

ABSTRACT

Title of Document: IMAGE GEOLOCATION THROUGH

HIERARICHAL CLASSIFICATION AND

DICTIONARY-BASED RECOGNTION.

 Michael William Jones, M.S., 2012

Directed By: Professor Rama Chellappa, Department of

Electrical and Computer Engineering

 Image geolocation, estimating GPS coordinates from an image, is a relatively

new endeavor in the field of computer vision. This thesis presents two approaches to

obtain the coordinates: hierarchical and dictionary-based. The hierarchical approach

uses SVMs to first determine the general environment of the image and then

estimates the exact location within that environment. The dictionary-based

approaches are performed with linear and non-linear dictionaries using K-SVD and

KK-SVD. Both methods are performed on the image feature gist and histograms of

the image's color, SIFT descriptors, textons, and lines. Both the hierarchical and

dictionary-based approaches build upon and combine existing systems to provide

improved accuracy on a data set of twelve locations belonging to four environmental

types.

IMAGE GEOLOCATION THROUGH HEIRARCHICAL CLASSIFICATION AND

DICTIONARY-BASED RECOGNTION

By

Michael William Jones

Thesis submitted to the Faculty of the Graduate School of the

University of Maryland, College Park, in partial fulfillment

of the requirements for the degree of

Masters of Science

2012

Advisory Committee:

Professor Rama Chellappa, Chair

Professor Larry Davis

Associate Professor Jonathan Simon

© Copyright by

Michael William Jones

2012

 ii

Acknowledgements

I would like to thank my advisor, Dr. Rama Chellappa for his guidance and support

throughout my time at the University of Maryland. I am also grateful to Dr. Jonathan

Simon and Dr. Larry Davis for their advice and for being on my defense committee.

For her assistance with technical issues that arose in the course of this project, I

would like to thank Priyanka Vageeswaren. Finally, I would like to express my

gratitude towards my parents for their love and support. Thank you for giving me a

chance to improve myself throughout all my walks of life.

 iii

Table of Contents

Acknowledgements ... ii

List of Tables .. v
List of Figures .. vi
Chapter 1: Introduction ... 1

1.1 Problem Formulation .. 1
1.2 Previous Work .. 3

1.2.1 IM2GPS ... 3
1.2.2 Mapping the World's Photos .. 4

1.3 Proposed Systems ... 5
1.3.1 Hierarchical Classification Based System ... 6
1.3.2 Dictionary-Based Recognition System .. 8

1.3.3 Image Features ... 9

1.4 Outline of Thesis ... 10
Chapter 2: Image Features .. 11

2.1 Pre-Processing... 11
2.1 RGB .. 11
2.2 Gist .. 12

2.3 SIFT .. 13
2.4 Texton ... 14
2.5 Lines .. 15

Chapter 3: Support Vector Machines Method .. 17
3.1 Support Vector Machines ... 17

3.1.1 Problem Formulation ... 17

3.1.2 Linear Support Vector Machines ... 18

3.1.3 Non-Linear Support Vector Machines ... 20
3.2 Classifier Creation .. 20

3.2.1 Aggregation.. 22
3.2.1 Normalization .. 22

3.3 Alternative Classifier Creation ... 23

3.4 Hierarchical Structure ... 24
Chapter 4: Dictionary-Based Method ... 27

4.1 Linear Dictionary Learning ... 27
4.1.1 Problem Formulation ... 28
4.1.2 Class Specific Dictionaries .. 28
4.1.2 K-Singular Value Decomposition (K-SVD) .. 29
4.1.3 Image Classification... 30

4.2 Kernel Dictionary Learning .. 31
4.1.2 Kernel KSVD (KKSVD) ... 32

4.1.3 Image Classification... 35
4.3 System Structure of Dictionary-Based Method .. 35

Chapter 5: Image Dataset .. 37
5.1 Flickr ... 37
5.2 Image Screening.. 37
5.3 Image Categories .. 39

 iv

5.3.2 Coast .. 40

5.3.3 Forest.. 40
5.3.4 City ... 41

5.4 Mean-Shift .. 41

Chapter 6: Experimental Results .. 44
6.1 Support Vector Machine Method.. 44

6.1.1 Performance Across Database Sizes .. 44
6.1.2 Performance Across Features .. 46
6.1.3 Performance Without Environmental Classifiers 49

6.1.4 Alternative Classifier Performance .. 50
6.1.4 Overall Performance .. 51

6.2 Linear Dictionary-Based Method ... 53
6.3 Non-linear Dictionary-Based Method... 55

6.3.1 Performance Across Database Sizes .. 55
6.3.2 Performance Across Features .. 56

6.3.3 Overall Performance .. 59
Chapter 7: Conclusions ... 61

7.1 Comparison Between Methods ... 61
7.2 Improvements to Geolocation ... 63

Chapter 8: Future Work .. 64

8.1 Additional Locations ... 64
8.2 Additional Image Features .. 64

8.2 Multi-Scale Recognition ... 65
8.3 Automatic Image Screening .. 65

Bibliography ... 67

 v

List of Tables

Table 1.1: List of environmental classifiers and locations. .. 7

Table 6.1: Hierarchical accuracies from hierarchical geolocation system. 53

Table 7.1: Comparison of results between all recognition systems. 61

 vi

List of Figures

Figure 1.1 High level diagram illustrating the overall structure of the hierarchical

classification and dictionary-based recognition methods. .. 6

Figure 3.1 Depiction of hyperplane separating two classes in two dimensions. 18

Figure 3.2 Structural diagram for an alternative classifier creation structure............. 23

Figure 3.3 Structural diagram showing how a test images environment was predicted

using the hierarchical system. ... 25

Figure 3.4 Structural diagram showing how a test image's location was predicted for

the desert locations using the hierarchical system. ... 26

Figure 4.1 Structural diagram showing how a test images location was predicted

using the dictionary-based system. ... 36

Figure 5.1 Examples of rejected images and accepted images. 38

Figure 5.2 Example images of the three desert locations. .. 40

Figure 5.3 Example images of the three coastal locations. ... 40

Figure 5.4: Example images of the three forest locations. .. 41

Figure 5.5 Example images of the three cities. ... 41

Figure 5.6 Image showing the GPS locations of the images downloaded from Flicker

as red dots. .. 43

Figure 6.1 Performance across database sizes using the hierarchical SVM method. . 45

Figure 6.2 Accuracy across features using the hierarchical SVM method. 47

Figure 6.3 Hierarchical accuracy across features for the hierarchical method. 48

Figure 6.4 Confusion matrix produced by withholding hierarchical classifiers. 49

Figure 6.5 Confusion matrix produced using hierarchical classifiers......................... 52

Figure 6.6 Confusion matrix produced using linear class specific dictionaries. 54

Figure 6.7 Performance across database sizes using the non-linear dictionary method.

... 56

Figure 6.8 Overall accuracy across features using non-linear dictionary-based

recognition. ... 58

Figure 6.9 Confusion matrix produced using non-linear class specific dictionaries. . 60

 1

Chapter 1: Introduction

 Image geolocation, estimating a global position system (GPS) coordinates

from a single image, is a relatively new endeavor in the field of computer vision.

Solutions have recently become possible due to the availability of large data sets from

photo sharing websites like Flickr, where users can upload personal pictures to the

internet and tag the image with the latitude and longitude where it was taken. These

websites give permission to developers to download images, which provides millions

of images to train and test different solutions.

 In this introduction the problem of image geolocation is first formulated.

Next, two previously existing systems are examined. An overview of the designed

system that was constructed is discussed. Lastly, an outline of the remainder of this

thesis is given.

1.1 Problem Formulation

 Image geolocation seeks to provide an estimate of latitude-longitude

coordinates of a digital image based only on the image content. In the past, these

coordinates have been estimated by gathering thousands to millions of images and

training a system by comparing test images to images with known GPS coordinates.

Additionally, because there are an infinite number of ways a photograph can be taken

in any location on Earth, there must be constraints on the desired precision to make

the size of the problem reasonable.

 The desired precision of the estimate of the photographs' locations can be

attained at different levels. For example, the exact coordinates of where an image is

 2

taken can be estimated down to a very small range, such as a specific landmark, or to

a wider range, the scale of a city or national park. Because there are many different

ways a photo can be taken of a single landmark due to varying conditions (daylight,

night), numerous pictures are required to provide a system with a complete

representation of the landmark. Similarly, a city or national park can be thought of as

a collection of landmarks, requiring even more images to gain a complete

representation of the larger area.

 For this thesis, the city/national park level of accuracy was estimated. This

estimation allowed testing of a variety of locations, ensuring the system worked in

different environments. It will be shown later that a finer estimate of location can be

added to provide landmark scale accuracy. In addition to the city/national park level

of accuracy, only twelve different locations in the United States were chosen.

 Several constraints were placed on the images. The first constraint was that

only outdoor images could be used. The second was that blurry or out of focus images

were eliminated. The third was that images showing very little of the surroundings,

like close-ups of individuals, were not included. The fourth was that images with

incorrectly tagged GPS coordinates were not included. These constraints are similar

to those imposed on previous experiments and are necessary to ensure that only

usable images were included in the experiment [1, 2].

 Another aspect of some of the photos is the presence of textual tags. These

textual tags are added by the photographer to describe the object in the image, like

where the image was taken or what type of camera was used. For this experiment,

 3

these textual tags were ignored so that only non-textual image data influenced the

system.

1.2 Previous Work

Two previous systems have been created to perform image geolocation.

1.2.1 IM2GPS

 One of the earliest systems that attempted to perform image geolocation was

developed by Hayes and Effros [1]. Their system began with an initial gathering of 6

million GPS-tagged images from the website Flickr. From each image they extracted

the following set of features:

1. 16 x 16 pixel color images

2. Color Histogram

3. Texton Histogram [3, 4, 5]

4. Line Histogram [6, 7]

5. Gist Descriptor [8]

6. Geometric Context

These features, which will be discussed in Chapter 2, were concatenated together to

form a long vector and stored with the GPS coordinates of the image in a database.

 Following the extraction of features for each test image, K-nearest neighbors

was used to find K images in the database. Different distance metrics were used for

each feature. Finally, mean-shift was performed on the GPS data of the K images to

estimate a GPS coordinate for the image.

 Overall, this approach yielded an accuracy of about 15%, where an accurate

estimate is a test image whose GPS coordinate has been estimated to be within 200

 4

km of its true location. When compared to random chance, guessing a random

latitude and longitude point on the globe, their estimate performed around 30 times

better. In addition to their experiments, they determined that the 16 x 16 pixel color

images and geometric context features were not geographically discriminative.

Furthermore, they determined that the size of their database greatly impacted the

accuracy of their system, with an accuracy of around 1% for a database of 900 images

and 16% for a database of 6.3 million images [1].

1.2.2 Mapping the World's Photos

 The second system developed in 2009 by Crandel et al. Developed after the

system described in "IM2GPS," their system took an alternate approach and utilized

support vector machines (SVM) instead of the nearest neighbors. Their system

provided a useful backbone to inspire the work done in this thesis.

 Their system begins with mean shift being performed on image GPS data to

find locations with many images. They used a set of 35 million pictures downloaded

from Flickr. From their paper it is unclear whether any manual processing was done

to remove useless pictures from their dataset. After mean shift was performed, they

selected the K largest clusters to become the classes used in SVM and ignored the

pictures not belonging to these clusters. Following class selection, the shift invariant

feature transform (SIFT) was performed on each image [9]. The outputs of SIFT were

quantized into 1000 keywords using K-means. Next, a 1000-dimensional histogram

was created to indicate how often each of the keywords appeared. Finally, a SVM

was created on the SIFT histograms for each of the K clusters. The SVM indicated

whether a test image did or did not belong to the cluster associated with that SVM.

 5

 It is important to know that in addition to using the visual features from SIFT,

textual tags were also used in their algorithm. However, despite their use, they also

included results using SIFT features alone. In addition, it is significant that this

system was only implemented on city pictures.

 Their system was implemented on both the landmark and city scale. They

found that on the city scale, recognition was around 40% for the ten largest clusters.

In a 25-way landmark test in the top ten clusters, the recognition was 23.56% or 5.9

times better than chance. In a 50-way landmark test, the recognition was 14.40% or

7.2 times better than chance. Additionally, they performed a city scale test and found

that recognition was 12.72%. It is important to note that their experiment does not

indicate how many cities were used, so it is not known how their recognition rate

compared to chance [2].

1.3 Proposed Systems

 All of the systems proposed by this thesis follow the same overall structure

but differ in how classification is performed. They both begin by performing mean-

shift on the GPS coordinates to group the images into clusters and provide labels for

the images. While labeling occurs, a set of image features are extracted from the

images and then aggregated, normalized, and combined. The image features and their

labels are used to form classifiers or dictionaries that are used to predict the GPS

coordinates of a test image based upon its image features. This process is shown in

Figure 1.1.

 6

Figure 1.1 High level diagram illustrating the overall structure of the hierarchical classification

and dictionary-based recognition methods.

1.3.1 Hierarchical Classification Based System

 The basic idea behind the first system proposed in this thesis is relatively

simple: the pictures are first sorted by their environmental type and then sorted again

by locations within that environmental type. For example, if the system encountered

an image from Death Valley National Park, a set of classifiers would classify the

image as a desert image. After being classified as a desert image, another set of

 7

classifiers representing desert locations would then determine that the image was an

image from Death Valley. It is possible to create many different environmental

classifiers, such as desert, coastal, city, forest, mountaintop, river, and plain. For this

experiment, the environmental classifiers chosen were desert, coastal, forest, and city.

For each environmental classifier, three locations were chosen. These locations are

shown in Table 1.1.

Table 1.1 List of environmental classifiers and locations.

Environmental

Classifiers
Locations

Desert

Grand Canyon National Park

Death Valley National Park

Bryce Canyon National Park

Coast

Acadia National Park

Cannon Beach, Oregon

Outer Banks, North Carolina

Forest

Yellowstone National Park

Olympic National Park

Shenandoah National Park

City

New York

San Francisco

New Orleans

 The hierarchical structure created by classifying the images by their

environmental type allows for finer differences in appearance to be determined

between locations of the same environmental type. This occurs for two separate

reasons. The first reason is that when the features for the images are obtained, vector

quantization is often necessary to create a histogram of the information. Through K-

means, K vectors are created to represent the vectors. When K-means is only

 8

performed on feature vectors from desert images, a set of K vectors representing

desert features are created. This allows the system to exclude vectors from the city,

forest and coast when determining which vectors best represent the desert features.

The second reason is that when the location classifiers are created, they are trained on

only locations of that type. This allows for more focused classifiers that can ignore

the influence of images from locations not belonging to their environment.

 The disadvantage of using a hierarchical structure is that if the environmental

classifiers perform poorly, the entire system will suffer. This poor performance is due

to errors propagating through the system attributable to wrong initial choices. For

example, if a forest image is incorrectly labeled as a desert image, nothing can be

done to estimate its true location. Therefore, it is imperative that the initial classifiers

are very accurate.

 The hierarchical classification based system's classifiers were created using

SVMs. The specifics of this method are explained in Chapter 3.

1.3.2 Dictionary-Based Recognition System

 The second proposed system was built upon the dictionary-based recognition

system proposed by Ngyuen et al. in [10]. Instead of using a hierarchical approach,

pictures were only sorted by their location. Using the same twelve locations specified

in Table 1.1, a location specific dictionary was created. The location specific

dictionaries were then used to create an approximation of a test image using a sparse

combination of atoms. The location specific dictionary producing the approximation

with the lowest reconstruction error was then chosen as the predicted location.

 9

 While this system could be extended to follow a hierarchical structure,

preliminary evaluations determined that the same hierarchical structure used in

Section 1.3.1 did not significantly improve accuracy. Additionally, the long

computation times required to create dictionaries consisting of many locations using

cross-validation and a parameter search rendered a hierarchical structure impractical.

However, despite not using a hierarchical structure, by combining results across

locations of the same environment, the environmental classification of the dictionary-

based system was comparable to the hierarchical classification system.

 The specifics of the location specific dictionaries are explained in Chapter 4.

1.3.3 Image Features

For the both systems, the following features were extracted from the images:

 Gist Descriptor

 SIFT Histogram

 RGB Histogram

 Texton Histogram

 Line Histogram

These features, which will be discussed in Chapter 2, were concatenated together to

form a long vector for each image. Following the extraction of features, classifiers

were trained for the environmental classifiers and location classifiers using the SVMs

and non-linear class specific dictionaries.

 10

1.4 Outline of Thesis

 The remainder of this thesis is organized as follows. Chapter 2 discusses the

features and processing done on the images. Chapter 3 covers the hierarchical-based

approach. Chapter 4 describes the dictionary-based approach. Chapter 5 details the

image dataset that was collected. Chapter 6 covers the experimental results. Lastly,

Chapter 7 presents the conclusions and Chapter 8 suggests future work.

 11

Chapter 2: Image Features

2.1 Pre-Processing

 All images were initially processed to reduce their dimensions. Images were

resized so that their minimum dimension, either the height or width, was a maximum

of 700 pixels. This step was done to reduce the amount of computations required to

compute the features and reduce the storage space. This resizing is justifiable because

both of the previous systems, "IM2GPS" and "Mapping the World's Photos,"

performed dimensionality reduction and found no significant reductions in accuracy

[1, 2].

 Dimensionality reduction was performed in MATLAB, and after pre-

processing the images were stored together. Their file information and GPS locations

were stored in a binary file for quick access.

2.1 RGB

 The simplest features that can be extracted are red-green-blue (RGB)

histograms. Since images are typically stored in three channels, either red, green, or

blue, a histogram of the information could be easily taken. For each image, three,

sixteen bin histograms were created, one histogram for each color. The three

histograms were then concatenated together to form a 48-dimensional vector. The

histograms were precomputed and stored in individual files so that a histogram of an

image was computed only once.

 The code for the RGB histograms was written in C++ using OpenCV.

 12

2.2 Gist

 In the same way as done in "IM2GPS", the gist descriptor developed by Olvia

and Torralba was used as a feature [1, 8]. The gist descriptor is essentially what its

name implies, the general gist of the scene one might understand when squinting at

the image. More technically, instead of looking at individual objects that compose the

image, the information describing the global shape of the image is sought. The

descriptor is built by first dividing the image into a grid. Next, each section of the grid

is filtered by a bank of Gabor filters at different orientations and scales. From the

result of the filter bank the energy is used to represent that particular grid location,

filter orientation, and scale.

 The gist descriptors used in the experiment were constructed by first resizing

the image to a 256 by 256 pixel image. Then, the image was divided into a six by six

grid. In each section of the grid, the locations were filtered by a bank of Gabor filters

with eight orientations and four scales, producing a 1152-dimensional vector.

 The gist descriptor was implemented through a combination of C++ and

MATLAB. The MATLAB code used to compute the descriptor was taken from

Olivia's website and compiled into an executable file to be accessed by C++ [8]. The

gist descriptor for each image was stored in a binary file so it only needed to be

computed once.

 13

2.3 SIFT

 In the same way as the system Crandel et al. designed a histogram of scale-

invariant feature transform (SIFT) descriptors was created for each image [2, 9]. This

image feature takes the opposite approach of gist. Instead of taking a global scene-

level look at the image like gist, a histogram of SIFT descriptors represents the image

as a collection of important points.

 SIFT was developed in 1999 by Lowe [9]. In the algorithm, keypoints in an

image are extracted, and a 128-dimensional feature vector is used to represent the

information at that keypoint. The keypoints are found by filtering the image through

a bank of Laplacian of Gaussian filters at different scales. From these filtered

versions, extrema are located in both the spatial and scale dimensions and identified

as points of interest. Next, points in areas of low contrast and along edges are

removed. The remaining points are labeled as keypoints, and a descriptor is built for

each keypoint that is invariant to location, scale, and rotation.

 A histogram was created for each image by first representing its particular

descriptors by a collection of 1000 representative descriptors. This was accomplished

by sampling 40,000 descriptors from the training images involved in a particular

classifier. Then, K-means++ was used to find 1000 representative descriptors for the

entire set of 40,000 descriptors [11]. Next, a 1000-dimensional vector was created to

represent the image where each bin represent one of the 1000 descriptors computed

through K-means. The bin's value corresponds to how many descriptors in the image

are closest to the bin's descriptor. Following this step, the histogram was normalized

 14

by its L
1

norm so that images of smaller dimensions with less keypoints were not

underrepresented.

 The SIFT descriptors were implemented in C++ using OpenCV. The

descriptors for each image were stored in a binary file so the individual SIFT

descriptors only needed to be computed once.

2.4 Texton

 Using the same method as in"IM2GPS," a texton histogram was used as an

additional image feature. This image feature is intended to provide a representation of

the kinds of different textures present in an image. Potentially, this feature is useful

for distinguishing between images with different types of foliage, building material,

and types of rocks.

 The term texton was first introduced by Julesz and later used as a vector by

Leung and Malik [3, 4, 5]. To compute the textons of an image, the image is filtered

by two banks of filters: Gaussian second derivative filters and Hilbert transforms of

the Gaussian second derivative filters. Each of the filters had six orientations, two

scales, and two elongations. Next, each pixel in the image was represented by a 48-

dimensional vector where each dimension represented the output of a particular filter,

orientation, scale, and elongation. Once the textons were computed, a histogram was

created in the same way as the SIFT histogram. 100,000 textons were randomly

sampled from the collection of training images associated with a particular classifier

or set of dictionaries, and K-means++ was performed to select a set of 512

representative textures that were used to represent the textons in an individual image

[11].

 15

 The texton descriptors were implemented in C++ and MATLAB. The

MATLAB code to compute the individual textons was taken from the publicly

available code on David Martin's website and was compiled into an executable file to

be accessed by C++ [5]. To reduce computations, a maximum of 20,000 randomly

sampled textons were created and stored in a binary file.

2.5 Lines

 The final image features used to represent the images were histograms of line

lengths and angles. The relative lengths of lines between manmade and natural

images were helpful in distinguishing between these two types of images. These

histograms were created in the same way as done in "IM2GPS:" through the use of

the method described in "Video Compass" [1, 6].

 To compute the line lengths and angles in an image, the image derivatives are

calculated, followed by Canny Edge detection for non-maximum suppression. Next,

the gradient direction is quantized into eight ranges and all edge pixels are labeled

according to these ranges. Then, connected edges with the same label are grouped

together to form a line support region. For each line support region, the eigenvalues

and eigenvectors are calculated from the scatter matrix of the pixel coordinates.

Finally, the line length and angle are determined by Eq. 2.1 and Eq. 2.2.

 (2.1)

 (2.2)

In these equations, and are the mid-points in the line segment. Once all of the

line parameters for an image were computed, 4000 line lengths were randomly

sampled from the collection of training images associated with a particular classifier

 16

or set of dictionaries. K-means++ was then performed on the 4000 line lengths to

select 50 representative line lengths that were used to represent the line lengths in an

individual image [11]. The same process was performed for the line angles so that

two 50-dimensional vectors were created for each image.

 The line descriptors were implemented in C++ and MATLAB. The MATLAB

code used to compute the individual line lengths and angles was taken from the

publically available code on Li's website and was compiled into an executable file to

be accessed by C++ [7]. To reduce computations, the lines were calculated and stored

in a binary file.

 17

Chapter 3: Support Vector Machines Method

3.1 Support Vector Machines

 Support vector machines (SVM) are commonly used to create a linear

discriminant function to classify data. The major difference between SVM and other

discriminant functions, like Fisher's linear discriminant analysis (LDA), is that SVM

has the capacity to map the data into a higher dimension and construct a hyper plane

for this dimension to separate the data. In other words, SVM is a linear classifier in a

higher dimension than the original data. This difference allows for SVM to create

curved decision boundaries if they are realized in the lower dimension, giving SVM

more flexibility and improved accuracy.

3.1.1 Problem Formulation

SVMs follow a common pattern recognition problem formulation:

 Images are organized into a set of training vectors and testing vectors, of

dimension .

 The training vectors are written as and the set of testing

vectors are written as .

 The vectors belong to one of two classes, or .

With the training vectors, a hyperplane is created to separate the classes. Figure

3.1 is an example.

 18

Figure 3.1 Depiction of hyperplane separating two classes in two dimensions. The classes are

marked as either filled or empty circles, and the hyperplane is marked as a dotted line.

3.1.2 Linear Support Vector Machines

 SVM seeks to find a solution to Eq. 3.1:

 (3.1)

Where , is the normal vector to the hyperplane, and

 determines the

offset of the hyperplane from the origin. When the data is linearly separable, SVM

seeks to maximize the distance of the values to the hyperplane, which is equivalent

to maximizing and minimizing .

 Next, the problem can be formulated with Lagrange multipliers , with the constraint

 .

 (3.2)

Since the objective function is a quadratic function, can be maximized with the

constraint that the gradient of , with respect to and , vanish and . This

maximization produces the dual problem with the new constraints:

 (3.3)

 (3.4)

 19

 Substituting Eq. 3.3 and 3.4 into Eq. 3.2 gives Eq. 3.5:

 (3.5)

Once solved, the set of Lagrange operators will be either positive numbers or zero.

Operators not equal to zero will correspond to data vectors that rest on the margin of

the hyperplane, termed support vectors. From Eq. 3.3 the vector can be found. The

vector can be found through the realization , for all with

non-zero , the support vectors.

 Once and are known, it is possible to classify the vectors

 through Eq. 3.6 and Eq. 3.7:

 (3.6)

 (3.7)

If Eq. 3.6 is true, is assigned to class +1, and if Eq. 3.7 is true, it is assigned to class

-1. If more than two classes exist, it is possible to build multiple SVMs where each

SVM indicates whether the belongs to a particular class. If there is a conflict and

multiple SVMs indicate that belongs to multiple classes, the SVM producing the

largest distance from the margin is chosen.

 It is important to realize that the data vectors are not always separable.

When this is the case, it is possible to create a soft margin by assigning a regulation

parameter to allow for some vectors to be misclassified. This new formulation is

shown in Eq. 3.8 and Eq. 3.9.

 (3.8)

 (3.9)

 20

Where are slack variables representing the degree of misclassification of each

 .

3.1.3 Non-Linear Support Vector Machines

 SVM can be extended to allow for non-linear decision boundaries. Eq. 3.5

shows that a dot product between and is performed. Therefore, if the original

data is mapped to some higher dimensional Euclidean space , through the mapping

 , the dot product in Eq. 3.5 can be replaced with the kernel given by Eq.

3.10.

 (3.10)

 This kernel is limited to functions that satisfy Mercer's Condition. Some

commonly used kernels include polynomial, radial, and hyperbolic kernels. In this

thesis, the radial basis function (RBF) was used as a kernel.

 (3.11)

 In the case of non-separable variables, this leaves two parameters that must be

found, and . To find the parameters suited to the experiment, the training data was

divided into K non-overlapping subsets. Each subset was used for testing and the

remaining were used for training. For each test, a quadratic grid search can be

performed to find the parameters suited for the data: and .

3.2 Classifier Creation

 To create the data vectors , many different possible image feature

combinations are available. Additionally, it is possible to aggregate and normalize the

features. With five features, each with two to three forms of aggregation and three

 21

forms of normalization, there are over twenty-four thousand combinations.

Furthermore, performing a grid search over 30 parameter possibilities with 12-fold

validation would require the training of around 8.5 million SVMs for each classifier.

With the long computation times involved in creating SVMs, it is not feasible to test

all of the combinations. Therefore, to construct a suitable combination of features,

aggregations, and normalizations, a method similar to the method proposed by Peter

Belhumeur for face recognition was implemented [11, 12]

 To construct the vectors, the followings steps were taken. First, initial vectors

were selected by using all aggregation and normalization combinations of a single

image feature. The initial image feature chosen was the gist feature, with a total of

three aggregation possibilities and three normalization possibilities. With these

vectors, SVMs were trained through grid searches and cross-validation and the vector

producing the highest cross-validation was selected as the initial vector. Next, the

following iterations were performed.

1. An untested image feature was selected and all aggregation and normalization

combinations were created. Next, these vectors were concatenated with the

previous iteration or initialization, using the highest cross validation accuracy.

2. For each of the new lengthened vectors, SVMs were created through grid

searches and cross-validation, and the vector that produced the highest cross-

validation was chosen. If none of the current vectors produced SVMs with

higher cross-validation compared to the previous iteration or initialization, the

current image feature was rejected.

 22

This iterative method reduced the number of combinations to a total of 37 or 11,880

SVMs with grid searches and cross validation for each classifier.

3.2.1 Aggregation

 The features were aggregated three ways if feasible: no aggregation, a

histogram of the data, and the sample mean and variance of the data. For all of the

features, except for gist, performing no aggregation was impractical because the

dimension of the data was too high. The histograms were created through vector

quantization, and the specifics for each feature are outlined in Chapter 2. The sample

mean and variance were calculated for each image feature using Eq. 3.12 and Eq.

3.13.

 (3.12)

 (3.13)

Where is an individual element of an image feature, such as a single SIFT keypoint

descriptor or the output of the set of filters for one location in gist.

3.2.1 Normalization

 The features were normalized three ways after aggregation: no normalization,

mean normalization, and energy normalization. The mean normalization was

performed according to Eq. 3.14.

 (3.14)

Where is calculated according to Eq. 3.12, except over all . Energy

normalization is performed according to Eq. 3.15.

 23

 (3.15)

Where and were calculated according to Eq. 3.12 and Eq. 3.13 except over all

 .

3.3 Alternative Classifier Creation

 An alternate method of classifier creation was used to combine the different

image features. Individual SVMs were created for each image feature to make new

vectors , where

 .

 is the distance from the margin for the

SVM created from the gist image features, and
 is the distance from the margin for

the SVM created from the RGB histogram, etc. Using a separate portion of the

training images, an additional SVM was trained to classify and estimate the

image's location or environmental type [12]. A structural diagram illustrating how

this process is performed is shown in Figure 3.2.

Figure 3.2 Structural diagram for an alternative classifier creation structure. Individual SVMs

for each feature were created, and the results from each SVM were concatenated together and

filtered through a final SVM to predict the class.

 Combining the image features using this method has advantages and potential

disadvantages. An advantage is that this method allows for SVM to determine the

appropriate weightings for the different image features. Additionally, this method

allows for different kernels for each image feature. However, a potential disadvantage

 24

is that the dimensionality reduction enacted by this method can remove structural

properties that exist between image features that can be useful in classifying the

images.

3.4 Hierarchical Structure

 A hierarchical structure was implemented to categorize the images. Many

different categories could be used, such as time of day, items included in the image,

etc. However, in this research environmental types were chosen to separate the

images since the environmental type is easily recognized and correlates highly with

the physical location. Four environmental types were used to divide the images:

desert, forest, coast, and city. While there are many other obvious choices of images,

such as mountains, suburbs, and plains, the four aforementioned types provide

variety.

 The system was assembled by creating an SVM for each environmental type.

Each SVM was constructed from the image features from an equal number of images

representing the environmental type and an equal number representing all other

environmental types. Early in the testing it was observed that increasing the amount

of training images increased accuracy. Therefore, the maximum numbers of training

images were used for each SVM. Additionally, for each SVM, new histograms were

created for the SIFT, texton, RGB, and line features, and these histograms extended

to the testing data. The environmental type was predicted for each test feature by

selecting the environmental type corresponding to the largest distance from the

margin. A structural diagram showing how a test images environment was predicted

is shown in Figure 3.3.

 25

Figure 3.3 Structural diagram showing how a test images environment was predicted using the

hierarchical system. Individual image features (Gist, SIFT, etc.) were only computed once;

however, their histograms were computed for each environment.

 Following the creation of the SVMs for the environmental types, SVMs for

the locations of each environmental type were created. For example, a set of three

SVMs representing three distinct desert locations were computed. Like the

hierarchical SVMs, new histograms were computed for SIFT, texton, RGB, and line

features. This division allowed for greater variation across the histograms of locations

belonging to the same environment. In addition, new histograms were computed for

the testing data for each SVM, resulting in 12 histograms each corresponding to each

location's SVM. After the environmental type was predicted, the test data was then

sent to the location's SVM of the predicted environmental type. The predicted

location was chosen by the SVM producing the largest distance from the margin. A

 26

structural diagram of the hierarchical structure is shown in Figure 3.4.

Figure 3.4 Structural diagram showing how a test image's location was predicted for the desert

locations using the hierarchical system. The individual image features (Gist, SIFT, etc.) were

only computed once, but their histograms were computed for each environment.

 27

Chapter 4: Dictionary-Based Method

 Dictionary-based recognition is another commonly used method to perform

recognition in computer vision. In this method, a representative dictionary is learned

from training data. Later, when new data is encountered, the dictionaries are used for

classification by choosing the dictionary that can reconstruct the new data with the

lowest reconstruction error [13]. These dictionaries can be built from the images

themselves or, if there is too much variation between the images, from features

extracted from the images. Additionally, the algorithm seeks to find create

dictionaries that create low reconstruction error from a sparse representation vector.

Spare representation vectors are sought because if an image belongs to a particular

class, it should be possible to reconstruct it with only a few atoms. Like SVM,

methods exist to reformulate the algorithms to use a kernel and create non-linear

dictionaries which can improve classification accuracy [10].

4.1 Linear Dictionary Learning

 The first dictionary-based method used for recognition was a system similar to

the dictionary-based method proposed by Patel et al. in their paper "Dictionary-based

Recognition Under Variable Lighting and Pose" [13]. In their paper they propose an

algorithm to create class specific dictionaries for face recognition using the algorithm

K-single value decomposition (K-SVD) [14].

 28

4.1.1 Problem Formulation

The problem is formulated as follows:

 We have C distinct classes each with a set of training images, where

 .

 Each training image can have a vector of image features extracted from it to

produce a N-dimensional vector .

 A matrix can be obtained by concatenating the vectors to produce where:

 (4.1)

 Then, we have a test image whose true class is unknown and whose image

features can be extracted to produce an N-dimensional vector .

4.1.2 Class Specific Dictionaries

 For each matrix , we seek to find a dictionary of K atoms
 that

can create an accurate representation of using a set of sparse representation vectors

 . The representation vectors can be combined to form

as shown in Eq. 4.2.

 (4.2)

 29

These two matrixes are found by solving the following optimization problem seen in

Eq. 4.3.

 (4.3)

In Eq. 4.3, the sparsity of the representative vectors
 is capped through the second

half of the equation where counts the number of non-zero elements and is the

maximum amount of non-zero elements allowed.

4.1.2 K-Singular Value Decomposition (K-SVD)

 An algorithm that solves Eq. 4.3 is K-Singular Value Decomposition (K-

SVD) [14]. K-SVD is an iterative algorithm based upon the popular clustering

algorithm K-means. The algorithm begins by initializing the dictionary with K

randomly selected -normalized vectors from the set of training vectors. Next, the

algorithm alternates between a sparse-coding step and a dictionary update step for a

set number of iterations.

 Step 1. Sparse Coding:

In the first step, the dictionary is kept fixed and the optimal
 are found

for each
 in , according to Eq. 4.4.

 (4.4)

Eq. 4.4 is solved using any pursuit algorithm such as matching pursuit (MP)

and orthogonal matching pursuit (OMP).

 30

 Step 2. Dictionary Update:

The second step of the algorithm updates each column of

according to the following steps:

1. First, a set of examples from
 that use a particular atom are

defined. More precisely,
 .

2. Next, the error representation matrix is calculated according to Eq.

4.5.

 (4.5)

In Eq. 4.5

 represents the jth row of .

3. is then restricted by only choosing the columns that correspond to

 to give
 .

4. Finally, SVD is performed on
 . The column

 is set to

the first column of and
 is the first column of multiplied by

4.1.3 Image Classification

 An image feature vector with an unknown label can be classified once the

dictionaries, , are determined from K-SVD. This is done by projecting onto the

span of the atoms of , through the orthogonal projector , defined according to Eq.

4.6.

 (4.6)

Using we can approximate according to Eq. 4.7, and the residual vector

can be calculated according to Eq. 4.8.

 31

 (4.7)

 (4.8)

Then, the estimated class is chosen by selecting the class that produces

the lowest reconstruction error [13]. The selection of the estimated class is shown

seen in Eq. 4.9.

 (4.9)

4.2 Kernel Dictionary Learning

 Like SVM, the dictionary-based recognition scheme shown in Chapter 4.1 can

be extended using the kernel trick to allow for non-linear dictionaries. The second

dictionary-based method follows a strategy similar to the object recognition method

introduced by Nguyen et al. in "Kernel dictionary learning" [10]. It is important to

note that the non-linear method follows the same initial problem formulation shown

in Chapter 4, Section 1.1, except it focuses on only creating a dictionary for one class,

 .

 The dictionary-based recognition is extended to allow for non-linear dictionaries

according to Eq. 4.10. This is done by adapting Eq. 4.4 with the mapping

 , is the dot product space.

 -

 (4.10)

Next, we reformulate our dictionary to be composed of some predefined base

dictionary B, and an atom representation A shown in Eq. 4.11.

 (4.11)

 32

From Eq. 4.11 we allow B, the predefined base dictionary to be . It was shown

in [10] that there exists an optimal solution to Eq. 4.10 using Eq. 4.12.

 (4.12)

From Eq. 4.12 we can rewrite Eq. 4.10 to produce Eq. 4.13.

 (4.13)

Finally, using the identity
 we can rewrite Eq. 4.13 as Eq. 4.14.

 (4.14)

Where is the kernel matrix
 . Since only requires dot

products, Mercer kernel functions can be used like the RBF kernel used in Chapter 3.

4.1.2 Kernel KSVD (KKSVD)

 An algorithm that can solve Eq. 4.13 is Kernel KSVD (KKSVD). Developed

by Ngyuen et al., it follows the same sparse-coding dictionary and dictionary update

process as KSVD but incorporates the kernel matrix to create non-linear

dictionaries [10]. The algorithm begins by initializing the matrix A of Eq. 4.12 by

randomly selecting one element from each column to be 1 and normalizing each

column of to unit norm. Next, the algorithm alternates between a sparse-coding

step and a dictionary update step for a set number of iterations or until some other

stopping criteria is met.

 Step 1. Sparse Coding

In the first step, the matrix A of the dictionary is kept fixed and the sparse

coefficient matrix is found through the algorithm kernel orthogonal

 33

matching pursuit (KOMP). This is accomplished by reformulating Eq. 4.10 to

become N smaller problems as shown in Eq. 4.15.

 -

 (4.15)

Given the matrix A, , and a signal , KOMP seeks to find a

sparse combination of dictionary atoms that represent in the feature space.

 (4.16)

Where is the current representation of the signal and is the current

residual.

1. The first step of KOMP projects the residual vector onto the

dictionary atoms belonging to the set of atoms not belonging to , the

current set of atoms that have been selected shown in Eq. 4.17.

 -

 (4.17)

Where is the i-th column of A, and is defined according to

Eq. 4.18.

2. Then, the algorithm selects a new dictionary atom not belonging to the

set that gives the largest projection coefficient which guarantees the

largest reduction in the approximation error.

3. Following this step, a new is created by projecting the signal

onto the subspace spanned by the selected dictionary atoms

using the Moore-Penrose pseudoinverse. is the set of dictionary

 34

atoms with set indices from .

 (4.18)

4. Finally, a new representation is found from Eq. 4.19.

 (4.19)

Steps one through four are then repeated times.

 Step 2. Dictionary Update

The second step of the algorithm is the updating of the dictionary D,

particularly the matrix A. The approach begins by fixing in Eq. 4.13 and

rearranging the equation to produce to Eq. 4.20.

 -

 (4.20)

Where and are defined according to Eq. 4.21 and Eq. 4.22 respectively.

 (4.21)

 (4.22)

Where is a column of A. Next, the group of indices that correspond to

examples that use atoms of are found according to Eq. 4.23.

 (4.23)

From it is possible to make a matrix of size , where ones are on

 entries and zeros everywhere else. From this result we can define

column-reduced matrixes
 and

 to produce Eq. 4.24.

 -

 (4.24)

Following this step, SVD can be performed to produce the equality 4.25.

 35

 (4.25)

Where and
 . Finally, it is possible to update

according to Eq. 4.26.

 (4.26)

Where is the first column of V and .

4.1.3 Image Classification

 An image feature vector with an unknown label can be classified once the

dictionaries, , are determined from KKSVD [10]. For each test

sample, the reconstruction error a dictionary would produce can be attained through

Eq. 4.27.

 -

 (4.27)

In Eq. 4.27, is calculated using KOMP, as described in Section 4.1.2. Once all

reconstruction errors have been calculated, the class producing the lowest

reconstruction error is chosen.

 (4.28)

4.3 System Structure of Dictionary-Based Method

 Once the dictionaries, , for each class of the locations are created, a new

image from an unknown location is processed as follows:

1. Features Extraction

The first step of the geolocation process is the extraction of image features.

The image feature gist and histograms of RGB data, SIFT descriptors, textons,

and lines are all energy normalized using the sample mean and variance

 36

parameters taken from the training features. Following normalization, the

image features are concatenated together to form a 2762-dimensional vector

 .

2. Reconstruction Error

Following feature extraction, the reconstruction error is calculated using

each according to Eq. 4.8 for the linear dictionary-based method, and Eq.

4.28 for the non-linear dictionary-based method.

3. Location Estimation

Finally, once all reconstruction errors are calculated, the location

corresponding to the dictionary with the lowest reconstruction error is

selected.

This process is summarized by Figure 4.1.

Figure 4.1 Structural diagram showing how a test images location was predicted using the

dictionary-based system.

 37

Chapter 5: Image Dataset

5.1 Flickr

 To acquire images for this thesis, geotagged images from the website Flickr

were downloaded. This was accomplished by utilizing and modifying MATLAB and

Python code developed by Hays [1]. The code takes as an input a list of positive tags,

such as "YellowstoneNationalPark," and a list of tags it would like to exclude, such as

"People", "Party", and "Wedding". Then, a Python script utilized Flickr's API and

searched their server for geotagged images that contained any of the positive tags and

excluded images with any of the negative tags. Once a list of potential images was

found, a MATLAB script attempted to download the images from the list. Certain

images could not be downloaded because the authors of the images had placed

restrictions on who could download their images. Finally, MATLAB stored all of the

extra image data, including the geolocation, in the images files EXIF data.

5.2 Image Screening

 After the images were acquired, a script was used to manually screen the

acquired images. The user was given the option to accept or reject an image. This was

a time intensive process that proved necessary because a large portion of the

downloaded images were either incorrectly tagged or not usable. For example, the

images from San Francisco contained a few thousand blurry images taken at night of

a large outdoor pillow fight. While the event looked exciting, there was little content

in the image that could be used to identify where the images were taken.

 38

 There were many different reasons images were considered to be not usable.

Typically images were rejected because the image was a portrait of a person and the

persons face and body took up more than approximately 75% of the image. Other

common reasons an image was rejected were because the image was taken indoors,

the image was blurry or over-processed with a computer program like Photoshop, or

the image was of an event like a wedding or car show. It is important to note that

while the Python script used to find the geotagged images rejected images with tags

like "Wedding," this required the image to have this tag to begin with. Unfortunately,

it seemed that many people would tag their images with the name of the city and

leave out tags that were helpful in filtering. Examples of rejected and accepted images

are shown in Figure 5.1. The top row contains examples of images that were rejected

(graffiti, food, a duck), and the bottom row contains examples of images that were

accepted (buildings, canyon, bridge).

Figure 5.1 Examples of rejected images and accepted images. Rejected images are on the top

row, accepted images on the bottom.

 39

 Finally, once the images had been screened, the accepted images were

separated from the rejected images. This produced a total of 22,834 acceptable

images out of a total of 88,809 images. Consequently, only 25% of the images

downloaded from Flickr were used for this thesis.

5.3 Image Categories

 For this thesis, four environmental types were chosen: desert, coast, forest,

and city. There are other obvious environmental types that could be chosen, like

mountain tops, grasslands, farmlands, wetlands, and underwater. However, due to the

amount of time it takes to screen images and images from these environments being

less available, only the aforementioned four types were chosen. Additionally, it is

important to note that the four chosen types could be further subdivided into more

precise types, like desert canyons, evergreen forest or deciduous forest to add

additional categories.

5.3.1 Desert

 Three locations from different desert locations were chosen: Grand Canyon

National Park, Death Valley National Park, and Bryce Canyon National Park. After

screening, 2635 photos were found for Grand Canyon National Park, 1565 photos

were found for Death Valley National Park, and 2020 photos were found for Bryce

Canyon National Park. Figure 5.2 demonstrates some of the images of these

locations.

 40

Figure 5.2 Example images of the three desert locations. From left to right: Grand Canyon,

Death Valley, and Bryce Canyon National Parks.

5.3.2 Coast

 Three locations from different coastal locations were chosen: Acadia National

Park, Maine; Cannon Beach, Oregon; and the Outer Banks, North Carolina. After

screening, 1348 photos were found for Acadia National Park, 1365 photos were found

for Cannon Beach, and 2014 photos were found for the Outer Banks. Figure 5.3

demonstrates some of the images of these locations.

Figure 5.3 Example images of the three coastal locations. From left to right: Acadia National

Park, Maine; Canon Beach, Oregon; the Outer Banks, North Carolina.

5.3.3 Forest

 Three locations from different forest locations were chosen: Yellowstone

National Park; Olympic National Park; and the Shenandoah National Park. After

screening, 1737 photos were found for Yellowstone National Park, 1997 photos were

found for Olympic National Park, and 2782 photos were found for the Shenandoah

National Park. Figure 5.4 demonstrates some of the images of these locations.

 41

Figure 5.4: Example images of the three forest locations. From left to right: Yellowstone,

Olympic, and Shenandoah National Parks.

5.3.4 City

Three locations from different cities were chosen: New York, New York; San

Francisco, California; and the New Orleans, Louisiana. After screening, 2225 photos

were found for New York, 1365 photos were found for San Francisco, and 1681

photos were found for the New Orleans. Figure 5.5 demonstrates some of the images

of these locations.

Figure 5.5 Example images of the three cities. From left to right, New York, San Francisco, and

New Orleans.

 5.4 Mean-Shift

 While twelve geographically distinct locations were chosen for this thesis, the

mean-shift clustering algorithm was performed on the GPS data of the images [11].

This step was done to simulate situations where the most photographed locations

might not be as known. Additionally, mean-shift was necessary to remove any images

that were tagged as being from a location but their GPS location indicated they were

 42

from somewhere else. For example, an image could be tagged "deathvalley" with a

GPS tag from Las Vegas.

 Mean-shift was used to estimate the modes of the GPS data. Like "Mapping

the World's Photos," mean-shift was chosen because it does not require any prior

knowledge of the number of clusters and instead uses a bandwidth parameter to

control the resolution of the clusters. For example, the bandwidth parameter can be

decreased so that the locations of highly photographed landmarks can be determined,

or the bandwidth can be increased so that the locations of highly photographed cities

and national parks can be determined.

 Mean-shift is an iterative algorithm that uses the gradient estimate to update

itself, stopping when it reaches a mode, a zero gradient. The algorithm begins by

selecting an initial GPS location, , and then calculates according to Eq. 5.1.

 (5.1)

Where are the data values, g is the weight which corresponds to a kernel function,

and h is the bandwidth. Next, the procedure updates using Eq. 5.2.

 (5.2)

For each initial location, the algorithm is run for a fixed number of iterations or runs

until the changes in are negligible. For this thesis, a maximum of 200 iterations

were performed, and the bandwidth parameter h was set to 0.6. It is important to note

that within the uniform kernel, distance was computed between latitude longitude

points instead of performing a distance calculation through the Haversine or

Vincenty's formula. This decision was made because the resolution of the clusters

was relatively small compared to the size of the earth and none of the locations were

 43

close to the North or South Poles. Additionally, the algorithm was sped up by

bucketing the images and only updating the gradient with images from neighbor bins.

 Many initial location seeds were performed to find the twelve largest modes

of the experiment. As expected, these modes directly corresponded to the twelve

locations listed earlier in this chapter. Once the twelve largest modes were

discovered, all of the downloaded images were labeled according to the mode they

were closest to. However, if an image was over 200 km away from a mode, it was

removed from the experiment. An image showing the GPS locations of the collected

images can be seen in Figure 5.6.

Figure 5.6 Image showing the GPS locations of the images downloaded from Flicker as red dots.

Example images of each cluster are also shown and their cluster center is indicated.

 44

Chapter 6: Experimental Results

 Sections 6.1, 6.2 and 6.3 contain the experiments that were performed to test

the two geolocation algorithms. It is important to note that in all experiments the

same set of testing images were used to allow the results to be comparable across

experiments. The testing set was created by selecting 100 images from each location

and keeping these images isolated from the remaining images so that they would not

influence histogram creation and K-means whenever it was performed.

6.1 Support Vector Machine Method

6.1.1 Performance Across Database Sizes

 The first test was conducted to determine how the database size affected the

overall accuracy and the hierarchical accuracy. To perform this task efficiently, 100

images per class were selected as test images, and 1,200 images per class were

selected as training images. 1,200 images per class were selected because 1,301 was

the maximum number of images each class could have without creating an imbalance

of images per class.

 Once the 1,200 images per class were selected, the experiment was set up

using different training sizes. This step was accomplished by first extracting image

features and creating histograms for the SIFT, RGB, texton, and line image features.

Next, a random selection of training images were selected to form training sets of 50,

100, 150, 200, 300, 400, 500, 600, 800, 1,000, and 1,200 images per class. Then,

hierarchical and location classifiers were generated according to Section 3.2, using

10-fold cross-validation and 2,500 iterations per SVM. Finally, the test images were

used to compute the overall and hierarchical accuracies.

 45

 The results for these tests are shown in Figure 6.1. The overall accuracy is

shown by a red, solid line and the hierarchical accuracy by a dotted, blue line. The

graph demonstrates that as additional training images are incorporated into the

classifier creation, accuracy improves. It is also interesting to note that the

hierarchical classifiers require fewer images per class to perform well, with greater

than 70% accuracy at 50 images per class. Additionally, increasing the number of

training images from 50 to 1,200 images per class only increases hierarchical

accuracy 13%, while the overall accuracy increases 22%.

Figure 6.1 Performance across database sizes using the hierarchical SVM method. The overall

accuracy (red line) and the hierarchical accuracy (dotted blue line) were computed for different

database sizes. The database sizes represent how many images per location were selected for

training the SVM classifiers.

 Additionally, observe that at around 600 training images per class the amount

of additional accuracy added by incorporating additional images begins to reduce.

 46

This observation was utilized in the following experiment due to the long

computation times required to create the SVMs.

6.1.2 Performance Across Features

 The second test was conducted to determine how the different image features

affected the overall and hierarchical accuracies. Classifiers were created using each

image feature on its own to reveal how well they could perform geolocation.

Furthermore, classifiers were generated by withholding an image feature from the

classifiers to expose how the lack of an image feature impacted the accuracy.

 For efficiency, 100 images per class were selected as test images, and 600

images per class were selected as training images. 600 images per class were selected

as training images because the experiment described in 6.1.1 indicated that adding

additional images did not significantly impact the accuracy of the classifiers.

 Once the 600 images per class were selected, the experiment tested each of the

features individually. First, the image features for the SIFT, RGB, texton, and line

image were extracted. Next, each feature was used in isolation to create the

hierarchical and location classifiers. Once the set of individual feature classifiers was

created, a set of five additional classifiers were formed by withholding an image

feature. Instead of using the classifier creation algorithm described in Section 3.2,

only energy normalization was performed on the data. Additionally, no aggregation

was performed on the gist data, and histogram aggregation was performed on the

remaining image features. This decision was made to reduce the overall time required

to conduct the experiment and to avoid a feature being left out. Furthermore,

preliminary tests established that the aforementioned normalizations and aggregations

 47

often performed best. Once the features were aggregated and normalized they were

concatenated together. The SVMs were created using 10-fold cross-validation and

2,500 iterations. Lastly, the test images were used to compute the overall and

hierarchical accuracies.

 The overall and hierarchical results are shown in Figure 6.2 and Figure 6.3,

respectively. A critical finding is that when all image features are forced to be used in

the classifier creation, the classifiers achieved an overall accuracy of 63% and a

hierarchical accuracy of 81.1667%.

Figure 6.2 Accuracy across features using the hierarchical SVM method. The blue bars display

the accuracy induced by only using a single image feature on its own. The red bars display the

accuracy induced by not allowing the use of a single image feature.

50.3

36

47.2

53.3

34.3

59.2

62.6 61.5 60.58
63.7

0

10

20

30

40

50

60

70

Gist RGB SIFT Textons Lines

Feature

Alone

Without

Feature

 48

Figure 6.3 Hierarchical accuracy across features for the hierarchical method. The blue bars

display the accuracy induced by only using a single image feature on its own. The red bars

display the accuracy induced by not allowing the use of a single image feature.

 From Figures 6.2 and 6.3 it is possible to rank the features by how well they

performed geolocation on their own. The results indicate that when this algorithm is

used, textons can perform both geolocation and environmental classification the best

when only one feature is selected in isolation. Compared to other isolated features,

line features alone performed geolocation the worst and RGB histograms performed

environmental classification the worst. The classifiers produced without an image

feature reveal two facts. First, leaving out gist negatively impacted geolocation and

environmental classification the most. Second, leaving out line features improved

geolocation. The accuracy was 63.7% without line features and only 63% when all

image features were used.

72.5

58.2

71.9

76.3

61.6

79.3
81.1 80.7 79.5

81.6

0

10

20

30

40

50

60

70

80

90

Gist RGB SIFT Textons Lines

Feature

Alone

Without

Feature

 49

6.1.3 Performance Without Environmental Classifiers

 The third test was conducted to determine if the environmental classifiers

actually improved the geolocation accuracy. Individual classifiers for each location

were formed according to Section 3.2. Each classifier was created using the

maximum amount of training images per class by selecting an equal amount of

images from the location represented by the classifier and an equal amount of images

from the other locations, resulting in an even amount of {+1,-1} labeled images.

Next, the 100 testing images per class, selected before all experiments were

conducted, were used to test the classifiers. The results for this experiment are shown

in Figure 6.4.

 Predicted

 Location

 True

Location G
ra

n
d
 C

an
y
o
n

D
ea

th
 V

al
le

y

B
ry

ce
 C

an
y
o
n

Y
el

lo
w

st
o
n
e

O
ly

m
p
ic

S
h
en

an
d
o
ah

A
ca

d
ia

O
u
te

r
B

an
k
s

C
an

n
o
n
 B

ea
ch

S
an

 F
ra

n
ci

sc
o

N
ew

 Y
o
rk

N
ew

 O
rl

ea
n
s

Grand Canyon 65 7 9 3 3 6 3 1 2 0 0 1

Death Valley 4 68 6 7 0 1 3 5 6 0 0 0

Bryce Canyon 6 7 72 4 3 1 4 1 2 0 0 0

Yellowstone 8 0 0 67 6 10 2 3 4 0 0 0

Olympic 1 1 1 9 65 12 4 1 2 0 1 3

Shenandoah 5 4 1 6 16 62 3 2 1 0 0 0

Acadia 6 7 5 3 4 5 60 7 3 0 0 0

Outer Banks 3 6 4 6 0 4 4 52 7 10 1 3

Cannon Beach 2 2 3 5 0 4 9 8 66 0 1 0

San Francisco 0 2 0 1 1 1 2 3 0 57 17 16

New York 1 0 0 0 1 0 0 3 1 24 58 12

New Orleans 0 0 1 1 1 1 0 4 2 22 5 63

Figure 6.4 Confusion matrix produced by withholding hierarchical classifiers. Colored boxes

indicate environmental groups.

 50

 The algorithm produced an overall accuracy of 62.9%. The results have been

grouped according to their environment. An essential fact is that the colored squares

represent misclassifications which occurred within the locations of the same

environment. Upon analysis of the confusion matrix in Figure 6.4, many

misclassifications within the city and forest environments are evident.

 Using the non-hierarchical approach it is possible to determine the accuracy of

the algorithm described in "Mapping the World's Photos" [2]. This was done by

simply restricting the algorithm to only use SIFT features and not use environmental

classifiers. Using the same test images as before their algorithm produced an overall

accuracy of 47.17%.

6.1.4 Alternative Classifier Performance

 To test the alternative classifier creation method described in Section 3.3,

classifiers were created for each location and environment. Each classifier was

generated using the maximum amount of training images per class by selecting an

equal amount of images from the location or environment represented by the

classifier and an equal amount of images from the other locations, creating an even

amount of {+1,-1} labeled images. The training data for each classifier was then

separated into two groups: two thirds was used to train the classifiers for each feature,

and the remaining third was reserved to train the final classifier. The later third was

fed through the feature classifiers to generate the vector for each image. Next, the

100 testing images, per class selected before all experiments were conducted, were

employed to test the classifiers.

 51

 After testing all of the testing images, the algorithm produced an overall

accuracy of 65.5% and a hierarchical accuracy of 82.25%.

6.1.4 Overall Performance

 The final test, using the hierarchical geolocation algorithm with SVMs, was

performed to determine the accuracy when the information gathered in section 6.1.1

and 6.1.2 was incorporated. Hierarchical and individual classifiers were created

according to section 3.2 to find an optimal combination of features. Since the results

from 6.1.1 suggested that increasing the amount of training images increased

accuracy, the maximum amount of images for each location were used. Each

classifier was generated using the maximum amount of training images per class by

selecting an equal amount of images from the location or environment represented by

the classifier and an equal amount of images from the other locations, creating an

even amount of {+1,-1} labeled images. Next, the 100 testing images per class,

selected before all experiments were conducted, were employed to test the classifiers.

 After testing all of the testing images, the algorithm produced an overall

accuracy of 68.83% and a hierarchical accuracy of 85.33%. The results are given in

the confusion matrix of Figure 6.5.

 52

 Predicted

 Location

 True

Location G
ra

n
d

 C
an

y
o

n

D
ea

th
 V

al
le

y

B
ry

ce
 C

an
y

o
n

Y
el

lo
w

st
o

n
e

O
ly

m
p
ic

S
h

en
an

d
o
ah

A
ca

d
ia

O
u

te
r

B
an

k
s

C
an

n
o

n
 B

ea
ch

S
an

 F
ra

n
ci

sc
o

N
ew

 Y
o

rk

N
ew

 O
rl

ea
n

s

Grand Canyon 71 6 7 2 3 6 2 2 1 0 0 0

Death Valley 10 66 6 3 0 1 1 9 4 0 0 0

Bryce Canyon 7 4 71 4 3 1 5 0 4 1 0 0

Yellowstone 5 1 4 71 11 3 4 0 1 0 0 0

Olympic 0 1 1 7 75 10 2 1 1 0 0 2

Shenandoah 7 1 2 7 13 60 4 5 0 0 0 1

Acadia 1 7 5 3 3 7 63 9 2 0 0 0

Outer Banks 1 6 3 5 1 2 2 66 4 6 2 2

Cannon Beach 0 0 2 2 0 2 6 9 78 0 1 0

San Francisco 0 1 2 0 1 1 0 3 0 57 15 20

New York 0 0 0 0 0 1 1 2 1 17 67 11

New Orleans 0 0 1 1 1 1 0 2 1 8 4 81
Figure 6.5 Confusion matrix produced using hierarchical classifiers. Colored boxes indicate

environmental groups.

 Comparing Figures 6.4 to 6.5, an additional advantage aside from the increase

in overall accuracy can be seen. This advantage is that when the correct environment

is identified, the within-environment accuracy is higher. The hierarchical geolocation

method produced an accuracy of 80.67%, assuming the estimated environment is

correct, while the non-hierarchical geolocation method produced an accuracy of

76.5%. This advantage is particularly apparent in the classification of images from

New Orleans. Using the non-hierarchical classification method, 22 images from New

Orleans were incorrectly labeled as images from San Francisco, while only 8 images

were misclassified as being from San Francisco using the hierarchical classification.

 The hierarchical accuracy produced from the hierarchical classifiers is shown

in Table 6.1. A significant aspect is the high accuracy the city environmental

 53

classifier produced. This classifier essentially indicates if an image contains man-

made objects like houses, buildings, and roads.

Table 6.1 Hierarchical accuracies from hierarchical geolocation system.

Environment Accuracy

Desert 82.67

Forest 85.67

Coast 79.67

City 93.33

6.2 Linear Dictionary-Based Method

 The first test using the dictionary-based method was executed to determine

how well linear dictionaries could perform image geolocation. Class-specific

dictionaries were formed according to Chapter 4.1 by reserving the specified 100

images for testing and using all of the remaining images for testing. An ideal

dictionary size and sparsity constant were determined using 3-fold cross-validation

and 80 iterations per dictionary. Instead of dividing the data into three even subsets, a

unique set of 200 training images per location were selected each time to determine

the cross-validation accuracy. This decision was made due to the long computation

times required to train the dictionaries. The dictionary sizes tested were 100,

200,300,400, and 500, and the sparsity constants tested were 5, 15, 35, and 45. After

testing all parameter combinations, the combination producing the highest cross-

validation accuracy was a dictionary size of 200 atoms and a sparsity constant equal

to five.

 Using the testing images, the accuracy of the system was determined to be

59.75%. The confusion matrix associated with this experiment is shown in Figure 6.6.

 54

 Predicted

 Location

True

Location

G
ra

n
d

 C
an

y
o

n

D
ea

th
 V

al
le

y

B
ry

ce
 C

an
y

o
n

Y
el

lo
w

st
o

n
e

O
ly

m
p
ic

S
h

en
an

d
o
ah

A
ca

d
ia

O
u

te
r

B
an

k
s

C
an

n
o

n
 B

ea
ch

S
an

 F
ra

n
ci

sc
o

N
ew

 Y
o

rk

N
ew

 O
rl

ea
n

s

Grand Canyon 45 3 21 9 5 4 9 1 1 0 1 1

Death Valley 5 45 20 8 2 3 6 5 4 1 1 0

Bryce Canyon 2 0 75 4 5 1 8 4 1 0 0 0

Yellowstone 3 0 7 62 12 5 1 6 2 1 0 1

Olympic 0 1 2 8 81 2 4 0 1 0 0 1

Shenandoah 7 0 2 10 35 32 6 3 1 1 1 2

Acadia 5 2 8 2 7 6 59 8 2 0 0 1

Outer Banks 2 3 2 11 1 6 1 55 8 2 4 5

Cannon Beach 2 0 6 7 1 1 9 9 65 0 0 0

San Francisco 1 0 6 2 3 0 2 1 0 49 18 18

New York 0 0 0 1 0 0 0 3 0 12 69 15

New Orleans 0 0 0 2 3 0 2 1 0 7 5 80
Figure 6.6 Confusion matrix produced using linear class specific dictionaries. Colored boxes

indicate environmental groups.

 From the confusion matrixes and an overall accuracy of 59.75%, it is clear

that the linear dictionaries can perform image geolocation. However, upon examining

some of the individual locations, some weaknesses are revealed. For example, the

testing images from Grand Canyon and Death Valley National Park were correctly

classified 45% of the time. These accuracies are very different from the accuracies

produced by the hierarchical SVM method which achieved 71% and 66%,

respectively. From the confusion matrix, it appears that this is mostly due to images

from these locations being misclassified as being from Bryce Canyon National Park

with 21 and 20 images being misclassified, respectively.

 55

6.3 Non-linear Dictionary-Based Method

6.3.1 Performance Across Database Sizes

 The first test using non-linear dictionaries was conducted to determine how

the database size affected the overall accuracy of the system. To perform this task

efficiently, 100 images per class were selected as test images, and 1,200 images per

class were selected as training images. 1,200 images per class were selected because

1,301 was the maximum number of images each class could have without creating an

imbalance of images per class.

 Once the 1,200 images per class were selected, the experiment was set up

using different training sizes. This step was accomplished by first extracting image

features and creating histograms for the SIFT, RGB, texton, and line image features.

Next, a random selection of training images were selected to form training sets of 50,

100, 150, 200, 300, 400, 500, 600, 800, 1,000, and 1,200 images per class. Then,

location specific dictionaries were generated according to Section 4.2, using 3-fold

cross-validation and 80 iterations, using the same cross validation training procedure

described in 6.2. Finally, the test images were used to compute the overall and

hierarchical accuracies.

 The results for these tests are shown in Figure 6.7. The overall accuracy of the

non-linear dictionary-based recognition algorithm is shown by a red, solid line. For

comparison, the hierarchical SVM-based recognition algorithm's results are shown by

a blue, dotted line. From the graph it is clear that as additional training images are

incorporated into the classifier creation, accuracy improves. Comparison of the two

 56

graphs reveals that the non-linear dictionary-based recognition algorithm performs

better for all tested dictionary sizes.

Figure 6.7 Performance across database sizes using the non-linear dictionary method. The

accuracy of the non-linear dictionaries (red line) and the hierarchical SVM method's accuracy

(dotted blue line) for comparison. The database sizes represent how many images per location

were selected for training the class dictionaries and SVM classifiers.

 Additionally, it is important to note that at around 300 to 400 training images

per class the amount of additional accuracy added by incorporating additional images

begins to reduce. This observation was utilized in the following experiment due to the

long computation times required to create the dictionaries.

6.3.2 Performance Across Features

 The second test using non-linear dictionaries was conducted to determine how

the different image features affected the accuracy. Similar to Section 6.2, dictionaries

were created using each image feature on its own to reveal how well they could

 57

perform geolocation. Additionally, classifiers were generated by withholding an

image feature to expose how the lack of an image feature impacted the accuracy.

 For efficiency, 100 images per class were selected as test images, 300 images

per class were selected as training images, and 900 images per class were withheld

for parameter searches. 300 images per class were selected as training images because

the experiment described in 6.3.1 indicated that 300 images per class produced decent

results and while adding additional images would increase accuracy, the additional

amount of time required to train the dictionaries would cause the experiment to take

too long. 900 images per class were withheld to allow for optimal parameter searches

instead of performing cross validation. This was done to reduce the number of

dictionaries created to the number of parameter combinations searched.

 The image features were normalized using energy normalization.

Additionally, no aggregation was performed on the gist data, and histogram

aggregation was performed on the remaining image features. This decision was made

to reduce the overall time required to conduct the experiment and to avoid a feature

being left out. Once the features were aggregated and normalized, they were

concatenated together, and location specific dictionaries were tested with different

parameter combinations using the 900 training images that were withheld.

 The results for these tests are shown in Figure 6.8. A critical finding is that

when all image features are forced to be used in the classifier creation, the classifiers

achieved an accuracy of 60.083%.

 58

Figure 6.8 Overall accuracy across features using non-linear dictionary-based recognition. The

blue bars display the accuracy induced by only using a single image feature on its own. The red

bars display the accuracy induced by not allowing the use of a single image feature.

 From Figures 6.8 it is possible to rank the features by how well they

performed geolocation on their own. The results indicate that when this algorithm is

used, textons can perform geolocation the best. Line features alone performed

geolocation the worst. The classifiers produced without an image feature reveal two

facts. First, leaving out gist negatively impacted geolocation and environmental

classification the most. Second, leaving out line features did not detrimentally affect

geolocation like it affected the hierarchical geolocation system. Instead, line features

added a small .083% increase, equivalent to one additional correctly recognized

image.

 A direct comparison between Figures 6.8 and 6.2 is not possible due to the

selection of training samples. The experiment in Section 6.1.2 used 600 training

48.5

30.83

46.9

51.83

28.25

58
59.42

57.33 58.42
60

0

10

20

30

40

50

60

70

Gist RGB SIFT Textons Lines

Feature

Alone

Without

Feature

 59

samples to train the data, and the experiment in Section 6.3.2 used only 300 with no

guarantee of overlap.

6.3.3 Overall Performance

 The final test, using the non-linear dictionaries, was to determine the accuracy

when the information gathered in section 6.3.1 and 6.3.2 was incorporated. Class

specific dictionaries were created according to Section 4.2. Since the results from

6.3.2 suggested that increasing the amount of training images increased accuracy, the

maximum amount of images for each location were used. Each dictionary was

generated using the maximum amount of training images per class. Due to the

increased number of training samples, the parameters found in Section 6.3.1 for the

1,200 training samples per class case were used. This was done to reduce the amount

of time required to train all of the dictionaries (around two and a half days on a high-

end PC). Next, the 100 testing images per class, selected before all experiments were

conducted, were employed to test the dictionaries.

 After testing all of the testing images, the algorithm produced an overall

accuracy of 70.50% and a hierarchical accuracy of 85.67%. The results are given in

the confusion matrix of Figure 6.9.

 60

 Predicted

 Location

True

Location

G
ra

n
d

 C
an

y
o

n

D
ea

th
 V

al
le

y

B
ry

ce
 C

an
y

o
n

Y
el

lo
w

st
o

n
e

O
ly

m
p
ic

S
h

en
an

d
o
ah

A
ca

d
ia

O
u

te
r

B
an

k
s

C
an

n
o

n
 B

ea
ch

S
an

 F
ra

n
ci

sc
o

N
ew

 Y
o

rk

N
ew

 O
rl

ea
n

s

Grand Canyon 82 0 6 1 1 6 2 2 0 0 0 0

Death Valley 14 58 8 1 2 1 2 11 2 1 0 0

Bryce Canyon 9 2 71 1 3 3 5 5 1 0 0 0

Yellowstone 4 0 6 64 7 10 3 5 1 0 0 0

Olympic 0 0 1 5 77 12 0 2 3 0 0 0

Shenandoah 8 0 2 3 10 73 1 2 0 1 0 0

Acadia 10 3 2 2 2 7 64 7 3 0 0 0

Outer Banks 2 4 1 6 1 3 0 73 4 2 4 0

Cannon Beach 2 0 3 0 0 5 6 10 72 1 1 0

San Francisco 1 0 0 1 2 5 0 2 0 56 24 9

New York 0 0 0 0 1 0 0 1 0 9 82 7

New Orleans 0 0 1 0 1 4 0 3 0 7 10 74
Figure 6.9 Confusion matrix produced using non-linear class specific dictionaries. Colored boxes

indicate environmental groups.

 Comparing Figures 6.5 to 6.9, similarities are apparent. The first similarity is

that both methods can accurately classify the city environment from the natural

environments, with the hierarchical SVM method achieving 92.67% and the non-

linear dictionary-based method achieving 91.67%. Additionally, both methods

encounter difficulty classifying images from San Francisco. Another similarity is the

difficulty both methods encounter while classifying images from Death Valley

National Park. The difficulty classifying Death Valley National Park is more

pronounced with the dictionary-based method, achieving an accuracy of 58%,

compared to 66%.

 61

Chapter 7: Conclusions

7.1 Comparison Between Methods

 The results for all of the different algorithms implemented in this thesis are

shown in Table 7.1. For non-hierarchical structured algorithms, the environmental

accuracy was determined by adding together all of the results of images whose

estimated location belonged to the correct environment. From Table 7.1, it is evident

that the non-linear dictionaries perform geolocation slightly better than the

hierarchical SVMs. The improved accuracy is also evident in Figure 6.7 where the

non-linear dictionaries performed more accurately for each amount of training

images. Additionally, the table indicates that hierarchical SVMs and non-linear

dictionaries perform environmental accuracy with a similar degree of accuracy.

Table 7.1 Comparison of results between all recognition systems. For non-hierarchical systems,

hierarchical accuracy was computed by combining the results of locations within their

environment.

Recognition System Accuracy
Environmental

Accuracy

"Mapping the World's Photos" 47.17 72.42

Non-hierarchical SVMs 62.90 82.25

Hierarchical SVMs 68.83 85.35

Hierarchical SVMs

(Alternate Classifier Creation) 65.50 82.25

Linear Dictionaries 59.75 79.33

Non-linear Dictionaries 70.50 85.67

 It should be noted that a hierarchical structure was attempted using both linear

and non-linear dictionaries. A full scale test using all twelve locations was not

implemented because smaller tests using fewer locations indicated that the

hierarchical structure did not provide an improvement in accuracy. This may be due

 62

to the high environmental accuracy the non-linear dictionaries achieve without the

hierarchical structure. However, there may be other methods to implement a

hierarchy to allow the dictionaries to benefit from histograms consisting only of

elements from the same environment.

 The results from Table 7.1 also indicate that the non-linear dictionary

algorithm provides a significant increase in accuracy when compared to using linear

dictionaries. However, the linear dictionaries have one advantage over the non-linear

dictionaries in that the dictionaries can be trained faster.

 Despite the similar classification performance, there are large differences in

the amount of time required to create the dictionaries and SVMs and the space

required to store them for future use. The amount of time required to train 12 non-

linear class-specific dictionaries using the maximum amount of training images

without a parameter search or cross-validation takes the same amount of time

required to train 12 SVMs with a parameter search of 30 parameter combinations and

12-fold cross-validation. In other words, training the dictionaries takes about 360

times longer. This difference may be due to the fact that the code that creates non-

linear dictionaries is written in MATLAB and the code to create the SVMs is written

in C++. When comparing the space required to store the different algorithms, storing

12 class-specific dictionaries requires about 320 MB, while storing 16 SVMs requires

2GB. Using these differences it is possible to conceive some scenarios. For example,

if one wanted to quickly test a new image feature and see how well it could aid in

geolocation, SVMs would be recommended. However, if one wanted to have an

 63

accurate method to classify images with a small file size and did not care about

computation times, non-linear dictionaries would be better suited.

7.2 Improvements to Geolocation

 The results of Chapter 6 enforce a few principles that can aid geolocation

algorithms. The first principle demonstrated by this thesis is that a hierarchical

structure can bring improvements in accuracy. This is specifically seen by the 6%

difference in accuracy between the nonhierarchical and hierarchical classification

schemes. The second principle demonstrated by this thesis is that none of the tested

individual image features can perform geolocation as well as a combination of

features. Additionally, the results indicate that simply forcing the classifiers to use all

of the features can be detrimental and that the algorithm should be allowed to choose

the features that work best. The final principle demonstrated by this thesis is that both

SVMs and class-specific dictionaries can perform comparably. Overall, non-linear

class-specific dictionaries perform geolocation better than SVMs; however, through

planning like hierarchical classification, an algorithm utilizing SVMs can be

competitive.

 64

Chapter 8: Future Work

 To improve the geolocation algorithms described in this thesis, many different

extensions could be incorporated. These include: adding additional locations and

environments, additional image features, performing multi-scale recognition, and

performing automatic image screening.

8.1 Additional Locations

 Due to time and data limitations this experiment does not perform true

geolocation, giving GPS coordinates from any outdoor image. Since only 12

locations were tested, the testing images were limited to these locations. There are,

therefore, numerous national parks, beaches, and cities that were not included in the

experiment. Additionally, the locations chosen for this experiment were all in the

United States, excluding the rest of the world.

 Adding additional locations will be crucial to determining how well the

system can scale with the number of locations. While images were screened and

added to the experiment, it was noticed that additional locations slowly decreased the

accuracy of the system. However, when the accuracy was compared to chance, the

systems in this thesis were much better. Despite this improvement, it would seem

unsatisfactory to add many additional locations and have the algorithm only perform

well when compared to chance.

8.2 Additional Image Features

 From the results of Chapter 6, it is clear there is not an individual feature that

performs geolocation well when compared to using all of the features. From this we

 65

can surmise that adding or replacing the current selection of features should improve

the accuracy. Other image features that could be included are histograms of oriented

gradients (HOG) [15], local binary patterns (LBP) [16], and self-similarity descriptors

(SSIM) [17]. Additionally, when using the hierarchical model, features specific to

environment could be introduced, such as a histogram of the flora and fauna observed

in the image found by plant identification in natural environments [18]. A city

specific image feature could also be used to improve recognition between cities, like

identifying the content on signs or examining license plates on cars.

8.2 Multi-Scale Recognition

 Another method to improve the algorithm would be to allow for multi-scale

resolution. This would allow for landmark level classification using the same

hierarchical mode in Chapter 3. The algorithm would first determine the city/national

park like it currently does. Once the general location was determined, the landmark

would be estimated by creating classifiers for all landmarks within the general

location. This change could be implemented using mean-shift on the GPS

coordinates around each location to identify areas of high photograph activity.

8.3 Automatic Image Screening

 The final change that could be implemented is automatic image screening. As

specified in Chapter 5, of the 89 thousand images downloaded, only 23 thousand of

the images were acceptable images. With an average screening time of two seconds

per image, the screening of all of the images took approximately 50 hours to

complete. Since no images were deleted, this has left a large labeled dataset with the

 66

images labeled either accepted or rejected. Using this dataset, classifiers could be

trained to automatically approve images. This could dramatically reduce the amount

of time involved in adding new locations and allow for the entire system be

automated.

 67

Bibliography

[1] J. Hayes and A. A. Effros, "IM2GPS: estimating geographic information from a

single image," in IEEE Confrence on Computer Vision and Pattern Recogntion

(CVPR), 2008.

[2] D. Crandall, L. Backstrom, D. Huttenlocher and J. Klienberg, "Mapping the

world's photos," in Eighteenth International World Wide Web Confrence

(WWW), 2009.

[3] B. Julesz, "Textons, the elements of texture perception, and ther interactions,"

Nature, vol. 290, pp. 91-97, 1981.

[4] T. Leung and J. Malik, "Representing and recognizing the visual apperance of

materials using three-dimensional textons," International Journal of Computer

Vision, vol. 43, no. 1, pp. 29-44, 2001.

[5] D. Martin, C. Fowlkes, D. Tal and J. Malik, "A database of human segmented

natural images and its application to evaluating segmentation algorithms and

measuring ecological statistics," in Eighth International Confrence on Computer

Vision, 2001.

[6] J. Kosecka and W. Zhang, "Video compass," in Seventh European Confrence on

Computer Vision, 2002.

[7] B. Li, K. Peng, X. Ying and H. Zha, "Vanishing point detection using cascaded

1D hough transform from single images," Pattern Recogntion Letters, vol. 33,

no. 1, pp. 1-102, 2012.

[8] A. Olivia and A. Torralba, "Modeling the shape of the scene: a holistic

representation of the spatial envelope," International Journal of Computer

Vision, vol. 42, no. 3, pp. 145-175, 2001.

[9] D. G. Lowe, "Object recogntion from local scale-invariant features," in

International Confrence on Computer Vision, 1999.

[10] H. V. Nguyen, V. M. Patel, N. M. Nasrabadi and R. Chellappa, "Kernel

dictionary learning," in IEEE International Confrence on Acoustics, Speech and

Signal Processing, 2012.

[11] D. Arthur and S. Vassilvitskii, "K-means++: the advantages of careful seeding,"

in Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms, 2007.

[12] A. Pronobis, O. Martinez Mozos and B. Caputo, "SVM-based discriminative

accumulation scheme for place recognition," in IEEE International Confrence on

Robotics and Automation, Pasadena, 2008.

[13] V. M. Patel, T. Wu, S. Biswas, J. Phillips and R. Chellappa, "Dictionary-based

face recogntion under variable lighting and pose," IEEE Transactions on

Information Forensics and Security, vol. 7, pp. 954-965, 2012.

[14] M. Aharon, M. Elad and A. Bruckstein, "K-SVD: an algorithm for designing

overcomplete dictionaries for sparse representation," IEEE Transactions on

Signal Processing, vol. 54, no. 11, pp. 4311-4322, 2006.

 68

[15] K. Fukunaga and L. D. Hosteller, "The esitmation of the gradient of a density

function, with applications in pattern recogntion," IEEE Transactions on

Information Theory, vol. 21, no. 1, pp. 32-40, 1975.

[16] N. Dalal and B. Triggs, "Histograms of Oriented Gradients for Human

Detection," in IEEE Confrence on Computer Vision and Pattern Recogntion, San

Diego, 2005.

[17] T. Ojala, M. Pietikainen and D. Harwood, "Performance evaluation of texture

measures with classification based on kullback discrimination of distributions,"

in International Confrence on Pattern Recogntion, 1994.

[18] E. Shechtman and M. Irani, "Matching local self-similarities across images and

videos," in IEEE Confrence on Computer Vision and Pattern Recognition, 2007.

[19] P. N. Belhumeur, D. Chen, F. Steven, D. Jacobs, W. J. Kress, H. Ling, I. Lopez,

R. Ramamoorthi, S. Sheorey, S. White and L. Zhang, "Searching the world's

herbaria: a system for visual identification of plant species," in European

Confrence on Computer Vision, 2008.

[20] N. Kumar, A. Berg, P. Belhumeur and S. K. Nayar, "Describable visual

attributes for face verfication and image search," IEEE Transactions on Pattern

Analysis and Machine Intelligence, vol. 33, no. 10, pp. 1962-1977, 2011.

