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Aerial microsystems have the potential of navigating low-altitude, cluttered

environments such as urban corridors and building interiors. Reliable systems re-

quire both agility and tolerance to gusts. While many platform designs are under

development, no framework currently exists to quantitatively assess these inherent

bare airframe characteristics which are independent of closed loop controllers. This

research develops a method to quantify the maneuverability and gust tolerance of ve-

hicles using reachability and disturbance sensitivity sets. The method is applied to a

stable flybar helicopter and an unstable flybarless helicopter, whose state space mod-

els were formed through system identification. Model-based static H∞ controllers

were also implemented on the vehicles and tested in the lab using fan-generated

gusts. It is shown that the flybar restricts the bare airframe’s ability to maneu-

ver in translational velocity directions. As such, the flybarless helicopter proved

more maneuverable and gust tolerant than the flybar helicopter. This approach

was specifically applied here to compare stable and unstable helicopter platforms;

however, the framework may be used to assess a broad range of aerial microsystems.
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Chapter 1

Introduction

1.1 Motivation and Challenges

Over the past decade, autonomous vehicles have become reliable and sophis-

ticated enough to deploy in military, industrial, and research settings. In military

applications, ground-based wheeled robots are used for security, reconnaissance, and

even explosives detection and disposal. Designs for fixed-wing Unmanned Air Vehi-

cles (UAVs) are now compact enough to be launched by soldiers and deployed for

high-altitude surveillance. Industrial applications also deploy autonomous robots in

factories and warehouse distribution centers. For research purposes, Mars rovers are

a fascinating example of how autonomous vehicles can be used to explore environ-

ments otherwise too hostile for humans.

But so far, the vehicles that are currently implemented have fundamental

mobility limitations. As such, Micro Air Vehicles (MAVs) have become an increas-

ingly popular area of research. MAVs have the potential for navigating low-altitude

settings like urban street corridors, building interiors, and complex geographical

features like caves. Unlike wheeled robots, they are not limited by obstacles on the

ground. Furthermore, flapping winged and rotor configurations provide maneuver-

ability advantages over fixed-wing UAVs. In addition to the applications already

covered by UAVs and ground-based robots, MAVs can be used for search-and-rescue
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operations, infrastructure inspection, wildlife tracking, and even film-making.

In order to perform reliably in any of these applications, a good MAV design

needs to be both agile and resistant to gusty conditions. Even common indoor fea-

tures such as fans, open windows, or air conditioning units can prove challenging to

an MAV tracking a trajectory or station keeping. Many MAV designs are currently

under development, including quadrotors, cyclcopters, ducted fans, and several he-

licopter configurations. The objective of this thesis is to develop a framework for

comparing the maneuverability and gust tolerance characteristics inherent to a ve-

hicle’s bare airframe. A stable flybar helicopter and unstable flybarless helicopter

are used to demonstrate the methods; however, the framework can be applied to

assess the potential performance of many vehicle platforms.

1.2 Related Work

Limited work has been performed in the area of evaluating maneuverability

and the effects of gust disturbances on MAVs. A study performed by Costello and

Zarovy tested the ability of coaxial helicopters to maintain a position and track a

trajectory in the presence of fan gusts [1]. The findings were quantified with the

Spherical Error Probable (SEP). However, the study does not identify the properties

of the vehicle that determine its inherent potential to perform in gusts. Additionally

the performance metric was dependent on the spectral content and intensity of the

experimental gusts.

Inherent maneuverability of fruit flies (Drosophila melanogaster) was assessed
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by Faruque, who used reachability gramians to determine inputs that minimize the

energy required to control the system [2]. This work was developed further by

Szczublewski, who evaluated the gust tolerance of a close loop micro-quadrotor by

extending the concept of reachability ellipsoids to disturbances [3]. While an unsta-

ble platform like a micro-quadrotor will inevitably require inner loop stabilization,

the performance can be greatly influenced by the control designer. As such, evaluat-

ing the bare airframe of a vehicle is critical for understanding its potential. However,

the familiar form for finding controllability gramians is limited to stable systems,

and MAVs, due to their low mass and inertia, are often unstable. Zhou provides a

method for calculating the gramians of unstable systems, which can be applied to

this analysis [4].

In order to employ the theoretical framework presented here, linear state space

models of the helicopters were required. System identification of full-scale helicopters

was pioneered in the seventies by Molusis [5], who specifically noted the importance

of rotor-fuselage coupling and the need for including higher order rotor dynamics in

the model [6]. These early attempts at helicopter modeling used time domain out-

put error methods. In the late eighties, frequency domain techniques were applied

to helicopters and presented many advantages [7]. The broad range of frequencies

exhibited in the helicopter dynamics include structural vibration caused by shafts,

rotors and the powerplant; high-frequency rotor dynamics; and the fuselage dynam-

ics. In frequency domain analysis, the specific range of frequencies relevant to a

particular parameter can be specified. This field was pioneered by Tischler and

Cauffman with the identification of the BO-105 helicopter [8] using the frequency
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domain software CIFER.

Frequency domain analysis has subsequently been applied to identifying mod-

els for small-scale rotorcraft. Mettler used these methods to identify the dynamics

the R50 helicopter, with 150 cm rotor radius and 44 kg dry weight [9], as well as the

X-Cell .60 helicopter, which has a 4.5 kg dry weight [10]. Conroy then extended the

techniques to the E-Sky Honeybee helicopter, with a 25.3-cm main rotor radius and

288 gram weight with sensors [11]. However, limited work has been preformed in

developing models for unstable vehicles on the MAV scale. The time domain tech-

nique output error has been used to identify the dynamics of a 70 g micro-quadrotor

[12]. The helicopters used in this work work weigh approximately 60 g.

1.3 Research Contributions

This research includes the following contributions to the field of aerial mi-

crosystems system identification, dynamics, and control:

• A framework for using reachability and disturbance sensitivity sets to assess

the bare airframe characteristics of aerial microsystems.

• A method for performing system identification on a vehicle with highly-coupled

dynamics and few known parameters.

• State space models for a flybar micro-helicopter and a flybarless micro-helicopter.

• An assessment of the influence of a Bell flybar on the dynamics, agility, and

gust tolerance of a micro-helicopter.
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• Static H∞ controllers for micro-helicopters designed for station keeping in

gusty conditions.

1.4 Overview

The following section gives an overview of the topics covered in each chapter.

Chapter 2: The basis for any vehicle development is understanding its phys-

ical dynamics and representing the dynamics with a model. A model gives

insight into the inherent properties of the vehicle, as well as provides a mathe-

matical basis for developing a controller. This chapter uses vehicle kinematics

and dynamics to develop a linear, state space model structure for the heli-

copters. Rotor dynamics and flybar dynamics are also incorporated into the

model.

Chapter 3: System identification is the method of numerically determining

the linear coefficients of the model structure for the system. This chapter gives

an overview of the options for system identification, as well as the challenges

involved in performing system identification on micro-helicopters. The process

used for identifying the models for the flybar and flybarless helicopters is

presented, as well as the resulting linear models.

Chapter 4: We then look at the vehicles’ dynamic characteristics by exam-

ining the modes of the system through the pole-zero diagrams and eigenvector

plots. The influence of the flybar on vehicle dynamics, as revealed through

5



the modes of the system, is discussed. However, at this point, the effects of

the flybar on the vehicle’s ability to maneuver in gusts is still unclear.

Chapter 5: This chapter presents a method for comparing maneuverability

and gust tolerance properties by looking at the reachability and disturbance

sensitivity sets of their respective models. For linear models, these sets are

defined by ellipsoids. By examining the length and direction of the principle

axes of these ellipsoids, we can draw conclusions about the bare airframe’s

inherent characteristics.

Chapter 6: An H∞ controller is especially suited for rejecting gust distur-

bances and optimizing the energy requirements of the actuators. An inner loop

controller is designed for vehicle stabilization, and an outer loop controller is

designed for station keeping. Using robust analysis tools, the tracking and

disturbance sensitivity bandwidths of the vehicles are analyzed. The static

H∞ gains are implemented on the flybar and flybarless helicopters, and the

ability of the two vehicles to hold a position in the presence of a gust is tested

in the lab.

Chapter 7: The methods and findings of the research are discussed, as well

as the future work required to continue developing and implementing MAV

designs.
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1.4.1 Scope

There are two major limitations to the scope of this project. First, only

the rigid body dynamics directly coupled to the cyclic inputs of the vehicle are

considered. This includes the attitude states φ and θ, the rotational rate states p

and q, and the translational velocity states u and v. The interactions between these

states are complex and, by themselves, provide for an interesting study of gust

tolerance and maneuverability. The model for heave and yaw states (ψ, r, w) are

assumed to be decoupled from these states. The height and heading of the vehicle

is controlled via PID gains for all data collection and tests presented in the thesis.

The second limitation is that all control is implemented off-board using Vicon. The

helicopters have the sensing and processing capability of implementing on-board

control; however, this step is deferred for future work.

1.5 Helicopter Platforms

A helicopter platform was selected for this research for several reasons. Com-

pared to fixed-wing platforms, helicopters are inherently very maneuverable—they

have the ability to ascend and descend vertically; to hover; and to fly in forward,

backward or sideways directions. Unlike flapping wing platforms, which are still in

a development phase, Remote Control (RC) model helicopters have been commer-

cially available for three decades, and their designs are easily adapted for research

settings. Compared to other rotary-wing platforms currently being researched, in-

cluding meso- and micro-scale cyclocopters and quadrotors, helicopters have compa-
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(a) Flybar helicopter.

(b) Flybarless helicopter.

Figure 1.1: A flybar helicopter and flybarless helicopter were the chosen
platforms for this research. Each helicopter weighs ≈66 g with their
on-board battery and have a rotor radius of 11 cm.

rable maneuverability with the added advantage of a simpler design concept. Both a

helicopter stabilized with a flybar and a helicopter stabilized solely with a controller

(flybarless) helicopter are used. The helicopters are pictured in Fig. 1.1.

1.5.1 Physical Description

For the flybar platform, the Walkera model CB100 was selected, and for the

flybarless platform, a Walker V100D01 was selected. Besides the addition of the

flybar, the two platforms are nearly identical. The helicopters weigh approximately

66 g with a battery and have 11 cm rotor radius. A SolidWorks of the basic airframe
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Figure 1.2: A SolidWorks model was used to calculate the moments of
inertia of the helicopters. (CAD credit: Julia Ashkanazy)

Physical Parameters

Ixx = 11.24 g-cm−2

Mass and Iyy = 35.82 g-cm−2

Inertia Properties Izz = 33.71 g-cm−2

m = 66 g with battery

c.g. = behind main motor, close to base.

Rmain = 11 cm

Rotor cmain = 1.9 cm

Dimensions Rtail = 2.4 cm

ctail = 0.75 cm

Hover Ωmain = 3, 100 rpm

Rotor Rates Ωtail = 14, 000 rpm

Table 1.1: Helicopter Physical Parameters

was used to determine the helicopters’ inertial properties. The physical properties

of the vehicle are presented in Table 1.1 and the SolidWorks model is shown in Fig.

1.2.

The flybar on the flybar helicopter acts as a physical stability augmentation

device. Flybars have traditionally been used to stabilize small helicopters, especially
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Figure 1.3: Flybars are used to mechanically stabilize helicopters.

before on-board electronic controllers were widely used. With the flybar, the micro-

helicopter used for this research is stable enough to fly open loop. Without the

flybar, a controller is required to keep the helicopter stable. The flybar consists

of a rod positioned at an approximately 45◦ angle to the rotors and has a 1-g

weight secured on each end. The mechanics of the flybar are further discussed in

Chapter 2 and analysis of the flybar helicopter compared to the flybarless helicopter

is presented throughout the thesis. A close-up of the flybar mechanism is shown in

Fig. 1.3.

1.5.2 Control Inputs

The helicopters have four control inputs. One input controls the main motor

speed, which in turn adjusts the main rotor rate and the resulting thrust magnitude.

Likewise, the tail rotor thrust is adjusted by an input dictating the speed of the tail

rotor motor. Two inputs control servos that adjust the pitch of the rotor blades,

which in term tilts the thrust vector to induce a forward, backward, or sideways

motion. This mechanism is explored in detail in Section 2.4.1.
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It is important to note here that helicopters, full-scale or model-sized, generally

adjust thrust magnitude through collective pitching of the rotor blades. The motor

rate—and thus the rotation rate of the rotors—is then kept constant. At the time of

this research, collective pitch control was not available in this model size. For future

work, the recently released Walkera Genius model with collective pitch should be

used. Collective pitch quickens the response of the helicopter and eliminates non-

linearities associated with the motor dynamics.

1.5.3 On-Board Sensing and Processing

The Walkera helicopter models come with a shelf electronics package which

includes gyroscopes, accelerometers and a processor with a pre-implemented con-

troller. The pilot can adjust the gains of the controller by tuning knobs on the

package.

To implement custom control on the helicopters, the shelf electronics were

replaced with a custom avionics package developed by the University of California,

Berkeley. The Guidance and Inertial Navigation Assistant (GINA) mote is equipped

with a Texas Instruments MSP430F2618 16-bit microcontroller. The board also has

two Kionix KXSD9-1026 accelerometers, which measure the attitude of the vehicle

with respect to the gravity vector, and a InvenSenseTM ITG3200 gyroscope, which

measures pitch, roll, and yaw rates. The board’s communication protocol is a 2.4

GHz Atmel AT86RF230 radio which is capable of both sending and receiving data.

The basestation for communicating with the Mote from a control station is a USB
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Figure 1.4: The GINA Mote, designed by University of California, Berke-
ley, was used to receive commands from the ground station and control
input signals.

Atmel RZ600. A custom breakout board was designed to interface the Mote with

the helicopter servos and actuators. The mote and breakout board are pictured in

Fig. 1.4. For the purpose of this research, all attitude and rate measurements were

performed off-board with the Vicon system, described in Section 1.6.2. However, in

the future, the mote’s accelerometers and gyroscopes can be used for this task, and

the entire control can be implemented on-board.

In order to interface the mote with the helicopter, the signals of the shelf

Figure 1.5: The PWM signal for each control input is listed in Table ??.
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Period Pulse Width Duty Cycle
Control T (ms) t0(ms) (%)

Lateral and Longitudinal Servo Input

Servo extends up 17.0 1.25 7.35
Servo neutral 17.0 1.5 8.82
Servo extends down 17.0 1.75 10.3

Main Motor Input

Full speed 17.0 0.9 11.8
Off 17.0 2.0 5.3

Tail Motor Input

Full speed 0.500 0.0005 0.1
Off 0.500 0.4550 91

Table 1.2: PWM Signals for Servos and Motor Controllers

electronics had to be tested and replicated. All actuators, which include the lon-

gitudinal and lateral servos and the motors’ speed controllers, are controlled with

pulse-width modulation (PWM) from the processor. The PWM period and duty

cycle for each control is listed in Table 1.2 and illustrated in Fig. ??. The mote

firmware was programmed to replicate these signals. Because the signal period for

the tail motor speed controller was a different length than the other controls, two

timers on the microcontroller were designated to the PWM signals. (For other lab

vehicles, just one timer is designated to the PWMs.) Timer A was designated for

signals requiring a 17 ms period length and Timer B was designated for the 500

µs period length. It should be noted that Timer B is also used to control the loop

timing—if future modifications are made to the firmware, the designation of these

timers should be considered carefully.
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1.6 Laboratory Equipment

A set of Saitek joysticks were used to pilot the helicopter. The joysticks inter-

faced with a program and user interface developed in Labview, which communicated

the signals to the mote on the helicopter. The Labview program has several other

functions, including automatic signal generation, state feedback, and data record-

ing. A Vicon camera system tracked the position and orientation of the vehicle for

the system identification data collection and model-based control implementation.

More detail on the program and equipment is provided in the following sections.

1.6.1 Labview Program

The Labview program, developed in version 8.6, has the following functional-

ities:

• Mote Initialization Before any control commands are sent to the mote, Lab-

view initializes the communication. Initialization settings for the mote—which

include onboard feedback gains, filter thresholds, and the type of communcia-

tion (uni- or bi-directional)—are also communicated at this point. Note, these

mote settings cannot be changed without restarting the program.

• Joystick Control The absolute nominal functionality of the program is to

read joystick commands and communicate them to the mote. The basic com-

mands include the main motor speed, tail rotor speed, and the cyclic inputs.

Additionally, several knobs on the joystick can be used to activate different
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types of control schemes or automated inputs. Manual commands can also be

communicated to the mote using slide-bars on the user interface.

• Automatic Signal Generation Several options for automated signals in-

clude impulse, step, chirp, and multisinusoidal inputs. The signals can be

generated while the pilot is holding the helicopter in the desired trim condi-

tion, which is generally hover.

• Filtering Any data collected by the Labview program (i.e., from Vicon) can

be conditioned in real-time with a low-pass filter. This is especially useful

when noisier measurements, like yaw rates, are used for feedback.

• Feedback Gains Several types of control schemes are included in the Labview

program. These include heading lock (ensuring the helicopter is always facing

forward), height control (maintaining a commanded altitude), and position

control (maintaining a commanded position). The heading lock and height

control gains, both of which were determined through empirical PID gain tun-

ing, were kept fixed for all experiments presented in this thesis. However, the

position control gains - which include both outer-loop and inner-loop feedback

- are where the control designs presented in Chapter 6 are realized.

• Uni- or Bi-Directional Communication with Mote The mote is capable

of both sending and receiving data. Since all experiments performed for this

thesis used Vicon measurements, not on-board sensing, receiving mote data

was not necessary. However, for future work, data such as time stamps, control
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commands, and accelerometer and gyroscope measurements can be recorded.

At this point, implementing bi-directonal communication presents significant

time-delays in the mote processing.

• Vicon Data Interpretation Vicon tracks the position and orientation of

the vehicle. The Labview program differentiates this data to determine vehicle

translational and rotational rates and performs transforms to convert the data

between the inertial and body frames.

• State Visualization The user interface includes several real-time plots to

visualize the body orientation and rates of the vehicle, as well as its position

in the room.

• Data Recording Any data collected by Vicon—including timestamps, the

control inputs to the mote, data communicated from the mote (using bi-

directional communication), and Vicon data—can be recorded in a text file.

1.6.2 Vicon Cameras

The Vicon motion caption system is a set of eight cameras that track retro-

reflective markers at up to a 350 Hz rate. Through triangulation, the system is

able to measure the position and orientation of a vehicle that is outfitted with the

markers. For system identification, the Vicon system provides measurements of

the vehicle’s response to an input with far more accuracy than on-board sensors.

Vicon can also be used in the first phases of controller development. Lastly, because

Vicon can provide the vehicle’s coordinate position in the room, it can be used for
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(a) Vicon cameras. (b) Software view of room.

(c) Reflective markers affixed to helicopter. (d) Vicon rigid body model.

Figure 1.6: The Vicon motion capturing system tracks the 6DOF motion
of the helicopter’s rigid body.

position hold feedback or trajectory tracking. Outside of a Vicon system, IMU dead-

reckoning, GPS, and visual-based algorithms can be used to this end, but during the

testing phase, Vicon provides far more accurate measurements. The camera system,

along with the program view of the helicopter rigid body, is pictured in Fig. 1.6.
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1.7 State Space Representation

In general, theoretical principles will be presented as needed within their re-

spective, relevant chapters. However, the linear state space model is central to the

work performed throughout the thesis, and a brief overview is given here.

A state space model provides a structure from representing a collection of

linearized first- and second- order ordinary differential equations (ODEs). A large

theoretical framework has been established in the aerospace and controls commu-

nities for analyzing systems based on their state space structure. Furthermore,

several model-based controllers have been successfully implemented on meso-scale

helicopters utilizing state space models. As such, the state space structure was

selected for formulating the micro-helicopter model.

The familiar state space form is

~̇x = A~x+B~u (1.1)

~y = C~x+D~u (1.2)

where ~x is the vehicle states, ~u is the vehicle inputs, ~y is measurable information as

a function of the states, A is the dynamics matrix, B is the controls matrix, C is

the observer matrix, and D is the feed-through matrix.

The states ~x describe the vehicle’s position (x, y, z), orientation (φ, θ, ψ), ro-

tational rates (p, q, r), and translational states (u, v, w) at an instant in time. For

this rotorcraft model, additional states are included to describe flapping angles (a, b)

and flybar angles (c, d). Also, because we are primarily concerned with the vehicle’s

ability to hold hover, the states (z, w, ψ, r) are excluded from the model. The output
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vector ~y are all states that can be measured by either on-board or off-board sensing.

For experiments performed in this thesis, the outputs are those states which were

measurable by Vicon and exclude the vehicle flapping and flybar states. The inputs

~u are lateral and longitudinal inputs (δlat, δlon) induced by servo inputs to the swash-

plate. Inputs for the main rotor rate and tail rotor rate (δmain, δtail) are excluded

from the models developed in this thesis; however, they are mentioned occasionally

in descriptions of the helicopter dynamics. In summary, the state space vectors for

the flybar model are

~x = [φ θ p q a b c d u v x y]T (1.3)

~y = [φ θ p q u v x y]T (1.4)

~u = [δlat δlon]T. (1.5)

The flybarless helicopter model utilizes the same vectors, but excludes the flybar

states [c d]T.

The dynamics matrix A includes aerodynamic stability derivatives and kine-

matic terms. The controls matrix B includes control derivative terms. Further

definition of stability and control derivatives are given in Section 2.3.2. The stabil-

ity and control derivatives are the “parameters” for which the system identification

algorithm will systematically estimate values. The observer matrix C includes con-

version terms from the vehicle states to the measured outputs - in this case, where

the units measured in Vicon are the same as the states, the matrix is composed of

ones and zeros. The feed-through matrix D is assumed zero for this work.
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Chapter 2

Model Structure

2.1 Overview

The objective of system identification is to identify unknown parameters in a

system model. In this thesis, the model takes the form of the state space equations

shown in eqn (1.1), and the unknown parameters are the entries of the dynamics

matrix A and control matrix B. The realization of a dynamics matrix is not unique,

and there are several useful forms of A. However, system identification requires

a model structure that adequately captures the vehicle modes without including

unnecessary parameters. For MIMO systems, a practical way of formulating the

structure is basing the parameters on physical relationships between the states. For

the micro-helicopters, these relationships can be found from the rigid body equations

of motion and the equations coupling the rotor dynamics, stabilizer bar dynamics,

and the fuselage.

The following sections review derivations for linearized vehicle kinematics and

rigid body equations of motion. The effects of rotor dynamics are discussed, and

simplified flapping equations are derived. The rotor dynamics are then coupled

to the rigid body dynamics, and the model is arranged into state space form for

the flybarless helicopter. Stabilizer bar equations of motion are also presented and

coupled to the flapping dynamics. A state space structure for the flybar helicopter,
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Figure 2.1: Diagram of inertial and body reference frames.

which incorporates the stabilizer bar dynamics, is presented.

2.2 Kinematics

Two coordinate frames are used to model the motion of the helicopter body.

The body-fixed frame B = [b̂x b̂y b̂z]
T, with coordinate origin fixed at the vehicle’s

center of gravity (CG), is used to model the body dynamics associated with the

forces and moments induced by aerodynamic affects and control inputs. The body-

frame velocity states are ~vB = ub̂x+vb̂y+wb̂z and the body-frame rotational rates are

~ωB = pb̂x+qb̂y+rb̂z. The inertial frame G = [êx êy êz] is fixed on earth with its z-axis

aligned with gravity such that ~g = gêz. The inertial frame is used for modeling the

effects of gravitational force on the helicopter body and for tracking the helicopter’s

position in the room. The inertial frame velocity states are ~vG = ẋêx + ẏêy + żêz.

To relate the two coordinate frames, the attitude of the helicopter relative to

the inertial frame is defined by Euler angles [φ θ ψ]T. A diagram of the relative

reference frames is shown in Fig. 2.1. The standard aircraft rotation sequence for
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transforming from the inertial frame to the body frame is to first rotate about the êz,

then êy, and lastly êx (a 3-2-1 rotation). Compounding the three rotation matrices

results in the following transformation matrix (where c is shorthand for cosine and

s for sine):

RBG =


cθcψ cθsψ −sθ

sφsθcψ − cφsψ sφsθsψ + cφcψ sφcθ

cφsθcψ + sφsψ cφsθsψ − sφcψ cφcθ

 . (2.1)

The body-frame position ~rB of a vehicle located inertially at ~rG = [x y z]T can be

found by using this transformation:

~rB = RBG~rG. (2.2)

Likewise, the body-frame velocity ~vB can also be found as a product of the trans-

formation matrix and the inertial velocity ~vG,

~vB = RBG~vG. (2.3)

The gravity vector ~g = [0 0 g]T can also be transformed into the body frame,

~gB = RBG~g =


−gsθ

gcθsφ

gcθcφ

 . (2.4)

Because the rotation matrix exists in SO(3), it can be shown that RBG = RT
GB.

Transforming from the body-frame back to the inertial frame uses this relationship:

~vG = RT
BG~vB = RGB~vB. (2.5)
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This is useful for tracking the vehicle in the inertial frame for outer-loop position-

hold control where the vehicle inertial velocity vG is regulated,

~vG =


ẋ

ẏ

ż

 = RGB


u

v

w

 . (2.6)

The last step in developing the vehicle kinematics is to relate the body ro-

tation rates ~ωB to the Euler angles. This is derived geometrically from the 3-2-1

transformation process. The relationship, derived in [13], is

~ωB =


p

q

r

 =


1 0 −sθ

0 cφ sφcθ

0 −sφ cθcφ




φ̇

θ̇

ψ̇

 . (2.7)

As an aside, the inverse of the transformation in eqn.(2.7) contains a tan θ,

which is singular at θ = ±π/2. This singularity is one weakness of formulating the

kinematics in terms of Euler angles. However, for modeling hover and trajectory

tracking, this orientation would be outside of the helicopter’s linear range of motion

and, as such, irrelevant to the control objectives.

2.3 Rigid-Body Dynamics

The Newton-Euler equations of motion describe the six degrees of freedom

(DOF) motion of the helicopter rigid body, represented in the inertial frame, for
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fixed mass m and inertia I:

~F = m
Gd~vG
dt

(2.8)

~M = I
Gd~ωG
dt

(2.9)

where ~F are the external forces applied to the body of the helicopter and ~M are the

external moment applied about the CG.

For a 6DOF rotating body such as an aircraft, modeling the body in the fixed

inertia frame is rather awkward. Since most of the forces and moments are aligned

in directions parallel to the rotating body axes, it makes more sense to represent the

forces and moments in this frame. The Reynold’s Transport Theorem, a kinematic

principle which relates moving reference frames, is used to express the forces and

moments with respect to the body-fixed frame:

~F = m~̇vB + (~ωB ×m~vG) (2.10)

~M = I~̇ωB + (~ωB × I~ωB) (2.11)

where ~F = Xb̂x + Y b̂y + Zb̂z and ~M = Lb̂x + Mb̂y + Nb̂z. The inertia matrix, in

body coordinates, is:

I =


Ixx 0 −Ixz

0 Iyy 0

−Ixz 0 Izz

 . (2.12)

The terms Ixy and Iyz are effectively zero, due to the vehicle’s symmetry. The term

Ixz, which is two orders of magnitude smaller than Ixx, was originally included in the

model. However, during the system identification process, it was determined that
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its effects on the dynamics were negligible. In the derivation of the model shown

here, Ixz is neglected.

Expanding eqns (2.10–2.11) yields the following body-frame equations of mo-

tion:

X = m(u̇− wq + vr) (2.13)

Y = m(v̇ − ur + wp) (2.14)

Z = m(ẇ − vp+ uq) (2.15)

L = qr(Iyy − Izz) + Ixxṗ (2.16)

M = pr(Izz − Ixx) + Iyy q̇ (2.17)

N = pq(Ixx − Iyy) + Izz ṙ. (2.18)

These non-linear differential equations can be simulated in MATLAB using a

function such as ode45. The next step in formulating a model suitable for system

identification is to linearize the equations of motion.

2.3.1 Linearization

A set of non-linear vector equations ~f(~̇x, ~x, ~u) = 0 can be linearized using a

multi-variable Taylor expansion of ~f about reference states x0 and reference forcing

inputs u0 (or “system inputs”):

~0 = E(~̇x− ~̇x0) + F (~x− ~x0) +G(~u− ~u0) + r(x, x0, ...) (2.19)

where

E =
∂ ~f

∂~̇x

∣∣∣∣
~̇x0,~x0,~u0

, F =
∂ ~f

∂~x

∣∣∣∣
~̇x0,~x0,~u0

, G =
∂ ~f

∂~u

∣∣∣∣
~̇x0,~x0,~u0

(2.20)
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and r(x, x0, ...) is a remainder that is assumed small enough to be neglected.

The terms ∆x = ~x − ~x0 and ∆u = ~u − ~u0 are perturbations away from the

reference conditions. In terms of the perturbations, eqn (2.20) can be rewritten in

the familiar state space form

∆~̇x = A∆~x+B∆~u (2.21)

where

A = −E−1F, B = −E−1G. (2.22)

The linearized versions of eqns (2.13–2.18) are:

∆u̇ = −w0∆q + q0∆w + v0∆r + r0∆v + ∆X/m (2.23)

∆v̇ = −u0∆r + r0∆u+ w0∆p+ p0∆w + ∆Y/m (2.24)

∆ẇ = −v0∆p+ p0∆v + u0∆q + q0∆u+ ∆Z/m (2.25)

∆ṗ = (−q0∆r − r0∆q)(Iyy − Izz)/Ixx + ∆L/Ixx (2.26)

∆q̇ = (−p0∆r − r0∆p)(Izz − Ixx)/Iyy + ∆M/Iyy (2.27)

∆ṙ = (−p0∆q − q0∆p)(Ixx − Iyy)/Izz + ∆N/Izz. (2.28)

Note that terms associated with matrix G in eqn (2.22) are represented for now by

the ∆~F and ∆ ~M terms, which will be expanded in the next section.

To simplify these equations further, we must assume a reference condition.

Examples of reference conditions for vehicles, or vehicle “trim”, include constant

velocity in a rectilinear direction (i.e., a forward velocity of 1 m/s: ~vB0 = [1 0 0]T,

~ωB0 = [0 0 0]T) and hover (i.e., ~vB0 = ~ωB0 = [0 0 0]T). This model will later

be used for testing the helicopter’s ability to hold position in the presence of gust
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disturbances, so the hover trim condition is assumed. For the hover trim condition,

many of the terms in eqns (2.23–2.28) are zero. The equations simplify to the

following relationships

∆u̇ = ∆X/m ∆v̇ = ∆Y/m ∆ẇ = ∆Z/m (2.29)

∆ṗ = ∆L/Ixx ∆q̇ = ∆M/Iyy ∆ṙ = ∆N/Izz (2.30)

For linearized models where small perturbations from a trim condition are

assumed, the small angle approximation is a useful mathematical tool that can

be applied to the kinematic relationships. The small angle approximation states

that for any angle ∠θ � 1, sin θ ≈ 0 and cos θ ≈ 1. With the application of the

approximation and recast into the linearized formulation, the kinematic relationships

reduce to

∆ẋ = ∆u, ∆ẏ = ∆v, ∆ż = ∆w (2.31)

∆φ̇ = ∆p, ∆θ̇ = ∆q, ∆ψ̇ = ∆r. (2.32)

2.3.2 Stability Derivative Representation for Forces and Moments

The next step in developing the model is to expand the force and moment

terms. Forces and moments are caused by aerodynamic effects, gravity, and control

inputs. Discussion of aerodynamic stability derivatives and gravity force will be

discussed here; however, the effects due to control inputs must be incorporated into

a discussion of rotor dynamics and will be reserved for the next section.

Aerodynamic forces and moments are a result of often turbulent flows over the

complex body and rotor geometries. They are typically determined through wind
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tunnel tests or computational fluid dynamic (CFD) calculations. An example of an

aerodynamic force relationship is, in the b̂x direction,

Xaero = QuCXAC (2.33)

where Qu is the dynamic pressure, which is a function of u and the air density ρ,

AC is the capture area, and CX is a non-dimensional force coefficient. Determining

each aerodynamic force through first principles modeling would be an exceedingly

involved task. Instead, we can assume that each force and moment is a function of

the state variables. The resulting terms become parameters to be solved for in the

system identification process. Using a Taylor series expansion (and ignoring higher

order terms), the longitudinal force component can be expressed as

∆X =
∂X

∂u
∆u+

∂X

∂v
∆v +

∂X

∂p
∆p+ · · · (2.34)

Each force ∆~F and moment ∆ ~M components can be expanded similarly.

The partial derivatives of the forces or moments with respect to the vehicle

states are the stability derivatives. Each stability derivative also absorbs the mass

m or inertia I[·] terms from eqns (2.31–2.32) as well. An example of a stability

derivative is the change in force X as a result of a change in forward velocity u,

∂X

∂u
/m = Xu. (2.35)

The stability derivative represents a simplified, linearized version of eqn (2.33).

Generally, control derivatives are also included as part of the eqn (2.34) expansion.

The control derivatives, for this model, will be included with the rotor dynamics,
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which are discussed in the next section. The following stability derivatives were

included in the final model: Xu, Xv, Yu, Yv, Lu, Lv, Mu, and Mv.

In addition to stability derivatives, gravity terms were also included in the

model. Linearizing eqn (2.4) results in the following relationship:

∆Xgrav = ∆u̇gravm = −g∆θm (2.36)

∆Ygrav = ∆v̇gravm = g∆φm. (2.37)

To simplify notation going forward, ∆ symbols will be dropped from states.

It can be assumed that all states ~x are perturbations more formally represented as

∆~x.

2.4 Rotor Dynamics

For the micro-helicopters, all control forces and moments are derived from

inputs to the helicopter’s tail and main rotors. Because the effective plane of the

rotor from which the force directions are derived (the “tip-path-plane”) is generally

not parallel with the hub plane, an accurate model should capture the rotor dynamics

separately. The rotor dynamics can then be coupled to the rigid body dynamics.

Fig. 2.2 illustrates the respective planes.

The importance of including rotor dynamics in full-scale rotorcraft system

identification was observed during some of the very first experiments in the field [5].

A “quasi-steady” model would model the transient rotor dynamics as equivalent

time delays and the steady state response as rigid body stability derivatives [14].

A “hybrid” model, on the other hand, models explicitly the rotor dynamics with
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Figure 2.2: Flapping angle with respect to the hub plane.

additional states beyond those required for the 6DOF model. Mettler compares

quasi-steady and hybrid models of the R-50 meso-scale helicopter and shows a large

discrepancy between the two models [10]. On the other hand, Tischler shows good

agreement when comparing quasi-steady and hybrid models for the full-scale UH-

1H. The main contributing difference between the two vehicles is the magnitude

of a value called the flapping stiffness, which will be explained in this section. The

micro-scale helicopters modeled here are more similar to the Mettler helicopters and

thus require a hybrid model.

The following section provides an overview of blade motion and presents sim-

plified, first-order equations for modeling the rotor dynamics.

2.4.1 Blade Motion and Swashplate Mechanism

A rotor blade is, in essence, an airfoil. The main lift-generating velocity com-

ponent on the rotor is derived from rotating about the rotor shaft. A trim rotor

30



Figure 2.3: Besides rotating about the rotor shaft, the rotor blade has
three additional degrees of freedom.

rate Ω0 is required to generate enough thrust to balance the mass-gravity force on

the helicopter so as to maintain hover. By rotating the rotors at a rate faster than

Ω0, the system generates enough force to overcome the gravity force and the vehicle

ascends. The vehicle descends when the rotor rate Ω decreases below the hover rate

Ω0. The basic aerodynamics that describe the generation of thrust is based on blade

element theory and is described in detail in [15]. The total thrust Tmain generated

by the micro-helicopter main rotor assembly (two blades) is given by

Tmain =
1

3
ρcR3

mainΩ2Clα (2.38)

where ρ is the density of air, c is the chord length, Rmain is the radius of the rotor, Ω

is the rotor rate, and Clα is the airfoil’s lift curve slope. Because lift is generated by

increasing the rotor speed Ω on the micro-helicopters, the control derivative δmain

for the main rotor input can be estimated by linearizing this equation. The thrust

component is not considered in the model, so this equation is included solely for

reference.

Besides rotating about the rotor shaft, a rotor blade has up to three additional

degrees of freedom available depending on the assembly: lead-lagging, feathering,

and flapping. The diagram in Fig. 2.3 is useful for visualizing these motions. The
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lead-lagging motion is rotation ξ of the blade within the hub-plane. Feathering is

rotation Θ of the blade about its length. Flapping is motion of the blade angle β

normal to the hub plane. Note, the tail rotor, which is a very simple assembly and

constructed of stiff material, experiences very little of any of this motion. (In the

case of a full-scale rotorcraft, these effects may need to be included for the tail rotor

as well.)

The cyclic inputs (δlat, δlon) increase the rotor blade’s pitch angle from the

nominal angle Θ0. This is done through the swashplate mechanism, pictured for the

flybarless helicopter in Fig. 2.4. A signal from the on-board control unit actuates

a servo, which tilts the swashplate. There are two servos—one for lateral inputs

and one for longitudinal inputs. A second plate, which rotates with rotor shaft,

sits atop the swashplate. The secondary plate has two rods that activate the pitch

angle of the rotors. When the swashplate tilts (either laterally or longitudinally or

a combination of both), the rods will move up and down as they rotate about the

shaft - causing, in turn, the pitch angle of the blades to increase and decrease as a

function of their position Ψ within the plane. The pitch angle is represented by the

formula

Θ(Ψ) = Θ0 − A1 cos Ψ−B1 sin Ψ (2.39)

where A1 and B1 are a function of the magnitude of the cyclic inputs

A1 = Alatδlat, B1 = Blonδlon. (2.40)

However, it is not the actual increase of angle of attack that induces lateral or

longitudinal motion, but rather the flapping that occurs as a result of the angle of
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Figure 2.4: The servos tilt the swashplate which, through mechanical
arms, pitches the rotor blades.

attack. The physics that induce the flapping and the resulting, simplified equations

of motion for the flapping dynamics will be presented in the following section.

2.4.2 Flapping Dynamics

Flapping dynamics are easily visualized by representing the blade as a rigid

beam and balancing the forces and moments. Fig. 2.5 depicts the free-body dia-

gram. The primary forces acting on the blade as it rotates about the shaft include:

the aerodynamic force Faero, the centrifugal force Fcent, the inertia force Finertia, and

the restoring moment produced by the flapping restraint. A more complete expres-

sion for the aerodynamic forces would include terms for vehicle angular and linear

acceleration, as well as Coriolis acceleration, which are derived in detail in [16]. A

simplified expression will be shown here by balancing forces at a radial distance y
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Figure 2.5: The flapping equations of motion are derived by balancing
the aerodynamic, inertial, and centrifugal moments about the blade.

from the flapping hinge and for a mass per unit length mr. The derivation is a

summary of the derivation provided by Mettler [10].

The aerodynamic force is a sum of the lift Flift and drag Fdrag forces acting on

the blade element:

dFaero = dFlift cos Φ + dFdrag sin Φ (2.41)

where Φ is the angle between the hub plane and the net velocity component angle.

The aerodynamic inflow is a result of several velocity components acting on the

blade and will not be expanded upon here. Instead, we rely on a safe assumption

that Φ� 1. Eqn (2.41) reduces to

dFaero = dFlift. (2.42)
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The centrifugal force is given by the expression

dFcent = mrdyΩ2yβ (2.43)

and the force due to the blade inertia is

dFinertia = −mrdyβ̈. (2.44)

The restoring moment from the flapping spring is

Mκ = −κββ. (2.45)

We now balance the moments about the blade, such that

∑
Mblade = y(Faero + Fcent + Finertia) +Mκ = 0. (2.46)

The full expression for balancing moments, then, is∫ Rmain

0

y(dFlift)dy −
∫ Rmain

0

y(mrΩ
2yβ)dy +

∫ Rmain

0

y(mryβ̈)dy − κββ = 0. (2.47)

Rearranging this equation yields∫ Rmain

0

y(dFlift)dy −
∫ Rmain

0

my2dy
[
β̈ + ω2β

]
− κβ = 0. (2.48)

By definition, Iblade =
∫ Rmain

0
my2dy. Also, at this point, we redefine the flapping

derivative with respect to angular blade position, rather than time,

β̈ = Ω2 ∂
2β

∂Ψ2
= Ω2β′′. (2.49)

Rearranging the equation into standard mass-spring-damper form, results in the

following expression,

β′′ +

(
1 +

κβ
IβΩ2

)
β =

1

IβΩ2

∫ Rmain

0

y(dFlift)dy (2.50)
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The forcing term in this differential equation is the lift on the blade. This lift

force is dependent on the blade’s angle of attack. It is seen here that an increase in

that angle of attack by a cyclic input (δlat, δlon) induces the flapping motion. The

plane created by the flap is called the tip-path-plane (TPP). As the TPP is tilted

with respect to the hub plane, the thrust vector also tilts, inducing a moment on

the helicopter that allows it to rotate and translate.

It is also interesting to note here that the flap does not necessarily occur at

the same angular position Ψ as the forcing (cyclic) input. An examination of eqn

(2.50) shows that the natural frequency of the flap, normalized by the rotor rate, is

λβ =
ωβ
Ω

=

√
1 +

κβ
IβΩ2

. (2.51)

For a teetering rotor with no flapping restraint, κβ ≈ 0, the natural frequency λ is

equal to the rotor rate Ω. As this is a second-order system, the maximum deflection

will occur at a 90-degree phase shift from where the rotor was excited. So if a lateral

input is provided at a position Ψ = 180◦, the flap will occur at Ψ = 270◦, which

will tilt the force vector in the b̂y direction. Because the micro-helicopter’s rotor

systems do not have hinges, the flapping spring constant κβ is dependent on the

material properties of the rotor, as well as how tightly it is secured to the rotor hub.

Mechanically, the system is designed with a small phase offset on the swashplate.

The system identified model will capture these effects.

This model, based on simplified equations of motion derived by Mettler, as-

sumes the following general solution for the flapping motion:

β(Ψ) = β0 − a(t) cos Ψ− b(t) sin Ψ. (2.52)
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(Note: In more formal realizations, the notation β1c is generally used for a and β1s

is generally used for b.) Combining this solution with the equation for rotor pitch

angle, eqn (2.39), and the physics involved in defining aerodynamic lift [15], the

following simplified equations of motion are derived:

16

γΩ
ȧ = −a− 16

γΩ
q +

1

Ω
p+

8

γΩ2

κβ
Iβ
b−B1 (2.53)

16

γΩ
ḃ = −b− 16

γΩ
p+

1

Ω
q +

8

γΩ2

κβ
Iβ
a− A1, (2.54)

where the lock number γ is defined as

γ =
ρcClαR

4

Iβ
. (2.55)

The lock number is the ratio between aerodynamic lift and inertia forces on the

blade.

For the purpose of the state space model, a flapping constant τf is defined as

τf =
16

γΩ
. (2.56)

The coefficients for the other states are assigned as stability derivatives. The final,

simplified equations incorporated into the model are

τf ȧ = −a− τfq + Abb+ Alonδlon (2.57)

τf ḃ = −b− τfp+Baa+Blatδlat. (2.58)

Additional control derivatives Alat and Blon are also included to capture additional

dynamics.
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2.4.3 Coupling Rotor and Rigid Body Dynamics

The thrust force ~TP acts normal to the tip-path-plane. With a TPP coordinate

axis P = [p̂x p̂y p̂z], the thrust vector ~TP = −T p̂z. To transform from the TPP to the

body frame, one first rotates about p̂x, then p̂y, and lastly p̂z. (The rotation about

p̂z is by 0◦, so the rotation matrix reduces to the identity matrix.) The compound

rotation matrix is

RBP =


ca 0 sa

sa cb cb −ca sb

−cb sa sb ca cb

 . (2.59)

Transformed into the body frame, the thrust vector becomes

~T = RBP
~TP =


− sin a

sin b cos a

− cos a cos b

T ≈

−Ta

Tb

−T

 . (2.60)

The moments produced by the thrust and blade flapping act at a distance h

from the vehicle CG. Additionally, the flapping spring exerts a moment that also

torques the helicopter. Assuming the spring acts about the center of the rotor hub,

the combined moments due to rotor flapping are

Lflap = (hT + κβ)b, Mflap = (hT + κβ)a. (2.61)

The stability derivatives that link the rotor dynamics to the rigid body are

Lb = (hT + κβ)/Ixx, Ma = (hT + κβ)/Iyy. (2.62)

The force components caused by the tilt of the TPP are

Xflap = Ta, Yflap = −Tb (2.63)

38



and the resulting stability derivatives are

Xa = T/m, Yb = −T/m. (2.64)

At hover, the thrust force remains approximately constant such that,

T = W = mg, (2.65)

where W is the weight of the vehicle. This means Xa ≈ −Yb ≈ −g.

2.4.4 State Space Model: Flybarless Helicopter

The state space model for a flybarless helicopter can be assembled by collecting

the linearized rigid body and rotor dynamics together:



φ̇

θ̇

ṗ

q̇

ȧ

ḃ

u̇

v̇



=



0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 0 Lb Lu Lv

0 0 0 0 Ma 0 Mu Mv

0 0 0 −1 − 1
τf

Ab

τf
0 0

0 0 −1 0 Ba

τf
− 1
τf

0 0

0 −g 0 0 −g 0 Xu 0

g 0 0 0 0 g 0 Yv





φ

θ

p

q

a

b

u

v



+



0 0

0 0

0 0

0 0

Alat Alon

Blat Blon

0 0

0 0



δlat
δlon



(2.66)

The analysis and controllers developed in this thesis are specifically designed

for position hold. The heave and yaw dynamics are assumed decoupled from the
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dynamics associated with the cyclic control. As such, the states ψ, r, w, and z are

excluded from the model.

2.5 Flybar Dynamics

Next, the dynamics of the stabilizer bar, or flybar, are developed and incor-

porated into the state space structure found in eqn (2.66).

The stabilizer bar on the Walkera CB100 consists of a rod with weights at-

tached to the ends. This type of stabilizer bar is generally referred to as a Bell

flybar. The flybar is positioned at an approximately 45◦ angle to the main rotors.

A “see-saw” mechanism allows the flybar to rotate in a plane independent of the

main rotors. The weights on the flybar ensure that it is not affected by aerodynamic

forces, and the angular moment associated with the flybar’s inertia makes its plane

resistent to rotation. When the rotor plane is perturbed by either a wind gust or

a pilot input, the flybar plane remains fairly stationary, rotating parallel to the x-y

inertial plane. However, a sustained perturbation of the helicopter’s fuselage results

in a dramatic shift of the flybar plane to resume its position parallel to the hub

plane.

The flybar is connected to the main rotors with a mechanical mixer arm that

perturbs the blade pitch. If the flybar is rotating parallel to the hub plane, then it

has no effect on the blade pitch. However, if the hub plane is perturbed with respect

to the flybar (i.e., when the helicopter pitches or rolls), then the flybar induces an

opposing cyclic pitch input. Thus, the flybar operates as a mechanical device that
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feeds back the vehicle attitude with respect to its plane.

The flybar dynamic states are modelled similarly to the flapping dynamics,

where c represents a tilt of the flybar in the lateral direction (inducing longitudi-

nal feedback) and d represents a tilt in the longitudinal direction (inducing lateral

feedback). A first order equation is used,

βsb(Ψ) = c cos Ψ + d sin Ψ. (2.67)

The gyroscopic equations of motion provided by Johnson [17] are used to model the

flybar’s motion: Isbs
2 + (CR + CF )s 2ΩsbIsbs+ CRΩsb

−(2ΩsbIsbs+ CRΩsb) Isbs
2 + (CR + CF )s


c
d

 =

 Isbs 2ΩsbIsb

−2ΩsbIsb Isbs


p
q


(2.68)

where Isb is the inertia of the flybar, CR and CF are the damping coefficients in the

rotating and fixed coordinate frames respectively, and Ωsb is the rotation rate of the

flybar. Reducing the order of c and d to s and neglecting CF results in the following

relationship: c
d

 =
2Isb/CR

4 Isb
CR
s+ 1

p
q

 . (2.69)

After taking the reverse Laplace transform and rearranging, the following equations

were used for developing the model:

τsbċ = c+
1

2
τsbp (2.70)

τsbḋ = d+
1

2
τsbq (2.71)
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where

τsb = 4
Isb
CR

. (2.72)

The equations are coupled to the flapping dynamics with the derivatives Ac, Ad, Bc,

and Bd. These derivatives represent the change in blade pitch Θ as a result of the

flybar motion and should be opposite in sign of the control derivatives Alat, Alon,

Blat, and Blon. The derivatives Ac and Bd represent the primary inputs. Because

the bar is positioned at a 45◦ angle, the bar also contributes to off-axis flapping

motion, which is captured with the Ad and Bc derivatives.

2.5.1 State Space Model: Flybar Helicopter

The state space model for the flybar helicopter was derived by incorporating

the flybar equations of motion, eqn (2.70), into the state space structure for the

flybarless helicopter, eqn (2.66),
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φ̇

θ̇

ṗ

q̇

ȧ

ḃ

ċ

ḋ

u̇

v̇



=



0 0 1 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 Lb 0 0 Lu Lv

0 0 0 0 Ma 0 0 0 Mu Mv

0 0 0 −1 − 1
τf

Ab

τf
Ac Ad 0 0

0 0 −1 0 Ba

τf
− 1
τf

Bc Bd 0 0

0 0 0 1
2

0 0 − 1
τsb

0 0 0

0 0 1
2

0 0 0 0 − 1
τsb

0 0

0 −g 0 0 −g 0 0 0 Xu 0

g 0 0 0 0 g 0 0 0 Yv





φ

θ

p

q

a

b

c

d

u

v



+



0 0

0 0

0 0

0 0

Alat Alon

Blat Blon

0 0

0 0

0 0

0 0



δlat
δlon



(2.73)

.

2.6 Conclusions

Using the kinematic relationships and dynamic equations of motion, state

space structures for both the flybar and flybarless helicopters were derived. These

structures have several properties that will benefit the system identification process.

A majority of the matrix has 0, 1, or g entries, minimizing the number of parameters

that require identification. The stability and control derivatives that do require

identification have physical meanings associated with them, which can guide the

system identification process. The number of these derivatives was minimized to

ensure that the system is not over-parametrized. The importance of these properties
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will be seen clearly in the next chapter as the process of system identification is

explored.
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Chapter 3

System Identification

3.1 Overview

System identification is the process of determining a mathematical model for

a system based on measured input and output data. The process involves first

collecting data that represents the dynamic response of the vehicle. This is done

by exciting the vehicle with control inputs over the frequency range of interest,

and then measuring the translational and rotational rate responses. After the data

is collected, a model is developed that simulates the output response to the same

inputs as closely as possible. The mathematical model here takes the form of the

linear state space models derived in Chapter 2, where the unknown stability and

control derivatives are parameters to be estimated. The following section discusses

the process of parameter estimation first, as understanding this process provides

motivation for data collection methods. Data collection is discussed next, and then

the final results of the system identification process are presented.

3.2 Parameter Estimation

The procedure for determining the unknown stability and control derivatives—

or “parameters” θ̂—that best represent the behavior of the system is, in effect, a
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data fitting process. The system identification process involves either “fixing” or

“freeing” each entry of the A and B matrices. Fixed entries are typically entries

with known values, such as zeros, ones, or the gravitational constant g. Free entries

are the stability and control derivatives that need to be numerically solved. Over-

parameterizing, or having too many free parameters, may result in non-convergence

within the parameter identification algorithm. Not including enough parameters,

however, may result in the exclusion of important vehicle modes. This is motivation

for developing a physically relevant model, such as that developed in Chapter 2.

The quality of the identified model depends heavily on the designer’s famil-

iarity with the physics of the system, as well as “tricks” for nudging the parameter

identification algorithm closer to an expected and reasonable solution. The process

of developing these models involved re-running the estimation algorithm several

times, adjusting different aspects of the model each time. Four major challenges

were encountered during the process:

• Highly Coupled Dynamics Unlike aircraft, the lateral and longitudinal

dynamics of the helicopters are highly coupled. For instance, a roll input

to the helicopter will result in both a rolling and pitching motion. As such,

it was difficult to break the model into decoupled sub-models (i.e., identify

parameters associated with longitudinal and lateral dynamics separately, and

then concatenate the matrices). This inherent property of the helicopters is

central to the other challenges presented here. It is also motivation for using

simultaneous, multi-sinusoidal inputs, as discussed later in this section.
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• Minimizing the Number of Free Parameters Limiting the number of free

parameters for each run of the parameter estimation algorithm was essential

for the model to converge in a reasonable length of time. This technique can

usually be employed by identifying decoupled dynamics separately—however,

this was more difficult to do with the helicopters.

• Initial Guesses for Parameters The output error algorithm solves for the

parameters by iteratively changing the initial parameter guess θ̂0 by ∆θ̂ until

the convergence criteria is met. If the initial parameter is not close enough to

the physical value, the algorithm may converge to different local minima—or

it may not even converge at all. Because the micro-helicopters are on a scale

significantly smaller than previously identified helicopters, using values from

these previously developed models did not produce convergence. Instead, the

model was built up in steps, starting with a low-order model, and identifying

only a couple parameters at a time. With only a few parameters identified

per run, it was possible to try different combinations of orders of magnitudes

or signs for each parameter initial guess. Again, this was more challenging

because the lateral and longitudinal dynamics could not be decoupled.

• Physically Relevant Model Structure Although the dynamics matrix A

can take many forms, it was the experience here that having physically rel-

evant parameters resulted in a more accurate model. Specifically, the final

equations of motion chosen for the flybar dynamics were selected after exper-

imenting with other forms. After updating the equations of motion to eqn
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(2.70), the model results improved significantly and more similarities were

apparent between the eigenstructures of the flybar and flybarless helicopter.

While the previous models predicted the behavior of the system decently and

was sufficient for model-based control, the finalized model provided more in-

sight into the system characteristics.

The method taken here started with reduced order models and built them up

systematically to full-state models for both the helicopters. Initial estimates for the

parameters were refined at each stage.

1. The decoupled lateral and longitudinal dynamics were identified first. For

lateral dynamics, this included τf , τsb, Lb, Bd, and Blat; for longitudinal dy-

namics, it included τf , τsb, Ma, Ac, and Alon. An example of the reduced order

lateral dynamics model is
ṗ

θ̂1ḃ

θ̂2ḋ

 =


0 θ̂3 0

−θ̂1 −1 θ̂4

θ̂2 0 −1




p

b

d

+


0

1

0

 θ̂5 (3.1)

where θ̂1 = τf , θ̂2 = τsb, θ̂3 = Lb, θ̂4 = Bd, and θ̂5 = Blat. These initial

estimates were poor, since the dynamics are inherently very coupled.

2. Next, the lateral and longitudinal states were collected into a coupled model.

Coupling parameters Ab, Ba, Alon, and Blat were identified. The time constants

τf and τsb, which were identified separately for lateral and longitudinal states

in Step 1, were equated—that is, the same τf was used for both a and b states.
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3. The derivatives Xu and Yv were isolated from the rest of the model and iden-

tified separately. The translational velocity states (u,v) are mostly dependent

on the the attitude (θ,φ), so the model was isolated as follows,u̇
v̇

 =

θ̂1 0

0 θ̂2


u
v

+

 0 −9.8

9.8 0


φ
θ

 . (3.2)

where θ̂1 = Xu and θ̂2 = Yv. Because φ and θ were measured variables, they

could be used effectively as inputs for identifying these stability derivatives.

4. Lastly, the aerodynamic stability derivatives Mu, Mv, Lu, Lv, Xv, and Yu were

identified.

Each step involved first solving for the new parameters with the parameters

from the previous step fixed—then freeing all the parameters and allowing the whole

model to iterate. Beyond just these steps, the process required several iterations of

trying new parameter guesses and fixing/freeing different aspects of the dynamics.

Whether or not an iteration offered improvement to the model was judged based on

the Cramer-Rao bound of the parameter and the normalized root mean square error

of the simulated results, which will be discussed next. Also, similarities in the flybar

and flybarless helicopter models were expected, especially relating to aerodynamic

derivatives (i.e., Mu and Lv) and the system eigenvalues. The iteration was judged

based on improvements in these areas as well.
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3.3 Output Error Method

Analysis of the input and output system can be performed in either the fre-

quency or the time domain. Using a time domain method such as output error,

the parameters are systematically varied to reduce the error between the model-

simulated response to the test inputs and the actual measured response of the

vehicle. The frequency domain method minimizes the error between the models

analytical frequency responses and frequency responses obtained from the experi-

mental input and output data. Rotorcraft system identification has traditionally

been performed in the frequency domain, and as such, this was the first approach.

However, the unstable, highly-coupled nature of the vehicles resulted in low coher-

ence in the frequency domain. It was found that time domain methods had more

flexibility in this respect and employing the output error method ultimately proved

successful.

The output error method is an algorithm that systematically varies the model

parameters to minimize the difference between the measured outputs of the system

and the outputs obtained using the data set’s input sequences in a model simulation.

Fig. 3.1 provides a block diagram of the routine. SIDPAC (System Identification

Programs for AirCraft), a software toolbox written for MATLAB written by Morelli

[18], was used to implement output error for the micro-helicopters. SIDPAC is

used ubiquitously for both industry and research laboratory system identification

applications. Detailed descriptions for the output error algorithms are provided in

[19], along with derivations and proofs for the optimization routines. The following
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Figure 3.1: Block diagram of output error routine.

section summarizes the algorithm.

The model form assumed for the output error method is

~y = G~u. (3.3)

The system G is the transfer function from the inputs ~u to the outputs ~y defined by

the state space matrices,

G = C (sI − A)−1B. (3.4)

The unknown stability and control derivatives are the unknown parameters θ̂ that

need to be identified. Additionally, it is assumed that the actual measured outputs

of the system ~z is corrupted by zero-mean, white process noise ~ν with covariance

matrix R. Each measurement i is therefore represented as

~z(i) = ~y(i) + ~ν(i); ~ν is N(0, R); i = 1, ..., N (3.5)
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Model parameter estimates are then found by minimizing the cost function

J(~θ)1 =
1

2

N∑
i=1

[~z(i)− ~y(i)]R̂−1[~z(i)− ~y(i)]T (3.6)

where

R̂ =
1

N

N∑
i=1

~v(i)~v(i)T (3.7)

and ~v are the estimate residuals,

~v(i) = ~z(i)− ~y(i). (3.8)

Optimization of the cost-function is performed using the Newton-Rhaphson, where

the change in parameters is specified by the first and second-order gradients of the

cost function. The expression for the updated parameters is

θ̂ = θ0 + ∆θ̂ (3.9)

∆θ̂ = −M−1
θ=θ0

~gθ=θ0 (3.10)

where

Mθ=θ0 = −E
[
∂2lnL(ZN |θ)

∂θ∂θT

]
(3.11)

=
N∑
i=1

ST(i)R̂−1S(i) (3.12)

~gθ=θ0 =
N∑
i=1

[ST(i)R̂−1~ν(i)]θ=θ0 (3.13)

and

S(i) =
∂~y

∂θ
. (3.14)

1The vector arrow will be dropped from θ henceforth for simplicity.
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The Fisher information matrix M gives the probability of obtaining measured out-

puts ZN given the parameter estimates θ̂; ~g is the cost gradient; and the sensitivity

matrix S is the sensitivity of the model output to changes in the parameter esti-

mate. The iterative solver alternates between solving for R̂ in eqn (3.6) given a set

of parameters θ̂, then fixing R̂ in eqn (3.9) and solving for the updated parameters.

The solver is terminated after a set of convergence criteria are satisfied. The

convergence criteria includes:

1. the change in cost function J(θ̂) remains minimal for a specified number of

consecutive iterations.

2. the elements of the cost function gradient J(θ̂) are sufficiently close to zero.

3. the update in parameters ∆θ̂ is sufficiently small.

4. the change in the covariance matrix R̂ remains minimal for a specified number

of iterations.

The final parameters θ̂ are substituted in for the stability and control derivatives to

complete the state space models.

The output error algorithm is implemented with the oe function included in

the SIDPAC toolbox. Inputs to the function include the input sequences used for

data collection ~u
(
~t
)
, the measured outputs of the system ~z

(
~t
)
, the associated time

vector ~t, and a function representing the system model G. The oe function returns

the estimates for the model parameters θ̂, the simulated system response ~y, and the

Cramer Rao lower bounds.

Two objective metrics were used for judging the quality of a simulated re-
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sult: the Cramer Rao lower bounds (CRB) and the normalized root means square

error (NRMSE). The Cramer Rao lower bounds is the variance of the estimated

parameters θ̂ as related to the Fisher information matrix,

Cov(θ̂) ≥M−1 (3.15)

assuming ν is white noise. However, the residuals in this case are a result of model

non-linearities or unmodeled dynamics, and we cannot assume they are white. A

generalized Cramer Rao bound accounts for residual coloring,

Cov(θ̂) ≥M−1

[
N∑
i=1

ST(i)R−1
N∑
j=1

Rνν(i− j)R−1S(j)

]
M−1, (3.16)

where Rνν(i − j) is the output residual autocorrelation matrix. The CRB should

be minimized. The NRMSE is defined as

NRMSE = 1− ‖ ~z − ~y ‖‖ ~z − ~̄z ‖ . (3.17)

A NRMSE of one represents a perfect fit. While no “rules-of-thumb” have been

established for target CRB or NRMSE, improvements to these values were sought

throughout the system identification process.

3.4 Data Collection

Successfully identifying a model depends heavily on well-executed data col-

lection. In the case of full-scale aircraft, this process can prove quite difficult: the

number of experiments is often limited by budget, outdoor testing conditions may

include gusts that disturb the vehicle and obscure the response, there may be certain
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states of the vehicle that are difficult to measure, and the data may be corrupted

by sensor noise. However, in the case of the micro-helicopters, data collection was

performed in a laboratory environment without any disturbances (i.e., air condi-

tioners or building drafts). Vicon provided accurate, minimal-noise measurements

of almost all the vehicle states. And because of the light-weight, robust structure of

the helicopters, little damage incurred when control was lost, giving some room to

experiment with the types and amplitudes of input signals.

There are two main design considerations to the data collection process: 1)

exciting the vehicle dynamics with appropriate inputs and 2) recording and process-

ing the inputs and the vehicle response. These will be discussed in the following

sections.

3.4.1 Vehicle Inputs: Simultaneous, Multi-Sinusoidal Signals

A well-designed input excites the vehicle dynamics over the range of frequencies

expected to be most relevant. Common inputs include impulses, frequency sweeps

(or “chirps”), and doublets. These inputs may be applied manually by a pilot or

may take the form of a pre-generated signal applied through an automatic controller.

Generally the inputs are applied to one input channel at a time.

Conventional inputs proved insufficient for the helicopter’s highly-coupled dynamics—

especially at the beginning of the process when initial parameter guesses were still

unrefined. For instance, a lateral chirp input excites both pitch and roll responses.

The system identification routine can only identify with high certainty the stabil-
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ity derivatives relating to the lateral/pitching motion. However, the quality of the

simulation is still dependent on the rolling motion. Until better initial guesses were

realized for the longitudinal parameters, the output error algorithm had difficulty

converging.

Instead, a method of simultaneous, orthogonal multi-sinusoidal inputs was

used. These inputs excited both the lateral and longitudinal dynamics simultane-

ously, but at different, orthogonal frequencies. Since both longitudinal and lateral

dynamics are excited, the output error routine has more information for iterating

both longitudinal and lateral parameters. The orthogonality of the inputs ensures

no collinearity in the data.

Multi-sinusoidal inputs are signals with wideband frequency content optimized

to excite the vehicle over a minimal length of time and with optimized input ampli-

tudes. The signal is constructed by summing several sine waves of varying frequen-

cies together. The phase angle of each component is selected to shift the sinusoids

relative to each other, which results in a reduction of the total amplitude of the

signal. The following equation is used to construct a multi-sinusoidal signal:

~uj(~t) =
∑

k∈1,2,··· ,M

Ak sin

(
2πk~t

T
+ φk

)
j = 1, 2, · · · ,m (3.18)

where uj is the signal applied to the jth control channel, k is the index for each

frequency component, A is the amplitude of the individual signals, T is the total time

length of the signal, t is the time vector, and φ is the phase angle of the sinusoidal

components. The phase angles for each component are selected through an iterative
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method that minimizes the relative peak factor (RPF) of the constructed signal,

RPF(~uj) =
[max(~uj)−min(~uj)]/2√

2(~uTj ~uj)/N
. (3.19)

If more than one channel is to be excited during the data collection, the frequen-

cies of the sinusoidal components for each channel can be staggered to ensure that

the input signals are orthogonal. Having orthogonal input signals is essential to

ensuring that the output data is not collinear. Collinear data leaves ambiguity as

to which parameters contribute to the various components of the output. The func-

tion mkmsswp in SIDPAC generates orthogonal, phase-optimized, multi-sinusoidal

inputs.

For the system identification data collection runs, orthogonal, multi-sinusoidal

inputs were generated for the lateral and longitudinal cyclic input channels. The

signals were constructed with a frequency range from 0.1 to 4 Hz over a 10 second

time interval. Both signals consisted of 40 uniformly distributed frequencies. The

amplitude Ak = 0.01 was select for all k. This amplitude was strong enough to

excite the dynamics visually, but not so strong as to perturb the helicopter outside

its linear range of operation. The resulting signals are shown in Fig. 3.2.

The signals were pre-generated in Matlab and implemented in the Labview

program used to control the helicopters. During a data collection run, minor stick

inputs could still be applied to keep the helicopters from drifting too far from hover.

Heading and height control were automated for the experiments for both helicopters.

The multi-sinusoidal signals are added to the input commands after all pilot and

feedback/stabilizing commands are applied. While a feedback control system may
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Figure 3.2: Shown here is a time sample of the lateral and longitudinal
orthogonal signals used to excite the dynamics of the vehicle during
data collection, along with the pitch and roll rate response measured
by Vicon. Data for lateral and longitdunal velocities and attitudes (not
shown) were also recorded.

cause non-orthogonality in the inputs, according to Klein and Morelli [19], only very

high-gain feedback control systems will compromise the modeling results.

3.4.2 Recording Vehicle Inputs and Responses

Given the tools available in the lab, measuring the vehicle response was a

fairly straight-forward process. The Labview program described in Section 1.6.1 has

the capability of recording all inputs sent to the vehicle mote. Additionally, it can

acquire data from Vicon. Vicon has the capability of measuring all states variables

(φ,θ,p,q,u,v) except the flapping states (a,b) and the flybar states (c,d). The Vicon

measurements are very low-noise and require little filtering.
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Figure 3.3: Block diagram for closed loop system identification.

In summary, the inputs measured during the data collection were

~u = [δlat δlon]T (3.20)

and the outputs were

~z = [φ θ p q u v]. (3.21)

An example of the measured response is provided in Fig. 3.2.

3.5 Closed-Loop Identification of Unstable System

Inner loop feedback was required to stabilize the flybarless helicopter for the

data collection flights. Because simulating an unstable system with output error

would cause non-convergence in the algorithm, the closed-loop system was identified

first. The open loop system was then determined by subtracting the feedback gain

from the dynamics matrix. A block diagram depicting the closed loop system is

shown in Fig. 3.3. The feedback gain used to stabilize the helicopter was
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K =

.5 0 0 0 0 0

0 .5 0 0 0 0

 . (3.22)

The closed loop dynamics matrix Acl is

Acl = A−BKC. (3.23)

The open loop dynamics matrix, then, is given by

A = Acl +BKC. (3.24)

The B and C matrix remain the same for both the closed loop and open loop

systems.

3.6 Lumped Flybar Model

After models were finalized for the flybarless and flybar model, a reduced-

order flybar model was also explored. The flybar states c and d were removed, and

stability derivatives that effectively model attitude feedback were added: Aφ, Aθ,

Bφ, and Bθ. An examination of eqn. (2.67) shows that attitude feedback occurs if

the flybar damping CR = 0. Essentially this means that the flybar is always rotating

in a plane parallel to the inertial x-y plane.
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The reduced order model took the form,

φ̇

θ̇

ṗ

q̇

ȧ

ḃ

u̇

v̇



=



0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 0 Lb Lu Lv

0 0 0 0 Ma 0 Mu Mv

Aφ Aθ 0 −1 − 1
τf

Ab

τf
0 0

Bφ Bθ −1 0 Ba

τf
− 1
τf

0 0

0 −g 0 0 g 0 Xu 0

g 0 0 0 0 g 0 Yv





φ

θ

p

q

a

b

u

v



+



0 0

0 0

0 0

0 0

Alat Alon

Blat Blon

0 0

0 0



δlat
δlon



(3.25)

.

For the system identification process, only the parameters having to do with

the lumped flapping-flybar dynamics were free: τf , Ab, Ba, Aφ, Aθ, Bφ, and Bθ.

Fixing τf , Ab, and Ba would have modeled pure attitude feedback; however, these

flapping terms were also freed to allow more flexibility. The aerodynamic stability

derivatives, Lb, Ma, and the control derivatives were fixed with the values found for

the full-scale models.

3.7 Results

The output error algorithm was run for three sets of data, each approximately

20 seconds in length, for both the flybar helicopter and the flybarless helicopter. The

same initial parameter guesses were used for each run. The resulting parameters

were averaged and used for the final model. The averaged model stability and
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control derivatives are listed in Table 3.1, along with the ranges of CRB for each

parameter estimate. For each run, the simulated model output was plotted with

the collected data to visually verify that the model accurately depicts the measured

response. A set of verifications from each helicopter are shown in Fig. 3.4. The

ranges of NRMSE, which is the measure of how well the simulations match the

data, are provided in Table 3.2.

Overall, the Cramer-Rao lower bounds indicate that the parameters are es-

timated with reasonably high confidence. The CRBs tend to be higher for the

aerodynamic derivatives (i.e., Mu and Lv); however, the agreement of these deriva-

tives between the two models provides a cross-check for the estimates. One major

exception is the estimate for Lb. This parameter was the most difficult to identify, as

it changed most dramatically depending on how other parameters were fixed or the

initial guesses given to the parameters. The final value determined for the parameter

is in agreement with the flybar results, and provides the best NRMSE results, given

the values of the other parameters in the model. Additionally, the value selected

provides agreement between the flybar and flybarless eigenstructure, which will be

explored in the next chapter.

The identified parameters for the lumped flapping-flybar model are shown in

Table 3.3 and the NRMSE range is provided in Table 3.4. While the parameters

were identified with high confidence (indicated by the low CRBs), the NRMSEs show

degredation in the accuracy of the model. For this reason, the lumped flapping-flybar

model is not examined further.

An additional measure was taken to verify the results for the flybar helicopter.
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System identification of the flybar helicopter was originally attempted in the fre-

quency domain using the program CIFER (Comprehensive Identification from FrE-

quency Responses) developed by NASA Ames [14]. CIFER converts frequency sweep

input and output data from the time domain into the frequency domain. It then es-

timates the parameters based on matching the frequency responses of the state space

model to the frequency responses of the collected data. While parameter estimation

using this program proved difficult, due to the challenges inherent to the coupled

dynamics, the frequency responses calculated from the frequency sweeps could still

be compared to the frequency responses of the flybar model. These comparisons,

provided in Fig. 3.5, show agreement between the model and data in the frequency

domain.

3.8 Summary

In this chapter, the process of system identification, and the associated chal-

lenges, were explored. The model here was assembled in phases, starting with the

decoupled flapping states and control derivatives and concluding with the identifi-

cation of aerodynamic stability derivatives. The flybarless helicopter was not open

loop stable and required a small feedback gain to stabilize for the data collection

flights. The open loop system was calculated based on the identification of the closed

loop system. The coupled nature of the helicopter dynamics increased the difficulty

of identifying an accurate model. Using simultaneous multi-sinusoidal inputs en-

abled the output error algorithm to simultaneously iterate parameters responsible
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Flybarless Flybar

Parameter θ̂ CRB % θ̂ CRB %

A-Matrix

Lb 930 170–190 957 54–120

Ma 310 18.4–34 302 17–23

Ab -0.908 0.77–1.3 0.152 4.3–13

Ba 0.600 1.3–2.2 0.113 1.7–4.1

Ac, Bd – – -0.788 0.11-0.12

Ad, -Bc – – -0.484 0.79–2.5

Lu -15.9 71–106 -23.5 47–48

Lv -26.7 17–30 -27.2 6.7–56

Mu 7.42 16–29 12.0 7.9–38

Mv -3.20 27–36 -5.731 14-17

Xu -0.715 3.1–12.2 -0.459 1.7–6.1

Xv 0.366 3.8–15 0.228 1.5–8.3

Yu 0 – 0 –

Yv -0.501 3.6–10 -0.935 0.70–3.9

τsb – – 0.301 3.1–9.1

τf 0.049 0.01 0.049 0.01

Xa,Xθ -9.8 – -9.8 –

Yb,Yφ 9.8 – 9.8 –

B-Matrix

Alat 2.29 2.0–3.9 5.16 2.5–2.6

Alon 4.86 0.71–1.7 8.09 0.96–1.7

Blat 5.41 3.5–4.8 6.85 0.82–1.9

Blon -2.76 11–19 -3.57 3.0–6.1

Table 3.1: Identified Stability and Control Derivatives
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Flybarless Flybar

Measured State NRMSE (%) NRMSE (%)

φ 50.4–61.9 64.2–67.7

θ 51.7–60.4 59.4–60.4

p 39.1–45.8 55.9–63.2

q 61.7–65.7 58.9–64.2

u 51.4–60.9 46.8–73.0

v 57.5–65.9 56.0–85.4

Table 3.2: NRMSE of Time-Domain Verifications

Flapping-Flybar Lumped

Parameter θ̂ CRB %

Aφ -2.7 0.23–0.30

Aθ -6.7 0.05–0.14

Bφ -5.9 0.09–0.48

Bθ 1.5 1.0–1.9

Ab 0.15 6.8–11.2

Ba 0.038 1.1–4.3

τf 0.065 0.03–0.05

Table 3.3: Flapping-Flybar Lumped Model Estimated Parameters

Measured State NRMSE (%)

φ 49.3–57.1

θ 44.3–51.3

p 51.7–59.3

q 51.4–59.9

u 23.9 – 44.0

v 28.1 – 52.0

Table 3.4: Flapping-Flybar Lumped Model NRMSE
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Figure 3.4: Model verifications for the flybarless helicopter are shown
in subfigures (a),(c), and (e). Verifications for the flybar helicopter are
shown in subfigures (b), (d), and (f).
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Figure 3.5: Transfer function verifications for the flybar helicopter. Lat-
eral:(a),(c), and (e). Longitudinal: (b), (d), and (f).
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for the lateral and longitudinal inputs without creating collinearity in the data. The

final models identified for the flybar and flybarless system show good agreement in

the time-domain with the collected output data. The flybar model was also veri-

fied with frequency-domain data. Additionally, a lumped flybar-flapping model was

identified, but proved inferior to the full-state flybar model.
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Chapter 4

Modal Analysis

4.1 Overview

Because the models found in Chapter 3 are based off a physical understanding

of the system, conjectures can be made about the system based on the magnitudes

and signs of the stability derivatives. For instance, because Lb > Ma, one could

assert that the rolling dynamics are much quicker than the pitching dynamics—and

this assertion can be supported by the relative inertias, Ixx < Iyy. However, these

observations are limited and can be obscured by the coupling of states throughout

the matrix.

Linear system theory offers several tools for analyzing and understanding a

system beyond making simple observations from the state matrix. The eigenstruc-

ture of a system reveals the strength and direction of the vehicle’s natural motion.

In this chapter, comparisons are made between the eigenstructures of the flybar

and flybarless helicopters. The influence of the flybar on the modal directions and

damping is also assessed. With this analysis, conclusions can be made about how

the flybar impacts the handling of the system.
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4.2 Eigenstructure Analysis

The response of a linear system can be expressed as a linear combination of

its modes [20, 21]. By this definition, if the vehicle is perturbed in the direction

of a mode, its response will continue in that exact direction. The directions of the

system modes are determined by the eigenvectors ~v of the state space matrix A. The

strength of this response is determined by the eigenvalues λ of A. An eigenvalue

with an imaginary component indicates that the the mode is oscillatory, whereas a

real eigenvalue indicates a mode that is fully damped. A mode with a positive real

eigenvalue is unstable. The eigenvalues and eigenvectors are determined from the

equation set,

det[λI − A] = 0 (4.1)

A~v = λ~v. (4.2)

The eigenvalues of the system, synonymous with the system poles, are plotted

in Fig. 4.1. In addition to system poles, the flybar also has a zero pair, which is

also plotted. The effects of the zero pair will be discussed later in the chapter.

The flybarless helicopter has four eigenvalue pairs: two fast pairs that are heavily

damped, one slow pair which is lightly damped and stable, and another slow pair

which is unstable. The flybar helicopter shows a similar trend, except the heavily

damped modes are closer to the imaginary axis and the two slow pairs are both

stable. The flybar helicopter also has an additional, almost critically-damped, pair.

The eigenvectors, plotted in Fig. 4.2 and Fig. 4.3, provide insight into the

directions of these modes. The flybarless helicopter’s lightly damped modes are
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Figure 4.1: The helicopters share similar eigenvalue locations. The flybar
helicopter has an extra, almost critically-damped, eigenvalue pair and a
zero.

both in the rotational rate directions. The first mode is in the lateral direction and

is dependent on the flapping states (not portrayed here, because the lengths were

insignificant). The second mode is coupled between the lateral and longitudinal

directions and, while dependent on the flapping states as well, shows coupling with

all states (again, not portrayed). The unstable mode and the long-period mode are

both dominated by translational velocity states, with strong contributions from the

rotational states. The flybar helicopter, on the other hand, shows a decoupling of

the dynamics. The first two modes are lateral and longitudinal flapping modes. The

longitudinal mode has a stronger contribution from the p state, due to the smaller

Ixx inertia. The short-period modes are dominated by decoupled translational dy-

namics. The critically-damped mode is coupled between the lateral-longitudinal

rotational rates. A summary of the modes is provided in Table 4.1—the modes are

numbered here for reference later in the chapter.
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Figure 4.2: Eigenvectors for flybarless helicopter.
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Figure 4.3: Eigenvectors for flybar helicopter.
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Mode Frequency
No. Eigenvalue Damping (rad/s) Direction Eigenvector States

Flybarless Helicopter

1 −12.8± 33.2j 0.36 35.6 lateral, p (74%), q (18%)
2 −7.53± 12.6j 0.51 14.7 coupled, p (40%), q (47%)
3 1.12± 2.21j −0.45 2.48 coupled, p (17%), q (17%), u (26%), v (25%)
4 −1.85± 2.38j 0.61 3.02 coupled, p (19%), q (21%), u (23%), v (22%)

Flybar Helicopter

1 −5.52± 28.8j 0.19 29.4 lateral, p (81%), q (10%)
2 −3.26± 13.3j 0.24 13.7 longitudinal, p (22%), q (63%)
3 −0.47± 1.25j 0.35 1.33 longitudinal, u (57%), v (14%), θ (7.6%), q (10%)
4 −0.61± 0.80j 0.61 1.00 lateral, u (6.2%), v (74%), φ (6.0%), p (6.0%)
5 −13.0± 5.83j 0.91 14.3 coupled, p (42%), q (41%)

Table 4.1: Summary of Helicopter Modes

4.2.1 Effects of Flybar Inertia on Eigenstructure

At this point in the analysis, some simple conclusions can be drawn about the

effects of the flybar. Most significantly, the flybar stabilizes the system. Without

the flybar, the helicopter is extremely difficult to fly due to the unstable third mode

in the flybarless system. Additionally, the flybar decouples the modes of the system.

This also provides handling improvements, as the pilot can assume a lateral input

will produce a generally lateral response. Lastly, the flybarless helicopter appears

to have added stiffening and damping in the flapping modes.

However, it is still difficult to determine whether these effects are due to the

slight differences in the helicopter models. Specifically, the flybarless helicopter is

equipped with a slightly heavier, stiffer main rotor. The rotor differences may affect

both the aerodynamic and the flapping stability derivatives. The servos on the

flybarless helicopter are also positioned closer together, decreasing the Ixx inertia.

To investigate this point further, the effects of decreasing the flybar inertia
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Figure 4.4: Flybar inertia effects on pole locations.

were examined. From Section 2.5, we note that τsb ∝ Isb:

τsb = 4
Isb
CR

. (4.3)

By decreasing the value of τsb in the state space matrix, the progression of the

modes as the flybar inertia decreases can be modeled. For the following analysis, τsb

[entries [7,7] and [8,8] in the A matrix] is multiplied by Ksb, where Ksb ranges from

0.01 to 1. A pole-zero diagram showing the movement of the modes as the inertia

of the flybar decreases is provided in Fig. 4.4. While the diagram does not show

perfect agreement between the reduced inertia flybar and the flybarless helicopter,

the trend is apparent.

Next, the modes are decomposed into their natural frequencies and damping

in Figs. 4.5 and 4.6 to show how these characteristics change with decreased flybar

inertia. In each case, except mode 4 damping, the characteristics approach the values

of the flybarless helicopter. Modes 1 and 2 only really increase in natural frequency
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Figure 4.5: Decreasing the flybar inertia has little effect on modes 1 and
2.
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Figure 4.6: Decreasing the flybar inertia increases the natural frequency
and decreasing the damping of modes 3 and 4.

and damping at small values (< 0.2) of Ksb. Modes 3 and 4 show gradual increases in

natural frequency and decrease in damping asKsb decreases. The helicopter becomes

unstable at Ksb ≈ 0.15, which corresponds to a flybar length that is approximately
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Figure 4.7: Flybar inertia effects on modes.

40% of the full length.

The trend of the relative magnitudes of eigenvector directions for modes 3 and

4 are shown in Fig. 4.7. As expected, the flybar dynamics become more coupled as

the flybar is shortened. This is in agreement with the values of the flybarless heli-

copter. With a full-inertia flybar, the helicopter has decoupled, moderately-damped,

translational dynamics. With a reduced-inertia flybar—or flybarless—these modes

are heavily coupled both between longitudinal-lateral states and between transla-

tional and rotational states. The differences between the directions of modes 1 and 2

are not affected by the flybar and may be attributed to physical differences between

the vehicles.

The differences in the vehicle response are clearly seen in the simulated system

response to a step input, shown in Fig. 4.8. Two step inputs are compared: one for

the helicopter with a full-inertia flybar (Ksb = 1) and one for a helicopter with a
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Figure 4.8: The step response shows how a reduced-inertia flybar heli-
copter has a more coupled response than the full-inertia flybar helicopter.
Settling times are also longer for the reduced-inertia flybar.
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reduced-inertia flybar (Ksb = 0.2). This scale of flybar was chosen because it is just

larger than the size estimated to maintain stability. The step responses confirm the

conclusion drawn from the eigenstructures. The flybar helicopter response is more

damped and has less lateral response. The reduced-inertia flybar helicopter is less

damped and displays a significant lateral response. The flybar step response has a

settling time of approximately 10 seconds, which is low compared to the reduced-

inertia flybar helicopter’s settling time of approximately 40 seconds.

4.2.2 Effects of Zero on System Dynamics

Zeros are a result of competing dynamics within the system that cause an

output of zero despite non-zero inputs [22]. As seen in Fig. 4.1, the flybar mechanism

introduces a zero to the system. The zero is located at,

zsb = −1.80 ≈ 1

2τsb
. (4.4)

Because the zero is located close to the other eigenvalues of the system, it was

examined whether the zero cancelled the system dynamics at those modes. For

MIMO systems, this not a straight-forward observation because the direction of the

zeros and poles are just as important as the locations.

For this analysis, the direction of the zeros and poles inputs and outputs are

assumed to be unit vectors,

~uHz ~uz = 1; ~uHp ~up = 1; ~yHz ~yz = 1; ~yHp ~yp = 1. (4.5)

The system response to an input at a zero is magnitude zero, and the response at a
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Figure 4.9: While the relative strengths of the zero and mode 4 inputs
are similar, the mode 4 input is shifted by ≈ 45◦.

pole is infinite. These relationships are crudely expressed as

G(p)~up =∞ · ~yp (4.6)

G(z)~uz = 0 · ~yz. (4.7)

The input and output directions for poles and zeros may be determined from the

singular value decomposition of G(s) = UΣV H evaluated at p+ ε (for very small ε)

and z. The direction of the pole input is the first column of V , and the direction of

the pole output is the first column of Σ. Likewise, the direction of the zero input is

the last column of V , and the direction of the zero output is the last column of Σ.

For this particular analysis, the input direction of the poles close to the zero

(modes 3 and 4) are compared to the input direction of the zero. A plot of the

directions is provided in Fig. 4.9. While the lateral and longitudinal strengths of

mode 4 and the zero are similar, the longitudinal input is shifted by a significant

phase. As such, it is assumed that the zero does not have a significant effect on
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the dynamics of the system. A minimum realization of the system, calculated in

Matlab, confirms that no dynamics are cancelled.

An additional observation about the pole is that its location is inversely pro-

portional to τsb. As the inertia of the flybar decreases, the pole tends toward −∞.

4.3 Conclusions

By looking at the eigenstructures of the flybar and flybarless systems, con-

clusions can be drawn about the differences in their natural motion. The flybar

helicopter is stable and a relatively decoupled system. The flybarless helicopter has

an unstable mode and shows high coupling across all of its states. The relationship

of the natural frequency and damping of the long-period modes to the flybar inertia

can be determined by multiplying the stabilizer bar time constant τsb by a factor

Ksb. The natural frequency of the long-period modes increase and the damping

decreases as the flybar inertia term diminishes. The helicopter becomes unstable

with a flybar approximately 40% of the full length (Ksb ≈ 0.15). Additionally, the

progressive increase in coupling between the states was also shown as the flybar in-

ertia term decreased. A simulated step response for the flybar and a reduced-inertia

flybar shows how the decreased inertia creates a more coupled, less damped system.

This analysis offers insight into the handling of the helicopters and the effects

of adding a flybar. However, a control system can be designed to improve the han-

dling qualities of the flybarless helicopter as needed. To understand the advantages

and disadvantages of using a flybar for stabilization, the maneuverability and gust
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tolerance of the bare airframe need to be analyzed. The next chapter explores these

characteristics.
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Chapter 5

Bare Airframe Manueverability and Gust Tolerance

5.1 Overview

In the previous chapter, we gained an understanding for the natural motion

of the vehicles and how this relates to control design and pilot handling. The

flybar helicopter showed a stable, decoupled response at low frequencies, while the

flybarless helicopter was unstable and highly coupled. However, it is difficult to

determine from this information the inherent characteristics of the vehicle’s bare

airframe. Specifically, we are interested in the MAV’s potential to maneuver quickly

through confined spaces and to stay course when faced with gust disturbances.

This chapter presents a method for comparing the maneuverability and gust

tolerance of the flybar and flybarless helicopter using reachability and disturbance

sensitivity sets. Conclusions about the maneuverability of a vehicle can be drawn

by examining the reachable set of the vehicle for a bounded, unit norm input.

For linear models, the reachable set is defined by an ellipsoid whose structure is

determined from the controllabilty gramian. Analogously, a disturbance sensitivity

ellipsoid can also be calculated to determine the space a vehicle may be perturbed to

when subjected to a bounded gust disturbance. Previously, reachability ellipsoids

were used to optimize kinematic inputs for a fruit fly (Drosophila melanogaster)

linear model [2]. Disturbance sensitivity ellipsoids in combination with reachability
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ellipsoids were used to assess properties of a closed-loop microquadrotor [3]. This

research extends these tools to compare the limits of the bare airframes of the

flybar and flybarless helicopter platforms. A bare airframe comparison is important

because it reveals the characteristics inherent to the vehicle which would otherwise

be obscured by the gain selection of the controller designer.

This chapter first reviews the theoretical background for reachability and

presents a method for calculating reachability ellipsoids of unstable linear mod-

els. The relationship between reachability and maneuverability is also discussed.

The theory is then extended to disturbance sensitivity ellipsoids. The ellipsoids of

the flybar and flybarless helicopters are then compared, and conclusions are drawn

about the effects of the flybar on the system’s maneuverability. Based on the size

and direction of the disturbance sensitivity ellipsoids with respect to the reachabil-

ity ellipsoids, conclusions are also made about the relative gust tolerance of the two

vehicles.

5.2 Background Theory

A central problem to control theory is knowing what final states are achievable

given the system’s initial state x0 and an appropriate input u(t). The reachable set

of the vehicle is those states x1 which may be achieved. The following section

reviews theory for defining the reachable set and presents a method for calculating

the controllability gramian for an unstable model. The theory applies to a model of
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the form

ẋ(t) = Ax(t) +Bu(t) (5.1)

with vector dimensions u(t) ∈ Rp and x(t) ∈ Rn. (Note, vector arrows will be

dropped in this section for simplicity.)

5.2.1 Reachability Gramian

To determine the reachable states, we start with the dynamic response x(t) of

the system in eqn (5.1) for an initial condition x0 = x(t0) and t ≥ t0 is

x(t) = eA(t−t0)x0 +

∫ t

t0

eA(t−τ)Bu(τ)dτ. (5.2)

The system is said to be controllable if there exists a u(t) such that x(t1) = x1

for any initial state x0, final time t1 > 0, and final state x1 [23]. The input which

achieves x1 is given by

u(t) = −BTeA
T(t1−t)Wc(t1)

−1(eA(t1−t)x0 − x1) (5.3)

where

Wc(t) =

∫ t

0

eAτBBTeA
Tτdτ. (5.4)

For a stable system, the controllability gramian is considered for Xc = Wc(∞),

Xc =

∫ ∞
0

eAτBBTeA
Tτdτ (5.5)

and is also the solution to the Lyapunov equation

AXc +XcA
T = −BBT. (5.6)
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The system (A,B) is controllable if the controllability gramian is positive definite

(Xc > 0).

The controllability operator Ψ maps an input time history u(t) ∈ Lp2[0,∞) to

a final state x. If the initial time is chosen at t0 = −∞ and the final time at t1 = 0,

then eqn (5.2) becomes

x(0) = e−A∞x0 +

∫ 0

−∞
e−AτBu(τ)dτ (5.7)

and the operator Ψ, which maps the input to final state x0, is

Ψ =

∫ 0

−∞
e−AτBu(τ)dτ. (5.8)

Thus, the reachable set is defined as

{Ψu : u ∈ Lp2[0,∞) and ‖u(t)‖ ≤ 1}. (5.9)

By solving for the minimum energy input ‖uopt‖ to reach x0, Dullerud and Paganini

[23] show that the space reachable by a unit norm input is equivalent to an ellipsoid

defined as

Ec = {X
1
2
c xc : xc ∈ Rn and ‖u(t)‖ ≤ 1}, (5.10)

where

Xc = ΨcΨ
∗
c . (5.11)

The lengths and directions of the principal axes of the ellipsoid Ec are determined

from the eigenvalues of X
1
2
c and the corresponding orthonormal eigenvectors. We

can conclude here that the axes of the ellipsoid with longer lengths represent di-

rections which require less energy to control the vehicle, and in that sense, are
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directions which are easier for the vehicle to maneuver. By projecting the ellipsoid

onto two-dimensional planes and examining the resulting ellipses, we can visualize

the directions in which the vehicle is most maneuverable.

5.2.2 Generalized Gramian

For an unstable system, the integral in eqn (5.5) is unbounded. A generalized

definition of the controllability gramian, provided by Zhou, et al [4] is used instead:

Xc =
1

2π

∫ ∞
−∞

(jωI − A)−1BB′(−jωI − A′)−1dω. (5.12)

The system is controllable for Xc > 0. The gramian for a stabilizable system (A,B)

is the solution to the Lyapunov equation,

(A+BF )Xc +Xc(A+BF )′ +BB′ = 0 (5.13)

where F = −B′X, and X is the stabilizing solution to the Riccati equation,

XA+ A′X −XBB′X = 0. (5.14)

The proof employs the co-prime factorization of the system,

(sI − A)−1B = NM−1 (5.15)

where M is inner (M∗(s) = M−1) and the co-prime factorization formula defined in

[24] is, [
M

N

]
=


A+BF B

F I

I 0

 (5.16)
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By definition of the co-prime factor, A + BF is stable. Substituting the co-prime

factorization into the general definition of the gramian yields,

Xc =
1

2π

∫ ∞
−∞

(jωI − A)−1BB′(−jωI − A′)−1dω (5.17)

=
1

2π

∫ ∞
−∞

N(jω)N∗(jω)dω (5.18)

=
1

2π

∫ ∞
−∞

(jωI − (A+BF ))−1BB′(−jωI − (A+BF )′)−1dω. (5.19)

Thus, the Lyapunov equation in eqn (5.13) provides a solution for Xc. If A is stable,

then X = 0; if A is antistable (i.e., −A is stable), then Xc = X−1 > 0. For a system

with only stable poles, eqn (5.13) reduces to the familiar Lyapunov form in eqn

(5.6), and as shown in Zhou, the minimum energy interpretation is preserved in the

generalized case.

5.2.3 Disturbance Sensitivity Gramian

Disturbances ~d acting on the system can be thought of similarly to control

inputs,

~̇x = A~x+ D̂g
~d (5.20)

with ~d = [dp dq du dv]
T, ~d ∈ [−1, 1]. The unscaled disturbance input matrix may

consist of the negated aerodynamic stability derivatives of A, as shown by Nelson
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[13]. For the flybar helicopter, the matrix is,

D̂g =



0 0 0 0

0 0 0 0

0 0 −Lu −Lv
0 0 −Mu −Mv

0 1 0 0

1 0 0 0

0 0 0 0

0 0 0 0

0 0 −Xu −Xv

0 0 −Yu −Yv.



(5.21)

(Rows 7 and 8 are excluded for the flybarless gust matrix.) A set of tools similar

to the reachability analysis can be applied to determine the directions in which the

vehicle is most sensitive to gust inputs.

The disturbance gramian is defined as,

Xd =
1

2π

∫ ∞
−∞

(jωI − A)−1DgD
′
g(−jωI − A′)−1dω. (5.22)

The gramian for a stabilizable system (A,Dg) is the solution to the Lyaponav equa-

tion,

(A+DgF )Xc +Xc(A+DgF )′ +DgD
′
g = 0 (5.23)

where F = −D′gX, and X is the stabilizing solution to the Riccati equation,

XA+ A′X −XDgD
′
gX = 0. (5.24)

The disturbance sensitivity ellipsoid is defined as,

Ed = {X
1
2
d xd : xd ∈ Rn and ‖d(t)‖ ≤ 1} (5.25)

where the eigenvalues and eigenvectors of X
1
2
d are the length and direction of the

ellipsoid’s axes. Like the reachability ellipsoid, directions with longer axes are sig-

nificant in the sense that less disturbance energy is required to push the vehicle in
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that direction. Thus, the size and direction of the disturbance sensitivity ellipsoid

reveals the directions in which the vehicle is most sensitive to gusts. The system

can tolerate a gust if the ellipsoid Ed is contained in Ec.

5.2.4 Quantifying Ellipsoid Size

One measure of the size of an ellipsoid is the Frobenius norm of X
1
2
c ,

‖X
1
2
c ‖F =

√
trace

[
(X

1
2
c )X

1
2
c

]
. (5.26)

This norm is physically interpreted as the summed squares (Euclidean norm) of the

ellipsoid axes lengths. We are most interested in comparing the size of the ellipsoids

of the rigid body states of the helicopters (φ, θ, p, q, u, v) and excluding from the norm

flybar and flapping states (a, b, c, d). The projection of the flybar reachability and

disturbance hyperellipsoids onto the rigid-body state subspace (also hyperellipsoids)

is given by

X̄c = MXcM
T and X̄d = MXdM

T (5.27)

where M is composed of basis vectors for the subspace,

M =



1 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 1


. (5.28)

The Frobenius norm of the rigid body states is then defined as,

‖X
1
2
c ‖F =

√
trace

[
(X

1
2
c )X

1
2
c

]
and ‖X

1
2
d ‖F =

√
trace

[
(X

1
2
d )X

1
2
d

]
. (5.29)
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(The matrix M is the same for the flybarless helicopter, except columns 7 and 8 are

excluded.) Note that for an even comparison between vehicles, the Frobenius norm

also needs to be scaled by the maximum expected value of the states. The scaling

of the Frobenius norm is discussed in the next section.

5.2.5 Model Scaling

Before performing further model analysis, the model is scaled by the maximum

inputs and outputs. For system identification, the inputs to the helicopter δlat, δlon ∈

[−1, 1] reflected commands for the maximum excursion of the servos from trim. If

we assumed that the helicopters could employ the full extents of their servos, the

analysis in this chapter would reveal that the vehicles could travel at speeds up to 16

m/s or rotate at almost 40 rad/s. It is unreasonable to expect that the helicopters

are operating in their linear region at these rates. In fact, experimental flights

showed that the vehicle input magnitudes rarely exceeded ±0.25 while maintaining

control. For reachability analysis of the system, these inputs require scaling to the

expected minimums and maximums. The vehicle outputs likewise require scaling

for applying robust control tools.

For the purpose of scaling the model, the original state space system is repre-

sented as

ŷ = Ĝû (5.30)

Ĝ(s) = Ĉ(sI − A)−1B̂ (5.31)

where B̂ and Ĉ are the original, unscaled matrices. Each input requires scaling
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by the maximum expected deflection from trim ûmax. The outputs are scaled by

the maximum allowable control error êmax, since minimizing error is usually the

objective of robust control. Control error is defined as

~e = ~y − ~r (5.32)

where ~r is a reference input. The scaling matrices are diagonal matrices Du and De,

with ûmax and êmax for each variable along the diagonals. Based on observations

from several flights, the following maximums were chosen:

Du = diag([0.3 0.3]) (5.33)

De = diag([0.1rad 0.1rad 0.1rad/s 0.1rad/s 1m/s 1m/s ]). (5.34)

The scaled variables then become

y = D−1e ŷ; u = D−1u û. (5.35)

The scaled system G can be calculated by substituting into eqn (5.30),

Dey = ĜDuu (5.36)

G = D−1e ĜDu (5.37)

G(s) = D−1e Ĉ(sI − A)−1B̂Du (5.38)

= C(sI − A)−1B (5.39)

with u ∈ [−1, 1] and control goal is to maintain ‖e(t)‖ = ‖y(t)− r(t)‖ ≤ 1.

Because the states represented by the Frobenius norm in eqn (5.27) are on

different scales with respect to each other, the Frobenius norm of the ellipsoids is
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also scaled. The ellipsoid is scaled by the maximum expected values of the states,

Dx = diag([1.75rad 1.75rad 14rad/s 14rad/s 8m/s 8m/s ]). (5.40)

The projected, scaled ellipsoids are defined by,

X̄c = D−1x MXc(D
−1
x M)T (5.41)

= D−1x MXcM
TD−1x (5.42)

and

X̄d = D−1x MXd(D
−1
x M)T (5.43)

= D−1x MXdM
TD−1x . (5.44)

The scaled Frobenius norms of the ellipsoids are,

‖X̄
1
2
c ‖F =

√
trace

[
(X̄

1
2
c )X̄

1
2
c

]
(5.45)

and

‖X̄
1
2
d ‖F =

√
trace

[
(X̄

1
2
d )X̄

1
2
d

]
. (5.46)

5.3 Maneuverability: Reachability Ellipsoid Comparison

The projections of the reachability ellipsoids are shown in Fig. 5.1. Instead

of examining the ellipsoids individually, holistic observations are made about the

relative reachability of the vehicles:

• The flybarless helicopter ellipses are significantly larger than the flybar heli-

copter ellipses. This means that the flybarless helicopter has more reachable

states and is, generally, a more maneuverable vehicle.

93



• The bottom three ellipsoids are the most important for drawing conclusions

about directional reachability. The flybarless helicopter shows significantly

more reachability in vehicle attitude—and consequently, in the translational

velocity. From this we may conclude that the flybar restricts the magnitude

of the helicopter’s angular motion. The reachability of angular rate states are

comparable between the two helicopter.

• Some of the ellipsoids are tilted. Physically, the tilt means that the vehicle has

more reachability when both states are non-zero. An obvious application of

this is for the pair (v, φ). The velocity v of the helicopter can be increased by

tilting the rigid body by an angle ∆φ past trim. The ellipsoid for pair (u, θ) is

tilted the opposite direction, because forward velocity is dependent on a −∆θ

of the rigid body. Other tilts are due to aerodynamics and are affected by the

values of the aerodynamic stability derivatives (i.e., Mu in the case of the pair

(q, u)).

To confirm the hypothesis that the flybar restricts the translational velocity

states, ellipsoids for a reduced-inertia flybar helicopter were compared to the flybar-

less helicopter. The inertia scaling factor Ksb = 0.2 was chosen for the comparison,

as this represents the approximate stability boundary. The ellipsoids are shown

in Fig. 5.2. While the ellipsoids for the two helicopters show aerodynamic differ-

ences, the gap between the reachability of the translational states is reduced. The

reduced-inertia flybar helicopter shows comparable reachability.
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Figure 5.1: A comparison of the reachability ellipsoids shows that the
flybarless helicopter has more reachable states than the flybar helicopter.
The flybarless helicopter especially has an advantage in translational
velocities.
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Figure 5.2: By setting Ksb = 0.2, the reachability of a reduced-inertia
flybar can be compared to the flybarless helicopter. The reachability is
comparable, even in the translational velocity states.
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Flybarless Ksb = 1 Ksb = 0.2

‖X̄
1
2
c ‖F 1.65 1.14 1.45

Table 5.1: Frobenius Norms of Reachability Ellipsoids
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Figure 5.3: Both a) the reachability of the translational states and b)

the Frobenius norm of X
1
2
c increase as the inertia (Ksb) decreases.

The Frobenius norms for the flybarless, flybar, and reduced-inertia flybar he-

licopters are shown in Table 5.1. The relative sizes of the ellipsoids are as expected:

the flybarless helicopter has the largest norm and the full-inertia flybar the smallest.

Fig. 5.3 shows a) the dependency of translation state reachability on the flybar

inertia and b) the increase in overall ellipsoid size as a function of the flybar inertia.

Again, the analysis confirms that both values increase as the inertia decreases.
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5.4 Gust Tolerance: Disturbance Sensitivity Ellipsoid Comparison

The disturbance sensitivity ellipsoids, similar to the reachability ellipsoids,

show which directions the vehicles are most easily perturbed given a unit norm

disturbance input. For disturbance sensitivity ellipsoids, though, a vehicle with

shorter axes has an advantage, as this shows that the bare airframe is less sensitive

to a gust disturbance. The disturbance sensitivity ellipsoids are shown in Fig. 5.4.

The following observations are made:

• The flybar helicopter ellipses in the translational velocity and attitude direc-

tions show a slight advantage over the flybarless helicopter.

• The flybar actually has a larger ellipsoid in the rotational rate directions,

showing that it is more susceptible to gusts in these directions.

From Fig. 5.4, it is not clear which advantages and disadvantages may be

attributed to the stabilizer bar and which may be attributed to differences in the

rotors, slight differences in the body inertias, or even model error. As in the previous

section, disturbance sensitivity ellipsoids for the flybarless helicopter are compared

to the reduced inertia flybar helicopter, Ksb = 0.2. The ellipsoids are shown in Fig.

5.5. The results show an increase in the size of the flybar disturbance sensitivity el-

lipsoids in the translational velocity and attitude directions. A significant difference

is not seen in the rotational rate direction. From this, we can conclude that a flybar

with larger inertia results in an airframe that is less sensitive to gust disturbances

in the u and v directions. The flybar has little effect on the disturbance sensitivity

in the p and q directions.
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Figure 5.4: A comparison of the disturbance sensitivity ellipsoids shows
that the flybar helicopter has a slight disturbance sensitivity advantage
compared to the flybarless helicopter in the attitude and translational
velocity directions. The flybarless helicopter has a more significant ad-
vantage in the rotational rate directions.
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Figure 5.5: By setting Ksb = 0.2, the disturbance sensitivity of a
reduced-inertia flybar can be compared to the flybarless helicopter. The
disturbance sensitivity in the attitude and translational velocity direc-
tions increases significantly. Disturbance sensitivity in the rotational
rate states have little change.
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Table 5.2: Frobenius Norms of Disturbance Sensitivity Ellipsoids

0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6

K
sb

V
el

o
ci

ty
 (

m
/s

)

 

 

Flybar u
Flybar v

(a)

0.2 0.4 0.6 0.8 1
0.8

1

1.2

1.4

1.6

1.8

K
sb

‖X̄
1 2 d
‖ F

 

 

Flybar Norm

(b)

Figure 5.6: Both a) the disturbance sensitivity of the translational states

and b) the Frobenius norm of X
1
2
d increase as the inertia (Ksb) decreases.

Fig. 5.6 shows a) the dependency of translation states’ disturbance sensitiv-

ity on the flybar inertia and b) the increase in overall ellipsoid size as a function

of the flybar inertia. The analysis confirms that both values increase as the iner-

tia decreases, confirming that the flybar increases disturbance sensitivity in these

directions.

The Frobenius norms for the flybarless, flybar, and reduced-inertia flybar heli-

copters are shown in Table 5.2. The flybarless helicopter has the smallest ellipsoid,

showing that the advantage in the p and q directions outweigh the disadvantage
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of not having the stabilization device. This advantage may be attributed to the

flybarless helicopter’s stiffer rotors. The norms do show, however, that the flybar

improves the gust tolerance of the vehicle.

5.5 Scaled Disturbance Sensitivity Ellipsoids

At this point in the analysis, the flybarless helicopter shows maneuverability

advantage in the u and v directions, while the flybar helicopter shows a gust tolerance

advantage in these directions. The platforms have comparable maneuverability in

the p and q directions, and the flybarless helicopter shows more gust tolerance in

these directions. However, it is still unclear which helicopter has the largest gust

rejection capability given the relative sizes and directions of the reachability and

disturbance sensitivity ellipsoids. To determine the directions and intensity of gusts

that each helicopter can reject with the δlat and δlon control inputs, the disturbance

sensitivity ellipsoids are scaled to meet the boundary of the reachability ellipsoids.

The matrix used to scale the disturbance sensitivity ellipsoid reveals the maximum

intensity of a gust in a particular direction. The following section discusses two

scaling methods for evaluating the gust rejection capabilities of the helicopters.

The scale of the disturbance input matrix Dg can be adjusted with a similar

process to Section 5.2.5. The scaling matrix Dd has on its diagonal the maximum

disturbance intensity ρ to be analyzed. The physical interpretation of the scale

factor is that the helicopters can tolerate gusts of magnitude ρ (m/s or rad/s) in
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any or all directions. The scaled disturbance matrix is

Dg = D−1d D̂g (5.47)

Du = ρ


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 (5.48)

Scaling D̂g by ρ > 1 increases the size of the disturbance sensitivity ellipsoid. While

each entry of the diagonal could be scaled differently, the analysis performed in this

section assumes the scaling is always uniform, as represented by eqn (5.48).

The reachability and scaled disturbance sensitivity ellipsoids for the flybarless

and flybar helicopter are shown in Figs. 5.7 and 5.8. The reachability ellipsoids for

each vehicle are the same as those pictured in Fig. 5.1. The disturbance sensitivity

ellipsoids assume a gust of unit norm in all directions ~d = [dp dq du dv]
T with a

disturbance matrix scaled by ρ0. While ρ0 may be chosen separately for each entry

of the diagonal (scaling the maximum gust for du and dp differently, for instance),

it was found that the dynamics of the system were changed approximately evenly

for each disturbance. For simplicity, ρ0 was uniform for each disturbance. For

both vehicles, ρ0 was scaled iteratively until the boundary of Ed met the boundary

of Ec. The scale factor ρ0 is listed in Table 5.3, along with the scaled Frobenius

norm. The flybarless helicopter has a larger ρ0 and scaled Frobenius norm than the

flybar helicopter. In this case, a larger scaled norm shows the platform is capable

of rejecting a larger volume of disturbances.

While the flybarless helicopter has a larger disturbance sensitivity ellipsoid, it

is interesting to note that the flybar helicopter’s control directionality is more effi-
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Figure 5.7: The disturbance matrix for the flybarless was scaled by ρ0 =
1.7. The gust tolerance is mostly limited in the p direction.
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Figure 5.8: The disturbance matrix for the flybar helicopter was scaled
by ρ0 = 1.1. The directions of the disturbance sensitivity ellipsoids are
well-aligned with the reachability ellipsoids.
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Flybarless Flybar

ρ0 1.7 1.1

‖ρ0X̄
1
2
d ‖F 1.46 1.04

Table 5.3: Disturbance Matrix Scale Factor ρ0

cient. The disturbance Frobenius norm is 92% of the controllability norm; whereas

for the flybarless helicopter, the disturbance norm is only 88% of the controllability

norm. This can be seen visually from the ellipsoids as well—the directions of the

disturbance sensitivity ellipsoids are aligned with the reachability ellipsoids better

for the flybar helicopter. The size of the disturbance sensitivity ellipsoids for the fly-

barless helicopter is limited in the p direction. Scaling the entries of Dd individually

may help optimize the size of the disturbance sensitivity ellipsoid for the flybarless

helicopter.

To further understand the directional gust tolerance of the vehicle, scale factors

(ρp, ρq, ρu, ρv) for individual directions were considered (i.e., ~d = [dp 0 0 0]T,

~d = [0 dq 0 0]T, etc.). The resulting scale factors for the two helicopters are

provided in Table 5.4 and show that the flybarless helicopter has an advantage in the

longitudinal directions especially. Example ellipsoids scaled by ρu for ~d = [0 0 du 0]T

are shown in Figs. 5.10 and 5.9. The figures show the decoupling of the flybar

dynamics. A disturbance in the u direction mainly results in a longitudinal response,

wheras the flybarless helicopter response has more potential for being longitudinal

and lateral.
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ρp ρq ρu ρv

(rad/s) (rad/s) (m/s) (m/s)

Flybarless 2.9 3.3 4.6 2.5

Flybar 2.0 1.8 1.8 1.9

Table 5.4: Directional Disturbance Scale Factors
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Figure 5.9: Limiting disturbances to the u direction, ~d = [0 0 du 0]T,
shows the control is limited in the p and q directions.
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Figure 5.10: The flybar helicopter has less of an off-axis response to a
directional disturbance.

5.6 Conclusions

This chapter explored the bare airframe maneuverability and gust tolerance

properties of the flybar and flybarless helicopter. A method for determining the
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Flybarless Flybar

‖X̄
1
2
c ‖F 1.65 1.14

‖X̄
1
2
d ‖F 0.86 0.94

ρ0 1.7 1.1

‖ρ0X̄
1
2
d ‖F 1.46 1.04

Table 5.5: Frobenius Norm Summary

controllability gramian for unstable systems was shown and applied to the flybar-

less helicopter. The eigenstructure of the controllability gramian determines the

geometric properties of the reachability ellipsoid for a bounded unit norm input.

The disturbance sensitivity ellipsoid can likewise be determined with this method

by using the gust matrix Dg as the input matrix. The disturbance sensitivity el-

lipsoid defines the space to which a vehicle may be perturbed when subjected to a

unit norm disturbance. The gust tolerance and maneuverability characteristics of

the vehicles can be quantified with these ellipsoids.

By comparing the reachability ellipsoids, it was found that the flybarless he-

licopter has more reachable states in the u and v directions. The improvement in

reachability is shown for the flybar helicopter as the inertia of the flybar is reduced.

The flybarless helicopter also shows a gust tolerance advantage, indicated by having

smaller disturbance sensitivity ellipsoids than the flybar helicopter. This advantage

is likely due to the stiffer rotors. It was shown that the flybar does increase gust

tolerance in the u and v directions, as expected, while its effect on the p and q

directions is negligible.

A comparison of the disturbance sensitivity ellipsoid scalings of the two vehi-
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cles shows that the flybarless helicopter can reject higher intensity gusts than the

flybar helicopter, particularly in the longitudinal direction. The flybarless helicopter

outperforms the flybar helicopter in terms of both maneuverability and gust toler-

ance. A summary of the ellipsoid Frobenius norms for the two vehicles is provided

in Table 5.5.
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Chapter 6

Robust Analysis and Control

6.1 Overview

With identified models for the helicopters, model-based control systems can

now be developed that enable the helicopters to perform station-keeping. Without

a model, the control designer is limited to the tedious task of guess-and-check gain

tuning, or possibly developing an adaptive control law for the system. Having a

model enables the designer to use any of the many linear, time-invariant controllers,

including a Linear Quadratic Regulator (LQR), a Linear-Quadratic Gaussian (LQG)

regulator, or, as discussed here, an H∞ controller.

The following chapter gives an overview of H∞ control, as well as the static

H∞ control law used here. Gains for an inner loop stabilizing controller and an outer

loop station-keeping controller are selected and the implications of the feedback loops

on disturbance rejection and tracking are discussed. Results from an experiment

implementing the gains on the helicopters in the lab are then presented.

6.2 Static H-Infinity Model-Based Control

The H∞ controller, first introduced by Zames [25], is specifically formulated

to provide model robustness in the presence of disturbances. Solutions to the
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Figure 6.1: H∞ Control Block Diagram.

H∞ problem were rigorously derived by Doyle, et al [26] for linear, time-invariant

systems. A general formulation of the controller is shown in Fig. 6.1, where ~d are

exogenous inputs, ~z are the performance outputs, ~u are the inputs, and ~y are the

system outputs used for feedback. Exogenous inputs are inputs to the system that

the controller cannot directly manipulate—specifically disturbances like gusts. The

objective of H∞ control is to minimize the infinity norm of the transfer function

from the performance output ~z to the disturbance ~d. The algorithm is first solved

for a stabilizing controller gain bounded by arbitrary γ. The gain γ is iteratively

reduced until the algorithm no longer converges. The minimum bound is γ∗.

The H∞ controller is a powerful tool, as it allows the control designer to bal-

ance trade-offs between noise attenuation, tracking performance, disturbance sen-

sitivity, and control usage. Historically implemented as a dynamic controller, the

designer can also weight the frequencies over which the individual objectives are

most important. However, a dynamic controller requires significant computational

power and is not practically implemented on the GINA mote. As such, a static
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H∞ controller designed by Gadewadikar is used for this design [27]. In addition to

disturbance rejection, this static controller has the additional advantages of a) not

requiring full-state feedback (only output feedback) and b) not requiring an initial

stabilizing gain.

The model for the static H∞ controller is as follows:

~̇x = A~x+B~u+D~d (6.1)

~y = C~x (6.2)

‖~z‖2 = ~xTQ~x+ ~uTR~u, (6.3)

whereQ > 0 and R > 0, and the state matrices are scaled as presented in Section 1.2.

Also, henceforth D will represent the gust matrix Dg, rather than the feedforward

matrix. The Q and R matrices are weights in the cost function,

J(K, d) =

∫ ∞
0

(xTQx+ uTRu− γ2dTd)dt, (6.4)

where K is the feedback gain such that

u = −Ky (6.5)

= −KCx (6.6)

The L2 gain is bounded by γ if

‖~z(t)‖22
‖~d(t)‖22

=

∫∞
0
‖~z(t)‖2dt∫∞

0
‖~d(t)‖2dt

=

∫∞
0

(~xTQ~x+ ~uTR~u)dt∫∞
0

(~dT~d)dt
≤ γ2. (6.7)

6.2.1 Solution Algorithm

According to the theorem presented in [28], an H∞ gain can be synthesized if

the following two necessary and sufficient conditions are met:
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1. (A,B) is stabilizable and (A,C) is detectable

2. There exists matrices K and L such that

KC = R−1(BTP + L) where P > 0 is the solution to

ATP + PAT +Q− PBR−1BTP + 1
γ2
PDDTP + LTR−1L = 0

The following iterative algorithm solves the coupled matrix equations central to the

static H∞ framework:

Step 1: Initialize parameters.

• Select γ bound and Q and R weighting matrices.

• Initialize iteration counter n = 0 and parameter matrix L.

Step 2: For each nth iteration,

• Solve Ricatti equation for Pn:

PnA+ ATPn +Q+
1

γ2
PnDD

TPn − PnBR−1BTPn + LT
nR
−1Ln = 0 (6.8)

• Evaluate gain Kn+1 and update Ln+1

Kn+1 = R−1(BTPn + Ln)CT(CCT)−1 (6.9)

Ln+1 = RKn+1C −BTPn (6.10)

Step 3: Check convergence,

If ‖Kn+1 −Kn‖ < ε for ε� 1, proceed to Step 4; otherwise update n = n+ 1

and repeat Step 2.

Step 4: Terminate. Set K = Kn+1.
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Figure 6.2: H∞ The inner loop uses attitude feedback to stabilize the
vehicle, and the outer loop uses position feedback to control station
keeping.

6.3 Control Structure

The flybarless helicopter is controlled with two loops using a technique called

cascaded control, shown in Fig. 6.2. The inner loop is designated for stabilization

and typically has a high loop closure rate. On-board sensors like accelerometers

and gyroscopes may be used to provide state information for feedback. The outer

loop is designated for controlling the vehicle’s position and typically operates at a

slower rate. The vehicle velocity and position may be measured with either GPS or

dead-reckoning based on IMU measurements. All state measurements are provided

by Vicon, but the vehicles do have the capability of implementing on-board feedback

with the GINA mote.

For the purpose of simulation and to assess the robustness of the model, a

wind turbulence model for the gusts is presented. The controllers are first tested

and tuned with a Matlab Simulink model, then implemented on the vehicles.
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Figure 6.3: The inner loop controller regulates the attitude angles to
zero.

6.3.1 Wind Turbulence Model

A Gauss-Markov shaping filter developed by Hall and Bryson [29] for wind

disturbances along the b̂x and b̂y axes was used to model the gust disturbances for

simulation. The disturbance model was also applied to the rotational disturbance

directions:
ḋp

ḋq

ḋu

ḋv

 =


−1/τc 0 0 0

0 −1/τc 0 0

0 0 −1/τc 0

0 0 0 −1/τc



dp

dq

du

dv

+


b 0 0 0

0 b 0 0

0 0 b 0

0 0 0 b



qp

qq

qu

qv

 . (6.11)

The filter parameters were chosen as τ = 3.2 sec and b = 0.5 [28].

6.3.2 Inner Loop Stabilization

The primary objective of the inner loop is to stabilize the attitude of the

vehicle. The design is posed as a regulator problem, where the inputs ~u require

manipulation to counteract the effects of the disturbances ~d. A block diagram of

the inner loop problem is shown in Fig 6.3. Because the inner loop is regulating the
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attitude to zero, the closed loop A matrix takes the form Ai,CL = A−BKiCi where

Ki is the gain selected through the H∞ process and Ci selects outputs φ and θ,

Ci =

[
1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

]
. (6.12)

The Q and R matrices were initialized as follows,

Q−1 = diag([0.252 0.252 62 62 0.52 0.52 102 102]) (6.13)

R−1 = diag([0.52 0.52]). (6.14)

The resulting K matrix is

Ki =

[
1.27 0.26

−0.16 1.14

]
(6.15)

and γ∗ = 4.0.

Three metrics are used to assess the inner loop system dynamics [30, 31]

• Singular Value Plots The singular value (SV) plots are constructed from

the solution to the singular value decomposition G = UΣV at each frequency

and essentially represent the MIMO equivalent of the SISO bode plot. Phys-

ically, the singular values represent the maximum response of the system at

a given frequency—the response is usually not aligned with a specific chan-

nel, but rather represents a combination of the state outputs. To understand

the directions, the U and V vectors would need to be examined at each fre-

quency; however, this analysis does not go into that detail. The important

thing to note about the SV plots is the frequency range over which the min-

imum and maximum singular values have a strong response to the inputs,

σ(G), σ(G) > −3dB.
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• S and T SV Plots The frequency responses that represent how well the

system tracks an input and how well it rejects disturbances are taken from the

response equation,

y(s) = T (s)r(s) + S(s)d(s). (6.16)

The following relationships can be derived from the block diagram,

T = GK(I −GK)−1 (6.17)

S = (I +GK)−1, (6.18)

where T is the tracking response and S is the disturbance sensitivity response.

For ideal reference tracking, σ(T ) ≈ σ(T ) ≈ 1. The bandwidth for measuring

how well the system rejects disturbances is defined by σ(S) = −3 dB (from

below).

• Relative Gain Array The relative gain array (RGA) is a measure of the

input-output interactions of a system. It is calculated from the formula,

RGA(G) = G× (G−1)T, (6.19)

where × denotes element-by-element multiplication. For our purposes, we

would ideally like the RGA to be an identity matrix. This would mean that

the first input directly effects the first output, the second input directly effects

the second output, etc. Any off-diagonal terms indicates coupling between

inputs and outputs.

The SV plots presented here are all dependent on the scaling of the system.
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Figure 6.4: The original plant and closed-loop plant show strong re-
sponses (a) up to ≈ 40 dB. The RGA plots (b) show how the input-
output coupling is improved for the closed-loop system.

The singular value plots for both the original plant and the closed-loop system

are shown in Fig. 6.4(a). The inputs to these plants will be the output commands

from the outer loop station keeping controller. While the response for the closed

loop system is not as strong, sufficient response is still available up to ≈ 40 dB. The

RGA plots in Fig. 6.4(b) shows that the controller helps decouple the inputs and

outputs—that is, a lateral input will more directly affect φ and a longitudinal input

will more directly affect θ. This is an improvement on the handling of the system.

The tracking and disturbance sensitivity plots are shown in Fig. 6.5. The σ(S)

indicates the closed-loop system has good disturbance rejection up to ≈ 18 rad/s.

Tracking is best between 1 rad/s and 10 rad/s.

The singular values and RGAs for the flybar helicopter are plotted in Fig. 6.6.

The flybar helicopter does not have quite as strong of a response to inputs as the

original flybarless plant, and the bandwidth is slightly lower at ≈ 30 dB. The RGA
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plot indicates that the system inputs and outputs are well-aligned.
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Figure 6.5: The flybarless close-loop system shows good disturbance
rejection up to ≈ 18 rad/s. Tracking is best between 1 rad/s and 10
rad/s.
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Figure 6.6: Singular values and RGAs for flybar helicopter.
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Figure 6.7: The outer loop controls the vehicle to a desired station keep-
ing point.

6.3.3 Outer Loop Station Keeping

The outer loop regulates the error of the desired position in the inertial frame

to the actual, ~e = ~yo − ~yd. The outer loop controller is ~uo = Ko~e. A block diagram

for the outer loop controller is shown in Fig. 6.7.

The outputs for the outer loop controller are yo = [x y u v]T. Because the

helicopter is operating about hover, we can assume ẋ = u and ẏ = v. With this

information, the x and y states can be incorporated into the system dynamics. The

outer loop A matrix for the flybarless helicopter with states ~xo = [~xi x y]T is

Ao =

[
Ai,cl 0

E 0

]
(6.20)

where

E =

[
0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

]
. (6.21)

The flybar helicopter, without an inner loop, uses the original plant dynamics matrix

A and an E matrix with additional zero columns for the c and d states. The Bo
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matrices simply have zeros for the additional states,

Bo =

[
B

0

]
. (6.22)

The outer loop observer matrix Co outputs the u, v, x, and y states,

Co =


0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 1 0 0

 , (6.23)

for the flybarless helicopter. The flybar helicopter has additional columns of zeros

for the c and d states.

For the flybarless helicopter, the following weighting matrices were used:

Q−1 = diag([0.352 0.352 112 112 0.52 0.52 2.52 2.52 22 22]) (6.24)

R−1 = diag([0.92 0.92]). (6.25)

The final bounding gain was γ∗ = 2. The resulting close loop gain was

Ko,noFB =

[
−0.08 0.47 −0.14 0.40

−0.48 −0.05 −0.44 −0.26

]
. (6.26)

Likewise, the flybar helicopter had initial weight matrices,

Q−1 = diag([0.352 0.352 112 112 0.52 0.52 0.52 0.5v 32 32 22 22]) (6.27)

R−1 = diag([0.9 0.9]), (6.28)

with final bounding gain γ∗ = 2 and resulting close loop gain,

Ko,wFB =

[
−0.13 0.58 −0.17 0.45

−0.49 −0.19 −0.49 −0.26

]
. (6.29)

The flybar and flybarless outer loop controllers were simulated with Simulink

to ensure that the performance is reasonable and that the input limits would not sat-

urate. Both vehicles were subjected to a 1 m/s gust in both the u and v directions.
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A plot of the vehicle trajectory and the control inputs are shown for the flybarless

helicopter in Fig. 6.8 and for the flybar helicopter in Fig. 6.9. The flybarless he-

licopter position hold performance is slightly better than the flybar helicopter but

requires significantly less overall control energy. This shows the flybarless helicopter

can tolerate a higher overall gust intensity with the controller.

The tracking and disturbance sensitivity of the two helicopters are assessed

with the SV plots shown in Fig. 6.10. Instead of looking at the S and T transfer

functions, which would require taking the pseudo-inverse of the non-square system,

approximations about the vehicle performance are made based on the singular values

of the open loop transfer function, GK. At low frequencies, the singular values of

the sensitivity transfer function can be approximated as σ(S) ≈ 1/σ(GK). The

bandwidth can be approximated as the point where σ(GK) crosses 1. Also, for
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Figure 6.8: A simulation of the controller shows that the flybarless heli-
copter has slightly better position hold compared to the flybar helicopter.
The overall control energy for the flybarless helicopter is less than for
the flybar helicopter. The control limits are not saturated.
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Figure 6.9: While position hold for the flybar helicopter is comparable,
the flybar helicopter requires more control energy and would not tolerate
a much higher gust intensity. Control limits are not saturated here.

GK � 1, we can approximate T ≈ 1. Therefore, at low frequencies, we require the

minimum singular value of GK to be as large as possible to meet this objective.

The bandwidth of the system is defined as σ(GK) = 1. The bandwidth of the

flybar system is ≈ 16.7 rad/s and of the flybarless system is ≈ 17.2 rad/s, which is

relatively similar. The disadvantage of a higher gain, which boosts the bandwidth,

is that the system may become more sensitive to sensor feedback noise (which is

not an issue with Vicon measurements), model error, or control overuse. This effect

could be mitigated if dynamic loop-shaping were applied to the feedback.

6.4 Gust Testing

The controllers for the two systems were tested in the laboratory using a box

fan for gust generation, as pictured in Fig. 6.11. The box fan has 3 different gust
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Figure 6.10: The singular values of the open loop system GK shows
good disturbance rejection up to ≈ 17 rad/s for the (a) flybarless and
(b) flybar systems.

intensity settings (fan held approximately 4 ft from vehicle): 1) 0.5 − 1 m/s, 2)

1− 1.5 m/s, and 3) 1.5− 2.0 m/s. Data was collected over a 15 second time interval

for gusts in the lateral direction. An example of the vehicle trajectory to a fan

setting #1 is shown in Fig. 6.12. The circle drawn is the 50% circle error probable

(CEP), a metric used by Costello [1] for measuring vehicle performance in gust. The

radius of the circle represents the space in which 50% of the trajectory points lie.

A compilation of CEPs for the three fan settings for lateral gusts are shown in Fig.

6.13. The gains used for these tests were slightly modified from those presented

above. The outer loop gains used for these tests were

Ko,wFB =

[
−0.28 0.25 −0.16 0.2

−0.67 −0.38 −0.39 −0.33

]
(6.30)
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Figure 6.11: The helicopters were tested in the laboratory using a box
fan. The gust velocity ranged from 0.5 m/s to 2.0 m/s.

and

Ko,noFB =

[
−0.08 0.47 −0.14 0.40

−0.48 −0.05 −0.44 −0.26

]
. (6.31)

The inner loop gain for the flybarless helicopter was

Ki,noFB =

[
1 0.2

−0.2 1

]
. (6.32)

The results in this case show that the flybarless helicopter performs slightly

better in the gusts than the flybar helicopter. Due to time constraints, longitudinal

tests were not performed. Factors potentially affecting the helicopters’ performances

included the condition of the servos and speed controllers, which at this point, had

been used for many flights.
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Figure 6.12: The 50% CEP represents the a circle encompassing 50% of
the points. Here the CEP for the flybarless helicopter is slightly smaller
than the flybar’s.
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Figure 6.13: The flybarless helicopter showed better performance when
subjected to gust in the lateral direction.

6.5 Conclusions

The overarching objective of this chapter was to develop a model-based control

law for the helicopters operating in gusty conditions. The H∞ static controller was
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chosen for gain selection. The static H∞ controller has many advantages over other

controller options, the most important being that it takes into account disturbance

in its gain selection cost function. The controller was developed in two loops: an

inner loop for stabilization and an outer loop for station keeping. The inner loop

was only implemented on the flybarless helicopter. It was shown with singular value

plots that the inner loop feedback improved the tracking and disturbance rejection

of the helicopter, as well as its overall handling. Outer loop gains were then selected

for both helicopters. The higher gains improve the disturbance rejection bandwidths

of the system, but also subject the model to input saturation, noise feedback, and

model error. For these experiments, input saturation was the primary concern.

Simulations showed that the gains selected should not saturate the inputs. The

controllers were then implemented in the laboratory setting with a box fan for a

gust generator. The results showed that the flybarless helicopter performed better

than the flybar helicopter.
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Chapter 7

Summary and Future Work

7.1 Research Contributions

The following section explains the significance of each contribution to the field

of aerial microsystems system identification, dynamics, and control:

• A framework for using reachability and disturbance sensitivity sets to assess

the bare airframe characteristics of aerial microsystems. This framework may

be used to compare the numerous MAVs currently under development. If

linear models can be identified for the vehicles, the sets take the form of

ellipsoids, and the performance properties of the bare airframes are easily

visualized. Using the generalized gramian, the method can be applied to

unstable platforms. This way, the analysis is not subject to any closed loop

controllers.

• A method for performing system identification on a vehicle with highly-coupled

dynamics and few known parameters. Simultaneous, orthogonal, multisinu-

soidal signals were originally implemented on hypersonic vehicles to quickly

and efficiently excite dynamics in a minimal length of time. The application

of this input signal to the micro-helicopters was pivotal for exciting both the

longitudinal and lateral dynamics in a way that enabled the output error rou-

128



tine to converge efficiently. For vehicles with highly coupled dynamics, this

method should be considered in the future as an alternative to chirp inputs.

• State space models for a flybar micro-helicopter and a flybarless micro-helicopter.

The state space models developed for both vehicles were used to assess the

dynamics and bare airframe characteristics of the vehicles. These models may

be used in the future for implementing navigation algorithms and developing

an MAV platform with useful functionalities.

• An assessment of the influence of a Bell flybar on the dynamics, agility, and

gust tolerance of a micro-helicopter. The effects of reducing the inertia of the

flybar were assessed progressively throughout the thesis. The research demon-

strates that a mechanical stabilization device, while improving the open loop

handling for a pilot, may significantly affect the overall potential performance

of the vehicle.

• Static H∞ controllers for micro-helicopters designed for station keeping in

gusty conditions. The static H∞ controllers were developed and tested in the

lab with fan-generated gusts. These controllers may be used in the future

in conjunction with navigation sensors to develop on-board station keeping

capabilities.
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7.2 Summary

The work of this thesis included system identification of micro-helicopters,

including model structure development, data collection, and parameter estimation;

comparison and analysis of the bare airframe properties, including comparing the

natural motions of the vehicles, as well as the bare airframe gust tolerance and

maneuverability properties; and developing model-based controllers to stabilize the

helicopters for station-keeping in gusty conditions. The key methods and findings

are as follows.

7.2.1 System Identification

Developing a model for a vehicle has two major motivations: understanding the

physical characteristics of its dynamics and providing a framework for model-based

control. For developing the model structure of the flybar and flybarless helicopters,

kinematics and rigid-body equations of motion were first considered. Linearized

force and moment contributions from control inputs, gravity, and aerodynamics were

included as control and stability derivatives. The flapping dynamics of the rotors

were then incorporated into the model. A flapping-flybar lumped model proved

inadequate, so additional states were also added to model the flybar mechanism for

the flybar helicopter. Because of the coupling between the lateral and longitudinal

dynamics, exciting both directions simultaneously with orthogonal inputs to both

swashplate servos provided the best data for iterating the parameter estimation

routine. This was pivotal, as the model was not converging with more traditional
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data collection techniques. Because the most common frequency domain parameter

estimation techniques do not handle data from two primary inputs, the output error

routine from the SIDPAC toolbox was used. The final model parameters for both

the flybar and flybarless helicopters had acceptable Cramer-Rao lower bounds and

normalized root mean square values.

7.2.2 Bare Airframe Characteristics

Analysis and comparison of the bare airframes was approached first through

analysis of the vehicle’s modes, and then through the perspective of reachability

and disturbance sensitivity ellipsoids. Modal analysis included an examination of

the pole locations for each helicopter, as well as the corresponding eigenvector direc-

tions. The change in modes was also examined for models where the flybar inertia

term is reduced. The findings showed that the flybar decouples the rotational and

translational dynamics at low frequencies. The flybar helicopter is a stable system,

whereas the flybarless helicopter has a RHP eigenvalue pair.

A method for determining reachability and disturbance sensitivity ellipsoids for

unstable systems was presented. This was particularly important for assessing the

bare airframe properties of the unstable flybarless helicopter. A comparison of the

reachability ellipsoids showed that the flybarless helicopter has an advantage over the

flybar helicopter in the translational velocity states u and v. The reachability of the

helicopters in the p and q direction were comparable. The results of the disturbance

sensitivity ellipsoid analysis likewise showed that the flybarless helicopter had more
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gust tolerance, especially with respect to the longitudinal directions.

7.2.3 Robust Analysis and Model-Based Control

Lastly, control laws were designed for the two helicopters and tested in the lab

with a box-fan gust. A staticH∞ controller was selected for gain selection because it

is especially suited for implementation on the mote and is designed to reject model

disturbances. An inner-loop controller was designed for the flybarless helicopter.

An examination of S and T singular values showed that this controller had good

gust rejection properties up to ≈ 18 rad/s and good tracking between 1 rad/s and

10 rad/s. The RGA values show that the inner loop controller also helps decouple

off-axis inputs and outputs.

An outer loop controller was also developed using static H∞ gain selection.

The outer loop controller was examined from the perspective of the singular values

of the open loop transfer function GK. Both controllers showed good gust rejection

and tracking properties up to ≈ 17 rad/s. The models were simulated with a gust

input to ensure that actuator limits were not saturated with the control law.

Lastly, the controllers were tested in the lab with gusts ranging from 0.5 to 2

m/s. The results for these tests showed the flybarless helicopter performed better

than the flybar helicopter.
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7.3 Future Work

The development of robust Micro Air Vehicles capable of navigating and ma-

neuvering through complex environments is an exciting prospect. The applicatons

are numerous, ranging from military operations, planetary exploration, or search-

and-rescue missions. The future work recommended here uses the current work as

a springboard for accomplishing autonomous, robust micro-helicopter designs.

First, a full model of the vehicle needs to be developed, which would include

heave and yaw dynamics. These dynamics are also affected by gust disturbances,

and the extent of this should be quantified. The recommended vehicle for starting

the updated model is the Walkera Genius, which is designed with collective pitch.

Compared to the adjustable speed motors on the current helicopters, collective pitch

will quicken the response of the heave dynamics. The Genius is also smaller than

the current flybarless helicopter, weighing only 35 g. Additionally, a model should

be examined for the forward velocity flight condition. This may be more difficult

to develop given the space restrictions of the Vicon system. The current model

should provide adequate initial conditions, so large data sets may not be required

for the data collection maneuvers. A forward flight model would aid in developing

algorithms for trajectory tracking.

Next the nagivation and maneuvering capabilities of the vehicle needs to be

developed. A starting point for this would be to equip the vehicles with optic flow

sensors. The sensors are both small and lightweight enough to fit several on the

vehicle. Optic flow has the potential of providing information for station-keeping,
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obstacle detection, and state estimation. With the optic flow sensors, the helicopters

should easily be capable of navigating a corridor and hovering near an open window

or under a ceiling fan.

Last, as more models are developed for MAV platforms, the gust tolerance and

maneuverabilty advantages of each vehicle can be compared with a metric based on

the ellipsoid analysis. To compliment this study, data should be collected on the

frequency content, intensities, and directions of typical building or urban gusts. The

vehicles can then be developed for the particular environments for which they are

best suited. MAVs that are currently being modeled at the University of Maryland

include helicopters, quadrotors, ducted fans, and cyclocopters.
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