
ABSTRACT

Title of dissertation: LINEAR STABILITY ANALYSIS USING
LYAPUNOV INVERSE ITERATION

Minghao Wu, Doctor of Philosophy, 2012

Dissertation directed by: Professor Howard Elman
Department of Computer Science
Institute for Advanced Computer Studies

In this dissertation, we develop robust and efficient methods for linear stabil-

ity analysis of large-scale dynamical systems, with emphasis on the incompressible

Navier-Stokes equations. Linear stability analysis is a widely used approach for

studying whether a steady state of a dynamical system is sensitive to small per-

turbations. The main mathematical tool that we consider in this dissertation is

Lyapunov inverse iteration, a recently developed iterative method for computing

the eigenvalue with smallest modulus of a special eigenvalue problem that can be

specified in the form of a Lyapunov equation. It has the following “inner-outer”

structure: the outer iteration is the eigenvalue computation and the inner iteration

is solving a large-scale Lyapunov equation. This method has two applications in

linear stability analysis: it can be used to estimate the critical value of a physical

parameter at which the steady state becomes unstable (i.e., sensitive to small per-

turbations), and it can also be applied to compute a few rightmost eigenvalues of the

Jacobian matrix. We present numerical performance of Lyapunov inverse iteration

in both applications, analyze its convergence in the second application, and propose

strategies of implementing it efficiently for each application.

In previous work, Lyapunov inverse iteration has been used to estimate the

critical parameter value at which a parameterized path of steady states loses sta-

bility. We refine this method by proposing an adaptive stopping criterion for the

Lyapunov solve (inner iteration) that depends on the accuracy of the eigenvalue com-

putation (outer iteration). The use of such a criterion achieves dramatic savings in

computational cost and does not affect the convergence of the target eigenvalue.

The method of previous work has the limitation that it can only be used at

a stable point in the neighborhood of the critical point. We further show that

Lyapunov inverse iteration can also be used to generate a few rightmost eigenvalues

of the Jacobian matrix at any stable point. These eigenvalues are crucial in linear

stability analysis, and existing approaches for computing them are not robust. A

convergence analysis of this method leads to a way of implementing it that only

entails one Lyapunov solve.

In addition, we explore the utility of various Lyapunov solvers in both appli-

cations of Lyapunov inverse iteration. We observe that different Lyapunov solvers

should be used for the Lyapunov equations arising from the two applications. Ap-

plying a Lyapunov solver entails solving a number of large and sparse linear systems.

We explore the use of sparse iterative methods for this task and construct a new

variant of the Lyapunov solver that significantly reduces the costs of the sparse

linear solves.

LINEAR STABILITY ANALYSIS USING
LYAPUNOV INVERSE ITERATION

by

Minghao Wu

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2012

Advisory Committee:
Professor Howard Elman, Chair/Advisor
Professor James Baeder, Dean’s Representative
Professor David Levermore
Professor Ricardo Nochetto
Professor Dianne O’Leary

c© Copyright by
Minghao Wu

2012

Acknowledgments

I am deeply grateful to my advisor, Howard Elman, for his patient guidance

and constant encouragement. He has devoted a generous amount of time and energy

to helping me with the difficulties in my research as well as to improving my writing.

He has helped me believe that I was able to finish this dissertation.

I thank Karl Meerbergen and Alastair Spence for their work on Lyapunov

inverse iteration, which is the starting point of my dissertation. The two visits

Alastair paid to Maryland were extremely helpful to my research. I also thank him

for enabling me to visit his department at The University of Bath for a very useful

and enjoyable month.

I thank James Baeder, David Levermore, Ricardo Nochetto and Dianne O’Leary

for serving on my committee and providing insightful comments and suggestions.

I thank Fei Xue for his willingness to help at all times, especially during the

first two years of my graduate study.

Finally, I would like to thank my parents for their unconditional love and

support and Sean for all the fun we had.

ii

Table of Contents

List of Tables v

List of Figures vi

1 Introduction 1

2 Problem Statement and Survey of Existing Approaches 12
2.1 The Computation of the Rightmost Eigenvalue 16

2.1.1 Iterative Eigenvalue Solvers 17
2.1.2 Matrix Transformations . 20

2.2 Lyapunov Inverse Iteration . 26
2.2.1 An Eigenvalue Problem with Lyapunov Structure 26
2.2.2 Inverse Iteration for Problems with Lyapunov Structure 30

3 Lyapunov Inverse Iteration for Identifying Hopf Bifurcations in Models of
Incompressible Flow 34
3.1 A Block Krylov Lyapunov Solver . 36
3.2 Inexact Lyapunov Inverse Iteration 40
3.3 Numerical Results . 43

3.3.1 Example 1: Driven-Cavity Flow 44
3.3.2 Example 2: Flow over an Obstacle 48
3.3.3 Discussion of Lyapunov Solvers 50

3.4 Conclusions . 58

4 Lyapunov Inverse Iteration for Computing a Few Rightmost Eigenvalues of
Large Generalized Eigenvalue Problems 60
4.1 Computing the Distance between the Rightmost Eigenvalue and the

Imaginary Axis . 61
4.2 Numerical Results . 67

4.2.1 Example 1: Driven-Cavity Flow 68
4.2.2 Example 2: Flow over an Obstacle 71
4.2.3 Example 3: Double-Diffusive Convection Problem 73
4.2.4 Analysis of the Convergence of Algorithm 8 76

4.3 Computing a Few Rightmost Eigenvalues 83
4.4 Implementation Details of Algorithm 10 91

4.4.1 Efficient Solution of the Lyapunov Eigenvalue Problems 91
4.4.2 Efficient Computation of the Matrix Qt 94

4.5 Conclusions . 96

5 Efficient Iterative Solution of the Linear Systems Arising from Lyapuonv
Inverse Iteration 99
5.1 Review of Iterative Lyapunov Solvers 101
5.2 Numerical Results . 105

iii

5.2.1 Iterative Solves of the Linear Systems Arising from Lyapunov
Inverse Iteration . 105

5.2.2 Lyapunov Solvers with Iterative Linear Solves 113
5.3 Modified Rational Krylov Subspace Method 120
5.4 Conclusions . 126

6 Summary and Conclusions 128

A More numerical results of Algorithm 7 132

Bibliography 136

iv

List of Tables

3.1 Notation for Algorithm 7 . 47
3.2 Algorithm 7 applied to driven-cavity flow (256× 256 mesh) 48
3.3 Algorithm 7 applied to flow over an obstacle (128× 512 mesh) 59
3.4 Rank of the Lyapunov solution and CPU time 59

4.1 The eigenvalues of the 16× 16 example 64
4.2 Notation for Algorithm 8 . 69
4.3 Algorithm 8 applied to driven-cavity flow 71
4.4 Algorithm 8 applied to flow over an obstacle 74
4.5 Algorithm 8 applied to double-diffusive convection problem 76
4.6 Algorithm 9 applied to flow over an obstacle 82
4.7 Algorithm 9 applied to double-diffusive convection problem 82
4.8 Notation for Algorithm 10 . 91
4.9 Algorithm 10 applied to all three examples 98

A.1 Algorithm 7 applied to driven-cavity flow (64× 64 mesh) 132
A.2 Algorithm 7 applied to driven-cavity flow (128× 128 mesh) 133
A.3 Algorithm 7 applied to flow over an obstacle (32× 128 mesh) 134
A.4 Algorithm 7 applied to flow over an obstacle (64× 256 mesh) 135

v

List of Figures

2.1 Illustration of the critical point . 13
2.2 The evolution of a few rightmost eigenvalues 14
2.3 Shift-invert transformation . 22
2.4 Shift-invert transformation when the rightmost eigenvalue has a large

imaginary part . 23

3.1 Low-rank approximation of the solution to the Lyapunov equation . . 39
3.2 Driven-cavity flow (256× 256 mesh) 45
3.3 Flow over an obstacle (128× 512 mesh) 49
3.4 Comparison of the Lyapunov solvers for Algorithm 7 applied to driven-

cavity flow . 54
3.5 The dominant eigenvalues of the Lyapunov solution 56
3.6 Decay of the angle between the Krylov subspace and the dominant

eigenvectors of the Lyapunov solution 57

4.1 The spectra of the 4× 4 and 16× 16 examples 65
4.2 The eigenvalues for driven-cavity flow at different Reynolds numbers . 69
4.3 Comparison of the Lyapunov solvers for Algorithm 8 applied to driven-

cavity flow . 72
4.4 The eigenvalues for flow over an obstacle at different Reynolds numbers 73
4.5 Comparison of the Lyapunov solvers for Algorithm 8 applied to flow

over an obstacle . 75
4.6 Comparison of the Lyapunov solvers for Algorithm 8 applied to double-

diffusive convection problem . 76

5.1 The performance of two preconditioners in flow over an obstacle . . . 111
5.2 The performance of two preconditioners in driven-cavity flow 112
5.3 Algorithm 12 with an iterative linear solver applied to flow over an

obstacle . 115
5.4 Algorithm 12 with an iterative linear solver applied to driven-cavity

flow . 117
5.5 Algorithm 11 with an iterative linear solver applied to flow over an

obstacle . 118
5.6 Comparison of the total number of inner iterations required by Algo-

rithms 11 and 12 . 119
5.7 The eigenvalues of VT (A−1M)V and

(
VTAV

)−1 (
VTMV

)
. 122

5.8 Algorithm 13 with k = 5 applied to flow over an obstacle and driven-
cavity flow . 124

5.9 Comparison of the total number of inner iterations required by Algo-
rithms 11, 12 and 13 . 125

5.10 Comparison of the total number of inner iterations required by Algo-
rithms 11, 12 and 13 (the Lyapunov equation arises from Algorithm
7 applied to (3.14)) . 126

vi

Chapter 1

Introduction

Stability analysis is the study of how steady-state solutions (or equilibria) of a dy-

namical system respond to small perturbations. Roughly speaking, if a steady-state

solution is insensitive to all small perturbations, then it is considered to be stable;

otherwise, it is unstable. Stability is a fundamental requirement for the practical

use of a dynamical system because small perturbations exist almost everywhere in

real life. For instance, products built by a factory will inevitably deviate from the

original design made by an engineer. In real-world applications, instability can cause

serious damage. One famous example is the Tacoma Narrows Bridge built in 1940,

which oscillated considerably in windy conditions and finally collapsed only four

months after its opening. Other examples include the flutter of the wings of an

aircraft and the vibration of a skyscraper, both of which may lead to disasters.

For more than a century now, the standard mathematical approach of studying

the stability of a steady-state solution for a dynamical system has been the follow-

ing: given a steady-state solution to the dynamical system, perturb this solution

by a small perturbation, linearize the system, and then check the rightmost eigen-

value (i.e., the eigenvalue with algebraically largest real part) of the resulting linear

operator. If the rightmost eigenvalue has negative real part, then the steady-state

solution is stable; otherwise, it is unstable. This procedure is usually referred to as

1

linear stability analysis, and its success has been reported in many cases such as

Rayleigh-Bénard convection [6] and Taylor-Couette flow [45].

In this thesis, a dynamical system refers to the system of ordinary differential

equations (ODEs) arising from spatial discretization (finite difference, finite element,

finite volume, etc.) of a system of two- or three-dimensional nonlinear partial dif-

ferential equations (PDEs), such as the Navier-Stoke equations, for which there is

considerable current interest in stability. We will assume that the discretization is

good enough that it captures all the important features of the PDEs. Hence, sta-

bility of the continuous system can be inferred from the stability analysis for the

discrete system.

Linear stability analysis of such a dynamical system eventually boils down to

finding the rightmost eigenvalue of its Jacobian matrix. Direct methods such as the

QR and QZ algorithms (see [44]) can be applied to compute the complete set of

eigenpairs of a matrix. However, these methods are only suitable for matrices of

order a few thousand at the most. As the dimension of the matrix grows, direct

methods will quickly become forbidding. Our primary interest is the dynamical

systems arising from spatial discretization of two- or three-dimensional PDEs, for

which the order of the Jacobian matrix will be quite large. In the context of three-

dimensional PDEs, for instance, the order of the Jacobian matrix typically varies

from hundreds of thousands to millions.

Consequently, we have to turn to iterative eigenvalue solvers instead. Rather

than finding all the eigenvalues of a matrix, iterative methods such as subspace iter-

ation and Arnoldi’s method (see [40, 44]) compute only a small subset of them. They

2

construct a small subspace by some means, project the matrix onto this subspace

and compute using a direct method all the eigenpairs of the projection. From them,

estimates of the eigenpairs of the original matrix can be obtained. In subspace itera-

tion, by the way the subspace is constructed, it is rich in the eigenvectors associated

with the dominant eigenvalues (i.e., the eigenvalues with largest moduli), and these

are eigenvalues that will be found. In Arnoldi’s method, a Krylov subspace is built,

and although the convergence properties of this method are less clear, it tends to

converge to well-separated, extremal eigenvalues (see [38, 40]).

Unfortunately, when the dynamical system arises from spatial discretization

of PDEs, the rightmost eigenvalue of the Jacobian matrix is in general neither dom-

inant nor well-separated, and therefore it can be difficult to find if we simply apply

an iterative method to the Jacobian matrix itself. Instead, the iterative method

is usually applied to a transformation of the Jacobian matrix. The transformation

should have the following qualities: the eigenvalues of the Jacobian matrix can be

recovered easily from those of the transformed problem, and the rightmost eigen-

value of the Jacobian matrix will correspond to a well-separated and/or dominant

eigenvalue of the transformed problem. Frequently used matrix transformations are

shift-invert transformation, Cayley transformation and Chebyshev polynomials (see

[28] for an overview).

Though they have been reported to be successful in linear stability analysis

(see [28] and the references therein), a deficiency of matrix transformations is that

their performance relies heavily on the choice of certain parameters and there is

no good way of selecting them without a priori knowledge of the spectrum of the

3

Jacobian matrix. Poorly chosen parameters can result in convergence to a spurious

eigenvalue, which in turn, may lead to misjudgement of the stability of the dynam-

ical system. The shift-invert transformation, for instance, maps the eigenvalues of

the Jacobian matrix closest to a complex number (called the ‘shift’) to the eigen-

values of the transformed problem with largest moduli. Thus, an ideal choice of

the shift would be an estimate of the eigenvalue sought after, that is, the rightmost

eigenvalue. However, such an estimate is usually not available in practice. This

lack of robustness of existing iterative methods in the computation of the rightmost

eigenvalue is essentially the motivation behind this thesis.

It is often the case that a dynamical system depends on a physical parameter,

one well-known example being the Reynolds number in the Navier-Stokes equations.

Consequently, the steady-state solution and hence the Jacobian matrix also depend

on this parameter. A question of great interest to both mathematicians and en-

gineers is how stability of the steady-state solution changes with this parameter;

in particular, what the critical value of the parameter is at which the steady-state

solution first becomes unstable. At this critical point, the rightmost eigenvalue of

the Jacobian matrix is either zero or purely imaginary.

Besides the change in stability, another interesting phenomenon known as bi-

furcation also takes place at the critical point. A bifurcation point, loosely speaking,

is where behavior of the solution changes qualitatively, and it is characterized by

a zero eigenvalue or a conjugate pair of purely imaginary eigenvalues of the Jaco-

bian matrix. At the critical point, it is the rightmost eigenvalue of the Jacobian

matrix that is either zero or purely imaginary. If it is zero, with some additional

4

assumptions (see [19]), the critical point is a quadratic turning point, at which a

branch of stable steady-state solutions ‘turns around’ and becomes unstable. If the

dynamical system also possesses some kind of symmetry, then the critical point is

a symmetry-breaking bifurcation point, where the existing branch of steady-state

solutions becomes unstable and two new branches of steady-state solutions emerge

that are symmetric with respect to the existing branch. If the Jacobian matrix has

instead a conjugate pair of purely imaginary eigenvalues and some other require-

ments are also met (see [19]), the critical point is a Hopf bifurcation point, from

which a periodic orbit originates. Quadratic turning point, symmetry-breaking bi-

furcation point and Hopf bifurcation point are three types of bifurcation points

frequently seen in dynamical systems. Other types of bifurcation are discussed in

[19].

There are various ways that one can calculate the critical point accurately when

a good estimate of it is available (see [19] for a summary of these methods). However,

getting such an estimate is a difficult task. The most commonly used approach is to

monitor the rightmost eigenvalue of the Jacobian matrix while following a branch of

stable steady-state solutions using numerical continuation (see [32]), until at some

point the rightmost eigenvalue crosses the imaginary axis from the left to the right

half of the complex plane. In this approach, we need to compute the rightmost

eigenvalue for a series of Jacobian matrices corresponding to different values of the

parameter.

As discussed earlier, choosing a transformation that favors the rightmost eigen-

value is difficult. If the critical point is a quadratic turning point or a symmetry-

5

breaking point, since we know that the rightmost eigenvalue at the critical point is

zero, shift-invert transformation with a zero shift is a reliable choice. However, if

the critical point is a Hopf bifurcation point, it is not so clear what transformation

will be suitable as in general, we do not know where the rightmost eigenvalue may

lie. It may have large imaginary part and thus could be far away from zero. In this

case, if we continue to use shift-invert transformation with a zero shift, it is very

likely that we will miss the rightmost eigenvalue. Because of this, the detection of

the critical point of Hopf type is known to be a harder problem.

Due to the lack of robust methods for computing rightmost eigenvalues, an

approach that is capable of detecting the loss of stability without the computation of

rightmost eigenvalues is very much desirable. After all, what we are truly concerned

with is whether the rightmost eigenvalue has crossed the imaginary axis or not,

rather than its precise location. A method proposed in [20] falls into this category.

Instead of finding the rightmost eigenvalue of the Jacobian matrix, this method

monitors the so-called winding number (see [20]) of an analytic function along a

branch of stable steady-state solutions. The poles of this function always coincide

with the eigenvalues of the Jacobian matrix. As shown in [20], whenever a pole of

this function crosses the imaginary axis from the left to the right half of the complex

plane or a zero of it moves in the opposite way, its winding number will increase by

π. The crossing of a pole (equivalently, an eigenvalue of the Jacobian matrix) and

that of a zero can be distinguished by ways suggested in [20]. The advantage of the

method of [20] is that it avoids any eigenvalue computation. However, in order to

compute the winding number, many linear solves with complex coefficient matrices

6

are required, which can be extremely expensive for large dynamical systems. How

to implement the ideas of [20] efficiently for such systems is still an open question.

Recently, another method aiming also at detecting the loss of stability without

the computation of rightmost eigenvalues was proposed in [29]. Given a stable point

in the vicinity of the critical point at which stability is lost, this method approxi-

mates the difference between the two parameter values, which in turn produces an

estimate for the critical parameter value. It was shown in [29] that this distance is

the eigenvalue with smallest modulus of a special eigenvalue problem that is in the

form of a Lyapunov equation. To estimate the critical parameter value, it suffices to

solve this eigenvalue problem for its eigenvalue with smallest modulus. Unlike for

the rightmost eigenvalue, there are many robust methods for computing the eigen-

value with smallest modulus, in particular, inverse iteration (see [44]). The approach

of applying inverse iteration to an eigenvalue problem with Lyapunov structure is

referred to as Lyapunov inverse iteration. At each iteration of this method, we need

to solve a large-scale Lyapunov equation with low-rank right-hand side, for which

there exist many iterative solution methods such as the rational Krylov subspace

method [12]. As by-products, this approach also produces estimates for the right-

most eigenvalue and its corresponding eigenvector of the Jacobian matrix at the

critical point.

The ideas in [29] serve as the starting point of the work presented in this thesis.

Basically, the following three questions are explored here.

(i) How can we improve the method of [29] so that it is more efficient when applied

7

to challenging problems?

(ii) Is it possible to develop a method that finds the rightmost eigenvalue at a

stable point which may not be in the vicinity of the critical point?

(iii) How can we solve the linear systems arising from iterative solves of Lyapunov

equations efficiently?

The first question concerns the practicality of the method proposed in [29]. The

second one is motivated by the major limitation of the method of [29], that it only

works at a stable point close to the critical point. The third question is important

because the main cost of Lyapunov inverse iteration is solving a large-scale Lyapunov

equation iteratively at each step, which in turn requires many large, sparse linear

solves. The main results of this thesis are as follows.

With respect to the first question, we apply Lyapunov inverse iteration to

identify Hopf bifurcations in models of incompressible flow including the driven-

cavity flow [16], the Hopf point of which is notoriously difficult to find. In all the

cases we consider, Lyapunov inverse iteration is able to locate the critical point

successfully. These tests clearly indicate the robustness of the method proposed

in [29]. In order to improve the efficiency of the method of [29], we build on an

idea of [34], which shows that it is actually not necessary to solve the linear systems

arising from inverse iteration accurately. Inspired by [34], we propose a new stopping

criterion for solving the Lyapunov equations. When the refined algorithm is applied

to the same examples, we observe that dramatic savings in computational cost can

be achieved and more importantly, use of this stopping criterion does not affect

8

the convergence of the “outer iteration” for computing the target eigenvalue. This

algorithm is also applied to several examples arising from aerodynamics [47], which

further confirms its reliability and efficiency.

In answer to the second question, we develop a method for computing the

distance between the rightmost eigenvalue and the imaginary axis at any stable

point. This distance can be viewed as a qualitative indicator of how far away a

stable point is from the critical point. We prove that it is the eigenvalue with smallest

modulus of an eigenvalue problem similar in structure to the one considered in [29],

so it can be computed using Lyapunov inverse iteration as well. An efficient way

of implementing Lyapunov inverse iteration for this particular eigenvalue problem

is also proposed, which reduces the total number of Lyapunov solves to one (i.e., it

guarantees that Lyapunov inverse iteration will converge in two steps). Furthermore,

we show that a few rightmost eigenvalues can be obtained from Lyapunov inverse

iteration for almost no additional cost.

As for the third question, we first note that solving a Lyapunov equation

arising from Lyapunov inverse iteration iteratively entails solving a set of linear

discrete PDEs. Thus, iterative solution methods developed for these problems can

be applied directly to the linear systems arising from Lyapunov inverse iteration.

We investigate the utility of iterative linear solvers [13, 14, 15] in Lyapunov inverse

iteration applied to models of incompressible flows. Our numerical experiments

show that solving the type of linear system arising from steady PDEs dominates the

total cost of the iterative Lyapunov solve. Based on this observation, we modify the

rational Krylov subspace method [12] in such a way that this type of linear solves can

9

mostly be avoided. The modification leads to significant savings in computational

cost without degrading the convergence rate of the Lyapunov solver.

The plan of the remainder of this thesis is as follows. Chapter 2 gives a

description of the type of problem we consider in this thesis and presents a review

of iterative methods for computing the rightmost eigenvalue and Lyapunov inverse

iteration. Chapter 3 presents the refined Lyapunov inverse iteration and describes

its numerical performance for models of incompressible flow. Chapter 4 presents

the new method for computing a few rightmost eigenvalues using Lyapunov inverse

iteration for problems derived from parameters far from critical values, and describes

its numerical performance for the benchmark problems considered above. Chapter

5 discusses how to solve the linear systems arising from Lyapunov solvers efficiently.

Finally, Chapter 6 presents some concluding remarks.

Before concluding this introduction, we note that there are some limitations

to linear stability analysis. In particular, there are examples for which the stability

predicted by this method agrees poorly with that observed in the laboratory. One

famous example is plane Couette flow, for which case linear stability analysis shows

that the steady-state solution is always stable no matter how large the Reynolds

number is [35], whereas instability can be observed for Reynolds numbers greater

than certain threshold in the experiments [46]. For a long time, researchers have

attributed this mismatch to the linearization step of linear stability analysis. Nev-

ertheless, since the 1990s, the failure of linear stability analysis has been attributed

to the nonorthogonality of the eigenvectors of the Jacobian matrix (see [48]). To be

more specific, even when a steady-state solution is found to be stable by linear sta-

10

bility analysis, small perturbations can still grow to an arbitrarily large size before

they decay. It is suggested in [48] that the rightmost eigenvalue of the pseudospec-

tra of the Jacobian matrix is what truly dictates the stability of the steady-state

solution, where pseudospectrum of a matrix is the collection of the eigenvalues of

all the matrices whose ‘distance’ from this matrix is less than a small threshold.

Despite its failure in some cases, linear stability analysis has been successful in

many other examples, and it is still a widely used method for studying stability of

nonlinear dynamical systems. Moreover, although the numerical methods developed

here are motivated by linear stability analysis, with some modifications, they are

applicable to pseudospectral analysis as well. In particular, in [21], it is shown that

analysis of pseudospectra can be performed by computing the rightmost eigenvalues

of a sequence of problems similar in structure to those studied here. In this thesis,

we focus on the classic problem of linear stability analysis.

11

Chapter 2

Problem Statement and Survey of Existing Approaches

Consider the dynamical system

Mut = f(u, α) (2.1)

where f : Rn×R 7→ Rn is a nonlinear mapping, u ∈ Rn is the state variable (velocity,

pressure, temperature, etc.), M ∈ Rn×n and α is a parameter. Such problems arise

from spatial discretization of PDEs. The matrix M is usually called the mass

matrix and could be singular. The dimension of the discretization, n, is usually

large, especially for three-dimensional PDEs. Let u denote the steady-state solution

to (2.1), i.e., ut = 0. We are interested in the stability of u: if a small perturbation

δ(0) is introduced to u at time t = 0, does δ(t) grow with time (unstable), or does it

decay (stable)? Let the solution path of the equilibrium equation f(u, α) = 0 be the

following set: S = {(u, α) |f (u, α) = 0}. It is often the case that as the parameter α

varies, there exists a critical point {(uc, αc)} ∈ S at which the steady-state solution

u changes from being stable to unstable. Several examples of the critical points

are displayed in Figure 2.1, in which the solid line represents a stable branch of

S and the dashed line stands for an unstable branch. An important problem in

applications is to find this critical parameter value αc.

12

(a)

(b)

Figure 2.1: Illustration of the critical point

For any point (u, α) ∈ S, linear stability of the steady-state solution u is

determined by the spectrum of the generalized eigenvalue problem

J x = µMx (2.2)

where J = ∂f
∂u

(u, α) is the Jacobian matrix of f evaluated at (u, α). (If M = I, the

identity matrix of order n, then (2.2) is a standard eigenvalue problem.) Typically

both J and M are large and sparse, and J is in general nonsymmetric. If all the

eigenvalues of (2.2) have strictly negative real part, then u is a stable steady solution;

if some eigenvalues of (2.2) have nonnegative real part, then u is unstable. Therefore,

a change of stability can be detected by monitoring the rightmost eigenvalue (i.e.,

13

−0.15 −0.1 −0.05 0
−3

−2

−1

0

1

2

3

real axis

im
ag

in
ar

y
ax

is

Figure 2.2: The evolution of a few rightmost eigenvalues of (2.2) for the parameter
values α1(∗) < α2(◦) < α3(♦) < α4(�)

the eigenvalue with algebraically largest real part) of (2.2) while following a stable

branch of S using numerical continuation (see [19, 32]). In practice, we usually keep

track of the evolution of a few rightmost eigenvalues of (2.2) along this branch. What

can typically be observed for the spectrum of (2.2) is that either all the eigenvalues

of (2.2) lie in the left half of the complex plane, or a few of them have crossed the

imaginary axis and have small positive real parts. We demonstrate in Figure 2.2 the

evolution of the eight rightmost eigenvalues of (2.2) arising from the driven-cavity

flow with α being the Reynolds number. (We defer a detailed discussion of this

model to the next chapter.) It clearly indicates that the critical parameter value αc

lies between α3 and α4.

The critical point is also a bifurcation point, at which the behavior of S changes

qualitatively. A bifurcation point is characterized by the existence of a zero eigen-

value or a conjugate pair of purely imaginary eigenvalues of (2.2). At the critical

14

point, the rightmost eigenvalue is either zero or purely imaginary. If it is zero

and also simple (i.e., both its algebraic and geometric multiplicity equal one), then

under some generic conditions (see [19]), the critical point is a quadratic turning

point. Figure 2.1(a) illustrates an example of such a bifurcation point, at which

the stable solution branch ‘turns around’ and loses its stability. In addition, if sym-

metry is also present in the dynamical system (2.1), then the critical point is a

symmetry-breaking bifurcation point. In Figure 2.1(b), we display two examples of

this bifurcation point, near which the solution paths behave quite differently. (They

are called a supercritical symmetry-breaking bifurcation point (left) and a subcrit-

ical symmetry-breaking bifurcation point (right), respectively.) For both examples

shown in Figure 2.1(b), the symmetry is with respect to the α-axis. In either case,

at the critical point, the stable solution branch that is symmetric loses its stability

and meanwhile, two asymmetric branches originate that are symmetric with each

other. On the other hand, if (2.2) has a conjugate pair of purely imaginary right-

most eigenvalues at the critical point that are simple, then given some additional

assumptions (see also [19]), it is a Hopf bifurcation point. At this point, a peri-

odic orbit of (2.1) arises and the existing branch of steady-state solution changes

from being stable to unstable. Described above are three types of bifurcation that

are commonly observed in the solution path of (2.1). More complicated types of

bifurcation can be found in [19].

Remark. After the rightmost eigenvalue of (2.2) has crossed the imaginary

axis and entered the right half of the complex plane, other eigenvalues may do the

same as we keep following the unstable solution branch; in addition, the eigenvalues

15

that are already in the right half of the complex plane may cross the imaginary

axis again and return to the left half of the complex plane. Consequently, multiple

bifurcation points may exist along this branch. In this thesis, our focus is on the

detection of the very first bifurcation point, namely, the critical point at which

stability of the steady-state solution is lost.

In the following sections, we summarize two approaches for the detection of

the critical point: computing the rightmost eigenvalue of (2.2) and Lyapunov inverse

iteration. The former is the most commonly used method for linear stability analysis,

and the latter is a new and more reliable approach on which the rest of this thesis

is based.

2.1 The Computation of the Rightmost Eigenvalue

The critical point (uc, αc) at which stability of the steady-state solution u of (2.1) is

lost can be detected by monitoring the rightmost eigenvalue of (2.2) along a branch of

the solution path S. In this approach, we need to compute the rightmost eigenvalue

of (2.2) for a set of sample points (u, α) on this branch. Direct methods for (2.2) such

as the QR algorithm and the QZ algorithm (see [44]) produce the complete set of

eigenpairs of (2.2), and therefore, the rightmost eigenvalue of (2.2) is guaranteed to

be found by them. However, these methods are only applicable for small eigenvalue

problems, the dimension n being a few thousand at the most. Since our primary

interest is linear stability analysis for the dynamical system (2.1) arising from spatial

discretization of two- or three-dimensional PDEs, n is typically quite large and

16

direct methods are simply not feasible. Iterative eigenvalue solvers such as subspace

iteration and Arnoldi’s method ([40]) are efficient alternatives when only a small

subset of the eigenvalues of (2.2) are wanted. When a few rightmost eigenvalues are

sought, an iterative eigenvalue solver is usually applied to a transformed version of

(2.2) instead to accelerate convergence. The choice of this transformation is crucial

for the efficiency and reliability of the eigenvalue computation. In this section,

we discuss both aspects of the computation of the rightmost eigenvalue: iterative

eigenvalue solvers and matrix transformations.

2.1.1 Iterative Eigenvalue Solvers

Prior to our discussion on iterative eigenvalue solvers, we note that they cannot be

applied directly to a generalized eigenvalue problem (2.2) with M 6= I. Therefore,

we rewrite (2.2) into a standard eigenvalue problem first. Assume for now that the

mass matrix M is nonsingular. Then (2.2) and the standard eigenvalue problem

Cx = µx (2.3)

where C = M−1J have the same set of eigenpairs. In the case of models of in-

compressible flows, where M is singular, it is possible to modify M to produce a

nonsingular variant; a discussion is again postponed to Chapter 3.

We consider two frequently used iterative eigenvalue solvers: subspace iteration

and Arnoldi’s method. Both method construct a small subspace of Rn and compute

the complete set of eigenpairs of the orthogonal projection of C onto this subspace,

17

from which approximations to a small subset of the eigenpairs of C can be obtained.

Since the subspace is small, the eigenpairs of the projection can be computed by the

QR algorithm. In the following discussion, let {(µj, xj)}nj=1 denote the eigenpairs of

C and assume that m (� n) eigenvalues of C are wanted.

Subspace iteration is equivalent to applying the power method [44] to a block

of starting vectors simultaneously. The subspace built in this method is the one

spanned by the columns of (orthonormalized) C`−1V0, where V0 = [v1, v2, . . . , vm] ∈

Rn×m is an orthonormal matrix that contains m starting vectors and ` is the number

of steps of subspace iteration performed. Assume that |µ1| ≥ |µ2| ≥ · · · ≥ |µm| >

|µm+1| ≥ · · · ≥ |µn| and that the starting block V0 is not deficient in the eigenspace

of C associated with the m dominant eigenvalues (i.e., eigenvalues with largest

moduli). It is not difficult to see that as ` increases, subspace iteration will converge

to {µj}mj=1. This method is outlined in Algorithm 1.

Algorithm 1: Subspace iteration

1. Let V0 = [v1, v2, . . . , vm] ∈ Rn×m be an orthonormal matrix.
2. For ` = 1, 2, · · ·

2.1. V` ← CV`−1.
2.2. Orthonormalize V`.
2.3. Form Hm = V T

` CV`.
2.4. Compute the eigenpairs (µi, yi) (i = 1, 2, · · · ,m) of Hm using the QR

algorithm.
2.5. Compute the approximate eigenpairs of C: (µi, V`yi) (i = 1, 2, · · · ,m)

In each iteration of Algorithm 1, m matrix-vector products with C are needed

in order to compute CV`−1. If the m dominant eigenvalues of C are well-separated

from the rest of the eigenvalues, then the convergence of this method is rapid [40, 44].

18

Arnoldi’s method constructs the Krylov subspace

Km(C, v1) = span
{
v1, Cv1, C

2v1, · · · , Cm−1v1
}

(2.4)

where v1 is a starting vector of unit norm. Similar to subspace iteration, this method

generates m approximate eigenpairs of C by computing the eigenpairs of its projec-

tion onto (2.4). An implementation of this method is given by Algorithm 2.

Algorithm 2: Arnoldi’s method

1. Let v1 ∈ Rn with ‖v1‖2 = 1.
2. For ` = 1, 2, · · · ,m

2.1. w = Cv`.
for i = 1, . . . , `
hi,` ← vTi w;
w ← w − vihi,`.

2.2. h`+1,` ← ‖w‖2 and v`+1 ← w/h`+1,`.
2.3. Compute the eigenpairs (µi, yi) (i = 1, 2, · · · , `) of H` using the QR

algorithm, where H` = [hij]
`
i,j=1.

2.4. Compute the eigenpairs of C: (µi, V`yi) (i = 1, 2, · · · , `), where
V` = [v1, v2, · · · , v`].

This method computes the Arnoldi decomposition

CVm = VmHm + hm+1,mvm+1e
T
m, (2.5)

where the columns of Vm and vm+1 form an orthonormal basis of the Krylov subspace

Km+1(C, v1), Hm ∈ Rm×m is upper Hessenberg, and em is the last column of the

identity matrix of order m. In subspace iteration, the m×m projection Hm of the

large matrix C needs to be computed explicitly, whereas in Arnoldi’s method, this

matrix is formed in a clever way. One matrix-vector product with C is needed at

19

each iteration of Algorithm 2. Arnoldi’s method often converges much more rapidly

than subspace iteration, although it is not so clear which eigenvalues of C it will

converge to. An analysis in [40] suggests that it tends to find the well-separated,

extremal eigenvalues of C.

Rather than one run of Algorithm 2, Arnoldi’s method is often restarted using

converged eigenvectors (see [40, 44]). The most successful restarting strategy is

the Implicitly Restarted Arnoldi’s Method (IRA) ([43, 44]), in which the unwanted

eigendirections (specified by the user) are filtered out from the Krylov subspace in

a clever way. The techniques developed in Chapters 3 and 4 will be compared with

this state-of-the-art eigenvalue solver.

2.1.2 Matrix Transformations

Iterative eigenvalue solvers such as subspace iteration and Arnoldi’s method can be

applied to compute a few well-separated, dominant eigenvalues of a matrix. Unfor-

tunately, when the matrices J and M come from spatial discretization of PDEs, the

rightmost eigenvalue of (2.2) is in general neither well-separated nor dominant. In

order to accelerate the convergence of the rightmost eigenvalue, an iterative eigen-

value solver is often applied to a transformed problem

T (J ,M)x = θx. (2.6)

The matrix transformation T should be chosen such that the rightmost eigenvalue

of (2.2) is mapped to a well-separated and dominant eigenvalue of (2.6) and the

20

eigenpairs of (2.2) can be recovered from those of (2.6) easily. In addition, the

matrix-vector product with T (J ,M) should be easy to compute. Several types of

matrix transformation can be used to accelerate the convergence of the rightmost

eigenvalue, such as shift-invert transformation [40], Cayley transformation [17] and

Chebyshev polynomial [40]. An overview of these methods is given in [28]. In

this review, we consider shift-invert transformation and Cayley transformation. Let

(µj, xj) (j = 1, 2, . . . , n) denote the eigenpairs of (2.2) with Re (µ1) ≥ Re (µ2) ≥

· · · ≥ Re (µn). Then µ1 is the rightmost eigenvalue.

Shift-invert transformation is defined to be

T (J ,M) = (J − sM)−1M (2.7)

where s ∈ C is called a shift. The eigenpairs of (2.7) are (θj, xj) (j = 1, 2, · · · , n),

where θj is given by

θj =
1

µj − s
. (2.8)

This transformation enhances the eigenvalues of (2.2) near the shift s (see Figure

2.3). If we apply subspace iteration or Arnoldi’s method to (2.7), then the eigenval-

ues of (2.6) that correspond to those eigenvalues are more likely to be found. When

applied to (2.7), subspace iteration requires m solves with J − sM each step, and

Anorldi’s method requires one solve with J − sM per iteration.

Since we are interested in finding the rightmost eigenvalue µ1 of (2.2), an ideal

choice for the shift s would be its estimate. However, such an estimate is in general

21

−1 −0.8 −0.6 −0.4 −0.2 0
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

real axis

im
ag

in
ar

y
ax

is

−15 −10 −5 0
−6

−4

−2

0

2

4

6

real axis

im
ag

in
ar

y
ax

is

Figure 2.3: Shift-invert transformation. Left: the eigenvalues of (2.2) (denoted by
◦). Right: the eigenvalues of (2.7) with s = 0 (denoted by ×).

not available. When no a priori information about the location of µ1 is available,

s is often chosen to be zero. Shift-invert transformation with a zero shift maps the

eigenvalues of (2.2) away from zero to the eigenvalues of (2.7) with small moduli

and the eigenvalues of (2.2) close to zero to the dominant eigenvalues of (2.7). The

benefits of this strategy are two fold. When the matrices J and M arise from spatial

discretization of PDEs, (2.2) typically has a large number of eigenvalues in the left

half of the complex plane that are away from the imaginary axis and thus irrelevant

in linear stability analysis. They will be mapped to the θj
′s clustered at zero, which

will not be computed by an iterative eigenvalue solver. Furthermore, if µ1 is real or

has small imaginary part, it will be mapped to a dominant eigenvalue of (2.3) that

can be found by an iterative method easily (see Figure 2.3 for an example).

If the critical point is a quadratic turning point or a symmetry-breaking bifur-

cation point, then zero is an effective choice for the shift in the shift-invert transfor-

mation (2.7). However, in the case of Hopf bifurcation, µ1 may have imaginary part

so large that it is further away from zero than many other eigenvalues close to the

22

−100 −80 −60 −40 −20 0
−40

−30

−20

−10

0

10

20

30

40

real axis

im
ag

in
ar

y
ax

is

−5 −4 −3 −2 −1 0
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

real axis

im
ag

in
ar

y
ax

is

Figure 2.4: Shift-invert transformation when the rightmost eigenvalue has a large
imaginary part. Left: the eigenvalues of (2.2) (denoted by ◦). Right: the eigenvalues
of (2.7) with s = 0 (denoted by ×).

imaginary axis (see Figure 2.4). Shift-invert transformation with a zero shift will

map these eigenvalues to the eigenvalues of (2.6) with moduli larger than |θ1|. Using

a large subspace in the iterative eigenvalue solver increases the chances of finding

θ1. However, a large subspace implies a large number of linear solves with J and

more importantly, it is difficult to determine how large the subspace should be to

guarantee that θ1 will be computed.

Shift-invert transformation emphasizes the eigenvalues near a given point in

the complex plane. Cayley transformation, on the other hand, enhances the eigen-

values to the right of a given line in the complex plane. Therefore, it is more

suitable for the computation of the rightmost eigenvalues. The definition of Cayley

transformation is

T (J ,M) = (J − sM)−1(J − tM) (2.9)

23

with s, t ∈ C. The eigenpairs of (2.9) are (θj, xj), (j = 1, 2, · · · , n) where

θj =
µj − t
µj − s

. (2.10)

A nice property of Cayley transformation is the following:

if Re (µj) <
1

2
(s+ t), then |θj| < 1;

if Re (µj) =
1

2
(s+ t), then |θj| = 1, and

if Re (µj) >
1

2
(s+ t), then |θj| > 1.

(2.11)

As in the case of shift-invert transformation, if m eigenvalues of (2.9) are wanted,

subspace iteration requires m solves with J − sM each step, and Arnoldi’s method

requires one solve with J − sM each step. Note that

(J − sM)−1(J − tM) = I + (s− t)(J − sM)−1M.

That is, Cayley transformation is scaled and translated shift-invert transformation.

Since Arnoldi’s method is translation invariant [30], applying it to (2.7) and (2.9)

generates the exact same subspace in exact arithmetic. In other words, Anorldi’s

method is insensitive to the choice of t.

Suppose for now that we know the complete set of eigenvalues of (2.2), namely,

{µj}nj=1. If we want to compute the m rightmost eigenvalues of (2.2), an ideal choice

for s and t is such that

1

2
(s+ t) = Re (µm+1) . (2.12)

24

This way, by (2.11), the m rightmost eigenvalues of (2.2) will be mapped outside of

the unit circle and the rest of the eigenvalues of (2.2) will be mapped inside of the

unit circle. Consequently, {θj}mj=1 are guaranteed to be found by subspace iteration.

Another equation besides (2.12) is needed to completely determine s and t. For

instance, in [17], s and t are selected such that |θ1| is maximized.

In practice, however, the choice for s and t is not so straightforward since

{µj}nj=1 are not known. A preprocessing step is often needed in order to obtain

approximate spectral information of (2.2) (see [17, 28]). For example, a few steps of

subspace iteration can be applied to J −1M (i.e., shift-invert transformation with

a zero shift) to obtain some eigenvalue estimates of (2.2) (see [28]). The shifts s

and t are then chosen based on such information. As pointed out in the discussion

of shift-invert transformation, applying an iterative eigenvalue solver to J −1M has

the risk of emphasizing the wrong eigenvalues. This leads to a poor choice of s and

t that causes θ1 to be missed by an iterative eigenvalue solver.

We end the discussion on matrix transformations with the following remarks.

1. When a proper matrix transformation is used, iterative eigenvalue solvers,

especially Arnoldi’s method and its variants, are very efficient in the compu-

tation of the rightmost eigenvalue of (2.2).

2. When the rightmost eigenvalue of (2.2) is not real, it can be rather difficult

to find, especially when its imaginary part is large. This is due to the lack

of estimates for the rightmost eigenvalue, without which an effective matrix

transformation cannot be constructed.

25

2.2 Lyapunov Inverse Iteration

As seen in the previous section, there is no robust way of computing the rightmost

eigenvalue of (2.2). A method of detecting the critical point that avoids such com-

putation is wanted. It is shown in [29] that the critical parameter value αc can be

estimated by solving an eigenvalue problem in the form of a Lyapunov equation for

its eigenvalue with smallest modulus. A version of inverse iteration [44] referred

to as Lyapunov inverse iteration is proposed in [29] for computing this eigenvalue.

As by-products of Lyapunov inverse iteration, we can also obtain estimates for the

rightmost eigenvalue of (2.2) at the critical point and the eigenvector associated

with it. We will focus on the case in which the stability of the steady-state solution

is lost to a Hopf bifurcation point, although the ideas in [29] are also applicable to

the case where instability is caused by a real eigenvalue crossing the imaginary axis.

2.2.1 An Eigenvalue Problem with Lyapunov Structure

Assume that (u0, α0) is a point on a stable branch of the solution path S, and that

the Hopf point (uc, αc) at which stability is lost lies in its neighborhood. As can

be seen from Figure 2.1, one value of the parameter α may correspond to multiple

steady states u. Therefore, u is in general not a function of α. However, if restricted

to a single branch of S, u is indeed a function of α, i.e., u = u(α). As a result, on

the stable branch that contains (u0, α0), the Jacobian matrix can be written as

J (u, α) = J (u(α), α) = J (α) .

26

At any point on this branch and in the neighborhood of (u0, α0), J (α) can be

approximated as

J (α0) + (α− α0)
dJ
dα

(α0) = A + λαB,

where A, B are known and λα is an unknown quantity that characterizes the distance

from (u0, α0) to (u, α). In particular, the Jacobian matrix at the Hopf point can be

approximated by A + λcB, where λc = αc − α0. The critical value αc can then be

approximated by computing λc.

We assume for simplicity that J (α) = A+λαB in the neighborhood of (u0, α0).

Consider the parameterized eigenvalue problem

(A + λB)x = µMx (2.13)

When λ = λc, (2.13) has a conjugate pair of purely imaginary rightmost eigenvalues

(βi,−βi) with β > 0. Since the critical point (uc, αc) is the bifurcation point closest

to the stable point (u0, α0), λc is the value of λ closest to zero such that (2.13) has

a pair of eigenvalues that sum to zero.

The following theorem is the main theoretical motivation for the techniques

in [29]:

Theorem 2.1. Assume M is nonsingular, and µ1, µ2 (µ1 6= µ2) are simple eigen-

values of (2.2) whose corresponding eigenvectors are x1, x2. The following two state-

ments are equivalent:

1. zero is a double eigenvalue of J ⊗M + M⊗J that corresponds to the eigen-

27

vector ξ1x1 ⊗ x2 + ξ2x2 ⊗ x1, for any ξ1, ξ2 ∈ C;

2. (µ1, µ2) is the only pair of eigenvalues of (2.2) that sums to zero.

Proof. Since M is nonsingular, by properties of Kronecker product, M ⊗M

is nonsingular. Let {(µj, xj)}nj=1 be the eigenpairs of (2.2) and let J be the Jordan

normal form of M−1J . By properties of Kronecker product,

(M⊗M)−1(J ⊗M + M⊗ J) (2.14)

and J ⊗ I + I ⊗ J are similar, where I is the identity matrix of order n. Thus, the

eigenvalues of (2.14) are {µi + µj}ni,j=1 (i, j = 1, 2, . . . , n). For any pair (i, j),

(M⊗M)−1(J ⊗M + M⊗ J)(xi ⊗ xj) = M−1J xi ⊗ xj + xi ⊗M−1J xj

= µixi ⊗ xj + xi ⊗ µjxj = (µi + µj)(xi ⊗ xj).

Therefore, xi⊗ xj is an eigenvector of (2.14) associated with the eigenvalue µi + µj.

Similarly, we can show that xj ⊗ xi is also an eigenvector of (2.14) associated with

µi + µj.

We first prove statement 2 given statement 1. Note that J ⊗M+M⊗J and

(2.14) have the same null space. Thus, if statement 1 is true, then zero is also a

double eigenvalue of (2.14) that corresponds to the eigenvector ξ1x1⊗x2 +ξ2x2⊗x1.

Since the eigenvalues of (2.14) are {µi + µj}ni,j=1 and µ1, µ2 (µ1 6= µ2) are simple,

(µ1, µ2) is the only pair of eigenvalues of (2.2) that sums to zero.

Now assume statement 2 is true. Since (µ1, µ2) (µ1 6= µ2) is the only pair of

28

eigenvalues of (2.2) that sums to zero and both µ1, µ2 are simple, zero is a double

eigenvalue of (2.14) with the eigenvector ξ1x1⊗x2+ξ2x2⊗x1. Since J ⊗M+M⊗J

and (2.14) have the same null space, statement 1 follows immediately.

We continue to assume that M is nonsingular. In addition, assume that when

λ = λc, the rightmost eigenvalues of (2.13) (βi and −βi) are simple and there are

no other eigenvalues lying on the imaginary axis. Let v and v be the eigenvectors

corresponding to βi and −βi. Since λc is the parameter closest to zero such that

(2.13) has a pair of eigenvalues summing to zero, according to Theorem 2.1, λc is

the parameter closest to zero such that (A + λB) ⊗M + M ⊗ (A + λB) has a

zero eigenvalue. Alternatively, λc is the eigenvalue closest to zero for the n2 × n2

generalized eigenvalue problem

(∆1 + λ∆0)z = 0 (2.15)

where

∆1 = A⊗M + M⊗A

∆0 = B⊗M + M⊗B.

Note that by Theorem 2.1, the eigenvector corresponding to λc is zc = ξ1v ⊗ v +

ξ2v ⊗ v. Therefore, finding λc, the quantity that allows us to estimate the critical

parameter value αc, is equivalent to finding the eigenvalue of (2.15) with smallest

modulus. One standard approach for computing this eigenvalue is to use an iterative

method such as inverse iteration for (2.15). This approach is obviously impractical

29

for large-scale problems since inverse iteration requires solution of linear systems

with coefficient matrix ∆1, which in this case has order n2.

To get around this difficulty, we can use properties of Kronecker products to

rewrite (2.15) into a linear equation of n× n matrices. In particular, let Z ∈ Rn×n

be such that z = vec(Z) (see [23], p. 244). Then it is known (see [23], p. 255) that

(2.15) is equivalent to a system of Lyapunov structure

MZAT + AZMT + λ(MZBT + BZMT) = 0. (2.16)

Therefore, finding λ with smallest modulus for (2.15) is equivalent to finding λ with

smallest modulus for (2.16). Because of the relationship between (2.15) and (2.16),

we use the same terminology as for (2.15) and (2.16) and refer to λ as an eigenvalue

and Z as an eigenvector of (2.16). The following theorem from [29] describes the

properties of Z:

Theorem 2.2. Assume that λ is a real eigenvalue of (2.15). If (2.13) has eigenpairs

(βi, v) and (−βi, v) (β>0) and no other eigenvalues on the imaginary axis, then

(2.16) has a real symmetric eigenvector of rank two, namely, Z = vv∗ + vvT , which

is unique up to a scalar factor and is semi-definite, and a unique skew-symmetric

eigenvector of rank two, namely, Z = vv∗ − vvT .

2.2.2 Inverse Iteration for Problems with Lyapunov Structure

It is suggested in [29] that we should restrict our computation to the real symmetric

eigenspace of (2.16). Under this restriction, the eigenvalue of interest, λc, is simple.

30

The corresponding eigenvector, which is symmetric and of rank two, has a natural

representation in the form of a truncated eigenvalue decomposition Zc = VDVT ,

where V ∈ Rn×2 is orthonormal and D ∈ R2×2 is diagonal. By Theorem 2.2,

span{V} = span{v, v}. Therefore, once we find λc and its eigenvector Zc for (2.16),

the rightmost eigenvalues of (2.13) can be found easily by solving the 2× 2 problem

VT (A + λcB)Vy = µVTMVy (2.17)

The associated eigenvectors are v = Vy, v = Vy. To find the eigenvalue closest

to zero for (2.16), the version of inverse iteration outlined in Algorithm 3 can be

applied.

Algorithm 3: Inverse iteration for (2.16)

1. Given V1 ∈ Rn with ‖V1‖2 = 1 and D1 = 1, let Z(1) = V1D1V
T
1 .

2. For ` = 1, 2, . . .
2.1. Compute the eigenvalue approximation1

λ(`) = − trace(Ã
T
` D`M̃`D` + M̃T

` D`Ã`D`)

trace(B̃T
` D`M̃`D` + M̃T

` D`B̃`D`)
(2.18)

where

Ã` = VT
` AV`, B̃` = VT

` BV`, M̃` = VT
` MV` (2.19)

2.2. If
(
λ(`), Z(`)

)
is accurate enough, then stop.

2.3. Else, solve

AY`M
T + MY`A

T = BZ(`)MT + MZ(`)BT (2.20)

in factored form Y` = V`+1D`+1V
T
`+1.

2.4. Normalize: D`+1 ← D`+1/‖D`+1‖F . Let Z(`+1) = V`+1D`+1V
T
`+1.

1The Rayleigh quotient (2.18) can be derived using a property of Kronecker products (see [23],
p. 252, Exercise 25).

31

If A is nonsingular, then (2.20) is equivalent to the Lyapunov equation

SY` + Y`S
T = A−1F`A

−T (2.21)

where S = A−1M and F` = BZ(`)MT + MZ(`)BT . Let rank
(
Z(`)

)
= d`; it is

reasonable to assume that d` � n (see [2, 31]). The right-hand side of (2.21) can

be represented by its truncated eigenvalue decomposition

A−1F`A
−T = P`C`P

T
` (2.22)

which has rank at most 2d` and is easy to compute.2 Since we assume that M is

nonsingular and the point (u0, α0) is in the stable regime, all the eigenvalues of S

lie in the left half of the complex plane. This guarantees that (2.21) has a unique

solution (see [1], Chapter 6).

Theorem 2.2 implies that Zc has rank 2, so when Z(`) has converged, the right-

hand side of (2.21), namely (2.22), has rank 4. For efficient computation of (2.21),

we would like to work with d` = 2. However, in the first few iterations, when Z(`)

has not converged yet, d` can be much larger than 2 (although d` � n). A rank-

reduction procedure is introduced in [29] to guarantee that rank
(
Z(`)

)
is fixed and

small. Before step 2.2 in Algorithm 3, we project the eigenvalue problem (2.16) onto

the subspace spanned by the columns of V`. This leads to the d` × d` eigenvalue

2Let T = A−1B; then

A−1F`A
−T =

(√
2

2
[TV` + SV`, TV` − SV`]

)[
D`

−D`

](√
2

2
[TV` + SV`, TV` − SV`]

)T
.

32

problem

M̃`Z̃Ã
T
` + Ã`Z̃M̃

T
` + λ̃

(
M̃`Z̃`B̃

T
` + B̃`Z̃`M̃

T
`

)
= 0 (2.23)

where Ã`, B̃`, M̃` are computed in (2.19). For d` � n, the eigenvalue λ̃c of (2.23)

with smallest modulus and it corresponding eigenvector Z̃c can be computed using

Algorithm 3 with a direct Lyapunov solver (see [4, 22]) in step 2.3. According to

Theorem 2.2, Z̃c has rank 2. Let the eigenvalue decomposition of Z̃c be ṼD̃ṼT ,

where Ṽ ∈ Rd`×2 and D̃ ∈ R2×2. We update the eigenvector Z(`) = V`D`V
T
` by(

V`Ṽ
)
D̃
(
V`Ṽ

)T
. The new eigenvector has rank 2 and it forces the residual of

(2.16) to be orthogonal to V`. With the rank-reduction procedure, the right-hand

side of (2.21) will be of rank 2 in the first iteration and of rank 4 in all subsequent

iterations, which is desirable for the Lyapunov solvers. The modified Lyapunov

inverse iteration for (2.16) is given in Algorithm 4 and we refer to it as Lyapunov

inverse iteration.

Algorithm 4: Lyapunov inverse iteration for (2.16)

1. Given V1 ∈ Rn with ‖V1‖2 = 1.
2. For ` = 1, 2, · · ·

2.1. Compute (2.19), and solve for the eigenvalue λ̃c of (2.23) closest to

zero and its eigenvector Z̃c = ṼD̃ṼT .
2.2. Set Z(`) = V`D̃VT` and λ(`) = λ̃c, where V` = V`Ṽ .
2.3. If

(
λ(`), Z(`)

)
is accurate enough, then stop.

2.4. Else, solve for Y` from

SY` + Y`S
T = P`C`P

T
` (2.24)

in factored form: Y` = V`+1D`+1V
T
`+1.

33

Chapter 3

Lyapunov Inverse Iteration for Identifying Hopf Bifurcations in

Models of Incompressible Flow

As shown in [29], the critical parameter value αc at which stability of the steady-

state solution is lost can be estimated by solving an eigenvalue problem in the form

of a Lyapunov equation, namely, (2.16), for its eigenvalue with smallest modulus.

The advantage of this method is that it avoids the computation of the rightmost

eigenvalue of (2.2), for which no robust method exists. To compute this eigenvalue,

a version of inverse iteration called Lyapunov inverse iteration (see Algorithm 4 of

section 2.2) is also proposed in [29]. The main cost of this method is solving a large

Lyapunov equation (2.24) at each iteration. The rightmost eigenvalue of (2.2) at

the critical point and its corresponding eigenvector can be obtained as by-products.

The aims of this chapter are: (i) to further understand and refine the method

discussed in [29] to make it more efficient and reliable, (ii) to test it on more chal-

lenging examples arising in fluid dynamics, and (iii) to provide a discussion of the

efficiency of large-scale Lyapunov solvers arising from this approach.

Consider a special case of (2.1), the Navier-Stokes equations governing viscous

34

incompressible flow,

ut = ν∇2u− u · ∇u−∇p

0 = ∇ · u,
(3.1)

subject to appropriate boundary conditions, where ν is the kinematic viscosity, u is

the velocity and p is the pressure. The viscosity ν is a natural candidate for α. In

the literature, properties of a flow are usually characterized by the Reynolds number

(denoted by Re), a dimensionless quantity proportional to 1
ν
. For convenience in

our exposition, we will sometimes refer to the Reynolds number as the parameter

of interest instead of the viscosity. Div-stable mixed finite element discretization of

(3.1) gives rise to the following Jacobian matrix and mass matrix [13]

A =

[
F BT

B 0

]
, M =

[
−G 0
0 0

]
∈ Rn×n (3.2)

where n = nu + np, nu > np, F ∈ Rnu×nu , B ∈ Rnp×nu , G ∈ Rnu×nu is symmetric

positive definite. Matrices F , B, G are sparse and n is usually large. In this chapter,

we apply the method proposed in [29] to detect the Hopf point at which a steady-

state solution of (3.1) loses its stability.

The plan for the rest of the chapter is as follows. In section 3.1, we discuss

a block Krylov method for solving large-scale Lyapunov equations with low-rank

right-hand side, and we propose an efficient way to truncate the computed solution.

In section 3.2, we propose an inverse iteration with inexact Lyapunov solvers, which

is based on the ideas in [34]. In section 3.3, the method proposed in section 3.2

is applied to detect Hopf bifurcation in two incompressible flows and numerical

35

results are presented; in addition, alternative Lyapunov solvers are discussed and

compared with the Krylov method of section 3.1. Finally, in section 3.4, we make

some concluding observations.

3.1 A Block Krylov Lyapunov Solver

In this section, we discuss the block Krylov method for solving the Lyapunov equa-

tion

SY + Y ST = PCP T (3.3)

where S = A−1M ∈ Rn×n, P ∈ Rn×p orthonormal, and C ∈ Rp×p diagonal, with

p � n. (In Algorithm 4, the right-hand side of the Lyapunov equation (2.24) has

rank p = 2 in the first iteration and rank p = 4 in all subsequent iterations.) Let

K be a d-dimensional subspace of Rn and let V ∈ Rn×d be an orthonormal matrix

whose columns form a basis of K. Projection methods for (3.3) seek an approximate

solution of the form Y approx(Q) = VQVT with Q ∈ Rd×d by imposing the so-called

Galerkin condition, i.e., the residual R(Q) = SY approx(Q) + Y approx(Q)ST − PCP T

of (3.3) must satisfy

〈Z,R(Q)〉 = tr
(
ZR(Q)T

)
= 0 (3.4)

for any matrix Z of the form VGVT with G ∈ Rd×d (see [39]). The only Q that

satisfies this condition is the solution to the projected problem (see [39])

(
VTSV

)
Q+Q

(
VTSV

)T
=
(
VTP

)
C
(
VTP

)T
(3.5)

36

In the block Krylov method (see [24, 39]), the subspace K is chosen to be

Km(S, P) = span
{
P, SP, S2P, · · · , Sm−1P

}
(3.6)

(The dimension of Km(S, P) is d = mp.) One theoretical motivation for selecting

such a subspace is that if all the eigenvalues of S lie in the left half of the complex

plane, then the analytic solution of (3.3) can be expressed as

−
∫ ∞
0

exp(St)PCP T exp(ST t) dt

(see [1], Chapter 6). We use the block Arnoldi method to compute an orthonormal

basis for Km(S, P). Similar to the standard Arnoldi method, the block Arnoldi

process computes a decomposition

SV = VHm + Vm+1Hm+1,mE
T
m (3.7)

where the columns of V = [V1, · · · , Vm] ∈ Rn×mp and Vm+1 form an orthonormal

basis for Km+1(S, P), Hm ∈ Rmp×mp is a block upper-Hessenberg matrix with p× p

blocks Hi,j, and Em ∈ Rmp×p is the last p columns of the identity matrix of order

mp. By the Arnoldi relationship (3.7), the projected problem (3.5) is

HmQ+QHT
m =

C · · · 0
...

. . .
...

0 · · · 0

 = C̃ (3.8)

which, assuming mp� n, can be solved by direct methods. An algorithmic form of

the block Krylov method for solving (3.3) is given by Algorithm 5.

37

Algorithm 5: The block Krylov method for (3.3)

1. Given a tolerance τ . Let V1 = V = P .
2. For m = 1, 2, · · ·

2.1. W = SVm.
for i = 1, . . . ,m
Hi,m ← V T

i W ;
W ← W − ViHi,m.

2.2. Solve the smaller Lyapunov equation (3.8) where Hm = [Hj,k]
m
j,k=1.

2.3. Compute the reduced QR factorization of W : W = Vm+1Hm+1,m.
2.4. Compute the residual norm ‖R(Q)‖F .
2.5. If ‖R(Q)‖F < τ , then stop.
2.6. Else, V← [V, Vm+1].

We outline some of the computational issues associated with this algorithm.

Since S = A−1M, in step 2.1, we need to solve p linear systems of the form

Ax = My (3.9)

for x. Notice that we do not need to form the approximate solution Y approx(Q) =

VQVT explicitly. Instead, only the factors V and Q are stored. To compute the

residual norm ‖R(Q)‖F , first notice that for any symmetric Q,

R(Q) = [V, Vm+1]

HmQ+QHT
m − C̃ QEmH

T
m+1,m

Hm+1,mE
T
mQ 0

 [V, Vm+1]
T (3.10)

(see [24]). By (3.8) and (3.10), ‖R(Q)‖F =
√

2
∥∥QEmHT

m+1,m

∥∥
F

which is cheap

to compute. Let Q = UΣUT be the eigenvalue decomposition of Q where Σ =

diag(σ1, σ2, · · · , σm) holds the eigenvalues of Q, where the moduli are in decreasing

order. The computed solution Y approx(Q) can usually be truncated to a (much)

38

lower rank without affecting the residual norm:

Y approx(Q) = (VU)Σ(VU)T = (V [U1, U2])

[
Σ1

Σ2

]
(V [U1, U2])

T

≈ Y approx
(
U1Σ1U

T
1

)
.

(3.11)

In order to do this, we increase the rank of Σ1 until the residual norm of the truncated

solution, ‖R(U1Σ1U
T
1)‖F , is smaller than a prescribed tolerance τ . For example,

consider the Lyapunov equation arising from the first iteration of Algorithm 4, when

applied to the flow over an obstacle (details of this example are given in section 5.2).

Let the tolerance τ = 10−3. The solution computed by Algorithm 5 has rank 628

and can be truncated to rank 80 without significantly affecting its accuracy. Figure

3.1(a) shows the decay of eigenvalues of Q, and Figure 3.1(b) depicts the residual

norm of truncated solutions corresponding to various choices of Σ1.

0 100 200 300 400 500 600 700
10

−20

10
−15

10
−10

10
−5

10
0

10
5

i

|σ
i|

(a) Decay of the eigenvalues of Q

0 100 200 300 400 500 600 700
10

−4

10
−3

10
−2

10
−1

10
0

10
1

rank of Σ
1

||R
(U

1Σ 1U
1T
)|

| F

(b) Residual norm for different ranks of trunca-
tion

Figure 3.1: Low-rank approximation of the solution to the Lyapunov equation (n =
37168)

In our experiments, we have observed that when applying Algorithm 4 to prob-

lems arising from fluid mechanics, solving the Lyapunov equation (3.3) accurately

can be quite expensive, especially at the early stages of the computation when the

eigenvector Z(`) has not converged yet. In the next section, we will show that it is

39

in fact not necessary to solve (3.3) accurately in the first few iterations of Algorithm

4.

Variants of the standard Krylov method described here, for example, the Ex-

tended Krylov Subspace Method [42] and the Rational Krylov Subspace Method

[12], lead to different choices of the subspace K. Some results for the alternative

methods will be given in section 3.3.

Remark. Necessary and sufficient condition for the projected Lyapunov equa-

tion (3.8) to have a unique solution is that θi + θj 6=0 where (θi, θj) is any pair of

eigenvalues of Hm. To guarantee this, in the literature on projection methods for

Lyapunov equations, it is common to require that the field of values of S lies in

one half of the complex plane (the imaginary axis not included). This is a rather

strong condition which is not satisfied by matrices in our numerical experiments

described in section 3.3. (Instead, they only satisfy a weaker condition that all their

eigenvalues lie in the left half of the complex plane.) Thus, it is conceivable that the

solution to (3.8) does not exist or is not unique, which will lead to a breakdown of

the projection method. We never encountered this difficulty in our experiments.

3.2 Inexact Lyapunov Inverse Iteration

In this section, we first review the main results from the previous work of Robbé et

al. [34] on inexact inverse iteration and based on their idea, we propose an inexact

inverse iteration for solving the eigenvalue problem (2.16). Suppose that a cluster

(k � n) of eigenvalues of A ∈ Rn×n near a shift s is wanted. The standard approach

40

for this problem is inverse iteration, which requires the solution of k linear systems

(A− sI)Xi = Xi−1 (3.12)

at each step. Solving (3.12) exactly can be very challenging if n is large, which

is typical when A arises from discretization of two- or three-dimensional PDEs.

Therefore, the system (3.12) is often solved inexactly using iterative methods. This

approach is referred to as an inner-outer iterative method: the inner iteration refers

to the iterative solution of (3.12) and the outer iteration is inverse iteration for

eigenvalues. For simplicity, let k = 1 and s = 0, that is, suppose we are looking

for the eigenvalue closest to zero. The inexact inverse iteration in this case is as

outlined in Algorithm 6.

Algorithm 6: Inexact inverse iteration

1. Given a tolerance δ > 0 and the starting guess z(1) with
∥∥z(1)∥∥

2
= 1.

2. For ` = 1, 2, · · ·
2.1. Compute the eigenvalue estimate: λ(`) =

(
z(`)
)T Az(`).

2.2. Set reig` = Az(`) − λ(`)z(`) and test convergence.
2.3. Compute an approximate solution yapprox` to Ay` = z(`) such that

rlin` = Ayapprox` − z(`) with

‖rlin` ‖2 < δ‖reig` ‖2. (3.13)

2.4. Normalize: z(`+1) = yapprox` /‖yapprox` ‖2

Since δ is fixed, the stopping criterion (3.13) implies the following: at the early

stage of the eigenvalue computation, when ‖reig` ‖2 is still large, the inner iteration

does not need to be very accurate either; as
(
λ(`), z(`)

)
converges to the true solution

(i.e., ‖reig` ‖2 gets smaller), (3.12) will be solved more and more accurately. It was

41

shown in [34] that with this strategy, the number of inner iterations will not increase

as the outer iteration proceeds.

We have a similar situation here: we want to compute the eigenvalue of (2.16)

closest to zero using Algorithm 4, which requires the solution of equation (2.24) at

each step. Note that ‖z‖2 = ‖Z‖F if z = vec(Z). Moreover, for A nonsingular,

(2.16) is equivalent to

SZ + ZST + λ(SZT T + TZST) = 0 (3.14)

where S = A−1M and T = A−1B. Therefore, in Algorithm 4, the stopping criterion

‖Rlyap
` ‖F < δ‖Reig

` ‖F (3.15)

is used for the inner iteration (e.g., Algorithm 5) for (2.24), where Reig
` = SZ(`) +

Z(`)ST + λ(`)
(
SZ(`)T T + TZ(`)ST

)
and Rlyap

` = SY approx
` + Y approx

` ST − P`C`P
T
` .

Based on Algorithms 4 and 6, we propose a version of inexact Lyapunov inverse

iteration for solving (2.16), which is outlined in Algorithm 7.

Algorithm 7: Inexact Lyapunov inverse iteration for (2.16)

1. Given V1 ∈ Rn with ‖V1‖2 = 1 and δ > 0.
2. For ` = 1, 2, . . .

2.1. Compute (2.19), and solve for the eigenvalue λ̃c of (2.23) closest to

zero and its eigenvector Z̃c = ṼD̃ṼT .
2.2. Set Z(`) = V`D̃VT` and λ(`) = λ̃c, where V` = V`Ṽ .
2.3. Compute ‖Reig

` ‖F and test convergence.
2.4. Compute an approximate solution Y approx

` = V`+1Dj+1V
T
`+1 for (2.24)

such that ‖Rlyap
` ‖F < δ‖Reig

` ‖F .

Remark. An alternative choice of the pair of residuals would be Reig
` =

42

MZ(`)AT +AZ(`)MT +λ(`)(MZ(`)BT +BZ(`)MT) and Rlyap
` = AY`M

T +MY`A
T −(

BZ(`)MT + MZ(`)BT
)
, which are the residuals of (2.16) and (2.20), respectively.

We prefer the choice used in Algorithm 7 because of cost considerations. ‖Reig
` ‖F

is available at almost no cost due to (3.10), and since Z(`) = V`D̃VT` has rank two,

Reig
` has rank four and the dominant cost of computing ‖Reig

` ‖F is the solution of

two systems with coefficient matrix A to compute TV`.1 (In order to get ‖Reig
` ‖F ,

we need to compute SV` as well. By using the Arnoldi decomposition (3.7), this

can be computed cheaply without any extra solves with A.) In contrast, although

it is trivial to compute the Frobenius norm of the rank-four Reig
` , it can be very

expensive to evaluate ‖Rlyap
` ‖F : by (3.10) and the relation Rlyap

` = ARlyap
` AT ,

computing ‖Rlyap
` ‖F at the mth step of Algorithm 5 applied to (2.24) requires p(m+

1) matrix-vector products with A, where p is the rank of the right-hand side of

(2.24). If a large number of Arnoldi steps is needed, which is indeed the case in our

numerical experiments, then monitoring ‖Rlyap
` ‖F instead of ‖Rlyap

` ‖F will be much

more expensive.

3.3 Numerical Results

In this section, we apply Algorithm 7 to two 2-dimensional models of incompressible

flows that lose stability because of Hopf bifurcation, namely, driven-cavity flow and

flow over an obstacle. The numerical results support the theory of [29] and show

that the algorithm we propose is robust.

In the previous sections, we always assumed that the mass matrix M is nonsin-

1In order to solve (2.24), A has been pre-factored or a preconditioner for it has been computed.

43

gular. However, as given by (3.2), the mass matrix in our examples is singular. This

implies that (2.2) has an infinite eigenvalue (i.e., the eigenvalue that corresponds

to the zero eigenvalue of S) of multiplicity 2np (see [8]). As shown in [8], however,

replacement of M with the nonsingular, shifted mass matrix

Mη =

[
−G ηBT

ηB 0

]
(3.16)

maps the infinite eigenvalue of (2.2) to η−1 and leaves the finite ones unchanged.

With a proper choice of η, the rightmost eigenvalue(s) of (2.2) will not be changed,

which means that stability analysis will not be affected. In our computations, we

use the shifted mass matrix (3.16) with η = −10−2 instead of the M given in (3.2).

The infinite eigenvalues of (2.2) are mapped to −102, which is well away from its

rightmost eigenvalues. In addition, the matrix B = dJ
dν

(ν0) was approximated using

a forward difference approximation.

All numerical results were obtained using Matlab 7.8.0 (R2009a), on a PC

with an Intel Core i7 720QM processor, and 4 GB of RAM.

3.3.1 Example 1: Driven-Cavity Flow

This is a classic test problem used in fluid dynamics, a model of the flow in a unit-

square cavity with the lid moving from left to right. We use the software package

IFISS (see [13]) to compute the steady-state solution of (3.1). The left plot of

Figure 3.2 shows exponentially distributed streamlines of a steady solution. Studies

of the critical Reynolds number Rec for this problem show it to be around 8000.

(For example, the reported value is 7998.5 in [16], 7960 in [18], between 8017.6

44

and 8018.8 in [3], and between 8000 and 8050 within less than 1% error in [5].)

The rightmost eigenvalues at the critical Reynolds number are also provided in [16]

(±βi ≈ ±2.8356i) and [18] (±βi ≈ ±2.837i). The right plot of Figure 3.2 shows

the eigenvalues of J x = µMx at Re = 8076, a value slightly larger than the critical

value Rec. As is clearly seen, there are many complex eigenvalues near the imaginary

axis, and, in fact, it is a very difficult problem to find out precisely which eigenpair

crosses the imaginary axis to cause the loss of stability.

−3.5 −3 −2.5 −2 −1.5 −1 −0.5 0 0.5
−3

−2

−1

0

1

2

3

real axis

im
ag

in
ar

y
ax

is

Figure 3.2: Driven-cavity flow (256 × 256 mesh). Left: Exponentially distributed
streamlines at Re = 7500. Right: The 300 eigenvalue of (2.2) with smallest modulus
at Re = 8076 (the crosses denote the rightmost eigenvalues)

We use a Q2-Q1 mixed finite element discretization and three meshes: 64× 64

(n = 9539), 128 × 128 (n = 37507), and 256 × 256 (n = 148739). Algorithm 7 is

tested on the three problems arising from the three meshes of discretization, with

tests for three choices δ = 1, 10−1 and 10−2 in (3.15). Let the Reynolds number

at the starting point, Re0, be about 250 smaller than its critical value, Rec. The

goal of our tests is to find out whether Algorithm 7 is able to approximate the

difference λc between the two viscosities ν0 = 1
Re0

and νc = 1
Rec

and in turn, give us

45

a good estimate of Rec.
2 The computational results for the finest mesh are reported

in Table 3.2. Re(`) denotes the estimated value of Rec, µ
(`) denotes the estimated

βi, r` =
(
A + λ(`)B

)
x(`) − µ(`)Mx(`) is the residual of (2.13), and Rlyap

` , Reig
` are

defined in the previous section. In addition, d` is the rank of the solution of (2.24)

before truncation, and k` is the rank after truncation. (A summary of the symbols

used in Table 3.2 and their definitions is given in Table 3.1.) The main cost of each

iteration is approximately d` solves of linear systems with coefficient matrix A. The

computation terminates when ‖r`‖2 < 10−9 is satisfied. In the first iteration, when a

real, symmetric and rank-one matrix V1V
T
1 (V1 is a random vector in Rn) is used as

the eigenvector estimate of (2.16), the eigenvalue estimate λ(1) is quite far away from

its true value λc, causing the estimated critical Reynolds number to be nonphysical

(-219). However, starting from the second iteration, λ(`) converges rapidly to its true

value. A fairly large Krylov subspace is needed to solve the Lyapunov equations,

even when the tolerance is quite mild (‖Rlyap
` ‖F < ‖Reig

` ‖F). Computational results

for the two coarser meshes can be found in the Appendix and the same trend can

be observed there.

As observed in Chapter 2, a commonly used method to locate the first Hopf

point is to compute the rightmost eigenvalues of (2.2) for a set of points with in-

creasing Reynolds numbers on the solution path S, until a critical value is reached

at which the real part of the rightmost eigenvalues becomes positive. We follow

this approach to verify the results given by Algorithm 7. The details are as follows:

2Let λc = νc − ν0; then once λc is approximated by Algorithm 7, Rec can be estimated by
1

ν0+λc
.

46

Table 3.1: Notation for Algorithm 7
Symbol Definition

Re(`) the estimate of Rec, i.e., the critical Reynolds number

µ(`), x(`)
the estimated rightmost eigenvalue of (2.2) at the critical point and
its corresponding eigenvector, respectively

λ(`), Z(`) the estimated eigenvalue of (3.14) with smallest modulus, λc, and its
associated eigenvector Zc, respectively

r`
(
A + λ(`)B

)
x(`) − µ(`)Mx(`), i.e., the residual of (2.13)

Reig
` SZ(`) + Z(`)ST + λ(`)

(
SZ(`)T T + TZ(`)ST

)
, i.e., the residual of (3.14)

Y approx
` the approximate solution to (2.24)

Rlyap
` SY approx

` + Y approx
` ST − P`C`P T

` , i.e., the residual of (2.24)
d`, k` ranks of Y approx

` before and after the truncation (3.11), respectively

for each point in the set, we compute the 250 eigenvalues with smallest modulus

for (2.2) using Matlab function ‘eigs’ (with other parameters set to default values),

which implements the implicitly restarted Arnoldi (IRA) method [43]. For the finest

mesh, the critical Reynolds number found by this method is between 8075 and 8076,

and the rightmost eigenvalues are ±βi ≈ ±2.80905i. This shows that Algorithm 7

yields good estimates of Rec and βi. The number 250 was obtained by trial and

error. When only 200 eigenvalues with smallest modulus were computed, we could

not find the rightmost eigenvalues.

Remark. Our goal is to have a robust method that detects instability without

computing many eigenvalues, since we do not know in general how many eigenvalues

need be computed to ensure that the rightmost ones have been found. It is also not

straightforward to evaluate the cost of the IRA method when it is used to generate

a set of eigenvalues in this way, because this cost is highly dependent on how various

parameters are chosen. Consequently, we do not make a detailed cost comparison of

the two methods. For the particular choice of parameters we made, i.e., computing

47

Table 3.2: Algorithm 7 applied to driven-cavity flow (256× 256 mesh, Re0 = 7800)
for δ = 1, 10−1, 10−2 in (3.15)

` Re(`) µ(`) ‖r`‖2 ‖Reig
` ‖F ‖Rlyap

` ‖F d` k`
δ = 1

1 -219 2.64515e-12 1.29459e-01 4.94209e+1 4.86367e+1 322 90
2 8014 2.81408i 1.72108e-06 1.52388e-2 1.48458e-2 424 160
3 8080 2.80919i 7.33553e-08 4.42196e-4 3.87001e-4 444 160
4 8077 2.80960i 3.43710e-09 1.61958e-5 1.58346e-5 448 170
5 8077 2.80960i 1.04455e-10 5.90803e-7 — — —

Total: 1638
δ = 10−1

1 -219 2.64515e-12 1.29459e-01 4.94209e+1 4.79199e+0 510 120
2 8173 2.81562i 2.54877e-06 2.57187e-2 2.43960e-3 536 190
3 8083 2.80915i 7.32265e-08 3.57523e-4 3.37686e-5 552 210
4 8077 2.80960i 4.06199e-09 2.07058e-5 2.00807e-6 532 210
5 8077 2.80960i 1.53027e-10 8.23020e-7 — — —

Total: 2130
δ = 10−2

1 -219 2.64515e-12 1.29459e-01 4.94209e+1 4.88503e-1 914 190
2 8291 2.81758i 2.85886e-06 3.19166e-2 3.14783e-4 724 260
3 8082 2.80908i 7.05097e-08 4.49294e-4 4.32428e-6 728 270
4 8077 2.80960i 5.23912e-09 1.97292e-5 1.92897e-7 724 260
5 8077 2.80960i 1.51600e-10 6.70318e-7 — — —

Total: 3090

the 250 eigenvalues with smallest modulus using ‘eigs’ with default setting, at each

Reynolds number in the set, the eigenvalue computation requires the solution of at

least 500 linear systems with coefficient matrix J , and typically many more. In our

experience, locating Rec by monitoring the rightmost eigenvalues along S is much

more expensive than Algorithm 7 with δ = 1.

3.3.2 Example 2: Flow over an Obstacle

This example represents flow in a channel (dimension: 2× 8) with a square obstacle

(dimension: 0.5 × 0.5) in it. (In this case, the Reynolds number is defined to be

48

2
ν
.) A Poiseuille flow profile is imposed on the inflow boundary, and a no-flow (zero

velocity) condition is imposed on the walls. A Neumann condition is applied at the

outflow boundary and automatically sets the mean outflow pressure to zero (see [13]

for details). Again we use IFISS to compute the steady-state solution. Uniformly

distributed streamlines of the steady solution are plotted in Figure 3.3(a). As in

the previous example, we use Q2-Q1 mixed finite element discretization and apply

Algorithm 7 (with δ = 1, 10−1, 10−2) on three meshes: 32×128 (n = 9512), 64×256

(n = 37168) and 128× 512 (n = 146912).

(a) Uniformly distributed streamlines at Re = 350

−7 −6 −5 −4 −3 −2 −1 0 1
−6

−4

−2

0

2

4

6

real axis

im
ag

in
ar

y
ax

is

(b) The 300 eigenvalues of J x = µMx with
smallest modulus at Re = 373 (the crosses de-
note the rightmost eigenvalues)

Figure 3.3: Flow over an obstacle (128× 512 mesh)

We choose Re0 to be 50 smaller than the critical value Rec. The computational

results for the finest mesh are reported in Table 3.3 (see Table 3.1 for notation).

Results given by the IRA method (see Example 1) are the following: 372 ≤ Rec ≤

49

373 and±βi ≈ ±2.26578i. The 300 eigenvalues with smallest modulus at a Reynolds

number slightly larger than Rec are plotted in Figure 3.3(b). As in the previous

example, our algorithm gives good estimates of Rec and βi. This problem has

significantly fewer eigenvalues near the imaginary axis, and the Krylov subspaces

needed for the Lyapunov solves are also significantly smaller than for the cavity

problem. Computational results for the other two meshes can be found in the

Appendix.

Remark. Note that A + λcB is only a linear approximation of the true

Jacobian matrix J (αc). Therefore, the true eigenvalue of (2.16), (2.15) and (3.14)

with smallest modulus is λc + ε where ε is a small error. The size of this error, |ε|,

depends on the distance between the chosen starting point (u0, α0) and the critical

point (uc, αc): the closer (uc, αc) is to (u0, α0), the better A + λcB approximates

J (αc) and the smaller |ε| gets.

3.3.3 Discussion of Lyapunov Solvers

As observed above, the efficiency of Algorithm 7 depends largely on the cost of

solving the large-scale Lyapunov equation (3.3) at each iteration. In section 3, we

discussed the Krylov method which searches for an approximate solution VQVT ,

where V is an orthonormal basis of the Krylov subspace (3.6) and Q solves the

small projected problem obtained by imposing the Galerkin condition. As shown in

Example 1 (driven-cavity flow), a large Krylov subspace is needed for this method

to compute an accurate enough solution even for the mild tolerance ‖Rlyap
` ‖F <

50

‖Reig
` ‖F . This deficiency leads us to the exploration of alternative Lyapunov solvers.

A recently developed projection method is the Rational Krylov Subspace

Method (RKSM) [12]. Like the standard Krylov method, it projects a large Lya-

punov equation onto a much smaller subspace, solves the small Lyapunov equation

obtained by imposing the Galerkin condition and projects the solution back to the

original space. In this method, the Krylov subspace is defined to be

Km(S, P, s) = span

{
P, (S − s1I)−1P, · · · ,

m−1∏
j=1

(S − sm−jI)−1P

}
(3.17)

where s = [s1, s2, · · · , sm−1]T ∈ Cm−1 is a vector of shifts that can be selected a

priori or generated adaptively during computation. An algorithm that computes

a decomposition similar to (3.7) for Km(S, P, s) can be found in [37]. The use

of such a subspace is first introduced by Ruhe for eigenvalue computation [36],

where the shifts are placed around the target eigenvalues. In [11], RKSM is used

to approximate u(t) = exp(St)u(0) ∈ Rn where S ∈ Rn×n is symmetric negative

definite. An adaptive approach of choosing the shifts is proposed in [11] with the goal

of minimizing the upper bound of the L2(0,∞) error of the RKSM solution. This

upper bound suggests that the shifts should lie on the imaginary axis, although it is

shown in [11] that they can be restricted to the interval [−θmax,−θmin] on the real

line, where θmax and θmin are the largest and smallest eigenvalues of S, respectively.

We present the formula for computing the next shift sm+1 (m ≥ 1) proposed in [11]

51

without going into detail:

sm+1 = arg

(
maxs∈I

1
|rm(s)|

)
, rm(z) =

∏m
j=1

(
z − θ̂j

)
∏m

j=1(z − sj)
(3.18)

where
{
θ̂j

}m
j=1

are the Ritz values of S on the Krylov subspace Km = (S, P, s),

{sj}mj=1 are the shifts computed in previous iterations, and I = [−θmax,−θmin].

In each Arnoldi step, a new pole will be added to the denominator of rm(z) and

the numerator of rm(z) will be completely changed. To start the computation,

the first shift s1 is set to be an estimate of −θmax or −θmin, which must be pro-

vided by some means. In [12], it is shown that this adaptive computation of the

shifts can be used to generate an efficient Krylov subspace for solving the Lya-

punov equation (3.3). This is motivated by the relation between exp(St)P and the

analytic solution −
∫∞
0

exp(St)PCP T exp(ST t) dt to (3.3). To generate the adap-

tive approach to a nonsymmetric S, [12] suggests replacing I = [−θmax,−θmin] by

I = [−Remax(θ),−Remin(θ)]. As before, Remax(θ) and Remin(θ) must be estimated

beforehand (see [12] for a discussion). A convergence analysis of RKSM is given in

[10].

Recall that in our problem, S = A−1M where A ∈ Rn×n is the Jacobian

matrix and M ∈ Rn×n is the nonsingular, shifted mass matrix given by (3.16).

Both A and M are large and sparse and A is nonsymmetric. Each iteration of

the standard Krylov method applied to (3.3) requires p solves with the coefficient

matrix A to compute the new Arnoldi block Vm+1, where p is rank of the right-hand

side of (3.3). On the other hand, each iteration of RKSM requires p solves with

52

the coefficient matrices M − sjA to compute the new Arnoldi block Vm+1, and an

extra p solves with the coefficient matrix A to compute SVm+1, which in turn gives

us the Rayleigh quotient VTSV (see Proposition 4.1 from [12]). While we can pre-

factor A or pre-compute a preconditioner for A, we cannot do the same thing for

M− sjA, since the shift sj is different from iteration to iteration. Therefore, when

Krylov subspaces of the same dimension are used to approximate the solution to

(3.3), RKSM will be more expensive than the standard Krylov method. RKSM is

only competitive when it can generate the solution with a smaller subspace.

The examples we consider in this discussion of Lyapunov solvers are the Lya-

punov equations

SY` + Y`S
T = P`C`P

T
` , ` = 1, 2, 3, 4 (3.19)

arising from the first three iterations of Algorithm 7 (with δ = 1 and the standard

Krylov Lyapunov solver) for driven-cavity flow on the two coarser meshes. The

rank of the right-hand side is 2 for ` = 1 and 4 for ` = 2, 3, 4. The matrix A is pre-

factored. Let the residual of (3.19) be Rlyap
` as before. To compare the performance

of the standard Krylov method and RKSM for solving (3.19), we have carried out

the following numerical experiments.

We first compare the performance of the two methods. In Figure 3.4, we

plot the decay of residual norm (‖Rlyap
` ‖F) for both the standard Krylov method

and RKSM as the dimension of the Krylov subspace K (see (3.6) and (3.17) for

definition) increases to an allowed maximum of 800. In all four cases, RKSM has a

faster asymptotic convergence rate than the standard Krylov method, and RKSM

53

is able to find a much more accurate solution. For example, when ` = 1, the

final residual norm of the RKSM solution is about 10−7 whereas that of the Krylov

solution is only about 10−1.

0 100 200 300 400 500 600 700 800
10

−8

10
−6

10
−4

10
−2

10
0

10
2

10
4

10
6

the dimension of the Krylov subspace K

||R
1|| F

standard Krylov
RKSM

(a) ` = 1

0 100 200 300 400 500 600 700 800
10

−6

10
−4

10
−2

10
0

10
2

10
4

10
6

the dimension of the Krylov subspace K

||R
2|| F

standard Krylov
RKSM

(b) ` = 2

0 100 200 300 400 500 600 700 800
10

−8

10
−6

10
−4

10
−2

10
0

10
2

10
4

the dimension of the Krylov subspace K

||R
3|| F

standard Krylov
RKSM

(c) ` = 3

0 100 200 300 400 500 600 700 800
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

10
4

the dimension of the Krylov subspace K

||R
4|| F

standard Krylov
RKSM

(d) ` = 4

Figure 3.4: Comparison of the standard Krylov method and RKSM for solving 3.19
in driven-cavity flow (64× 64 mesh)

Secondly, we compare the CPU times of the standard Krylov method and

RKSM as well as the ranks of the solutions produced by them, when the stopping

criterion is ‖Rlyap
` ‖F < 10−3. These results are reported in Table 3.4. Consider

first the case ` = 1 where we performed the computation for two different mesh

sizes. On both meshes, RKSM yields solutions with much lower rank, on the order

54

of 24% to 35% of the rank of the Krylov solutions. It is also much cheaper than the

standard Krylov method in terms of CPU time; for example, on the coarsest mesh,

it takes RKSM 8 minutes to compute the solution with rank 426 but 63 minutes

for the standard Krylov method to compute the solution of rank 1218. The high

cost of RKSM per iteration is fully compensated for by its early convergence. In

addition, when the mesh is refined, the rank of the RKSM solution seems to be

mesh-independent (426 and 428) whereas the rank of the standard Krylov method

increases noticeably (1218 and 1748). This suggests that the finer the mesh is, the

more efficient RKSM will be compared with the Krylov method.

Next, consider analogous results for ` = 2, 3, 4, i.e., as the outer iteration pro-

ceeds. It can be seen from Figure 3.4 that for both Lyapunov solvers the Lyapunov

equation becomes progressively easier to solve as ` increases. This is due to the fact

that as ` increases, the starting block of both methods, P`, gets ‘closer’ to the eigen-

vectors associated with the dominant eigenvalues of the solution Y`, and moreover,

these dominant eigenvalues become more separate from the other eigenvalues of Y`.

Evidence for this is as follows. From section 2, we know that (normalized) Y` con-

verges to the eigenvector Zc = VDVT of (2.16), where V ∈ Rn×2. Figure 3.5 shows

the moduli of the 50 eigenvalues of Y` (` = 1, 2, 3, 4) with largest modulus. (The

800-dimensional RKSM solutions are taken as the exact Y`’s.) It is not difficult to

see that as ` increases, the two eigenvalues of Y` with largest modulus become more

dominant. Let U` ∈ Rn×2 hold the eigenvectors of Y` associated with the two domi-

nant eigenvalues, and let ∠(P`, U`) denote the angle between the subspaces spanned

by P` and U` (see [50] for definition of the angle between two subspaces). The

55

smaller this angle is, the closer the two subspaces are to being linearly dependent.

We compute ∠(P`, U`) for ` = 1, 2, 3, 4 using Matlab function ‘subspace’ and obtain

the following results: ∠(P1, U1) ≈ 1.5326, ∠(P2, U2) ≈ 0.3564, ∠(P3, U3) ≈ 0.0071

and ∠(P4, U4) ≈ 0.0002. Thus, ∠(P`, U`) goes to zero rapidly as the outer iteration

proceeds. Table 3.4 also suggests that the standard Krylov method becomes more

1 2 3 4
10

−4

10
−2

10
0

10
2

10
4

10
6

j

|θ
i|

Figure 3.5: Moduli of the 50 eigenvalues of Y` with largest modulus (driven-cavity
flow, 64× 64 mesh)

advantageous compared to RKSM as the outer iteration proceeds. The reason be-

hind is that the standard Krylov method is able to resolve the dominant eigenvectors

U` of the solution Y` faster than RKSM in the case where ∠(P`, U`) is already small.

This point is demonstrated in Figure 3.6, which shows the decay of ∠(K, U`), the

angle between the subspace spanned by U` and the Krylov subspace. The decay

curves in Figure 3.4 and Figure 3.6 are clearly similar.

We conclude section 5.3 with the following remarks.

1. If the goal is to solve (3.3) accurately, RKSM is definitely the superior choice.

Compared to the standard Krylov method, it has a faster asymptotic rate of

56

0 100 200 300 400 500 600 700 800
10

−15

10
−10

10
−5

10
0

10
5

the dimension of the Krylov subspace K

∠
 (

K
,U

1)

standard Krylov
RKSM

(a) ` = 1

0 100 200 300 400 500 600 700 800
10

−15

10
−10

10
−5

10
0

the dimension of the Krylov subspace K

∠
 (

K
,U

2)

standard Krylov
RKSM

(b) ` = 2

0 100 200 300 400 500 600 700 800
10

−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

the dimension of the Krylov subspace K

∠
 (

K
,U

3)

standard Krylov
RKSM

(c) ` = 3

0 100 200 300 400 500 600 700 800
10

−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

the dimension of the Krylov subspace K

∠
 (

K
,U

4)

standard Krylov
RKSM

(d) ` = 4

Figure 3.6: Decay of ∠(K, U`) of the standard Krylov method and RKSM (driven-
cavity flow, 64× 64 mesh)

convergence, which leads to significant savings in both storage and CPU time;

moreover, the rank of the solution it computes is mesh-independent, which

is important for problems arising from discretization of 2- or 3-dimensional

PDEs.

2. However, as pointed out in section 4, solving the Lyapunov equations accu-

rately is not of primary interest in the current study, since we only need to

solve it accurately enough for the outer iteration, i.e., ‖Rlyap
` ‖F < ‖Reig

` ‖F (see

Algorithm 7, step 2.4 with δ = 1). In our experiments, ‖Reig
1 ‖F ≈ 3.81× 102,

57

‖Reig
2 ‖F ≈ 1.52×10−1, ‖Reig

3 ‖F ≈ 2.35×10−3, and ‖Reig
4 ‖F ≈ 7.17×10−5 (see

Table A.1 in the Appendix). Figure 3.4 shows that if the stopping criterion

is this mild, the two methods require Krylov subspaces of almost the same

dimension and therefore, RKSM will be the less effective choice between the

two.

3.4 Conclusions

We have refined the Lyapunov inverse iteration proposed in [29] and examined the

application of our algorithm to two examples arising from models of incompressible

flow. The driven-cavity flow example is a particularly difficult problem. For both

examples, the new algorithm is able to compute good estimates of the critical pa-

rameter value at which Hopf bifurcation takes place. Our algorithm belongs to the

class of inner-outer iterative methods: the outer iteration is the inverse iteration for

a special eigenvalue problem and the inner iteration is to solve a Lyapunov equation.

Based on existing theory of inner-outer iterative methods, the Lyapunov equations

do not need to be solved to high accuracy; instead, a mild tolerance is sufficient. In

this scenario, the standard Krylov method is more effective than the rational Krylov

subspace method for solving the large-scale Lyapunov systems that arise for our ap-

plication. The method developed in this chapter has also been applied successfully

in aeroelastic stability analysis (see [47]).

58

Table 3.3: Algorithm 7 applied to flow over an obstacle (128× 512 mesh, Re0 = 320)
for δ = 1, 10−1, 10−2 in (3.15)

` Re(`) µ(`) ‖r`‖2 ‖Reig
` ‖F ‖Rlyap

` ‖F d` k`
δ = 1

1 -331 -6.21192e-13 1.52776e-01 4.38125e+0 3.52097e+0 68 10
2 311 2.26820i 2.28878e-04 1.79583e-1 1.77367e-1 56 20
3 378 2.27689i 4.11801e-05 5.72823e-3 4.23584e-3 68 20
4 375 2.26633i 9.82413e-06 1.20449e-3 6.69375e-4 68 20
5 373 2.26632i 1.79954e-06 2.34683e-4 2.09699e-4 64 30
6 373 2.26661i 2.42540e-07 2.87217e-5 2.67124e-5 64 20
7 373 2.26656i 4.05258e-08 5.38433e-6 4.10305e-6 64 20
8 373 2.26656i 5.45124e-09 7.12393e-7 4.27719e-7 68 20
9 373 2.26656i 1.32615e-09 1.82166e-7 9.15168e-8 68 20
10 373 2.26656i 3.22020e-10 3.99332e-8 — — —

Total: 588
δ = 10−1

1 -331 -6.21192e-13 1.52776e-01 4.38125e+0 4.22028e-1 202 30
2 366 2.21977i 1.44453e-04 3.67019e-2 3.34052e-3 84 40
3 368 2.26650i 2.91683e-05 3.77305e-3 2.59429e-4 80 30
4 374 2.26727i 3.07688e-06 5.16995e-4 3.16904e-5 80 30
5 373 2.26650i 4.51259e-07 5.51444e-5 5.21710e-6 76 40
6 373 2.26657i 4.14640e-08 5.33721e-6 4.04173e-7 76 40
7 373 2.26656i 4.67350e-09 6.55972e-7 4.42397e-8 80 40
8 373 2.26656i 6.61702e-10 9.81259e-8 — — —

Total: 678
δ = 10−2

1 -331 -6.21192e-13 1.52776e-01 4.38125e+0 3.87099e-2 254 40
2 364 2.22687i 5.37359e-04 1.51434e-2 1.36842e-4 164 60
3 370 2.26840i 1.79202e-05 2.39139e-3 2.32630e-5 156 60
4 374 2.26678i 2.40915e-06 3.15403e-4 2.86933e-6 148 50
5 373 2.26653i 4.22143e-07 5.32762e-5 5.14646e-7 132 50
6 373 2.26657i 9.53373e-09 2.13741e-6 1.82336e-8 160 50
7 373 2.26656i 3.55204e-09 6.02453e-7 4.99433e-9 160 50
8 373 2.26656i 3.66251e-10 5.45473e-8 — — —

Total: 1174

Table 3.4: Rank of the approximate solution and CPU time
64× 64 mesh 128× 128 mesh

` Krylov RKSM Krylov RKSM
1 1218 (63 min.) 426 (8 min.) 1748 (276 min.) 428 (34 min.)
2 1024 (15 min.) 588 (10 min.)
3 516 (1 min.) 476 (6 min.)
4 312 (0.3 min.) 428 (5 min.)

59

Chapter 4

Lyapunov Inverse Iteration for Computing a Few Rightmost

Eigenvalues of Large Generalized Eigenvalue Problems

The method proposed in [29] and refined in Chapter 3 allows us to estimate the

critical parameter value αc at which stability is lost without computing the rightmost

eigenvalue of (2.2). However, it only works in the neighborhood of the critical point

(uc, αc). In Chapter 3, for instance, the critical point of all numerical examples is

known a priori, so that we can pick a point (u0, α0) close to it and apply Lyapunov

inverse iteration with confidence. Usually αc is unknown and we start from a point

(u0, α0) in the stable regime of the solution path S that may be distant from the

critical point. In this scenario, the method of [29] and Chapter 3 cannot be used

to estimate αc, since the Jacobian matrix J (αc) at the critical point cannot be

approximated by A + λcB, where A = J (α0), B = dJ
dα

(αc) and λc = αc − α0.

However, quantitative information about how far away (u0, α0) is from (uc, αc) can

still be obtained by estimating the distance between the rightmost eigenvalue of

(2.2) at α0 and the imaginary axis: if the rightmost eigenvalue is far away from

the imaginary axis, then it is reasonable to assume that (u0, α0) is far away from

the critical point as well, and therefore we should march along S using numerical

continuation until we are close enough to (uc, αc); otherwise, we can assume that

(u, α0) is already in the neighborhood of the critical point and the method of [29]

60

and Chapter 3 can be applied to estimate αc.

The goal of this chapter is to develop a robust method to compute a few right-

most eigenvalues of (2.2) in the stable regime of S. The plan of this chapter is

as follows. In section 4.1, we show that the distance between the imaginary axis

and the rightmost eigenvalue of (2.2) is the eigenvalue with smallest modulus of

an eigenvalue problem similar in structure to (3.14). As a result, this eigenvalue

can also be computed efficiently by Lyapunov inverse iteration. In section 4.2, we

present numerical results for several examples arising from fluid dynamics, and pro-

vide an analysis of the fast convergence of Lyapunov inverse iteration observed in

our experiments. Based on the analysis, we also propose a modified algorithm that

guarantees convergence in only two iterations. In section 4.3, we show that the anal-

ysis in sections 4.1 and 4.2 can be generalized to a deflated version of the Lyapunov

eigenvalue problem, which leads to an algorithm for computing k (1 ≤ k � n)

rightmost eigenvalues of (2.2). Details of the implementation of this algorithm are

discussed in section 5. Finally, we make some concluding remarks in section 4.4.

4.1 Computing the Distance between the Rightmost Eigenvalue and

the Imaginary Axis

Let (u0, α0) be any point in the stable regime of S and assume M is nonsingular

in (2.2). Let (µj, xj) (‖xj‖2 = 1, j = 1, 2, . . . , n) be the eigenpairs of (2.2) at α0,

where the real parts of µj, Re(µj), are in decreasing order, i.e., 0 > Re(µ1) ≥

Re(µ2) ≥ . . . ≥ Re(µn). Then the distance between the rightmost eigenvalue and

61

the imaginary axis is −Re(µ1). Let A = J (α0) and S = A−1M. To compute this

distance, we first observe that −Re(µ1) is the eigenvalue with smallest modulus of

the n2 × n2 generalized eigenvalue problem

(Ψ1 + λΨ0) z = 0 (4.1)

where Ψ1 = S ⊗ I + I ⊗ S and Ψ0 = 2S ⊗ S (I is the identity matrix of order n).

We proceed in two steps to prove this assertion. First, we show that −Re(µ1) is an

eigenvalue of (4.1).

Theorem 4.1. Assume M is nonsingular. The eigenvalues of (4.1) are λi,j =

−1
2
(µi + µj), i, j = 1, 2, . . . , n. For any pair (i, j), there are eigenvectors associated

with λi,j given by zi,j = xi ⊗ xj and zj,i = xj ⊗ xi.

Proof. Since (µj, xj) (j = 1, 2, . . . , n) are the eigenpairs of Ax = µMx,(
1
µj
, xj

)
are the eigenpairs of S. We first prove that the eigenvalues of (4.1) are

{λi,j}ni,j=1. Let J be the Jordan normal form of S and P be an invertible matrix

such that S = PJP−1. Then

(−Ψ0)
−1 Ψ1(P ⊗ P) = −1

2
(PJP−1 ⊗ PJP−1)−1(PJP−1 ⊗ I + I ⊗ PJP−1)(P ⊗ P)

= −1

2

(
PJ−1P−1 ⊗ PJ−1P−1

)
(PJ ⊗ P + P ⊗ PJ)

= −1

2
(P ⊗ P)

(
J−1P−1 ⊗ J−1P−1

)
(PJ ⊗ P + P ⊗ PJ)

= (P ⊗ P)

[
−1

2

(
I ⊗ J−1 + J−1 ⊗ I

)]
.

62

This implies that (4.1) and −1
2

(I ⊗ J−1 + J−1 ⊗ I) have the same eigenvalues. Due

to the special structure of the Jordan normal form J , I ⊗ J−1 + J−1 ⊗ I is an up-

per triangular matrix whose diagonal entries are {µi + µj}ni,j=1. Consequently, the

eigenvalues of −1
2

(I ⊗ J−1 + J−1 ⊗ I) are
{
−1

2
(µi + µj)

}n
i,j=1

= {λi,j}ni,j=1. There-

fore, the eigenvalues of (4.1) are {λi,j}ni,j=1 as well.

Second, we show that zi,j is an eigenvector of (4.1) associated with the eigen-

value λi,j. For any pair (i, j) (i, j = 1, 2, . . . , n),

Ψ1(xi⊗xj) = (S⊗I+I⊗S)(xi⊗xj) = (Sxi)⊗xj+xi⊗(Sxj) =

(
1

µi
+

1

µj

)
(xi⊗xj),

and

Ψ0(xi ⊗ xj) = 2(S ⊗ S)(xi ⊗ xj) = 2(Sxi)⊗ (Sxj) =
2

µiµj
(xi ⊗ xj).

Therefore, Ψ1zi,j =
(

1
µi

+ 1
µj

)
µiµj
2

Ψ0zi,j = λi,j (−Ψ0) zi,j. Similarly, we can show

that Ψ1zj,i = λi,j (−Ψ0) zj,i.

If µ1 is real, then −Re(µ1) = −µ1 = −1
2
(µ1 + µ1) = λ1,1; if µ1 is not real (i.e.,

µ1 = µ2 and x1 = x2), then −Re(µ1) = −1
2
(µ1 + µ1) = −1

2
(µ1 + µ2) = λ1,2 = λ2,1.

In both cases, by Theorem 4.1, −Re(µ1) is an eigenvalue of (4.1).

We next show that −Re(µ1) is the eigenvalue of (4.1) with smallest modulus.

Theorem 4.2. Assume all the eigenvalues of Ax = µMx lie in the left half of the

complex plane. Then the eigenvalue of (4.1) with smallest modulus is −Re(µ1).

Proof. Let µj = aj + ibj. Then 0 > a1 ≥ a2 ≥ . . . ≥ an. If the rightmost

63

eigenvalue of Ax = µMx is real, then −Re(µ1) = λ1,1, and since 0 > a1 ≥ a2 ≥

. . . ≥ an, it follows that

|λ1,1|2 =
1

4
(a1 + a1)

2 ≤ 1

4

[
(ai + aj)

2 + (bi + bj)
2
]

= |λi,j|2

for any pair (i, j). Alternatively, if the rightmost eigenvalues of Ax = µMx consist

of a complex conjugate pair, then a1 = a2, b1 = −b2, −Re(µ1) = λ1,2 = λ2,1, and

similarly,

|λ1,2|2 = |λ2,1|2 =
1

4

[
(a1 + a1)

2 + (b1 − b1)2
]
≤ 1

4

[
(ai + aj)

2 + (bi + bj)
2
]

= |λi,j|2

for any pair (i, j). In both cases, −Re(µ1) is the eigenvalue of (4.1) with smallest

modulus.

Simple example: Consider a 4 × 4 example of Ax = µMx whose eigenvalues

are µ1,2 = −1 ± 5i, µ3 = −2 and µ4 = −3 (see Figure 4.1(a)). The eigenvalues of

the corresponding 16× 16 eigenvalue problem (4.1) are plotted in Figure 4.1(b) and

listed in Table 4.1. As seen in Figure 4.1(b), λ1,1 = 1 − 5i, λ1,2 = λ2,1 = 1 and

λ2,2 = 1+5i are the leftmost eigenvalues of (4.1), and λ1,2 = λ2,1 are the eigenvalues

of (4.1) with smallest modulus.

Table 4.1: The eigenvalues of (4.1) corresponding to the 4× 4 example
λ1,1 = 1− 5i
λ2,1 = λ1,2 = 1 λ2,2 = 1 + 5i
λ3,1 = λ1,3 = 1.5− 2.5i λ3,2 = λ2,3 = 1.5 + 2.5i λ3,3 = 2
λ4,1 = λ1,4 = 2− 2.5i λ4,2 = λ2,4 = 2 + 2.5i λ4,3 = λ3,4 = 2.5 λ4,4 = 3

Assume Ax = µMx has a complete set of eigenvectors {xj}nj=1. Then (4.1)

64

−4 −3.5 −3 −2.5 −2 −1.5 −1 −0.5 0
−6

−4

−2

0

2

4

6

real axis

im
ag

in
ar

y
ax

is

(a) The spectrum of Ax = µMx

0 0.5 1 1.5 2 2.5 3 3.5 4
−6

−4

−2

0

2

4

6

real axis

im
ag

in
ar

y
ax

is

(b) The spectrum of (4.1)

Figure 4.1: The spectrum of Ax = µMx and (4.1) for the 4× 4 example (•: double
eigenvalues).

also has a complete set of eigenvectors {zi,j}ni,j=1. By Theorem 4.2, the distance

between the imaginary axis and the rightmost eigenvalue, −Re(µ1), can be found

by inverse iteration applied to (4.1), which involves solving linear systems of order

n2. In [29] and Chapter 3, an n2×n2 eigenvalue problem (2.15) similar in structure

to (4.1) is dealt with by rewriting an equation of Kronecker sums into an equation

of Lyapunov form, i.e., (2.16). Here, similarly, we can rewrite (4.1) into

SZ + ZST + λ(2SZST) = 0. (4.2)

Any eigenpair (λ, z) of (4.1) is related to an eigenpair (λ, Z) of (4.2) by z =

vec(Z). By Theorem 4.1 and the relation between (4.1) and (4.2), (λi,j, Zi,j) (i, j =

1, 2, . . . , n) are the eigenpairs of (4.2) where Zi,j = xjx
T
i ; in addition, by Theorem

4.2, −Re(µ1) is the eigenvalue of (4.2) with smallest modulus. Furthermore, under

certain conditions, −Re(µ1) is an eigenvalue of (4.2) whose associated eigenvector

is real, symmetric and of low rank. Assume the following:

65

(a1) for any 1 < i ≤ n, if Re(µi) = Re(µ1), then µi = µ1; and

(a2) µ1 is a simple eigenvalue of Ax = µMx.

Consequently, if µ1 is real, then −Re(µ1) is a simple eigenvalue of (4.1) with the

eigenvector z1,1 = x1 ⊗ x1; otherwise, −Re(µ1) is a double eigenvalue of (4.1) with

the eigenvectors z1,2 = x1 ⊗ x1 and z2,1 = x1 ⊗ x1. When the eigenvectors of (4.2)

are restricted to the subspace of Cn×n consisting of symmetric matrices Z, then by

Theorem 2.3 from [29], −Re(µ1) has a unique (up to a scalar multiplier), real and

symmetric eigenvector x1x
T
1 (if µ1 is real), or x1x

∗
1 +x1x

T
1 (if µ1 is not real) where x∗1

denotes the conjugate transpose of x1. Therefore, we can apply Lyapunov inverse

iteration (see Algorithm 4) to (4.2) to find −Re(µ1), the eigenvalue of (4.2) with

smallest modulus:

Algorithm 8: Lyapunov inverse iteration for (4.2)

1. Given V1 ∈ Rn with ‖V1‖2 = 1.
2. For ` = 1, 2, · · ·

2.1. Rank reduction1: compute S̃ = VT
` SV` and solve for the eigenvalue

λ̃1 of

S̃Z̃ + Z̃S̃T + λ̃
(

2S̃Z̃S̃T
)

= 0 (4.3)

with smallest modulus and its eigenvector Z̃1 = ṼD̃ṼT .
2.2. Set λ(`) = λ̃1 and Z(`) = V`D̃VT` , where V` = V`Ṽ .
2.3. If

(
λ(`), Z(`)

)
is accurate enough, then stop.

2.4. Else, solve for Y` from

SY` + Y`S
T = −2SZ(`)ST (4.4)

in factored form: Y` = V`+1D`+1V
T
`+1.

As the iteration proceeds, the iterate
(
λ(`), Z(`) = V`D̃VT`

)
will converge to

(−Re(µ1),VDVT) where ‖D‖F = 1 and V = x1 (if µ1 is real) or V ∈ Rn×2 is

1When ` = 1, (4.3) is a scalar equation and its eigenpair is
(
λ̃1, Z̃1

)
=
(
−S̃−1, 1

)
.

66

an orthonormal matrix whose columns span {x1, x1} (if µ1 is not real). Besides

estimates of −Re(µ1), we can also obtain from Algorithm 8 estimates of (µ1, x1) by

solving the small q × q (q = 1 or 2) eigenvalue problem

(
VT` SV`

)
y = θy (4.5)

and taking µ(`) = 1
θ

and x(`) = V`y. As V` converges to V ,
(
µ(`), x(`)

)
will converge

to (µ1, x1).

At each iteration of Algorithm 8, a large-scale Lyapunov equation (4.4) needs

to be solved. As has been done for (2.21), we can rewrite (4.4) as (2.24) (see

Chapter 3 for details) where P` is orthonormal and is of rank 1 (` = 1) or 2 (` > 1).

The Lyapunov equation (4.4) can then be solved by applying an iterative Lyapunov

solver such as the “standard” Krylov method (see Algorithm 5) to (2.24). In step 2.1

(rank reduction) of Algorithm 8, although it may look like computing the projection

S̃ = VT
` SV` requires extra linear solves with coefficient matrix A, in fact, if a

Krylov-type method is used to solve (2.24), S̃ can be obtained from the Arnoldi

decomposition computed by the Krylov-type method for no additional cost when

` > 1. For example, if the standard Krylov method is used to solve (2.24), by (3.7),

S̃ = Hm where m is the number of block Arnoldi steps needed.

4.2 Numerical Results

In this section, we test Algorithm 8 on several problems arising from fluid dynamics.

As already noted in section 3.3, when (2.1) comes from a standard (e.g., finite ele-

67

ment) discretization of the incompressible Navier-Stokes equations, the mass matrix

M is singular, leading to infinite eigenvalues of (2.2) and singular S = A−1M. We

therefore used the shifted, nonsingular mass matrix (3.16) proposed in [8], which

maps the infinite eigenvalues of (2.2) to finite ones away from the imaginary axis

and leaves the finite eigenvalues of (2.2) unchanged. As in section 3.3, here M refers

to this shifted mass matrix.

4.2.1 Example 1: Driven-Cavity Flow

The Q2-Q1 mixed finite element discretization (with a 64× 64 mesh) of the Navier-

Stokes equations gives rise to a generalized eigenvalue problem (2.2) of order n =

9539. Figure 4.2(a) depicts the path traced out by the eight rightmost eigenvalues of

(2.2) for Reynolds numbers Re = 2000, 4000, 6000, 7800, at which the steady-state

solution to (2.1) is stable. As the Reynolds number increases, the following trend

can be observed: the eight rightmost eigenvalues all move towards the imaginary

axis, and they become more clustered as they approach the imaginary axis. In

addition, although the rightmost eigenvalue starts off being real, one conjugate

pair of complex eigenvalues (whose imaginary parts are about ±3i) move faster

towards the imaginary axis than the other eigenvalues and eventually they become

the rightmost. They first cross the imaginary axis at Re ≈ 7929 (see Table A.1),

causing instability in the steady-state solution of (2.1). Finding the conjugate pair

of rightmost eigenvalues of (2.2) at a high Reynolds number (for example, at Re =

7800) using an iterative eigenvalue solver such as the IRA method can be difficult,

68

as noted in section 3.3.

−0.2 −0.15 −0.1 −0.05 0
−3

−2

−1

0

1

2

3

real axis

im
ag

in
ar

y
ax

is

(a)

−3 −2.5 −2 −1.5 −1 −0.5 0
−3

−2

−1

0

1

2

3

real axis

im
ag

in
ar

y
ax

is

(b)

Figure 4.2: (a) The eight rightmost eigenvalues for driven-cavity flow at different
Reynolds numbers (∗ : Re = 2000, ◦ : Re = 4000, ♦ : Re = 6000, � : Re = 7800).
(b) The 300 eigenvalues with smallest modulus at Re = 7800 (×: the rightmost
eigenvalues).

For four various Reynolds numbers between 2000 and 7800, we apply Algo-

rithm 8 (with the Rational Krylov Subspace Method [12] (RKSM) as the Lyapunov

solver) to calculate the distance between the rightmost eigenvalue of (2.2) and the

imaginary axis. The results are reported in Table 4.3 (see Table 4.2 for notation).

The initial guess V1 is chosen to be a random vector of unit norm in Rn, the stopping

Table 4.2: Notation for Algorithm 8
Symbol Definition

λ(`), Z(`) the estimated eigenvalue of (4.2) with smallest modulus (−Re(µ1))
and its associated eigenvector, respectively

µ(`) the estimated rightmost eigenvalue of Ax = µMx, i.e., µ1

Reig
` SZ(`) + Z(`)ST + λ(`)(2SZ(`)ST), i.e., the residual of the (4.2)

Y approx
` the approximate solution to (2.24)

Rlyap
` SY approx

` + Y approx
` ST − P`C`P T

` , i.e., the residual of (2.24)
d` rank of Y approx

`

69

criterion for the eigenvalue residual is

‖Reig
` ‖F < 10−8, (4.6)

and the stopping criterion for the Lyapunov solve is

‖Rlyap
` ‖F < 10−9 ·

∥∥P`C`P T
`

∥∥
F

= 10−9 · ‖C`‖F . (4.7)

Note that both residual norms ‖Reig
` ‖F and ‖Rlyap

` ‖F are cheap to compute (see

section 3.2 for details). Therefore, the main cost of each iteration is about d` linear

solves with coefficient matrix M − sjA and about d` linear solves with coefficient

matrix A (see section 3.3.3 for a discussion on the cost of RKSM). All linear systems

are solved using direct methods. As shown in Table 4.3, the distances between the

rightmost eigenvalue of (2.2) and the imaginary axis at Re = 2000, 4000, 6000, 7800

are 0.03264, 0.01608, 0.01084, 0.00514, respectively. We also obtain estimates of

the rightmost eigenvalue of (2.2) at the four Reynolds numbers: -0.03264, -0.01608,

-0.01084, and -0.00514+2.69845i.

We note two trends seen in these results. First, surprisingly, for all the

Reynolds numbers considered, Algorithm 8 converges to the desired tolerance (4.6)

in only 2 iterations. That is, only the first Lyapunov equation

SY1 + Y1S
T = P1C1P

T
1 (4.8)

needs to be solved, where P1 ∈ Rn and C1 ∈ R. Second, as the Reynolds number

70

increases, it becomes more expensive to solve the Lyapunov equation to the same

order of accuracy (4.7), since Krylov subspaces of increasing dimension are needed

(156, 241, 307 and 366 for the four Reynolds numbers). We also tested Algorithm

8 using the standard Krylov method (Algorithm 5) to solve the Lyapunov systems.

To solve (4.8) to the same accuracy, this method requires subspaces of dimension

525, 614, 770 and 896 for the four Reynolds numbers, which are more than twice

as large as those required by RKSM (see Figure 4.3 for comparison). As a result,

RKSM is much more efficient.

Table 4.3: Algorithm 8 applied to driven-cavity flow
` λ(`) µ(`) ‖Reig

` ‖F ‖Rlyap
` ‖F d`

Re=2000
1 884.383 -884.383 1.32049e+02 1.40794e-10 156
2 0.03264 -0.03264 2.56263e-11 — —

Re=4000
1 -17765.8 17765.8 6.58651e+03 3.52618e-10 241
2 0.01608 -0.01608 4.25055e-10 — —

Re=6000
1 1301.24 -1301.24 8.55652e+02 6.52387e-10 307
2 0.01084 -0.01084 7.11628e-10 — —

Re=7800
1 695.951 -695.951 6.58622e+02 9.02875e-10 366
2 0.00514 -0.00514+2.69845i 3.62567e-11 — —

4.2.2 Example 2: Flow over an Obstacle

The Q2-Q1 mixed finite element discretization (with a 32×128 mesh) of the Navier-

Stokes equations gives rise to a generalized eigenvalue problem (2.2) of order n =

9512. Figure 4.4(a) depicts the path traced out by the six rightmost eigenvalues of

(2.2) for Re = 100, 200, 300, 350 in the stable regime, and Figure 4.4(b) shows the

71

0 100 200 300 400 500 600
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

the dimension of the Krylov subspace

||R
1|| F

standard Krylov
RKSM

(a) Re = 2000

0 100 200 300 400 500 600 700
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

the dimension of the Krylov subspace

||R
1|| F

standard Krylov
RKSM

(b) Re = 4000

0 100 200 300 400 500 600 700 800
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

the dimension of the Krylov subspace

||R
1|| F

standard Krylov
RKSM

(c) Re = 6000

0 100 200 300 400 500 600 700 800 900
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

the dimension of the Krylov subspace

||R
1|| F

standard Krylov
RKSM

(d) Re = 7800

Figure 4.3: Comparison of the standard Krylov method and RKSM in solving (4.8)
for driven-cavity flow

300 eigenvalues of (2.2) with smallest modulus at Re = 350. As for the previous

example, as the Reynolds number increases, the six rightmost eigenvalues all move

towards the imaginary axis, and the rightmost eigenvalue changes from being real (at

Re = 100) to complex (at Re = 200, 300, 350). The rightmost pair of eigenvalues of

(2.2) cross the imaginary axis and the steady-state solution to (2.1) loses its stability

at Re ≈ 373 (see Table A.3).

We again apply Algorithm 8 to estimate the distance between the rightmost

eigenvalue of (2.2) and the imaginary axis for the four Reynolds numbers mentioned

72

−2 −1.5 −1 −0.5 0
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

real axis

im
ag

in
ar

y
ax

is

(a)

−6 −5 −4 −3 −2 −1 0
−5

−4

−3

−2

−1

0

1

2

3

4

5

real axis

im
ag

in
ar

y
ax

is

(b)

Figure 4.4: (a) The six rightmost eigenvalues for flow over an obstacle at different
Reynolds numbers (∗ : Re = 100, ◦ : Re = 200, ♦ : Re = 300, � : Re = 350).
(b) The 300 eigenvalues with smallest modulus at Re = 350 (×: the rightmost
eigenvalues).

above. The results are reported in Table 4.4 (see Table 4.2 for notation). The

stopping criteria for both Algorithm 8 and the Lyapunov solve (2.24) remain un-

changed, i.e., (4.6) and (4.7). For all four Reynolds numbers, Algorithm 8 converges

rapidly. In fact, we will show in section 4.2.4 that if the Lyapunov equation (4.8)

is solved more accurately, Algorithm 8 will converge in two iterations in all four

cases as observed in the previous example. Again we compare the performance of

the standard Krylov method and RKSM in solving (4.8). As for the cavity flow,

the standard Krylov method needs a significantly larger subspace than RKSM to

compute a solution of the same accuracy (see Figure 4.5).

4.2.3 Example 3: Double-Diffusive Convection Problem

This is a model of the effects of convection and diffusion on two solutions in a

box heated at one boundary (see Chapter 8 of [49]). The governing equations use

73

Table 4.4: Algorithm 8 applied to flow over an obstacle
` λ(`) µ(`) ‖Reig

` ‖F ‖Rlyap
` ‖F d`

Re=100
1 -2.42460 2.42460 1.15123e+1 2.44638e-09 45
2 0.57285 -0.57285 1.28322e-4 1.15950e-11 22
3 0.57285 -0.57285 4.86146e-6 1.64039e-09 18
4 0.57285 -0.57285 9.49881e-7 5.11488e-09 10
5 0.57285 -0.57285 1.35238e-7 5.65183e-09 4
6 0.57285 -0.57285 2.30716e-8 8.18398e-10 4
7 0.57285 -0.57285 8.43416e-9 — —

Re=200
1 -2.45074 2.45074 1.16834e+1 3.00582e-09 63
2 0.32884 -0.32884+2.16396i 3.86737e-5 2.20976e-10 86
3 0.32884 -0.32884+2.16393i 1.30869e-8 2.04006e-10 46
4 0.32884 -0.32884+2.16393i 1.47390e-9 — —

Re=300
1 -2.47804 2.47804 1.18371e+01 4.49864e-09 75
2 0.10405 -0.10405+2.22643i 7.59831e-07 3.60446e-10 86
3 0.10405 -0.10405+2.22643i 2.18881e-10 — —

Re=350
1 -2.49317 2.49317 1.19385e+01 3.40780e-09 85
2 0.02411 -0.02411+2.24736i 2.80626e-08 3.84715e-10 90
3 0.02411 -0.02411+2.24736i 1.46747e-11 — —

Boussinesq approximation and are given in [7] and [9]. Linear stability analysis of

this problem is considered in [17]. The imaginary parts of the rightmost eigenvalues

of (2.2) near the critical point (uc, αc) have fairly large magnitude, and as a result,

the rightmost eigenvalues are further away from zero than many of the real eigen-

values close to the imaginary axis. Conventional methods, such as IRA with a zero

shift, tend to converge to the real eigenvalues close to the imaginary axis instead of

the rightmost pair.

We consider an artificial version Ax = µx of this problem, where A is tridiag-

onal of order n = 10, 000 with eigenvalues µ1,2 = −0.05±25i and µj = −(j−1) ·0.1

for all 3 ≤ j ≤ n. The 300 eigenvalues of A with smallest modulus are plotted in

74

0 50 100 150 200
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

the dimension of the Krylov subspace

||R
1|| F

standard Krylov
RKSM

(a) Re = 100

0 50 100 150 200 250 300
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

the dimension of the Krylov subspace

||R
1|| F

standard Krylov
RKSM

(b) Re = 200

0 50 100 150 200 250 300 350 400
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

the dimension of the Krylov subspace

||R
1|| F

standard Krylov
RKSM

(c) Re = 300

0 50 100 150 200 250 300 350 400 450
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

the dimension of the Krylov subspace

||R
1|| F

standard Krylov
RKSM

(d) Re = 350

Figure 4.5: Comparison of the standard Krylov method and RKSM for solving (4.8)
in flow over an obstacle

Figure 4.6 (left). A similar problem is studied in [28]. If we use the Matlab function

‘eigs’ with zero shift to compute its rightmost eigenvalues, at least 251 eigenvalues

of A have to be computed to ensure that µ1,2 will be found. This approach requires

a minimum 502 linear solves under the default setting of ‘eigs’, and again in practice

many more will be needed. We apply Algorithm 8 to this problem (with the same

stopping criteria for the inner and outer iterations as in the previous two examples)

and the results are reported in Table 4.5. It converges in just 3 iterations, requir-

ing 90 linear solves to solve the two Lyapunov equations to desired accuracy. As

75

in the previous examples, RKSM needs a Krylov subspace of significantly smaller

dimension than the standard Krylov method (see Figure 4.6 (right)).

−30 −25 −20 −15 −10 −5 0
−30

−20

−10

0

10

20

30

real axis

im
ag

in
ar

y
ax

is

0 20 40 60 80 100
10

−12

10
−10

10
−8

10
−6

10
−4

10
−2

the dimension of the Krylov subspace

||R
1|| F

standard Krylov
RKSM

Figure 4.6: Left: the 300 eigenvalues with smallest modulus (×: the rightmost
eigenvalues). Right: Comparison of the standard Krylov method and RKSM for
solving (4.8) in double-diffusive convection problem

Table 4.5: Algorithm 8 applied to double-diffusive convection problem
` λ(`) µ(`) ‖Reig

` ‖F ‖Rlyap
` ‖F d`

1 109.973 -109.973 4.33472e+00 3.28342e-11 40
2 0.05000 -0.05000+25.0000i 4.76830e-08 3.01965e-12 50
3 0.05000 -0.05000+25.0000i 1.56010e-13 — —

4.2.4 Analysis of the Convergence of Algorithm 8

In the numerical experiments, we have shown that Algorithm 8 converges rapidly. In

particular, it converges in just two iterations in many cases, for example, the driven-

cavity flow at Re = 2000, 4000, 6000, 7800. In other words, only one Lyapunov solve

(4.8) is needed to obtain an eigenvalue estimate of desired accuracy in these cases.

The analysis below provides some insight into this fast convergence.

We introduce some notation to be used in the analysis. Assuming (2.2) and

therefore (4.1) have complete sets of eigenvectors, let {(λk, zk)}n
2

k=1 denote the eigen-

76

pairs of (4.1), where ‖zk‖2 = 1 and {λk} have increasing moduli, i.e., |λk1| ≤ |λk2|

if k1 < k2. By Theorem 4.1, for each 1 ≤ k ≤ n2, there exist 1 ≤ i, j ≤ n such

that λk = λi,j = −1
2
(µi + µj) and zk = zi,j = xi ⊗ xj.

2 Let Zk = xjx
T
i , i.e.,

vec(Zk) = zk, so that {(λk, Zk)}n
2

k=1 are the eigenpairs of (4.2). In addition, let

Lp = {λ1, λ2, . . . , λp} contain the p eigenvalues of (4.1) with smallest modulus, and

let Ep = {µi1 , µi2 , . . . , µid} be the smallest subset of eigenvalues of Ax = µMx

that satisfies the following: for any λk ∈ Lp, there exist µis , µit ∈ Ep such that

λk = λis,it . Let Xp = {xi1 , xi2 , . . . , xid} hold the eigenvectors of Ax = µMx associ-

ated with Ep. For a concrete example, consider again the 4× 4 example in section

2. From Table 4.1, L7 = {λ1,2, λ2,1, λ3,3, λ1,3, λ3,1, λ2,3, λ3,2}, E7 = {µ1, µ2, µ3}, and

X7 = {x1, x2, x3}.

We first look at standard inverse iteration applied to (4.1). Let the starting

guess be z(1) = v ⊗ v ∈ Rn2
, where v ∈ Rn is a random vector of unit norm. Since

{zk}n
2

k=1 are linearly independent, z(1) can be written as
∑n2

k=1 ξkzk with ξk ∈ C

(assume ξk 6= 0 for any k). Note that the coefficients {ξk}n
2

k=1 have the following

properties: if zk1 = zk2 , then ξk1 = ξk2 ; moreover, if zk1 = xi ⊗ xj and zk2 = xj ⊗ xi

for some pair (i, j), then ξk1 = ξk2 . The first property is due to the fact that z(1)

is real, and the second one is a result of the special tensor structure of z(1). In the

first step of inverse iteration, we solve the linear system

Ψ1y1 = (−Ψ0)z
(1). (4.9)

2Both sets of symbols {λi,j , zi,j}ni,j=1 and {λk, zk}n
2

k=1 denote the eigenpairs of (4.1). The double
subscripts indicate the special structure of the eigenpairs, whereas the single subscripts arrange
the eigenvalues in ascending order of their moduli. Our choice between the two notations depends
on the context.

77

The solution to (4.9) is y1 = Ψ−11 (−Ψ0)z
(1) =

∑n2

k=1
ξk
λk
zk. Let yp1 be a truncated

approximation of y1 consisting of its p dominant components, i.e., yp1 =
∑p

k=1
ξk
λk
zk

for some p� n2.

Next, we consider Algorithm 8 applied to (4.2). Let the starting guess be

Z(1) = vvT , where v is the vector that determines the starting vector for standard

inverse iteration. At step 2.4 of the first iteration, we solve the Lyapunov equa-

tion (4.8) where vec
(
P1C1P

T
1

)
= vec

(
−2SZ(1)ST

)
= (−Ψ0)z

(1) (see (4.4)) and

vec(Y1) = y1, i.e.,

Y1 =
n2∑
k=1

ξk
λk
Zk. (4.10)

Let Y p
1 denote the truncation of Y1 that satisfies vec (Y p

1) = yp1, i.e., Y p
1 =

∑p
k=1

ξk
λk
Zk.

Assume p is chosen such that if λi,j ∈ Lp, then λi,j, λj,i ∈ Lp as well. Under this

assumption and by properties of the coefficients {ξk}n
2

k=1, Y
p
1 is real and symmetric

and can be written as Y p
1 = UGUT where U ∈ Rn×d is an orthonormal matrix whose

columns span Xp and G ∈ Rd×d is symmetric. Recall from section 2 that the target

eigenpair of (4.2) sought by Algorithm 8 is
(
λ1,VDVT

)
, where λ1 = −Re(µ1), and

V ∈ Rn×q (with q = 1 or 2) is x1 (if µ1 is real) or an orthonormal matrix whose

columns span {x1, x1} (if µ1 is not real). Since (λ1,VDVT) is an eigenpair of (4.2),

S
(
VDVT

)
+
(
VDVT

)
ST + λ1

(
2S
(
VDVT

)
ST
)

= 0. (4.11)

For any p ≥ 1, x1, x1 ∈ Xp. Thus, U can be taken to have the form U = [V ,V⊥]

where VTV⊥ = 0.

78

Assume that step 2.4 of the first iteration of Algorithm 9 produces an approx-

imate solution to (4.8) of the form Y p
1 by some means (that is, the approximate

solution consists of the p dominant terms of (4.10) where p satisfies the assumption

above). Then at step 2.1 (rank reduction) of the second iteration, we solve the d×d

projected eigenvalue problem

(
UTSU

)
Z̃ + Z̃

(
UTSU

)T
+ λ̃

(
2
(
UTSU

)
Z̃
(
UTSU

)T)
= 0 (4.12)

for the eigenvalue with smallest modulus, λ̃1, and its associated real, symmetric

and rank-q eigenvector Z̃1 (q = 1 or 2). We then obtain an estimate of the target

eigenpair of (4.2), namely
(
λ̃1,UZ̃1UT

)
. It can be shown that this estimate is in

fact exact, that is,
(
λ̃1,UZ̃1UT

)
= (λ1,VDVT).

Theorem 4.3. If

D1 =

[
D

0

]
d×d

, (4.13)

then (λ1, D1) is an eigenpair of (4.12).

Proof. Left-multiply (4.11) by UT and right-multiply by U :

UTS(VDVT)U + UT (VDVT)STU + λ12UTS(VDVT)STU = 0.

Since U = [V ,V⊥], it follows that VDVT = UD1UT . Therefore,

(
UTSU

)
D1 +D1

(
UTSTU

)
+ λ1

(
2
(
UTSU

)
D1

(
UTSTU

))
= 0.

79

Proposition 4.4. The eigenvalue of (4.12) with smallest modulus is λ̃1 = λ1.

Proof. Let S̃ = UTSU . Since the columns of U span Xp, the eigenvalues of S̃

are µ−1i1 , µ−1i2 , . . ., µ
−1
id

. Let Ψ̃1 = S̃ ⊗ I + I ⊗ S̃ and Ψ̃0 = 2S̃ ⊗ S̃. By Theorem 4.1,

the eigenvalues of the d2 × d2 eigenvalue problem

(
Ψ̃1 + λ̃Ψ̃0

)
z̃ = 0 (4.14)

are λ̃s,t = −1
2
(µis +µit) for any 1 ≤ s, t ≤ d. Since µ1, µ1 ∈ Ep, Theorem 4.2 implies

that the eigenvalue of (4.14) with smallest modulus is λ̃1 = λ1, the eigenvalue of

(4.1) with smallest modulus. Since (4.12) and (4.14) have the same eigenvalues, the

eigenvalue of (4.12) with smallest modulus is λ1 as well.

Recall that we solve the Lyapunov equation (4.8) using an iterative solver

such as RKSM, which produces a real, symmetric approximate solution Y approx
1 . By

Theorem 4.3 and Proposition 4.4, if Y approx
1 = Y p

1 , then after the rank-reduction step

in the second iteration of Algorithm 8, we obtain the exact eigenpair
(
λ1,VDVT

)
of

(4.2) that we are looking for. In reality, it is unlikely that the approximate solution

Y approx
1 we compute will be exactly Y p

1 . However, since Y p
1 consists of the p dominant

terms of the exact solution (4.10), if Y approx
1 is accurate enough, then Y approx

1 ≈ Y p
1

for some p.

This analysis suggests that the eigenvalue residual norm ‖Reig
2 ‖F can be made

arbitrarily small as long as the residual norm of the Lyapunov system ‖Rlyap
1 ‖F is

small enough. Therefore, we propose the following modified version of Algorithm 8

80

(given τlyap, τeig > 0):

Algorithm 9: Modified Lyapunov inverse iteration for (4.2)

1. Given V1 ∈ Rn with ‖V1‖2 = 1. Set ` = 1 and firsttry = true.

2. Rank reduction: compute S̃ = VT
` SV` and solve for the eigenvalue λ̃1 of

(4.3) with smallest modulus and its eigenvector Z̃1 = ṼD̃ṼT .

3. Set
(
λ(`), Z(`)

)
=
(
λ̃1,V`D̃VT`

)
where V` = V`Ṽ , and compute ‖Reig

` ‖F .

4. While ‖Reig
` ‖F > τeig:

4.1 if firsttry
compute an approximate solution Y approx

1 = V2D2V
T
2 to (4.8) such

that ‖Rlyap
1 ‖F < τlyap · ‖C1‖F ; set ` = 2 and firsttry = false;

4.2 else
solve (4.8) more accurately and update V2;

4.3 repeat steps 2 and 3 to compute λ(`), Z(`) and ‖Reig
` ‖F .

In this algorithm, if
(
λ(2), Z(2)

)
is not an accurate enough eigenpair (‖Reig

2 ‖F ≥ τeig),

this is fixed by improving the accuracy of the Lyapunov system (4.8). The discussion

above shows that this will be enough to produce an accurate eigenpair. Moreover, it

is possible to get an improved solution to (4.8) by augmenting the solution we have in

hand. Assume that at step 4.1 of Algorithm 9, we compute an approximate solution

Y approx
1 = V2D2V

T
2 to (4.8) where the columns of V2 span the Krylov subspace

Km(S, P1) (see (3.7) for definition), and then obtain an iterate
(
λ(2), Z(2)

)
in steps

2 and 3. If ‖Reig
2 ‖F ≥ τeig, we perform one more block Arnoldi step to extend

the existing Krylov subspace to Km+1(S, P1), obtain a new approximate solution

Y approx
1 = V2D2V

T
2 to (4.8) where the columns of V1 now span the augmented

Krylov subspaceKm+1(S, P1), and check convergence in steps 2 and 3 again. We keep

extending the Krylov subspace at our disposal until the outer iteration converges to

the desired tolerance τeig.

We test Algorithm 9 on Example 2 and Example 3, where Algorithm 8 con-

81

verged in more than two iterations (see Tables 4.4 and 4.5). As in the previous

experiments, we choose τlyap = 10−9 and τeig = 10−8. The results are reported

in Tables 4.6 and 4.7, from which it can be seen that if (4.8) is solved accurately

enough, Lyapunov inverse iteration converges to the desired tolerance in only two

iterations, as observed for the driven-cavity flow (see Table 4.3). In other words, it

requires only one Lyapunov solve (4.8). By comparing Tables 4.5 and 4.7, for exam-

ple, we can see that in order to compute an accurate enough approximate solution

Y approx
1 to (4.8), the dimension of the Krylov subspace used must be increased from

40 to 43.

Table 4.6: Algorithm 9 applied to flow over an obstacle
` λ(`) µ(`) ‖Reig

` ‖F ‖Rlyap
` ‖F d`

Re=100
1 -2.42460 2.42460 1.15123e+1 4.45806e-12 65
2 0.57285 -0.57285 7.98509e-9 — —

Re=200
1 -2.45074 2.45074 1.16834e+1 2.79438e-12 83
2 0.32884 -0.32884+2.16393i 7.67144e-9 — —

Re=300
1 -2.47804 2.47804 1.18371e+1 1.35045e-10 86
2 0.10405 -0.10405+2.22643i 6.10287e-9 — —

Re=350
1 -2.49317 2.49317 1.19385e+1 1.07068e-09 88
2 0.02411 -0.02411+2.24736i 7.16343e-9 — —

Table 4.7: Algorithm 9 applied to double-diffusive convection problem
` λ(`) µ(`) ‖Reig

` ‖F ‖Rlyap
` ‖F d`

1 109.973 -109.973 4.33472e+0 4.71359e-12 43
2 0.05000 -0.05000+25.0000i 6.88230e-9 — —

82

4.3 Computing a Few Rightmost Eigenvalues

In section 4.1, we showed that when all the eigenvalues of (2.2) lie in the left half

of the complex plane, the distance between the rightmost eigenvalue and the imag-

inary axis, −Re(µ1), is the eigenvalue of (4.2) with smallest modulus. As a result,

this eigenvalue can be computed by Lyapunov inverse iteration, which also gives

us estimates of the rightmost eigenvalue of (2.2). In section 4.2, various numerical

experiments demonstrate the robustness and efficiency of the Lyapunov inverse it-

eration applied to (4.2). In particular, we showed in section 4.2.4 that if the first

Lyapunov equation (4.8) is solved accurately enough, then Lyapunov inverse iter-

ation will converge in only two steps. As seen in sections 4.2.1 and 4.2.2, when

we march along the solution path S, it may be the case that an eigenvalue that is

not the rightmost moves towards the imaginary axis rapidly, becomes the rightmost

eigenvalue at some point and eventually crosses the imaginary axis first, causing

instability in the steady-state solution. Therefore, besides the rightmost eigenvalue,

it is helpful to monitor a few other eigenvalues in the rightmost part of the spectrum

as well. In this section, we show how Lyapunov inverse iteration can be applied re-

peatedly in combination with deflation to compute k rightmost eigenvalues of (2.2),

where 1 < k � n.

We continue to assume that we are at a point (u0, α0) in the stable regime of

the solution path S and that the eigenvalue problem Ax = µMx with A = J (α0)

has a complete set of eigenvectors {xi}ni=1. For any i ≤ k, we also assume the

following (as in assumptions (a1) and (a2) in section 2):

83

(a1′) if Re(µj) = Re(µi) and j 6= i, then µj = µi; and

(a2′) µi is a simple eigenvalue.

Let Et = {µ1, µ2, . . . , µt} be the set containing t rightmost eigenvalues of Ax =

µMx and Xt = [x1, x2, . . . , xt] ∈ Cn×t be the matrix that holds the t corresponding

eigenvectors. Here t is chosen such that t < k and if µi ∈ Et, then µi ∈ Et as well.

We will show that given Xt, we can use the methodology described in section 2 to

find −Re(µt+1), that is, that −Re(µt+1) is the eigenvalue with smallest modulus of

a certain n2 × n2 eigenvalue problem with a Kronecker structure like that of (4.1),

and it can be computed using Lyapunov inverse iteration.

Lemma 4.5. Assume all the eigenvalues of Ax = µMx lie in the left half of the

complex plane. Then in the subset {λi,j}i,j>t of all the eigenvalues of (4.1), the one

with smallest modulus is −Re(µt+1).

Proof. If µt+1 is real, then −Re(µt+1) = λt+1,t+1. If µt+1 is not real, by

assumptions (a1′), (a2′) and the choice of t, µt+2 = µt+1, which implies that

−Re(µt+1) = λt+1,t+2 = λt+2,t+1. The rest of the proof is very similar to that of

Theorem 4.2.

Consequently, if we can formulate a problem with a Kronecker structure like

that of (4.1) whose eigenvalues are {λi,j}i,j>t, then −Re(µt+1) can be computed

by Lyapunov inverse iteration applied to this problem. We will show how such a

problem can be concocted and establish some of its properties that are similar to

those of (4.1).

84

Let Θt be the diagonal matrix whose diagonal elements are µ−11 , µ−12 , . . . , µ−1t ,

so that SXt = XtΘt. Since Ax = µMx has a complete set of eigenvectors, there

exists an orthonormal matrix Qt ∈ Rn×t such that Xt = QtGt, where Gt ∈ Ct×t is

nonsingular. Let

Ŝ =
(
I −QtQ

T
t

)
S, Ψ̂1 = Ŝ ⊗ I + I ⊗ Ŝ, and Ψ̂0 = 2Ŝ ⊗ Ŝ.

We claim that the distance between µt+1 and the imaginary axis, −Re(µt+1), is the

eigenvalue of (
Ψ̂1 + λΨ̂0

)
z = 0, z ∈ Range

(
Ψ̂0

)
(4.15)

with smallest modulus. To prove this claim, we first study the eigenpairs of Ŝ.

Lemma 4.6. The matrix I −QtQ
T
t where Qt is defined above and I ∈ Rn×n is the

identity matrix has the following properties:

1.
(
I −QtQ

T
t

)
Qt = 0;

2.
(
I −QtQ

T
t

)i
=
(
I −QtQ

T
t

)
for any integer i ≥ 1;

3.
(
I −QtQ

T
t

)i
S
(
I −QtQ

T
t

)j
=
(
I −QtQ

T
t

)
S for any integers i, j ≥ 1.

Proof. The first two properties hold for any orthonormal matrix and the proof

is omitted here. To prove the third property, we first show that

(
I −QtQ

T
t

)
S
(
I −QtQ

T
t

)
=
(
I −QtQ

T
t

)
S.

85

Since SXt = XtΘt and Xt = QtGt, SQtQ
T
t = QtGtΘtG

−1
t QT

t (Gt is invertible). Thus,

(
I −QtQ

T
t

)
S
(
I −QtQ

T
t

)
=
(
I −QtQ

T
t

)
S −

(
I −QtQ

T
t

)
SQtQ

T
t

=
(
I −QtQ

T
t

)
S −

(
I −QtQ

T
t

)
QtGtΘtG

−1
t QT

t

=
(
I −QtQ

T
t

)
S

by the first property. This together with the second property establishes the third

property.

Lemma 4.7. Let θ̂i = 0 for i ≤ t and θ̂i = 1
µi

for i > t. Let x̂i = xi for i ≤ t and

x̂i =
(
I −QtQ

T
t

)
xi for i > t. Then

(
θ̂i, x̂i

)
(i = 1, 2, . . . , n) are the eigenpairs of

Ŝ.

Proof. Let gi be the ith column of Gt. If i ≤ t, xi = Qtgi, thus

Ŝxi =
(
I −QtQ

T
t

)
SQtgi =

(
I −QtQ

T
t

)
QtGtΘtG

−1
t gi = 0

by the first property in Lemma 4.6. If i > t,

Ŝ
(
I −QtQ

T
t

)
xi =

(
I −QtQ

T
t

)
S
(
I −QtQ

T
t

)
xi =

(
I −QtQ

T
t

)
Sxi

=
1

µi

(
I −QtQ

T
t

)
xi

by the third property in Lemma 4.6.

Knowing the eigenpairs of Ŝ, we can find the eigenpairs of Ψ̂0 and Ψ̂1 with no

difficulty.

Lemma 4.8. The eigenvalues of Ψ̂1 are

86

1. 0, if i, j ≤ t;

2. 1
µi

, if i > t and j ≤ t;

3. 1
µj

, if i ≤ t and j > t;

4. 1
µi

+ 1
µj

, if i, j > t.

The eigenvalues of Ψ̂0 are

1. 0, if i ≤ t or j ≤ t;

2. 2
µiµj

, if i, j > t.

Moreover, for each eigenvalue of Ψ̂0 or Ψ̂1, there are eigenvectors associated with it

given by ẑi,j = x̂i ⊗ x̂j and ẑj,i = x̂j ⊗ x̂i.

Proof. See the proof of Theorem 4.1.

Under the assumption that Ax = µMx has a complete set of eigenvectors, Ψ̂0

also has a complete set of eigenvectors {ẑi,j}ni,j=1. By Lemma 4.8, Range
(

Ψ̂0

)
=

span {ẑi,j}i,j>t.

Theorem 4.9. The eigenvalues of (4.15) are {λi,j}i,j>t. For any λi,j with i, j > t,

there are eigenvectors ẑi,j and ẑj,i associated with it.

Proof. The proof follows immediately from Lemma 4.8 and the proof of The-

orem 4.1.

Theorem 4.10. Assume all the eigenvalues of Ax = µMx lie in the left half of the

complex plane. Then the eigenvalue of (4.15) with smallest modulus is −Re(µt+1).

87

Proof. By Theorem 4.9, it suffices to show that |Re(µt+1)| ≤ |λi,j| for any

i, j > t, which is true by Lemma 4.5.

If we can restrict the search space of eigenvectors to Range
(

Ψ̂0

)
, we can apply

inverse iteration to Ψ̂1z = λ
(
−Ψ̂0

)
z to compute −Re(µt+1). Let

Pt = {Z ∈ Cn×n|Z =
(
I −QtQ

T
t

)
X
(
I −QtQ

T
t

)
where X ∈ Cn×n}.

Since

Range
(

Ψ̂0

)
= span {x̂i ⊗ x̂j}i,j>t = span

{(
I −QtQ

T
t

)
xi ⊗

(
I −QtQ

T
t

)
xj
}
i,j>t

,

if Z ∈ Pt, then z = vec(Z) ∈ Range
(

Ψ̂0

)
, and vice versa. Therefore, (4.15) can be

rewritten in the form of a matrix equation,

ŜZ + ZŜT + λ
(

2ŜZŜT
)

= 0, Z ∈ Pt. (4.16)

By Theorem 4.10, −Re(µt+1) is the eigenvalue of (4.16) with smallest modulus. As

in section 2, under certain conditions, we can show that −Re(µt+1) is an eigen-

value of (4.16) with a unique, real, symmetric and low-rank eigenvector. Let Pst ={
Z ∈ Pt|Z = ZT

}
be the subspace of Pt consisting of symmetric matrices. As a re-

sult of assumptions (a1′) and (a2′), when the eigenspace of (4.16) is restricted to Pst ,

−Re(µt+1) is an eigenvalue of (4.16) that has the unique (up to a scalar multiplier),

88

real and symmetric eigenvector

(
I −QtQ

T
t

)
xt+1x

T
t+1

(
I −QtQ

T
t

)
or
(
I −QtQ

T
t

) (
xt+1x

∗
t+1 + xt+1x

T
t+1

) (
I −QtQ

T
t

)
.

Therefore, if we can restrict the search space for the target eigenvector of (4.16)

to Pst , Lyapunov inverse iteration can be applied to (4.16) to compute −Re(µt+1).

Moreover, the analysis of section 3.4 (which applies to (4.2)) can be generalized

directly to (4.16). This means that to compute −Re(µt+1), it suffices to find an

accurate solution to

ŜY1 + Y1Ŝ
T = −2ŜZ(1)ŜT (4.17)

in Pst . In general, solutions to (4.17) are not unique: any matrix of the form Y1 +

QtXQ
T
t where X ∈ Cn×n is also a solution, since ŜQt = 0 by Lemma 4.7. However,

in the designated search space Pst , the solution to (4.17) is indeed unique. In addition,

we can obtain estimates for the eigenpair (µt+1, x̂t+1) of Ŝ in the same way we

compute estimates for (µ1, x1) in section 2 (see (4.5)).

The analysis above leads to Algorithm 10 for computing k rightmost eigenval-

ues of Ax = µMx. At each iteration of this algorithm, we compute the (t+1)st right-

most eigenvalue µt+1, or the (t+1)st and (t+2)nd rightmost eigenvalues (µt+1, µt+1).

The iteration terminates when k rightmost eigenvalues have been found. In this

algorithm, we need to compute the eigenvalue with smallest modulus for several

Lyapunov eigenvalue problems (4.16) corresponding to different values of t. One

way to do this is to simply apply Algorithm 9 to each of these problems. In the

89

Algorithm 10: Compute k rightmost eigenvalues of Ax = µMx

1. Initialization: t = 0, Et = ∅, Xt = ∅, Qt = 0, and Ŝ =
(
I −QtQ

T
t

)
S.

2. While t < k:
2.1. Solve (4.16) for the eigenvalue with smallest modulus, −Re(µt+1),

and its corresponding eigenvector in Pst .
2.2. Compute an estimate

(
µapproxt+1 , x̂approxt+1

)
for (µt+1, x̂t+1).

2.3. Update:
if µapproxt+1 is real:

Et+1 ←
{
Et, µapproxt+1

}
, X̂t+1 ←

[
X̂t, x̂approxt+1

]
, t← t+ 1;

else:
Et+2 ←

{
Et, µapproxt+1 , conj

(
µapproxt+1

)}
,

X̂t+2 ←
[
X̂t, x̂approxt+1 , conj

(
x̂approxt+1

)]
, t← t+ 2.

2.4. Compute the thin QR factorization of X̂t: [Q,R] = qr
(
X̂t, 0

)
, and let

Qt = Q, Ŝ =
(
I −QtQ

T
t

)
S.

next section, we will discuss the way step 2.1 of Algorithm 10 is implemented, which

is much more efficient. Note that the technique for computing −Re(µt+1) (t > 0)

introduced in this section is based on the assumption that Qt, whose columns form

an orthonormal basis for {xj}tj=1, is given. In Algorithm 10, Qt is taken to be a

matrix whose columns form an orthonormal basis for the columns of X̂t. Such an

approach is justified in the next section as well.

We apply Algorithm 10 to compute a few rightmost eigenvalues for some cases

of the examples considered in section 4.2. The results for step 2.1 in each iteration

of Algorithm 10 are reported in Table 4.9 (see Table 4.8 for notation). For example,

consider the driven-cavity flow at Re = 7800. From Table 4.9, we can find the eight

rightmost eigenvalues of Ax = µMx: µ1,2 = −0.00514 ± 2.69845i, µ3 = −0.00845,

µ4,5 = −0.01531 ± 0.91937i, µ6,7 = −0.02163 ± 1.78863i, and µ8 = −0.02996 (see

Figure 4.2(a)).

90

Table 4.8: Notation for Algorithm 10
Symbol Definition

λ(t), Z(t) the estimated eigenvalue of (4.16) with smallest modulus (−Re(µt+1))
and its associated eigenvector, respectively

µapproxt+1 the estimated (t+ 1)st rightmost eigenvalue of Ax = µMx, i.e., µt+1

Reig
t ŜZ(t) + Z(t)ŜT + λ(t)2

(
ŜZ(t)ŜT

)
, i.e., the residual of (4.17)

4.4 Implementation Details of Algorithm 10

In the previous section, we proposed an algorithm that finds k rightmost eigenvalues

of (2.2) by computing the eigenvalue with smallest modulus for a series of Lyapunov

eigenvalue problems (4.16) corresponding to different values of t. In this section,

more details of how to implement this algorithm efficiently will be discussed.

4.4.1 Efficient Solution of the Lyapunov Eigenvalue Problems

We first make a preliminary observation.

Proposition 4.11. The unique solution to (4.17) in Pst is

Y1 =
(
I −QtQ

T
t

)
Y1
(
I −QtQ

T
t

)
,

where Y1 is the solution to (4.8).

Proof. The proof is straightforward with the help of Lemma 4.6.

By Proposition 4.11, if we know the solution Y1 to (4.8), we can formally

write down the unique solution Y1 to (4.17) in Pst . In practice, we do not know Y1;

instead, we solve (4.8) using an iterative solver (such as RKSM), which produces an

approximate solution Y approx
1 . The following proposition shows that we can obtain

91

from Y approx
1 an approximate solution to (4.17) that is essentially as accurate a

solution to (4.17) as Y approx
1 is to (4.8).

Proposition 4.12. Let Yapprox1 =
(
I −QtQ

T
t

)
Y approx
1

(
I −QtQ

T
t

)
and

Rlyap
1 = ŜYapprox1 + Yapprox1 ŜT + 2ŜZ(1)ŜT .

Then ‖Rlyap
1 ‖F ≤ 4‖Rlyap

1 ‖F , where Rlyap
1 = SY approx

1 + Y approx
1 ST + 2SZ(1)ST .

Proof. Using Lemma 4.6, we can show easily that

Rlyap
1 =

(
I −QtQ

T
t

)
Rlyap

1

(
I −QtQ

T
t

)
.

Therefore,

‖Rlyap
1 ‖F ≤

∥∥I −QtQ
T
t

∥∥2
F
‖Rlyap

1 ‖F ≤
(
1 + ‖Qt‖2F

)2 ‖Rlyap
1 ‖F = 4‖Rlyap

1 ‖F .

This analysis suggests the following strategy for step 2.1 of Algorithm 10:

when t = 0, we compute −Re(µ1) by applying Algorithm 9 to (4.2), in which a good

approximate solution Y approx
1 to (4.8) is computed; in any subsequent iteration where

0 < t ≤ k − 1, instead of applying Lyapunov inverse iteration again to (4.16), we

simply get the approximate solution Yapprox1 to (4.17) specified in Proposition 4.12,

from which −Re(µt+1) can be computed. Details of this approach are described

below.

92

Recall that Y approx
1 computed by an iterative solver such as RKSM is of the

form V2D2V
T
2 , where V2 ∈ Rn×d1 is orthonormal and d1 = rank(V2) � n. We

first rewrite Yapprox1 in a similar form U(ΣW TD2WΣ)UT , where UΣW T is the ‘thin’

singular value decomposition (SVD) of
(
I −QtQ

T
t

)
V2. Then we can compute an

estimate for −Re(µt+1) in the same way we compute estimates for −Re(µ1) in

Algorithms 8 or 9. That is, we solve the small, projected Lyapunov eigenvalue

problem

S̃hZ̃ + Z̃S̃Th + λ̃
(

2S̃hZ̃S̃
T
h

)
= 0 (4.18)

for its eigenvalue with smallest modulus, where S̃h = UT ŜU. Recall that the matrix

S̃ = VT
2 SV2 in (4.3) can be obtained with no additional cost from the Arnoldi

decomposition (for instance, (3.7)). Here, S̃h can be computed cheaply as well since

UT ŜU = Σ−1W TV2
T
(
I −QtQ

T
t

)
SV2WΣ−1

by Lemma 4.6, and SV2 is given by the same Arnoldi decomposition. Let λ̃1 be the

eigenvalue with smallest modulus of (4.18), and Z̃1 = ṼD̃ṼT be the eigenvector asso-

ciated with λ̃1. Then the estimated −Re(µt+1) and eigenvector of (4.16) associated

with it are λ(t) = λ̃1 and Z(t) = VtD̃VTt , where Vt = UṼ . In addition, by solving the

small eigenvalue problem
(
VTt ŜVt

)
y = θy, we get an estimate µapproxt+1 = 1

θ
for µt+1

and x̂approxt+1 = Vty for x̂t+1.

93

4.4.2 Efficient Computation of the Matrix Qt

At each iteration of Algorithm 10, we need an orthornormal basis for {xj}tj=1, the

eigenvectors associated with the t rightmost eigenvalues of Ax = µMx. When

t = 0, we can get estimates for x1 from Lyapunov inverse iteration applied to (4.16);

however, when t > 0, we are only able to get estimates for the eigenvectors of the

deflated matrix Ŝ. We will discuss how an orthonormal basis for {xj}tj=1 can be

computed efficiently from these estimates.

We first consider the simplest case where all k rightmost eigenvalues of Ax =

µMx are real. In this case, we have the following result.

Proposition 4.13. For any t such that 1 ≤ t ≤ k,

span
{(
I −Qj−1Q

T
j−1
)
xj
}t
j=1

= span {xj}tj=1 . (4.19)

Proof. We argue by induction.

1. When t = 1, since Q0 = 0,

span
{(
I −Q0Q

T
0

)
x1
}

= span {x1} .

The claim is trivially true.

94

2. When t = 2, since x2 =
(
I −Q1Q

T
1

)
x2 +Q1α1 where α1 ∈ C,

span
{(
I −Q0Q

T
0

)
x1,
(
I −Q1Q

T
1

)
x2
}

= span {x1, x2 −Q1α1}

= span {x1, x2} .

3. Assume the claim is true for any t that satisfies 3 ≤ t ≤ k − 1. Now we want

to show that it is true for t + 1. Note that xt+1 =
(
I −QtQ

T
t

)
xt+1 + Qtαt,

where αt ∈ Ct. Then by the induction hypothesis,

span
{(
I −Qj−1Q

T
j−1
)
xj
}t+1

j=1
= span {x1, x2, . . . , xt, xt+1 −Qtαt}

= span {xj}t+1
j=1 .

Consequently, if we can find an orthonormal basis for
{(
I −Qj−1Q

T
j−1
)
xj
}t
j=1

,

then this is an orthonormal basis for {xj}tj=1 as well. In Algorithm 10, the jth

column of the matrix X̂t is approximately
(
I −Qj−1Q

T
j−1
)
xj; therefore, Qt can be

approximated by computing the thin QR factorization of X̂t.

As seen in Table 4.9, some of the k rightmost eigenvalues of Ax = µMx are

not real. In this case, t may increase by 2 instead of 1 from one iteration to the next.

Let T = {ti}si=0 (ti < ti+1) be the collection of every value of t for which we need

to solve the Lyapunov eigenvalue problem (4.16). Then t0 = 0, ts = k − 1 or k − 2,

and ti+1 − ti = 1 or 2. For example, in the case of the cavity flow at Re = 7800, if

k = 8, then T = {0, 2, 3, 5, 7}. In the same way we prove Proposition 4.19, we can

95

show that for any 1 ≤ i ≤ s,

span
{(
I −Qtj−1

QT
tj−1

)
xtj ,

(
I −QtjQ

T
tj

)
xtj

}i
j=1

= span
{
xtj , xtj

}i
j=1

. (4.20)

In Algorithm 10, if µtj is real, then the tj
th column of X̂ti is approximately

(
I −Qtj−1

QT
tj−1

)
xtj ;

otherwise, the tj
th and (tj − 1)st columns of X̂ti hold estimates for

(
I −Qtj−1

QT
tj−1

)
xtj and

(
I −QtjQ

T
tj

)
xtj .

By (4.20), Qti can be approximated by computing the thin QR factorization of X̂ti .

4.5 Conclusions

In this chapter, we have developed a robust and efficient method of computing a

few rightmost eigenvalues of (2.2) at any point (u0, α0) in the stable regime. We

have shown that the distance between the rightmost eigenvalue of (2.2) and the

imaginary axis is the eigenvalue with smallest modulus of an n2 × n2 eigenvalue

problem (4.1). Since (4.1) has the same Kronecker structure as the one considered

in [29] and Chapter 3, this distance can be computed by the Lyapunov inverse

iteration developed and studied in these references, which also produces estimates

of the rightmost eigenvalue as by-products. An analysis of the fast convergence of

96

Lyapunov inverse iteration in this particular application is given, which indicates

that the algorithm will converge in two steps as long as the first Lyapunov equation is

solved accurately enough. Furthermore, assuming t rightmost eigenpairs are known,

we show that all the main theoretical results proven for (4.1) can be generalized to

the deflated problem (4.15), whose eigenvalue with smallest modulus is the distance

between the (t + 1)st rightmost eigenvalue and the imaginary axis. Finally, an

algorithm that computes a few rightmost eigenvalues of (2.2) is proposed, followed

by a discussion on how to implement it efficiently. The method developed in this

study together with the method proposed in [29] and Chapter 3 constitute a robust

way of detecting the transition to instability in the steady-state solution of a large-

scale dynamical system.

97

Table 4.9: Algorithm 10 applied to Examples 1, 2 and 3
t λ(t) µapproxt+1 ‖Reig

t ‖F
Example 1 (Re=6000), k = 8

0 0.01084 -0.01084 7.11628e-10
1 0.02006 -0.02006+0.91945i 5.31308e-11
3 0.03033 -0.03033+1.79660i 1.57820e-11
5 0.03794 -0.03794 2.27041e-10
6 0.04418 -0.04418+2.69609i 4.50346e-11

Example 1 (Re=7800), k = 8
0 0.00514 -0.00514+2.69845i 3.62567e-11
2 0.00845 -0.00845 1.92675e-09
3 0.01531 -0.01531+0.91937i 1.06201e-10
5 0.02163 -0.02163+1.78863i 6.81321e-11
7 0.02996 -0.02996 1.86935e-10

Example 2 (Re=300), k = 6
0 0.10405 -0.10405+2.22643i 6.10287e-09
2 0.32397 -0.32397 2.83185e-10
3 0.39197 -0.39197 3.34178e-11
4 0.60628 -0.60628 1.31394e-07
5 0.87203 -0.87203 1.77364e-06

Example 2 (Re=350), k = 6
0 0.02411 -0.02411+2.24736i 7.16343e-09
2 0.28408 -0.28408 1.46365e-10
3 0.33571 -0.33571 3.81057e-11
4 0.56485 -0.56485 6.03926e-08
5 0.79196 -0.79196 9.20079e-07

Example 3, k = 6
0 0.05000 -0.05000+25.0000i 6.88230e-09
2 0.10000 -0.10000 1.50946e-12
3 0.20000 -0.20000 8.60934e-09
4 0.30000 -0.30000 1.31349e-07
5 0.40000 -0.40000 4.08853e-06

98

Chapter 5

Efficient Iterative Solution of the Linear Systems Arising from

Lyapuonv Inverse Iteration

In Chapters 3 and 4, we have shown two ways that Lyapunov inverse iteration can be

utilized in linear stability analysis. First, at a stable point (u, α0) close to the critical

point (uc, αc), it can be applied to compute λc = αc − α0, the eigenvalue of (3.14)

with smallest modulus. The critical parameter value αc can then be obtained easily

as α0 + λc. Second, at any stable point, Lyapunov inverse iteration can be used for

computing the distance −Re(µ1) between the rightmost eigenvalue µ1 of (2.2) and

the imaginary axis, which is also the eigenvalue of (4.2) with smallest modulus. A

few rightmost eigenvalues of (2.2) can be obtained from the computation of −Re(µ1)

for almost no additional cost.

The two eigenvalue problems (3.14) and (4.2) are very similar in structure

and applying Lyapunov inverse iteration to them requires iterative solution of a

large-scale Lyapunov equation in the form of

SY + Y ST = PCP T (5.1)

at each step. In (5.1), S = A−1M ∈ Rn×n and its eigenvalues all lie in the left

half of the complex plane; P ∈ Rn×p is an orthonormal matrix with rank p = 1, 2

99

or 4 (see Algorithms 7 and 9). Consequently, the implementation of Lyapunov

inverse iteration depends on solving (5.1) efficiently. Iterative solution of (5.1) (see,

for instance, [12, 39, 42]) entails matrix-vector products with S and/or (S − sI)−1

where s ∈ C is a shift. In Chapters 3 and 4, different iterative Lyapunov solvers

were tested and compared in solving (5.1). However, the study in previous chapters

is incomplete since the linear systems were solved using a sparse direct method that

requires factorization of the coefficient matrices; in practice, due to the dimension

of the problem, they must be solved by an iterative linear solver in conjunction

with a proper preconditioning strategy. The aim of this chapter is to complete

the discussion on Lyapunov solvers by implementing iterative solution methods for

the linear systems arising from them and more importantly, to explore means of

reducing the cost of these iterative solves.

This chapter is organized as follows. In section 5.1, we review the iterative

Lyapunov solvers considered in Chapters 3 and 4 and introduce the types of linear

systems that need to be solved. In Section 5.2, we first review and test the itera-

tive methods developed for such systems arising from incompressible Navier-Stokes

equations. Then we incorporate these methods into the Lyapunov solvers, which are

tested on several examples considered in previous chapters. Based on the numerical

results, we propose in section 5.3 a modified version of the rational Krylov subspace

method that is able to achieve more than 50% savings in the computational cost.

Some concluding remarks are given in section 5.4.

100

5.1 Review of Iterative Lyapunov Solvers

In this section, we review the Lyapunov solvers used for Lyapunov inverse iteration

considered in Chapters 3 and 4: the standard Krylov subspace method [24, 39]

and the rational Krylov subspace method (RKSM) [10, 12]. Both methods seek

an approximate solution to (5.1) of the form VQVT , where V is an orthonormal

matrix whose columns span a small subspace of Rn, and Q is the solution to a small

Lyapunov equation that can be solved using direct methods. This small Lyapunov

equation is obtained by imposing the Galerkin condition (3.4) on the residual

R = S
(
VQVT

)
+
(
VQVT

)
ST − PCP T .

Our emphasis here is on describing the types of linear systems that will arise from

the two Lyapunov solvers when applied to (5.1).

In the standard Krylov method, the Krylov subspace that we are familiar with,

Km(S, P) =
{
P, SP, S2P, . . . , Sm−1P

}
,

is built. We restate below an algorithm that implements this method, which is

already given by Algorithm 5 in Chapter 3.

In Algorithm 11, the matrix Hm = VTSV can be obtained for no additional

cost since it is simply the mp×mp leading principal minor [Hi,j]
m
i,j=1 of the matrix H,

where p is the rank of P . As shown in section 3.1, the residual norm ‖R‖F of (5.1)

can be computed cheaply as well. At each step of Algorithm 11, the computation

101

Algorithm 11: The standard Krylov method for (5.1)

1. Given a tolerance τ . Let V1 = V = P .
2. For m = 1, 2, · · ·

2.1. W = SVm.
for i = 1, . . . ,m
Hi,m ← V T

i W ;
W ← W − ViHi,m.

2.2. Solve the small Lyapunov equation

HmQ+QHT
m =

(
VTP

)
C
(
VTP

)T
where Hm = VTSV.

2.3. Compute the reduced QR factorization of W : W = Vm+1Hm+1,m.
2.4. If the residual norm ‖R‖F < τ , then stop.
2.5. Else, V← [V, Vm+1].

of p matrix-vector products SVm is required. Since S = A−1M in (5.1), the p

matrix-vector products entail p solves of the linear system

Ax = b, (5.2)

precisely the kind that needs to be solved in the computation of the steady-state

solution for (2.1).

The rational Krylov subspace method was originally developed in [36, 37] for

the computation of the interior eigenvalues of (2.2). This method constructs the

subspace

Km(S, P, s) =

{
P, (S − s1I)−1P, (S − s2I)−1(S − s1I)−1P, . . . ,

m−1∏
j=1

(S − sm−jI)−1P

}
,

where s = {sj}m−1j=1 ∈ Cm−1 is a set of shifts that need to be selected by some means.

Recently, its utility in solving large-scale Lyapunov equations has been investigated

102

in [12]. An algorithm of this method applied to (5.1) reads as Algorithm 12.

Algorithm 12: The rational Krylov subspace method for (5.1)

1. Given a tolerance τ and a shift s1. Let V1 = V = P .
2. For m = 1, 2, · · ·

2.1. W = (S − smI)−1Vm.
for i = 1, . . . ,m
Hi,m ← V T

i W ;
W ← W − ViHi,m.

2.2. Compute the reduced QR factorization of W : W = Vm+1Hm+1,m.
2.3. Compute Tm = VTSV and solve the small Lyapunov equation

TmQ+QT Tm =
(
VTP

)
C
(
VTP

)T
.

2.4. If ‖R‖F < τ , then stop.
2.5. Else, V← [V, Vm+1] and compute the next shift sm+1.

In [11] (for symmetric S) and [12] (for general S), adaptive and parameter-free

approaches for generating the shifts s were proposed. In [12], the first shift s1 is

chosen to be a rough estimate of either −Remin(θ) or −Remax(θ), where Remin(θ)

and Remax(θ) denote the minimum and maximum real parts of the eigenvalues of S,

respectively. (Since the eigenvalues of S all lie in the left half of the complex plane,

0 > Remax(θ) > Remin(θ).) Let I = [−Remax(θ),−Remin(θ)] and
{
θ̂j

}mp
j=1

denote

the eigenvalues of Tm, where p is the rank of P . Each subsequent shift sm+1 is then

chosen as follows:

sm+1 = arg

(
maxs∈I

1
|rm(s)|

)
, where rm(s) =

∏mp
j=1

(
s− θ̂j

)
∏m

j=1 (s− sj)p
. (5.3)

Once
{
θ̂j

}mp
j=1

are known, this selection process only involves evaluating the rational

function rm(s) at some sample points in I, which is cheap.

Consider the linear solves required by Algorithm 12 when it is applied to (5.1).

103

Since

(S − smI)−1 =
(
A−1M− smA−1A

)−1
= (M− smA)−1A, (5.4)

the computation of (S − smI)−1Vm at step 2.1 of Algorithm 12 entails solving p

linear systems of the form

(M− sA)x = b (5.5)

with s > 0. Note that the structure of (5.5) is exactly like that of the linear systems

that need to be solved in the computation of the time-dependent solutions of (2.1),

where s plays the role of the time step ∆t.

Unlike in Algorithm 11, extra work is needed in Algorithm 12 to obtain the

matrix Tm = VTSV. Computing it naively requires mp matrix-vector products with

S, which entail mp solves with A since S = A−1M in (5.1). A more efficient way

of computing this matrix was proposed in [37] (see also Proposition 4.1 of [12]) that

only requires knowing SVm+1, or equivalently, p solves of (5.2). The matrix SVm+1

is also needed for efficient computation of the residual norm ‖R‖F (see Proposition

4.2 of [12]).

To sum up, each iteration of the standard Krylov subspace method (Algorithm

11) applied to (5.1) requires p solves of (5.2) to expand the Krylov subspace; each

iteration of RKSM requires p solves of (5.5) to expand the Krylov subspace and

another p solves of (5.2) in order to compute the projection Tm of S onto the Krylov

subspace.

104

5.2 Numerical Results

In the previous section, we have shown that solving the Lyapunov equation (5.1)

arising from Lyapunov inverse iteration requires multiple solves of the linear systems

(5.2) and/or (5.5), which are essentially the types of equations that arise in solv-

ing steady or transient PDEs. Therefore, iterative solution methods developed for

these problems can be applied directly in Lyapunov inverse iteration. Such strate-

gies frequently involve designing efficient preconditioners that take advantage of the

characteristics of the underlying differential operator.

The dynamical system (2.1) that we are going to consider in this section is

again spatial discretization of the Navier-Stokes equations modeling incompressible

flows, namely, (3.1). In order to examine the performance of Lyapunov solvers with

iterative linear solves, we proceed in two steps: first, we review the preconditioners

developed for (3.1) and test them on (5.2) and (5.5); then we integrate these solution

techniques into the Lyapunov solvers described in the previous section and apply

them to (5.1).

5.2.1 Iterative Solves of the Linear Systems Arising from Lyapunov

Inverse Iteration

The matrices A and M arising from div-stable mixed finite element discretization

of (3.1) have the block structure

A =

[
F BT

B 0

]
and M =

[
−G 0
0 0

]
. (5.6)

105

The matrix blocks F ∈ Rnu×nu , B ∈ Rnp×nu and G ∈ Rnu×nu are all sparse, where

nu+np = n and np < nu. G is the velocity mass matrix, B is the matrix representa-

tion of the discrete divergence operator, and F resembles the matrix representation

of the discrete convection-diffusion operator. (The precise definition of F can be

found in [13].) Since the theory of Lyapunov inverse iteration (see [29] and Chapter

4) requires a nonsingular mass matrix M, as in Chapters 3 and 4, the mass matrix

M is replaced by [
−G ηBT

ηB 0

]
,

where η is again chosen to be −10−2.

Suppose P is a right preconditioner of (5.2) and GMRES is used as the iterative

linear solver for the preconditioned system (AP−1) y = b. We seek an approximate

solution of this system in the Krylov subspace

Km
(
AP−1, b

)
=
{
b,
(
AP−1

)
b,
(
AP−1

)2
b, . . . ,

(
AP−1

)m−1
b
}
. (5.7)

This means that at each GMRES step, we need to solve a linear system with the

coefficient matrix P. Once y has been computed, the solution x to (5.2) can be

recovered as P−1y.

A good preconditioner P for (5.2) should satisfy the following two require-

ments: the eigenvalues of the matrix AP−1 are tightly clustered, and the inverse of

P can be efficiently applied to a vector. Note that A defined in (5.6) has the LU

factorization [
I 0

BF−1 I

] [
F BT

0 −BF−1BT

]
= LU.

106

If the preconditioner P is chosen to be U, then all the eigenvalues of AP−1 = L

equal 1. This implies that if we apply GMRES to the preconditioned system, it will

converge in just two steps. However, this choice of P is not practical since there

is no good way of applying the inverse of the (dense) Schur complement BF−1BT .

Preconditioners for (5.2) of the form

P =

[
PF BT

0 −PS

]
(5.8)

were developed in [13, 14], where PF is a preconditioner for F and PS is a precon-

ditioner for the Schur complement. In (5.8), we can choose PF to be F itself and

apply its inverse using a multigrid process (see [13]). The main issue in designing

P is the choice of PS.

In [13], two effective preconditioning strategies were proposed for the Schur

complement: the pressure convection-diffusion preconditioner (PCD) and the least-

squares commutator preconditioner (LSC). They are derived by minimizing the dis-

crete version of a commutator of certain differential operators using two different

heuristics (see [13]). The pressure convection-diffusion preconditioner is defined to

be

ApF
−1
p Gp

where Ap and Fp are the Laplacian matrix and convection-diffusion matrix in the

pressure space, respectively, and Gp is the pressure mass matrix. The least-squares

commutator preconditioner is defined to be

(
BĜ−1BT

)(
BĜ−1FĜ−1BT

)−1 (
BĜ−1BT

)
107

where Ĝ = diag(G), the diagonal of the velocity mass matrix.

The coefficient matrix M− sA of (5.5) has the block structure[
−(sF +G) (η − s)BT

(η − s)B 0

]

similar to that of A, and the pressure convection-diffusion preconditioner and the

least-squares commutator preconditioner can be derived in an analogous manner for

its Schur complement −(s− η)2B(sF +G)−1BT . They are

−(s− η)2Ap(sFp +Gp)
−1Gp

and

−(s− η)2
(
BĜ−1BT

)(
BĜ−1(sF +G)Ĝ−1BT

)−1 (
BĜ−1BT

)
,

respectively. The shift s in the rational Krylov subspace method is in general dif-

ferent from one iteration to another. An important feature of both preconditioners

is that they do not require any extra work to construct as s varies.

The two preconditioners were improved in [15] by prescribing appropriate

boundary conditions to the commutator that needs to be minimized in their deriva-

tion. It is demonstrated in [15] that with the modified preconditioners, the perfor-

mance of GMRES is improved considerably.

Applying the inverse of the pressure diffusion-convection preconditioner to a

vector requires a solve with Ap and a solve with Gp, i.e., a Poisson solve and a solve

with the pressure mass matrix; the application of the inverse of the least-squares

commutator preconditioner, on the other hand, requires two solves with BĜ−1BT ,

108

i.e., two Poisson solves (see [13]). Since these subsidiary problems can be solved

efficiently using multigrid and the primary cost of the application of P−1 is the

application of P−1F , the difference between the cost of applying the inverses of the

two preconditioners for the Schur complement is not that important.

We investigate the utility of the preconditioning strategies proposed in [15] in

solving (5.2) and (5.5). Recall from section 5.1 that we need to solve (5.2) with

different right-hand sides in both Algorithms 11 and 12, and we need to solve (5.5)

with different right-hand sides and different shifts in Algorithm 12. The performance

of the solvers for (5.2) and (5.5) as the right-hand side and the shift vary will be

reported in the next section. Here we simply take the right-hand side b of both

(5.2) and (5.5) to be the unit vector whose entries all equal to n−
1
2 and consider

five representative values of the shift, i.e., s = 10−3, 10−2, 10−1, 1, 10. The stopping

criteria of GMRES are

‖Ax− b‖2 < 10−10 · ‖b‖2 (5.9)

for (5.2) and

‖(M− sA)x− b‖2 < 10−10 · ‖b‖2 (5.10)

for (5.5). All the solves with PF and PS are done using a direct method, although

in practice, they can be handled efficiently by a multigrid process.

The following four examples are considered in this section, where (3.1) are

discretized using Q2-Q1 mixed finite element:

• flow over an obstacle (32 × 128 mesh, n = 9512) at Re = 200 and Re = 350;

109

and

• driven-cavity flow (64× 64 mesh, n = 9539) at Re = 2000 and Re = 4000.

These two flows have been considered in previous chapters as well. Figure 5.1

displays the performance of the two preconditioners in solving (5.2) and (5.5) arising

from the two examples of flow over an obstacle. The top two plots correspond to

Re = 200 and the bottom two correspond to Re = 350. In each subplot, the

decay of the residual norms ‖Ax − b‖2 and ‖(M − sA)x − b‖2 is plotted against

the number of preconditioned GMRES steps. From the left to the right, the six

residual curves correspond to (5.5) with the five choices of s specified above and

(5.2). The number next to each curve indicates the total number of GMRES steps

required to meet the criterion (5.9) or (5.10). The performance of GMRES for these

representative shifts shows that the smaller the shift s is, the easier it is to solve

(5.5). This is because the mass matrix M will become more dominant in (5.5) as s

get smaller, and a solve with M is much easier than a solve with the Jacobian matrix

A. The number of GMRES steps needed by (5.2) shows the limit of how expensive

solving (5.5) can get as s increases. In addition, for both examples (Re = 200 and

Re = 350), in the regime where the mass matrix M is dominant (i.e., when s < 1),

the least-squares commutator preconditioner outperforms the pressure convection-

diffusion preconditioner; in the scenario where the Jacobian matrix A dominates,

the pressure convection-diffusion preconditioner is more effective.

The performance of the least-squares commutator preconditioner and the pres-

sure convection-diffusion preconditioner in solving (5.2) and (5.5) for the two exam-

110

0 10 20 30 40 50 60 70
10

−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

iterations

||(
M

−
sA

)x
−

b|
| 2

52 68
7030

14
17

(a) PCD (Re = 200)

0 20 40 60 80 100
10

−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

iterations

||(
M

−
sA

)x
−

b|
| 2

10

14 25 62 85
89

(b) LSC (Re = 200)

0 20 40 60 80 100
10

−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

iterations

||(
M

−
sA

)x
−

b|
| 2

13 19 37 70 97
100

(c) PCD (Re = 350)

0 20 40 60 80 100 120 140
10

−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

iterations

||(
M

−
sA

)x
−

b|
| 2

10 15
31 80 122 134

(d) LSC (Re = 350)

Figure 5.1: The performance of the pressure convection-diffusion (PCD) precon-
ditioner and the least-squares commutator (LSC) preconditioner in flow over an
obstacle

ples of driven-cavity flow is reported in Figure 5.2. The top two plots correspond

to Re = 2000 and the bottom two correspond to Re = 4000. As observed for flow

over an obstacle, (5.5) gets more difficult to solve as the shift s increases, with (5.2)

as the limit. As can be seen in Figure 5.2, GMRES with the least-squares commu-

tator preconditioner converges in fewer iterations than GMRES with the pressure

convection-diffusion preconditioner for both Reynolds numbers and for both (5.2)

and (5.5) under all choices of the shift. Interestingly, when s = 1, that is, when

the Jacobian matrix A and the mass matrix M are equally weighted in (5.5), the

111

number of GMRES iterations needed is approximately half of what is needed for

(5.2).

From Figures 5.1 and 5.2, we can also observe that as the Reynolds number

grows, (5.2) and (5.5) with a larger shift become increasingly difficult to solve.

0 50 100 150 200 250 300
10

−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

iterations

||(
M

−
sA

)x
−

b|
| 2

15 28 68 153 257 290

(a) PCD (Re = 2000)

0 50 100 150 200 250 300
10

−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

iterations

||(
M

−
sA

)x
−

b|
| 2

9

15 39 128 234 253

(b) LSC (Re = 2000)

0 100 200 300 400 500
10

−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

iterations

||(
M

−
sA

)x
−

b|
| 2

15
32 89 234 462396

(c) PCD (Re = 4000)

0 100 200 300 400
10

−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

iterations

||(
M

−
sA

)x
−

b|
| 2

9
18

57 196 350 381

(d) LSC (Re = 4000)

Figure 5.2: The performance of the pressure convection-diffusion (PCD) precon-
ditioner and the least-squares commutator (LSC) preconditioner in driven-cavity
flow

Recall from sections 3.3.1 and 3.3.2 that the critical Reynolds number of flow

over an obstacle is about 370 and that of driven-cavity flow is about 8000. Thus, for

flow over an obstacle, 200 is a medium Reynolds number and 350 is a high Reynolds

number; for driven-cavity flow, on the other hand, 2000 is still considered to be

112

a low Reynolds number and 4000 a medium Reynolds number. We choose not to

explore driven-cavity flow at high Reynolds numbers since the driven-cavity flow

considered here is two-dimensional and it becomes a fictitious flow at high Reynolds

numbers (see [41]). Experimental results [25, 26, 27] show that cavity flow at a

high Reynolds number is neither two-dimensional nor steady. Therefore, the critical

Reynolds number (about 8000) found in our numerical experiments (see section

3.3.1) is artificially high. In three-dimensional driven-cavity flow, this number is

found to be approximately 2000 [33], which is significantly smaller. For the purpose

of this chapter, the range of Reynolds numbers that we consider, [200, 4000], is fairly

representative.

5.2.2 Lyapunov Solvers with Iterative Linear Solves

In this section, we present numerical results of the Lyapunov solvers (with iterative

linear solves) described in section 5.1. Recall that at any stable point (u0, α0), the

eigenvalue of (4.2) with smallest modulus is −Re(µ1), the distance between the

rightmost eigenvalue of (2.2) and the imaginary axis; if this point is also close to

the critical point (uc, αc), then the eigenvalue of (3.14) with smallest modulus is

λc = αc − α0. Lyapunov equations of the form (5.1) arise from Lyapunov inverse

iteration applied to both eigenvalue problems (3.14) and (4.2). Our main focus is

(5.1) arising from Lyapunov inverse iteration applied to (4.2). Such a choice allows

us to explore the behavior of the Lyapunov solvers for a broader range of problems

since the eigenvalue of (4.2) with smallest modulus is well-defined at any stable

113

point, whereas that of (3.14) is only meaningful in the neighborhood of the critical

point. For example, the eigenvalue of (3.14) with smallest modulus at Re = 2000

or Re = 4000 does not have any physical meaning for driven-cavity flow since they

are too far away from the critical Reynolds number of this flow. Note that only one

solve of (5.1) that has right-hand side of rank 1 is needed when we apply Algorithm

9 to (4.2) (see section 4.2.4). Unless otherwise stated, (5.1) refers to this Lyapunov

equation.

We again consider the following four examples: flow over an obstacle at Re =

200 and Re = 350 and driven-cavity flow at Re = 2000 and Re = 4000. The

stopping criteria are

‖R‖F < 10−6 · ‖C‖F (5.11)

for the Lyapunov solve (outer iteration) and (5.9), (5.10) for the linear solves (inner

iteration). All the linear systems arising from the Lyapunov solvers will be solved

using GMRES together with the preconditioners described in the previous section.

We first consider the rational Krylov subspace method (Algorithm 12). Since

the right-hand side of (5.1) is rank-1, one solve of (5.2) and one solve of (5.5) are

needed at each iteration of Algorithm 12. For the two examples of flow over an

obstacle, the pressure convection-diffusion preconditioner is chosen for (5.5) with

s > 1 and (5.2), whereas the least-square commutator preconditioner is used if

s < 1. This choice is based on the numerical experiments in the previous section.

Numerical results of Algorithm 12 are reported in Figures 5.3, in which we plot both

the number of GMRES steps (inner iterations) and the shift s for each iteration of

114

this algorithm (outer iteration).

0 5 10 15 20 25 30 35 40 45
0

10

20

30

40

50

60

70

80

outer iteration count

nu
m

be
r

of
 in

ne
r

ite
ra

tio
ns

(a) iteration count (Re = 200)

0 5 10 15 20 25 30 35 40 45
10

−4

10
−3

10
−2

10
−1

10
0

10
1

outer iteration count

sh
ift

s

(b) shifts (Re = 200)

0 10 20 30 40 50 60 70
0

20

40

60

80

100

120

outer iteration count

nu
m

be
r

of
 in

ne
r

ite
ra

tio
ns

(c) iteration count (Re = 350)

0 10 20 30 40 50 60 70
10

−4

10
−3

10
−2

10
−1

10
0

10
1

outer iteration count

sh
ift

s

(d) shifts (Re = 350)

Figure 5.3: Algorithm 12 with an iterative linear solver applied to flow over an
obstacle (•: the number of GMRES steps needed for solving (5.2), ◦: the number
of GMRES steps needed for solving (5.5), �: the shift in (5.5))

In Figures 5.3(a) and 5.3(c), there are two curves representing respectively

the number of GMRES steps needed for solving (5.2) (denoted by ‘•’) and (5.5)

(denoted by ‘◦’) as Algorithm 12 proceeds. As can be seen from these two figures,

the number of GMRES steps needed for solving (5.2) does not change much as the

outer iteration advances. It is about 70 for Re = 200 and about 100 for Re = 350,

as indicated by the rightmost curve in Figures 5.1(a) and 5.1(c). On the other hand,

from the same pair of figures, we can see that the number of GMRES steps required

115

to sovle (5.5) is quite oscillatory and can change drastically from one iteration to the

next. The pattern of oscillation of this number matches perfectly with that of the

shift, which is depicted in Figures 5.3(b) and 5.3(d) (denoted by ‘�’). The bigger

the shift is, the more GMRES steps are needed to solve (5.5). This behavior is again

expected from the numerical experiments in the previous section. In many outer

iterations, the number of GMRES steps required to solve (5.5) is much smaller than

that needed by (5.2). On average, at Re = 200, it takes about 31 GMRES steps to

solve (5.5) and as many as 69 GMRES steps to solve (5.2), and these two numbers

become 40 and 97 for Re = 350. In other words, about 70% of all the GMRES steps

taken to solve (5.1) are devoted to the solution of (5.2).

For the two examples of driven-cavity flow, the least-squares commutator pre-

conditioner is used for both (5.2) and (5.5). In Figure 5.4, we again plot the number

of GMRES steps and the shift for each iteration of Algorithm 12. The number of

GMRES steps needed for solving (5.2) is about 250 for Re = 2000 and about 375 for

Re = 4000, and it only varies slightly from one iteration to another. These numbers

are expected from the rightmost curve of Figures 5.2(b) and 5.2(d). As observed in

Figure 5.3, the number of GMRES steps needed for (5.5) oscillates with the shift

and is often much smaller than that required by the solution of (5.2). The majority

(approximately 75%) of the GMRES steps are again used to solve (5.2).

Next, we test the standard Krylov subspace method (Algorithm 11) with itera-

tive linear solves on the same set of problems. Recall from section 5.1 that one solve

of (5.2) is needed at each iteration of Algorithm 11. We continue to use (5.9) as the

stopping criterion for the linear solve (5.2) and (5.11) as the stopping criterion for

116

0 20 40 60 80 100 120
0

50

100

150

200

250

outer iteration count

nu
m

be
r

of
 in

ne
r

ite
ra

tio
ns

(a) iteration count (Re = 2000)

0 20 40 60 80 100 120
10

−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

outer iteration count

sh
ift

s

(b) shifts (Re = 2000)

0 20 40 60 80 100 120 140 160
0

50

100

150

200

250

300

350

400

outer iteration count

nu
m

be
r

of
 in

ne
r

ite
ra

tio
ns

(c) iteration count (Re = 4000)

0 20 40 60 80 100 120 140 160
10

−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

outer iteration count

sh
ift

s

(d) shifts (Re = 4000)

Figure 5.4: Algorithm 12 with an iterative linear solver applied to driven-cavity flow
(•: the number of GMRES steps needed for solving (5.2), ◦: the number of GMRES
steps needed for solving (5.5), �: the shift in (5.5))

the Lyapunov solve. Numerical results of Algorithm 11 for flow over an obstacle at

Re = 200 are reported in Figure 5.5. This figure shows that the number of GMRES

steps needed to solve (5.2) is roughly the same (about 70) in each iteration of Algo-

rithm 11, as observed for Algorithm 12 in Figure 5.3(a). (We can generate such a

figure for the other three examples as well. They look very similar to Figure 5.5 and

are therefore omitted here.) In Chapters 3 and 4, the efficiency of the two Lyapunov

solvers was compared by examining how fast the residual norm ‖R‖F of the Lyaup-

nov equation (5.1) decays as the dimension of the Krylov subspace grows (see Figure

117

0 50 100 150
0

10

20

30

40

50

60

70

80

outer iteration count

nu
m

be
r

of
 in

ne
r

ite
ra

tio
ns

Figure 5.5: Algorithm 11 with an iterative linear solver applied to flow over an
obstacle at Re = 200 (•: the number of GMRES steps needed for solving (5.2))

3.4 in Chapter 3 and Figures 4.3, 4.5 and 4.6 in Chapter 4). This is reasonable in

the previous chapters since the cost of solving (5.5) using a direct method does

not vary with the shift and therefore, the cost of generating a Krylov subspace is

proportional to the dimension of the Krylov subspace for both the standard Krylov

subspace method and the RKSM. Now, however, this comparison does not tell the

complete story because the cost of building a Krylov subspace is no longer a simple

function of the dimension of the Krylov subspace for RKSM. This point is clearly

demonstrated by Figures 5.3 and 5.4. For a comparison that takes into account

the fact that (5.2) and (5.5) are now solved by an iterative method, in Figure 5.6,

we plot the residual norm ‖R‖F associated with (5.1) against the total number of

GMRES steps. As displayed in Figure 5.6, RKSM converges much faster than the

standard Krylov subspace method. In all four examples we consider, to compute an

approximate solution of (5.1) that satisfies (5.11), RKSM uses approximately half

as many GMRES steps needed by the standard Krylov method.

118

0 2000 4000 6000 8000 10000 12000
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

total number of inner iteraitons

||R
|| F

standard Krylov
RKSM

(a) obstacle (Re = 200)

0 0.5 1 1.5 2

x 10
4

10
−8

10
−6

10
−4

10
−2

10
0

10
2

total number of inner iterations

||R
|| F

standard Krylov
RKSM

(b) obstacle (Re = 350)

0 1 2 3 4 5 6 7

x 10
4

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

total number of inner iterations

||R
|| F

standard Krylov
RKSM

(c) cavity (Re = 2000)

0 2 4 6 8 10 12 14

x 10
4

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

total number of inner iterations

||R
|| F

standard Krylov
RKSM

(d) cavity (Re = 4000)

Figure 5.6: Comparison of the total number of inner iterations required by Algo-
rithms 11 and 12

Remark. Recall from section 5.1 that compared to the standard Krylov

subspace method, each iteration of RKSM requires one extra solve of (5.5). However,

RKSM is still much more efficient in the examples we consider due to two reasons:

first, RKSM takes much fewer iterations to converge in these examples, as shown by

Figures 5.3(a) and 5.5; second, as observed earlier, solving (5.5) is on average much

cheaper than solving (5.2), and therefore, an extra solve of (5.5) will not add much

additional cost.

119

5.3 Modified Rational Krylov Subspace Method

As shown in section 5.2, the cost of the rational Krylov subspace method applied

to (5.1) is dominated by that of solving the linear system (5.2). If the solution of

(5.2) can somehow be avoided without harming the convergence of the Lyapunov

solve, then the efficiency of this method will increase significantly. In this section,

we propose a modified version of RKSM for (5.1) that achieves this goal.

Recall from section 5.1 that when RKSM (Algorithm 12) is applied to (5.1), the

linear system (5.5) arises from expanding the Krylov subspace and the linear system

(5.2) arises from the computation of the matrix-vector products SVm+1, which in

turn gives us the projection Tm = VTSV of S onto the Krylov subspace and the

residual norm ‖R‖F associated with (5.1). In addition, the eigenvalues
{
θ̂j

}mp
j=1

of

Tm are needed in the generation of the next shift (see (5.3)). It is not necessary that

we check the residual norm ‖R‖F in every iteration of RKSM; instead, we can do

it every k iterations, where k > 1 is an integer. However, the question still remains

that if SVm+1 is not computed and thus Tm cannot be built, how to generate the

next shift sm+1 of more or less the same quality as before.

Note that we actually do not need Tm itself to compute the new shift sm+1;

all we need is the eigenvalues of Tm. If we can get them without constructing Tm,

then the generation of the new shift will no longer be an issue. We first make the

observation that if the columns of V span an invariant subspace of S, then the

eigenvalues of Tm = VT (A−1M)V and Tm =
(
VTAV

)−1 (
VTMV

)
coincide. (In

face, Tm and Tm are identical in this case.) The advantage of using Tm is that

120

constructing this matrix requires only matrix-vector products with A and M and

no solves. The Krylov subspace built in Algorithm 12 is in general not an invariant

subspace of S. However, as its dimension increases, it will tend to one and as a

result, the eigenvalues of Tm will converge to the eigenvalues of Tm. This point

is demonstrated by the following numerical experiment. Consider again (5.1) that

arises from driven-cavity flow at Re = 2000. We compute the eigenvalues of both

Tm and Tm as Algorithm 12 proceeds. For m = 25, 50, 75, 100, the spectra of both

Tm and Tm are plotted in Figure 5.7, in which the crosses denote the eigenvalues

of Tm and the circles represent the eigenvalues of Tm. As shown in Figure 5.7, the

eigenvalues of Tm indeed approximate those of Tm well, especially for larger m. This

suggests that replacing the eigenvalues of Tm with those of Tm in the computation

of the new shift will not affect the asymptotic convergence rate of RKSM.

The observation above leads to Algorithm 13. In the modified algorithm,

Algorithm 13: The modified rational Krylov subspace method for (5.1)

1. Given a tolerance τ , a shift s1 and an integer k > 1. Let V1 = V = P .
2. For m = 1, 2, · · ·

2.1. W = (S − smI)−1Vm.
for i = 1, . . . ,m
Hi,m ← V T

i W ;
W ← W − ViHi,m.

2.2. Compute the reduced QR factorization of W : W = Vm+1Hm+1,m.
2.3. If mod(k,m) = 0

2.3.1. compute Tm = VTSV and solve the small Lyapunov equation

TmQ+QT Tm =
(
VTP

)
C
(
VTP

)T
;

2.3.2. if ‖R‖F < τ , then stop.

2.4. Else, compute Tm =
(
VTAV

)−1 (
VTMV

)
.

2.5. V← [V, Vm+1] and compute the next shift sm+1.

we compute Tm and check the convergence of the Lyapunov solve only when the

121

−10
2

−10
0

−10
−2

−10
−4

−10
−6

−1.5

−1

−0.5

0

0.5

1

1.5

real axis

im
ag

in
ar

y
ax

is

(a) m = 25

−10
2

−10
0

−10
−2

−10
−4

−10
−6

−1.5

−1

−0.5

0

0.5

1

1.5

real axis

im
ag

in
ar

y
ax

is

(b) m = 50

−10
2

−10
0

−10
−2

−10
−4

−10
−6

−1.5

−1

−0.5

0

0.5

1

1.5

real axis

im
ag

in
ar

y
ax

is

(c) m = 75

−10
2

−10
0

−10
−2

−10
−4

−10
−6

−1.5

−1

−0.5

0

0.5

1

1.5

real axis

im
ag

in
ar

y
ax

is

(d) m = 100

Figure 5.7: The eigenvalues of Tm (crosses) and Tm (circles)

iteration count m is a multiple of a prescribed number k. Consequently, (5.2)

appears only in those iterations. In the iterations where Tm is not computed, we

continue using (5.3) to choose the next shift; the only change that has to be made in

(5.3) is to use the eigenvalues of Tm instead of those of Tm. The computation of Tm

entails only two matrix-vector products AVm and MVm at each iteration. In fact,

it only gives rise to one extra matrix-vector product MVm since according to (5.4),

we have to evaluate AVm in step 2.1 of Algorithm 13 anyway in order to compute

(S − smI)−1 Vm. Therefore, the cost of constructing the matrix Tm is negligible.

We apply Algorithm 13 (with k = 5) to the four examples considered in the

122

previous section and display the numerical results in Figure 5.8. We continue to use

the stopping criteria (5.9), (5.10) and (5.11). In Figure 5.8, the dots and the circles

again denote the numbers of preconditioned GMRES steps required to solve (5.2)

and (5.5), respectively. Since we only compute SVm+1 every k = 5 iterations, as

seen in Figure 5.8, the number of GMRES iterations taken to solve (5.2) is simply

zero in many iterations. By comparing Figures 5.3, 5.4 and 5.8, we also observe

that for the same example, the number of outer iterations required by Algorithm

12 and that required by Algorithm 13 are almost the same. This implies that the

shifts generated in Algorithm 13 using the eigenvalues of Tm are essentially of the

same quality as those generated in Algorithm 12 using the eigenvalues of Tm.

We also compare the total number of GMRES steps required by Algorithms

11, 12 and 13 for solving (5.1). In Figure 5.9, the residual norm of (5.1) is again

plotted against the total number of GMRES steps. These residual curves show

that Algorithm 13 converges much more rapidly than Algorithm 12. Compared to

Algorithm 12, in order to produce an approximate solution that satisfies (5.11),

Algorithm 13 takes about 50% fewer GMRES steps.

So far we have been focusing on the Lyapunov equation (5.1) arising from Lya-

punov inverse iteration (Algorithm 9) applied to (4.2). As noted earlier, Lyapunov

inverse iteration (Algorithm 7) applied to (3.14) gives rise to Lyapunov equations of

the same type. It was observed in section 3.3.3 that in Algorithm 5.1, since we do

not need to solve (5.1) very accurately, standard Krylov method is more effective

than RKSM.

Suppose we want to estimate the critical Reynolds number of flow over an

123

0 5 10 15 20 25 30 35 40 45
0

10

20

30

40

50

60

70

80

outer iteration count

nu
m

be
r

of
 in

ne
r

ite
ra

tio
ns

(a) obstacle (Re = 200)

0 10 20 30 40 50 60 70
0

20

40

60

80

100

120

outer iteration count

nu
m

be
r

of
 in

ne
r

ite
ra

tio
ns

(b) obstacle (Re = 350)

0 20 40 60 80 100 120
0

50

100

150

200

250

outer iteration count

nu
m

be
r

of
 in

ne
r

ite
ra

tio
ns

(c) cavity (Re = 2000)

0 20 40 60 80 100 120 140 160
0

50

100

150

200

250

300

350

400

outer iteration count

nu
m

be
r

of
 in

ne
r

ite
ra

tio
ns

(d) cavity (Re = 4000)

Figure 5.8: Algorithm 13 with k = 5 applied to flow over an obstacle and driven-
cavity flow

obstacle (32 × 128 mesh) using Algorithm 7. In addition, let Re0 = 320 and δ =

10−2 in (3.15). (Numerical results of Algorithm 7 for this example can be found

in Table A.3.) We test Algorithms 11, 12 and 13 (k = 5) with iterative linear

solves on the Lyapunov equation arising from the second iteration of Algorithm 7.

(The right-hand side of this Lyapunov equation has rank 4.) The iterative method

that we use for (5.2) and (5.5) is again preconditioned GMRES. Since δ = 10−2

and ‖Reig
2 ‖F = 1.27854 × 10−2 (see Table A.3), the stopping criterion used for the

124

0 2000 4000 6000 8000 10000 12000
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

total number of inner iterations

||R
|| F

Modified RKSM
RKSM
standard Krylov

(a) obstacle (Re = 200)

0 0.5 1 1.5 2

x 10
4

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

total number of inner iterations

||R
|| F

Modified RKSM
RKSM
standard Krylov

(b) obstacle (Re = 350)

0 1 2 3 4 5 6 7

x 10
4

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

total number of inner iterations

||R
|| F

Modified RKSM
RKSM
standard Krylov

(c) cavity (Re = 2000)

0 2 4 6 8 10 12 14

x 10
4

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

total number of inner iterations

||R
|| F

Modified RKSM
RKSM
standard Krylov

(d) cavity (Re = 4000)

Figure 5.9: Comparison of the total number of inner iterations required by Algo-
rithms 11, 12 and 13

Lyapunov solve is

‖R‖F < δ‖Reig
2 ‖F = 1.27854× 10−4. (5.12)

In Figure 5.10, we display the performance of the three Lyapunov solvers by plotting

the residual norm ‖R‖F associated with (5.1) against the total number of GMRES

steps. Although RKSM is less efficient than standard Krylov method in this exam-

ple, modified RKSM outperforms standard Krylov method and is again the most

efficient one among the three, as observed in Figure 5.9. In order to produce an

approximate solution that satisfies (5.12), modified RKSM again uses 50% fewer

125

GMRES steps than RKSM. As shown in section 3.3, we can get away with a δ as

large as 1 in (5.12). When the tolerance is this mild, standard Krylov method and

modified RKSM are almost equally efficient with standard Krylov method working

slightly better.

0 0.5 1 1.5 2 2.5

x 10
4

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

total number of inner iterations

||R
|| F

Modified RKSM
RKSM
standard Krylov

Figure 5.10: Comparison of the total number of inner iterations required by Algo-
rithms 11, 12 and 13 (the Lyapunov equation arises from Algorithm 7 applied to
(3.14))

5.4 Conclusions

In this chapter, we explore the performance of standard Krylov subspace method

and rational Krylov subspace method with iterative linear solves. Different pre-

conditioners are tested and compared on the linear systems arising from the two

Lyapunov solvers. These systems can be divided into two categories: ones with

structure identical to those that arise in the computation of steady states of a sys-

tem of PDEs, and ones with structure like those arising from transient PDEs. We

observe that the cost of solving the linear systems of the first type dominates the to-

tal cost of rational Krylov subspace method. In light of this observation, we modify

126

this method in such a way that solution of the first type of linear systems can mostly

be avoided. The modification is simple yet effective, leading to significant savings

in computational cost without degrading the convergence of the Lyapunov solver.

This chapter completes the discussion on Lyapunov solvers presented in Chapters 3

and 4, in which all the linear systems arising from the Lyapunov solve were simply

solved using a sparse direct method.

127

Chapter 6

Summary and Conclusions

In this thesis, we developed robust and efficient methods for linear stability anal-

ysis of large-scale dynamical systems. Linear stability analysis is a widely used

approach for studying whether a steady state of a dynamical system is sensitive to

small perturbations. It eventually boils down to determining whether the rightmost

eigenvalue of the Jacobian matrix is in the left (stable) or the right (unstable) half

of the complex plane, for which there lacks a robust method. A dynamical sys-

tem and therefore its steady states typically depend on a physical parameter. The

critical value of this parameter at which stability of the steady state is lost is of

great interest to both mathematicians and engineers. The conventional approach of

identifying this value is to monitor the rightmost eigenvalue of the Jacobian matrix

along a parameterized path of steady states. The main contributions of this thesis

are summarized as follows.

In Chapter 3, we refined a method proposed in previous work that estimates

the critical parameter value using the so-called Lyapunov inverse iteration, and

we applied the refined method to models of incompressible flow. This method is

based on the following observation: the difference between the critical parameter

value and a nearby parameter value in the stable regime is the eigenvalue with

smallest modulus of a special eigenvalue problem that can be specified in the form

128

of a Lyapunov equation. This is a potentially easier problem since unlike for the

rightmost eigenvalue, there are many reliable methods for computing eigenvalue

of a matrix having smallest modulus, one of them being inverse iteration. The

approach of applying inverse iteration to an eigenvalue problem with Lyapunov

structure is referred to as Lyapunov inverse iteration. At each iteration of this

method, a large-scale Lyapunov equation needs to be solved. We observed in our

numerical experiments that solving this equation accurately can be quite expensive

in the early stages of Lyapunov inverse iteration. Accordingly, we proposed an

adaptive stopping criterion for the Lyapunov solve that depends on the accuracy

of the eigenvalue computation. The modified Lyapunov inverse iteration equipped

with this new stopping criterion leads to dramatic computational savings without

affecting the convergence of the target eigenvalue. We also explored the utility

of various Lyapunov solvers including the state-of-the-art rational Krylov subspace

method. We found that for this particular eigenvalue problem, since the Lyapunov

equations do not need to be solved very accurately, standard Krylov method is in

fact more effective than the more advanced methods.

The primary limitation of the method described above is that it is only valid in

the neighborhood of the critical point. In Chapter 4, we developed a robust method

for computing a few rightmost eigenvalues of the Jacobian matrix using Lyapunov

inverse iteration, which works at any stable point along the path of steady states.

We first proved that at any point in the stable regime, the distance between the

rightmost eigenvalue and the imaginary axis is the eigenvalue with smallest modulus

of an eigenvalue problem with Lyapunov structure. Therefore, this distance can also

129

be computed using Lyapunov inverse iteration. We then presented a convergence

analysis of this approach, which shows that Lyapunov inverse iteration applied to

this particular eigenvalue problem will always converge in two iterations provided

that the first Lyapunov equation is solved accurately enough. An efficient means

of implementing Lyapunov inverse iteration was proposed, which only entails one

accurate Lyapunov solve. Finally, we showed that estimates for a few rightmost

eigenvalues of the Jacobian matrix can be obtained from this version of Lyapunov

inverse iteration for almost no additional cost. We again compared the performance

of various Lyapunov solvers for subsidiary Lyapunov systems. In contrast to the

scenario in the previous chapter, what is needed in this case is one accurate Lyapunov

solve, and our numerical experiments showed that rational Krylov subspace method

is the method of choice.

The main cost of Lyapunov inverse iteration is solving a large Lyapunov equa-

tion iteratively at each step, which requires in turn a number of large and sparse

linear solves. How efficiently these systems are solved is crucial to the performance

of Lyapunov inverse iteration. The linear systems arising from Lyapunov inverse

iteration can be divided into two categories: ones with structure identical to those

that arise in the computation of steady states of a system of PDEs, and ones with

structure like those arising from transient PDEs. In particular, when rational Krylov

method is used as the Lyapunov solver, half of the linear systems are of the first cat-

egory and the other half belong to the second category. We tested and compared the

performance of various preconditioners developed for models of incompressible flow

and observed that linear systems arising from the computation of steady states are

130

much more expensive to solve than those needed for time stepping. In light of this

fact, we modified the rational Krylov subspace method in such a way that very few

solves of the first type are needed. The modified rational Krylov subspace method

achieves significant savings in computational cost. It works as well as the standard

Krylov subspace method for the problem considered in Chapter 3 and is much more

efficient than both the rational Krylov subspace method and the standard Krylov

method for the problem studied in Chapter 4.

131

Appendix A

More numerical results of Algorithm 7

• Algorithm 7:

Table A.1: Algorithm 7 applied to driven-cavity flow (64× 64 mesh, Re0 = 7700)
for δ = 1, 10−1, 10−2 in (3.15)

` Re(`) µ(`) ‖r`‖2 ‖Reig` ‖F ‖Rlyap` ‖F d` k`
δ = 1

1 -33 -1.65191e-13 3.11813e-01 3.81288e+2 3.49287e+2 126 40
2 8071 2.75632i 2.28205e-04 1.51762e-1 1.51102e-1 468 170
3 7956 2.69951i 5.94238e-06 2.35053e-3 2.29411e-3 464 170
4 7941 2.69869i 1.25554e-07 7.17013e-5 6.92490e-5 440 160
5 7941 2.69871i 5.22034e-09 2.22796e-6 2.11931e-6 456 160
6 7941 2.69871i 1.58703e-10 7.03833e-8 — — —

Total: 1954

δ = 10−1

1 -33 -1.65191e-13 3.11813e-01 3.81288e+2 3.67018e+1 184 60
2 8099 3.22383i 3.63286e-04 7.42002e-2 7.21658e-3 828 260
3 8272 2.69587i 3.06514e-05 2.30574e-2 2.29802e-3 584 210
4 7940 2.69870i 9.47243e-07 3.99983e-4 3.99561e-5 628 240
5 7941 2.69871i 3.10614e-08 1.77510e-5 1.74859e-6 584 210
6 7941 2.69871i 9.92136e-10 6.43387e-7 — — —

Total: 2808

δ = 10−2

1 -33 -1.65191e-13 3.11813e-01 3.81288e+2 3.75975e+0 458 130
2 8266 2.69436i 3.23204e-05 3.91517e-2 3.74950e-4 736 240
3 7934 2.69853i 5.63398e-07 4.91929e-4 4.79841e-6 812 270
4 7941 2.69872i 3.36650e-08 2.62097e-5 2.53300e-7 804 270
5 7941 2.69871i 2.06884e-09 7.55187e-7 7.36075e-9 872 290
6 7941 2.69871i 4.18021e-11 2.58556e-8 — — —

Total: 3682

• The IRA method: 7928 ≤ Re∗ ≤ 7929 and µ ≈ ±2.69910i

132

• Algorithm 7

Table A.2: Algorithm 7 applied to driven-cavity flow (128× 128 mesh, Re0 = 7900)
for δ = 1, 10−1, 10−2 in (3.15)

` Re(`) µ(`) ‖r`‖2 ‖Reig` ‖F ‖Rlyap` ‖F d` k`
δ = 1

1 -84 4.52639e-14 1.98235e-01 1.80556e+2 1.46777e+2 192 60
2 7980 2.77602i 1.49742e-05 1.11252e-2 1.08771e-2 452 160
3 8178 2.76959i 3.59421e-07 6.67463e-4 6.60235e-4 456 170
4 8170 2.76985i 1.52871e-08 1.98948e-5 1.77490e-5 456 170
5 8170 2.76986i 5.65144e-10 1.09343e-6 — — —

Total: 1556

δ = 10−1

1 -84 4.52639e-14 1.98235e-01 1.80556e+2 1.80487e+1 394 120
2 8712 2.78474i 1.28825e-05 5.36405e-2 4.89405e-3 516 190
3 8195 2.76859i 3.60491e-07 1.11571e-3 1.06377e-4 540 200
4 8170 2.76988i 2.75212e-08 4.87574e-5 4.57568e-6 576 220
5 8170 2.76986i 7.86850e-10 1.66872e-6 — — —

Total: 2026

δ = 10−2

1 -84 4.52639e-14 1.98235e-01 1.80556e+2 1.77080e+0 552 150
2 8279 2.78261i 6.89377e-06 2.57644e-2 2.56827e-4 732 270
3 8183 2.76926i 2.69987e-07 3.79368e-4 3.75942e-6 784 280
4 8171 2.76983i 1.97231e-08 2.36808e-5 2.30965e-7 764 270
5 8170 2.76986i 9.31122e-10 1.88047e-6 — — —

Total: 2832

• The IRA method: 8167 ≤ Re∗ ≤ 8168 and µ ≈ ±2.76931i

133

• Algorithm 7

Table A.3: Algorithm 7 applied to flow over an obstacle (32× 128 mesh, Re0 = 320)
for δ = 1, 10−1, 10−2 in (3.15)

` Re(`) µ(`) ‖r`‖2 ‖Reig` ‖F ‖Rlyap` ‖F d` k`
δ = 1

1 -51 -2.58005e-14 3.49466e-01 1.34437e+1 1.28722e+1 64 10
2 312 2.24624i 1.03971e-03 8.86864e-2 8.81434e-2 68 30
3 372 2.25768i 1.58031e-04 5.38592e-3 4.49832e-3 68 30
4 368 2.25509i 4.52672e-05 5.17687e-4 4.22587e-4 68 30
5 368 2.25445i 4.69228e-06 6.75943e-5 6.49335e-5 68 30
6 368 2.25466i 6.44924e-07 8.61572e-6 3.78203e-6 72 30
7 368 2.25466i 8.89108e-08 1.56019e-6 9.25999e-7 72 30
8 368 2.25466i 3.34159e-08 4.92662e-7 3.60198e-7 68 30
9 368 2.25466i 4.12733e-09 7.20820e-8 6.38617e-8 68 30
10 368 2.25466i 1.52598e-09 2.22553e-8 1.25189e-8 68 30
11 368 2.25466i 2.521173-10 3.57852e-9 — — —

Total: 684

δ = 10−1

1 -51 -2.58005e-14 3.49466e-01 1.34437e+1 1.097413+0 80 30
2 340 2.25959i 1.34391e-03 1.24111e-1 9.25966e-3 80 30
3 371 2.25850i 2.84080e-04 4.17974e-3 3.65068e-4 88 40
4 368 2.25419i 2.91437e-05 3.48382e-4 3.14857e-5 84 40
5 368 2.25459i 1.66116e-06 3.70041e-5 3.63305e-6 84 50
6 368 2.25470i 2.05981e-07 8.67526e-6 6.08886e-7 84 40
7 368 2.25466i 1.20058e-07 1.98096e-6 1.73313e-7 84 40
8 368 2.25466i 1.92445e-08 4.79664e-7 4.44614e-8 80 40
9 368 2.25466i 4.90524e-09 7.95222e-8 7.07355e-9 84 40
10 368 2.25466i 7.62478e-10 1.64741e-8 — — —

Total: 748

δ = 10−2

1 -51 -2.58005e-14 3.49466e-01 1.34437e+1 1.33974e-1 256 50
2 355 2.23301i 5.20369e-04 1.27854e-2 1.27569e-4 212 80
3 368 2.25539i 1.16498e-04 1.68074e-3 1.55230e-5 184 60
4 368 2.25479i 1.25632e-05 1.71052e-4 1.63911e-6 180 60
5 368 2.25465i 5.29902e-07 1.04054e-5 1.02432e-7 192 70
6 368 2.25466i 5.71101e-08 1.09042e-6 1.06047e-8 172 60
7 368 2.25466i 6.17975e-09 1.37103e-7 1.35858e-9 180 60
8 368 2.25466i 8.80752e-10 2.09028e-8 — — —

Total: 1376

• The IRA method: 366 ≤ Re∗ ≤ 367 and µ ≈ ±2.25320i.

134

• Algorithm 7

Table A.4: Algorithm 7 applied to flow over an obstacle (64× 256 mesh, Re0 = 320)
for δ = 1, 10−1, 10−2 in (3.15)

` Re(`) µ(`) ‖r`‖2 ‖Reig` ‖F ‖Rlyap` ‖F d` k`
δ = 1

1 -126 -4.56508e-14 2.34469e-01 6.82009e+0 6.54563e+0 68 10
2 309 2.25503i 1.22214e-03 2.67894e-1 1.47060e-1 60 10
3 388 2.28406i 1.79532e-04 1.44874e-2 1.38221e-2 68 30
4 371 2.26307i 3.24286e-05 1.50971e-3 7.80000e-4 68 30
5 372 2.26454i 2.80872e-06 1.26709e-4 8.29876e-5 68 20
6 372 2.26439i 1.35033e-06 5.10769e-5 3.90744e-5 64 20
7 372 2.26440i 1.15382e-07 5.09132e-6 4.22834e-6 68 30
8 372 2.26441i 5.60313e-08 2.03776e-6 1.31217e-6 64 20
9 372 2.26441i 4.75726e-09 2.25479e-7 1.17966e-7 68 20
10 372 2.26441i 1.91912e-09 6.90577e-8 3.15263e-8 64 20
11 372 2.26441i 2.16132e-10 8.88705e-9 — — —

Total: 660

δ = 10−1

1 -126 -4.56508e-14 2.34469e-01 6.82009e+0 5.94744e-1 200 30
2 371 2.24869i 5.87893e-04 4.21899e-2 4.09704e-3 92 40
3 369 2.26101i 8.09361e-05 3.07705e-3 2.78703e-4 80 40
4 372 2.26488i 8.09872e-06 3.53202e-4 2.66546e-5 80 40
5 372 2.26446i 5.68983e-07 3.12131e-5 1.81808e-6 84 40
6 372 2.26440i 5.69946e-08 3.94377e-6 3.11348e-7 84 40
7 372 2.26441i 2.64065e-08 1.19487e-6 8.67071e-8 80 40
8 372 2.26441i 4.71386e-09 1.98825e-7 1.20088e-8 80 40
9 372 2.26441i 6.18183e-10 2.82239e-9 — — —

Total: 780

δ = 10−2

1 -126 -4.56508e-14 2.34469e-01 6.82009e+0 5.65414e-2 254 50
2 355 2.24026i 1.94550e-04 1.49911e-2 1.31541e-4 184 60
3 370 2.26957i 7.74197e-05 3.01197e-3 2.89703e-5 152 60
4 372 2.26422i 1.07494e-05 4.01064e-4 3.94011e-6 156 60
5 372 2.26440i 1.55387e-06 5.52818e-5 5.09448e-7 156 50
6 372 2.26442i 4.72673e-08 2.39237e-6 2.21539e-8 168 60
7 372 2.26441i 6.31077e-09 2.60586e-7 2.24572e-9 180 60
8 372 2.26441i 9.64857e-10 4.66424e-8 — — —

Total: 1250

• The IRA method: 371 ≤ Re∗ ≤ 372 and µ ≈ ±2.26399i

135

Bibliography

[1] A. C. Antoulas. Approximation of Large-Scale Dynamical Systems. SIAM,
Philadelphia, 2005.

[2] A. C. Antoulas, D. C. Sorensen, and Y. Zhou. On the decay of Hankel singular
values and related issues. Technical Report 01-09, Department of Computa-
tional and Applied Mathematics, Rice University, Houston, 2001. Available
from http://www.caam.rice.edu/~sorensen/Tech_Reports.html.

[3] F. Auteri, N. Parolini, and L. Quartapelle. Numerical investigation on the
stability of singular driven cavity flow. J. Comput. Phys., 183:1–25, 2002.

[4] R. H. Bartels and G. W. Stewart. Algorithm 432: solution of the matrix
equation AX +XB = C. Comm. of the ACM, 15:820–826, 1972.

[5] C-H. Bruneau and M. Saad. The 2D lid-driven cavity problem revisited. Com-
puters & Fluids, 35:326–348, 2006.

[6] S. Chandrasekhar. Hydrodynamic and Hydromagnetic Stability. Oxford Uni-
versity Press, Oxford, 1961.

[7] K. A. Cliffe, T. J. Garratt, and A. Spence. Calculation of eigenvalues of the
discretised Navier-Stokes and related equations. In J. R. Whiteman, editor,
The Mathematics of Finite Elements and Applications VII MAFELAP, pages
479–486. Academic Press, 1990.

[8] K. A. Cliffe, T. J. Garratt, and A. Spence. Eigenvalues of block matrices arising
from problems in fluid mechanics. SIAM J. Matrix Anal. Appl., 15:1310–1318,
1994.

[9] K. A. Cliffe and K. H. Winters. Convergence properties of the finite-element
method for Benard convection in an infinite layer. J. Comput. Phys, 60:346–351,
1985.

[10] V. Druskin, L. Knizhnerman, and V. Simoncini. Analysis of the rational Krylov
subspace and ADI methods for solving the Lyapunov equation. SIAM J. Numer.
Anal., 49:1875–1898, 2011.

[11] V. Druskin, C. Lieberman, and M. Zaslavsky. On adaptive choice of shifts in
rational Krylov subspace reduction of evolutionary problems. SIAM J. Sci.
Comput., 32:2485–2496, 2010.

[12] V. Druskin and V. Simoncini. Adaptive rational Krylov subspaces for large-
scale dynamical systems. Systems & Control Letters, 60:546–560, 2011.

[13] H. Elman, D. Silvester, and A. Wathen. Finite Elements and Fast Iterative
Solvers. Oxford University Press, Oxford, 2005.

136

[14] H. C. Elman. Preconditioning strategies for models of incompressible flow. J.
Sci. Comput., 25:347–366, 2005.

[15] H. C. Elman and R. S. Tuminaro. Boundary conditions in approximate commu-
tator preconditioners for the Navier-Stokes equations. Electron. Trans. Numer.
Anal., 35:257–280, 2009.

[16] A. Fortin, M. Jardak, and J. Gervais. Localization of Hopf bifurcation in fluid
flow problems. Int. J. Numer. Methods Fluids, 24:1185–1210, 1997.

[17] T. J. Garratt. The numerical detection of Hopf bifurcations in large systems
arising in fluid mechanics. PhD thesis, University of Bath, University of Bath,
UK, 1991.

[18] J. J. Gervais, D. Lemelin, and R. Pierre. Some experiments with stability
analysis of discrete incompressible flows in the lid-driven cavity. Int. J. Numer.
Methods Fluids, 24:477–492, 1997.

[19] W. Govaerts. Numerical Methods for Bifurcations of Dynamical Equilibria.
SIAM, Philadelphia, 2000.

[20] W. Govaerts and A. Spence. Detection of Hopf points by counting sectors in
the complex plane. Numer. Math., 75:43–58, 1996.

[21] N. Guglielmi and M. L. Overton. Fast algorithms for the approximation of the
pseudospectral abscissa and pseudospectral radius of a matrix. SIAM J. Matrix
Anal. Appl., 32:1166–1192, 2011.

[22] S. J. Hammarling. Numerical solution of the stable, non-negative definite Lya-
punov equation. IMA J. Numerical. Anal., 2:303–323, 1982.

[23] R. A. Horn and C. R. Johnson. Topics in Matrix Analysis. Cambridge Univer-
sity Press, Cambridge, 1991.

[24] I. M. Jaimoukha and E. M. Kasenally. Krylov subspace methods for solving
large Lyapunov equations. SIAM J. Numer. Anal., 31:227–251, 1994.

[25] J. R. Koseff and R. L. Street. The lid-driven cavity flow: A synthesis of quali-
tative and quantitative observations. J. Fluids Eng., 106:390C398, 1984.

[26] J. R. Koseff and R. L. Street. On end wall effects in a lid driven cavity flow.
J. Fluids Eng., 106:385–389, 1984.

[27] J. R. Koseff and R. L. Street. Visualization studies of a shear driven three-
dimensional recirculating flow. J. Fluids Eng., 106:21–29, 1984.

[28] K. Meerbergen and D. Roose. Matrix transformations for computing rightmost
eigenvalues of large sparse non-symmetric eigenvalue problems. IMA J. Numer.
Anal., 16:297–346, 1996.

137

[29] K. Meerbergen and A. Spence. Inverse iteration for purely imaginary eigenval-
ues with application to the detection of Hopf bifurcation in large scale problems.
SIAM J. Matrix Anal. Appl., 31:1982–1999, 2010.

[30] B. N. Parlett. The Symmetric Eigenvalue Problem. Prentice Hall Series in
Computational Mathematics. Prentice Hall, New Jersey, 1980.

[31] T. Penzl. Eigenvalue decay bounds for solutions of Lyapunov equations: the
symmetric case. Systems Control Lett., 40:139–144, 2000.

[32] W. C. Rheinboldt. Numerical Analysis of Parametrized Nonlinear Equations,
volume 7 of The University of Arkansas Lecture Notes in the Mathematical
Sciences. J. Wiley and Sons, New York, 1986.

[33] R.Iwatsu, K. Ishii, T. Kawanura, and K. Kuwahara. Numerical simulation of
three-dimensional flow structure in a driven cavity. Fluid Dyn. Res., 5:173–189,
1989.

[34] M. Robbé, M. Sadkane, and A. Spence. Inexact inverse subspace iteration
with preconditioning applied to non-Hermitian eigenvalue problems. SIAM J.
Matrix Anal. Appl., 31:92–113, 2009.

[35] V. A. Romanov. Stability of plane-parallel Couette flow. Funct. Anal. Appl.,
7:137–146, 1973.

[36] A. Ruhe. Rational Krylov sequence methods for eigenvalue computation. Lin.
Alg. Appl., 58:391–405, 1984.

[37] A. Ruhe. The rational Krylov algorithm for nonsymmetric eignevalue problems.
III: complex shifts for real matrices. BIT, 34:165–176, 1994.

[38] Y. Saad. Variations on Arnoldi’s method for computing eigenelements of large
unsymmetric matrices. Lin. Alg. Appl., 34:269–295, 1980.

[39] Y. Saad. Numerical solution of large Lyapunov equations. In M. A. Kaashoek,
J. H. van Schuppen, and A. C. Ran, editors, Signal Processing, Scattering,
Operator Theory, and Numerical Methods, volume III of Proceedings of the
International Symposium MTN-89, pages 503–511, Boston, 1990. Birkhauser.

[40] Y. Saad. Numerical Methods for Large Eigenvalue Problems. Manchester Uni-
versity Press, Manchester, 1992.

[41] P. N. Shankar and M. D. Deshpande. Fluid mechanics in the driven cavity.
Annu. Rev. Fluid Mech., 32:93–136, 2000.

[42] V. Simoncini. A new iterative method for solving large-scale Lyapunov matrix
equations. SIAM J. Sci. Comput., 29:1268–1288, 2007.

[43] D. C. Sorensen. Implicit application of polynomial filters in a k-step Arnoldi
method. SIAM J. Matrix Anal. Appl., 13:357–385, 1992.

138

[44] G. W. Stewart. Matrix Algorithms Volume II: Eigensystems. SIAM, Philadel-
phia, 2001.

[45] G. I. Taylor. Stability of a viscous liquid contained between two rotating cylin-
ders. Phil. Trans. Roy. Soc. A, 223:289–343, 1923.

[46] N . Tillmark and P . H . Alfredsson. Experiments on transition in plane Couette
flow. J. Fluid Mech., 235:89–102, 1992.

[47] S. Timme, K. J. Badcock, M. Wu, and A. Spence. Lyapunov in-
verse iteration for stability analysis using computational fluid dynam-
ics. 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics
and Materials Conference〈BR〉20th AIAA/ASME/AHS Adaptive Structures
Conference〈BR〉14th AIAA, Honolulu, Hawaii, April 2012. American Institute
of Aeronautics and Astronautics.

[48] L. N. Trefethen and M. Embree. Spectra and Pseudospectra: The Behavior
of Nonnormal Matrices and Operators. Princeton University Press, Princeton,
2005.

[49] J. S. Turner. Buoyancy Effects in Fluids. Cambridge University Press, Cam-
bridge, 1973.

[50] P. A. Wedin. On angles between subspaces of a finite dimensional inner product
space. In B. Kagstrom and A. Ruhe, editors, Matrix Pencils, volume 973 of
Lecture Notes in Mathematics, pages 263–285. Springer-Verlag, Berlin, 1983.

139

