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 Image geolocation, estimating GPS coordinates from an image, is a relatively 

new endeavor in the field of computer vision. This thesis presents two approaches to 

obtain the coordinates: hierarchical and dictionary-based. The hierarchical approach 

uses SVMs to first determine the general environment of the image and then 

estimates the exact location within that environment. The dictionary-based 

approaches are performed with linear and non-linear dictionaries using K-SVD and 

KK-SVD. Both methods are performed on the image feature gist and histograms of 

the image's color, SIFT descriptors, textons, and lines. Both the hierarchical and 

dictionary-based approaches build upon and combine existing systems to provide 

improved accuracy on a data set of twelve locations belonging to four environmental 

types. 
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Chapter 1: Introduction 
 

 Image geolocation, estimating a global position system (GPS) coordinates 

from a single image, is a relatively new endeavor in the field of computer vision. 

Solutions have recently become possible due to the availability of large data sets from 

photo sharing websites like Flickr, where users can upload personal pictures to the 

internet and tag the image with the latitude and longitude where it was taken.  These 

websites give permission to developers to download images, which provides millions 

of images to train and test different solutions. 

 In this introduction the problem of image geolocation is first formulated. 

Next, two previously existing systems are examined. An overview of the designed 

system that was constructed is discussed. Lastly, an outline of the remainder of this 

thesis is given. 

1.1 Problem Formulation 

 Image geolocation seeks to provide an estimate of latitude-longitude 

coordinates of a digital image based only on the image content. In the past, these 

coordinates have been estimated by gathering thousands to millions of images and 

training a system by comparing test images to images with known GPS coordinates. 

Additionally, because there are an infinite number of ways a photograph can be taken 

in any location on Earth, there must be constraints on the desired precision to make 

the size of the problem reasonable. 

 The desired precision of the estimate of the photographs' locations can be 

attained at different levels. For example, the exact coordinates of where an image is 
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taken can be estimated down to a very small range, such as a specific landmark, or to 

a wider range, the scale of a city or national park. Because there are many different 

ways a photo can be taken of a single landmark due to varying conditions (daylight, 

night), numerous pictures are required to provide a system with a complete 

representation of the landmark. Similarly, a city or national park can be thought of as 

a collection of landmarks, requiring even more images to gain a complete 

representation of the larger area.  

 For this thesis, the city/national park level of accuracy was estimated. This 

estimation allowed testing of a variety of locations, ensuring the system worked in 

different environments. It will be shown later that a finer estimate of location can be 

added to provide landmark scale accuracy. In addition to the city/national park level 

of accuracy, only twelve different locations in the United States were chosen.  

 Several constraints were placed on the images. The first constraint was that 

only outdoor images could be used. The second was that blurry or out of focus images 

were eliminated. The third was that images showing very little of the surroundings, 

like close-ups of individuals, were not included. The fourth was that images with 

incorrectly tagged GPS coordinates were not included. These constraints are similar 

to those imposed on previous experiments and are necessary to ensure that only 

usable images were included in the experiment [1, 2]. 

 Another aspect of some of the photos is the presence of textual tags. These 

textual tags are added by the photographer to describe the object in the image, like 

where the image was taken or what type of camera was used. For this experiment, 



 

 3 

 

these textual tags were ignored so that only non-textual image data influenced the 

system. 

1.2 Previous Work 

 

Two previous systems have been created to perform image geolocation. 

1.2.1 IM2GPS 

 

 One of the earliest systems that attempted to perform image geolocation was 

developed by Hayes and Effros [1]. Their system began with an initial gathering of 6 

million GPS-tagged images from the website Flickr. From each image they extracted 

the following set of features: 

1. 16 x 16 pixel color images 

2. Color Histogram 

3. Texton Histogram [3, 4, 5] 

4. Line Histogram [6, 7] 

5. Gist Descriptor [8] 

6. Geometric Context 

These features, which will be discussed in Chapter 2, were concatenated together to 

form a long vector and stored with the GPS coordinates of the image in a database.

 Following the extraction of features for each test image, K-nearest neighbors 

was used to find K images in the database. Different distance metrics were used for 

each feature. Finally, mean-shift was performed on the GPS data of the K images to 

estimate a GPS coordinate for the image.  

 Overall, this approach yielded an accuracy of about 15%, where an accurate 

estimate is a test image whose GPS coordinate has been estimated to be within 200 
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km of its true location. When compared to random chance, guessing a random 

latitude and longitude point on the globe, their estimate performed around 30 times 

better. In addition to their experiments, they determined that the 16 x 16 pixel color 

images and geometric context features were not geographically discriminative. 

Furthermore, they determined that the size of their database greatly impacted the 

accuracy of their system, with an accuracy of around 1% for a database of 900 images 

and 16% for a database of 6.3 million images [1]. 

1.2.2 Mapping the World's Photos 

 

 The second system developed in 2009 by Crandel et al. Developed after the 

system described in "IM2GPS," their system took an alternate approach and utilized 

support vector machines (SVM) instead of the nearest neighbors. Their system 

provided a useful backbone to inspire the work done in this thesis. 

 Their system begins with mean shift being performed on image GPS data to 

find locations with many images. They used a set of 35 million pictures downloaded 

from Flickr.  From their paper it is unclear whether any manual processing was done 

to remove useless pictures from their dataset. After mean shift was performed, they 

selected the K largest clusters to become the classes used in SVM and ignored the 

pictures not belonging to these clusters. Following class selection, the shift invariant 

feature transform (SIFT) was performed on each image [9]. The outputs of SIFT were 

quantized into 1000 keywords using K-means. Next, a 1000-dimensional histogram 

was created to indicate how often each of the keywords appeared. Finally, a SVM 

was created on the SIFT histograms for each of the K clusters. The SVM indicated 

whether a test image did or did not belong to the cluster associated with that SVM. 
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 It is important to know that in addition to using the visual features from SIFT, 

textual tags were also used in their algorithm. However, despite their use, they also 

included results using SIFT features alone. In addition, it is significant that this 

system was only implemented on city pictures. 

 Their system was implemented on both the landmark and city scale. They 

found that on the city scale, recognition was around 40% for the ten largest clusters. 

In a 25-way landmark test in the top ten clusters, the recognition was 23.56% or 5.9 

times better than chance. In a 50-way landmark test, the recognition was 14.40% or 

7.2 times better than chance. Additionally, they performed a city scale test and found 

that recognition was 12.72%. It is important to note that their experiment does not 

indicate how many cities were used, so it is not known how their recognition rate 

compared to chance [2]. 

1.3 Proposed Systems 

 

 All of the systems proposed by this thesis follow the same overall structure 

but differ in how classification is performed. They both begin by performing mean-

shift on the GPS coordinates to group the images into clusters and provide labels for 

the images. While labeling occurs, a set of image features are extracted from the 

images and then aggregated, normalized, and combined. The image features and their 

labels are used to form classifiers or dictionaries that are used to predict the GPS 

coordinates of a test image based upon its image features. This process is shown in 

Figure 1.1. 
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Figure 1.1 High level diagram illustrating the overall structure of the hierarchical classification 

and dictionary-based recognition methods. 

 

1.3.1 Hierarchical Classification Based System 

 

 The basic idea behind the first system proposed in this thesis is relatively 

simple: the pictures are first sorted by their environmental type and then sorted again 

by locations within that environmental type. For example, if the system encountered 

an image from Death Valley National Park, a set of classifiers would classify the 

image as a desert image. After being classified as a desert image, another set of 
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classifiers representing desert locations would then determine that the image was an 

image from Death Valley. It is possible to create many different environmental 

classifiers, such as desert, coastal, city, forest, mountaintop, river, and plain. For this 

experiment, the environmental classifiers chosen were desert, coastal, forest, and city. 

For each environmental classifier, three locations were chosen. These locations are 

shown in Table 1.1. 

 

Table 1.1 List of environmental classifiers and locations. 

Environmental 

Classifiers 
Locations 

Desert 

Grand Canyon National Park 

Death Valley National Park 

Bryce Canyon National Park 

Coast 

Acadia National Park 

Cannon Beach, Oregon 

Outer Banks, North Carolina 

Forest 

Yellowstone National Park 

Olympic National Park 

Shenandoah National Park 

City 

New York 

San Francisco 

New Orleans 

 

 The hierarchical structure created by classifying the images by their 

environmental type allows for finer differences in appearance to be determined 

between locations of the same environmental type. This occurs for two separate 

reasons.  The first reason is that when the features for the images are obtained, vector 

quantization is often necessary to create a histogram of the information. Through K-

means, K vectors are created to represent the vectors. When K-means is only 
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performed on feature vectors from desert images, a set of K vectors representing 

desert features are created. This allows the system to exclude vectors from the city, 

forest and coast when determining which vectors best represent the desert features.  

The second reason is that when the location classifiers are created, they are trained on 

only locations of that type. This allows for more focused classifiers that can ignore 

the influence of images from locations not belonging to their environment.  

 The disadvantage of using a hierarchical structure is that if the environmental 

classifiers perform poorly, the entire system will suffer. This poor performance is due 

to errors propagating through the system attributable to wrong initial choices. For 

example, if a forest image is incorrectly labeled as a desert image, nothing can be 

done to estimate its true location. Therefore, it is imperative that the initial classifiers 

are very accurate. 

 The hierarchical classification based system's classifiers were created using 

SVMs. The specifics of this method are explained in Chapter 3. 

1.3.2 Dictionary-Based Recognition System 

 

 The second proposed system was built upon the dictionary-based recognition 

system proposed by Ngyuen et al. in [10]. Instead of using a hierarchical approach, 

pictures were only sorted by their location. Using the same twelve locations specified 

in Table 1.1, a location specific dictionary was created. The location specific 

dictionaries were then used to create an approximation of a test image using a sparse 

combination of atoms. The location specific dictionary producing the approximation 

with the lowest reconstruction error was then chosen as the predicted location.  
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 While this system could be extended to follow a hierarchical structure, 

preliminary evaluations determined that the same hierarchical structure used in 

Section 1.3.1 did not significantly improve accuracy. Additionally, the long 

computation times required to create dictionaries consisting of many locations using 

cross-validation and a parameter search rendered a hierarchical structure impractical. 

However, despite not using a hierarchical structure, by combining results across 

locations of the same environment, the environmental classification of the dictionary-

based system was comparable to the hierarchical classification system. 

 The specifics of the location specific dictionaries are explained in Chapter 4. 

1.3.3 Image Features 

 

For the both systems, the following features were extracted from the images: 

 Gist Descriptor 

 SIFT Histogram 

 RGB Histogram  

 Texton Histogram 

 Line Histogram 

These features, which will be discussed in Chapter 2, were concatenated together to 

form a long vector for each image. Following the extraction of features, classifiers 

were trained for the environmental classifiers and location classifiers using the SVMs 

and non-linear class specific dictionaries. 
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1.4 Outline of Thesis 

 The remainder of this thesis is organized as follows. Chapter 2 discusses the 

features and processing done on the images. Chapter 3 covers the hierarchical-based 

approach. Chapter 4 describes the dictionary-based approach. Chapter 5 details the 

image dataset that was collected. Chapter 6 covers the experimental results. Lastly, 

Chapter 7 presents the conclusions and Chapter 8 suggests future work.  

 

 

 



 

 11 

 

Chapter 2: Image Features 

2.1 Pre-Processing 

 All images were initially processed to reduce their dimensions. Images were 

resized so that their minimum dimension, either the height or width, was a maximum 

of 700 pixels. This step was done to reduce the amount of computations required to 

compute the features and reduce the storage space. This resizing is justifiable because 

both of the previous systems, "IM2GPS" and "Mapping the World's Photos," 

performed dimensionality reduction and found no significant reductions in accuracy 

[1, 2]. 

 Dimensionality reduction was performed in MATLAB, and after pre-

processing the images were stored together. Their file information and GPS locations 

were stored in a binary file for quick access. 

2.1 RGB 

 The simplest features that can be extracted are red-green-blue (RGB) 

histograms.  Since images are typically stored in three channels, either red, green, or 

blue, a histogram of the information could be easily taken. For each image, three, 

sixteen bin histograms were created, one histogram for each color. The three 

histograms were then concatenated together to form a 48-dimensional vector. The 

histograms were precomputed and stored in individual files so that a histogram of an 

image was computed only once. 

 The code for the RGB histograms was written in C++ using OpenCV. 



 

 12 

 

2.2 Gist 

 In the same way as done in "IM2GPS", the gist descriptor developed by Olvia 

and Torralba was used as a feature [1, 8]. The gist descriptor is essentially what its 

name implies, the general gist of the scene one might understand when squinting at 

the image. More technically, instead of looking at individual objects that compose the 

image, the information describing the global shape of the image is sought. The 

descriptor is built by first dividing the image into a grid. Next, each section of the grid 

is filtered by a bank of Gabor filters at different orientations and scales. From the 

result of the filter bank the energy is used to represent that particular grid location, 

filter orientation, and scale.  

 The gist descriptors used in the experiment were constructed by first resizing 

the image to a 256 by 256 pixel image. Then, the image was divided into a six by six 

grid. In each section of the grid, the locations were filtered by a bank of Gabor filters 

with eight orientations and four scales, producing a 1152-dimensional vector. 

 The gist descriptor was implemented through a combination of C++ and 

MATLAB. The MATLAB code used to compute the descriptor was taken from 

Olivia's website and compiled into an executable file to be accessed by C++ [8]. The 

gist descriptor for each image was stored in a binary file so it only needed to be 

computed once. 
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2.3 SIFT 

 In the same way as the system Crandel et al. designed a histogram  of scale-

invariant feature transform (SIFT) descriptors was created for each image [2, 9].  This 

image feature takes the opposite approach of gist. Instead of taking a global scene-

level look at the image like gist, a histogram of SIFT descriptors represents the image 

as a collection of important points.  

 SIFT was developed in 1999 by Lowe [9]. In the algorithm, keypoints in an 

image are extracted, and a 128-dimensional feature vector is used to represent the 

information at that keypoint.  The keypoints are found by filtering the image through 

a bank of Laplacian of Gaussian filters at different scales.  From these filtered 

versions, extrema are located in both the spatial and scale dimensions and identified 

as points of interest. Next, points in areas of low contrast and along edges are 

removed. The remaining points are labeled as keypoints, and a descriptor is built for 

each keypoint that is invariant to location, scale, and rotation. 

 A histogram was created for each image by first representing its particular 

descriptors by a collection of 1000 representative descriptors. This was accomplished 

by sampling 40,000 descriptors from the training images involved in a particular 

classifier.  Then, K-means++ was used to find 1000 representative descriptors for the 

entire set of 40,000 descriptors [11]. Next, a 1000-dimensional vector was created to 

represent the image where each bin represent one of the 1000 descriptors computed 

through K-means. The bin's value corresponds to how many descriptors in the image 

are closest to the bin's descriptor. Following this step, the histogram was normalized 
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by its L
1 

norm so that images of smaller dimensions with less keypoints were not 

underrepresented. 

 The SIFT descriptors were implemented in C++ using OpenCV. The 

descriptors for each image were stored in a binary file so the individual SIFT 

descriptors only needed to be computed once. 

2.4 Texton 

 Using the same method as in"IM2GPS," a texton histogram was used as an 

additional image feature. This image feature is intended to provide a representation of 

the kinds of different textures present in an image. Potentially, this feature is useful 

for distinguishing between images with different types of foliage, building material, 

and types of rocks. 

 The term texton was first introduced by Julesz and later used as a vector by 

Leung and Malik [3, 4, 5]. To compute the textons of an image, the image is filtered 

by two banks of filters: Gaussian second derivative filters and Hilbert transforms of 

the Gaussian second derivative filters.  Each of the filters had six orientations, two 

scales, and two elongations. Next, each pixel in the image was represented by a 48-

dimensional vector where each dimension represented the output of a particular filter, 

orientation, scale, and elongation. Once the textons were computed, a histogram was 

created in the same way as the SIFT histogram.  100,000 textons were randomly 

sampled from the collection of training images associated with a particular classifier 

or set of dictionaries, and K-means++ was performed to select a set of 512 

representative textures that were used to represent the textons in an individual image 

[11]. 
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 The texton descriptors were implemented in C++ and MATLAB.  The 

MATLAB code to compute the individual textons was taken from the publicly 

available code on David Martin's website and was compiled into an executable file to 

be accessed by C++ [5]. To reduce computations, a maximum of 20,000 randomly 

sampled textons were created and stored in a binary file. 

2.5 Lines 

 

 The final image features used to represent the images were histograms of line 

lengths and angles. The relative lengths of lines between manmade and natural 

images were helpful in distinguishing between these two types of images. These 

histograms were created in the same way as done in "IM2GPS:" through the use of 

the method described in "Video Compass" [1, 6].  

 To compute the line lengths and angles in an image, the image derivatives are 

calculated, followed by Canny Edge detection for non-maximum suppression. Next, 

the gradient direction is quantized into eight ranges and all edge pixels are labeled 

according to these ranges. Then, connected edges with the same label are grouped 

together to form a line support region. For each line support region, the eigenvalues 

and eigenvectors are calculated from the scatter matrix of the pixel coordinates.  

Finally, the line length and angle are determined by Eq. 2.1 and Eq. 2.2.  

                     (2.1) 

                   (2.2) 

In these equations,    and     are the mid-points in the line segment. Once all of the 

line parameters for an image were computed, 4000 line lengths were randomly 

sampled from the collection of training images associated with a particular classifier 
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or set of dictionaries. K-means++ was then performed on the 4000 line lengths to 

select 50 representative line lengths that were used to represent the line lengths in an 

individual image [11]. The same process was performed for the line angles so that 

two 50-dimensional vectors were created for each image. 

 The line descriptors were implemented in C++ and MATLAB. The MATLAB 

code used to compute the individual line lengths and angles was taken from the 

publically available code on Li's website and was compiled into an executable file to 

be accessed by C++ [7]. To reduce computations, the lines were calculated and stored 

in a binary file. 

 



 

 17 

 

Chapter 3: Support Vector Machines Method 

3.1 Support Vector Machines 

 

 Support vector machines (SVM) are commonly used to create a linear 

discriminant function to classify data. The major difference between SVM and other 

discriminant functions, like  Fisher's linear discriminant analysis (LDA), is that SVM 

has the capacity to map the data into a higher dimension and construct a hyper plane 

for this dimension to separate the data. In other words, SVM is a linear classifier in a 

higher dimension than the original data. This difference allows for SVM to create 

curved decision boundaries if they are realized in the lower dimension, giving SVM 

more flexibility and improved accuracy. 

3.1.1 Problem Formulation 

 

SVMs follow a common pattern recognition problem formulation: 

 Images are organized into a set of    training vectors and    testing vectors, of 

dimension  . 

 The training vectors are written as                  and the set of testing 

vectors are written as                 . 

 The vectors belong to one of two classes,     or    . 

With the    training vectors, a hyperplane is created to separate the classes. Figure 

3.1 is an example. 
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Figure 3.1 Depiction of hyperplane separating two classes in two dimensions. The classes are 

marked as either filled or empty circles, and the hyperplane is marked as a dotted line. 

  

3.1.2 Linear Support Vector Machines 

 

 SVM seeks to find a solution to Eq. 3.1: 

                     (3.1) 

Where          ,   is the normal vector to the hyperplane, and 
 

   
 determines the 

offset of the hyperplane from the origin. When the data is linearly separable, SVM 

seeks to maximize the distance of the values    to the hyperplane, which is equivalent 

to maximizing       and minimizing     .  

 Next, the problem can be formulated with Lagrange multipliers   , with the constraint 

    . 

    
 

 
                  

  
        

  
    (3.2) 

Since the objective function is a quadratic function,    can be maximized with the 

constraint that the gradient of   , with respect to   and  , vanish and     . This 

maximization produces the dual problem with the new constraints: 

             (3.3) 

          (3.4) 
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 Substituting Eq. 3.3 and 3.4 into Eq. 3.2 gives Eq. 3.5: 

         
 

 
                    (3.5) 

Once solved, the set of Lagrange operators    will be either positive numbers or zero. 

Operators not equal to zero will correspond to data vectors that rest on the margin of 

the hyperplane, termed support vectors. From Eq. 3.3 the vector   can be found. The 

vector   can be found through the realization              , for all    with 

non-zero   , the support vectors. 

 Once   and   are known, it is possible to classify the vectors 

                 through Eq. 3.6 and Eq. 3.7: 

            (3.6) 

            (3.7) 

If Eq. 3.6 is true,    is assigned to class +1, and if Eq. 3.7 is true, it is assigned to class 

-1. If more than two classes exist, it is possible to build multiple SVMs where each 

SVM indicates whether the    belongs to a particular class. If there is a conflict and 

multiple SVMs indicate that    belongs to multiple classes, the SVM producing the 

largest distance from the margin is chosen. 

 It is important to realize that the data vectors    are not always separable. 

When this is the case, it is possible to create a soft margin by assigning a regulation 

parameter   to allow for some vectors to be misclassified. This new formulation is 

shown in Eq. 3.8 and Eq. 3.9. 

                       (3.8) 

           
 

 
         

  
     (3.9) 
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Where      are slack variables representing the degree of misclassification of each 

  . 

3.1.3 Non-Linear Support Vector Machines 

 

 SVM can be extended to allow for non-linear decision boundaries. Eq. 3.5 

shows that a dot product between    and   is performed. Therefore, if the original 

data is mapped to some higher dimensional Euclidean space  , through the mapping 

      , the dot product in Eq. 3.5 can be replaced with the kernel given by Eq. 

3.10. 

                          (3.10) 

 This kernel is limited to functions that satisfy Mercer's Condition. Some 

commonly used kernels include polynomial, radial, and hyperbolic kernels. In this 

thesis, the radial basis function (RBF) was used as a kernel. 

                         
 
  (3.11) 

 In the case of non-separable variables, this leaves two parameters that must be 

found,   and  . To find the parameters suited to the experiment, the training data was 

divided into K non-overlapping subsets. Each subset was used for testing and the 

remaining were used for training. For each test, a quadratic grid search can be 

performed to find the parameters suited for the data:   and  . 

3.2 Classifier Creation 

 

 To create the data vectors   , many different possible image feature 

combinations are available. Additionally, it is possible to aggregate and normalize the 

features. With five features, each with two to three forms of aggregation and three 
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forms of normalization, there are over twenty-four thousand combinations. 

Furthermore, performing a grid search over 30 parameter possibilities with 12-fold 

validation would require  the training of  around 8.5 million SVMs for each classifier. 

With the long computation times involved in creating SVMs, it is not feasible to test 

all of the combinations. Therefore, to construct a suitable combination of features, 

aggregations, and normalizations, a method similar to the method proposed by Peter 

Belhumeur for face recognition was implemented [11, 12] 

 To construct the vectors, the followings steps were taken. First, initial vectors 

were selected by using all aggregation and normalization combinations of a single 

image feature. The initial image feature chosen was the gist feature, with a total of 

three aggregation possibilities and three normalization possibilities. With these 

vectors, SVMs were trained through grid searches and cross-validation and the vector 

producing the highest cross-validation was selected as the initial vector. Next, the 

following iterations were performed. 

1. An untested image feature was selected and all aggregation and normalization 

combinations were created. Next, these vectors were concatenated with the 

previous iteration or initialization, using the highest cross validation accuracy. 

2. For each of the new lengthened vectors, SVMs were created through grid 

searches and cross-validation, and the vector that produced the highest cross-

validation was chosen. If none of the current vectors produced SVMs with 

higher cross-validation compared to the previous iteration or initialization, the 

current image feature was rejected.  
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This iterative method reduced the number of combinations to a total of 37 or 11,880 

SVMs with grid searches and cross validation for each classifier.  

3.2.1 Aggregation 

 

 The features were aggregated three ways if feasible: no aggregation, a 

histogram of the data, and the sample mean and variance of the data. For all of the 

features, except for gist, performing no aggregation was impractical because the 

dimension of the data was too high.  The histograms were created through vector 

quantization, and the specifics for each feature are outlined in Chapter 2. The sample 

mean and variance were calculated for each image feature using Eq. 3.12 and Eq. 

3.13. 

    
 

  
   
 
    (3.12) 

     
 

    
         
    (3.13) 

Where    is an individual element of an image feature, such as a single SIFT keypoint 

descriptor or the output of the set of filters for one location in gist. 

3.2.1 Normalization 

 

 The features were normalized three ways after aggregation: no normalization,  

mean normalization, and energy normalization. The mean normalization was 

performed according to Eq. 3.14. 

      
  

 
 (3.14) 

Where   is calculated according to Eq. 3.12, except over all             . Energy 

normalization is performed according to Eq. 3.15. 
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 (3.15) 

Where   and   were calculated according to Eq. 3.12 and Eq. 3.13 except over all 

            .  

3.3 Alternative Classifier Creation 

 

 An alternate method of classifier creation was used to combine the different 

image features. Individual SVMs were created for each image feature to make new 

vectors   , where         
    

      
  .   

  is the distance from the margin for the 

SVM created from the gist image features, and   
  is the distance from the margin for 

the SVM created from the RGB histogram, etc. Using a separate portion of the 

training images, an additional SVM was trained to classify    and estimate the 

image's location or environmental type [12]. A structural diagram illustrating how 

this process is performed is shown in Figure 3.2. 

 

Figure 3.2 Structural diagram for an alternative classifier creation structure. Individual SVMs 

for each feature were created, and the results from each SVM were concatenated together and 

filtered through a final SVM to predict the class. 

 

 Combining the image features using this method has advantages and potential 

disadvantages. An advantage is that this method allows for SVM to determine the 

appropriate weightings for the different image features. Additionally, this method 

allows for different kernels for each image feature. However, a potential disadvantage 
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is that the dimensionality reduction enacted by this method can remove structural 

properties that exist between image features that can be useful in classifying the 

images. 

3.4 Hierarchical Structure 

 

 A hierarchical structure was implemented to categorize the images. Many 

different categories could be used, such as time of day, items included in the image, 

etc. However, in this research environmental types were chosen to separate the 

images since the environmental type is easily recognized and correlates highly with 

the physical location. Four environmental types were used to divide the images: 

desert, forest, coast, and city. While there are many other obvious choices of images, 

such as mountains, suburbs, and plains, the four aforementioned types provide 

variety.  

 The system was assembled by creating an SVM for each environmental type. 

Each SVM was constructed from the image features from an equal number of images 

representing the environmental type and an equal number representing all other 

environmental types. Early in the testing it was observed that increasing the amount 

of training images increased accuracy. Therefore, the maximum numbers of training 

images were used for each SVM.  Additionally, for each SVM, new histograms were 

created for the SIFT, texton, RGB, and line features, and these histograms extended 

to the testing data.  The environmental type was predicted for each test feature by 

selecting the environmental type corresponding to the largest distance from the 

margin. A structural diagram showing how a test images environment was predicted 

is shown in Figure 3.3. 
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Figure 3.3 Structural diagram showing how a test images environment was predicted using the 

hierarchical system. Individual image features (Gist, SIFT, etc.) were only computed once; 

however, their histograms were computed for each environment. 

 

 Following the creation of the SVMs for the environmental types, SVMs for 

the locations of each environmental type were created. For example, a set of three 

SVMs representing three distinct desert locations were computed. Like the 

hierarchical SVMs, new histograms were computed for SIFT, texton, RGB, and line 

features. This division allowed for greater variation across the histograms of locations 

belonging to the same environment. In addition, new histograms were computed for 

the testing data for each SVM, resulting in 12 histograms each corresponding to each 

location's SVM. After the environmental type was predicted, the test data was then 

sent to the location's SVM of the predicted environmental type. The predicted 

location was chosen by the SVM producing the largest distance from the margin. A 
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structural diagram of the hierarchical structure is shown in Figure 3.4.

 

Figure 3.4 Structural diagram showing how a test image's location was predicted for the desert 

locations using the hierarchical system. The individual image features (Gist, SIFT, etc.) were 

only computed once, but their histograms were computed for each environment. 

 



 

 27 

 

Chapter 4: Dictionary-Based Method 
 

 Dictionary-based recognition is another commonly used method to perform 

recognition in computer vision.  In this method, a representative dictionary is learned 

from training data. Later, when new data is encountered, the dictionaries are used for 

classification by choosing the dictionary that can reconstruct the new data with the 

lowest reconstruction error [13]. These dictionaries can be built from the images 

themselves or, if there is too much variation between the images, from features 

extracted from the images. Additionally, the algorithm seeks to find create 

dictionaries that create low reconstruction error from a sparse representation vector. 

Spare representation vectors are sought because if an image belongs to a particular 

class, it should be possible to reconstruct it with only a few atoms. Like SVM, 

methods exist to reformulate the algorithms to use a kernel and create non-linear 

dictionaries which can improve classification accuracy [10]. 

4.1 Linear Dictionary Learning 

 

 The first dictionary-based method used for recognition was a system similar to 

the dictionary-based method proposed by Patel et al. in their paper "Dictionary-based 

Recognition Under Variable Lighting and Pose" [13]. In their paper they propose an 

algorithm to create class specific dictionaries for face recognition using the algorithm 

K-single value decomposition (K-SVD) [14].  
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4.1.1 Problem Formulation 

 

The problem is formulated as follows: 

 We have C distinct classes each with a set of   training images, where 

              . 

 Each training image can have a vector of image features extracted from it to 

produce a N-dimensional vector  . 

 A matrix can be obtained by concatenating the vectors to produce    where:  

       
         

              (4.1) 

 Then, we have a test image whose true class is unknown and whose image 

features can be extracted to produce an N-dimensional vector  . 

4.1.2 Class Specific Dictionaries 

 

 For each matrix   , we seek to find a dictionary of K atoms       
      that 

can create an accurate representation of    using a set of sparse representation vectors 

  
                     . The representation vectors can be combined to form    

as shown in Eq. 4.2. 

        
        

               (4.2) 
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These two matrixes are found by solving the following optimization problem seen in 

Eq. 4.3. 

                                  
                

  
 
      

  (4.3) 

In Eq. 4.3, the sparsity of the representative vectors   
  is capped through the second 

half of the equation where      counts the number of non-zero elements and    is the 

maximum amount of non-zero elements allowed.  

4.1.2 K-Singular Value Decomposition (K-SVD) 

 

 An algorithm that solves Eq. 4.3 is K-Singular Value Decomposition (K-

SVD) [14]. K-SVD is an iterative algorithm based upon the popular clustering 

algorithm K-means.  The algorithm begins by initializing the dictionary with K 

randomly selected   -normalized vectors   from the set of training vectors. Next, the 

algorithm alternates between a sparse-coding step and a dictionary update step for a 

set number of iterations.  

 Step 1. Sparse Coding: 

In the first step, the dictionary    is kept fixed and the optimal   
  are found 

for each   
  in   , according to Eq. 4.4. 

    
  
    

       
  

 

 
             

  
 
       (4.4) 

Eq. 4.4 is solved using any pursuit algorithm such as matching pursuit (MP) 

and orthogonal matching pursuit (OMP). 
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 Step 2. Dictionary Update: 

The second step of the algorithm updates each column of                 

according to the following steps: 

1. First, a set of examples from   
   that use a particular atom     are 

defined. More precisely,                    
       . 

2. Next, the error representation matrix   is calculated according to Eq. 

4.5. 

              
 

       
 
 (4.5) 

In Eq. 4.5     
 
 represents the jth row of   . 

3.    is then restricted by only choosing the columns that correspond to 

   to give     
 . 

4. Finally, SVD is performed on     
      . The column    

  is set to 

the first column of    and     
  is the first column of   multiplied by 

        

4.1.3 Image Classification 

 

 An image feature vector   with an unknown label can be classified once the   

dictionaries,   , are determined from K-SVD. This is done by projecting   onto the 

span of the atoms of   , through the orthogonal projector   , defined according to Eq. 

4.6. 

           
     

     
  (4.6) 

Using    we can approximate   according to Eq. 4.7, and the residual vector       

can be calculated according to Eq. 4.8. 
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         (4.7) 

                     (4.8) 

Then, the estimated class              is chosen by selecting the class that produces 

the lowest reconstruction error [13]. The selection of the estimated class   is shown 

seen in Eq. 4.9. 

                    (4.9) 

4.2 Kernel Dictionary Learning 

 

 Like SVM, the dictionary-based recognition scheme shown in Chapter 4.1 can 

be extended using the kernel trick to allow for non-linear dictionaries. The second 

dictionary-based method follows a strategy similar to the object recognition method 

introduced by Nguyen et al. in "Kernel dictionary learning" [10]. It is important to 

note that the non-linear method follows the same initial problem formulation shown 

in Chapter 4, Section 1.1, except it focuses on only creating a dictionary for one class, 

 . 

 The dictionary-based recognition is extended to allow for non-linear dictionaries 

according to Eq. 4.10. This is done by adapting Eq. 4.4 with the mapping       

       ,   is the dot product space.  

                            -      
 
                     

  (4.10) 

 

Next, we reformulate our dictionary   to be composed of some predefined base 

dictionary B, and an atom representation A shown in Eq. 4.11. 

       (4.11) 
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From Eq. 4.11 we allow B, the predefined base dictionary to be     . It was shown 

in [10] that there exists an optimal solution to Eq. 4.10 using Eq. 4.12. 

          (4.12) 

From Eq. 4.12 we can rewrite Eq. 4.10 to produce Eq. 4.13. 

                 
    

                 
                    

  (4.13) 

 

Finally, using the identity     
           we can rewrite Eq. 4.13 as Eq. 4.14. 

                  
    

                                                   

  (4.14) 

 

Where         is the kernel matrix               
      . Since   only requires dot 

products, Mercer kernel functions can be used like the RBF kernel used in Chapter 3. 

4.1.2 Kernel KSVD (KKSVD)  

 

 An algorithm that can solve Eq. 4.13 is Kernel  KSVD (KKSVD). Developed 

by Ngyuen et al., it follows the same sparse-coding dictionary and dictionary update 

process as KSVD but incorporates the kernel matrix   to create non-linear 

dictionaries [10]. The algorithm begins by initializing the matrix A of Eq. 4.12 by 

randomly selecting one element from each column to be 1 and normalizing each 

column of   to unit norm. Next, the algorithm alternates between a sparse-coding 

step and a dictionary update step for a set number of iterations or until some other 

stopping criteria is met. 

 Step 1. Sparse Coding 

In the first step, the matrix A of the dictionary is kept fixed and the sparse 

coefficient matrix   is found through the algorithm kernel orthogonal 
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matching pursuit (KOMP). This is accomplished by reformulating Eq. 4.10 to 

become N smaller problems as shown in Eq. 4.15. 

             -           
 
                      (4.15) 

Given the matrix A,      , and a signal      , KOMP seeks to find a 

sparse combination of dictionary atoms that represent   in the feature space. 

                    (4.16) 

Where     is the current representation of the signal      and    is the current 

residual. 

1. The first step of KOMP projects the residual vector     onto the 

dictionary atoms belonging to the set of atoms not belonging to   , the 

current set of atoms that have been selected shown in Eq. 4.17. 

 
  
                 -         

 
         

                             
          

 (4.17) 

Where    is the i-th column of A, and        is defined according to 

Eq. 4.18. 

                                       

2. Then, the algorithm selects a new dictionary atom not belonging to the 

set    that gives the largest projection coefficient which guarantees the 

largest reduction in the approximation error. 

3. Following this step, a new    is created by projecting the signal      

onto the subspace spanned by the selected dictionary atoms         

using the Moore-Penrose pseudoinverse.     is the set of dictionary 
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atoms with set indices from   . 

              
 
          

  

         
 
      (4.18) 

4. Finally, a new representation     is found from Eq. 4.19. 

             (4.19) 

Steps one through four are then repeated    times. 

 Step 2. Dictionary Update 

The second step of the algorithm is the updating of the dictionary D, 

particularly the matrix A. The approach begins by fixing   in Eq. 4.13 and 

rearranging the equation to produce to Eq. 4.20. 

         -         
 
 (4.20) 

Where    and    are defined according to Eq. 4.21 and Eq. 4.22 respectively. 

             
 

   

  (4.21) 

           
   (4.22) 

Where   is a column of A. Next, the group of indices    that correspond to 

examples that use atoms of          are found according to Eq. 4.23. 

                 
     (4.23) 

From   it is possible to make a matrix    of size         , where ones are on 

          entries and zeros everywhere else. From this result we can define 

column-reduced matrixes   
       and   

       to produce Eq. 4.24. 

        
  -         

  
 

 
 (4.24) 

Following this step, SVD can be performed to produce the equality 4.25.
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            (4.25) 

Where          and       
        . Finally, it is possible to update    

according to Eq. 4.26. 

         
    

    (4.26) 

Where    is the first column of V and            . 

4.1.3 Image Classification 

 

 An image feature vector   with an unknown label can be classified once the   

dictionaries,           , are determined from KKSVD [10].  For each test 

sample, the reconstruction error a dictionary would produce can be attained through 

Eq. 4.27. 

          -           
 
 (4.27) 

In Eq. 4.27,   is calculated using KOMP, as described in Section 4.1.2. Once all 

reconstruction errors have been calculated, the class   producing the lowest 

reconstruction error is chosen. 

                 (4.28) 

4.3 System Structure of Dictionary-Based Method 

 

 Once the dictionaries,   , for each class of the   locations are created, a new 

image from an unknown location is processed as follows: 

1. Features Extraction 

The first step of the geolocation process is the extraction of image features. 

The image feature gist and histograms of RGB data, SIFT descriptors, textons, 

and lines are all energy normalized using the sample mean and variance 



 

 36 

 

parameters taken from the training features. Following normalization, the 

image features are concatenated together to form a 2762-dimensional vector 

 . 

2. Reconstruction Error 

Following feature extraction, the reconstruction error    is calculated using 

each     according to Eq. 4.8 for the linear dictionary-based method, and Eq. 

4.28 for the non-linear dictionary-based method. 

3. Location Estimation 

Finally, once all reconstruction errors are calculated, the location 

corresponding to the dictionary with the lowest reconstruction error is 

selected. 

This process is summarized by Figure 4.1. 

 

 
Figure 4.1 Structural diagram showing how a test images location was predicted using the 

dictionary-based system. 
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Chapter 5: Image Dataset 

5.1 Flickr 

 To acquire images for this thesis, geotagged images from the website Flickr 

were downloaded. This was accomplished by utilizing and modifying MATLAB and 

Python code developed by Hays [1]. The code takes as an input a list of positive tags, 

such as "YellowstoneNationalPark," and a list of tags it would like to exclude, such as 

"People", "Party", and "Wedding". Then, a Python script utilized  Flickr's API and 

searched their server for geotagged images that contained any of the positive tags and 

excluded images with any of the negative tags.  Once a list of potential images was 

found, a MATLAB script attempted to download the images from the list. Certain 

images could not be downloaded because the authors of the images had placed 

restrictions on who could download their images. Finally, MATLAB stored all of the 

extra image data, including the geolocation, in the images files EXIF data. 

5.2 Image Screening 

 

 After the images were acquired, a script was used to manually screen the 

acquired images. The user was given the option to accept or reject an image. This was 

a time intensive process that proved necessary because a large portion of the 

downloaded images were either incorrectly tagged or not usable. For example, the 

images from San Francisco contained a few thousand blurry images taken at night of 

a large outdoor pillow fight. While the event looked exciting, there was little content 

in the image that could be used to identify where the images were taken.  
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 There were many different reasons images were considered to be not usable. 

Typically images were rejected because the image was a portrait of a person and the 

persons face and body took up more than approximately 75% of the image. Other 

common reasons an image was rejected were because the image was taken indoors, 

the image was blurry or over-processed with a computer program like Photoshop, or 

the image was of an event like a wedding or car show. It is important to note that 

while the Python script used to find the geotagged images rejected images with tags 

like "Wedding," this required the image to have this tag to begin with. Unfortunately, 

it seemed that many people would tag their images with the name of the city and 

leave out tags that were helpful in filtering. Examples of rejected and accepted images 

are shown in Figure 5.1. The top row contains examples of images that were rejected 

(graffiti, food, a duck), and the bottom row contains examples of images that were 

accepted (buildings, canyon, bridge). 

 

Figure 5.1 Examples of rejected images and accepted images. Rejected images are on the top 

row, accepted images on the bottom. 
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 Finally, once the images had been screened, the accepted images were 

separated from the rejected images. This produced a total of 22,834 acceptable 

images out of a total of 88,809 images. Consequently, only 25% of the images 

downloaded from Flickr were used for this thesis. 

5.3 Image Categories 

 For this thesis, four environmental types were chosen: desert, coast, forest, 

and city. There are other obvious environmental types that could be chosen, like 

mountain tops, grasslands, farmlands, wetlands, and underwater. However, due to the 

amount of time it takes to screen images and images from these environments being 

less available, only the aforementioned four types were chosen.  Additionally, it is 

important to note that the four chosen types could be further subdivided into more 

precise types, like desert canyons, evergreen forest or deciduous forest to add 

additional categories. 

 

5.3.1 Desert 

 

 Three locations from different desert locations were chosen: Grand Canyon 

National Park, Death Valley National Park, and Bryce Canyon National Park. After 

screening, 2635 photos were found for Grand Canyon National Park, 1565 photos 

were found for Death Valley National Park, and 2020 photos were found for Bryce 

Canyon National Park. Figure 5.2 demonstrates some of the images of these 

locations. 
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Figure 5.2 Example images of the three desert locations. From left to right: Grand Canyon, 

Death Valley, and Bryce Canyon National Parks. 

 

5.3.2 Coast 

 Three locations from different coastal locations were chosen: Acadia National 

Park, Maine; Cannon Beach, Oregon; and the Outer Banks, North Carolina. After 

screening, 1348 photos were found for Acadia National Park, 1365 photos were found 

for Cannon Beach, and 2014 photos were found for the Outer Banks. Figure 5.3 

demonstrates some of the images of these locations. 

 
Figure 5.3 Example images of the three coastal locations. From left to right: Acadia National 

Park, Maine; Canon Beach, Oregon; the Outer Banks, North Carolina. 

5.3.3 Forest 

 Three locations from different forest locations were chosen: Yellowstone 

National Park; Olympic National Park; and the Shenandoah National Park. After 

screening, 1737 photos were found for Yellowstone National Park, 1997 photos were 

found for Olympic National Park, and 2782 photos were found for the Shenandoah 

National Park. Figure 5.4 demonstrates some of the images of these locations. 
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Figure 5.4: Example images of the three forest locations. From left to right: Yellowstone, 

Olympic, and Shenandoah National Parks. 

5.3.4 City 

 

Three locations from different cities were chosen: New York, New York; San 

Francisco, California; and the New Orleans, Louisiana. After screening, 2225 photos 

were found for New York, 1365 photos were found for San Francisco, and 1681 

photos were found for the New Orleans. Figure 5.5 demonstrates some of the images 

of these locations.  

 

Figure 5.5 Example images of the three cities. From left to right, New York, San Francisco, and 

New Orleans. 

 5.4 Mean-Shift 

 

 While twelve geographically distinct locations were chosen for this thesis, the 

mean-shift clustering algorithm was performed on the GPS data of the images [11]. 

This step was done to simulate situations where the most photographed locations 

might not be as known. Additionally, mean-shift was necessary to remove any images 

that were tagged as being from a location but their GPS location indicated they were 
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from somewhere else. For example, an image could be tagged "deathvalley" with a 

GPS tag from Las Vegas. 

 Mean-shift was used to estimate the modes of the GPS data. Like "Mapping 

the World's Photos," mean-shift was chosen because it does not require any prior 

knowledge of the number of clusters and instead uses a bandwidth parameter to 

control the resolution of the clusters. For example, the bandwidth parameter can be 

decreased so that the locations of highly photographed landmarks can be determined, 

or the bandwidth can be increased so that the locations of highly photographed cities 

and national parks can be determined.  

 Mean-shift is an iterative algorithm that uses the gradient estimate to update 

itself, stopping when it reaches a mode, a zero gradient. The algorithm begins by 

selecting an initial GPS location,  , and then calculates       according to Eq. 5.1. 

        
      

    
 
   

   

    
    
 
   

   

   (5.1) 

Where    are the data values, g is the weight which corresponds to a kernel function, 

and h is the bandwidth. Next, the procedure updates   using Eq. 5.2. 

                 
     (5.2)  

For each initial location, the algorithm is run for a fixed number of iterations or runs 

until the changes in   are negligible. For this thesis, a maximum of 200 iterations 

were performed, and the bandwidth parameter h was set to 0.6. It is important to note 

that within the uniform kernel, distance was computed between latitude longitude 

points instead of performing a distance calculation through the Haversine or 

Vincenty's formula.  This decision was made because the resolution of the clusters 

was relatively small compared to the size of the earth and none of the locations were 



 

 43 

 

close to the North or South Poles. Additionally, the algorithm was sped up by 

bucketing the images and only updating the gradient with images from neighbor bins. 

 Many initial location seeds were performed to find the twelve largest modes 

of the experiment. As expected, these modes directly corresponded to the twelve 

locations listed earlier in this chapter.  Once the twelve largest modes were 

discovered, all of the downloaded images were labeled according to the mode they 

were closest to. However, if an image was over 200 km away from a mode, it was 

removed from the experiment. An image showing the GPS locations of the collected 

images can be seen in Figure 5.6. 

 

Figure 5.6 Image showing the GPS locations of the images downloaded from Flicker as red dots. 

Example images of each cluster are also shown and their cluster center is indicated.
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Chapter 6:  Experimental Results 
 

 Sections 6.1, 6.2 and 6.3 contain the experiments that were performed to test 

the two geolocation algorithms. It is important to note that in all experiments the 

same set of testing images were used to allow the results to be comparable across 

experiments. The testing set was created by selecting 100 images from each location 

and keeping these images isolated from the remaining images so that they would not 

influence histogram creation and K-means whenever it was performed. 

6.1 Support Vector Machine Method 

6.1.1 Performance Across Database Sizes 

 

 The first test was conducted to determine how the database size affected the 

overall accuracy and the hierarchical accuracy. To perform this task efficiently, 100 

images per class were selected as test images, and 1,200 images per class were 

selected as training images. 1,200 images per class were selected because 1,301 was 

the maximum number of images each class could have without creating an imbalance 

of images per class.  

 Once the 1,200 images per class were selected, the experiment was set up 

using different training sizes. This step was accomplished by first extracting image 

features and creating histograms for the SIFT, RGB, texton, and line image features. 

Next, a random selection of training images were selected to form training sets of 50, 

100, 150, 200, 300, 400, 500, 600, 800, 1,000, and 1,200 images per class. Then, 

hierarchical and location classifiers were generated according to Section 3.2, using 

10-fold cross-validation and 2,500 iterations per SVM. Finally, the test images were 

used to compute the overall and hierarchical accuracies.   
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 The results for these tests are shown in Figure 6.1. The overall accuracy is 

shown by a red, solid line and the hierarchical accuracy by a dotted, blue line. The 

graph demonstrates that as additional training images are incorporated into the 

classifier creation, accuracy improves. It is also interesting to note that the 

hierarchical classifiers require fewer images per class to perform well, with greater 

than 70% accuracy at 50 images per class. Additionally, increasing the number of 

training images from 50 to 1,200 images per class only increases hierarchical 

accuracy 13%, while the overall accuracy increases 22%. 

 

Figure 6.1 Performance across database sizes using the hierarchical SVM method. The overall 

accuracy (red line) and the hierarchical accuracy (dotted blue line) were computed for different 

database sizes. The database sizes represent how many images per location were selected for 

training the SVM classifiers. 

 

 Additionally, observe that at around 600 training images per class the amount 

of additional accuracy added by incorporating additional images begins to reduce. 
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This observation was utilized in the following experiment due to the long 

computation times required to create the SVMs. 

6.1.2 Performance Across Features 

 

 The second test was conducted to determine how the different image features 

affected the overall and hierarchical accuracies. Classifiers were created using each 

image feature on its own to reveal how well they could perform geolocation. 

Furthermore, classifiers were generated by withholding an image feature from the 

classifiers to expose how the lack of an image feature impacted the accuracy. 

 For efficiency, 100 images per class were selected as test images, and 600 

images per class were selected as training images. 600 images per class were selected 

as training images because the experiment described in 6.1.1 indicated that adding 

additional images did not significantly impact the accuracy of the classifiers.  

 Once the 600 images per class were selected, the experiment tested each of the 

features individually. First, the image features for the SIFT, RGB, texton, and line 

image were extracted. Next, each feature was used in isolation to create the 

hierarchical and location classifiers. Once the set of individual feature classifiers was 

created, a set of five additional classifiers were formed by withholding an image 

feature. Instead of using the classifier creation algorithm described in Section 3.2, 

only energy normalization was performed on the data. Additionally, no aggregation 

was performed on the gist data, and histogram aggregation was performed on the 

remaining image features. This decision was made to reduce the overall time required 

to conduct the experiment and to avoid a feature being left out. Furthermore, 

preliminary tests established that the aforementioned normalizations and aggregations 
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often performed best. Once the features were aggregated and normalized they were 

concatenated together. The SVMs were created using 10-fold cross-validation and 

2,500 iterations.  Lastly, the test images were used to compute the overall and 

hierarchical accuracies.   

 The overall and hierarchical results are shown in Figure 6.2 and Figure 6.3, 

respectively. A critical finding is that when all image features are forced to be used in 

the classifier creation, the classifiers achieved an overall accuracy of 63% and a 

hierarchical accuracy of 81.1667%. 

 
Figure 6.2 Accuracy across features using the hierarchical SVM method. The blue bars display 

the accuracy induced by only using a single image feature on its own. The red bars display the 

accuracy induced by not allowing the use of a single image feature. 
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Figure 6.3 Hierarchical accuracy across features for the hierarchical method. The blue bars 

display the accuracy induced by only using a single image feature on its own. The red bars 

display the accuracy induced by not allowing the use of a single image feature. 

 

 From Figures 6.2 and 6.3 it is possible to rank the features by how well they 

performed geolocation on their own. The results indicate that when this algorithm is 

used, textons can perform both geolocation and environmental classification the best 

when only one feature is selected in isolation. Compared to other isolated features, 

line features alone performed geolocation the worst and RGB histograms performed 

environmental classification the worst. The classifiers produced without an image 

feature reveal two facts. First, leaving out gist negatively impacted geolocation and 

environmental classification the most. Second, leaving out line features improved 

geolocation. The accuracy was 63.7% without line features and only 63% when all 

image features were used.   
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6.1.3 Performance Without Environmental Classifiers 

 

 The third test was conducted to determine if the environmental classifiers 

actually improved the geolocation accuracy. Individual classifiers for each location 

were formed according to Section 3.2. Each classifier was created using the 

maximum amount of training images per class by selecting an equal amount of 

images from the location represented by the classifier and an equal amount of images 

from the other locations, resulting in an even amount of {+1,-1} labeled images. 

Next, the 100 testing images per class, selected before all experiments were 

conducted, were used to test the classifiers. The results for this experiment are shown 

in Figure 6.4. 
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Grand Canyon 65 7 9 3 3 6 3 1 2 0 0 1 

Death Valley  4 68 6 7 0 1 3 5 6 0 0 0 

Bryce Canyon  6 7 72 4 3 1 4 1 2 0 0 0 

Yellowstone  8 0 0 67 6 10 2 3 4 0 0 0 

Olympic       1 1 1 9 65 12 4 1 2 0 1 3 

Shenandoah  5 4 1 6 16 62 3 2 1 0 0 0 

Acadia           6 7 5 3 4 5 60 7 3 0 0 0 

Outer Banks 3 6 4 6 0 4 4 52 7 10 1 3 

Cannon Beach 2 2 3 5 0 4 9 8 66 0 1 0 

San Francisco 0 2 0 1 1 1 2 3 0 57 17 16 

New York 1 0 0 0 1 0 0 3 1 24 58 12 

New Orleans 0 0 1 1 1 1 0 4 2 22 5 63 

Figure 6.4 Confusion matrix produced by withholding hierarchical classifiers.  Colored boxes 

indicate environmental groups.  
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 The algorithm produced an overall accuracy of 62.9%. The results have been 

grouped according to their environment. An essential fact is that the colored squares 

represent misclassifications which occurred within the locations of the same 

environment. Upon analysis of the confusion matrix in Figure 6.4, many 

misclassifications within the city and forest environments are evident.   

 Using the non-hierarchical approach it is possible to determine the accuracy of 

the algorithm described in "Mapping the World's Photos" [2]. This was done by 

simply restricting the algorithm to only use SIFT features and not use environmental 

classifiers. Using the same test images as before their algorithm produced an overall 

accuracy of 47.17%. 

6.1.4 Alternative Classifier Performance 

  

 To test the alternative classifier creation method described in Section 3.3, 

classifiers were created for each location and environment. Each classifier was 

generated using the maximum amount of training images per class by selecting an 

equal amount of images from the location or environment represented by the 

classifier and an equal amount of images from the other locations, creating an even 

amount of {+1,-1} labeled images. The training data for each classifier was then 

separated into two groups: two thirds was used to train the classifiers for each feature, 

and the remaining third was reserved to train the final classifier. The later third was 

fed through the feature classifiers to generate the vector    for each image. Next, the 

100 testing images, per class selected before all experiments were conducted, were 

employed to test the classifiers. 



 

 51 

 

 After testing all of the testing images, the algorithm produced an overall 

accuracy of 65.5% and a hierarchical accuracy of 82.25%. 

6.1.4 Overall Performance 

 

 The final test, using the hierarchical geolocation algorithm with SVMs, was 

performed to determine the accuracy when the information gathered in section 6.1.1 

and 6.1.2 was incorporated. Hierarchical and individual classifiers were created 

according to section 3.2 to find an optimal combination of features. Since the results 

from 6.1.1 suggested that increasing the amount of training images increased 

accuracy, the maximum amount of images for each location were used. Each 

classifier was generated using the maximum amount of training images per class by 

selecting an equal amount of images from the location or environment represented by 

the classifier and an equal amount of images from the other locations, creating an 

even amount of {+1,-1} labeled images. Next, the 100 testing images per class, 

selected before all experiments were conducted, were employed to test the classifiers. 

 After testing all of the testing images, the algorithm produced an overall 

accuracy of 68.83% and a hierarchical accuracy of 85.33%. The results are given in 

the confusion matrix of Figure 6.5. 
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Grand Canyon 71 6 7 2 3 6 2 2 1 0 0 0 

Death Valley 10 66 6 3 0 1 1 9 4 0 0 0 

Bryce Canyon 7 4 71 4 3 1 5 0 4 1 0 0 

Yellowstone 5 1 4 71 11 3 4 0 1 0 0 0 

Olympic 0 1 1 7 75 10 2 1 1 0 0 2 

Shenandoah 7 1 2 7 13 60 4 5 0 0 0 1 

Acadia 1 7 5 3 3 7 63 9 2 0 0 0 

Outer Banks 1 6 3 5 1 2 2 66 4 6 2 2 

Cannon Beach 0 0 2 2 0 2 6 9 78 0 1 0 

San Francisco 0 1 2 0 1 1 0 3 0 57 15 20 

New York 0 0 0 0 0 1 1 2 1 17 67 11 

New Orleans 0 0 1 1 1 1 0 2 1 8 4 81 
Figure 6.5 Confusion matrix produced using hierarchical classifiers.  Colored boxes indicate 

environmental groups. 

 

 Comparing Figures 6.4 to 6.5, an additional advantage aside from the increase 

in overall accuracy can be seen. This advantage is that when the correct environment 

is identified, the within-environment accuracy is higher. The hierarchical geolocation 

method produced an accuracy of 80.67%, assuming the estimated environment is 

correct, while the non-hierarchical geolocation method produced an accuracy of 

76.5%. This advantage is particularly apparent in the classification of images from 

New Orleans. Using the non-hierarchical classification method, 22 images from New 

Orleans were incorrectly labeled as images from San Francisco, while only 8 images 

were misclassified as being from San Francisco using the hierarchical classification. 

 The hierarchical accuracy produced from the hierarchical classifiers is shown 

in Table 6.1. A significant aspect is the high accuracy the city environmental 
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classifier produced. This classifier essentially indicates if an image contains man-

made objects like houses, buildings, and roads. 

Table 6.1 Hierarchical accuracies from hierarchical geolocation system. 

Environment Accuracy 

Desert 82.67 

Forest 85.67 

Coast 79.67 

City 93.33 

 

6.2 Linear Dictionary-Based Method 

 

 The first test using the dictionary-based method was executed to determine 

how well linear dictionaries could perform image geolocation. Class-specific 

dictionaries were formed according to Chapter 4.1 by reserving the specified 100 

images for testing and using all of the remaining images for testing. An ideal 

dictionary size and sparsity constant were determined using 3-fold cross-validation 

and 80 iterations per dictionary. Instead of dividing the data into three even subsets, a 

unique set of 200 training images per location were selected each time to determine 

the cross-validation accuracy. This decision was made due to the long computation 

times required to train the dictionaries. The dictionary sizes tested were 100, 

200,300,400, and 500, and the sparsity constants tested were 5, 15, 35, and 45. After 

testing all parameter combinations, the combination producing the highest cross-

validation accuracy was a dictionary size of 200 atoms and a sparsity constant equal 

to five. 

 Using the testing images, the accuracy of the system was determined to be 

59.75%. The confusion matrix associated with this experiment is shown in Figure 6.6. 
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Grand Canyon 45 3 21 9 5 4 9 1 1 0 1 1 

Death Valley 5 45 20 8 2 3 6 5 4 1 1 0 

Bryce Canyon 2 0 75 4 5 1 8 4 1 0 0 0 

Yellowstone 3 0 7 62 12 5 1 6 2 1 0 1 

Olympic 0 1 2 8 81 2 4 0 1 0 0 1 

Shenandoah 7 0 2 10 35 32 6 3 1 1 1 2 

Acadia 5 2 8 2 7 6 59 8 2 0 0 1 

Outer Banks 2 3 2 11 1 6 1 55 8 2 4 5 

Cannon Beach 2 0 6 7 1 1 9 9 65 0 0 0 

San Francisco 1 0 6 2 3 0 2 1 0 49 18 18 

New York 0 0 0 1 0 0 0 3 0 12 69 15 

New Orleans 0 0 0 2 3 0 2 1 0 7 5 80 
Figure 6.6 Confusion matrix produced using linear class specific dictionaries. Colored boxes 

indicate environmental groups. 

 

 From the confusion matrixes and an overall accuracy of 59.75%, it is clear 

that the linear dictionaries can perform image geolocation. However, upon examining 

some of the individual locations, some weaknesses are revealed. For example, the 

testing images from Grand Canyon and Death Valley National Park were correctly 

classified 45% of the time. These accuracies are very different from the accuracies 

produced by the hierarchical SVM method which achieved 71% and 66%, 

respectively. From the confusion matrix, it appears that this is mostly due to images 

from these locations being misclassified as being from Bryce Canyon National Park 

with 21 and 20 images being misclassified, respectively. 
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6.3 Non-linear Dictionary-Based Method 

6.3.1 Performance Across Database Sizes 

 

 The first test using non-linear dictionaries was conducted to determine how 

the database size affected the overall accuracy of the system. To perform this task 

efficiently, 100 images per class were selected as test images, and 1,200 images per 

class were selected as training images. 1,200 images per class were selected because 

1,301 was the maximum number of images each class could have without creating an 

imbalance of images per class.  

 Once the 1,200 images per class were selected, the experiment was set up 

using different training sizes. This step was accomplished by first extracting image 

features and creating histograms for the SIFT, RGB, texton, and line image features. 

Next, a random selection of training images were selected to form training sets of 50, 

100, 150, 200, 300, 400, 500, 600, 800, 1,000, and 1,200 images per class. Then, 

location specific dictionaries were generated according to Section 4.2, using 3-fold 

cross-validation and 80 iterations, using the same cross validation training procedure 

described in 6.2. Finally, the test images were used to compute the overall and 

hierarchical accuracies.   

 The results for these tests are shown in Figure 6.7. The overall accuracy of the 

non-linear dictionary-based recognition algorithm is shown by a red, solid line. For 

comparison, the hierarchical SVM-based recognition algorithm's results are shown by 

a blue, dotted line. From the graph it is clear that as additional training images are 

incorporated into the classifier creation, accuracy improves. Comparison of the two 
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graphs reveals that the non-linear dictionary-based recognition algorithm performs 

better for all tested dictionary sizes. 

 
Figure 6.7 Performance across database sizes using the non-linear dictionary method. The 

accuracy of the non-linear dictionaries (red line) and the hierarchical SVM method's accuracy 

(dotted blue line) for comparison. The database sizes represent how many images per location 

were selected for training the class dictionaries and SVM classifiers. 

 

 Additionally, it is important to note that at around 300 to 400 training images 

per class the amount of additional accuracy added by incorporating additional images 

begins to reduce. This observation was utilized in the following experiment due to the 

long computation times required to create the dictionaries. 

6.3.2 Performance Across Features 

 

 The second test using non-linear dictionaries was conducted to determine how 

the different image features affected the accuracy. Similar to Section 6.2, dictionaries 

were created using each image feature on its own to reveal how well they could 
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perform geolocation. Additionally, classifiers were generated by withholding an 

image feature to expose how the lack of an image feature impacted the accuracy. 

 For efficiency, 100 images per class were selected as test images, 300 images 

per class were selected as training images, and 900 images per class were withheld 

for parameter searches. 300 images per class were selected as training images because 

the experiment described in 6.3.1 indicated that 300 images per class produced decent 

results and while adding additional images would increase accuracy, the additional 

amount of time required to train the dictionaries would cause the experiment to take 

too long. 900 images per class were withheld to allow for optimal parameter searches 

instead of performing cross validation. This was done to reduce the number of 

dictionaries created to the number of parameter combinations searched. 

 The image features were normalized using energy normalization. 

Additionally, no aggregation was performed on the gist data, and histogram 

aggregation was performed on the remaining image features. This decision was made 

to reduce the overall time required to conduct the experiment and to avoid a feature 

being left out. Once the features were aggregated and normalized, they were 

concatenated together, and location specific dictionaries were tested with different 

parameter combinations using the 900 training images that were withheld.  

 The results for these tests are shown in Figure 6.8. A critical finding is that 

when all image features are forced to be used in the classifier creation, the classifiers 

achieved an accuracy of 60.083%. 
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Figure 6.8 Overall accuracy across features using non-linear dictionary-based recognition. The 

blue bars display the accuracy induced by only using a single image feature on its own. The red 

bars display the accuracy induced by not allowing the use of a single image feature. 

 

 From Figures 6.8 it is possible to rank the features by how well they 

performed geolocation on their own. The results indicate that when this algorithm is 

used, textons can perform geolocation the best. Line features alone performed 

geolocation the worst. The classifiers produced without an image feature reveal two 

facts. First, leaving out gist negatively impacted geolocation and environmental 

classification the most. Second, leaving out line features did not detrimentally affect 

geolocation like it affected the hierarchical geolocation system. Instead, line features 

added a small .083% increase, equivalent to one additional correctly recognized 

image. 

 A direct comparison between Figures 6.8 and 6.2 is not possible due to the 

selection of training samples. The experiment in Section 6.1.2 used 600 training 
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samples to train the data, and the experiment in Section 6.3.2 used only 300 with no 

guarantee of overlap.  

6.3.3 Overall Performance 

 

 The final test, using the non-linear dictionaries, was to determine the accuracy 

when the information gathered in section 6.3.1 and 6.3.2 was incorporated. Class 

specific dictionaries were created according to Section 4.2. Since the results from 

6.3.2 suggested that increasing the amount of training images increased accuracy, the 

maximum amount of images for each location were used. Each dictionary was 

generated using the maximum amount of training images per class. Due to the 

increased number of training samples, the parameters found in Section 6.3.1 for the 

1,200 training samples per class case were used. This was done to reduce the amount 

of time required to train all of the dictionaries (around two and a half days on a high-

end PC). Next, the 100 testing images per class, selected before all experiments were 

conducted, were employed to test the dictionaries. 

 After testing all of the testing images, the algorithm produced an overall 

accuracy of 70.50% and a hierarchical accuracy of 85.67%. The results are given in 

the confusion matrix of Figure 6.9. 
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Grand Canyon 82 0 6 1 1 6 2 2 0 0 0 0 

Death Valley 14 58 8 1 2 1 2 11 2 1 0 0 

Bryce Canyon 9 2 71 1 3 3 5 5 1 0 0 0 

Yellowstone 4 0 6 64 7 10 3 5 1 0 0 0 

Olympic 0 0 1 5 77 12 0 2 3 0 0 0 

Shenandoah 8 0 2 3 10 73 1 2 0 1 0 0 

Acadia 10 3 2 2 2 7 64 7 3 0 0 0 

Outer Banks 2 4 1 6 1 3 0 73 4 2 4 0 

Cannon Beach 2 0 3 0 0 5 6 10 72 1 1 0 

San Francisco 1 0 0 1 2 5 0 2 0 56 24 9 

New York 0 0 0 0 1 0 0 1 0 9 82 7 

New Orleans 0 0 1 0 1 4 0 3 0 7 10 74 
Figure 6.9 Confusion matrix produced using non-linear class specific dictionaries.  Colored boxes 

indicate environmental groups. 

 

 Comparing Figures 6.5 to 6.9, similarities are apparent. The first similarity is 

that both methods can accurately classify the city environment from the natural 

environments, with the hierarchical SVM method achieving 92.67% and the non-

linear dictionary-based method achieving 91.67%. Additionally, both methods 

encounter difficulty classifying images from San Francisco. Another similarity is the 

difficulty both methods encounter while classifying images from Death Valley 

National Park. The difficulty classifying Death Valley National Park is more 

pronounced with the dictionary-based method, achieving an accuracy of 58%, 

compared to 66%. 
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Chapter 7: Conclusions 

7.1 Comparison Between Methods 

 

 The results for all of the different algorithms implemented in this thesis are 

shown in Table 7.1. For non-hierarchical structured algorithms, the environmental 

accuracy was determined by adding together all of the results of images whose 

estimated location belonged to the correct environment. From Table 7.1, it is evident 

that the non-linear dictionaries perform geolocation slightly better than the 

hierarchical SVMs. The improved accuracy is also evident in Figure 6.7 where the 

non-linear dictionaries performed more accurately for each amount of training 

images.  Additionally, the table indicates that hierarchical SVMs and non-linear 

dictionaries perform environmental accuracy with a similar degree of accuracy. 

 
Table 7.1 Comparison of results between all recognition systems. For non-hierarchical systems, 

hierarchical accuracy was computed by combining the results of locations within their 

environment. 

Recognition System Accuracy 
Environmental 

Accuracy 

"Mapping the World's Photos" 47.17 72.42 

Non-hierarchical SVMs 62.90 82.25 

Hierarchical SVMs 68.83 85.35 

Hierarchical SVMs              

(Alternate Classifier Creation) 65.50 82.25 

Linear Dictionaries 59.75 79.33 

Non-linear Dictionaries 70.50 85.67 

 

 It should be noted that a hierarchical structure was attempted using both linear 

and non-linear dictionaries. A full scale test using all twelve locations was not 

implemented because smaller tests using fewer locations indicated that the 

hierarchical structure did not provide an improvement in accuracy. This may be due 
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to the high environmental accuracy the non-linear dictionaries achieve without the 

hierarchical structure. However, there may be other methods to implement a 

hierarchy to allow the dictionaries to benefit from histograms consisting only of 

elements from the same environment. 

 The results from Table 7.1 also indicate that the non-linear dictionary 

algorithm provides a significant increase in accuracy when compared to using linear 

dictionaries. However, the linear dictionaries have one advantage over the non-linear 

dictionaries in that the dictionaries can be trained faster. 

 Despite the similar classification performance, there are large differences in 

the amount of time required to create the dictionaries and SVMs and the space 

required to store them for future use. The amount of time required to train 12 non-

linear class-specific dictionaries using the maximum amount of training images 

without a parameter search or cross-validation takes the same amount of time 

required to train 12 SVMs with a parameter search of 30 parameter combinations and 

12-fold cross-validation. In other words, training the dictionaries takes about 360 

times longer.  This difference may be due to the fact that the code that creates non-

linear dictionaries is written in MATLAB and the code to create the SVMs is written 

in C++. When comparing the space required to store the different algorithms, storing 

12 class-specific dictionaries requires about 320 MB, while storing 16 SVMs requires 

2GB. Using these differences it is possible to conceive some scenarios. For example, 

if one wanted to quickly test a new image feature and see how well it could aid in 

geolocation, SVMs would be recommended.  However, if one wanted to have an 
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accurate method to classify images with a small file size and did not care about 

computation times, non-linear dictionaries would be better suited. 

7.2 Improvements to Geolocation 

 

 The results of Chapter 6 enforce a few principles that can aid geolocation 

algorithms. The first principle demonstrated by this thesis is that a hierarchical 

structure can bring improvements in accuracy. This is specifically seen by the 6% 

difference in accuracy between the nonhierarchical and hierarchical classification 

schemes.  The second principle demonstrated by this thesis is that none of the tested 

individual image features can perform geolocation as well as a combination of 

features. Additionally, the results indicate that simply forcing the classifiers to use all 

of the features can be detrimental and that the algorithm should be allowed to choose 

the features that work best. The final principle demonstrated by this thesis is that both 

SVMs and class-specific dictionaries can perform comparably. Overall, non-linear 

class-specific dictionaries perform geolocation better than SVMs; however, through 

planning like hierarchical classification, an algorithm utilizing SVMs can be 

competitive. 
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Chapter 8: Future Work 
 

 To improve the geolocation algorithms described in this thesis, many different 

extensions could be incorporated. These include: adding additional locations and 

environments, additional image features, performing multi-scale recognition, and 

performing automatic image screening.  

8.1 Additional Locations 

 

 Due to time and data limitations this experiment does not perform true 

geolocation, giving GPS coordinates from any outdoor image.  Since only 12 

locations were tested, the testing images were limited to these locations. There are, 

therefore, numerous national parks, beaches, and cities that were not included in the 

experiment. Additionally, the locations chosen for this experiment were all in the 

United States, excluding the rest of the world. 

 Adding additional locations will be crucial to determining how well the 

system can scale with the number of locations. While images were screened and 

added to the experiment, it was noticed that additional locations slowly decreased the 

accuracy of the system. However, when the accuracy was compared to chance, the 

systems in this thesis were much better. Despite this improvement, it would seem 

unsatisfactory to add many additional locations and have the algorithm only perform 

well when compared to chance. 

8.2 Additional Image Features 

  

 From the results of Chapter 6, it is clear there is not an individual feature that 

performs geolocation well when compared to using all of the features. From this we 



 

 65 

 

can surmise that adding or replacing the current selection of features should improve 

the accuracy. Other image features that could be included are histograms of oriented 

gradients (HOG) [15], local binary patterns (LBP) [16], and self-similarity descriptors 

(SSIM) [17]. Additionally, when using the hierarchical model, features specific to 

environment could be introduced, such as a histogram of the flora and fauna observed 

in the image found by plant identification in natural environments [18]. A city 

specific image feature could also be used to improve recognition between cities, like 

identifying the content on signs or examining license plates on cars. 

8.2 Multi-Scale Recognition 

 

 Another method to improve the algorithm would be to allow for multi-scale 

resolution. This would allow for landmark level classification using the same 

hierarchical mode in Chapter 3. The algorithm would first determine the city/national 

park like it currently does. Once the general location was determined, the landmark 

would be estimated by creating classifiers for all landmarks within the general 

location.  This change could be implemented using mean-shift on the GPS 

coordinates around each location to identify areas of high photograph activity.  

8.3 Automatic Image Screening 

  

 The final change that could be implemented is automatic image screening. As 

specified in Chapter 5, of the 89 thousand images downloaded, only 23 thousand of 

the images were acceptable images. With an average screening time of two seconds 

per image, the screening of all of the images took approximately 50 hours to 

complete. Since no images were deleted, this has left a large labeled dataset with the 
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images labeled either accepted or rejected. Using this dataset, classifiers could be 

trained to automatically approve images. This could dramatically reduce the amount 

of time involved in adding new locations and allow for the entire system be 

automated. 



 

 67 

 

Bibliography 
 

 

[1]  J. Hayes and A. A. Effros, "IM2GPS: estimating geographic information from a 

single image," in IEEE Confrence on Computer Vision and Pattern Recogntion 

(CVPR), 2008.  

[2]  D. Crandall, L. Backstrom, D. Huttenlocher and J. Klienberg, "Mapping the 

world's photos," in Eighteenth International World Wide Web Confrence 

(WWW), 2009.  

[3]  B. Julesz, "Textons, the elements of texture perception, and ther interactions," 

Nature, vol. 290, pp. 91-97, 1981.  

[4]  T. Leung and J. Malik, "Representing and recognizing the visual apperance of 

materials using three-dimensional textons," International Journal of Computer 

Vision, vol. 43, no. 1, pp. 29-44, 2001.  

[5]  D. Martin, C. Fowlkes, D. Tal and J. Malik, "A database of human segmented 

natural images and its application to evaluating segmentation algorithms and 

measuring ecological statistics," in Eighth International Confrence on Computer 

Vision, 2001.  

[6]  J. Kosecka and W. Zhang, "Video compass," in Seventh European Confrence on 

Computer Vision, 2002.  

[7]  B. Li, K. Peng, X. Ying and H. Zha, "Vanishing point detection using cascaded 

1D hough transform from single images," Pattern Recogntion Letters, vol. 33, 

no. 1, pp. 1-102, 2012.  

[8]  A. Olivia and A. Torralba, "Modeling the shape of the scene: a holistic 

representation of the spatial envelope," International Journal of Computer 

Vision, vol. 42, no. 3, pp. 145-175, 2001.  

[9]  D. G. Lowe, "Object recogntion from local scale-invariant features," in 

International Confrence on Computer Vision, 1999.  

[10]  H. V. Nguyen, V. M. Patel, N. M. Nasrabadi and R. Chellappa, "Kernel 

dictionary learning," in IEEE International Confrence on Acoustics, Speech and 

Signal Processing, 2012.  

[11]  D. Arthur and S. Vassilvitskii, "K-means++: the advantages of careful seeding," 

in Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms, 2007.  

[12]  A. Pronobis, O. Martinez Mozos and B. Caputo, "SVM-based discriminative 

accumulation scheme for place recognition," in IEEE International Confrence on 

Robotics and Automation, Pasadena, 2008.  

[13]  V. M. Patel, T. Wu, S. Biswas, J. Phillips and R. Chellappa, "Dictionary-based 

face recogntion under variable lighting and pose," IEEE Transactions on 

Information Forensics and Security, vol. 7, pp. 954-965, 2012.  

[14]  M. Aharon, M. Elad and A. Bruckstein, "K-SVD: an algorithm for designing 

overcomplete dictionaries for sparse representation," IEEE Transactions on 

Signal Processing, vol. 54, no. 11, pp. 4311-4322, 2006.  



 

 68 

 

[15]  K. Fukunaga and L. D. Hosteller, "The esitmation of the gradient of a density 

function, with applications in pattern recogntion," IEEE Transactions on 

Information Theory, vol. 21, no. 1, pp. 32-40, 1975.  

[16]  N. Dalal and B. Triggs, "Histograms of Oriented Gradients for Human 

Detection," in IEEE Confrence on Computer Vision and Pattern Recogntion, San 

Diego, 2005.  

[17]  T. Ojala, M. Pietikainen and D. Harwood, "Performance evaluation of texture 

measures with classification based on kullback discrimination of distributions," 

in International Confrence on Pattern Recogntion, 1994.  

[18]  E. Shechtman and M. Irani, "Matching local self-similarities across images and 

videos," in IEEE Confrence on Computer Vision and Pattern Recognition, 2007.  

[19]  P. N. Belhumeur, D. Chen, F. Steven, D. Jacobs, W. J. Kress, H. Ling, I. Lopez, 

R. Ramamoorthi, S. Sheorey, S. White and L. Zhang, "Searching the world's 

herbaria: a system for visual identification of plant species," in European 

Confrence on Computer Vision, 2008.  

[20]  N. Kumar, A. Berg, P. Belhumeur and S. K. Nayar, "Describable visual 

attributes for face verfication and image search," IEEE Transactions on Pattern 

Analysis and Machine Intelligence, vol. 33, no. 10, pp. 1962-1977, 2011.  

 

 


