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Chapter 1: Introduction 

 

Rationale and Objectives 

Infectious laryngotracheitis (ILT) is an upper respiratory tract disease of chickens, 

pheasants, and peafowl caused by the alphaherpesvirus Gallid herpesvirus 1 (GaHV-1) 

(Guy & Garcia, 2008).  The virus is shed in respiratory secretions, easily transmitted 

from bird-to-bird by inhalation of secreted droplets, and commonly carried and 

additionally transmitted by poultry facility workers and fomites.  ILT is characterized by 

acute respiratory disease and mild to severe clinical signs involving the upper respiratory 

tract including conjunctivitis, nasal discharge, coughing, sneezing, and expectoration of 

bloody mucous.  ILT occurs worldwide and severity of clinical signs and mortality rate, 

which can range from 0-70%, depending on virulence of the infective strain (Oldoni et 

al., 2009).  The virus is responsible for frequent outbreaks in high-density poultry 

producing areas, which are often associated with large economic losses (Bagust et al., 

2000). 

Since the initial description of ILT in the early 20th century, the disease has 

remained a problem for the global poultry industry, causing morbidity and mortality 

related loses each year.  Both the layer and broiler industries are affected, although the 

broiler industry is affected to a larger extent.  In the vertically integrated broiler industry, 

large companies contract growers to raise their birds using company specifications, 

during which time a grower incurs any loss during the grow-out process.  As a result, ILT 

related losses specifically affect the individual grower.  Current control measures, 

including chicken embryo origin (CEO) and tissue culture origin (TCO) live-attenuated 
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vaccines, reduce the impact of losses.  However, they often perpetuate release of live 

virus into the field leading to virulence reversion of vaccine virus, which can cause 

outbreaks of vaccinal laryngotracheitis (VLT) (Dufour-Zavala, 2008).  However, based 

on the low cost and time efficiency of live-attenuated vaccination on a per-bird basis, 

contract growers continue to select these vaccines to reduce morbidity and mortality 

related losses. 

Progress in the areas of ILT prevention and control would significantly decrease 

health related production losses in these sectors of animal agriculture, and development 

of improved or novel vaccines will ultimately guide these improvements.  However 

characteristics relating to the molecular biology and epidemiology of GaHV-1 remain 

undefined and limit ILT technological advances.  While much is known about the 

structure of the virus and its genome, the mechanisms responsible for virulence reversion 

are yet to be fully understood.  Recently, investigation into attenuation and virulence 

reversion has begun, and further investigation characterizing genes involved in viral 

pathogenesis is a primary focus of current ILT genetics. 

In addition to the fields of ILT molecular biology and epidemiology, recent 

epigenetic study on host-pathogen interactions of the ILT and chicken genomes has been 

launched.  Aimed at the transcriptional level of the genome and invested in elucidating 

the effects of infection on host gene expression, ILT epigenetics seeks to identify those 

factors involved in viral pathogenesis and host resistance to infection.  Additionally, 

GaHV-1 contains many genetic differences from other related herpesviruses and has host 

tropism with high specificity for chickens, indicating potential for ILT-specific 

mechanisms to be discovered. 
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With novel technologies opening new investigative pathways, much of the review 

literature available for ILT is out of date.  The aim of this literature review is to bring 

together new information, and to touch upon six major issues related to ILT molecular 

biology, epidemiology, and epigenetics. 

1. Review GaHV-1 molecular biology. 

2. Outline the historical implications of live-attenuated vaccine 

development in shaping current molecular epidemiology of GaHV-1. 

3. Outline the current implications of live-attenuated vaccine use in 

shaping the current global and molecular epidemiology of GaHV-1. 

4. Review the global and molecular epidemiology of the GaHV-1. 

5. Review the current epigenetic findings involving host-virus 

interactions. 

6. Outline the significance of molecular biology, epidemiology, and 

epigenetics in future eradication of ILT. 
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Chapter 2: Molecular Biology of Gallid Herpesvirus-1 

 

2.1 Viral Morphogenesis and Chemical Composition 

 In 1931, experiments first defined the causative agent of ILT as a filterable virus 

(Beach, 1931), and the nucleic acid content was confirmed to be DNA and similar to that 

of the herpesvirus group (Tannock, 1965).  The molecular weight of the virus was 

estimated by restriction endonuclease fragment summation and approximated to be 

between 102.1 x 106 to 97.35 x 106 Daltons (Kotiw et al., 1982).  Electron microscopy 

confirmed the typical herpesviral morphology of GaHV-1 (Figure 1), and the virus 

consists of an icosahedral DNA containing capsid at its core and is surrounded by a 

tegument layer and an outer envelope with embedded surface glycoproteins (Fuchs et al., 

2007).   

 

2.2 Viral Genome 

The genome of GaHV-1 is composed of a linear, double-stranded DNA molecule.  

Among the seventeen complete genome sequences currently available on GenBank, the 

size of the GaHV-1 genome ranges from 148-kb to 155-kb, with size variations attributed 

to single nucleotide polymorphisms (SNPs) as well as insertions and deletions (INDELs) 

between strains (Lee et al., 2011a.b; Chakma et al., 2012; Lee et al., 2012; Spatz et al., 

2012).  The genome is comparable to that of other alphaherpesviruses and contains the 

prototypic unique long (UL) and unique short (US) regions.  However, it does not contain 

characteristic repeat regions flanking the UL region of the genome (Waidner et al., 2011), 

and instead inverted repeats flank only the US region (Guy & Garcia, 2008) (Figure 2).  
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Figure	  1:	  Electron	  microscopy	  from	  Fuchs	  et	  al.	  (2007)	  of	  GaHV-‐1	  virion	  exiting	  the	  
host	  cell	  via	  exocytosis	  from	  chicken	  Leghorn	  male	  hepatoma	  (LMH)	  cells	  18	  hours	  
post	  infection.	  	  Bar represents 300 nm. 
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Seventy-seven open reading frames (ORFs) encode for either predicted or 

demonstrated proteins (Guy & Garcia, 2008), sixty-three of which share homology with 

genes of herpes simplex virus 1 (HSV-1) (Fuchs et al., 2007).  The UL3.5 ORF of the 

GaHV-1 genome is not present within the HSV-1 genome, but is common to other 

alphaherpesviruses such as porcine pseudorabies virus (PrV) and varicella zoster virus 

(VZV) (Fuchs et al., 2007).  GaHV-1 contains many other unique genomic 

characteristics, indicating its phylogenetic divergence from other alphaherpesviruses, 

starting with the absence of a typically highly conserved UL16 gene homolog (Fuchs & 

Mettenleiter, 1999).  The viral genome also contains a large internal inversion similar to 

one found within the genome of PrV but absent in alphaherpesviruses such as HSV-1, 

VZV, and equine herpesvirus 1 (EHV-1), and this internal inversion is comprised of a 

gene cluster spanning from the UL22 to the UL44 ORFs of the UL region (Ziemann et al., 

1998a).  A UL47 homolog, typical of the UL region of many alphaherpesviruses, is absent 

in the equivalent region of the GaHV-1 genome and is instead translocated between the 

US3 and US4 ORFs of the US region (Helferich et al., 2007c).  Five ORFs in the UL 

region, ORF A to ORF E, are unique to both GaHV-1 and psittacid herpesvirus (PsHV-

1), an alphaherpesvirus of psittacine birds (Thureen & Keeler, 2006).  In addition to these 

5 ORFs, GaHV-1 and PsHV-1 share similarities in the region between the UL22 and 

UL44 ORFs, as well as the translocation of the UL47 ORF, defining these viruses as the 

only two members of the family Iltoviridae (Thureen & Keeler, 2006).  Lastly, a 

paralogous pair of genes, UL0 and UL[-1], represent a unique duplication in the GaHV-1 

genome and are evidence of an evolutionary duplication of a spliced GaHV-1 distinct 
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gene (Ziemann et al., 1998b).  These characteristics of the GaHV-1 genome are also 

illustrated in Figure 2. 

 

2.3 Viral Replication 

 While GaHV-1 entry has yet to be fully explained, structural glycoprotein C (gC) 

has been confirmed as an accessory entry protein (Pavlova et al., 2010).  Based on HSV-

1, other proteins involved in attachment and entry include structural glycoproteins gB, 

gD, gH, and gL, the process beginning with gB or gC interaction with heparin sulfate 

proteoglycans, followed by interaction of gB, gD, and a gH-gL complex to trigger merger 

of viral and cellular membranes and release of the tegument and nucleocapsid into the 

host cell cytoplasm (Akhtar & Shukla, 2009; Thureen & Keeler, 2006).  However, an 

apparent disparity in the entry process exists, as GaHV-1 entry is most likely heparin-

independent, pointing to a pathway alternative to that of HSV-1 (Pavlova et al., 2010). 

 Following release into the cytoplasm, the nucelocapsid is transported to the 

nuclear membrane where viral DNA is released, allowing for migration of viral DNA into 

the nucleus via nuclear pores where transcription and replication of viral DNA occur 

(Guy & Garcia, 2008).  Gene expression has been displayed to occur in a cascade pattern 

similar to other alphaherpesviruses (Figure 3) (Prideaux et al., 1992), and much 

information about GaHV-1 DNA replication has also been adapted from HSV-1.  

Immediately-early (IE or alpha) genes are the first to be expressed in the nucleus of 

infected cells, the protein products of which stimulate expression of early (E or beta) 

genes required for DNA replication, subsequently stimulating expression of late (L or 

gamma) genes encoding for viral structural proteins (Knipe & Cliffe, 2008).   



	   9	  

Fi
gu

re
 3

: C
as

ca
de

 p
at

te
rn

 o
f G

aH
V-

1 
ge

ne
 e

xp
re

ss
io

n 
fro

m
 P

rid
ea

ux
 e

t a
l. 

(1
99

2)
 il

lu
str

at
in

g 
gr

ow
th

 k
in

et
ic

s a
nd

 v
ira

l r
ep

lic
at

io
n 

fo
llo

w
in

g 
ch

ic
ke

n 
ki

dn
ey

 (C
K

) c
el

l c
ul

tu
re

 in
fe

ct
io

n.
  F

ol
lo

w
in

g 
in

fe
ct

io
n,

 β
 a

nd
 γ

1 
ge

ne
s a

re
 e

xp
re

ss
ed

 b
eg

in
ni

ng
 a

t 4
 h

pi
, w

hi
le

 
γ2

 g
en

e 
ex

pr
es

sio
n 

be
gi

ns
 8

hp
i. 
α 

ge
ne

 e
xp

re
ss

io
n 

is 
re

qu
ire

d 
fo

r β
 a

nd
 γ

 g
en

e 
ex

pr
es

sio
n 

an
d 

be
gi

ns
 p

rio
r t

o 
th

ei
r e

xp
re

ss
io

n 
(n

ot
 

pi
ct

ur
ed

).

 



	   10	  

GaHV-1 nuclear egress begins with translocation of the capsid through the 

nuclear membrane after pro-capsid packaging of monomeric DNA, followed by addition 

of an envelop from the inner membrane of the host cell nucleus and movement to the 

lumen of the endoplasmic reticulum into vacuoles within the cytoplasm (Guo et al., 

1993).  Mature capsid-less particles are formed in the trans-Golgi region of the 

cytoplasm, where assembly of tegument and secondary envelopment occur, and 

infectious virions are subsequently released by exocytosis (Fuchs et al., 2007).  In vitro 

replication kinetics have shown DNA replication beginning between 8 and 12 hours post 

infection (hpi), with exponential increases in virus titer between 11 and 24 hpi, indicating 

the peak of viral replication within this period (Prideaux et al., 1992). 

 

2.4 Viral Proteins 

 The cascade pattern of GaHV-1 protein expression begins with a short period of 

alpha (α) polypeptide expression, followed by beta (β) polypeptide expression between 4 

to 16 hpi, and gamma (γ) polypeptide expression divided into γ1 and γ2 expression 

maintained from 4 and 8 hpi respectively (Prideaux et al., 1992).  α products are non-

structural polypeptides responsible for regulation of β and γ gene products, and are 

additionally self-dependent on their own production for downregulation of transcription.  

β products include enzymes critical for DNA synthesis such as DNA polymerase and 

thymidine kinase (TK), and γ products include structural proteins such as surface 

glycoproteins (Post et al., 1981; Prideaux et al., 1992).  

 
2.4.1 Alpha and Beta Proteins 

Non-structural proteins, majority of which are expressed as α and β proteins, are 
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critical to regulatory functions of viral infection.  While description of these proteins 

specific to GaHV-1 is far from complete, functional characterizations exist, some of 

which have been adapted from other herpesviruses. 

α genes are able to express in the absence of protein synthesis and consist of 

regulatory genes such as the infected cell protein (ICP) family.  The GaHV-1 gene coding 

for ICP4 is the only ICP described in detail for GaHV-1 and shares sequence and 

functional homology to that of HSV-1 (Johnson et al., 1995c).  Of the five regions of the 

GaHV-1 ICP4 protein, two exist with considerable homology to other 

alphaherpesviruses, with region 4 the most conserved and critical to γ gene expression. 

Least conserved, region 5 exists as a comparatively larger protein region in GaHV-1 and 

contains a second serine run, indicating additional sites for phosphorylation and increased 

overall activation potential when compared to other herpesviruses.  Further functional 

investigation of GaHV-1 ICP4 has yet to be done, however ICP4 resides in the nucleus of 

HSV-1 infected cells, mediates the switch from α to β and γ expression, mediates down-

regulation of its own expression following the onset of viral protein expression, and 

requires minimal promoters containing simple TATA homologies for transactivation 

(Dixon & Schaffer, 1980; Knipe et al., 1987; Smith et al., 1993; Helferich et al., 2007a).  

In addition to ICP4 description, a region homologous to HSV-1 ICP27 has been 

described for GaHV-1, while sequence homologies of the UL3 and UL4 products suggest 

colocalization of these proteins with ICP22 in GaHV-1 nuclear inclusion bodies as seen 

with other herpesviruses (Johnson et al., 1995b; Fuchs & Mettenleiter, 1996; Xing et al., 

2011). 
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Additional amino acid sequence comparisons have revealed GaHV-1 proteins 

with homology to those of other herpesviruses and with specific roles in DNA 

replication.  The UL2 product encodes two conserved amino acid stretches considered 

signature uracil-DNA glycosylase (UDG) sequences among alpha-, beta-, and 

gammaherpesviruses, and indicates that GaHV-1 UL2 retains equivalent UDG functional 

activity (Fuchs & Mettenleiter, 1996).  Also, the GaHV-1 UL5 product contains six 

functionally conserved helicase motifs, predicting conserved function in DNA replication 

in the form of a helicase-primase subunit complexed with the UL8 and UL52 proteins as 

seen in other alphaherpesviruses (Fuchs & Mettenleiter, 1996; Chen et al., 2011).  The 

GaHV-1 UL50 product shows conservation of typical deoxyuridine triphosphatase 

(dUTPase) function, essential to nucleotide metabolism during DNA replication, despite 

loss of the first five domains seen among mammalian alphaherpesviruses (Fuchs et al., 

2000). 

 Dependent on α gene expression, β gene expression results in enzymes critical for 

DNA synthesis.  One such enzyme described for GaHV-1 is the TK gene product.  With 

27.9% amino acid sequence identity to HSV-1 TK, portions of the protein corresponding 

to the nucleotide binding domain are well conserved, while non-conserved regions 

suggest GaHV-1 TK to have unique substrate-binding specificities when compared to 

mammalian herpesviruses (Keeler, 1991). 

 

2.4.2 Gamma Proteins 

γ gene expression is responsible for structural protein products including 

tegument and glycoproteins.  Traditionally, herpesviral structural glycoproteins have 



	   13	  

been described as mediators of virus entry, cell fusion, and viral egress, as well as 

important immunogens and targets of cell-mediated immunity (Poulsen & Keeler, 1997).  

GaHV-1 glycoproteins share homology to those of other alphaherpesviruses, however 

direct characterization of these proteins specific to GaHV-1 remains incomplete.  DNA 

sequencing has confirmed that GaHV-1 encodes structural proteins homologous to HSV-

1 including gK, gN, gH, gB, gC, gM, gL, gG, gJ, gD, gI, and gE, from the UL53, 

UL49.5, UL22, UL27, UL44, UL10, UL1, US4, US5, US6, US7, and US8 genes 

respectively (Devlin et al., 2006a).  The first full composite genome sequence of GaHV-1 

was compiled from fourteen published partial sequences (GenBank accession number 

NC_006623.1), with identification of genes and their functions based on that of other 

herpesviruses and indicative of GaHV-1 glycoproteins in functions such as virion 

morphogenesis, membrane fusion, cell entry, cell-to-cell spread, cell attachment, binding 

of complement factors, and binding of cell surface receptors (Thureen & Keeler, 2006). 

Limited investigation into specific GaHV-1 structural proteins has revealed that 

gK is encoded from a late transcript that shares significant homology to that of HSV-1 

and contains characteristics of a membrane-bound glycoprotein (Johnson et al., 1995b).  

Conserved herpesviral gene products gM and gN have been shown to form a complex, 

with correct processing of O-glycosylated gN depending on complex formation with non-

glycosylated gM (Fuchs & Mettenleiter, 2005).  gB is initially synthesized as a 110 kDa 

monomeric precursor protein, which is first processed into 100 kDa subunits, and further 

proteolytically cleaved into two disulphide-linked species of 58 kDa each (Griffin, 1991; 

Poulsen & Keeler, 1997).  gC and gJ have been shown to localize in the outer viral 

envelope (Veits et al., 2003a).  Additionally, gC contains low amino acid sequence 
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homology to other herpesviruses, as well as an extracellular charged region typical of 

herpesviral interaction with cell surface proteoglycans, and is a glycosylated protein 

product of late gene expression (Kingsley et al., 1994).   

The gG protein is secreted from GaHV-1 infected cells and plays a role in 

inflammatory response at the site of infection as a likely viral chemokine binding protein 

(vCKBP) (Devlin et al., 2006b; Helferich et al., 2007a).  gI and gE of other herpesviruses 

have been displayed to form a heterodimer with Fc receptor binding activity, and are 

pivotal to cell-to-cell spread of GaHV-1 (Davis-Poynter & Farrell, 1996; Devlin et al., 

2006a).  The role of gD as a GaHV-1 glycoprotein is based upon regions of significant 

homology to other herpesviruses, specifically the positioning of six cysteine residues that 

are conserved among all gD amino acid sequences (Johnson et al., 1995a). gL functional 

homologues co-processed and complexed with gH can be found in many herpesviruses 

including GaHV-1, and presence of a N-terminal signal sequence, N-glycosylation site, 

and two cysteine residues suggest similar function for the GaHV-1 protein  (Fuchs & 

Mettenleiter, 1996). 

Herpesviral tegument proteins, which form the protein layer between the 

nucleocapsid and viral envelope, are primarily structural in function but additionally 

regulate functions such as capsid transport during viral entry and egress, targeting of the 

capsid to the nucleus, regulation of transcription, translation and apoptosis, DNA 

replication, immune modulation, cytoskeletal assembly, and viral assembly and egress 

(Kelly et al., 2009).  While each of these roles has not been individually described for 

GaHV-1, a few have been identified.  The membrane associated UL11 tegument protein, 

located in both mature virons and cytoplasm of infected chicken cells, has been shown to 
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be essential for secondary envelopment of GaHV-1 (Fuchs et al., 2012).  UL37 as well as 

UL46, UL47, UL48, and UL49 are also identified GaHV-1 tegument proteins, each with 

unique characteristics (Helferich et al., 2007a).  UL37, UL46, and UL49 accumulate in 

the cytoplasm of syncytia but are absent from infected nuclei, confirming cytoplasmic 

location of tegument addition relevant to secondary envelopment of the virion.  However, 

UL47 and UL48 accumulate in the cytoplasm and in larger portions within the nuclei of 

GaHV-1 infected cells, consistent with a role in viral gene expression as well as 

secondary envelopment.  Additionally, UL48 is important in the onset of viral gene 

expression and enhances α gene promoters such as those for ICP4. 

In addition to tegument and glycoproteins, other GaHV-1 γ genes capable of 

nuclear accumulation include UL0, UL[-1], and UL31.  As previously described, UL0 

and UL[-1] result from a duplication unique to the GaHV-1 genome, and their nuclear 

targeting is hypothesized to be a product of polypeptide sequences rich in arginine, with 

functions possibly involved in host gene expression, encapsidation of viral DNA, or as 

structural components of nucleocapsid assembled within the host cell nucleus (Ziemann 

et al., 1998b).  Nuclear accumulation of UL31 has been alternatively correlated with 

possible function in nuclear egress due to peripheral localization along the nuclear 

membrane of host cells (Helferich et al., 2007a). 

 While structure-function analysis remains incomplete, protein function in relation 

to in vivo viral virulence has been investigated for a few of the GaHV-1 proteins.  In the 

absence of gG, clinical sings, mortality, and effects on weight gain are reduced, while an 

increase in tracheal thickness is representative of an increase in inflammatory cell 

infiltration and supportive of the role of gG as a vCKBP (Devlin et al., 2006b).  A 
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decrease in clinical symptoms, in addition to a decrease in microscopic tracheal lesions, 

is also seen in the absence of TK (Han et al., 2002), while little to no clinical signs and 

viral shedding occurring in the absence of UL0 (Veits et al., 2003b).  Similar effects 

occur with UL47, with a decrease in clinical signs, viral shedding, and tracheal lesions in 

the absence of the gene (Helferich et al., 2007b).  Additionally, good protection 

efficiency for TK, UL0, and UL47 against virulent virus challenge suggests vaccine 

candidacy for mutants of these genes, while in ovo vaccine delivery of gG deficient virus 

to embryos at 18 days of incubation is able to protect birds from challenge 20 days post 

hatch (Legione et al., 2012).  While these vaccines suggest safe and efficacious new 

vaccine candidates, the issue of vaccine virus tracheal replication and shedding is still 

apparent, as exemplified by gG deficient virus retention of tracheal replication, and the 

capacity of these viruses to revert to virulence when passed from bird-to-bird has yet to 

be sufficiently investigated. 

 

2.5 Host Immunity and Viral Immune Evasion 

 Following GaHV-1 infection, the humoral immune response produces detectable 

levels of antibody.  Following infection, virus-neutralizing antibodies are detectable 

within 5 to 7 days and peak at 21 days, after which they begin to decline but remain 

detectable for up to 1 year (Guy & Garcia, 2008), possibly generated by long lasting 

plasma cells.  Secreted antibodies within the trachea are detectable beginning at 7 days, 

and IgA- and IgG-plasma cells begin to increase between days 3 and 7 after infection.  

Although a role of humoral immunity in GaHV-1 infection is apparent, the importance of 

cell mediated immunity over humoral is exemplified by the ability of bursectomized 
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birds, unable to produce specific antibodies, to resolve primary infections as efficient as 

birds retaining functional bursae of Fabricius (Fahey & York, 1990).  Additionally, poor 

correlation is typically seen between antibody titers and immune status of flocks (Guy & 

Garcia, 2008).  However, little research directly investigating the cell-mediated immune 

response to GaHV-1 has been done.  In terms of passive immunity, maternal antibodies 

are transferred to offspring, however protection is not conferred and transferred 

antibodies do not interfere with vaccination (Hayles et al., 1976). 

Evaluation of enzyme-linked immunosorbent assay (ELISA) titers in birds has 

been a useful method of diagnosis in the past, and titers are typically detectable within 2 

weeks of exposure and for 4 to 7 weeks following (Sander & Thayer, 1997).  However, 

currently more precise methods of diagnosis such as histopathology and quantitative PCR 

(qPCR) using GaHV-1 gene specific primers are utilized for definitive diagnosis. 

The virus itself codes for immune evasion mechanisms characteristic of 

herpesviruses, and alpha-, beta-, and gammaherpesviruses each encode for proteins with 

functions including inhibition of complement, antibody function, cellular immunity, and 

the cytokine network, as wells as coding for functional homologues of cytokines, 

chemokines, and their receptors (Davis-Poynter & Farrell, 1996).  Specific to 

alphaherpesviruses are the functions of gC, gE, gG, and gI.  A complex protein consisting 

of gE and gI has been functionally described as having Fc receptor binding activity of 

immunoglobulins such as IgG, and gC has been associated in the blocking of complement 

activation through binding of component C3, and derivatives such as C3b, for 

alphaherpesviruses such as HSV-1 (Davis-Poynter & Farrell, 1996).  The functions of 

gC, gE, and gI have not been specifically described for GaHV-1, although their sequence 
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homologies suggest that they do in fact retain functional homology, however host 

immune mediation by GaHV-1 gG has been displayed and function of the protein as a 

vCKBP is currently accepted (Devlin et al., 2006b). 

 

2.6 Viral Pathobiology 

 GaHV-1 typically gains entry via the mucous membranes of the upper respiratory 

tract or ocular tissue of the host.  Following GaHV-1 infection, an average incubation 

period of 4 days occurs, with onset of clinical signs occurring between 2 and 12 days 

post-infection (dpi), a shorter time period typical of experimental infection, and with 

severity of clinical signs dependent on host age as well as infective dose and strain 

(Hughes et al., 1987; Guy & Garcia, 2008; Tablante & Menendez, 2010).  Peak viral 

shedding occurs between 2 and 4 dpi, directly correlated to the viral replication cycle.  

Induction of mild to severe histopathological lesions within the tracheal epithelium 

occurs concurrently to clinical sign development, and level of severity is also associated 

with infective strain.  Figure 4 illustrates a histopathological section of a chorioallantoic 

membrane from a virulent GaHV-1 United States Department of Agriculture (USDA) 

reference strain infected embryo showing mild diffuse heterophilic cellulitis and typical 

herpesviral syncytia including intranuclear eosinophilic inclusion bodies.    

ILT clinical signs include conjunctivitis, nasal discharge, and decreased 

production efficiency, and in more severe forms, gasping, coughing, and expectoration of 

bloody mucus may develop (Figure 5).  While genes specifically responsible for 

development of clinical signs have not been fully elucidated, the loss of or decrease in 

clinical signs in the absence of gG, TK, UL0, and UL47 directly correlates these genes to  
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Figure 4: (20x magnification) Chorioallantoic membrane (CAM) from a chicken embryo 
infected at 10 days of development with USDA reference strain GaHV-1.  At 5 dpi, CAM 
tissue was harvested and fixed in buffered formalin.  Specimens were further processed, 
embedded in paraffin, sectioned to 4-µm thickness, and stained with Hematoxylin & 
Eosin (H&E).   Tissues were microscopically evaluated by an ACVP-certified veterinary 
anatomic pathologist in a blinded fashion for evidence of herpesviral infection.  Sloughed 
epithelial cells exhibited prominent eosinophilic intranuclear inclusions (small arrow) and 
formation of syncytia (large arrow) typical of herpesviral infection.   Inset: Herpesviral 
inclusion bodies at higher (40x) magnification demonstrate peripheralization of 
chromatin. 

 

 

 

 

 



	   20	  

A B

C

 
 
Figure 5: In a study to investigate incubation period, shedding, and immune response of 
commercial broiler chickens to GaHV-1 infection, 15 specific pathogen free birds were 
divided into 5 groups and inoculated with differential doses of the virulent United States 
Department of Agriculture (USDA) reference strain of GaHV-1 at 14 days of age.  Group 
1 were inoculated with a dose level of 1.7x103 TCID50/ml, group 2 a dose level of 
3.4x103 TCID50/ml, group 3 a dose level of 5.1x103 TCID50/ml, group 4 a dose level of 
6.8x103 TCID50/ml, and group 5 sterile phosphate buffered saline at a volume of 0.1 ml to 
serve as the control group.  All infected birds displayed varying clinical sings beginning 
at 4 days post infection, including coughing, sneezing, caseous plug (arrow) formation 
due to increased exudate within the tracheal lumen (A), inflamed conjunctival tissue (B), 
and/or ILT characteristic extension of the neck associated with caseous plug formation 
and respiratory distress (C) (Tablante & Menendez, 2010). 
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host response to infection.  Morbidity and mortality of ILT related to clinical signs and 

severe respiratory disease range from 5% to 70%, however a range of 10% to 20% is 

more typical of outbreaks due to mild strains of the virus (Guy & Garcia, 2008).   

Morbidity and mortality related losses negatively affect the global poultry 

industry each year and are still present despite vaccine related control efforts.  

Additionally, development of a carrier state in birds and establishment of latency, 

following infection or vaccination, coupled with viral reactivation further complicate the 

issue (Hughes et al., 1987; Tablante & Menendez, 2010).  Development of vaccine 

alternatives has yet to provide a suitable alternative to the industry, with further 

developments reliant on molecular advances, leaving biosecurity as the most critical 

factor to preventing current outbreaks that are typically capable of spreading rapidly.   

The mechanism of spread has not been fully explained, however wind-borne 

spread of the virus has been associated with transmission, as well as vehicle related farm-

to-farm traffic, farm employee hygiene and personal protective equipment use, and farm 

equipment such as tunnel ventilators and shared litter removal equipment (Johnson et al., 

2005; Volkova et al., 2012).  Strict adherence to simple hygiene measures and biosecurity 

are capable of abrogating spread of the virus, and inactivation of the virus outside of the 

host is easily attained using low levels of heat or disinfectants (Bagust et al., 2000).  For  

the California broiler industry, a strategy involving extended downtime of flocks, in 

addition to implementation of an extensive biosecurity audit in response to ILT outbreaks 

beginning in 2005, has substantially decreased the occurrence of ILT in the entire state to 

a rate of 1.25% between May 2010 and April 2012 (Chin et al., 2009; Shivaprasad, 

2012). 
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Chapter 3: Historical and Current Vaccine Strategies Related to ILT  

Molecular Epidemiology 

 

3.1 Discovery of ILT and Early Vaccine Development 

To introduce the molecular epidemiology of ILT, an understanding of the origin 

and usage of ILT vaccines is necessary.  The disease ILT was first confirmed in 1925 in 

Canada, followed by the United States in 1926, Australia & Great Britain in 1935, and 

Europe in 1940 (Cover, 1996).  By 1962, ILT was described in at least 40 countries in the 

FAO-WHO-OIE Animal Health Yearbook (Pulsford, 1963).  In 1934 C.S. Gibbs 

described the first vaccination method for ILT (Gibbs, 1933, 1934).  Brush vent 

application with live virulent virus from tracheal scraping preparations was recommended 

and shown to provide year-long protection to birds showing takes, or inflammation of the 

cloacal mucosa typically seen 3 to 8 days after brush vent application.  However, vent 

vaccination was also described to release live virulent virus into the field, allowing for 

continued spread of the virus. 

 

3.2 Live-attenuated Vaccine History 

Development of the chorioallantoic (CAM) virus propagation method in 1935 by 

C.A. Brandly gave way to efforts in the 1950s and 1960s to attenuate field strains for the 

development of strains of weaker virulence for vaccine use, higher environmental safety, 

and improved efficacy (Brandly, 1935).  Worldwide adoption of this method, coupled 

with successive in ovo passage of field viruses, gave rise to various strains of attenuated 

virus.  The Cover, Hudson, Samberg, SA-2, A20, and Serva vaccine strains (Table 1), all  
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Table	  1:	  Examples	  of	  live-‐attenuated	  ILT	  vaccines	  from	  across	  the	  globe.	  	  Many	  of	  
the	  strains	  utilized	  to	  make	  the	  TCO	  vaccine	  (LT-‐IVAX)	  and	  the	  many	  CEO	  vaccines	  
available	  today	  originated	  in	  the	  1950s	  and	  1960s.	  	  Since	  that	  time,	  the	  ability	  of	  
these	  vaccines	  to	  spread	  from	  bird-‐to-‐bird	  and	  cause	  vaccine-‐related	  outbreaks	  of	  
ILT	  has	  been	  described	  and	  remains	  a	  large	  problem	  for	  the	  poultry	  industry.	  *While	  
the	  current	  LT-‐IVAX	  product	  label	  does	  not	  cite	  the	  strain	  name,	  the	  original	  strain	  
utilized	  to	  create	  the	  TCO	  vaccine	  was	  the	  ASL	  L-‐6	  strain.	  (Gelenczei & Marty, 1964; 
Elkin, 2012) 
 

 

 

Vaccine	  Name,	  Company	   Country	  of	  Origin	   Strain	  
Poulvac	  Laryngo	  A20,	  Fort	  Dodge	   Australia	   A20	  
Avipro	  ILT	  vac,	  LAHi	   USA	   Hudson	  
Avivac	  ILT,	  Avivac	   Russia	   VNIIBP	  
BIO	  Laringo	  PV,	  Merial	   Italy	   PV	  09	  
Himmvac,	  KBNP	   South	  Korea	   IVR-‐12	  
ILT,	  Abic	   Israel	   Samberg	  
ILT	  Vac,	  Merial	   France	   T20	  
Infectious	  Laryngotracheitis	  Vaccine	  
Living,	  Qilu	  Animal	  Health	  

China	   K317	  

Izovac	  ILT,	  IZO	   Italy	   PV/64	  
Laringovac,	  Pasteur	  Institute	   Romania	   LT-‐79-‐2	  
Larivac,	  Romvac	   Romania	   ILT	  90	  
Laryngo-‐Vac,	  Pfizer	   USA	   Cover	  	  
Living	  Vaccine	  of	  Fowl	  
Laryngotracheitis,	  Qingdao	  Yebio	  	  

China	   K317	  

LT-‐Blen,	  Merial	   USA	   Hudson	  
LT-‐IVAX,	  Merck	   USA	   ASL L-6*	  
Medivac	  ILT,	  Medion	   Indonesia	   A	  94	  
Nobilis	  ILT	  Vaccine,	  Intervet	   Netherlands	   Serva	  
Poulvac,	  Pfizer	   UK	   Salisbury	  146	  
Poulvac	  Laryngo	  A20,	  Pfizer	   Australia	   A20	  
Poulvac	  Laryngo	  SA2,	  Pfizer	   Australia	   SA2	  
Rinbio	  ILT,	  Ringpu	   China	   K317	  
Poulvac	  Laryngo	  SA2,	  Fort	  Dodge	   	   Australia	   SA-‐2	  
Trachivax,	  Merck	   USA	   Hudson	  
Vaksi	  ILT,	  Vaksindo	  Satwa	  
Nusantara	  

Indonesia	   Hudson	  

Vir	  101,	  Biovac	   Israel	   Samberg	  
Volvac	  LT	  MLV,	  Boehringer	  
Ingelheim	  

Mexico	   N-‐71851	  
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still in current use, were derived using variations of the CAM attenuation method, and are 

currently referred to as chick embryo origin (CEO) vaccines.   

Cover and Benton first described United States field strains in 1958 with lower 

levels of virulence when administered to birds, capable of protecting birds against 

challenge 19 days post intratracheal inoculation (Benton et al., 1958), later giving rise to 

the Cover strain CEO vaccine.  In a United States patent submitted by C.B. Hudson in 

1969, the Hudson strain CEO vaccine was created after 191 in ovo passages, producing 

an attenuated virus intended for ocular, intranasal, or intratracheal vaccination.  Methods 

included inoculation of the CAM of 9 to 12 day old embryonated chicken eggs, followed 

by collection of infected CAMs 5 days post inoculation, and preparation of masticated 

membranes for vaccination (Hudson, 1969).   

In Israel, virus from acute field cases of ILT were utilized to create a vaccine from 

18th passage CAM material, produced in a similar fashion as the Hudson methods using 

chicken, duck, and turkey eggs.  The resulting Samberg strain CEO vaccine was intended 

for intra-ocular or vent-brush application (Samberg & Aronovici, 1969a).  In Australia, 

the SA2 vaccine strain was also developed as a chicken embryo attenuated strain in 1966 

from Australian field isolates, and was later further attenuated in chicken embryonic cell 

culture to generate the A20 vaccine in 1983 (Kirkpatrick et al., 2006a).  The Serva 

vaccine, also of chick embryo origin, was developed using European based GaHV-1 

strains.  Each of these vaccines not only addressed outbreaks according to regional 

strains, but were time saving in their application routes and, for the first time, presented 

vaccine options that decreased production losses associated with clinical sign 

manifestation following live virus vaccination. 
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3.3 Effect of Live-attenuated Vaccines on Viral Epidemiology 

While positive factors associated with the newly labeled CEO vaccines 

accomplished many of the goals of the time, Samberg described two negative factors still 

controversial with CEO use today.  In addition to noting a failure in the drinking water 

vaccination method (Samberg & Aronovici, 1971), the tendency of the attenuated virus to 

spread to unvaccinated in-contact birds was also described.  This phenomenon, also 

described by others developing CEO vaccines at that time, was attributed to an increase 

in virulence beginning with the 7th back passage of the Samberg strain in unvaccinated 

birds (Samberg & Aronovici, 1969b).   

Despite these indications, a large portion of the poultry industry adopted both 

CEO vaccination and the drinking water application method, which when combined, 

perpetuated the spread of virulent virus.  This spread was, and still is, largely attributed to 

back passage through birds inadequately vaccinated, perpetuating release of live virus 

into the field and the creation of carriers just as live virus vaccination had been negatively 

attributed to beginning in the 1930s.  

The first tissue culture-modified vaccine originated in 1964 (Gelenczei & Marty, 

1964), representing a hopeful new vaccine option, however it too was associated with 

similar drawbacks as the CEO vaccines.  Attenuation of the virulent ASL L-6 virus strain 

was successful in providing birds immunity after 50 serial passages in primary avian cell 

monolayers.  Birds were protected against direct challenge for up to 22 weeks after ocular 

or intranasal application, and the TCO vaccine did so with a decrease in clinical signs.  

However, as with the CEO vaccine, the ability of this virus to spread to unvaccinated 
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birds was described, and the goal of eliminating vaccine associated spread and 

subsequent outbreaks remained unfulfilled. 

 

3.4 Current Chicken Embryo Origin Vaccines 

In today’s industry, live-attenuated vaccine technology has remained vastly the 

same.  Despite the negative implications, birds are still vaccinated with either the TCO 

vaccine or one of the many CEO vaccines currently available in the United States and 

across the globe (Table 1).  This is either performed in a preventive manner, typical of the 

layer industry or with breeding stock, or in the face of an outbreak, as in the case of the 

broiler industry.  Due to the lack of preventive measures in the broiler sector, a large 

majority of outbreaks occur in broiler operations and are directly correlated to their CEO-

centered vaccine strategies.  In the face of an outbreak, CEO vaccine is commonly 

delivered via drinking water to broilers, a method of mass application that relies on 

contact of the vaccine with the nasal cavity during the act of drinking (Robertson & 

Egerton, 1981; Loudovaris et al., 1991a; Devlin et al., 2008). However this method does 

not provide uniform flock vaccination and often results in uneven protection of birds 

allowing for the spread of vaccine virus from vaccinated to non-vaccinated birds.  As a 

result, vaccine responses are prolonged, leading to outbreaks of VLT and potential spread 

to surrounding broiler operations.  

 

3.5 Vaccinal Laryngotracheitis 

Clinical signs associated with VLT outbreaks can range from mild to severe, 

however most broiler operations are willing to bear the comparatively low production 
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losses associated with vaccination as opposed to risking potential losses that would occur 

if the disease were left untreated (Zavala, 2011).  These practices, coupled with a short 

two-week acute infection phase, followed by a classic herpesviral latent infection, result 

in a cyclical pattern of outbreaks triggered by stress-induced reactivation of the virus.  

Subsequently, the potential for spread to surrounding operations is common, allowing the 

virus to increase in virulence with each successive passage, and resulting in damaging 

strains of the virus. 

 

3.6 Tissue Culture Origin Vaccines 

The TCO vaccine produces a robust immune response equivalent to that of the 

CEO vaccine, but is milder in its reverted virulent form and is subsequently isolated from 

the field to a significantly lower extent (Rodríguez-Avila et al., 2007).  However, because 

mass application of the TCO vaccine is not an option, with direct delivery methods 

necessary (Gelenczei & Marty, 1964), use in large operations is typically unfavorable for 

producers.  Additionally, the TCO vaccine retains the ability to replicate in the trachea, 

conjunctiva, cecal tonsils, trigeminal ganglia, and cloaca to an equal extent as the CEO 

vaccine.  Localized replication is sustained in the conjunctiva and trachea after eye-drop 

vaccination, and thus the ability to transmit from bird-to-bird, albeit to a lower extent 

than the CEO vaccine, perpetuates VLT outbreaks even with use of the TCO vaccine 

(Rodríguez-Avila et al., 2007). 

 

3.7 Viral Vector ILT Vaccines 

Viral vector vaccines, such as herpesvirus of turkey (HVT) and fowlpox (FP) 
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vectored vaccines, present an alternative option to live-attenuated vaccines altogether.  

They are increasingly safe due to their inability to revert to virulence, can be 

administered in ovo, and lack an impact on production performance.  However, they are 

comparatively high in cost and mass application in adult birds is not possible, rendering 

these vaccines inadequate for broiler industry associated outbreaks.  Recent studies have 

found that these vaccines provide partial protection and reduce clinical signs, but do not 

decrease challenge viral load in the trachea most likely due to an inherent inability to 

induce a sufficient local immune response within the trachea (Johnson et al., 2010).  As a 

result, many poultry industry veterinarians are reluctant to use vaccines that do not elicit 

a robust immune response, leaving birds susceptible to infection, even if these vaccines 

do not revert to virulence and cause VLT outbreaks that are typical of CEO vaccines.  

However, further improvement of viral vector vaccines is warranted, and the desirable 

inability of these vaccines to revert to virulence deserves further development.   

 

3.8 Recombinant ILT Vaccines 

Recently, GaHV-1 recombinant viruses involving deletion or alterations of genes 

such as gG, TK, UL0, or UL47 have been investigated and implicated as suitable targets 

for recombinant vaccine development due to their phenotypic properties (Han et al., 

2002; Veits et al., 2003b; Devlin et al., 2006b; Devlin et al, 2007; Helferich et al., 2007b; 

Legione, et al., 2012).  Of these genes, deletion of gG has been most thoroughly 

described and demonstrated to be a favorable target for vaccine candidacy (Devlin et al., 

2007).  gG deficient mutant virus strains of GaHV-1 have been developed, described in 

vivo, and vaccination via eye-drop and drinking water have been validated (Devlin et al., 
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2007; Devlin et al., 2008; Devlin et al., 2011).   Additionally, while the gG deficient 

candidate strain after eye-drop application can still pass from bird-to-bird, it is able to 

prevent spread of infection with challenge virus, remains attenuated after one passage to 

unvaccinated birds, and is comparable in efficacy to the A20, SA2, and Serva live-

attenuated vaccines (Coppo et al., 2011; Devlin et al., 2011).  However, further 

investigation using larger bird numbers, increased in vivo passage numbers, and in 

different production settings is critical to the progression of this and other recombinant 

vaccine strains. 

 

3.9 CEO and Recombinant ILT Vaccination 

In recent years, a combination of recombinant and CEO vaccination has been 

investigated in the United States broiler industry.  While intuitively greater in expense, 

CEO vaccination of birds within the zone and live haul routes of outbreak areas, in 

addition to simultaneous in ovo recombinant vaccination at hatchery facilities, sets up for 

the first time a combination treatment and preventive strategy against ILT (Burleson, 

2012). 

 

3.10 Future ILT Vaccines 

Potential for future vaccine development and utilization performed in a manner 

more strategically executed compared to past vaccines is apparent, and synchronization 

of poultry health and production in a way that controls outbreaks of GaHV-1 is in the 

horizon (Devlin et al., 2011).  However, ease of use, cost, effectivity, and availability 

ultimately motivate the majority of producers and poultry health personnel across the 
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globe to use live-attenuated vaccines, thus perpetuating VLT outbreaks and continually 

shaping the epidemiology of the virus.  Furthermore, continued host-to-host passage and 

spread of the virus due to past and current vaccine strategies continues to mold the 

epigenome of the virus.  Understanding these changes, based on virulence reversion, 

holds potential for better discernment of the genes responsible for continued spread of the 

virus and point to targets for further genomic investigation. 
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Chapter	  4:	  Global	  and	  Molecular	  Epidemiology	  of	  ILT 

 

4.1 Global Epidemiology 

Based on outbreak data from the World Organization for Animal Health (OIE) 

and other sources, the current distribution of ILT is described in Figure 6 (Pal et al., 

2009; Cabezas, 2012; Community, 2012; Health, 2012; Heinonen, 2012).  Red regions 

indicate countries positive for ILT between 2000 and 2012, and those illustrated with a 

grid pattern have been ILT positive for 10 years or greater.  Most apparent from this 

distribution is the proximity of these regions (marked in red and those with grids) to 

major poultry producing areas and to those areas that currently use or have used live-

attenuated vaccines (Table 2).  While licensed uses of live-attenuated vaccines are 

determined at the country, state, or province level, depending on the region of the world, 

presence of vaccine strains has been confirmed in the field even in some countries that 

disallow use of live attenuated-vaccines (Table 2) (Chacon & Ferreira, 2009; Neff et al., 

2008).   

 

4.2 Molecular Epidemiology 

Continual use of live-attenuated vaccines has shaped the molecular epidemiology 

of the virus, more so than outbreaks caused by wild-type strains.  Currently, the majority 

of outbreak related strains from commercial poultry are either indistinguishable from or 

closely related to vaccine strains (Oldoni et al., 2008), while outbreaks caused by wild-

type strains occur to a much lesser extent than those attributed to live-attenuated vaccine 

strains in commercial poultry. 
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Geographical	  
Region	  

Examples	  of	  Currently	  Used	  
Live-‐Attenuated	  Vaccines	  

Licensed	  	  
Uses	  

Identification	  
of	  Vaccine	  

Strains	  in	  the	  
Field	  

North	  America	   Trachivac,	  LT-‐Blen,	  Laryngo-‐
vac,	  Laryngotracheitis	  Vaccine,	  
Broilertrake-‐M,	  Laryngo-‐vac,	  

LT-‐Ivax	  

Commercial	  &	  
non-‐commercial;	  
regulated	  by	  

state	  or	  province	  

Yes	  

Central	  
America	  

VolvacLT	  MLV	   CEO	  and	  TCO	  use	  
dependent	  on	  
country	  

regulations	  	  

No	  data	  

South	  America	   LT-‐Ivax,	  Trachivax,	  LT-‐Blen,	  
Laryngovac,	  Avipro	  

Commercial	  &	  
non-‐commercial;	  
regulated	  by	  
country	  	  

Yes	  

United	  
Kingdom	  

Poulvac	  ILT	   Commercial	  &	  
non-‐commercial	  

Yes	  

Europe	   LaryngoVac,	  Nobilis	  ILT,	  LI-‐
Ivax,	  Hipraviar-‐ILT	  

Commercial	  &	  
non-‐commercial;	  
regulated	  by	  
country	  

Yes	  

Africa	   No	  data	   Libya:	  not	  used	  
as	  of	  2011;	  no	  
other	  data	  

No	  data	  

Middle	  East	   ILT-‐Abic	   Israel:	  
commercial	  &	  

non-‐commercial;	  
Turkey:	  not	  used	  
as	  of	  2007;	  no	  
other	  data	  

Yes	  

East	  Asia	   LT-‐Blen	   Commercial	  &	  
non-‐commercial;	  
regulated	  by	  
country	  

Yes	  

South	  Asia	   Noblilis	  ILT,	  Gallivac	  LT	   Commercial	  use	  
regulated	  by	  
country	  

Yes	  

South	  East	  
Asia	  

BAL-‐ILTTM,	  Belstar	   Philippines	  as	  of	  
2002,	  banned;	  
no	  other	  data	  

Yes	  

Australia	   SA-‐2,	  A20,	  Serva	   Commercial	  &	  
non-‐commercial	  

Yes	  

New	  Zealand	   Laryngo-‐vac	   Commercial	  and	  
non-‐commercial	  	  

No	  data	  
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Table	  2:	  Examples	  of	  current	  live-‐attenuated	  vaccines	  and	  licensed	  uses.  While live-
attenuated vaccine use is not licensed in some regions of the world, vaccine strains have 
still be isolated from the field in countries without licensed use of these vaccines.  This 
illustrates the possibility of these	  strains	  lingering	  in	  host	  reservoirs	  from	  past	  points	  
in	  time	  when	  live-‐attenuated	  vaccines	  may	  have	  been	  permitted	  in	  these	  countries,	  
and	  the	  ability	  of	  live-‐attenuated	  vaccines	  to	  move	  across	  borders	  regardless	  of	  
licensing	  and	  biosecurity.	  (Chang	  et	  al.,	  1997;	  Han	  &	  Kim,	  2001;	  Saepulloh	  &	  Rovira,	  
2003;	  Kirkpatrick	  et	  al.,	  2006b;	  Noormohammadi	  &	  Kirkpatrick,	  2006;	  Creelan	  et	  al.,	  
2007;	  Oldoni	  &	  Garcia,	  2007a;	  Neff	  et	  al.,	  2008;	  Chacon	  et	  al.,	  2010;	  Diallo	  et	  al.,	  
2010;	  Islam	  et	  al.,	  2010;	  ;	  Sadeghi	  et	  al.,	  2011). 
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Recently, investigation into molecular markers responsible for reversion of 

GaHV-1 to virulence has unveiled or confirmed genomic regions suspected to be viral 

virulence factors.  Initially, methods to differentiate vaccine and wild-type viruses 

established different groupings of GaHV-1 strains based on polymerase chain reaction 

restriction fragment length polymorphisms (PCR-RFLP) and sequencing data in different 

regions of the world.  By means of these distinctions, sequence comparison of low and 

high virulence strains revealed SNPs and INDELs among strains, with specific attention 

given to non-synonymous amino acid changes found within gene products associated 

with classic herpesviral immune evasion strategies and viral virulence, as well as those 

unique to GaHV-1 (Lee et al., 2011c; Spatz et al., 2012).  Discovery of the molecular 

markers responsible for GaHV-1 reversion to virulence will potentially identify targets 

for genetic manipulation and point to a promising future for the development of novel 

control strategies.  If advances are to be made in the control of the disease, it will be 

pivotal to incorporate associations related to virulence and attenuation through 

epidemiological investigation of GaHV-1 at the molecular level. 

At the foundation of ILT molecular epidemiology lie techniques aimed at 

differentiation of virus genotypes.  However, because strains of ILT have no 

serospecificity, molecular methods such as PCR-RFLP and DNA sequencing have been 

used to draw epidemiological conclusions.  While identification of strain type does not 

necessarily stop or change current control measures, defining strains responsible for 

disease allow for poultry companies involved in or near an outbreak to take specific 

actions regarding biosecurity and vaccination programs.  Modification of vaccination 

strategies, biosecurity, and clean-out techniques are pivotal in controlling continuous 
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outbreaks.  However, efforts made to improve outbreak response remain challenging.  In 

Australia, the introduction of the European-origin Serva CEO vaccine to a population of 

birds previously vaccinated with the native vaccines, SA-2 and A20, resulted in 

emergence of virulent strains responsible for outbreaks of the disease.  Full genome 

sequencing clearly indicated that a recombination event between the native SA-2 and 

A20 with the CEO Serva strain may have influenced the emergence of the new virulent 

genotypes identified as classes 8 and 9 (Lee et al., 2012b).  In the United States, 

outbreak-related strains are mostly derived from CEO vaccines that circulate in the field 

due to sub-optimal vaccine administration in combination with poor biosecurity 

measures.  Both DNA sequencing and PCR-RFLP have been critical in strain 

differentiation and in understanding the emergence of virulent virus.  

 

4.2.1 Strain Genotyping by PCR-RFLP 

Target genes for detection and strain differentiation are regionally dependent, 

with each region of the world requiring its own optimal set of genes for differentiation.  

Table 3 outlines target genes for GaHV-1 detection, as well as PCR-RFLP and 

sequencing differentiation by region of the world.  However, these gene specifications are 

not concrete and, as made apparent by the recent recombination of vaccine viruses in 

Australia, changes in these targets may occur with time and as vaccine strategies evolve.   

Initially, PCR-RFLP was the method of choice for strain differentiation and 

involves differentiation of virus strains by restriction enzyme cleavage patterns of 

targeted genes.  Within the United States, 9 groups with unique PCR-RFLP patterns have 

been identified using genes ORFB-TK, gM, ICP4, and gG (Oldoni & Garcia,  
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Table	  3:	  Target	  genes	  for	  PCR-‐RFLP	  strain	  differentiation,	  sequencing	  and	  PCR	  
strain	  differentiation,	  and	  detection	  of	  GaHV-‐1.	  	  Due	  to	  single	  nucleotide	  
polymorphisms	  (SNPs)	  and	  insertions	  and	  deletions	  (INDELs)	  among	  strains	  of	  
different	  geographical	  origin,	  target	  genes	  for	  strain	  differentiation	  and	  detection	  
differ	  by	  region	  of	  the	  world.	  	  However,	  due	  to	  the	  constant	  evolution	  of	  field	  strains	  
and	  vaccination	  programs,	  as	  exemplified	  by	  the	  recombination	  of	  three	  vaccine	  
strains	  in	  Australia	  (Lee	  et	  al.,	  2012b),	  target	  genes	  should	  be	  evaluated	  prior	  to	  
investigation.	  	  *Contains	  ORFB,	  ORFC,	  ORFD,	  ORFE,	  gH,	  and	  TK	  genes.	  (Chang	  et	  al.,	  
1997;	  Vogtlin	  et	  al.,	  1999;	  Han	  &	  Kim.,	  2001;	  Humberd	  et	  al.,	  2002;	  Pang	  et	  al.,	  2002;	  
Han	  &	  Kim,	  2003;	  Kirkpatrick	  et	  al.,	  2006b;	  Noormohammadi	  &	  Kirkpatrick,	  2006;	  
Ojkic	  et	  al.,	  2006;	  Callison	  et	  al.,,	  2007;	  Creelan	  et	  al.,	  2007;	  Gulacti	  et	  al.,	  2007;	  
Oldoni	  &	  Garcia,	  2007a;	  	  Oldoni	  &	  Garcia,	  2007b;	  Chacon	  &	  Ferreira,	  2008;	  Neff	  et	  
al.,	  2008;	  Callison	  et	  al.	  2009;	  Chacon	  &	  Ferreira,	  2009;	  Rashid	  et	  al.,	  2009;	  Chacon	  
et	  al.,	  2010;	  Diallo	  et	  al.,	  2010;	  Moreno	  et	  al.,	  2010;	  Xie	  et	  al.,	  2010;	  Mahmoudian	  et	  
al.,	  2011;	  Sadeghi	  et	  al.,	  2011;	  Cabezas,	  2012;	  Chen	  et	  al.,	  2012;	  Halami	  et	  al.,	  2012;	  
Sridevi	  et	  al.,	  2012).	  

 

 

 

	   	   Strain	  Differentiation	   Diagnostic	  
Testing	  

Geographical	  
Region	  

PCR-‐RFLP	  Target	  
Genes	  &	  Restriction	  

Enzymes	  

Sequencing	  &	  PCR	  
Target	  Genes	  

Target	  Genes	  for	  
Detection	  	  

North	  
America	  

gM,	  gG,	  UL47,	  ICP4,	  
ORF	  B-‐TK*	  (HaeIII,	  
MwoI,	  HinPII,	  BstF5I)	  

ICP4,	  UL47,	  gG,	  gM,	  
gB	  	  

gC,	  gE,	  ICP4	  

South	  
America	  

TK,	  UL47/gG,	  ICP4	  
(HaeIII,	  MspI,	  HinP1I)	  

ICP4	   gE	  

United	  
Kingdom	  

TK,	  ICP4	  (HaeI,	  Sau96,	  
NciI,	  MspI)	  

TK,	  ICP4	   ICP4	  

Europe	   gE,	  gG,	  ICP18.5,	  TK,	  
ORFB-‐TK	  (EaeI,	  MspI,	  

HaeIII,	  FokI)	  	  

TK,	  ORFB-‐TK,	  
ICP18.5,	  gE,	  gG,	  ICP4	  	  

gC	  

Africa	   No	  Data	   ICP4	   gE	  
Middle	  East	   gG,	  TK	  (BamHI,	  HaeIII)	   ICP4	   TK,	  ICP4	  
East	  Asia	  

	  
gG,	  TK,	  ICP4	  (MspI,	  
HaeIII,	  Hinp1I)	  

gC,	  gG	  gE,	  gJ,	  TK,	  ICP4	   TK	  

South	  Asia	   No	  data	   TK	   TK	  
Australia	   gG,	  TK,	  ICP4,	  ICP18.5,	  

ORFB-‐TK*	  (MspI,	  
HaeIII,	  FokI)	  

TK	   UL15	  
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2007a).  The resulting groupings consisted of the USDA reference strain in group I, the 

TCO vaccine strain in group II, field isolates closely related to the TCO vaccine in group 

III, CEO vaccine strains and CEO identical commercial poultry isolates in group IV, 

commercial poultry isolates closely related to the CEO vaccine in group V, vaccine-

unlike commercial poultry isolates in group VI, and unique backyard flock isolates in 

groups VII, VIII, and IX.   

Alternatively, in Australia five classes of strains were originally compiled based 

on PCR-RFLP differentiation using a combination of gG, TK, ICP4, and ICP18.5 target 

genes.  Class 1 consisted of the SA-2 and A20 CEO vaccines as well as related strains, 

classes 2 and 3 of vaccine-unlike field strains, class 4 of the Australian CSW virulent 

field strain, and class 5 of vaccine-like and –unlike field strains (Kirkpatrick et al., 

2006b).  In 2011, four new classes were identified, including class 6 strains isolated from 

the region of Victoria, the Nobilis (Serva) ILT vaccine in class 7, and the SA-2, A20, 

Serva recombinants in classes 8 and 9 (Blacker, 2011; Lee et al., 2012b). 

In South America, based on PCR-RFLP of the TK and gG genes, five patterns 

were identified among Brazilian and Peruvian field isolates (Chacon & Ferreira, 2009).  

Pattern A consisted of isolates from the Sao Paulo state of Brazil, pattern B isolates 

originated in southern Brazil, pattern C isolates originated in Peru, pattern D 

corresponded to the TCO vaccine, and pattern E to the CEO vaccine. 

In Taiwan, based on PCR-RFLP of gG, TK, and ICP4, three groups of strains 

were identified (Chang et al., 1997).  Group 1 consisted of the TCO vaccine and TCO-

like field strains, Group 2 of the CEO vaccine and CEO-like field strains, and Group 3 of 

vaccine-unlike field strains.  In Korea, three groups of field strains were differentiated 
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using the TK gene alone (Han & Kim, 2001).  Group 1 consisted of virulent strains, 

group 2 of low-virulence strains, and group 3 of vaccine strains.  In the latter example, 

the level of differentiation did not match that of other similar studies because only one 

target gene was utilized, outlining the importance of using multiple genes in PCR-RFLP 

differentiation.  However, despite the level of differentiation, the PCR-RFLP method 

initially revealed the presence of circulating vaccine-like strains as a source of disease 

outbreaks across the globe.  A summary of the target genes and corresponding restriction 

enzymes utilized for PCR-RFLP analysis are displayed in Table 3 according to region of 

the world. 

 

4.2.2 Strain Genotyping by DNA Sequencing 

In recent years, PCR-RFLP has been steadily replaced with DNA sequencing for 

strain differentiation, although this technique remains a less costly option for certain 

regions of the world.  One main advantage of sequencing over PCR-RFLP is that the data 

produced is easier to document, analyze, and maintain, whereas PCR-RFLP can be highly 

subjective. Also, sequencing is also more precise, especially when multiple target genes 

are utilized for differentiation.  

Like PCR-RFLP, target genes amplified and sequenced for strain differentiation 

are regionally dependent and are summarized in Table 3.  In North America, target genes, 

sequenced either in their entirety or partially, include ICP4, UL47, gB, gG and gM (Ojkic 

et al., 2006; Oldoni & Garcia, 2007b; Callison et al., 2009).  In South America, the ICP4 

gene has been sequenced (Chacon & Ferreira, 2009; Chacon et al., 2010), and in the 

United Kingdom the TK and ICP4 genes (Creelan et al., 2007).  In Europe, larger scale 
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investigation has been performed including the target genes TK, ICP4, gG, gE, ORFB-

TK (containing the gene regions ORFB, ORFC, ORFD, ORFE, gH, to TK), and ICP18.5 

(Neff et al., 2008; Moreno et al., 2010).  The target gene ICP4 has been successfully 

utilized in both Africa and the Middle East (Sadeghi et al., 2011; Halami et al., 2012), 

and the TK gene in South Asia (Sridevi et al., 2012).  Strains in East Asia have been 

successfully sequenced and differentiated using the target genes TK, ICP4, gC, gG, gE, 

gJ (Chen et al., 2012; Han & Kim., 2001), and in Australia the genes TK and gG have 

been used (Diallo et al., 2010).  No sequencing data has been published for Russia or 

Southeast Asia. 

 

4.2.3 Optimal Methods for Strain Genotyping 

Between PCR-RFLP and sequencing, two of the genes that have been most 

widely used for differentiation and molecular epidemiologic analysis of GaHV-1 are the 

TK and ICP4 genes.  In addition to being costly and time consuming, sequencing of 

multiple genes requires large amounts of viral DNA, which may require further virus 

isolation.  Alternatively, sequencing of TK and ICP4, either in their entirety or as partial 

gene sequences, is common and has been successful in differentiating field and vaccine 

strains of GaHV-1.  Although this method is not optimal, lacking some of the 

discriminatory power necessary to differentiate among GaHV-1 isolates, sequencing 

these genes in their entirety or partially has been a useful, cost effective, and rapid 

method to differentiate strains from several regions of the world.  Table 4 outlines by 

region of the world those laboratories that have differentiated strains by the amplification 

and sequencing of the TK and ICP4 gene segments. 
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Table	  4:	  Amplified	  regions	  of	  TK	  and	  ICP4	  for	  DNA	  sequencing.	  	  In	  recent	  years,	  PCR-‐
RFLP	  has	  been	  steadily	  replaced	  with	  DNA	  sequencing	  for	  strain	  differentiation,	  although	  
PCR-‐RFLP	  remains	  a	  less	  costly	  option	  for	  certain	  regions	  of	  the	  world.	  	  While	  there	  is	  a	  
range	  of	  target	  genes	  used	  for	  sequencing	  differentiation,	  as	  displayed	  in	  Table	  3,	  TK	  and	  
ICP4	  have	  been	  successfully	  used	  across	  regions.	  	  Sequencing	  of	  these	  two	  genes	  alone	  
can	  cut	  cost	  and	  time,	  although	  with	  a	  reduction	  in	  the	  level	  of	  discriminatory	  power.	  	  
Included	  are	  the	  regions	  of	  each	  gene	  amplified	  in	  previous	  publications	  and	  the	  
corresponding	  GenBank	  accession	  number.	  (Creelan	  et	  al.,	  2007;	  Neff	  et	  al.,	  2008;	  Callison	  
et	  al.,	  2009;	  Chacon,	  et	  al.,	  2010;	  Chakma	  et	  al.,	  2010;	  Diallo	  et	  al.,	  2010;	  Sadeghi	  et	  al.,	  
2011).	  

 

  

 

 

 

 

 

 

 

 

 

 

 

Geographical	  Region	   Genes	   Amplified	  Region	   GenBank	  Accession	  No.	  
North	  America	   ICP4	   1807-‐3052	   L32139	  
South	  America	   TK	   183-‐831	   JN580313	  

ICP4	   205-‐822	   JN580313	  
ICP4	   3796-‐4381	   JN580313	  

United	  Kingdom	   ICP4	   714-‐935	   JN580313	  
Europe	   TK	   3379-‐5546	   DD00565	  

Middle	  East	   ICP4	   181-‐856	   JN580313	  
ICP4	   3773-‐4395	   JN580313	  

Australia	   TK	   691-‐1085	   JN580313	  
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Despite the advantages of partial sequencing of the TK and ICP4 genes, use of 

PCR-RFLP plus sequencing is a more precise method for differentiating vaccines from 

vaccine derived field isolates, and multilocus analysis of at least two genes is optimal 

(Table 3).  Scientists from across the world have employed a combination of these 

methods in order to obtain maximal information to analyze differences between vaccine 

and non-vaccine strains.  In the United States, a combination of reverse restriction 

fragment length polymorphism (RRFLP), a method using both PCR-RFLP and real-time 

PCR, and DNA sequencing of the ICP4 gene have be exploited to genotype strains 

(Callison et al., 2009).  In Canada, PCR-RFLP of target genes ICP4, UL47, gE, and gG 

has been combined with sequencing of UL47 and gG (Ojkic et al., 2006), while in Brazil 

PCR-RFLP of the TK, ICP4, gG, and gE genes has been combined with sequencing of 

the TK and ICP4 genes (Chacon & Ferreira, 2009; Chacon, et al., 2010).  In the United 

Kingdom, PCR-RFLP of TK and ICP4 has been combined with sequencing of ICP4 

(Creelan et al., 2007), and in Europe PCR-RFLP of gE, gG, ICP18.5, ORFB-TK, and TK 

has been combined with sequencing of ICP4, TK, gE, gG, ORFB-TK, and the gene 

region spanning from ICP18.5 to UL43 (Neff et al., 2008; Moreno et al., 2010).  In 

Korea, PCR-RFLP and sequencing of the TK and gG genes has been combined (Han & 

Kim., 2001), and in Australia PCR-RFLP and sequencing have been done using only the 

TK gene (Diallo et al., 2010). 

 

4.2.4 Full Genome Sequencing 

So far, none of the genotyping methods outlined above has been successful in 

relating strain genotype to pathotype.  Some evidence indicates that changes in TK may 
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be related to virulence of Korean isolates (Han & Kim., 2001).  However, it is essential 

that this be further investigated and verified by introduction of changes related to 

attenuation in the TK gene into a virulent strain to determine if this confers some degree 

of attenuation.  In 2011, the first non-composite genome of GaHV-1 was sequenced for 

the Serva vaccine strain (Lee et al., 2011c), and Table 5 shows the 17 strains to date for 

which full genome sequences have been reported in GenBank and their corresponding 

pathotype. 

In an attempt to identify genetic determinants of attenuation in vaccine strains and 

virulence in field isolates, comparison of full genome sequences among vaccine and field 

isolates has been recently documented.  Comparison of the Australian Serva vaccine 

strain to four virulent GaHV-1 strains from the United States genotype groups I-VI 

revealed non-synonymous amino acid changes exclusive to the vaccine.  While some 

changes occurred among structural glycoproteins, suspected to account for geographical 

differences between strains, those found in the non-structural proteins UL28, UL5, and 

ICP4 are suspected to relate to virulence or attenuation due to their roles in genetic 

function of the virus (Spatz et al., 2012).  Additionally, the effect of further attenuation of 

the SA-2 vaccine was investigated by comparison of full genome sequences of the related 

SA-2 and A20 vaccines from Australia.  Only two non-synonymous amino acids changes 

were identified in the ORF B and UL15 non-structural proteins, representing two genes 

specifically affected by attenuation (Lee et al., 2011b).  Further comparison of complete 

genome sequences from differing genotypic classes, in addition to specific investigation 

of ICP4, UL28, UL5, ORF B, UL15 and other identified genes of interest, will ultimately  
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Table	  5:	  GaHV-‐1	  full	  genome	  sequences.	  	  The	  first	  full	  genome	  sequence	  of	  GaHV-‐1	  
became	  available	  in	  2011	  (Lee	  et	  al.,	  2011c),	  and	  to	  date	  there	  are	  17	  full	  genome	  
sequences	  of	  varying	  genotypes,	  each	  provided	  in	  this	  table	  with	  their	  
corresponding	  GenBank	  accession	  numbers.	  	  The	  availability	  of	  the	  full	  sequences	  of	  
these	  various	  genotypes	  has	  allowed	  for	  high	  and	  low	  virulence	  strain	  comparisons,	  
identifying	  potential	  genes	  involved	  in	  virulence	  reversion	  (Lee et al., 2011b; Spatz et 
al., 2012).	  	  Further	  genomic	  investigation	  is	  important	  to	  advancing	  understanding	  
of	  GaHV-‐1	  reversion.	  
 

 

 

 

Isolate	   Virulence	   Origin	   GenBank	  Accession	  
No.	  

A20	  Vaccine	   High	  
Attenuation	  

Australia	   JN596963	  

Australia	  Class	  8	   Virulent	   Australia	   JN804826	  
Australia	  Class	  9	   Virulent	   Australia	   JN804827	  
CEO	  High	  Passage	   Virulent	   United	  States	   JN80316	  
CEO	  Low	  Passage	   Moderate	  

Attenuation	  
United	  States	   JN580317	  

CEO	  TRVX	   Moderate	  
Attenuation	  

United	  States	   JN580313	  

Laryngo-‐vac	  CEO	  
Vaccine	  

Moderate	  
Attenuation	  

United	  States	   JQ083494	  

LT-‐Blen	  CEO	  Vaccine	   Moderate	  
Attenuation	  

United	  States	   JQ083493	  

SA2	  Vaccine	   Moderate	  
Attenuation	  

Australia	   JN596962	  

Serva	  Vaccine	   High	  
Attenuation	  

European-‐
Origin	  

HQ_630064	  

TCO	  High	  Passage	   Mild	  Virulence	   United	  States	   JN580314	  
TCO	  IVAX	   High	  

Attenuation	  
United	  States	   JN580312	  

TCO	  Low	  Passage	   High	  
Attenuation	  

United	  States	   JN580315	  

USDA	  Reference	  Strain	   Virulent	   United	  States	   JN542534	  
1874C5	  Broiler	  Isolate	   Virulent	   United	  States	   JN542533	  
63140	  Broiler	  Isolate	   Virulent	   United	  States	   JN542536	  
81658	  Broiler	  Breeder	  

Isolate	  
Mild	  Virulence	   United	  States	   JN542535	  
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reveal genes associated with attenuation and virulence of GaHV-1 and increase 

knowledge on the molecular epidemiology of the virus. 
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Chapter	  5:	  ILT	  Host-‐Pathogen	  Interactions 

 

	   In	  recent	  years,	  in	  addition	  to	  genomic	  characterization	  of	  GaHV-‐1	  genotypes,	  

and	  investigation	  into	  virus-‐specific	  attenuation	  mechanisms,	  investigation	  into	  host	  

specific	  pathways	  following	  infection	  has	  begun.	  	  Little	  research	  has	  been	  done	  

regarding	  host-‐pathogen	  interactions	  of	  GaHV-‐1	  and	  the	  chicken	  genome,	  however	  

recent	  research	  into	  GaHV-‐1	  epigenetics	  has	  investigated	  changes	  in	  host	  gene	  

expression	  based	  on	  infection.	  	  Identification	  of	  genes	  that	  result	  in	  host	  resistance	  

to	  infection,	  and	  selecting	  for	  these	  genes	  in	  lines	  of	  commercial	  poultry,	  represents	  

an	  additional	  strategy	  that	  could	  be	  developed	  in	  order	  to	  prevent	  infection.	  	  The	  

basis	  for	  these	  epigenetic	  investigations	  began	  with	  past	  field	  observations	  of	  

breeds	  with	  more	  or	  less	  resistance	  to	  infection.	  

	  

5.1	  Past	  Field	  Observations 

According	  to	  past	  field	  observations,	  differences	  in	  susceptibility	  to	  GaHV-‐1	  

infection	  have	  been	  described.	  	  Single	  comb	  white	  leghorns	  have	  been	  noted	  as	  a	  

more	  resistant	  breed,	  while	  broiler	  breeds	  are	  typically	  less	  resistant,	  and	  

reproduction	  of	  infection	  in	  a	  laboratory	  setting	  easier	  in	  broilers	  than	  in	  layers	  or	  

specific	  pathogen	  free	  (SPF)	  chickens	  (Zavala,	  2011).	  	  One	  possible	  source	  of	  these	  

differences	  in	  susceptibility	  is	  the	  increased	  level	  of	  Cornish	  type	  genes	  which	  

broilers	  carry	  today. 
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5.2	  MHC	  Allele-‐based	  Resistance 

In	  further	  genetic	  investigation	  of	  these	  differences	  in	  susceptibility,	  birds	  

with	  defined	  major	  histocompatibility	  complex	  (MHC)	  phenotypes	  have	  shown	  

differential	  response	  to	  infection	  (Loudovaris	  et	  al.,	  1991a).	  	  Specifically,	  birds	  

expressing	  the	  B113	  MHC	  allele	  are	  relatively	  resistant	  to	  GaHV-‐1	  infection	  and	  birds	  

expressing	  the	  B114	  MHC	  allele	  are	  relatively	  susceptible	  to	  infection.	  	  In	  comparison	  

to	  birds	  expressing	  the	  B114	  allele,	  those	  expressing	  the	  B15	  MHC	  allele	  are	  

increasingly	  susceptible	  to	  infection.	  	  Additionally,	  macrophages	  from	  birds	  

expressing	  the	  B113/113	  MHC	  allele	  or	  the	  B114/114	  MHC	  allele	  express	  a	  greater	  

proportion	  of	  GaHV-1	  antigen	  after	  in	  vitro	  infection	  compared	  to	  those	  expressing	  

the	  B15/15	  MHC	  allele,	  suggesting	  macrophages	  from	  the	  two	  relatively	  resistant	  

genetic	  B113	  and	  B114	  lines	  of	  birds	  may	  be	  able	  to	  better	  recognize,	  process,	  and	  

present	  viral	  antigen	  to	  the	  immune	  system	  (Loudovaris	  et	  al.,	  1991b).	  	  

Furthermore,	  birds	  expressing	  the	  B2B2	  MHC	  allele	  can	  mount	  a	  more	  efficient	  

protective	  immune	  response	  to	  low	  infective	  doses	  of	  virulent	  infection,	  while	  birds	  

expressing	  the	  B2B15	  MHC	  allele	  require	  a	  10-‐fold	  higher	  dose	  to	  mount	  a	  protective	  

immune	  response,	  and	  birds	  expressing	  the	  B15B21	  MHC	  allele	  are	  altogether	  unable	  

to	  mount	  a	  protective	  immune	  response	  (Poulsen	  et	  al.,	  1998). 

 

5.3	  Epigenetics 

Changes	  in	  host	  gene	  expression,	  based	  on	  GaHV-‐1	  infection,	  have	  also	  

recently	  been	  investigated	  and	  functional	  pathways	  responsive	  to	  infection	  

uncovered.	  	  Based	  on	  in	  vitro	  infection	  with	  virulent	  virus,	  Lee	  et	  al.	  (2010)	  
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identified	  789	  host	  genes	  which	  are	  differentially	  expressed	  during	  GaHV-‐1	  

infection,	  with	  275	  of	  these	  genes	  connected	  to	  21	  possible	  gene	  networks	  classified	  

in	  functional	  groups	  including	  cancer,	  genetic	  disorders,	  cellular	  growth,	  cellular	  

proliferation,	  and	  cell	  death.	  	  Of	  the	  21	  gene	  networks,	  6	  gene	  networks	  are	  identical	  

at	  all	  time	  points.	  	  Further	  investigation	  of	  these	  networks	  by	  Lee	  et	  al.	  (2010)	  

revealed	  the	  Network	  1	  pathway	  to	  be	  closely	  associated	  with	  the	  IL6	  signaling	  

pathway,	  suggesting	  that	  GaHV-‐1	  increases	  IL6	  expression	  and	  subsequently	  

inhibits	  cellular	  proliferation	  through	  downregulation	  of	  the	  proliferation	  enhancer	  

Janus	  kinase	  1	  (JAK).	  	  Network	  2	  contains	  several	  downregulated	  heat	  shock	  

proteins	  (HSP)	  thought	  to	  be	  responsible	  for	  erroneous	  viron	  structures	  and	  a	  

source	  of	  low	  GaHV-‐1	  titers	  typical	  to	  tissue	  culture	  infection.	  	  The	  genes	  of	  network	  

3	  include	  growth	  factors	  and	  matrix	  metalloproteinases	  (MMPs),	  with	  expression	  

profiles	  consistent	  with	  those	  seen	  during	  other	  herpesvirus	  infections	  and	  involved	  

in	  extracellular	  remodeling,	  tissue	  invasion,	  and	  angiogenesis.	  	  Networks	  4,	  5,	  and	  6	  

contain	  genes	  encoding	  for	  IFNβ, IL1β, CCL20, CCL4, NF-κβ, NFIB, IL1, and ID1 

specific	  to	  the	  host	  immune	  response	  to	  pathogenic	  infection. 

In	  comparison	  to	  virulent	  infection,	  in	  vitro	  infection	  with	  vaccine	  virus	  by	  

Lee	  et	  al.	  (2012a)	  revealed	  213	  differentially	  expressed	  host	  genes,	  divided	  into	  10	  

possible	  gene	  networks,	  and	  grouped	  into	  functional	  categories	  including	  tissue	  

development,	  cellular	  growth,	  cellular	  proliferation,	  cellular	  movement,	  and	  

inflammatory	  response.	  	  Additionally,	  of	  the	  213	  differentially	  expressed	  host	  genes,	  

bone	  morphogenetic	  protein	  2	  (BMP2),	  chromosome	  8	  open	  reading	  frame	  79	  

(C8orf79),	  coagulation	  factor	  X	  (F10),	  and	  neuropeptide	  Y	  (NPY)	  are	  expressed	  
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distinctly	  during	  vaccine	  infection	  when	  compared	  to	  virulent	  infection.	  	   

While	  genetic	  markers	  responsible	  for	  host	  response	  and	  resistance	  to	  

infection	  have	  been	  identified,	  broad	  integration	  of	  these	  findings	  into	  production	  

strategies	  has	  yet	  to	  be	  undertaken.	  	  Research	  into	  these	  scientific	  sectors	  remains	  

in	  the	  early	  stages	  related	  to	  GaHV-‐1,	  limiting	  current	  developments.	  	  However,	  

possibilities	  such	  as	  incorporation	  of	  breed	  resistance	  genes	  in	  production	  lines	  of	  

birds	  represents	  an	  additional	  protective	  strategy	  which	  could	  ultimately	  be	  

combined	  with	  vaccine	  strategies	  to	  enhance	  overall	  defense	  against	  ILT	  outbreaks. 
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Chapter	  6:	  Potential	  for	  Future	  Eradication	  of	  ILT 

 

6.1	  Eradication	  Potential	  of	  ILT 

In	  1995,	  Bagust	  &	  Johnson	  examined	  the	  virus-‐host	  interactions	  of	  ILT	  as	  

related	  to	  the	  prospect	  for	  eradication	  of	  the	  pathogen	  by	  the	  year	  2000	  (Bagust	  &	  

Johnson,	  1995).	  	  As	  it	  stands,	  we	  are	  12	  years	  past	  this	  postulated	  date	  for	  

eradication	  and	  GaHV-‐1	  remains	  a	  worldwide	  pathogen	  that	  causes	  significant	  

economic	  damage	  to	  the	  poultry	  industry	  on	  an	  annual	  basis.	  	  Establishment	  of	  

latency	  remains	  a	  critical	  issue	  regarding	  spread	  of	  both	  wild	  type	  and	  vaccine	  

strains	  of	  the	  virus.	  	  The	  current	  vaccine	  options,	  coupled	  with	  current	  management	  

practices,	  are	  not	  sufficient	  in	  combating	  the	  ability	  of	  the	  virus	  to	  establish	  latency	  

and	  thus	  result	  in	  a	  constant	  pool	  of	  infection	  upon	  highly	  predictable	  reactivation. 

 

6.2	  Factors	  Associated	  with	  Eradication	  Potential	   

Bagust	  and	  Johnson	  (1995)	  cited	  eight	  factors	  associated	  with	  the	  eradication	  

potential	  of	  ILT	  including,	  (1)	  the	  virus	  is	  not	  egg	  transmitted,	  (2)	  infection	  is	  

essentially	  confined	  to	  chickens,	  (3)	  levels	  of	  infectivity	  are	  usually	  low,	  (4)	  spread	  

of	  infection	  can	  be	  strongly	  confined	  by	  industry	  precautions,	  (5)	  virus	  infectivity	  is	  

easily	  inactivated	  outside	  of	  the	  host,	  (6)	  immunity	  will	  absolutely	  protect	  against	  

challenge,	  (7)	  immunity	  to	  GaHV-‐1	  is	  cell-‐mediated,	  (8)	  and	  GaHV-‐1	  strains	  are	  

antigenically	  homogeneous,	  which	  will	  be	  discussed	  in	  the	  following	  sections. 
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6.2.1	  Host	  Restriction 

While	  ILT	  has	  been	  reported	  in	  turkeys,	  pheasants,	  and	  peafowl	  (Hilbink,	  

1985;	  Kaleta	  &	  Redmann,	  1997;	  Portz	  et	  al.,	  2008),	  these	  bird	  populations	  are	  

comparatively	  small	  versus	  broiler,	  layer,	  and	  breeder	  populations	  in	  major	  poultry	  

producing	  countries.	  	  Additionally,	  there	  have	  yet	  to	  be	  major	  outbreaks	  of	  ILT	  

reported	  in	  a	  non-‐chicken	  species.	  	  While	  chickens	  remain	  the	  primary	  host	  

reservoir	  of	  the	  virus,	  control	  of	  disease	  outbreaks	  in	  commercial	  and	  backyard	  

flocks	  could	  help	  towards	  eradication	  of	  the	  disease,	  a	  goal	  that	  could	  ultimately	  be	  

attained	  if	  vaccines	  which	  do	  not	  permit	  establishment	  of	  latency,	  development	  of	  

carrier	  birds,	  and	  reversion	  to	  virulence	  were	  created.	  	  Additional	  consideration	  for	  

wild	  populations	  of	  birds,	  however,	  would	  also	  have	  to	  be	  taken	  into	  account. 

 

6.2.2	  Egg	  Transmission 

As	  discussed	  in	  section	  2.5,	  while	  maternal	  antibodies	  are	  passed	  to	  

offspring,	  they	  do	  not	  confer	  protection,	  nor	  do	  they	  interfere	  with	  vaccination.	  	  

Additionally,	  ILT	  is	  not	  vertically	  transmitted	  from	  parent	  to	  offspring	  in	  ovo.	  	  The	  

lack	  of	  egg	  transmission	  is	  hugely	  advantageous	  to	  prospective	  eradication	  efforts	  

and	  the	  consideration	  of	  parental	  disease	  state	  does	  not	  interfere	  with	  current	  

disease	  control	  programs. 

 

6.2.3	  Viral	  Infectivity 

On	  average,	  high	  levels	  of	  viral	  shedding	  are	  sustained	  for	  approximately	  7	  

dpi.	  	  However,	  during	  this	  period,	  the	  virus	  is	  highly	  transmissible	  and	  easily	  able	  to	  
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spread	  from	  bird-‐to-‐bird	  and	  via	  personnel,	  equipment,	  and	  other	  fomites	  

commonly	  present	  in	  a	  production	  setting.	  	  While	  the	  period	  of	  viral	  shedding	  is	  

relatively	  short,	  control	  of	  the	  spread	  of	  disease	  is	  critical	  and	  successes	  in	  places	  

like	  California	  have	  been	  described	  through	  strict	  biosecurity	  measures	  

(Shivaprasad,	  2012).	  	  Since	  the	  discovery	  of	  ILT	  in	  the	  early	  20th	  century,	  biosecurity	  

has	  been	  an	  essential	  factor	  in	  disease	  control	  and	  will	  remain	  so	  in	  eradication	  

efforts. 

 

6.2.4	  Industry	  Precautions 

While	  the	  above-‐mentioned	  industry	  precautions	  are	  successful	  in	  

decreasing	  disease,	  strict	  adherence	  to	  biosecurity	  regulations	  can	  be	  both	  difficult	  

to	  regulate	  and	  costly.	  	  New	  reservoirs	  of	  virus	  have	  also	  recently	  been	  uncovered,	  

including	  retention	  of	  CEO	  vaccine	  in	  water	  drinker	  lines	  due	  to	  biofilm	  formation,	  

leading	  to	  transmission	  of	  disease	  to	  birds	  up	  to	  21	  days	  following	  drinking	  water	  

vaccination	  (Ou	  et	  al.,	  2011).	  	  Additionally,	  wind-borne	  transmission	  of	  the	  virus	  and	  

other	  intangible	  forms	  of	  spread	  complicate	  control	  efforts	  (Johnson	  et	  al.,	  2005).	  	  

However,	  industry	  precautions	  remain	  a	  top	  priority,	  and	  if	  strictly	  followed,	  are	  

successful	  in	  eliminating	  disease	  on-‐site	  and	  in	  a	  local	  radius.	  	  Precautions	  include	  

but	  are	  not	  limited	  to	  use	  of	  personal	  protective	  equipment	  (PPE),	  proper	  

disinfection	  of	  housing	  and	  production	  equipment,	  limited	  on-‐farm	  traffic,	  and	  all-‐

in-‐all-‐out	  production	  policies	  in	  which	  flocks	  of	  birds	  enter	  and	  exit	  a	  farm	  as	  a	  

whole	  and	  birds	  of	  different	  immune	  status	  are	  not	  intermingled.	  	  Additionally,	  

effective	  disinfection	  programs	  are	  critical,	  including	  sufficient	  contact	  time	  and	  
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biofilm-‐reducing	  sanitizers,	  and	  employee	  education	  is	  pivotal	  to	  assuring	  an	  

understanding	  of	  disease	  transmission	  and	  ways	  to	  improve	  flock	  health	  and	  

production	  efficiency. 

 

6.2.5	  Viral	  Inactivation 

Following	  a	  disease	  outbreak	  and/or	  vaccination,	  complete	  disinfection	  and	  

cleanup	  becomes	  increasingly	  critical	  compared	  to	  the	  end	  of	  a	  typical	  production	  

cycle.	  	  As	  discussed	  in	  section	  2.6,	  GaHV-‐1	  is	  easily	  inactivated	  outside	  of	  the	  host	  

using	  common	  disinfectants	  or	  low	  levels	  of	  heat.	  	  However,	  the	  importance	  of	  

following	  manufacturers’	  guidelines	  in	  terms	  of	  disinfectant	  dilution	  and	  contact	  

times	  are	  important,	  and	  the	  presence	  of	  organic	  matter	  during	  disinfection	  poses	  

an	  additional	  complication	  that	  increases	  required	  contact	  times	  beyond	  typical	  

manufacturers’	  recommendations	  (Ruano	  et	  al.,	  2001).	  	  However,	  the	  fact	  that	  

GaHV-‐1	  inactivation	  is	  attained	  with	  relative	  ease	  using	  disinfectants	  and	  low-‐level	  

heat	  decreases	  overall	  carryover	  and	  spread	  of	  the	  disease	  (Bagust et al., 2000). 

 

6.2.6	  Host	  Immune	  Protection 

Following	  live-‐attenuated	  vaccination,	  protection	  against	  challenge	  virus	  

exposure	  is	  complete	  6	  to	  8	  days	  after	  vaccination	  and	  sustained	  for	  15	  to	  20	  weeks	  

post	  vaccination,	  although	  waning	  of	  immunity	  has	  been	  described	  as	  early	  as	  8	  

weeks	  post	  vaccination	  (Guy	  &	  Garcia,	  2008).	  	  Established	  immunity	  will	  absolutely	  

protect	  birds	  against	  challenge,	  thus	  preventing	  establishment	  of	  latency	  and	  of	  

carrier	  state	  birds.	  	  However,	  the	  value	  of	  revaccination	  following	  the	  15	  to	  20	  week	  
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marker	  is	  not	  definite,	  and	  prevention	  of	  vaccine	  virus	  replication	  due	  to	  

neutralization	  is	  suspected	  to	  inhibit	  protection	  (Izuchi	  et	  al.,	  1984;	  Fahey	  &	  York,	  

1990).	  	  Additionally,	  vaccination	  is	  not	  a	  standard	  practice,	  typically	  only	  performed	  

in	  endemic	  ILT	  regions,	  leaving	  many	  populations	  of	  birds	  susceptible	  as	  the	  virus	  

spreads. 

 Overall,	  while	  immunity	  will	  absolutely	  protect	  birds	  against	  infection	  as	  

Bagust	  and	  Johnson	  suggest,	  length	  of	  that	  immunity	  elicited	  by	  current	  vaccine	  

options	  is	  insufficient.	  	  The	  prospect	  of	  alternative	  vaccine	  options	  that	  elicit	  

sustained	  protection,	  or	  permit	  effective	  revaccination,	  is	  dependent	  on	  further	  

developments	  in	  ILT	  vaccinology.	  	  Other	  vaccine	  options	  such	  as	  viral	  vector	  

vaccines	  exist,	  however	  as	  discussed	  in	  section	  4.4,	  issues	  with	  establishment	  of	  an	  

immune	  response	  that	  is	  robust	  enough	  to	  fully	  protect	  birds	  still	  remain. 

 

6.2.7	  Host	  Cell-‐mediated	  Immune	  Response 

As	  discussed	  in	  sections	  2.6	  and	  7.2.6,	  the	  main	  response	  to	  GaHV-‐1	  infection	  

is	  cell	  mediated.	  	  While	  the	  fact	  that	  maternal	  antibodies	  do	  not	  interfere	  with	  

vaccination	  is	  advantageous	  as	  Bagust	  and	  Johnson	  suggest,	  the	  inability	  to	  

revaccinate	  due	  to	  virus	  neutralizing	  antibodies	  is	  hugely	  disadvantageous	  to	  ILT	  

protection	  programs.	  	  Account	  for	  this	  fact	  must	  be	  taken	  in	  development	  of	  future	  

vaccines,	  in	  addition	  to	  issues	  such	  as	  reversion	  to	  virulence	  and	  establishment	  of	  

latency. 
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6.2.8	  Antigenetic	  Homogeneity 

At	  the	  core	  of	  the	  GaHV-‐1	  virion	  is	  a	  dsDNA	  genome,	  which	  is	  relatively	  stable	  

and	  provides	  an	  advantageous	  backbone	  for	  vaccine	  development.	  	  GaHV-‐1	  innately	  

lacks	  the	  quasi	  species	  conundrum	  of	  many	  RNA	  viruses	  because	  the	  virus	  does	  not	  

display	  antigenic	  variation,	  and	  cross-‐neutralization	  and	  cross-‐protection	  of	  known	  

GaHV-‐1	  strains	  has	  been	  shown	  to	  occur	  (Russell	  &	  Turner,	  1983).	  	  This	  factor	  

conveys	  a	  large	  advantage	  to	  scientists	  and	  has	  allowed	  ILT	  vaccine	  research	  to	  

flourish,	  past	  and	  present,	  and	  ultimately	  defines	  the	  prospect	  of	  ILT	  eradication	  as	  

a	  possible	  feat.	  

In	  addition	  to	  these	  eight	  factors,	  Bagust	  and	  Johnson	  suggest	  consideration	  

of	  the	  benefit-‐cost	  ratio	  and	  time	  scale	  for	  eradication	  of	  ILT.	  	  Their	  projection	  for	  

eradication	  of	  ILT	  from	  production	  sites	  by	  the	  year	  2000	  was	  based	  on	  quarantine,	  

and	  hygiene	  measures,	  in	  addition	  to	  genetically	  engineered	  vaccines.	  	  Quarantine	  

and	  hygiene,	  in	  the	  form	  of	  strict	  biosecurity,	  have	  proven	  to	  successfully	  prevent	  

the	  spread	  of	  the	  virus.	  	  However,	  vaccines	  have	  yet	  to	  be	  successfully	  developed	  in	  

a	  manner	  that	  would	  move	  poultry	  producers	  to	  discontinue	  live-‐attenuated	  vaccine	  

use.	  	  As	  most	  field	  strains	  are	  indistinguishable	  from	  vaccine	  strains,	  discontinuing	  

live-‐attenuated	  vaccine	  use	  would	  remove	  the	  largest	  source	  contributing	  to	  annual	  

outbreaks	  of	  disease,	  and	  would	  ultimately	  foster	  eradication	  of	  the	  virus. 
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Chapter	  7:	  Summary	  &	  Conclusions 

  

GaHV-‐1	  is	  a	  virus	  that	  remains	  analyzed	  to	  a	  much	  lesser	  extent	  than	  other	  

alphaherpesviruses,	  with	  much	  of	  biology	  of	  the	  virus	  based	  on	  HSV-‐1.	  	  Further	  

development	  in	  the	  molecular	  characterization	  of	  the	  virus	  is	  pivotal	  to	  novel	  

vaccine	  development,	  an	  area	  currently	  concentrating	  on	  genetic	  engineering	  and	  

necessary	  to	  the	  end	  of	  live-‐attenuated	  vaccine	  use.	  	  Vaccine	  related	  outbreaks	  have	  

been	  described	  since	  the	  development	  of	  ILT	  vaccines	  and	  remain	  the	  largest	  source	  

of	  virus	  in	  the	  field.	  	  If	  spread	  of	  the	  virus	  is	  to	  be	  stopped	  to	  a	  significant	  extent,	  

stopping	  the	  use	  of	  live-‐attenuated	  vaccines	  represents	  a	  direct	  way	  to	  remove	  a	  

major	  source	  of	  virus	  from	  the	  environment.	  	  However,	  because	  the	  cost,	  ease	  of	  use,	  

and	  availability	  of	  the	  CEO	  and	  TCO	  live-‐attenuated	  vaccines	  meets	  the	  needs	  of	  the	  

poultry	  industry,	  their	  use	  is	  still	  prevalent	  and	  continues	  to	  shape	  the	  molecular	  

epidemiology	  of	  the	  virus.	  	   

For	  each	  region	  of	  the	  world,	  there	  is	  an	  optimal	  set	  of	  target	  genes	  for	  

detection	  and	  differentiation	  of	  GaHV-‐1	  related	  outbreak	  strains.	  	  However,	  with	  

recombination	  events	  like	  that	  which	  occurred	  with	  the	  SA-‐2,	  A20	  and	  Serva	  vaccine	  

strains	  in	  Australia,	  modification	  of	  these	  target	  genes	  may	  be	  necessary	  with	  time	  

and	  change	  in	  local	  epidemiology	  of	  virus	  strains.	  	  New	  potential	  exists	  in	  epigenetic	  

research	  of	  host-‐virus	  interactions,	  and	  those	  interactions	  involved	  in	  resistance	  

and	  susceptibility	  to	  the	  virus	  could	  be	  integrated	  into	  production	  lines	  of	  birds	  to	  

strengthen	  ILT	  protection	  programs.	  	  However,	  if	  continued	  thought	  of	  ILT	  

eradication	  is	  to	  be	  considered,	  ultimately,	  development	  of	  vaccines	  that	  provide	  
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sufficient	  immune	  protection	  while	  retaining	  the	  inability	  to	  revert	  to	  virulence,	  

establish	  latency,	  and	  create	  a	  carrier	  state	  in	  birds,	  will	  allow	  successful	  eradication	  

and	  control	  of	  the	  disease.	  
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Appendix 
 

Supplemental List 1: Global Distribution of ILT as of 2012 
Year of last report of disease in parenthesis; 2012 status yet to be reported  
in completion for all countries; sited from the OIE-WAHID ILT disease  

timeline unless otherwise noted (Health, 2012). 
	  
2000 to 2012 ILT+ 
1. Afghanistan (2012) 
2. Argentina (2012)⌘ 
3. Armenia (2005) 
4. Australia (2011)⌘ 
5. Austria (2007)* 
6. Bahrain (2011)v	  
7. Bangladesh (2010)* 
8. Belarus (2005) 
9. Belgium (2011)⌘ 
10. Benin (2010)* 
11. Bolivia (2011) 
12. Brazil (2010) 
13. Cameroon (2010)v	  
14. Canada (2012)⌘ 
15. Cape Verde (2009)*v	  
16. Central African  

Republic (2011) 
17. Chile (2012)⌘ 
18. China (2012)⌘ 
19. Columbia (2012)⌘ 
20. Congo (Dem. Rep. of) 

(2011) 
21. Costa Rica (2011) 
22. Cyprus (2011) 
23. Czech Republic (2011) 
24. Denmark (2012)⌘ 
25. Ecuador (2012) 
26. Eritrea (2009)*⌘ 
27. Ethiopia (2000) 
28. Finland (2012) 
29. France (2006)*⌘ 
30. French Polynesia(2011) 
31. Germany (2011)⌘ 
32. Greece (2000) 
33. Guam (2001)* 
34. Guinea (2004)* 
35. Hong Kong (2010) 
36. Hungary (2011)⌘	  
37. India (2009)1 

38. Indonesia (2007)* 
39. Iran (2000) 
40. Iraq (2012) 
41. Ireland (2012) 
42. Israel (2012) 
43. Italy (2011)v	  
44. Japan (2012)⌘ 
45. Kiribati (2012)¤	  
46. Korea, North (2010) 
47. Korea, South (2010)*⌘ 
48. Kuwait (2005) 
49. Lebanon (2011)⌘ 
50. Libya (2010) 
51. Malaysia (2007)⌘ 
52. Malta (2008) 
53. Mexico (2011)⌘ 
54. Morocco (2004)* 
55. Myanmar (2010)* 
56. Namibia (2007) 
57. Netherlands (2011)⌘ 
58. Nepal (2009) 
59. New Caledonia (2008) 
60. New Zealand (2012)⌘ 
61. Nigeria (2004)* 
62. Norway (2012)⌘ 
63. Pakistan (2011) 
64. Palestine (2010) 
65. Peru (2012) 
66. Philippines (2011)⌘ 
67. Poland (2007) 
68. Portugal (2008) 
69. Puerto Rico (2003) 
70. Reunion (2003) 
71. Russia (2006) 
72. Rwanda (2009) 
73. Samoa (2005)v	  
74. South Africa (2008)⌘ 
75. Swaziland (2001) 
76. Sweden (2012)⌘ 
77. Switzerland (2012)⌘ 

78. Syria (2008)* 
79. Taiwan (2010)⌘ 
80. Thailand (2004) 
81. Togo (2010) 
82. Trinidad & Tobago 

(2004) 
83. Turkey (2003)*	  
84. Turkmenistan (2010)* 
85. Uganda (2011)⌘ 
86. United Kingdom 

(2011)⌘ 
87. United States of 

America (2012)⌘ 
88. Ukraine (2004) 
89. Uruguay (2012)⌘ 
90. Uzbekistan (2004) 
91. Wallis & Futuna 

(2002)¤	  
92. Yemen (2006)* 
 
1999 and prior ILT+ 
1. Albania (1996)* 
2. Algeria (1989)* 
3. Brunei (1996) 
4. Bulgaria (1994) 
5. Burkina Faso (1999)* 
6. Chad (1972)* 
7. Cook Islands (1996)*¤	  
8. Egypt (1991) 
9. Gabon (1997) 
10. Georgia (1990) 
11. Kyrgyzstan (1992) 
12. Lesotho (1996) 
13. Luxembourg (1999) 
14. Malawi (1996) 
15. Mali (1996)* 
16. Mauritius (1994) 
17. Moldavia (1992) 
18. Mozambique (1998) 
19. Paraguay (1996) 
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20. Romania (1999) 
21. Saudi Arabia (1998)* 
22. Senegal (2000) 
23. Singapore (1989) 
24. Spain (1999)v	  
25. Sri Lanka (1994) 
26. Suriname (1997) 
27. Tanzania (1996)* 
28. Tunisia (1998) 
29. United Arab 

Emirates (1997) 
30. Venezuela (1977) 
 
Suspected 
1. Andorra 
2. Anguilla 
3. Antigua & Barbuda 
4. Aruba 
5. Bahamas 
6. Barbados 
7. British Virgin 

Islands 
8. Cayman Islands 
9. Cuba 
10. Curacao 
11. Dominica 
12. Dominican Republic 
13. F.Y.R. of Macedonia 
14. Grenada 
15. Guadeloupe 
16. Haiti 
17. Jamaica 
18. Laos 
19. Lithuania 
20. Martinique 
21. Montserrat 
22. Niger  
23. Sao Tome & 

Principe 

24. St. Barthélemy 
25. St. Kitts & Nevis 
26. St. Lucia 
27. St. Maarten 
28. Turks & Caicos 
29. U.S. Virgin Islands 
30. Zambia 
 
Disease Negative 
1. Belize 
2. Greenland 
3. Honduras 
 
Disease Never 
Reported 
1. Angola 
2. Azerbaijan 
3. Bhutan 
4. Bosnia & 

Herzegovina 
5. Botswana 
6. Burundi 
7. Comoros 
8. Croatia 
9. Djibouti 
10. El Salvador 
11. Equatorial Guinea 
12. Estonia 
13. Fiji 
14. French Guiana 
15. Ghana 
16. Guatemala 
17. Guyana 
18. Iceland 
19. Jordan 
20. Kazakhstan 
21. Kenya 
22. Kosovo 
23. Latvia 

24. Liberia 
25. Liechtenstein 
26. Madagascar 
27. Maldives 
28. Micronesia 
29. Mongolia 
30. Montenegro 
31. Nicaragua 
32. Oman 
33. Qatar 
34. San Marino 
35. Serbia 
36. Seychelles 
37. Sierra Leone 
38. Slovakia 
39. Slovenia 
40. Sudan 
41. Tajikistan 
42. Vanuatu 
43. Zimbabwe 
 
No Data 
1. Cambodia 
2. Congo (Rep. of) 
3. Cote d’Ivoire 
4. East Timor 
5. Falkland Islands 
6. Gambia 
7. Guinea Bissau 
8. Mauritania 
9. Monaco 
10. Panama 
11. Papua New Guinea 
12. Solomon Islands 
13. Somalia 
14. Tuvalu 
15. Vietnam 
16. Western Sahara 
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Legend 
*	  Data unavailable after last GaHV-1+ reported year; current status unknown, however no literary 
evidence or reports of becoming disease free. 
	  
vLast reported year reported as a suspected year, however previous years confirmed GaHV-1 positive 
(Health 2012).	  
	  
⌘	  GaHV-1 positive for 10 years or greater (Health, 2012).	  
	  
¤The Secretariat of the Pacific Community currently sites “serologic evidence [of GaHV-1] in Cook 
Islands, Kiribati, Tonga, and Wallis and Futuna” (Community, 2012)	  
	  
1 In a search of all available GaHV-1 DNA sequences on GenBank, the GaHV-1 partial p32 gene 
sequence for isolate HBL/viral/AP/02/10 (GenBank accession number FN811131) was referenced as an 
isolate from a poultry farm in Tamilnadu, Namakkal, India from 19-Dec-2009 (Pal et al., 2009). 
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