods.

This framework was originally developed for and is an integral component of the News-

Stand [143] (described further in Chapter 3) and TwitterStand [130] systems. We describe

our toponym recognition (Section 7.1.1) and resolution (Section 7.1.2) procedures, as well

as a set of baseline features (Section 7.1.3) that we use in combination with our adaptive

context features, to be described in later sections.

7.1.1 Toponym Recognition

Our toponym recognition procedure is designed as a multifaceted process involving many

types of recognition methods, both rule-based and statistics-based. For our toponym recog-

nition method here, we use the recognition methods introduced previously in Chapter 4.

This multifaceted recognition procedure is designed to be flexible to capture variations that

appear in streaming news, and also to be as inclusive as possible when recognizing topo-

nyms, to maximize toponym recall, which comes at the cost of lower precision. Our recog-

nition procedure’s high recall is also corroborated by experimental results in Section 7.3.3.

Since toponym recognition is only the first step in a two-part geotagging process, our topo-

nym resolution methods will serve to restore precision to the entire process.

7.1.2 Toponym Resolution

As mentioned earlier, geotagging can be understood as a classification problem, and we

use methods from supervised machine learning to implement toponym resolution. Specif-

ically, we cast it as a binary classification problem, in that we decide for a given topo-

nym/interpretation pair (t, lt), whether lt is correct or incorrect. These location interpreta-

tions are drawn from a gazetteer, which is a database of locations and associated metadata

such as population data and hierarchy information. Our gazetteer, which is based on GeoN-
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ames [43], is vastly larger than many gazetteers typically used in geotagging methods,

which both increases our methods’ utility as well as geotagging’s difficulty. We character-

ize our gazetteer further in our experiments in Section 7.3.1.

For our classifier, we use a decision tree-based ensemble classifier method known as

random forests [20], which has state-of-the-art performance for many classification tasks.

Briefly, given an annotated training dataset, the random forests method constructs many

decision trees based on different random subsets of the dataset, sampled with replacement.

In addition, each decision tree is constructed using random subsets of features from the

training feature vectors. Because the features and subsets are chosen randomly, a variety of

trees will be in the forest. Classifying a new feature vector is relatively simple: each tree

in the forest votes for the vector’s class, and the consensus is taken as the result. Note that

individual trees may be excellent or poor class predictors, but as long as some features allow

better-than-random classification, the forest taken as a whole will be a strong classifier.

Another useful aspect of random forests is that the number of trees that vote for a given

class can be used as a confidence score for the classification, and provides a means of tuning

the precision/recall balance of the classifier. Assuming the score is an accurate estimate of

the method’s predictability, accepting classifications with a lower score will result in lower

precision but higher recall, and vice versa. For our implementation, we used the fast random

forest implementation [142], integrated with the Weka machine learning toolkit [49].

As an alternative to classification, Martins et al. [97] considered the use of SVM re-

gression to estimate a distance function based on feature vector values that is intended to

capture the distance between a given lt, and t’s ground truth interpretation. They use the

resulting distance values to rank the interpretations, essentially using them as confidence

scores, and select the one with smallest distance value as the interpretation for t. However,

a significant drawback of this technique is that it assumes that all toponyms input to the

toponym resolution process are not erroneous, i.e., that the toponym recognition procedure

is perfect in identifying toponyms, while in reality, no such procedure is perfect. The dis-
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tance measures they compute, while useful for ranking, are not necessarily meaningful as

confidence scores for deciding whether a given lt has strong enough evidence to consider

it correct. For example, an inferred distance of “10” may indicate strong evidence for a

given lt, but weak evidence for another. On the other hand, our framework using random

forests and their confidence scores provide consistent and meaningful scores for deciding

classification strength.

7.1.3 Resolution Features

In addition to the adaptive context features introduced in the next section, we use several

baseline toponym resolution features in our methods. To borrow terms from linguistics,

these features, which will be computed for each toponym/interpretation pair (t, lt), can be

loosely classed as what we term context-sensitive and context-free features. Put simply,

context-sensitive features depend on t’s position in relation to other toponyms in the docu-

ment, while context-free features do not. Note that our adaptive context features subsume

and generalize context-sensitive features, so we describe them in the next section. On the

other hand, the context-free features we use include the following:

I: interps. Number of interpretations for t; more interpretations means more opportu-

nities for errors.

P: population. The population of lt, where a larger population indicates that lt is more

well-known.

A: altnames. Number of alternate names for lt in various languages. More names indi-

cates greater renown of lt.

D: dateline. Geographic distance of lt from an interpretation of a dateline toponym,

which establishes a general location context for a news article.
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L: locallex. Geographic distance of lt from the newspaper’s local lexicon [81], the

expected location of its primary audience (further described in Chapter 6).

The interps, population, and altnames features are domain independent, i.e., they

can be used in any textual domain, while the dateline and locallex features are

specific to the news domain. In our experiments in Section 7.3.4, we consider these features

alone and in various combinations to understand each feature’s relative utility.

7.2 Adaptive Context Features

In this section, we present our adaptive context features to aid in the resolution of topo-

nyms. These features reflect two aspects of toponym cooccurrence and the evidence that

interpretations impart to each other, which include:

1. Proximate interpretations, which are both nearby in the text as well as geographically

proximate, and

2. Sibling interpretations, which are nearby in the text and share containers in a geo-

graphic hierarchy.

We capture these interpretation relationships and encode them in features. To compute

these features, we examine for each toponym t a window of text around t, and compare

interpretations of toponyms in the window with the interpretations of t. That is, a given in-

terpretation lt of t is promoted if there are other interpretations of toponyms in the window

that are geographically proximate to it, or are sibling interpretations. In addition, we vary

two parameters of the window termed window breadth and window depth, which control a

tradeoff between computation speed and discriminative utility for the features by changing

the number of toponyms in the window, and the number of interpretations per toponym,

respectively.

Figure 7.2 is a schematic representation of the algorithm used to compute our features.

Each box represents a toponym, and the lines under the boxes represent location interpreta-
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Figure 7.2: Computing adaptive context features, illustrating the window breadth wb and

window depth wd.

tions for each toponym. Different toponyms have different levels of ambiguity, as measured

by the number of interpretations for the toponyms. In Figure 7.2, we are computing adap-

tive context features for the highlighted toponym and its interpretations in the middle. We

compute these features for all toponyms at a document distance of less than the window

breadth wb, and we compare the first few interpretations of each toponym in the window,

up to a maximum of wd interpretations, the window depth.

Note that our proximity and sibling features subsume and generalize other commonly-

used features in toponym resolution. In particular, these features generalize context-sensitive

features, which compute a toponym interpretation’s likelihood of correctness based on the

other toponyms nearby to it in the document. One example of these context-sensitive fea-

tures includes the object/container pair (e.g., “[Paris], [Texas]”, “[Dallas] in [Texas]”), con-

sisting of two toponyms, one of which contains the other. Authors use them when their

audiences are not familiar with the location in question, and use the containing toponym

to provide a geographic context for the toponym. Object/container pairs are a particularly

common type of evidence used in many types of documents, and much research has inves-

tigated its utility (e.g., [7, 28, 72, 81, 121, 135]). This type of evidence can be understood

as an extreme case of our sibling feature, in the case where the window is restricted to

the immediately next or preceding toponym. More general than object/container pairs is

the comma group [80] (investigated in detail in Chapter 5), which consists of a sequence

of toponyms adjacent to each other separated by connector tokens (e.g., “[Paris], [Dallas],

[San Antonio] and [Houston]”) that share geographic characteristics (in our example, all
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cities in Texas), and hence provide mutual evidence for each others’ correct interpretations.

These relationships can be captured using our features with a window of appropriate size

to contain all the toponyms. Another difference between these sources of evidence and our

adaptive context features is that we do not assume any meaning for the specific position of

toponyms within the window. For example, we do not consider the grammatical structure

involved, or the tokens present between toponyms in the window. This increases the flex-

ibility of our features as compared to, e.g., comma groups, whose recognition depends on

specific wording and organization of the toponyms. As noted in Chapter 5, comma groups

in particular can be constructed in various ways that can mislead rule-based heuristics, such

as in our original example in Figure 7.1.

The following sections describe our proximity (Section 7.2.1) and sibling (Section 7.2.2)

features, and the algorithms we use to compute them (Section 7.2.3). We also describe a

strategy for propagating significant feature values for a toponym to its other instances in

the same document (Section 7.2.4).

7.2.1 Proximity Features

The proximity features we use are based on geographic distance. Because this distance is

continuous, appropriate thresholds for what is considered “near” and “far” are not appar-

ent. Thus, it behooves us to defer their definitions to learning algorithms that can learn

appropriate and meaningful distance thresholds.

To compute our proximity features for a toponym/interpretation pair (t, lt), we find

for each other toponym o in the window around t the closest interpretation lo to lt. Then,

we compute the proximity feature for (t, lt) as the average of the geographic distances to

the other interpretations. Thus, a lower feature score indicates a higher level of overall

geographic proximity for toponyms within the window. This feature strategy also balances

fairness with optimism, in that it allows all toponyms in the window to contribute to (t, lt)’s

feature score, while each toponym in the window contributes its best (i.e., geographically
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nearest) interpretation to the feature score. It has the additional benefit that no distance

thresholds are hard-coded into the feature. Instead, the learning procedure can learn appro-

priate distance thresholds from its training data.

7.2.2 Sibling Features

Our second class of adaptive context features are those based on sibling relationships be-

tween interpretations in a geographic hierarchy. In other words, this feature will capture the

relationships between textually proximate toponyms that share the same country, state, or

other administrative division. The sibling feature is intended to capture interpretations that

are at the same level in the hierarchy (e.g., states in the same country, cities in the same

state) as well as interpretations at different levels (e.g., a state and its containing country,

a city inside its containing state). The first case captures “true” sibling relationships, while

the second case captures containment relationships, which can be considered siblings at a

coarse granularity (e.g., “College Park” and “Maryland” are state-level siblings).

We compute sibling features in a similar way as the proximity features. For each to-

ponym/interpretation pair (t, lt), we use as our sibling feature value the number of other

toponyms o in the window around t with an interpretation that is a sibling of lt at a given

resolution. We consider three levels of resolution, which correspond to three sibling fea-

tures for each (t, lt): country-level, state-level, and county-level.

Given that the sibling features are so related to the proximity features, at first glance, the

sibling feature appears to be redundant in that some toponym interpretations that are sib-

lings will tend to be geographically proximate as well (e.g., “[Paris], [Texas]” and “[Dallas],

[Texas]”). However, in some cases the sibling feature will prove helpful in distinguishing

toponym relationships. For example, cities that are positioned at opposite ends of a given

state might be too far to be considered geographically proximate, but would still be consid-

ered siblings. Similarly, the notion of geographic distance for area objects such as countries

and states depends on their representation. If we represent, e.g., a country by a single point,
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such as its centroid or the location of its capital city, it might be considered geographically

distant from many cities contained in it, while the sibling feature would correctly capture

these relationships. Another difference between the proximity and sibling features is that

the geographic hierarchy is discrete, while geographic distances are continuous values. As

a result, we do not have the same thresholding problem as for the proximity features, as our

“thresholds” are effectively the same as the hierarchy levels.

7.2.3 Feature Computation

As noted earlier, our adaptive context features are based on computing features within a

window of context around each toponym t. We consider two variables related to the search

for a correct interpretation of t:

1. Window breadth, denoted wb, which corresponds to the size of the window around t

to be considered.

2. Window depth, denoted wd, which is the maximum number of interpretations to be

considered for each toponym in the window.

The window breadth wb controls how many toponyms around a given toponym t are to

be used in aiding the resolution of t. With a larger wb, more toponyms will be used to resolve

t, thus reducing the resolution algorithm’s speed but hopefully increasing its accuracy. Sim-

ilarly, the window depth wd controls the number of interpretations to be considered for each

toponym in the window. A larger wd means that more interpretations will be checked, with

a resulting decrease in speed, but with more potential for finding corroborating evidence

for a correct interpretation of t.

Because the window depth may preclude examination of all interpretations for a given

toponym, the order in which the interpretations are examined is important. Ideally, inter-

pretations would be ordered using context-free attributes of each interpretation. In a sense,

the ordering is based on an apriori estimate of each interpretation’s probability of being
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mentioned in a given document, though we do not formalize this notion here. We order or

rank these interpretations using various factors, which include, in order of importance:

1. Number of alternate names for the location in other languages. GeoNames, being a

multilingual gazetteer, contains alternate names and the number of names can indi-

cate the place’s renown.

2. Population of the location, where a larger population generally indicates a more well-

known place.

3. Geographic distance from a local lexicon location.

These ranking factors can be considered context-free, in that the ordering of interpretations

for a given toponym is independent of its position in the document. We could use additional

factors such as each interpretation’s geographic distance from a dateline toponym interpre-

tation, but because we include these factors as separate features we do not need to include

them in the ranking here.

One seeming drawback with regard to the window depth is that it may not seem effective

in that most toponyms in our gazetteer have only one or two possible interpretations, as our

experiments in Section 7.3.1 show. However, toponyms that are well-known by virtue of

having a well-known interpretation (e.g., “Paris”, widely known as the French capital), will

tend to be mentioned more frequently in documents, and these will be more ambiguous.

This is also reflected in measurements made on the toponyms present in our experimental

datasets (Section 7.3.2).

In addition, rather than using all toponyms in the window around each t, we perform

some pre-filtering to remove toponyms that detract from the usefulness of our adaptive

context features. For example, we do not use toponyms in the window that have the same

name as t, since they will have the same set of interpretations as t, which will impart

no useful information. In addition, and more generally, we may not be sure which of the

words in the window correspond to toponyms, due to ambiguities in toponym recognition.
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Our toponym recognition process (described in Chapter 4) is designed for high recall and

as a result we consider many words which are not true toponyms. In other cases, we may

not be sure of the appropriate interpretation for a given toponym. For example, consider

the phrase “University of Maryland”, which could be interpreted as a whole, “[University

of Maryland]”, referring to the school, or as “University of [Maryland]”, the state. Rather

than immediately deciding on one of these toponyms, our recognition process keeps both,

even though they overlap. Thus, we keep and consider all of them in toponym resolution,

though they must be appropriately filtered when processing toponyms in the window.

Algorithm 7.1 Compute adaptive context features.

1: procedure ADAPTIVECONTEXT(T,wb, wd)

input: Toponyms T , window breadth wb, window depth wd

output: Proximity and sibling features

2: for t ∈ T do

3: P ← {}
4: O ← {o ∈ T : NAME(t) 6= NAME(o) ∧ DOCDIST(t, o) ≤ wb}
5: for o ∈ O do

6: Lo ← LOCS(o)[1 . . .min{wd, |LOCS(o)|}]
7: for lt ∈ LOCS(t) do
8: dmin ← min{∀lo ∈ Lo, GEODIST(lt, lo)}
9: P [lt]← P [lt] ∪ {dmin}

10: for lev ∈ {country, admin1, admin2} do
11: if ∃lo ∈ Lo : SIBLING(lt, lo, lev) then
12: Increment SIBFEATURE(t, lt, lev)
13: end if

14: end for

15: end for

16: end for

17: for lt ∈ LOCS(t) do
18: PROXFEATURE(t, lt)← AVG(P [lt])
19: end for

20: end for

21: end procedure

Our algorithm for computing adaptive context features, called ADAPTIVECONTEXT, is

shown in Algorithm 7.1. It takes as input the toponyms T in the document being processed,

as well as the window breadth wb and window depth wd under consideration. The algorithm
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proceeds by iterating over all toponyms t ∈ T (line 2). For each t, an array P is initialized

which will hold minimum distances to interpretations of toponyms in the window around

t, which will be used in computing the proximity features for t (3). Next, other toponyms

O within the window around t are collected by finding toponyms o ∈ T whose document

distance is smaller than the window breadth wb, and also have a different name than t (4).

We then loop over each toponym o ∈ O to begin comparing interpretations of t and o (5).

First, we collect the location interpretations associated with o, up to a limit of wd interpreta-

tions, the window depth (6). Then, we loop over each interpretation lt of t (7), and find the

interpretation lo of o with minimum geographic distance from lt (8). We add the interpreta-

tion lo to the location set P [lt] associated with lt which will be used for computation of the

proximity feature for lt (9). Next, we compute the sibling features for each level lev of our

geographic hierarchy (10) by checking whether there exists an interpretation lo of o with lt

as its sibling (11). If so, we increment the sibling feature for that level (12). Finally, after

looping over all toponyms of O, the sibling features are fully computed for each interpre-

tation lt of t, but the proximity feature remains to be completed. We do so for each lt (17)

by averaging the geographic distances computed for lt, which results in the final proximity

feature values (18). We use the median geographic distance as our averaging measure.

7.2.4 Feature Propagation

Oftentimes, documents will mention the same toponyms multiple times. When considering

pairs of toponyms for use in computing adaptive context features, described in the previous

section, these toponym repetitions are ignored because they impart no useful information,

since the interpretations for each pair will be the same. However, we still make use of

toponym repetition within a single document because the toponyms appear in different

contexts (i.e., at different offsets) within the document. Since our adaptive context features

are context-sensitive, we apply stronger feature values computed for the toponym in one

context to the same toponym in other, weaker contexts.
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To leverage these repetitions, as a final processing step, we compute additional features

for each (t, lt) pair by propagating feature values among toponyms in the document that

share the same name. We propagate feature values that indicate strong evidence that a given

toponym interpretation is correct. For the proximity feature, this corresponds to the lowest

average distance values, while for the sibling features, we propagate the largest sibling

counts for each level of resolution we consider.

7.3 Experiments

In this section, we describe extensive experiments performed on our own and compet-

ing geotagging methods. We first establish the general difficulty of geotagging using our

large gazetteer, due to a large amount of toponym ambiguity (Section 7.3.1), and then

introduce the datasets to be used for measuring geotagging performance, and character-

ize the toponyms present in them (Section 7.3.2). In terms of geotagging accuracy, we

compare our own adaptive method, referred to as “Adaptive”, against two existing promi-

nent competing methods: Thomson Reuters’s OpenCalais, and Yahoo!’s Placemaker. Both

OpenCalais and Placemaker are closed-source commercial products, but they do provide

public Web APIs which allow for automated geotagging of documents, and hence they

have been used extensively in state-of-the-art geotagging and entity recognition research

(e.g., [3, 97, 119, 148, 156]). Also note that neither OpenCalais nor Placemaker offer a

means of tuning the precision/recall balance, so we could not explore this aspect of the

systems. We discuss how well these systems fare against our own methods in terms of to-

ponym recognition (Section 7.3.3) and toponym resolution (Section 7.3.4). For the latter,

we also consider various combinations of features and show how they affect resolution ac-

curacy, and use a feature ranking method to measure the importance of each feature when

used in resolving toponyms. Finally, we vary the adaptive context parameters of window

breadth (wb) and depth (wd), and show how they affect the feature computation time and

accuracy of the Adaptive method (Section 7.3.5).
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Note that in all our accuracy experiments, we measure performance using precision,

recall, and F1-scores as measured over the correct interpretations (see Section 4.3.4 for full

descriptions of these measures). We also used 10-fold cross validation to avoid misleading

performance numbers due to potential overfitting. Also, we used 100 trees in our random

forests, with 5 attributes for each tree, and accepted classifications with at least 0.5 confi-

dence score (i.e., at least half of the trees voted for the interpretation). All experiments were

conducted on a Dell Precision 470 workstation with a dual core Intel Xeon 3GHz CPU and

8G RAM.

7.3.1 Gazetteer Ambiguity

First, we examined our gazetteer to understand the level of ambiguity of toponyms present

in it. The gazetteer contains over 8 million location interpretations, 10 million distinct

names, and 5 million alternate names in languages other than English. The gazetteer’s

large size ensures a high level of ambiguity and ensuing greater difficulty in performing

geotagging correctly, when compared to gazetteers used by other systems such as Web-a-

Where [7]. For each toponym in the gazetteer, we counted the number of interpretations

associated with it, and plotted the results. Results are shown in Figure 7.3. Toponyms in

the gazetteer exhibit a power-law relationship in terms of the number of interpretations, in

that the vast majority of toponyms a small number of interpretations, while a few toponyms

have a very large number of interpretations. Of course, most of these unambiguous topo-

nyms will not be mentioned in a given document, and in our datasets, described in the next

section, the documents’ toponyms have higher levels of ambiguity.

7.3.2 Datasets

In choosing the datasets for our evaluation, we wanted news data from a variety of sources,

and for a variety of audiences. To achieve this end, we used three datasets of news in

our evaluation: ACE, LGL, and CLUST. The first, ACE [87], consists of articles from four
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Figure 7.3: Characterization of gazetteer ambiguity. Toponyms and the number of interpre-

tations they have exhibit a power-law relationship.

large news sources: Agence France-Presse, Associated Press World, New York Times, and

Xinhua. These articles tend to have a broad world interest and concern topics such as in-

ternational diplomacy and trade, so they tend to mention large, well-known places. Thus,

ACE serves in our evaluation as a test of the geotagging methods’ capability for correctly

recognizing and resolving well-known, prominent places. On the other hand, to test smaller

places, we used the LGL [81] dataset (introduced in Chapter 6), which consists of articles

from about 100 smaller, more local news sources. These articles are intended for more ge-

ographically localized audiences, and concern local events that mention small places. Our

third dataset, CLUST [76] (introduced in Chapter 4), contains a variety of articles from

both large and small news sources.

Table 7.1 presents statistics that broadly illustrate characteristics of our three test cor-

pora. ACE is relatively small compared to LGL and CLUST, both in terms of number of

documents and news sources. However, ACE tends to have more toponyms per article,

which may be due to the content consisting of generally international news involving many

different countries and other locations, which would all be mentioned in the articles. In

addition, we measured toponym ambiguity in the articles, computing the median number
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Table 7.1: Corpora used in evaluating geotagging.

ACE LGL CLUST

Documents 104 621 13,327

Median doc word count 236 242 309

News sources 4 114 1,607

Annotated docs 104 621 1,080

Annotated topos 2,359 4,765 11,564

Distinct topos 295 1,177 2,320

Median topos per doc 12 6 8

Median topo ambig per doc 3 14 7

of interpretations present for toponyms in each document. LGL has the largest amount of

toponym ambiguity, followed by CLUST and ACE. This is not overly surprising, given that

LGL was constructed deliberately focusing on highly ambiguous toponyms [81]. However,

the measurements show a high level of ambiguity in all three datasets.

We also classified the annotated locations present in the documents according to their

types, which are shown in Figure 7.4. We normalized the type counts for each corpus to

illustrate the fractions of each type within each corpus. For cities, we further divided the

locations into large cities (over 100,000 population) and small cities (less than 100,000

population). These location types clearly show the important differences between the three

corpora. The vast majority of ACE’s toponyms, 83%, consist of countries and large cities,

indicating ACE’s broad geographic scope. This is not overly surprising given that it con-

sists of newswire, which is usually intended for a broad geographic audience. In contrast,

60% of LGL’s toponyms are small cities, counties, and states, and among all three datasets,

LGL contains the smallest fraction of countries and large cities, showing that LGL mainly

concerns smaller, more local places, with a correspondingly smaller geographic audience.

CLUST falls in the middle, with the largest fraction of states among the three datasets, and

in between the other two in terms of countries, counties, and small cities. Bearing these

observations in mind, in terms of overall geographic relevance, ACE and LGL can be said

to have wide and narrow relevance respectively, while CLUST falls in the middle, illus-
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Figure 7.4: Breakdown of location types within each of our test corpora.

trating our three datasets’ utility in testing geotagging at coarse, middle, and fine-grained

geographic scopes.

7.3.3 Recognition Accuracy

Though the main focus of this chapter is improved toponym resolution, for completeness,

we tested each system’s toponym recognition performance when isolated from the subse-

quent toponym resolution step. Note that OpenCalais and Placemaker also provide lat/long

values with each toponym, but we disregard these when testing toponym recognition using

these systems because it is more information than we need for this experiment. Table 7.2

shows the performance results for each method’s toponym recognition step. For all three

datasets, the Adaptive method shows higher recall performance than either OpenCalais or

Placemaker, as well as a higher overall F1-score for LGL and CLUST. While OpenCalais

and Placemaker do have higher precision, this is mitigated by their relative lack of recall.

Also, Adaptive’s precision is restored by its toponym resolution processing, which will

be shown in the next section. These results are also consistent with previously-reported

performance [76].
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Table 7.2: Recognition performance.

P R F1-score

ACE

Adaptive 0.748 0.867 0.804

OpenCalais 0.883 0.681 0.769

Placemaker 0.899 0.767 0.828

LGL

Adaptive 0.671 0.723 0.696

OpenCalais 0.588 0.222 0.322

Placemaker 0.675 0.658 0.666

CLUST

Adaptive 0.732 0.861 0.791

OpenCalais 0.759 0.425 0.545

Placemaker 0.798 0.692 0.741

7.3.4 Resolution Accuracy

In the next experiment, we measured the accuracy of each method’s toponym resolution

in isolation—that is, if each method were given a set of toponyms, how well the method

would select the correct lat/long interpretation for each toponym. Because OpenCalais and

Placemaker do not allow for the specification of ground truth toponyms, it is not possi-

ble to make direct comparisons of toponym resolution’s recall for these systems. Instead,

we report the precision for the resolution process in isolation (PResol), and the recall for

the combined recognition and resolution processes (RRecog+Resol). Also, for the Adaptive

method, we used a window breadth wb of 80 tokens and unlimited window depth wd. Ta-

ble 7.3 shows the performance results. Of all three methods, the Adaptive method has the

best overall precision, especially so for the LGL and CLUST datasets. Adaptive also main-

tains this high precision while having high toponym recall. This is best seen for the LGL

dataset where Adaptive has a 17% advantage over OpenCalais, and a 22% advantage over

Placemaker, along with a recall advantage of 32% over OpenCalais and 6% advantage over

Placemaker. These performance numbers indicate our method’s superior performance in

terms of the toponym resolution task. Examining performance for all the methods across
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Table 7.3: Resolution accuracy of various methods.

PResol RRecog+Resol

ACE

Adaptive 1635/1659 = 0.986 1635/2359 = 0.693

OpenCalais 1062/1080 = 0.983 1062/2359 = 0.450

Placemaker 1161/1219 = 0.952 1161/2359 = 0.492

LGL

Adaptive 2799/2970 = 0.942 2799/4765 = 0.587

OpenCalais 1260/1632 = 0.772 1260/4765 = 0.264

Placemaker 2516/3466 = 0.726 2516/4765 = 0.528

CLUST

Adaptive 7143/7440 = 0.960 7143/11564 = 0.618

OpenCalais 5397/6352 = 0.850 5397/11564 = 0.467

Placemaker 7524/8642 = 0.871 7524/11564 = 0.650

the three datasets, the methods performed best on ACE, worst on LGL, and in the middle for

CLUST. These results follow our intuition that correctly geotagging documents containing

smaller, less well-known locations (LGL) is more difficult than for larger, more well-known

locations (ACE).

Our next set of experiments tested various combinations of features used in the Adap-

tive method, to illustrate each feature’s overall utility. We used different combinations of

the features described in Section 7.1.3, as well as the adaptive context features described in

Section 7.2. Table 7.4 contains the performance results, with feature abbreviations corre-

Table 7.4: Toponym resolution accuracy using different feature combinations.

ACE LGL CLUST

P R F1 P R F1 P R F1

FI 0.91 0.41 0.57 0.96 0.26 0.40 0.93 0.30 0.45

FI,P 0.97 0.59 0.74 0.96 0.47 0.63 0.98 0.38 0.55

FI,P,A=FB1
0.99 0.84 0.91 0.96 0.61 0.75 0.98 0.71 0.82

FB1,D
0.99 0.90 0.94 0.96 0.62 0.75 0.98 0.72 0.83

FB1,L
0.98 0.86 0.92 0.95 0.90 0.93 0.97 0.77 0.86

FB1,D,L=FB2
0.99 0.90 0.94 0.95 0.90 0.93 0.97 0.76 0.86

FB1,W80,∞
0.98 0.88 0.93 0.94 0.65 0.77 0.96 0.71 0.82

FB2,W80,∞
0.99 0.88 0.93 0.94 0.88 0.91 0.96 0.73 0.83
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sponding to those used in Section 7.1.3, and feature combinations indicated with commas

(e.g., FI,P combines interps and population). In addition, we considered two base-

line feature combinations FB1
and FB2

. FB1
tested only the domain-independent features

(FI,P,A), while FB2
also included those features tailored for the news domain (FD,L). We

again used our adaptive context feature (FW80,∞
) with window breadth of 80 tokens and

unlimited window depth. In general, resolution precision was high for all feature combina-

tions, so the main difference was resolution recall. For ACE and CLUST, the dateline

and locallex features did not improve FB1
much, but locallex did make a large

difference for LGL. Our adaptive context features in general improved FB1
, for LGL in

particular. However, in combination with FB2
, the adaptive context features showed little

improvement and in some cases lower performance, which is not overly surprising in that

domain-specific features will exhibit domain-specific performance, and sometimes, adding

features to a model will decrease performance. However, taken as a whole, the results illus-

trate our adaptive context features’ utility for general geotagging purposes, especially over

more simplistic features such as population.

We also conducted an experiment to measure the importance or utility of our features

for classifying toponym interpretations. This process, also known as feature selection or

dimension reduction [36], ranks the individual features in terms of their overall utility. For

our feature importance measure, we used the gain ratio [36], a commonly-used, entropy-

based measure for decision tree construction. We computed the gain ratio for each fea-

ture, and normalized the resulting importance values within each dataset. Results are pre-

sented in Figure 7.5. Interestingly, for each dataset, the interps and altnames features

outranked population. The locallex feature was highly important for LGL, though

this is not too surprising considering the dataset’s content of smaller, local news articles.

The windowprox and windowsib have lower importance values, but interestingly, the

windowprox feature has almost the same feature value as population. windowsib’s

low importance value may be due to it being little-used in the three datasets.
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Figure 7.5: Importance of features used in the Adaptive method, as measured by the gain

ratio.

7.3.5 Adaptive Parameters

In our final set of experiments, we tested how varying the adaptive parameters of our win-

dow features, namely the window breadth wb and window depth wd, would affect the speed

and accuracy tradeoff for our methods. We used our adaptive context features in combi-

nation with our first baseline comparison method, FB1
, described in the previous section,

which is a combination of the interps, population, and altnames features. First,

we varied the window breadth between 1–80 tokens and measured the resulting tradeoff.

Figures 7.6a and 7.6b show the results in terms of computation time and method accuracy,

respectively. As window breadth increases, the computation time increases linearly, which

is to be expected. The computation time for CLUST is larger than for the other datasets

due to its size. Interestingly, even with a small window breadth, precision remains high,

and recall is respectable for all datasets, giving evidence that the features are applicable

even for domains with little time available for geotagging. Also, while increasing the win-

dow breadth, recall also increases for the datasets, showing the time/accuracy tradeoff as

expected. Results are similar with varying window depth (Figures 7.6c and 7.6d).
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Figure 7.6: Performance results when varying adaptive window parameters, including vary-

ing window breadth in terms of (a) time and (b) accuracy, and varying window depth in

terms of (c) time and (d) accuracy.
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7.4 Open Problems

In future work, we plan to test different weightings of toponyms in the window to judge

their effect on resolution accuracy. For example, toponyms that are further away in the

window could be given less weight, using linear or Gaussian weighting schemes. In addi-

tion, we could consider clusters of news articles about the same topic, which are collected

in the NewsStand system, and design other features using these clusters. For example, we

might examine other documents in a cluster to get additional toponyms for consideration

in geotagging the current document. This can be thought of as creating one large, virtual

document consisting of some or all of the documents in a cluster, and then extending the

window to include toponyms in those other documents. As before, with large clusters, we

may not want to consider all toponyms or all interpretations in other documents in the

cluster, due to inhibitive performance penalties.

Also recall that our adaptive context features generalize the comma group methods de-

scribed in Chapter 5. However, these two methods can be regarded as opposite ends of a

context resolution spectrum: comma group evidence captures toponyms that are immedi-

ately adjacent to each other, while adaptive context evidence captures toponyms that are

more distant. It would be interesting to find the window parameters for which the adaptive

context and comma group methods become essentially equivalent.

7.5 Summary

Our investigations of adaptive context features have shown their utility and flexibility for

improving the geotagging of streaming news. These features, in combination with comma

groups (Chapter 5) and local lexicons (Chapter 6) serve as a flexible, useful addition to

multifaceted geotagging algorithms for streaming news and other textual domains.
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Chapter 8

Conclusions and Future Work

This dissertation demonstrated the importance of streaming news, as well as systems that

understand the prominently geographic component of streaming news via multifaceted to-

ponym recognition and toponym resolution algorithms. We first introduced the STEWARD

(Chapter 2) and NewsStand (Chapter 3) systems which were developed to enable the spatio-

textual analysis and querying of documents in the hidden Web and streaming news articles,

respectively. These systems crucially involve geotagging algorithms to enable exploration

of unstructured text documents using a map query interface, and thus served as convenient

platforms on which to test the geotagging algorithms described in the dissertation. They

also resulted in innovations in terms of database design and querying, where each interac-

tion in the map query interface is mapped to a top-k query or set of queries in the database.

STEWARD was also used as the base for an infectious disease tracking system by geo-

tagging published PubMed articles and ProMED-mail emails. In addition to the geotagger,

NewsStand’s architecture involves a large number of additional processing modules that

compartmentalize the various stages of document processing, and their successful execu-

tion required the development of a central pipe server to coordinate module execution and

work flows.

Next, we continued with our exposition of the geotagging algorithms developed for

these systems. We first described a multifaceted toponym recognition procedure (Chap-

ter 4), using a combination of rule-based and machine learning–based methods that results
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in a high toponym recall, at the expense of precision. This high recall is crucial to the geo-

tagging process since toponym recognition effectively upper-bounds recall for the entire

geotagging process. Also, our toponym resolution steps, which we described next, restore

the geotagging process’s toponym precision. Our toponym resolution process incorporates

several new types of evidence that improve resolution accuracy. First, we recognized and re-

solved lists of toponyms termed comma groups (Chapter 5) that share common geographic

characteristics within the group, namely prominence (population), proximity, or sibling

(container-based) relationships. These common characteristics were used to resolve topo-

nyms in each comma group simultaneously. Next, we introduced the notion of local lexi-

cons (Chapter 6), which capture the smaller geographic locations known to intended read-

ership. Knowledge of these locations allow for the proper resolution of toponyms present

in articles from smaller newspapers, which comprise the vast majority of news sources

on the Web. Finally, we considered windows of text around individual toponyms, termed

adaptive context (Chapter 7), which improve the resolution of toponyms in the window

via shared geographic attributes. The window’s parameters, in terms of window depth and

window breadth, can be varied to exploit a tradeoff between execution speed and resolu-

tion accuracy. These forms of recognition and resolution evidence were further encoded as

sequences of rules as well as features in a machine learning–based geotagging framework.

In addition to introducing the above systems, algorithms and techniques, we performed

extensive experimental evaluations demonstrating the effectiveness of our methods. For

NewsStand, we presented data volume and throughput statistics over time, and database

querying performance to demonstrate NewsStand’s ability to support large numbers of

users and queries on its large collection of streaming news. In terms of geotagging evalu-

ation, we created two new corpora of hand-annotated streaming news articles named LGL

and CLUST that are larger than typical collections created for this purpose, and have a

greater focus on local news, which as noted before is more representative of most news

on the Web. In addition to enabling evaluations of our geotagging algorithms, these cor-
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pora allowed for the training of supervised machine learning models, and hence enabled

the testing of our machine learning features. We evaluated our various geotagging meth-

ods in combination and individually, and also compared them with existing state-of-the-art

systems such as Thomson Reuters’s OpenCalais, Yahoo!’s Placemaker, and others, show-

ing great improvements over these systems. We also investigated the relative usefulness of

each of our geotagging heuristics both in terms of each heuristic’s ability to recognize and

resolve toponyms, as well as importance scores assigned by machine learning models.

Our multiple, varied geotagging methods have demonstrated the effectiveness of a mul-

tifaceted, combined approach to the geotagging of streaming news, involving many sources

of evidence. In particular, an emphasis on local, human-based knowledge of locations is vi-

tal for geotagging success, especially in the Internet age where local newspapers, bloggers,

tweeters, and other local data sources take over the Web. This stands in contrast to previ-

ous, simpler geotagging methods using the populations of toponym interpretations alone, or

heavily relying on them (i.e., selecting toponyms and interpretations with large population),

which will not perform well in this new age of local information. Of course, previously lo-

calized newspapers, by virtue of their Web presence, will cater to a broader, more global

audience, which may reduce the importance of localized evidence such as local lexicons.

On the other hand, as more and more people publish highly individual and geographically

local content, such local evidence will be a necessity for correct geotagging. Thus, local-

ized geotagging methods like ours will continue to play a large role in enabling interesting

geospatial applications.

Further, the domain of streaming news poses particular challenges that are addressed

by our methods. As the prevalence of streaming data on the Web increases, systems such

as NewsStand that are capable of quickly processing this streaming data will have ever

increasing importance. We believe that the increasing prevalence of geotagged content on

the Web will enable compelling applications for systems like STEWARD and NewsStand

in other knowledge domains. On another level, and an important contribution of this work,
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is that we have highlighted the need for Web-based publication standards that would fa-

cilitate and enhance spatio-textual querying and browsing capabilities. Adoption of such

standards would enable more up-front rather than backend processing approaches, which

would resolve some of the ambiguities mentioned above, and hence greatly improve data

mining capabilities on the Web. Of course, with the ever-increasing amount of streaming

data on the Web, manual tagging approaches, which are currently prominent, will be re-

placed by fully-automated approaches such as ours, due to the latters’ superior scalability.

Additionally, the ever-changing nature of streaming news advises against the sole use of

methods based on static, unchanging corpora, which will become obsolescent. As more

news sources move online, algorithms like ours which are tailored for streaming news will

be vital to handle the resulting data deluge.

In the remaining sections we propose additional avenues of research based on the work

described in this dissertation.

8.1 Clustering Evidence

One potentially fruitful avenue of research involves the use of clustering methods in topo-

nym recognition and resolution. The NewsStand system [143] (Chapter 3) executes online

clustering of the articles it retrieves from the Web. This clustering allows us to group arti-

cles from different newspapers that are about the same news story. Note that despite this

clustering’s seeming redundancy, clustering is useful in several ways. Different articles in

the cluster will be written by different authors, each of which impart their own spin, biases,

and details to their version of the story. Furthermore, since different articles in a cluster tend

to be from different newspapers, they will also be written for different audiences, so authors

must tailor their articles to their respective audiences’ assumptions and world knowledge.

Importantly, as noted in our previous work on local lexicons (Chapter 6), these assump-

tions about world knowledge extend to knowledge of locations and location names. As a

result, in each different news article in a cluster, locations will be referred to in different
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ways, and we can leverage these differences to improve geotagging. We do so by applying

stronger location evidence present in one article in a cluster to resolve the same location

present in other articles in the cluster, but presented with weaker location evidence. For

example, consider a cluster of news articles about a recent US Senator’s visit to “Laurel,

MD”, a locality nearby to “College Park, MD”. A news article in The Diamondback (Uni-

versity of Maryland’s student newspaper) that mentions the nearby city of “Laurel, MD”

will refer to the location as simply “Laurel”, since the majority of its readers will be famil-

iar with the location and needs no further location evidence to assist in its resolution. On the

other hand, a geotagger encountering “Laurel” with no other location evidence might have

difficulty resolving it correctly, due to over 40 interpretations of “Laurel” in the US alone.

However, another article in the same cluster but published in the New York Times would

mention “Laurel, MD”, since having a geographically wide audience, the “Laurel” in ques-

tion would be unfamiliar to most of its readers. This explicit location evidence is likewise

easier to capture in an automated geotagger. Furthermore, since the Diamondback and New

York Times articles appeared in the same cluster, the geotagger can use the “Laurel, MD”

evidence from the New York Times article to resolve “Laurel” in the Diamondback article.

This reuse of resolved locations in the cluster based on stronger location evidence is the

essence of our proposed approach.

8.2 Streaming Lexicon

As noted earlier, online news has a significant streaming nature, in that the constantly evolv-

ing news cycle results in differing entities appearing in the news for short time scales. As a

result, this severely limits methods based on small, static corpora of news. However, we can

take advantage of the streaming nature of news by maintaining a collection of current events

and important keywords in the news, including prominent people and, especially, impor-

tant locations. In essence, we can create a streaming lexicon, analogous to a local lexicon of

geographic knowledge, except that the streaming lexicon constantly evolves with the news
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cycle. That is, the streaming lexicon contains entities that exist in the popular conscious-

ness, and thus serve as default interpretations for particular entities. For example, a 2012

article mentioning “Obama” would likely be referring to the US politician, and not the city

in Japan, given the prominence of the former in the news cycle when compared to the latter.

8.3 Toponym Corpora

In terms of evaluation, we have several ideas that can innovate in this area. To start, recall

that the domain of news feeds is dynamic with a constantly evolving stream of live news

articles. Thus, traditional methods, which rely on small, hand-annotated, static corpora for

evaluation are not very useful in measuring performance in this domain. Moreover, people

can simply tune the performance of their system to the elements of the corpus by making

adjustments to the underlying geotagging code so that the errors do not arise on subsequent

incarnations of the system on the same set of articles. In a machine learning context, this is

referred to as overtraining.

The main difficulty with regard to traditional linguistic evaluation is the time-consuming

and extremely large manual effort required to annotate toponyms and other entities in doc-

uments. As a result, these corpora tend to be rather small, with sizes of at most 1,000 doc-

uments, and usually under 500, and are generally based on a articles from a single, usually

prominent news source (e.g., New York Times, Reuters). In contrast, the NewsStand sys-

tem [143], described in Chapter 3, retrieves over 50,000 documents from multiple thousand

local news sources per day. Clearly, such a small corpus cannot adequately represent the

sheer volume of information on the Web. Unfortunately, due to the huge effort required for

full manual annotation, creating a large corpus of articles from these sources is not viable.

Note that our goal is not to understand language or look for a set of documents that

are typical. We want our toponym recognition and resolution methods to work for all data,

and not for just one set of articles. Language and usage change over time, while the set

of possible toponyms is fixed. Thus, rather than solely using a document corpus of arti-
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cles, we can instead use a toponym corpus of words that can be interpreted as toponyms.

They can be terms that proved particularly troublesome in NewsStand or STEWARD in

the past, or that are especially ambiguous and hence difficult to resolve properly. A good

example is “Northern District”, which frequently appears in articles as “Northern District

of . . . ”, while instead it is generally placed in Israel. The idea of creating corpora based on

difficult-to-resolve toponyms was captured somewhat in the creation of LGL, described in

Chapter 6, which was made by selecting articles from news sources that were located in

multiply ambiguous places—e.g., places named “Paris”, “London”, and so on. In essence,

LGL’s creation was motivated by corpora of news source locations, rather than corpora of

toponyms themselves.

Using such corpora of toponyms, we could see how performance varies over time as

the documents vary from one evaluation to another, while the actual data on which the

performance is being evaluated has an element of continuity. This is a way of making

the corpus dynamic, as otherwise basing it solely on the documents does not account for

changes in usage. Our proposed evaluation process ensures that we correctly recognize and

resolve toponyms over all instances of time rather than just for one collection of articles.

Thus our techniques are said to work if the precision and recall are relatively constant

or, ideally, improve over time. The improvement is a result of learning from our mistakes,

which we would be doing by including terms that have not been correctly recognized and/or

resolved in past evaluations.

Like evaluation on corpora of documents, this evaluation method requires manual an-

notation of toponyms in collections of documents, to gauge the geotagger’s performance

on these toponyms. However, we would only evaluate the geotagger’s performance on the

corpus terms in the article collection. This is an important point, as we need not annotate

the entire article. Instead, we only have to annotate the terms that we are looking for. As a

result, we can create much larger collections of documents with the same amount of effort.
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