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Microphone arrays have been widely used in sound source localization for many 

applications. In order to locate the sound in a discernible manner, the separation between 

microphones needs to be greater than a critical distance, which poses a fundamental 

constraint for the miniaturization of directional microphones. In nature, animal hearing 

organs are also governed by the size constraint; the smaller the organ size, the smaller the 

available directional cues for directional hearing. However, with an auditory organ 

separation of only 520 µm, the fly Ormia ochracea is found to exhibit remarkable ability 

to pinpoint its host cricket at 5 kHz. The key to this fly’s phenomenal directional hearing 



 

 

ability is believed to be the mechanical coupling between the eardrums. This innovative 

solution can inspire one to find alternative approaches to tackle the challenge of 

developing miniature directional microphones. 

 
The overall goal of this dissertation work is to unravel the underlying physics of the fly 

ear hearing mechanisms, and to apply this understanding to develop and study novel bio-

inspired miniature directional microphones. First, through mechanics and optimization 

analysis, a fundamental biological conclusion is reached: the fly ear can be viewed as a 

nature-designed optimal structure that is endowed with the dual optimality characteristic 

of maximum average directional sensitivity and minimum nonlinearity, at its working 

frequency of 5 kHz. It is shown that this dual optimality characteristic is only achievable 

when the right mechanical coupling between the eardrums is used (i.e., proper 

contributions from both rocking and bending modes are used). More importantly, it is 

further revealed that the dual optimality characteristic of the fly ear is replicable in a 

synthetic device, whose structural parameters can be tailored to work at any chosen 

frequency. Next, a novel bio-inspired directional microphone with mechanically coupled 

diaphragms is designed to capture the essential dynamics of the fly ear. To study the 

performance of this design, a novel continuum mechanics model is developed, which 

features two coupling modules, one for the mechanical coupling of the two diaphragms 

through a beam and the other for each diaphragm coupled through an air gap. Parametric 

studies are carried out to explore how the key normalized parameters affect the 

performance of this directional microphone. Finally, this mechanics model is used to 

guide the development of a large-scale microphone and a fly-ear sized microphone, both 



 

 

of which are experimentally studied by using a low-coherence fiber optic interferometric 

detection system. With the large-scale sensor, the importance of using proper 

contribution from both rocking and bending modes is validated. The fly-ear sized sensor 

is demonstrated to achieve the dual optimality characteristic at 8 kHz with a ten-fold 

amplification in the directional sensitivity, which is equivalent to that obtainable from a 

conventional microphone pair that is ten times larger in size. To best use this sensor for 

sound source localization, a robotic platform with a control scheme inspired by the fly’s 

localization/lateralization scheme is developed, with which a localization accuracy of 

better than ±2 (the same as the fly ear) is demonstrated in an indoor lab environment.  

This dissertation work provides a quantitative and mechanistic explanation for the fly’s 

sound localization ability for the first time, and it provides a framework for the 

development of fly-ear inspired acoustic sensors that will impact many fronts. 
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Chapter 1 Introduction and background 

1.1 Problem of interest 

Directional microphones have been widely used in a variety of applications for sound 

source localization, including hearing aid devices, robotic navigation, and underwater 

sensor networks (Brandstein & Ward, 2001).  To build a directional microphone, there 

are mainly two approaches: either the microphone itself is inherently directional, or the 

microphone is omnidirectional but two or more of them form a microphone pair or array 

to extract directional cues (Csermak, 2000). 

In inherently directional microphones, the net pressure force deflecting the diaphragm 

varies with incident azimuth. One example of inherently directional microphones used for 

hearing aids is illustrated in Figure 1-1(a). The acoustic waves travel along two paths to 

arrive at the diaphragm, the front wave  (Wave B) acting on the external surface directly, 

the rear one (Wave A) experiencing a time delay due to the mechanical screen before 

reaching the internal side. The mechanical screen is typically designed to match the time 

difference of sound wave propagating from the rear port to the front port so that the 

sound coming from the rear is completely suppressed. On the other hand, the propagation 

distance difference is maximal for sound wave from the front, which is usually the sound 

of interest for the hearing aid wearers. Like a pressure gradient microphone (Beranek, 



 

1

pr

sh

so

d

b

m

to

F

sh

In

p

(T

pr

to

gr

in

954), the m

ropagation d

hows the var

ound source

istance diffe

etween the f

microphone r

o decouple it

igure 1-1: An

haped directiv

n the case o

opular meth

TDOA) (Be

roportional t

o detect the 

reater than 

ncluding the 

microphone’s

distance diff

riation of th

e localizatio

ference will 

front port an

requires an e

t from the az

(a

n inherently 

vity pattern.   

f a microph

hod to determ

enesty, Che

to the separa

TDOA in s

a critical d

signal-to-no

s response 

ference. The

he response a

on, the perf

change wi

nd the rear p

extra sensor 

zimuth in the

a) 

directional m

one pair or 

mine the so

en, & Huan

ation betwee

ome discern

distance. Suc

oise ratio (SN

Diaphragm

2 

is proportio

e cardioid sh

as the incide

formance is

th the azim

port. It shou

to measure t

e directivity

microphone fo

array using 

ound directio

ng, 2008; B

en microphon

nible manner

ch distance 

NR), choice 

m 

onal to the 

hape directiv

ent azimuth

s determine

muth, which

uld be noted

the pressure 

pattern. 

or hearing aid

omni-direct

on is based 

Brandstein 

nes. Thus, in

r, the micro

is depende

of estimator

pressure gr

vity pattern 

changes. W

ed by how 

h is limited 

d that this ty

 or pressure 

(b) 

d: (a) schema

tional microp

on the time

& Ward, 2

n order for a

ophones need

ent on a nu

r, number of

radient time

in Figure 1

When it is use

the propag

by the dis

ype of direct

gradient in 

atic; (b) a car

phones, the 

e delay of ar

2001), whic

a microphone

d to be sepa

umber of fac

f samples, et

s the 

1-1(b) 

ed for 

gation 

stance 

tional 

order 

rdioid 

most 

rrival 

ch is 

e pair 

arated 

ctors, 

tc. 



3 

 

Therefore, no matter how the directional microphone is constructed, there is a 

fundamental size limit; the smaller the device size, the worse the localization 

performance. However, it is desirable to develop miniature directional microphones for 

many scenarios. One situation is when only miniature acoustic sensors are feasible, e.g., 

on a micro air vehicle (MAV) or in a hearing aid device where a smaller size is favored in 

order to be cosmetically acceptable for the hearing impaired individuals. A smaller size 

also means the perturbation to the primary sound field caused by the sensor itself is 

greatly reduced, enabling high accuracy measurements. Furthermore, miniaturization is 

advantageous from a physics viewpoint when the microphone array works in the near 

field, in which the far field or plane wave assumption made in the design and analysis of 

microphone arrays is no longer valid (Gay & Benesty, 2000). Many attempts have been 

undertaken to deal with near-field effects by using either modal expansion or multi-

dimensional filter techniques (Asano, Asoh, & Matsui, 2000; Kennedy, Abhayapala, & 

Ward, 1998; Ryan & Goubran, 2000; Zheng, Goubran, & El-Tanany, 2004). Rather than 

compensating for wave-front curvature at the cost of computational complexity, by using 

miniature directional microphones, one can effectively deal with the near-field effects 

since the array’s aperture can be chosen to be much smaller than the wave-front curvature 

(Brooks & Humphreys, 1999). 

To develop miniature directional microphones for the above-mentioned applications and 

other applications, a solution needs to be sought to overcome the size constraint. The 

natural world has served as an inspiration for countless inventions and innovations, and it 

is conceivable that miniaturization of sensor technology can significantly benefit from 
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biology-inspired ideas (Bar-Cohen, 2006; Bhushan, 2009; Bleckmann, Schmitz, & Von 

der Emde, 2004; Vincent, Bogatyreva, Bogatyrev, Bowyer, & Pahl, 2006).  

To detect the direction of a sound source, humans use the directional cues such as 

interaural intensity difference (IID), also known as interaural level difference (ILD), 

interaural time difference (ITD), and the spectral composition difference (Popper & Fay, 

2005). When the dimension of the head is larger than one-tenth of the sound wavelength, 

the sound wave is disturbed (diffraction). In this case, human brain makes use of the 

spectra received from the two ears to estimate the direction of the sound wave, which are 

different with respect to most directions. In the case of a narrow-band sound source, the 

spectra difference reduces to IID at the center frequency. Human ears can also localize 

long pure tones that are less than 1400 Hz by extracting the TDOA at the two ears. Given 

that the average diameter of an adult head is 17 cm and the sound propagation speed in 

air is 344 m/s, this time different is about 50 ms. 

For much smaller insects, due to their limited capacities of frequency analysis, narrow-

band sound is commonly detected. Because the part of the body that the ears are placed is 

about 10-50 times smaller than the human head, the diffraction occurs only at very high 

frequencies, and the expected maximum time difference is only in the ranges of tens of 

microseconds or even smaller (Hoy, Popper, & Fay, 1998). Even though they have much 

smaller directional cues in the sound stimulus and limited neural processing capability, 

some insects still possess phenomenal sound source localization abilities. 

One striking example is found in the parasitoid fly Ormia Ochracea, which shows a 

remarkable ability to locate the calling song (at ~ 5 kHz) of its host cricket even though 



5 

 

its ears are separated by only 520 m (Cade, 1975; Mason, Oshinsky, & Hoy, 2001; 

Robert, Amoroso, & Hoy, 1992; Walker, 1993). Despite the minute directional cues (the 

best possible ITD of 1.5 s and IID of less than 1 dB), the fly is able to localize the sound 

source with a resolution of 2 (Mason et al., 2001), which is equal to that of  humans. The 

key to the fly’s exceptionally accurate directional hearing is that the fly possesses a 

unique mechanical structure called the intertympanal bridge to couple the motions of the 

two tympanal membranes (eardrums) (Miles, Robert, & Hoy, 1995; Robert, Miles, & 

Hoy, 1996, 1998). With such a mechanically coupled structure, the IID and ITD at the 

mechanical response level are amplified significantly to 13 dB and 50 s, respectively 

(Robert et al., 1996). The time delay after neural processing is further amplified to 313 s, 

because the latency, defined as the time difference between the onset stimulus and the 

afferent neuron spike, increases as the stimulus intensity decreases (Mason et al., 2001; 

Oshinsky & Hoy, 2002). 

This dissertation work is aimed to achieve enhanced understanding of the hearing 

mechanism of the fly ear and apply such understanding to the development of a novel 

miniature directional microphone to overcome the size constraint. 

1.2 Previous work 

1.2.1 Directional hearing in insects 

The ears of insects can be classified into two categories, the flagellar ears and the 

tympanal ears (Hoy et al., 1998; Popper & Fay, 2005). The inherently directional 

flagellar ears (also called near-field detectors), such as the antennae in mosquitoes, are 
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Figure 1-2(b)-(d), the sound pressure are applied to both the external and internal surface 

of the tympanum. The vibration of the tympanum can be excited by the sound amplitude 

difference or by the phase difference. Due to the smaller size of the insects in this 

category (usually a fraction of sound wavelength), the frequency-dependent phase 

difference plays a more important role than the amplitude difference. The mechanically 

coupled pressure receivers are found in the smallest insects, such as the parasitoid flies, 

as shown in Figure 1-2(e)-(f). In this case, the pressure is applied only to the external 

surface of the tympanum. The average pressure causes the ipsilareral and contralateral 

ears to move in phase (called bending mode or translational mode), while the pressure 

difference causes the two ears to move out-of-phase (called rocking mode or rotational 

mode). A typical response of the ears is a combination of these two modes. 

It has been found that the parasitoid fly Ormia ochracea (tachinid family) (Miles et al., 

1995; Robert et al., 1996) has superior performance compared with the fly Emblemasoma 

sp. (sacrophagid family), which lacks a central fulcrum (Robert, Miles, & Hoy, 1999). 

The ear of the fly Ormia ochracea also differs significantly from that of the cricket hosts 

of both parasitoid flies, where the tympanal is a four-input pressure difference system 

(Axel  Michelsen & Larsen, 2008; A. Michelsen, Popov, & Lewis, 1994). 

By localizing the calling song of the male cricket, the parasitoid fly Ormia ochracea 

locates its host and deposits its larvae on it (Cade, 1975; Mason et al., 2001; Robert et al., 

1992; Walker, 1993), as shown in Figure 1-3. Although its ears are separated by only 520 

m (the best possible ITD of 1.5 s and IID of less than 1 dB) (Robert et al., 1996), a 

phonotactic experiment has shown that fly can resolve an azimuthal deviation as small as 
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The whole process from the acoustical input to the neural time difference is depicted in 

Figure 1-5. First, when the tympana are excited by a sound wave, the minute ITD and IID 

are transformed to the cues at the mechanical response level; that is, mechanical IID 

(mIID) and mechanical ITD (mITD). It is found that the ipsilateral tympanum is 50 μs 

ahead of the contralateral one, and its amplitude is about 10 dB larger. Next, when the 

vibrations of the tympana are detected by the sensory organs (acoustical afferents), the 

directional cues are converted to the neuron latency, defined as the time delay between 

the sound stimulus and the first spike. It is striking that the latency difference between the 

two ears (neuron ITD) further amplifies mITD (Robert & Göpfert, 2002). The underling 

mechanism is found to be the intensity-level dependent latency shift, in which the latency 

and the stimulus intensity are inversely related, as shown in Figure 1-6(a) (Oshinsky & 

Hoy, 2002).  Finally, the neuron ITD is processed via the inter-neuron cross-correlation 

and a decision is made by the Central Nervous System (CNS). 

In addition to the latency coding scheme as described above, the fly may use a population 

coding scheme, where the number of active afferents depends on the sound stimulus 

intensity, as shown in Figure 1-6(b). It is due to the fact that different afferents have 

different thresholds to elicit spikes. 
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 cosD

p
f S l

x
    

,  (1-1) 

where S is the diaphragm area, p/x is the pressure gradient in the propagation direction 

x, l is the sound propagation path difference, and  is the incident azimuth (Beranek, 

1954).  For comparison, in the design of the pressure differential microphone by Miles et 

al, the driving moment for the rocking mode is given by 

 sinD A

p
M I

x
    

,  (1-2) 

where IA is the area moment of inertia about the fulcrum (Miles et al., 2009). The 

difference is that the sound waves are applied to both sides of the diaphragm in the 

conventional design, while in microphones developed by Miles group, the sound wave is 

applied on the external side of a rigid plate that rotates about its pivot. 

As for the detection method, a Polytec laser vibrometer (OFV 302 optical head and OFV-

2100 electronics unit) is used in the early system (Yoo et al., 2002). Later designs (Cui et 

al., 2006; Miles et al., 2009) are based on an optical detection system demonstrated by 

Hall et al (Hall et al., 2005; Hall & Degertekin, 2002; Hall, Okandan, Littrell, Bicen, & 

Degertekin, 2007). The structure is similar to a typical capacitive acoustic sensor, except 

the back electrode is shaped as an optical diffraction grating used in an optical 

interferometer system, which uses vertical-cavity surface-emitting laser (VCSEL) as the 

light source. The diaphragm deflection is obtained by measuring the intensity of reflected 

beams with different diffraction orders. A bias voltage is applied to the two plates to 

adjust the initial gap to achieve maximal sensitivity. 
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The directivity pattern achieved by this differential microphone is a figure eight pattern, 

as shown in Figure 1-9 for its response to an 800 Hz sound wave (Miles et al., 2009).  To 

obtain this directivity pattern, the sound source is at a fixed location above the diaphragm 

plane while the microphone is mounted on a rotational stage. In this setup, it is assumed 

that the pressure gradient is constant at the microphone, and as a result its response is 

proportional to | cos |, where  is the azimuth angle. 

Another similar fly-ear inspired directional microphone is shown in Figure 1-10(a), 

which makes use of a comb fingers based electronic readout (Touse et al., 2010). It 

consists of two square wings (1 mm  1 mm) connected by a 500 m bridge. The entire 

substrate under the wings is removed to prevent the squeezed film damping. The two 

natural frequencies are at 2689 Hz and 5931 Hz, which were measured by a laser 

vibrometer. Because of the large surface area of the flexible wings, the measured 

frequency response of the microphone has a much higher peak at the bending mode 

natural frequency than that at the rocking mode natural frequency, which is different from 

that obtained from the microphone developed by Miles group (Miles et al., 2009).  
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structural parameters of the fly ears been tailored for achieving its superior localization 

ability at 5 kHz, ii) does the fly ear represent a natural optimal structure to facilitate the 

fly’s unique localization-lateralization scheme, and iii) can a synthetic device be 

developed to truly replicate the fly-ear characteristics.  

Furthermore, another goal of the dissertation work is to develop novel fly-ear inspired 

miniature directional microphones for sound source localization. Although various fly-ear 

inspired directional microphones have been proposed and developed, there are several 

major limitations in the existing work.  

First, the key to the superior directional hearing of the fly Ormia ochracea is the 

mechanical coupling, which enables great amplification of the minute directional cues at 

the acoustic stimulus level to much higher values at the mechanical response level (Miles 

et al., 1995). Moreover, the coupling bridge in the fly ear has a finite stiffness, which 

suggests that proper contribution from both the rocking and bending modes of the fly ear 

structure are utilized. However, in the differential microphone design (Miles et al., 2009), 

the rocking mode is greatly suppressed, and only the bending mode is used. Similarly, in 

a later reported directional sound sensor, only the second mode (bending mode) is used 

(Touse et al., 2010). 

Second, the above mentioned directional microphones (Miles et al., 2009; Touse et al., 

2010) have a similar working principle to a conventional pressure gradient microphone, 

in which the response amplitude depends not only on the sound source direction, but also 

on the sound stimulus intensity or the pressure gradient. This is similar to a monaural 

hearing system. Due to the limitation of such a system, an additional sensor is required to 
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measure the local sound pressure or pressure gradient in order to determine the sound 

source direction (Miles et al., 2009; Touse et al., 2010). In contrast, mostly animals, 

including the fly Ormia ochracea, rely on binaural hearing in which the difference 

between the signals received by the auditory organs is utilized. These interaural 

directional cues are usually much more reliable and accurate than the purely intensity 

based monaural hearing, as they are independent of the excitation sound level. 

Third, to detect the minute diaphragm response in miniature microphones, a detection 

system with high sensitivity and large signal-to-noise ratio (SNR) is needed. There are a 

variety of methods that have been used to detect the deflection of the diaphragm, 

including piezo-resistive, capacitive, and optical techniques (Eaton & Smith, 1997). 

Touse group uses an electronic readout with comb fingers to implement a capacitive 

detection system (Touse et al., 2010). Although it has better pressure sensitivity and less 

temperature sensitivity over piezo-resistive microphones, capacitive detection technique 

suffers by the excess signal loss from parasitic capacitance and the requirement of 

expensive and bulky high-impedance preamps at the sensor head. In addition, when the 

size is reduced, capacitive microphones are very susceptible to the mechanical noise due 

to molecular agitation, and thus a tradeoff has to be made between the sensitivity and the 

noise floor. Miles group intended to use the diffraction-based optical displacement 

detection system (Hall et al., 2005). However, this optical detection system has not been 

integrated with its directional microphone design yet, and the data reported in the 

literature were obtained by using laser Doppler vibrometer  (Miles et al., 2009). In this 

dissertation work, a versatile and robust detection system based on low-coherence fiber 
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optic interferometry will be developed. It has advantages of optical microphones include 

high pressure sensitivity, high SNR, immunity to electromagnetic interference (EMI), and 

safety in hazardous and explosive environments. 

1.4 Overview of the dissertation work  

The overall goal of this dissertation work is to develop an enhanced understanding of the 

underlying science of the fly ear’s hearing mechanism and use this understanding to 

design, develop, and study a novel bio-inspired miniature directional microphone for 

sound source localization.  

This dissertation work includes the following three research thrusts. 

Research thrust 1: Achieve an enhanced understanding of the underlying science of 

the fly’s hearing mechanism.   

Based on the equivalent 2-DOF model of the fly ear and its structural parameters reported 

in the literature, this research thrust is aimed to provide a quantitative and mechanistic 

explanation for the fly’s superior sound localization ability at 5kHz and establish a 

correlation between the fly ear’s structural characteristics and its localization 

performance. The gained understanding will be used to establish a framework for 

developing synthetic devices that can capture the characteristics of the fly-ear. 

Research thrust 2: Carry out analytical and numerical investigations into a fly-ear 

inspired sensor with structurally coupled diaphragms.  
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In this research thrust, a fly-ear inspired directional microphone design is proposed that 

fully incorporates the fly ear’s mechanical coupling mechanism and its unique 

characteristics revealed in the first research trust. To achieve a fundamental 

understanding of the structural dynamics of the sensor, a continuum mechanics model 

will be developed first, which will feature two coupling modules, one for the mechanical 

coupling of the two diaphragms through a bridge and the other for each diaphragm 

coupled through an air-backed cavity. Parametric studies will then be conducted to 

investigate the effects of key parameters on the sensor performance. 

Research thrust 3: Develop novel fly-ear inspired directional microphones and carry 

out experimental studies on these microphones for sound source localization. 

In this research thrust, the established framework and mechanics model for the fly-ear 

inspired directional microphone will be first used to develop a large-scale proof-of-

concept sensor. A low-coherence fiber optic interferometer system will be developed to 

detect the microphone’s responses. Following a similar approach, a fly-ear sized 

miniature directional microphone will be developed, which captures the fly ear’s essential 

characteristics. Moreover, a fly-ear inspired localization/lateralization scheme will be 

developed and implemented on a robotic system that aims to achieve a comparable 

localization accuracy of the fly. 

The rest of this dissertation is organized as following. In Chapter 2, by using an 

equivalent 2-DOF model, the fly ear’s unique characteristic, i.e., dual optimality at its 

working frequency 5 kHz, will be revealed and studied. Then, a framework will be 

established to mimic the fly’s dual optimality feature in a synthetic device for any 
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frequency or size. In Chapter 3, the design of a bio-inspired directional microphone will 

be described, and a continuum mechanics model will be developed and used to study the 

performance of the bio-inspired directional microphone. The effects of an air gap on the 

sensor characteristics will also be investigated. In Chapter 4, the detection system based 

on low-coherence fiber optic interferometer will be described. The fabrication process 

and experiment results of a large-scale proof-of-concept directional microphone will be 

presented. Then, the previously established framework will be used to develop a fly-ear 

sized acoustic sensor that has dual optimality characteristic at 8 kHz. Further, a bio-

inspired localization scheme will be implemented on a robotic platform. In Chapter 5, the 

dissertation work and the contributions will be summarized along with an outline for 

future work.  
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Chapter 2 Understanding the bio-physics of the fly ear: dual-

optimality 

In the literature (Miles et al., 1995), a two-degree-of-freedom (2-DOF) model of the fly 

ear has been used to investigate the exceptional directional hearing ability of the fly. 

However, no further efforts have been made to explain whether the fly ear represents a 

natural optimal design and how the structural parameters of the fly ear are evolved to 

facilitate the superior localization performance at its working frequency of 5 kHz. 

Furthermore, the fly’s unique localization/lateralization scheme (Mason et al., 2001) has 

never been well understood. In this chapter, the equivalent 2-DOF model and the fly ear 

parameters obtained experimentally (Miles et al., 1995) will be used to unravel the 

underlying physics of the fly ear mechanism. 

2.1 Lumped model of the fly ear and its analytical solution 

In the 2-DOF model (Miles et al., 1995), as shown in Figure 2-1, each tympanum is 

modeled as a mass-spring-dashpot system, i.e. a mass (m1, m2) supported by a spring (k1, 

k2) and a dashpot (c1, c2). The two masses are connected by a torsion spring k3 and a 

dashpot c3. All the parameters used to study the fly ear structure are listed in Table 2-1 as 

reported in the literature (Miles et al., 1995). 
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and  is the initial phase difference at the acoustic stimulus. Note that 

 sin / 2 sind c      ,  (2-9) 

where  is the ratio between the separation and wavelength; i.e. 

 /d  .  (2-10) 

By using modal analysis (Meirovitch, 2001), the modal coordinates of the response can 

be obtained as 

 0 01 2
1 22 2 2

1 1 1 2

,
1 2 2

p s p sp p
u u

k j k j   
 

     
 , (2-11) 

where  is the frequency normalized by the first natural frequency 

 1/   ,  (2-12) 

  is the ratio between the two natural frequency as the following 

 2 1 3 1/ 1 2 /k k     ,  (2-13) 

and 1 and 2 are the damping ratios defined by 

  1 1 1/ 2c m  , (2-14) 

    2 1 3 22 / 2c c m   .  (2-15) 
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In terms of the physical coordinates of the two DOFs, the responses can be determined to 

be 

 
   

 
1 1 0

2
2 2 1 1

tan / 2cos / 2

1 2 tan / 2
j t j t

jx A p s
e e

x A k j j
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
 

                       
,  (2-16) 

where  is the unit modal response ratio defined as 

 
2

1
2 2

2

1 2

2

j

j


 

  
 

  
.  (2-17) 

Note that  represents the phase difference of the incident sound pressure applied to the 

eardrums, which determines the ratio of modal forces p1 and p2 as  

  1 2/ tan / 2p p j  .  (2-18) 

The directional cues, mIID and mechanical interaural phase difference (mIPD) can be 

obtained from the mechanical responses of the two eardrums as  
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A j
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,  (2-19) 
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.  (2-20) 

The range of mIPD is from - to . mITD can be calculated from mIPD by 

 
mIPD

mITD


 .  (2-21) 
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The derivative of mIPD with respect to  is defined as the directional sensitivity (DS); 

that is, 

 
mIPD

DS






.  (2-22) 

To have a better understanding of how the mechanical coupling helps amplify the 

directional cues, the solution of the 2-DOF model is interpreted in the complex plane. In 

Figure 2-3, the trajectory of  is first drawn, and a point D is selected for any given 

frequency . When the azimuth  increases from 0 to 90, point B (jtan(/2)) and point 

C (-jtan(/2)) moves along the vertical axis from the origin to the farthest point possible. 

Consequently, mIPD can be interpreted as the angle between vectors DB


 and DC


, and 

mIID as the magnitude ratio of these two vectors.  
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To have the phase difference amplified, i.e. |mIPD| > ||, || has to be less than one (|| < 

1), which requires that the excitation frequency is below a critical frequency, namely 

 
21

2


  .  (2-24) 

From this geometric representation of the directional cues, the following characteristics 

of the mechanically coupled 2-DOF system can be observed. As  increases, points B and 

C move further away from the origin, and thus the angle between DB


 and DC


increases. 

In other words, mIPD increases/decreases monotonically with respect to . It can also be 

proven that mIID achieves maximum when DB


  is perpendicular to DC


. To prove this, 

let 
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
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

.  (2-25) 

Then the two directional cues mIID and mIPD can be written as 
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It can be readily verified that when  = 1, mIPD is equal to 90, and |mIID| reaches the 

maximum; that is, 
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 10

1 sin
max 10 log

1 sin
mIID








.  (2-28) 

If mIID needs to be a monotonic function of , mIPD cannot exceed 90. This implies 

that there is a tradeoff between the two directional cues. 

2.2 Parametric studies 

In this section, the analytical solutions obtained in the previous section will be used to 

investigate the effects of key parameters in the lumped model on the characteristics of 

directional cues. For sound source localization, the relative relationship between the two 

ears is more important than the transfer function of each individual ear, although they are 

closely related. As such, three parameters are identified in Equation (2-19), namely the 

stiffness ratio k3/k1 (which determines the natural frequency ratio 2/1), damping ratios 

1 and 2, and separation-to-wavelength ratio  = d/. All these parameters affect the 

relative contributions from the rocking and bending modes. 

2.2.1 Stiffness ratio 

The coupling strength is determined by the stiffness ratio k3/k1, which is related to the 

natural frequency ratio  = 2/1 by 2 = 1+2k3/k1. As the coupling becomes stiffer ( 

becomes larger), the contribution from the rocking mode is more dominant than that from 

the bending mode. In Figure 2-4, the frequency spectra and spatial distributions of mIPD 

are compared for three coupling scenarios:  = 2,  = 4.36, and  = 10. Since the mIPD 

is 180 at the rocking mode frequency and 0 at the bending mode frequency, a stiffer 

coupling usually renders a higher phase difference. Another phenomenon observed from 
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Figure 2-4(b)-(c) is that mIPD as a function of frequency may experience a sign change 

(from 180 to -180 or vice versa) around the rocking mode natural frequency for a stiffer 

coupling. 

However, when designing a directional microphone with mechanically coupled 

diaphragms, the amplification of mIPD or the absolute value of mIPD should not be the 

sole objective. If the contribution from the bending mode is negligible, mIPD is always 

180 regardless of the incident azimuth. In this case, mIPD cannot be used as an 

indicator to differentiate azimuth angles of the sound source.  

A more important parameter for sound source localization is the change of mIPD with 

respect to azimuth perturbation, which is defined as the directional sensitivity (DS). As 

shown in Figure 2-5(d)-(f), increasing the coupling strength will generally help increase 

DS near the midline (i.e.,  = 0). However, if the coupling is too stiff, the increase of DS 

will only happen in the range near the midline, and at large azimuth angles near 90, the 

DS is significantly reduced. Another disadvantage of stiff coupling is that the rapid 

change of DS will cause a strongly nonlinear relationship between mIPD and . 
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2.2.2 Damping 

In Figure 2-6 and Figure 2-7, mIPD and DS for three damping scenarios are obtained and 

compared, which are the following: i) 1 = 0.10 and 2 = 0.14, ii) 1 = 0.50 and 2 = 0.69, 

and iii) 1 = 0.89 and 2 = 1.23 (fly ear’s case). As the damping decreases, the phase 

difference is generally more amplified, as shown in Figure 2-6(a)-(c). For a small 

damping, mIPD as a function of frequency experiences a sign change near the rocking 

mode. The effects of damping on mIPD are more pronounced in the frequency range near 

the rocking mode. For example, as shown in Figure 2-6(d)-(e) and Figure 2-7(d)-(e), the 

change of mIPD is much less for 2 kHz than the change for 8 kHz (rocking mode natural 

frequency is 7.12 kHz). It can be explained by the fact that damping has much less effects 

on the transfer function of either diaphragm for frequencies much less than the rocking 

mode natural frequency. 

 

  



 

F

in

ra



(d

igure 2-6: Ef

n the simulati

atios 1 and 2

1 = 0.89 and 

d)-(f): Spatial

(a) 

(b) 

(c) 

ffects of the d

ons are the fl

2 modified fo

2 = 1.23 (fly 

 distributions

damping ratio

y ear’s structu

r three scenar

ear’s case). (

s of mIPD for 

37 

os on the phas

ural paramete

rios , 1 = 0.1

(a)-(c): Spectr

frequencies 2

se difference 

ers listed in T

10 and 2 = 0.

rums of mIPD

2 kHz, 5 kHz

(d) 

(e) 

(f) 

mIPD. All th

Table 2-1, wit

14, 1 = 0.50 

D for azimuth

z, and 8 kHz. 

he parameters

th the two dam

and 2 = 0.69

h 10, 30, and

s used 

mping 

9, and 

d 90. 



 

F

us

da

0

90

igure 2-7: Ef

sed in the sim

amping ratios

.69, and 1 = 

0. (d)-(f): Sp

(a) 

(b) 

(c) 

ffects of the 

mulations are

s 1 and 2 mo

0.89 and 2 =

patial distribu

damping rati

e the fly ear’s

odified for th

= 1.23 (fly ear

ution of DS fo

38 

ios on the dir

s structural p

hree scenarios

r’s case). (a)-(

r frequencies

rectional sen

parameters lis

s: 1 = 0.10 an

(c): Spectra o

 2 kHz, 5 kHz

(d) 

(e) 

(f) 

nsitivity DS. A

sted in Table 

nd 2 = 0.14, 

of DS for azim

z, and 8 kHz.

All the param

2-1, with th

1 = 0.50 and

muths 10, 30

. 

meters 

he two 

d 2 = 

, and 



39 

 

2.2.3 Separation-to-wavelength ratio 

As can be seen from the analytical solution of the lumped model (Equation (2-20)), mIPD 

and DS are determined by two parameters, the modal response ratio  and the modal 

force ratio jtan(/2). The former relates to the coupled system’s design parameters, 

including the previously discussed stiffness ratio and damping ratio; the latter relates to 

the separation-to-wavelength ratio  = d/.  

In Figure 2-8 and Figure 2-9, mIPD and DS are obtained for three different diaphragm 

separations: d = 0.4 mm, d = 1.2 mm, and d = 3.6 mm. Overall, increasing the separation 

will increase the contribution from the rocking mode, rendering a higher mIPD and DS. 

However, if the separation is too big, it has a similar effect as a stiff bridge; that is, mIPD 

saturates easily as the sound source moves away from the midline. Other disadvantages 

for big separations include the increased size and the disturbance to the sound field due to 

the increased size. 
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2.3 Dual-optimality in the fly ear 

With the analytical solutions of the directional cues and directional sensitivity that were 

obtained previously, here, an answer is sought for the following question: is the fly ear a 

nature designed optimal structure that is tailored to localize the cricket’s 5 kHz calling 

song? mIPD is chosen as the directional cue for further investigation due to the following 

considerations. First, equivalent to mITD, mIPD is a normalized measure that is 

independent of the sound wavelength and sound speed. Second, mIPD/mITD is usually 

more reliable and accurate for sound source localization than intensity based 

measurement (Harris & Sergeant, 1971). Third, mIPD/mITD is widely used in sound 

source localization using microphone arrays, which means the results to be obtained here 

will be consistent with existing algorithms and have a much broader impact. Lastly, 

based on the analytical solutions, mIPD/mITD is a monotonic function of azimuth in all 

scenarios whereas this one-to-one correspondence is not guaranteed for mIID.  

From the perspective of sensor design, the ideal relationship between the mIPD and the 

azimuth  for sound source localization is a straight line with a maximal slope, as the 

ideal line shown in Figure 2-10. Because mIPD is confined between -180 and 180 as  

varies from -90 to 90, the maximal slope is 2. However, as the relationship between 

mIPD and  is determined by the governing equations for the mechanically coupled 

system, mIPD cannot be an arbitrary function of . For example, the slope at the two 

extreme positions ( = 90) is equal to zero regardless of the structural parameters, 

which implies that mIPD() cannot be a straight line. As such, appropriate design 

objectives need to be sought that are constrained by the governing equations. 
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Next, the effects of mechanical coupling on mIPD are investigated. The fly ear 

parameters listed in Table 2-1 are used to calculate mIPD at 5 kHz for various coupling 

scenarios by changing the stiffness of the coupling bridge k3. Note that the natural 

frequency ratio  is related to the stiffness ratio k3/k1 by 2 = 1+2k3/k1. First, for the size 

of the fly ear (i.e., the separation between eardrum centers is 1.2 mm), the phase 

difference at the acoustic inputs (i.e, IPD) is equal to 6.3sin(), which is the phase 

difference obtained for the uncoupled case ( = 1) in Figure 2-10. If the coupling is soft 

( = 2), mIPD is amplified to 20.9 at an azimuth of 90, which is far less than 180. On 

the other hand, if the coupling is stiff ( = 20), although mIPD is amplified to 176.8 at 

90 azimuth, it cannot be differentiated for most of the azimuth range. As can be clearly 

seen from Figure 2-10, for the stiff coupling case, mIPD increases very rapidly to ~180 

when  is slightly off 0. The fly ear ( = 4.36) represents a case between the soft 

coupling and the stiff coupling, in which a proper contribution from both rocking and 

bending modes is utilized. 
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When these two metrics of the fly ear are plotted in the frequency domain, an interesting 

result can be observed: the minimum NL and the maximum ADS are achieved 

simultaneously at 5 kHz, as shown in Figure 2-12(b). This result suggests that the fly ear 

is endowed with a dual optimality characteristic at its working frequency. 

As discussed previously, it should be stressed that the fly ear does not work like a rigid 

seesaw; that is, a structure with a purely rocking mode. Rather, it utilizes a proper 

combination of both rocking mode and bending mode. To further illustrate the 

characteristics of such a rigid system, the maps of mIPD and the absolute DS in the space 

of azimuth and frequency are shown in Figure 2-13. Since the rocking mode dominates 

the bending mode for the structure with a rigid coupling, the phase difference increases 

quickly to 180 and saturates when the incident azimuth deviates slightly from the 

midline ( = 0), as shown in Figure 2-13(a). As a result, such a rigid system cannot 

perform well when using mIPD or mITD is used as the directional cue due to the small 

directional sensitivity shown in Figure 2-13(b). Theoretically, it can only work in a very 

confined spatial range in the close vicinity of midline. It should also be noted that the 

detection system may not be able to differentiate the azimuths of 180 and -180 due to 

issues of noise and asynchronous data acquisition. In other words, the seesaw system may 

not even make a correct left/right estimation based on mIPD/mITD readings. 
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task; at the other end of the spectrum, although an optimal structure can be found, the 

amplified phase difference may still be too low for accurate sound localization. Therefore, 

the results in Figure 2-14 provide a framework that enables one to create synthetic 

devices that mimic the fly ear’s dual optimality characteristic, which can be tailored to 

work at any frequency and/or with a desirable size.  

For example, given the same interaural separation as the fly ear (1.2 mm), one can design 

fly-ear inspired structures that are tailored to work at the optimal frequencies of 2 kHz 

and 8 kHz, for which  is calculated as 0.0070 and 0.0279, respectively. According to the 

design curves in Figure 2-14(a), the two natural frequencies to achieve dual-optimality 

are 3.41 kHz and 22.31 kHz for the device with the working frequency of 2 kHz, and 

10.29 kHz and 36.03 kHz for the 8 kHz working frequency. The spectra of ADS and NL 

in Figure 2-15(a) indicate that the designed systems possess the dual-optimality 

characteristic of the fly ear. For the three optimal systems in Figure 2-15(a), the resulting 

DS at the corresponding optimal frequencies have similar flat plateaus in the linear region 

of -30 30, as shown in Figure 2-15(b). 
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The dual optimality characteristic can provide a basis for understanding the fly’s superior 

directional hearing capability as well as its unique localization-lateralization scheme. 

First, although the absolute value of the mIPD is maximal at the two extreme positions ( 

= ±90), the corresponding DS is close to zero at these positions and the maximal DS is 

actually achieved in the vicinity of the midline. Therefore, the fly naturally turns the head 

front (midline of the ear) towards the source so that the maximum DS (i.e., maximal slope) 

can be achieved to ensure the best localization precision. This is similar to a related 

finding reported for an Egyptian fruit bat, which uses not the maximal sonar beam 

intensity but its maximal slope for target localization (Yovel, Falk, Moss, & Ulanovsky, 

2010). Second, mIPD is a linear function of azimuth in the range from -30 to 30, which 

is coincident with the sigmoid relationship of fly’s turning speed with respect to the 

azimuth, obtained in the phonotactic experiments with the fly (Mason et al., 2001). Given 

the limited neural processing ability, a constant and maximal DS can certainly help the 

fly perform the localization task more accurately and more efficiently for the azimuths 

from -30 to 30. Therefore, in this sense, it is not only the mechanical coupling 

mechanism that helps the fly ear obtain significantly amplified directional cues, but more 

importantly, the structural parameters of the fly ear have been tailored to achieve the dual 

optimality characteristic at 5 kHz, facilitating a unique localization-lateralization scheme 

for accurately pinpointing its host.  

To achieve the dual-optimality characteristic, this dissertation work also shows that the 

structural parameters need to be tuned to have a proper contribution from both the 

rocking mode and the bending mode. As an example, the stiffness of the coupling bridge 
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cannot be too soft or too stiff, otherwise the directional cue mIPD is not sufficiently 

amplified or it is overly amplified so that the directional sensitivity is greatly reduced. 

Furthermore, this dissertation work provides a framework to design a fly-ear inspired 

acoustic sensor that can mimic not only the mechanical coupling mechanism but more 

importantly the dual-optimality characteristic. For any desired working frequency and/or 

interaural separation, the natural frequencies of the two vibration modes of the 

mechanically coupled system can be obtained according to the optimal design curves 

shown in Figure 2-14. To design a fly-ear inspired sensor, the structural parameters of the 

sensor can be obtained through analytical or numerical modeling. It is also demonstrated 

in this chapter that different systems can be designed for different damping scenarios. In 

general, a high damping results in a much smoother peak in the ADS spectrum, which is 

beneficial to accommodating the variation of structural parameters or sound stimulus 

frequencies. On the other hand, although a low damping system with a much sharper ADS 

peak is less robust to stimulus frequency variations, a low damping level renders a higher 

amplification ratio, a much higher ADS, and better frequency selectivity, which can be 

advantageous in certain applications. 
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Chapter 3 Fly-Ear Inspired Directional Microphones: Design and 

Model Development 

3.1 Fly-ear inspired directional microphone design 

Based on the framework developed in the previous chapter, bio-inspired directional 

microphone that consists of two circular diaphragms coupled by a medially supported 

bridge is designed, as shown in Figure 3-1. The two diaphragms are clamped on its 

periphery boundary to a substrate. The two ends of the bridge are connected to the 

diaphragm centers. To detect the sound induced vibrations of the diaphragms, a Fabry-

Perot interferometer is formed between each diaphragm and an optical fiber tip, which is 

part of a low coherence fiber optic interferometric detection system. The details of the 

detection system will be provided in the next Chapter along with the development of the 

directional microphones.  
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Although the air gap does not contribute directly to the mechanical coupling between the 

diaphragms, it does affect the diaphragm’s response to external stimulus, including the 

acoustic sound wave and the mechanical force through the coupling bridge. Therefore, a 

novel continuum mechanics model needs to be developed that features two coupling 

modules, one for the mechanical coupling of the two diaphragms through the bridge and 

the other for each diaphragm coupled with the backing air gaps. This model can be used 

to achieve a fundamental understanding of the structural dynamics of the fly-ear inspired 

directional microphone described in the previous section and guide the development of 

this microphone. 

The continuum mechanics model will include three individual components: the 

diaphragm, the bridge, and the air gap. The diaphragm will be modeled as a thin plate 

with in-plane tension, which can account for any scenario between a pure plate and a pure 

membrane (M. Yu & Balachandran, 2005). The bridge will be modeled as an Euler-

Bernoulli beam that is pinned in the middle. The air gap will be described by a sound 

wave equation. The models for each individual component will be described in Section 

3.3. In Section 3.4, the coupling module between a single diaphragm and an air gap will 

be detailed by assuming a no-slip boundary condition at the interface.  In Section 3.5, the 

coupling module through the bridge will be described by assuming a geometric 

compatibility condition at the joints. Furthermore, the developed model will be compared 

with a finite element model in ANSYS and the 2-DOF model in Section 3.6, followed by 

parametric studies in Section 3.7. 
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3.3 Models of individual components of the sensor structure 

3.3.1 Diaphragm 

A cylindrical coordinate system is established at the diaphragm center, as shown in 

Figure 3-3. The radial coordinate r is normalized so that 0  r  1. The clamped circular 

diaphragm is modeled as a plate with in-plane tension. Depending on a normalized 

tension parameter, the diaphragm can have a pure plate behavior with zero tension, or a 

pure membrane behavior with a high tensile stress (M. Yu & Balachandran, 2005). This 

generalized model is particularly useful for microelectromechanical system (MEMS ) 

pressure sensors where residual thermal stress cannot be completely relieved from the 

fabrication process.  For the clamped circular plate with in-plane tension, the transverse 

displacement of the plate wp(r,,t) is described by the thin plate theory 

  
2

4 20
2 4 2
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where p, hp, , D, a, N0, fp are respectively the density, thickness, damping coefficient, 

flexural rigidity, radius, in-plane force, and external pressure. Subscript p denotes the 

plate. D is related to the Young’s modulus Ep and Poisson’s ratio  by 
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        ' '
2 1 2 1 2 1 0m m m mI J J I        , (3-7) 

tp = N0a
2/D is the normalized surface tension parameter, Jm and J’m are Bessel function 

of first kind and its first derivative, and Im and I’m are modified Bessel function of first 

kind and its first derivative. Amn is the coefficient used to normalize the mode shapes to 

ensure the orthogonality of the mode shapes; that is 

        
1 1

, ,0 0
,p mn p mk nk m n mnr r

U r U r rdr r r dr 
 

     , (3-8) 

where mn is the kronecker delta. 

The natural frequencies can be calculated from 1mn and 2mn by 

 p p
mn mn

c h

a a
    , (3-9) 

where 1 2 / 12mn mn mn   , and  2/ 1p p pc E     is the speed of longitudinal wave. 

The first five modes and their natural frequencies of a circular clamped plate without in-

plane tension are shown in Table 3-1. 
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Table 3-1: Natural frequency and mode shapes of circular clamped plate without in-plane tension 

Order (m,n) Natural frequency mn Mode shape 

(0,1) 2.9490 

 

(1,1) 6.1373 

 

(2,1) 10.0681 

 

(0,2) 11.4809 

 

(3,1) 14.7311 

 

 

The transfer function relating the modal coordinates of the pressure and transverse 

displacement response (Fp,mn and Wp,mn) is obtained as follows 

 , ,
,

p mn p mn
p mn

p

W F
H

a E
 ,  (3-10) 

where 
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63 

 

   221 / /p p pa h E     , and  2 /p p pa c h   is the normalized frequency. 

3.3.2 Air gap 

The air gap is modeled as a cylindrical air chamber with a flexible top (the diaphragm). A 

cylindrical coordinate system is established at the center of the top surface, as shown in 

Figure 3-4. The coordinates are normalized so that z = 0 at the top, and z = 1 at the 

bottom. The air gap can be described by the wave equation in terms of velocity potential 

(r,,z,t)  as 
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 , (3-12) 

where c0 and g are the sound speed and air gap height, respectively. c0 is related to the 

static pressure p0 of the air gap and density 0 by 0 0 0/c p  , where  is the adiabatic 

index. A no-slip boundary condition is assumed at the interface between the plate and the 

air; i.e. 
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Note that for the axisymmetric mode when m = 0, Equation (3-16) has a zero root 

(labeled as β00 = 0), which corresponds to the commonly known air spring mode. 

In the case of a close-ended air gap (the top surface is also rigid), the natural frequencies 

are obtained as 

  22 2 20 / 0,1,2,mnl mn

c
l a g l

a
       . (3-18) 

In order to establish a relationship between the displacement excitation of the flexible top 

wa(r,,t), the velocity potential solution to the wave equation (r,,z,t), and the reaction 

pressure at the interface pr(r,,t) = p(r,,z=0,t), they are decomposed to the following 

forms 
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a a mn a mn m

m n
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      , ,
,

, , j t
r r mn a mn m

m n

p r t P U r e    ,  (3-21) 

where Wa,mn, mn, and Pr,mn are the modal coefficients, and Zmn(,z) is the z-component 

of the velocity potential solution that is dependent on the excitation frequency. Substitute 

(3-19) and (3-20) into the no-slip boundary condition and use the orthogonality in (3-17) 

to obtain 
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The reaction pressure is related to the velocity potential by 
    

0
, , /r a z

p r t t 


    , (3-23) 

where a is the air density. Then, the transfer function between the modal coordinates of 

the displacement excitation and the reaction pressure can be obtained as follows 

 , ,
,

0

r mn a mn
a mn

P W
H

p a
 ,  (3-24) 

where 

    2
,

coth
a mn a a

g
H

a





    , (3-25) 

 2 2
mn a

g

a
   , (3-26) 

and 0/a a c   is the normalized frequency. 

 
 

3.3.3 Bridge 

 
The bridge is modeled as an Euler-Bernoulli beam with an axial load. A coordinate 

system is established at the center. The range of the normalized axial coordinate is -1  x 

 1. The governing equation in terms of the transverse displacement wb(x,t) is given by 

(subscript b denotes the beam/bridge) 
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h b f

t t L x L x
    

   
   

,  (3-27) 

where hb, b, 2L are the beam’s thickness, width, and length, respectively, b, Eb, Ib are the 

beam’s density, Young’s modulus, and area moment of inertia, respectively, and b, Pb, 

and fb are the damping coefficient, axial load, and external distributed force, respectively. 

The boundary conditions are zero bending moment and zero shearing force on both ends 

(x = 1), zero displacement and continuity of moment at the center point (x = 0); i.e. 
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.  (3-28) 

Free vibration 

The center-pinned beam has three kinds of mode shapes. The first kind of mode is a rigid 

rotational mode 

 ,0 3 / 2bU x ,  (3-29) 

for which the natural frequency is 
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 ,0 0b  .  (3-30) 

The second kind of mode is non-rigid and symmetric. The mode shapes functions are 

described by 

 
  

 
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2 2
, , , , , , , , , ,

5 2 3 3 2
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x x
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   

   ,inh h i x

 
 
 
 
 
 

. (3-31) 

h and t are solved from the characteristic equations 

  4 4 2 2 2 2sin sinh 2 cos cosh 0h t h t t h t h h t t h                ,  (3-32) 

 2 2 2t h tb    ,  (3-33) 

where tb is the normalized axial load parameter 

 
2

2
b

tb
b b

PL

E I
  .  (3-34) 

The third kind of modes is non-rigid and anti-symmetric, for which the mode shapes are 

described by 

    2 2
, , , , , ,sinh sin sin sinhb i i h i h i t t i t i h iU x G x x       .  (3-35) 

h and t are solved from (3-33) and  

 cos sinh sin cosh 0t t h h t h       .  (3-36) 
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The natural frequency is calculated by 

 ,
b b

b i i

c h

L L
   ,  (3-37) 

where 

 , ,

12
h i t i

i

 
  ,  (3-38) 

and cb is the longitudinal wave speed in the beam 

 b
b

b

E
c


 .  (3-39) 

The coefficients in the mode shapes function are chosen to ensure the orthogonal 

property 

    
1

, ,1 b i b j ijU x U x dx 


  . (3-40) 

The normalized natural frequencies for the first seven modes for a center-pinned beam 

with zero axial load are listed in Table 3-2. The modes shapes for the first three modes 

are shown in Figure 3-5. 
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Table 3-2: Natural frequencies (normalized) of center-pinned beams (zero axial load). 

Mode i Natural frequency i Comment on symmetry 
1 0 Anti-symmetric 
2 1.0150 Symmetric 
3 4.4509 Anti-symmetric 
4 6.3608 Symmetric 
5 14.4236 Anti-symmetric 
6 17.8105 Symmetric 
7 30.0937 Anti-symmetric 
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Figure 3-5: First three mode shapes of the beam (zero axial load). 

Transfer function 

Assuming the forcing term bf and the corresponding displacement bw are 

  , ,
j t

b b i b i
i

f f U x e   , (3-41) 

  , ,
j t

b b i b i
i

w w U x e   , (3-42) 

and substituting them into the governing equation, it can be obtained that 

  2 2
, , ,b b b b b i b b i b ih b h b j w f         , (3-43) 
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where the orthogonal properties have been applied. 

Therefore, the transfer function is obtained as 

 , ,
,

b i b i
b i

b

w f
H

L E b
  (3-44) 

where 
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, 2 2
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b bi b b
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  
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, (3-45) 

 
2

b
b b

L

c h


  , (3-46) 

 
2

2b b

b b b

L

bh E
 


 .  (3-47) 

3.4 Diaphragm coupled with an air gap 

In this section, a continuum mechanics model is developed to describe a single 

diaphragm backed by an air gap, which can serve as a platform for studying any pressure 

sensors that have an air gap underneath the diaphragm for dynamic measurements.  

A common complication arises when a pressure sensor contains an air gap backing the 

vibrating diaphragm. To understand the dynamics of such a sensor structure, one 

technique is to employ a dynamical analogy converting the involved mechanics to a 

conventional electric circuitry form (Beranek, 1954; Olson, 1958). In this approach, 
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usually only the fundamental mode of the diaphragm is considered, and the air gap is 

replaced by an equivalent elastic spring (i.e. the air spring model). However, this much 

simplified approach has several limitations. It does not take the full structural-acoustic 

interaction into account, and thus, it cannot be used to predict the sound field in the air 

gap. More importantly for sensor design, the estimation of the fundamental frequency is 

inaccurate in some scenarios, for example, when the height of air gap is very small in 

micro-electro-mechanical systems (MEMS) pressure sensors. 

A more sophisticated approach is to use continuum mechanics governing equations to 

fully describe the structural-acoustic coupling (Dowell, Gorman Iii, & Smith, 1977; 

Gladwell & Zimmermann, 1966; Gorman, Reese, Horácek, & Dedouch, 2001; Guy, 1979; 

Pan, 1992; Pretlove, 1965, 1966; Pretlove & Craggs, 1970; Qaisi, 1988; Rajalingham, 

Bhat, & Xistris, 1995; Rajalingham, Bhat, & Xistris, 1998). The diaphragm is usually 

modeled as a thin-plate or a membrane, while the air gap is governed by a wave equation 

in terms of the pressure field or velocity potential. A geometric compatibility condition is 

assumed between the diaphragm and the air gap (i.e., equal displacement/velocity at the 

interface). For example, a multimodal analysis has been used to study the response of a 

cavity backed panel to external airborne excitation (Guy, 1979). In another work, a 

receptor-rejector system model has been used to study the vibration of rectangular and 

circular membranes backed by air cavity. It has been found that the natural frequencies of 

the coupled system are different from those obtained for an isolated membrane, an open-

end cavity, or an closed-end cavity (Rajalingham et al., 1995; Rajalingham et al., 1998). 

More recently, a similar modal analysis has been employed to study a circular disc 
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backed by a cylindrical cavity (Gorman et al., 2001). The coupling effects are studied 

using an analytical-numerical method and a finite element analysis in ANSYS. The 

numerical results are verified experimentally for a thin steel disc (radius of 38 mm and 

thickness of 0.38 mm) with a short cavity (81 mm) and a long one (255 mm). 

Although the structural-acoustic coupling of the air-backed diaphragm has been 

extensively studied, few have studied this problem from the perspective of pressure 

sensor development. Moreover, a fundamental but comprehensive understanding of the 

effects of the air gap on the diaphragm dynamics is needed. In the literature, free 

vibrations of a rectangular plate-cavity system have been studied by formulating the mass 

and stiffness matrices of the plate and the cavity numerically (Qaisi, 1988). A simplified 

equation is provided to calculate the fundamental natural frequency and it is shown that it 

increases with decreasing cavity depth. However, this study has several limitations. First, 

the coefficients of the mass and stiffness matrices for the whole system are frequency-

dependent, eliminating the possibility of using linear algebra to solve the eigenvalue 

problem. Second, the formula for the fundamental frequency only considers the 

fundamental mode of the plate and the air spring mode of the cavity. As a result, it will 

become invalid for much shorter cavity depth when the fundamental frequency of the 

whole system is comparable to the second axisymmetric mode of the plate.  

In the following subsections, a normalized solution for the plate-cavity problem will first 

be derived by using the multimodal analysis approach (continuum model). Then, a 

distinction is made between the stiffness effect and the mass effect of the air gap, and the 

solution is recast in a linear matrix form (simplified model). Next, through a 
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and the transverse displacement of the diaphragm as 

      , ,
,

, , j t
p p mn p mn m

m n

w r t W U r e    . (3-50) 

First, the transfer function of the air gap in equation (3-24) is transformed in terms of the 

diaphragm’s modes, that is 

 
, ,

,
, ,0

pr mn p st
klmn a kl klst

k l s t

P W
T H T

p a
 , (3-51) 

where 

        
1 2

, ,0 0klmn a kl p mn k mr
T U r U r rdr d




  

 
    .  (3-52) 

Combing (3-51) with the transfer function of the diaphragm (Equation (3-10)), it can be 

obtained for the coupled system that 

 , ,
,

,

pe mn p st
ap mnst

s tp

P W
H

E a
 , (3-53) 

where  

   10
, , ,

,
ap mnst klmn a kl klst p mn ms nt

k lp

p
H T H T H

E
 

 
  
  

 . (3-54) 

The natural frequencies and mode shapes of the coupled system can be obtained by 

finding the roots when the determinant of the matrix  apH
 
is equal to zero. In the 

absence of the air gap, i.e. the chamber underneath the diaphragm is sealed in vacuum, 
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one can obtain that Ha,kl = 0, and (3-53) reduces to the conventional form for the 

diaphragm (i.e., Equation (3-10)).  

3.4.2 Simplified model 

Due to the nature of the transfer function of the air gap, the transfer function for the 

coupled system derived in previous section is different from the conventional form of a 

constant mass matrix and stiffness matrix, as the coefficient in (3-25) is frequency-

dependent. In this section, the continuum model will be simplified according to the 

different effects of the various modes of the air gap. Assuming the sensor size is much 

less than the sound wavelength of interest ( << 2c0/a), which is typically true in most 

applications, only the axisymmetric modes (m = 0) need to be considered. 

Spring mode of the air gap 

For the first mode of the air gap (m = 0, n = 0), it can be obtained that β00 = 0. The 

transfer function described in (3-25) reduces to 

 2
,00

coth

tan

a
a

a a

a a

g
i

g a
H

g ga i
a a

 

        
   
 

 . (3-55) 

Further, if it is assumed that Ωag/a << 1, i.e.  << c0/g, one can obtain tan(Ωag/a)  

Ωag/a and 

 ,00a

a
H

g
  . (3-56) 
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The assumption is valid when the excitation frequency is much smaller than the acoustic 

resonance in the z direction. 

The above equation can be written in terms of the pressure change p and the change of 

gap height g as 

 0 0
,00a

p pp
H

g a g


 


, (3-57) 

which is consistent with the commonly known air spring approximation. 

Mass modes of the air gap 

For the second and higher modes of the air gap (m = 0, n  1), if we assume Ωa << β01 = 

3.8317  (or  << β01c0/a), it can be obtained that   β0ng/a, and Ha reduces to 

  2 2
,0,0 ,0a na n a a n pH M M      , (3-58) 

where 

   ,0 0 0coth / /a n n nM g a   , (3-59) 

 
  2 2

0
,0

0 0

coth / p pn
a n

n

c hg a
M

c a





   

    
  

. (3-60) 

The assumption  << β01c0/a is valid for the case when the excitation frequency is much 

smaller than the acoustic resonance in the horizontal plane. 
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Because there is a negative sign in Equation (3-58) and the reaction pressure is applied to 

the bottom surface of the diaphragm, the effect of these modes is equivalent to increasing 

the mass of the diaphragm. This effect is more pronounced for a shorter air gap. This 

phenomenon can be explained by the fact that the air moves together with the diaphragm 

at the top of the air gap and has zero velocity at the bottom. As the air gap becomes 

shorter, the velocity gradient increases, rendering a bigger reaction pressure at the 

interface, which has an opposite sign to the velocity excitation at the interface. As a result, 

the effect is equivalent to that resulted from increasing the mass of the diaphragm. 

The assumptions made in the two scenarios can be combined as  

 0 0
01min ,

c c

g a
 

 
 
 

 , (3-61) 

which means that the excitation frequency is much smaller than any acoustic resonance 

of the air gap. 

Simplified model in matrix form 

By assuming the first N modes of the diaphragm and the first M modes of the air gap are 

used, the forcing Fp and response Wp term (N1 vectors) can be written as 

 ,01 ,02 ,0

1 T

p p p p N
p

F F F
E

   F  ,  (3-62) 

 ,01 ,02 ,0

1 T

p p p p NW W W
a
   W  .  (3-63) 
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Define the stiffness and mass matrices (MM) of the air gap as 

 0 0

0

a
p

a
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p

E
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 
 
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K


 , (3-64) 
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 
 
  

M
 . (3-65) 

Define the stiffness, damping, and mass matrices (NN) of the diaphragm as 

 

2
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3 2
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2
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h
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,  (3-66) 

 
3

2

1

1
p

p N

h

a



 

    
C I ,  (3-67) 

 
3

2

1

1
p

p N

h

a
 

    
M I ,  (3-68) 

where IN is a NN identity matrix. 

The transformation matrix (MN) takes the following form 
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0001 0002 000

0101 0102 010

0( 1)01 0( 1)02 0( 1)0
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N
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 
 
  

T




   


. (3-69) 

Then, the transfer function of the air-backed diaphragm can be written in the following 

compact matrix form as 

 ap p pH W F ,  (3-70) 

where 

 2
ap ap p p ap pj    H K C M ,  (3-71) 

 T
ap a p K T K T K ,  (3-72) 

 T
ap a p M T M T M . (3-73) 

Since the diaphragm radius is assumed to be much smaller than the sound wavelength, 

the sound field impinging on the diaphragm will be uniformly distributed, which can be 

described as  j tpe  . As a result, the nth component of the forcing vector Fp can be 

obtained as 

 


 
1

, ,00
2p on p nr

p
F U r rdr

E



  .  (3-74) 

Once the displacement vector Wp is solved, the center displacement wc can be obtained as 
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 T
c p pw  B W ,  (3-75) 

where Bp is an N1 vector and its nth component Bp,0n is 

    , ,0 0 ,00 0 / 2 .p on p n p nB U r U r        (3-76) 

Results and discussion 

To investigate the effects of the air gap on the performance of pressure sensors, a 

representative pressure sensor is used. The dimensions of the sensor is a = 500 m, and 

hp = 0.5 m. It is made of silicon (E = 169 GPa,  = 0.25,  = 2.3103 kg/m3). The air in 

the gap is at room temperature conditions (p0 = 1.01105 Pa, c0 = 343 m/s).  

First, the effects of air gap on the static sensitivity of the air-backed diaphragm are 

studied. As shown in Figure 3-7, the static sensitivity decreases as the air gap becomes 

shorter. In addition, the difference in the results obtained from the continuum mechanics 

model, the simplified model, and even the air spring model (N = 1, M =1) is negligible.  

Next, the effects of air gap on the fundamental frequency of the air-backed diaphragm are 

investigated. In the continuum mechanics model, as shown in Figure 3-8, when the air 

gap is long, the fundamental frequency is close to that of the closed-ended cavity. This 

can be explained by the fact that the diaphragm has a much higher stiffness than the air 

gap so that the diaphragm can be regarded as a rigid wall for the air gap. As the air gap 

becomes shorter, the fundamental frequency increases and saturates before dropping in 

the much shorter air gap range. The air gap has two functions, one as an spring to 

increase the equivalent stiffness of the diaphragm, and the other as an added mass to 
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. (3-81) 

As g  0,   0, and 1 approaches the plateau value 1,plt 

 
2 2 2 2 2 2

02 01 02 01 11 12
1, 2 2

11 122 2plt

T T

T T

     
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
.  (3-82) 

If the diaphragm is a pure plate (without in-plane force), 1,plt is equal to 10.1034, as 

compared to 2.9490 and 11.4809 for 01 and 02, respectively. 

To estimate 1 in the down-slope stage, the simplified model (N = 2, M = 2) is used, for 

which the transfer function is (assuming coth(β01g/a)  a/(β01g) for short air gaps) 
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where 
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01 0

1 p pc h
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.  (3-84) 

From the determinant of Hap, 1 can be obtained as follows 
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where 
  2

1 12 21 11 22Q T T T T  ,  (3-86) 

    2 2 2 2 2 2
2 21 02 22 01 11 12Q T T T T      ,  (3-87) 

  2 2
3 21 22Q T T  , (3-88) 

  2 2 2 2
4 11 02 12 01Q T T    . (3-89) 

Note that Equation (3-85) is the closed-form equation to calculate the fundamental 

frequency of the coupled system in all three stages. However, as g/a  0,   0, and 1 

 0.  Therefore, 1 can be approximated by 

 4
1,

1 0

p p
dw dw

hQ g
k

Q a a





   ,  (3-90) 

where 
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11 02 12 01
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12 21 11 22
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T T
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T T T T
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
. (3-91) 

If the diaphragm is a pure plate (without in-plane force), kdw = 51.5651. 
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The two critical air gaps, marked in Figure 3-10, can be calculated from Equations (3-78), 

(3-82), and (3-90) as 

  
3

2 0 11
2 2

1, 01

1up

p p plt

g p Ta

a E h
 

 
       

, (3-92) 

 
2

1,0 pltdw

p p dw

g a

a h k




 
  

 
. (3-93) 

For the representative example, these critical values are calculated as gup = 3.0705 mm 

and gdw = 10.0491 m. 

3.4.3 Parametric studies 

Equations (3-92) and (3-93), which can be used to calculate the two critical gaps, are 

used here to study how the structural parameters affect the variation of 1 with respect to 

the air gap height. 

The first parameter to study is the Young’s modulus of the diaphragm Ep. Equations 

(3-92) and (3-93) indicate that gup is inversely proportional to Ep, while gdw is 

independent of Ep. As Ep increases (other parameters are kept constant), as shown in 

Figure 3-11(a), the up-slope region shifts to the left, but the down-slope region does not 

move. In the up-slope region, for the same air gap height, increasing Ep leads to a smaller 

1, which can be seen from equation Equation (3-78). An increase in Ep can also results 

in a narrower plateau, which disappears if Ep is larger than a critical value.  
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be seen from Equation (3-78). Also based on Equation (3-90), the slope of the down-

slope region in a log-log plot is not affected by the change of p. Decreasing p also 

results in a narrower plateau, which disappears if p is smaller than a critical value. 

In the third case, the influence of the static pressure in the air gap p0 is investigated. 

Assuming the temperature is kept constant at room temperature, the air density 0 

changes proportionally with p0. Since gup/gdw is proportional to p0/0, decreasing the air 

pressure will result in a shift of the entire curve to the left in the log-log plot, as shown in 

Figure 3-11(c). It is intuitive that as the air density becomes smaller, the air gap needs to 

be shorter to have the same spring and mass effects. 

In the last scenario, the effect of the diaphragm thickness h is studied. From Equations 

(3-92) and (3-93), it can be seen that gup/gdw is proportional to (a/h)2. Therefore, as h 

increases, the plateau region becomes smaller in the log-log plot, as shown in Figure 

3-11(d), although both the up-slope region and the down-slope region move to the left. In 

the up-slope region, as h increases, 1 decreases for a fixed air gap height g, and its slope 

with respect to g becomes smaller due to the increased stiffness of the diaphragm. In the 

down-slope region, a thinner diaphragm leads to a smaller 1. 

3.5 Modeling of diaphragms coupled through a bridge 

In this section, the previous derived transfer functions for the air-backed diaphragm and 

the bridge will be combined to model the fly-ear inspired directional microphones. 

Assume the pressure load on the left and right diaphragms are 
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 . (3-94) 

The pressure load consists of the external pressure load peL, peR, and the reaction pressure 

from the bridge prL, prR (i.e., coupling force). The reaction pressure is due to a 

concentrated force described by 
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The external pressure can be written as 
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Combining Equatoins (3-94)-(3-96), it can be obtained that 
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 . (3-97) 

The load (force per unit length) on the bridge is assumed to be solely caused by the 

reaction force; that is 

      , ,

1
1 1 j t j t

b rL rR b i b i
ib

f F x F x e F U x e
L

          ,  (3-98) 
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where 

  , , ,1 1

1
b i rL b i rR b ix x

b

F F U F U
L  

   . (3-99) 

In response to the pressure load, assume the displacement of the two plates and the bridge 

are 
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Based on Equations (3-53) and (3-44), one can obtain 
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The geometric compatibility at the diaphragm center can be described as 
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or 
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Because Up,mn(r = 0) = 0 for m ≠ 0 and the center displacement will be measured by a 

detection system, only the axisymmetric modes (m = 0) will be considered. For simplicity, 

these equations will be recast in matrix forms next. 

The forcing terms for the two plates in Equation (3-97) are written as 

 2

1
pL eL p rLF

a
 P P B  , (3-104) 

 2

1
pR eR p rRF

a
 P P B , (3-105) 

where 

    ,0 ,0,pL pL n pR pR nP P P P  , (3-106) 

    ,0 ,0,eL eL n eR eR nP P P P  , (3-107) 

   ,0 00p p nU r  B  . (3-108) 

The forcing term on the bridge (beam) in Equation (3-99) is written as 

 
1 1

b bL rL bR rRF F
L L

 F B B  , (3-109) 

where 
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  ,b b iFF  , (3-110) 

    , ,1 1
,bL b i bR b ix x

U U
 

 B B .  (3-111) 

The transfer functions in Equation (3-101) are written as 

 1pL pL
ap

pa E


W P
H  , (3-112) 

 1pR pR
ap

pa E


W P
H  , (3-113) 

 b b
b

bL E b


W F
H  , (3-114) 

where 

      ,0 ,0 ,, ,pL pL n pR pR n b b iW W W  W W W  , (3-115) 

  ,0 0 ,,ap ap n t b b iH diag H   H H  . (3-116) 

The geometric compatibility described in Equation (3-103) can be written as 

 T T
p pL bL bB W B W  , (3-117) 

 T T
p pR bR bB W B W  . (3-118) 

Combining all the above matrix form equations, the following equations in terms of the 

reaction forces can be obtained 
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1 1 2p pT T T T
p ap p bL b bL rL bL b bR rR p ap eL

b b
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1 1 2p pT T T T
bR b bL rL p ap p bR b bR rR p ap eR

b b

E Ea a
F F a

E b E b
  

   
 

B H B B H B B H B B H P  . (3-120) 

The above two equations can be rewritten in a more compact matrix form as 

 2
R R eaH F NP  , (3-121) 

where 

 1
2

p T T
R b b b p ap p

b

E a

E b
 H B H B B H B I  , (3-122) 

 
1

1

T
p ap

T
p ap





 
  
  

B H
N

B H
 , (3-123) 

  b bL bRB B B  , (3-124) 

 
eL

e
eR

 
  
 

P
P

P
 . (3-125) 

From Equation (3-121), the reaction force can be solved as 

 1 2
R R ea

F H NP  . (3-126) 

Once the reaction forces at the connecting joints are known, the displacement solutions 

for the diaphragms and the bridge can be obtained as follows 
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W P
H  , (3-127) 

 b e
sb

pa E


W P
H  , (3-128) 

where 
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p
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W
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 , (3-129) 
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BΗ
H I H N

BΗ
 , (3-130) 

 1p
sb b b R

b

Ea

b E
H Η B H N  . (3-131) 

When a sinusoidal plane sound wave impinges on the directional microphone, the forcing 

terms can be calculated as 

  
1

,0 ,00
2 exp 2 sineL n m p nr

L
P p j U r rdr  

 

   
  

,  (3-132) 

  
1

,0 ,00
2 exp 2 sineR n m p nr

L
P p j U r rdr  

 

   
  

,  (3-133) 

where pm is the pressure field at the pivot, and  is the incident azimuth. The phase term 

2L/ can also be written as 
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Table 3-3: Parameters of a representative fly-ear inspired directional microphone 

Parameters Values Parameters Values 
Diaphragm (silicon)  Bridge (silicon nitride)  

Young’s modulus Ep 169 GPa Young’s modulus Eb 290 GPa 
Poisson’s ratio  0.25 Density p 3100 kg/m3 
Density p 2300 kg/m3 Length 2L 1.2 mm 
Radius a 500 m Width b 300 m 
Thickness hp 0.5 m Thickness hb 2.5 m 
In-plane tension N0 0  Axial load 0  
Damping p 0 Damping b 0 

Air gap    
Static pressure 101325 Pa Air gap height g 250 m 
Sound speed 343 m/s   

 

For the boundary conditions, except for the top surface, the air gap is constrained by 

surrounding rigid walls (this is the default boundary condition). The translational degrees 

of freeom (DOFs) of the diaphragm and the bridge are coupled at the joints (equal 

translational displacements), and the bridge is pinned in the middle (zero translational 

displacements). 

The mode shapes and natural frequencies for the mechanically coupled 

microphone with and without considering the effects of the air gap are compared in Table 

3-4 and Table 3-5. Overall, the results obtained from the analytical model agree well with 

those obtained with ANSYS. In addition to the discretization in the FEM and the 

numerical calculation error, the slight discrepancy is largely due to the fact that the bridge 

is described by an Euler-Bernoulli beam in the analytical model, while it is modeled 

using shell elements in ANSYS. 
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respectively (using the analytical model). There are also noticeable differences in the 

mode shapes. For example, with an air gap, the displacement in the mode shapes is more 

concentrated around the diaphragm center. 

3.6.2 Comparison of the continuum mechanics model with the lumped model 

Here, the frequency response of the diaphragm obtained with the continuum mechanics 

model will be compared with that obtained from the equivalent two degrees-of-freedom 

model described in Chapter 2. To do this, the static stiffness of the diaphragm, the two 

natural frequencies, and the two damping ratios should be obtained and used in the 2-

DOF model. To simplify the problem for the validation purpose, the damping ratios are 

assumed to be zero. The other three parameters are equal to those obtained from the 

analytical model. 

The spectra of the diaphragm’s center displacement are shown in Figure 3-13 for two 

scenarios: with and without the air gap. The incident azimuth is chosen as 90 so that the 

rocking mode can be excited. Note that if the system’s damping is zero, the 

displacements of the two diaphragm centers have same absolute magnitudes. As can be 

seen from Figure 3-13(a), the continuum model can capture multiple rocking and bending 

modes, while the lumped model can only capture the first rocking and the first bending 

modes. Furthermore, the results in Figure 3-13(b) confirm that including an air gap will 

shift the natural frequencies. In both scenarios, the results obtained with the lumped 

model agree well with those obtained with the continuum mechanics model.  
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The slight discrepancy between the continuum model and the lumped model can be 

attributed to several factors. The main cause is that in the lumped model, the bridge is 

assumed to be massless. The mass of the bridge should be added to the diaphragm based 

on the equivalence of kinetic energy. The equivalent added mass can be calculated by 

    
1 2 2

0

1 1
1

2 2b b e bbh Ldx U x M U x    .  (3-135) 

From the above equation, one can obtain the equivalent mass Me 

 e bM M ,  (3-136) 

where 

 
 
 

1 2

0
2 1

b

b

U x dx

U x
 




,  (3-137) 

and Mb = bhbL. Apparently, the equivalent mass varies for different modes of the bridge. 

For example, if there is no axial loading on the beam,  is equal to 33% for the first mode, 

and 25% for the second mode. This is different from the continuum mechanics model 

where no such equivalence is needed. The results show that the lumped 2DOF model, as 

simplified as it is, captures the essential dynamics of the coupled system. 

3.7 Parametric studies 

To understand how the structural parameters of the fly-ear inspired directional 

microphone affect its performance, the following parameters should be investigated: 
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1) Separation-to-wavelength ratio. This ratio is predetermined by the 

working frequency and desired size. 

2) Damping ratios. The damping characteristics can be tuned by adding a 

plate with perforated holes in the back chamber. 

3) Natural frequencies. The frequencies for the rocking and bending modes 

are important in determining the performance characteristics of the 

coupled system. 

However, since the overall effects of these parameters are similar to what has been 

studied using the 2-DOF model in Chapter 2, the parametric studies about these 

parameters are omitted here to avoid being repetitive. In the following subsections, 

parametric studies will be carried out to study the effects of the several other key 

structural parameters on the natural frequencies of the mechanically coupled system. One 

parameter is the air gap height, which affects the diaphragm’s effective stiffness.  The 

structural parameters of the bridge that can change the effective stiffness and mass of the 

bridge relative to the diaphragm also need to be investigated. 

Given all the parameters for the circular plate and air gap, the effects of the coupling 

bridge can be studied by varying its material parameters and geometric dimensions. For 

the material parameters, changing the Young’s modulus Eb and the density b will simply 

change the stiffness and the mass of the bridge, respectively.  On the other hand, the 

effects of geometric parameters are more complicated, since they change the stiffness and 

mass simultaneously. For example, the mass of the beam is linearly proportional to the 

bridge’s width b and thickness hb. The stiffness of the beam, as described by Equation 
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(3-45), is proportional to hb
3, but independent of b. Also, the beam width does affect the 

coupling force between the plate and the bridge, as indicated in Equation (3-122). 

For simplicity, a hypothetical material will be created with modified Eb and b, which is 

used to study the effects of changing the bridge’s stiffness and mass separately. 

3.7.1 Air gap height 

As previously discussed in the study on a single circular clamped diaphragm, the air gap 

needs to be considered to obtain accurate natural frequencies and frequency response of 

the system. The same conclusion can be drawn here for the directional microphone with 

mechanically coupled diaphragms. In the air gap range as shown in Figure 3-15(a), a 

shorter air gap increases the stiffness of the diaphragm, rendering a higher rocking and 

bending mode frequencies. However, the ratio of between the two frequencies decreases 

with reduced air gap height, as shown in Figure 3-15(b). 

 

 

 



 

F

m

fu

3

A

0

th

m

fr

ca

m

by

igure 3-15: T

microphone. (a

unction of the

.7.2 Youn

A hypothetic

.1 times to 

he bridge st

modes. Howe

requencies s

an be drawn

mode to the f

y the lumped

(a) 

The effects of

a) The natura

e air gap heigh

g’s modulu

al material i

100 times o

tiffness will

ever, they ca

aturate when

n from Figur

first rocking 

d model.  

f air gap on t

al frequencie

ht. (b) The rat

s of the cou

is created w

f the origina

 increase th

annot be inc

n Eb’ is larg

re 3-16(b) is

mode canno

105 

the natural fr

s of the first 

tio of the two

upling bridg

with a modif

al value Eb.

he natural fr

creased to an

ger than a cri

s that the nat

ot be increas

requencies of 

rocking mod

o natural frequ

ge  

fied Young’s

As shown i

frequencies 

ny arbitrary

itical value. 

tural frequen

sed to an arb

(b) 

f the fly-ear in

de and first b

uencies. 

s modulus E

in Figure 3-

of the rock

y number. Ra

Another rel

ncy ratio of 

itrary high v

nspired direc

bending mode

Eb’, ranging

-16(a), incre

king and ben

ather, the na

levant conclu

f the first ben

value as indi

ctional 

e as a 

from 

easing 

nding 

atural 

usion 

nding 

icated 



 

F
th
ro
na

 

3

A

1

d

fo

d

fi

ch

igure 3-16: T
he fly-ear ins
ocking modes
atural frequen

.7.3 Densi

A hypothetic

00 times of

ensity will d

ollowing a 

ifferent shap

irst bending 

hanges. 

(a) 
The effects of
pired directio
s and bendin
ncies to the fi

ity of the co

al material i

f the origina

decrease the 

similar dow

pes. In the ra

mode to th

f the Young’s
onal microph
ng modes as 
rst rocking m

upling brid

is created w

al value b. 

natural frequ

wnward tren

ange chosen

e first rocki

106 

s modulus of 
hone. (a) The 

a function o
mode natural f

dge 

with modified

As shown i

uencies of th

nd, the vari

n in Figure 3

ing mode sta

the diaphragm
natural frequ

of Young’s m
frequency. 

d density b

in Figure 3-

he rocking a

iations of th

-17(b), the n

ays almost c

(b) 
m on the natu
uencies of th

modulus ratio

b’, ranging f

-17(a), incre

and bending 

he natural f

natural frequ

constant sam

ural frequenc
he first and se
o. (b) The ra

from 0.1 tim

easing the b

modes. Alth

frequencies

uency ratio o

me as the de

cies of 
econd 

atio of 

mes to 

bridge 

hough 

have 

of the 

ensity 



 

F

in

m

to

3

B

d

d

to

o

sy

ot

w

m

P

d

igure 3-17: T

nspired direct

modes and ben

o the first rock

.8 Summ

Based on th

irectional m

iaphragms c

o achieve a 

f the couple

ystem: one f

ther for each

with a finite 

mechanics m

arametric st

eveloped co

 
(a) 

The effects o

tional microp

nding modes 

king mode fre

mary 

he mechanic

microphone 

connected by

fundamental

ed system. T

for the mech

h diaphragm

element m

model and 

tudies are ca

ontinuum me

of the diaphra

phone. (a) Th

as a function

equency. 

cally coupli

design is p

y a coupling 

l understand

This model 

hanical coup

m coupled th

mode in AN

the lumped

arried out to

echanics mo

107 

agm’s densit

he natural fr

n of the densi

ing mechan

proposed, w

bridge. A co

ding of the s

can capture

pling of the t

hrough an air

SYS, and th

d two degr

o study the e

odel is nece

ty on the nat

requencies of

ity ratio. (b) T

nism found 

which consis

ontinuum m

structural dy

e two types 

two diaphra

r gap. The d

he equivale

rees-of-freed

effects of ke

essary for th

(b) 

tural frequen

f the first an

The ratio of n

in the fly

sts of two c

mechanics mo

ynamics and 

of essential

agms through

developed m

nce between

dom model

ey structural

he sensor de

cies of the f

nd second ro

natural freque

y, a bio-ins

circular clam

odel is devel

the perform

l coupling o

h a beam an

model is vali

n the contin

l is establi

l parameters

evelopment 

fly-ear 

ocking 

encies 

spired 

mped 

loped 

mance 

of the 

nd the 

dated 

nuum 

ished. 

. The 

to be 



108 

 

discussed in the next chapter, which cannot be carried out by using the lumped 2-DOF 

model discussed in the previous chapter.  
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Chapter 4 Fly-Ear Inspired Directional Microphones: Sensor System 

Development and Experimental Studies 

4.1 Overview of sensor system development 

As illustrated in Figure 4-1, the sensor system development consists of two parts, one for 

the mechanical components, and the other for the detection system. The mechanical part 

has a rigid substrate with two flexible diaphragms. A bridge connects the two diaphragm 

centers so that only the axisymmetric modes of the diaphragm transmit the coupling force 

via the connecting joints. The bridge is free to rotate about the pivot in the middle. To 

detect the minute diaphragm response, a detection system with high sensitivity and large 

signal-to-noise ratio (SNR) is needed. Here, a fiber optic interferometric system is used to 

detect the vibrations at the diaphragm centers where the deflection is maximal. For each 

diaphragm, an optical fiber is inserted through the back of the substrate and aligned with 

the diaphragm center. 

In the next section (Section 4.2), the development of optical detection system will be 

detailed. A large-scale proof-of-concept directional microphone is developed in Section 

4.3 to validate the mechanical coupling mechanism and the overall system development. 

Then, a fly-ear sized sensor is demonstrated to achieve the dual optimality characteristic 

at 8 kHz (Section 4.4). Finally, to best use this sensor for sound source localization, a 
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Microphones based on optical detection techniques possess several advantages over 

conventional capacitive technique, which are preferred in some applications (Bilaniuk, 

1997). In addition to the absence of parasitic capacitance, the advantages of optical 

microphones include high pressure sensitivity, high SNR, immunity to electromagnetic 

interference, and safety in hazardous and explosive environments. By incorporating fiber 

optic components into the optic detection method, a versatile and robust system can be 

constructed, which has further advantages of light weight, capability of remote operation, 

and multiplexiblity. 

As one of the optical detection methods in microphones, fiber optic interferometers (FOI) 

offer high sensitivity by measuring the change of the optical phase induced by the optical 

path difference (OPD) change.  Other advantages of fiber optic interferometers include 

immunity to electromagnetic interference (EMI), robustness in hazardous environments, 

capability of remote operation (Grattan & Meggitt, 2000; Hariharan, 2003). The most 

commonly used FOI sensors are those based on two-beam interferometry, such as the 

Mach-Zehnder, Fabry-Perot, and Michelson interferometers, as shown in Figure 4-2. 
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 max min

max min

I I
V

I I





, (4-2) 

where Imax and Imin are the maximum and minimum values of I. The highest sensitivity is 

achieved when the interferometer is operated at the quadrature points, i.e. 

 
2 1

,
4r s

m   
     (4-3) 

where 0, 1, 2,m     , and  is the wavelength of light. 

In a low coherence fiber-optic interferometry (LCFOI) configuration, a low coherent 

broadband light source is used (Grattan & Meggitt, 2000; Miao Yu, 2002). When using 

time domain signal processing, the system is usually arranged to have two 

interferometers: one sensing interferometer and one reference interferometer (also called 

read-out interferometer). The schematic of the LCFOI is shown in Figure 4-3. In order to 

obtain temporally incoherent light after the light passes the sensing interferometer, the 

OPD in the sensing interferometer Ls should be arranged to be greater than the coherence 

length Lc of the light source. When the OPDs satisfy the following conditions: 

 r s r s cL L and L L L   ,  (4-4) 

the light intensity received at the photo detector can be approximated by 

  0cosdc ac s rI I I k L L   .  (4-5) 
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Next, the uncoupled directional microphone is assembled onto a manual rotational stage. 

Using the low coherence fiber optic interferometer described in Section 4.1, the response 

of the two uncoupled diaphragms subject to a sound field can be measured, which can be 

used to obtain the characteristics of the diaphragm alone. 

Based on the continuum mechanics model described in Chapter 3, the selection of an 

appropriate material and geometry for the coupling bridge is made. Here, a steel beam is 

used as the coupling bridge. The last step is to connect the diaphragm centers with the 

coupling bridge to finish the coupled microphone, which can be placed on the rotation 

stage to study its performance for sound source localization. 

As only one tunable filter was available at the time of the experimental measurement, the 

detection system was different from that illustrated in Figure 4-4. In the modified LCFOI 

system shown in Figure 4-6, the cavity lengths of both Fabry-Perot interferometer 

(between fiber tip and diaphragm) need to be approximately equal to the cavity length of 

the tunable filter. In order for both to work at the quadrature points, the difference of 

cavity lengths of two Fabry-Perot interferometers needs to be an integer multiple of the 

light source’s center wavelength. This poses great challenges to the distance control in 

the fabrication process. For example, the amount of epoxy needs to be similar and the 

curing needs to be synchronized. The difference can be slightly adjusted by manually 

fine-tuning the thread connecting the ferrule and the plastic tube. 

The design parameters of the fabricated directional microphone are listed in Table 4-1. 

The separation-to-wavelength ratio is chosen to be about 1/10. This ratio will be bigger if 

the full width of the substrate is used instead of the distance of diaphragms in the 
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First, a band-limited white noise is generated from a speaker placed 0.5 m away from the 

microphone. The obtained microphone response spectrum exhibits multiple peaks. The 

natural frequencies corresponding to the first two peaks are 1.3 kHz and 2.2 kHz, as listed 

in Table 4-1. 

Next, a pure tone at various frequencies is used to characterize the microphone’s response 

to different incident angles. mITD as a function of incident azimuths is shown in Figure 

4-7(a) when the excitation frequency is 1100 Hz. The insets illustrate two experimentally 

obtained waveforms at the azimuth angles of 20o and 60o. The corresponding mIPD can 

be observed to change from 47o to 118o, corresponding to a mITD change from 120 s to 

297 s. When compared with the uncoupled case, mITD is amplified more than 4.4 times 

at the 90o azimuth. The experimental data compare well with the simulation results 

obtained based on the continuum mechanics model with a plane wave assumption. 

According to the fitted curve of the experimental data, the directional sensitivity reaches 

a peak at 6.5 s/deg and stays almost constant within 30 azimuth. 

The frequency response of mITD obtained at a constant azimuth of 40 is plotted in 

Figure 4-7(b). Below the first rocking natural frequency of 1.29 kHz, mITD goes up as 

the excitation frequency is increased. In the vicinity of the rocking mode natural 

frequency, mITD experiences a sudden sign change. Although the absolute value of mITD 

peaks at this frequency region, the directional sensitivity is extremely small at a large 

azimuth (e.g, when the excitation frequency is 1.3 kHz, as shown in the inset). Further 

increase of the frequency causes a decrease of mITD. In the vicinity of the bending mode 
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two natural frequencies for the rocking and bending modes can be obtained for any given 

separation-to-wavelength ratio (calculated by using the working frequency and desired 

size). Three representative systems (marked as A, B, and C) that are optimized for 

working at 2 kHz, 8 kHz, and 12 kHz are shown for an interaural separation of 1.2 mm. 

The calculated two natural frequencies are 2.36 kHz and 9.19 kHz (system A), 9.47 kHz 

and 20.23 kHz (system B), and 14.23 kHz and 26.20 kHz (system C). The spectra of ADS 

and NL in Figure 4-9(b) confirm the dual-optimality characteristic of these three systems. 

As a result, the spatial distribution of DS has a flat region within the linear range (Figure 

4-9(c)), which is also higher than those obtained at other frequencies, as shown in Figure 

4-9(d) for system B. 

As shown in Figure 4-9, the proposed miniature fly-ear inspired directional microphone 

consists of four layers, numbered 1 to 4 in the plot. Two clamped circular diaphragms 

and a coupling bridge are on the front plate layer (Layer 1). A back chamber is formed by 

Layer 2-4 with perforated holes in the middle layer, which are designed to tune the 

system’s damping characteristics. Four through holes are made at the corners of all four 

layers to facilitate the alignment during the bonding process. 
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the joints between the diaphragm and the bridge. This is followed by PECVD of the 

coupling beam, which consists of alternating layers SiO2 and Si3N4 (Figure 4-10(d)). The 

sequence is 0.8 µm of oxide followed by 0.2 µm nitride, which is repeated three times 

and capped by a final 0.2 µm of oxide on the top. The total thickness of the beam is 3.2 

µm, including 2600Å SiO2 and 600Å Si3N4. The temperature is controlled at 175C to 

avoid burning the photoresist. The coupling beam is patterned with a second layer of 

photoresist and etched by reactive ion etching (RIE), shown in Figure 4-10(e). A 

photoresist layer is patterned on the backside of the wafer to define the diaphragm 

geometry. Then, the silicon wafer is etched by deep reactive ion etching (DRIE) until 

reaching the SiO2 etch stop layer. Using the same mask, the SiO2 layer is removed also 

by RIE (Figure 4-10(f)). The process is completed after removing the sacrificial 

photoresist with an isotropic oxygen plasma ash process (Figure 4-10(g)). 
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Further, ADS and NL as a function of frequency are obtained, by using least squares as 

follows. At each frequency, mIPD is related to the incident azimuth by the following 

form 

 

tan sin

tan sin

d
j

mIPD
d

j

 


 


    
  
    
 

 (7) 

where x yj   is the unknown parameter, which can be obtained by using nonlinear 

least squares. Once  is solved, ADS and NL can be calculated by using their definitions. 

This curve fitting technique can help reduce the influences of the environmental noise, 

disturbance of sound field by the mounting fixtures, and the randomness of the 

asynchronous sampling, which is particularly important for the NL characterization. 

As illustrated in Figure 4-15(a), it can be clearly seen that the designed device does 

exhibit a similar dual optimality characteristic as the fly ear, which is, however, achieved 

at a different frequency of 8 kHz. At this frequency, the experimental value of mIPD is 

clearly a linear function of  in the range of -30    30, as shown in Figure 4-15(b). 

ADS, the slope of mIPD in this azimuth range, is estimated to be 1.69 deg/deg, which is 

10 times the DS at the midline in the acoustic stimulus (0.17 deg/deg). Such a directional 

sensitivity is only obtainable from a conventional microphone pair with a separation that 

is 10 times larger. 
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its optimal working frequency 8 kHz, the directional sensitivity is amplified by 10 times. 

Finally, a bio-inspired localization-lateralization scheme is developed and implemented 

on a robotic platform with the fly-ear inspired sensor mounted. A directional resolution of 

only 0.5 is demonstrated with this robotic platform, which is better than the fly’s 

localization resolution of 2. 
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Chapter 5 Summary  

5.1 Summary of the dissertation work 

Hearing animals mainly rely on a few directional cues for sound-source localization, 

including interaural intensity difference (IID), interaural time difference (ITD), and sound 

spectral shape difference. Since these cues are proportional to an animal’s interaural 

separation, there exists a fundamental physical constraint for sound source localization – 

a size constraint. With such a constraint, small animals, especially insects, face 

formidable challenges. The same fundamental physical constraint applies to a 

conventional microphone pair or array used for sound source localization, in which the 

separation between individual microphones need to be larger than a critical distance. 

The striking innovation found in the tachinid fly Ormia ochracea provides a new solution 

to tackle the aforementioned size constraint through the mechanical coupling between the 

eardrums. This innovation helps the fly possess a superacute directional hearing 

capability, which can inspired one to address the size constraint in acoustic sensor 

development.  

Although several fly-ear inspired directional microphones have been reported in the 

literature, their working principles cannot fully capture the essence of the fly ear 

mechanism.  This is also due to the fact that before this dissertation work, no study has 
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been reported to investigate how the fly ear’s structural parameters are tailored to 

facilitate the superior localization of the calling song of fly’s host at 5 kHz. 

This dissertation work aims to unravel the underlying science of the fly ear mechanism 

and provide a framework for developing miniature acoustic sensors for sound source 

localization. The dissertation work is summarized as follows. 

First, by using the two degrees-of-freedom (2-DOF) model and the fly ear parameters 

reported in the literature, an enhanced understanding of the underling science of the fly 

ear structure has been achieved.  Since the fly is shown to only be able to accurately 

locate its host in the azimuth range of ~ -30 to 30, two performance metrics are defined: 

average directional sensitivity (ADS) and nonlinearity (NL). When using a straight line to 

approximate the relationship between phase difference mIPD and azimuth , ADS 

represents the slop and NL is the resulting estimation error. Through an analytical study, 

it has been found that the fly possesses a unique dual-optimality characteristic; the fly ear 

achieves the maximum directional sensitivity ADS and the minimum nonlinearity NL at 

the calling song frequency of the crickets (5 kHz). This indicates that the fly ear 

represents a “nature designed optimal structure” for obtaining the best acoustic 

directional cues at 5 kHz. The 2-DOF model has also been used to study the effects of 

key parameters on the directional hearing performance, including the stiffness ratio, the 

damping ratios, and the separation-to-wavelength ratio. The key is to achieve proper 

contributions from both the rocking and bending modes. Moreover, it has been shown 

that this dual-optimality property is replicable in a synthetic device that can be tailored to 

work at any frequency or any device size. A framework has been developed to guide the 
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development of such a synthetic device. Given the target working frequency and/or 

desired size, the two natural frequencies for the rocking and bending modes have been 

obtained in this framework for both high damping and low damping scenarios. 

Parametric studies have been carried out to study the effects of the previously identified 

key parameters on the performance of the fly ear and fly-ear inspired device. 

Next, a novel bio-inspired directional microphone has been designed. It consists of two 

clamped circular diaphragms with their centers connected by a medially-pivoted bridge. 

Different from the microphones reported in the literature, this design is intended to not 

only employ the mechanical coupling mechanism but also obtain a proper contribution 

from both the rocking and bending modes. Correspondingly, a comprehensive continuum 

mechanics model has been developed to further understand the mechanism and help 

guide the design. Parametric studies have also been carried out to analyze the effects of 

key parameters, including the ratio of Young’s modulus, density and geometric 

dimensions of the beam. In particular, the results obtained with the continuum mechanics 

have shown that the air gap underneath a diaphragm has significant effects on the 

dynamics of the single air-backed diaphragm and the mechanically coupled diaphragms. 

In addition to the commonly known stiffness effect, the air gap has been shown to have a 

mass effect, which can be pronounced for short air gaps. 

For proof-of-concept, a large-scale directional microphone has been developed by using 

traditional machining and assembly tools. In the experiments, the deflections of the 

diaphragms are detected by a low-coherence fiber optic interferometer. Experimental 

results have shown that phase difference can be amplified by 4 times.  
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Built upon the design framework, continuum mechanics model, and the knowledge 

gained in the development of the proof-of-concept large-scale device, a fly-ear inspired 

MEMS directional microphone has been developed, which has the same interaural 

separation as the fly ear but achieves the dual-optimality at a different working frequency 

(8 kHz). This device consists of four layers. The top layer has two circular clamped 

diaphragms connected by a pivoted bridge, which is similar to its large-scale counterpart. 

The bottom three layers are designed for tuning the damping characteristics of the system.  

The micro-scale device has been characterized by measuring the directional cues for 

various frequencies and azimuths. The experimental results have shown that this device 

does possess the dual-optimality characteristic of the fly ear. Working at its optimal 

frequency of 8 kHz, the directional sensitivity is determined to be 1.69, which is 

equivalent to that obtainable by a conventional microphone pair of 10 times larger. 

Inspired by the fly’s localization/lateralization scheme, a control scheme for sound source 

localization has been developed and implemented on a robotic platform with two 

motorized rotational stages. The fly-ear inspired sensor is designed to have the best 

directional sensitivity and linearity in the azimuth range of -30    0. To utilize this 

dual-optimality in the fly inspired localization scheme, the sensor is steered toward the 

sound source when the source is out of the linear range, and an accurate azimuth 

estimation is made once the source falls within the linear range. A localization accuracy 

of better than ±2 (the same as the fly ear) has been demonstrated in an indoor lab 

environment. 
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The original contributions in this dissertation work are summarized as follows. 

Contribution 1: The fly ear has been revealed to be a “nature designed optimal 

structure” that achieve maximal directional sensitivity ADS and minimal 

nonlinearity NL simultaneously (dual-optimality) at the calling song frequency of 

host crickets. This finding is consistent with the fly’s localization/lateralization scheme 

in that it utilizes the linear azimuth range to achieve the best localization accuracy. The 

investigation shows that properly tuned structural parameters are as important as the 

mechanical coupling mechanism itself in designing a fly-ear inspired directional 

microphone. 

Contribution 2: A framework is established to mimic the fly ear’s dual optimality in 

a synthetic device for other frequencies and sizes. For given damping ratios, the 

natural frequencies of the rocking and bending modes are obtained as functions of 

separation-to-wavelength ratio. 

Contribution 3: A directional microphone consisting of two diaphragms connected 

by a center pivoted bridge is developed to mimic the fly ear. Different from 

previously reported work in the literature, this design is intended to use the directional 

cues as the fly does to carry out sound source localization. It does not require any 

additional sensors to measure the absolute value of pressure or pressure gradient. 

Contribution 4: A novel comprehensive continuum mechanics model is developed 

for understanding the dynamics of a fly-ear inspired directional microphone with 

mechanically coupled diaphragms. This model has been verified against a finite 
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element model in ANSYS and the equivalence of this model the 2-DOF model has been 

established. This model is expected to provide more accurate prediction of the sensor 

behavior and a better guideline for the sensor development. The effects of air gap are 

studied from the perspective of sensor design to provide guidelines for pressure 

sensors with an air-backed diaphragm. The key finding from this study is the air gap 

not only has a stiffness effect, but also a mass effect. 

Contribution 5: A bio-inspired localization/lateralization scheme is developed for 

sound source localization with a fly ear inspired sensor. With the fly-ear inspired 

sensor mounted on a robotic platform, the fly’s localization/lateralization scheme is 

implemented to achieve a standard deviation of 0.84 for the azimuth estimation. 

5.2 Future work 

Upon the completion of this dissertation work, the future work is suggested as follows.  

1) Active tuning of fly-ear inspired directional microphones. In this 

dissertation work, the framework for designing acoustic sensors to mimic the 

fly’s dual-optimality is passive. Once the sensor is designed and fabricated for 

a specific frequency, it cannot be changed and there is no mechanism to 

compensate the discrepancy between the designed value and the actual one. 

The active tuning is aimed to provide a means to fine tune some properties of 

the diaphragms or the bridge to minimize the discrepancy due to the 

fabrication process. When a continuous tuning is performed, the working 

frequencies can be swept to achieve a desired broadband operation and for 
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each of the frequency the device possesses the dual-optimality characteristic. 

One possibility to realize the active tuning is to apply a lead zirconate titanate 

(PZT) film on top of the diaphragms and/or the bridge. Biases can be applied 

to the films to change their equivalent stiffness. 

2) Integration of sensor system on a miniature platform. Although the fly-ear 

inspired sensor is small, the optical detection system is fairly bulky as it is 

built using commercially available components, such as power source, light 

source, photodetectors, and data acquisition board. Research on this topic is 

being carried out by colleagues in our research group to integrate all the 

components into a package about the size of a business card. In addition to 

optical sensing mechanism, other detection methods, for example, capacitance 

and resistance based detection methods, which are friendlier and mature to 

MEMS/circuitry integration, can also be attempted.  

3) Extension the fly-ear inspired sensor to two or three dimensions. The fly-

ear inspired directional microphone can only locate a sound source in one 

dimension (1D) (i.e., the azimuth). However, this work can be readily 

extended to locate sound source in two or three dimensions (2D or 3D). 

Lisiewski in our research group has used the same fabrication process to 

develop a fly-ear inspired directional microphone consisting of three 

mechanically coupled diaphragms on a single plane (Lisiewski, Liu, Yu, 

Currano, & Gee, 2011). By using this sensor, localization of a sound source in 

two dimensions (i.e., azimuth and elevation) has been demonstrated. Taking 

the advantage of mass production of MEMS fabrications, an alternative 
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method is to use an array of 1D directional microphones. Without increasing 

the complexity of the individual device, the directional microphone array can 

also use the existing algorithms in sound source localization. One of the 

ultimate goals is to use the fly-ear inspired acoustic sensors as the “ears” of a 

micro air vehicle. 
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Appendix A: Matlab codes and ANSYS input files 

A1 Matlab codes for the lumped two degrees-of-freedom model 

 
 
File name: getIPDNorm.m 
 
%% Calculate the interaural phase difference using the normalized formula 
% 
% IPD = getIPDNorm(eta,chi1,xi1,xi2,theta,omega) 
% 
% Input: 
% 
%   eta     -   resonance frequency ratio eta=f2/f1 
%   chi1    -   separation-to-wavelength ratio at f1 
%   xi1     -   damping factor for the first mode 
%   xi2     -   damping factor for the second mode 
%   theta   -   incident angle, deg 
%   omega   -   normalized frequency, omega = f/f1 
% 
% Output: 
% 
%   IPD     -   phase difference, deg 
  
function IPD = getIPDNorm(eta,chi1,xi1,xi2,theta,omega) 
    theta = theta(:); 
    omega = omega(:); 
    [THETA,OMEGA] = meshgrid(theta,omega); 
    Gamma = (1-OMEGA.^2+2*xi1*1i*OMEGA)./(eta^2-OMEGA.^2+2*xi2*1i*eta*OMEGA); 
    chi = chi1*OMEGA; 
    phi = 2*pi*chi.*sind(THETA); 
    nom = Gamma+1i*tan(phi/2); 
    den = Gamma-1i*tan(phi/2); 
    IPD = angle(nom./den)*180/pi; 
end 
 
 
File name: getDSNorm.m 
 
%% Calculate the directional sensitivity using the normalized formula 
% 
% DS = getDSNorm(eta,chi1,xi1,xi2,theta,omega) 
% 
% Input: 
% 
%   eta     -   resonance frequency ratio eta=f2/f1 
%   chi1    -   separation-to-wavelength ratio at f1 
%   xi1     -   damping factor for the first mode 
%   xi2     -   damping factor for the second mode 
%   theta   -   incident angle, deg 
%   omega   -   normalized frequency, omega = f/f1 
% 
% Output: 
% 
%   DS      -   directional sensitivity, DS 
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function DS = getDSNorm(eta,chi1,xi1,xi2,theta,omega) 
    theta = theta(:); 
    omega = omega(:); 
    [THETA,OMEGA] = meshgrid(theta,omega); 
    Gamma = (1-OMEGA.^2+2*xi1*1i*OMEGA)./(eta^2-OMEGA.^2+2*xi2*1i*eta*OMEGA); 
    chi = chi1*OMEGA; 
    reGamma = real(Gamma); 
    imGamma = imag(Gamma); 
    tanphi = tan(pi*chi.*sind(THETA)); 
    nom1 = 2*reGamma.*(reGamma.^2+imGamma.^2+tanphi.^2); 
    nom2 = (1+tanphi.^2)*pi.*chi.*cosd(THETA); 
    den = (reGamma.^2+imGamma.^2-tanphi.^2).^2+4*reGamma.^2.*tanphi.^2; 
    DS = nom1.*nom2./den;     
end 
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A2 Matlab codes for processing the acquired signals to calculate 

directional cues 

 
File name: getCues2Mic.m 
 
%% calculate interaural directional cues 
%   number of microphones: two 
%   syntax: [IPD,ITD,IID] = getCues2Mic(X,fc,fs) 
%       input: 
%               X       -   time signals, two columns 
%               fc      -   signal frequency 
%               bw      -   bandwidth 
%               fs      -   sampling frequency 
%       output: 
%               IPD     -   interaural phase difference, deg 
%               ITD     -   interaural time difference, sec 
%               IID     -   interaural intensity difference, dB 
%% 
function [IPD,ITD,IID,A1,A2] = getCues2Mic(X,fc,bw,fs) 
 
x1 = X(1:end,1); 
x2 = X(1:end,2); 
dt = 1/fs; 
 
%%   Amplitude 
A1 = sqrt(2)*norm(x1)/sqrt(length(x1)); 
A2 = sqrt(2)*norm(x2)/sqrt(length(x2)); 
IID = 20*log10(A1/A2); 
 
%%   Filter data 
Wn = [fc-bw/2 fc+bw/2]/(fs/2); 
[b,a] = butter(2,Wn); 
x1 = filtfilt(b,a,x1); 
x2 = filtfilt(b,a,x2); 
 
%%   Cross-correlation 
[delay,~,fig] = getDelay(x1,x2,fs/fc); 
ITD = delay*dt; 
close(fig); 
IPD = fc*ITD*360; 
IPD = mod(IPD+180,360)-180; 
ITD = IPD/360/fc; 
 
 
File name: getDelay.m 
 
 
%% Calculate the time delay between two signals 
% 
%   [delay_fit,delay_pk,fig] = getDelay(x1,x2,f,bw) 
% 
%   Input: 
%       x1      -   first signal 
%       x2      -   second signal 
%       f       -   frequency of the puretone signals 
%       bw      -   bandwidth for the filtering 
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% 
%   Output 
%       delay_fit   -   time delay after the curve-fitting 
%       delay_pk    -   time delay by finding the max 
%       fig         -   figure handle 
% 
%   peakdet.m is used to find the peaks of the cross-correlation. This is 
%   is written by Eli Billauer, and available to public  
%   http://www.billauer.co.il/peakdet.html 
 
 
 
function [delay_fit,delay_pk,fig] = getDelay(x1,x2,f,bw) 
%%  
    N = length(x1); 
    A1 = sqrt(2)*norm(x1)/sqrt(N); 
    A2 = sqrt(2)*norm(x2)/sqrt(N); 
    x1 = x1/A1; 
    x2 = x2/A2; 
    y = xcorr(x2,x1); 
    delta = (max(y)-min(y))/5; 
    [maxtab,mintab] = peakdet(y,delta); 
%%   
    if exist('f','var') && exist('bw','var') 
        Wn = [f-bw/2 f+bw/2]; 
        [b,a] = butter(6,Wn); 
        x1 = filtfilt(b,a,x1); 
        x2 = filtfilt(b,a,x2);   
    end 
     
%% only use the center peak 
    [max_v,max_i] = max(y); 
    mintab1 = sort(mintab(:,1),'ascend'); 
    [v1,index1] = min((mintab1-max_i).^2); 
    mintab2 = mintab1; 
    mintab2(index1) = []; 
    [v2,index2] = min((mintab2-max_i).^2); 
    cf_index1 = min(mintab1(index1),mintab2(index2)); 
    cf_index2 = max(mintab1(index1),mintab2(index2)); 
    cf_start = max_i-floor((max_i-cf_index1)/4); 
    cf_end = max_i+ceil((cf_index2-max_i)/4); 
    X = (cf_start:cf_end)-max_i; 
    Y = y(cf_start:cf_end); 
    X = X(:); 
    Y = Y(:); 
    p = polyfit(X,Y,2); 
    delay_fit = -p(2)/p(1)/2+max_i-N; 
    delay_pk = max_i-N;     
         
    fig = figure('Position',[100 300 1000 300]); 
    subplot(1,3,1) 
    plot(0:N-1,x1,'b-','linewidth',2) 
    hold on 
    plot(0:N-1,x2,'r--','linewidth',2) 
    legend('Mic 1','Mic 2') 
    xlabel('Sample #') 
    ylabel('Value') 
     
    subplot(1,3,2) 
    plot(1-N:1:N-1,y,'b-','linewidth',2) 
    set(gca,'xlim',[1-N N-1],'ylim',[min(y) max(y)]) 
    xlabel('Sample #') 
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    ylabel('Cross-correlation') 
     
    XX = min(X):0.2:max(X); 
    subplot(1,3,3) 
    plot(X+max_i-N,Y,'bs','markersize',6,'markerfacecolor','b'); 
    hold on 
    plot(XX+max_i-N,polyval(p,XX),'g-','linewidth',2.5) 
    vline([1 1]*delay_pk,'b-.') 
    vline([1 1]*delay_fit,'g-.') 
    xlabel('Delay [samples]') 
    ylabel('Cross-correlation') 
 
end 
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A3 Matlab codes for the continuum mechanics model 

File name: getPlateModes1Order.m 
 
%% Get the vibration modes (radial directioni) of circular clamped plate 
% for a specific order within the specified frequency range 
% 
%   Usage: 
%       [U,ALPHA] = getPlateModes1Order(m,modes,chi_t,alpha_min,alpha_max) 
%   Input: 
%       m           -   integer order number, starting from zero. 
%       modes       -   number of modes to solve 
%       chi_t       -   normalized tension parameter 
%       alpha_min   -   lower bound of normalized frequency 
%       alpha_max   -   Uper bound of normalized frequency 
%   Output: 
%       U           -   mode shape function 
%       ALPHA       -   normalized frequency 
 
function [U,ALPHA] = getPlateModes1Order(m,modes,chi_t,alpha_min,alpha_max) 
%% 
if nargin < 1 
    disp(['The first argument for order number is not specified. ' ... 
        'The default value of zero is used.']); 
end 
if nargin < 2 || isempty(modes) 
    modes = Inf; 
end 
if nargin < 3 || isempty(chi_t) 
    chi_t = 0; 
end 
if nargin < 4 || isempty(alpha_min) 
    alpha_min = 0; 
end 
if nargin < 5 || isempty(alpha_max) 
    alpha_max = Inf; 
end 
if alpha_min < 0 
    disp(['Low bound of frequency range has to be non-negative. ' ... 
        'The default value of zero is used.']) 
    alpha_min = 0; 
end 
if alpha_max <= 0 
    disp(['Upper bound of frequency range has to be positive. ' ...  
        'The default values of infinity is used.']) 
    alpha_max = Inf; 
end 
 
if modes <= 0 
    error('Number of modes has to be positive') 
end 
 
if isinf(modes) && isinf(alpha_max) 
    error(['Either the number of modes or the upper bound' ...  
        ' has to be specified']) 
end 
 
alpha2_min = sqrt((sqrt(chi_t^2+4*12*alpha_min^2)-chi_t)/2); 
alpha2_max = sqrt((sqrt(chi_t^2+4*12*alpha_max^2)-chi_t)/2); 
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syms r alpha2 real;  
% Eliminate alpha1 by substitution 
alpha1 = sqrt(alpha2^2+chi_t); 
alpha2_step = 0.2; 
 
Ur = besselj(m,alpha2*r)*besseli(m,alpha1)... 
    -besselj(m,alpha2)*besseli(m,alpha1*r); 
dUr = diff(Ur,r); 
% Apply boundary condition at r=1 
f_bnd = vpa(subs(dUr,r,1)); 
% Find the roots 
alpha2_value1 = alpha2_min; 
alpha2_value2 = alpha2_value1+alpha2_step; 
 
options=optimset('TolX',1e-6); 
count = 0; 
stop = 0; 
U = sym([]); 
while (~stop) 
    if (subs(f_bnd,alpha2_value1)*subs(f_bnd,alpha2_value2) < 0) 
        ALPHA2 = fzero(@(aa)real(subs(f_bnd,alpha2,aa)),... 
            [alpha2_value1,alpha2_value2],options); 
        ALPHA1 = sqrt(ALPHA2^2+chi_t); 
        count = count+1; 
        U(count) = besselj(m,ALPHA2*r)*besseli(m,ALPHA1)... 
            -besselj(m,ALPHA2)*besseli(m,ALPHA1*r); 
        ALPHA(count) = ALPHA1*ALPHA2/sqrt(12); 
        %   Normalize mode shape function 
        integral = vpa(U(count)*U(count)*r); 
        amn = quadl(@(radius)subs(integral,r,radius),0,1); 
        U(count) = vpa(U(count)/sqrt(amn)); 
  
    end 
    alpha2_value1 = alpha2_value2; 
    alpha2_value2 = alpha2_value1+alpha2_step;  
    if ~isempty(modes) && count >= modes  
        stop = 1; 
    end       
    if ~isempty(alpha_max) && alpha2_value1 > alpha2_max 
        stop = 1; 
    end     
end 
if count == 0 
    U = []; 
    ALPHA = []; 
end 
U = U(logical(ALPHA >= alpha_min & ALPHA <= alpha_max)); 
ALPHA = ALPHA(logical(ALPHA >= alpha_min & ALPHA <= alpha_max)); 
U = U(:); 
ALPHA = ALPHA(:); 
 
end 
 
 
 
File name: getAirModes1Order.m 
 
%% Get the vibration modes (radial direction) of cylindrical air cavity 
% for a specific order within the specified frequency range 
% 
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%   Usage: 
%       [U,BETA] = getAirModes1Order(m,modes,beta_min,beta_max) 
%   Input: 
%       m           -   integer order number, starting from zero. 
%       modes       -   number of modes to solve 
%       beta_min    -   lower bound of normalized frequency 
%       beta_max    -   upper bound of normalized frequency 
%   Output: 
%       U           -   mode shape function 
%       BETA        -   normalized frequency 
function [U,BETA] = getAirModes1Order(m,modes,beta_min,beta_max) 
%% 
if nargin < 1 
    disp(['The first argument for order number is not specified. ' ... 
        'The default value of zero is used.']); 
end 
if nargin < 2 || isempty(modes) || modes <= 0 
    modes = Inf; 
end 
if nargin < 3 || isempty(beta_min) 
    beta_min = 0; 
end 
if nargin < 4 || isempty(beta_max) 
    beta_max = Inf; 
end 
if beta_min < 0 
    disp(['Low bound of frequency range has to be non-negative. ' ... 
        'The default value of zero is used.']) 
    beta_min = 0; 
end 
if beta_max <= 0 
    disp(['Upper bound of frequency range has to be positive. ' ...  
        'The default values of infinity is used.']) 
    beta_max = Inf; 
end 
if isinf(modes) && isinf(beta_max) 
    error(['Either the number of modes or the upper bound' ...  
        ' has to be specified']) 
end 
 
syms r beta2 real;  
 
Ur = besselj(m,beta2*r); 
dUr = diff(Ur,r); 
% Apply boundary condition at r=1 
f_bnd = subs(dUr,r,1); 
 
beta_step = 0.2; 
beta_value1 = beta_min; 
beta_value2 = beta_value1+beta_step; 
 
options=optimset('TolX',1e-6); 
count = 0; 
stop = 0; 
 
while (~stop) 
    if (subs(f_bnd,beta_value1)*subs(f_bnd,beta_value2) <= 0) 
        beta_sol = fzero(@(betabeta)subs(f_bnd,beta2,betabeta),... 
            [beta_value1,beta_value2],options); 
        count = count+1; 
        U(count) = besselj(m,beta_sol*r); 
        BETA(count) = beta_sol; 
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        %   Normalize mode shape function 
        integrand = U(count)*U(count)*r; 
        amn = double(int(integrand,r,0,1)); 
        U(count) = U(count)/sqrt(amn); 
    end 
    beta_value1 = beta_value2; 
    beta_value2 = beta_value1+beta_step; 
    if modes >= 0 && count >= modes  
        stop = 1; 
    end 
    if beta_value1 > beta_max 
        stop = 1; 
    end  
end 
if count == 0 
    U = []; 
    BETA = []; 
end 
if ~isinf(modes) 
    U = U(1:max(0,modes)); 
    BETA = BETA(1:max(0,modes)); 
end 
U = U(logical(BETA >= beta_min & BETA <= beta_max)); 
BETA = BETA(logical(BETA >= beta_min & BETA <= beta_max)); 
U = U(:); 
BETA = BETA(:); 
 
end 
 
 
 
File name: getBeamModes.m 
 
%% Calcualte the mode shapes and natural frequency for a beam with 
% free-pinned-free boundary condition 
% 
% Usage: [U,ETA] = getBeamModes(modes,chi_t,eta_min,eta_max) 
%    
%   Inputs: 
%           modes   -   number of modes 
%           chi_t   -   chi_t = P*L^2/EI is the normalized axial load 
%           eta_min -   lower bound of frequency range 
%           eta_max -   upper bound of frequency range 
% 
%   Outputs: 
%           U      -   mode shapes 
%           ETA     -   natural frequency parameter 
%                       omega = sqrt(EI/mL^3)*eta^2 
% 
% Note: The beam has a length of 2L, and is pinned in the middle. x is 
% normalized so that x=+/-1 on both ends 
 
function [U,ETA] = getBeamModes(modes,chi_t,eta_min,eta_max) 
%% 
if isempty(modes) || modes <= 0 
    modes = -1; 
end 
if nargin < 2 || isempty(chi_t) 
    chi_t = 0; 
end 
if nargin < 3 || isempty(eta_min) 
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    eta_min = 0; 
end 
if nargin < 4 || isempty(eta_max) 
    eta_max = Inf; 
end 
if isinf(modes) && isinf(eta_max) 
    error(['Either the number of modes or the upper bound' ...  
        ' has to be specified']) 
end 
 
syms x et real; 
eh = sqrt(et^2-2*chi_t); 
 
options = optimset('TolX',1e-6); 
 
disp(['Solving the mode shapes and natural frequencies for' ... 
    ' the coupling beam ...']) 
fprintf(1,'\tMode #\t\tOMEGA\tType\n'); 
 
%% rigid motion 
count = 1; 
U(count) = x*sqrt(3/2); 
ETA(count) = 0; 
 
fprintf(1,'%8i\t%8.4f\tRIGID\n',count,ETA(count)); 
 
%% symmetric and anti-symmetric modes 
et_step = 0.01; 
et_min = sqrt(chi_t+sqrt(chi_t^2+12*eta_min^2)); 
et_max = sqrt(chi_t+sqrt(chi_t^2+12*eta_max^2)); 
et_le = et_min; 
fsym = (eh*et^3-eh^3*et)*sinh(eh)*sin(et)+... 
    2*eh^2*et^2*cosh(eh)*cos(et)+eh^4+et^4; 
fsym_le = double(subs(fsym,et,et_le)); 
fanti = et*cos(et)*sinh(eh)-eh*sin(et)*cosh(eh); 
fanti_le = double(subs(fanti,et,et_le)); 
 
stop = 0; 
while ~stop 
    et_ue = et_le+et_step; 
    fsym_ue = double(subs(fsym,et,et_ue)); 
    fanti_ue = double(subs(fanti,et,et_ue));   
    range = [et_le et_ue]; 
    ctrl_sym = 0; 
    ctrl_anti = 0; 
    % symmetric modes 
    if fsym_le*fsym_ue < 0 
        ctrl_sym = 1; 
        etv = fzero(@(x)subs(fsym,et,x),range,options); 
        ehv = subs(eh,et,etv); 
        count = count+1; 
        ETA(count) = ehv*etv/sqrt(12); 
        c1 = ehv^2*etv^2*(etv*cos(etv)*sinh(ehv)-ehv*sin(etv)*cosh(ehv)); 
        c2 = ehv^5+ehv^3*etv^2*cos(etv)*cosh(ehv)... 
            +ehv^2*etv^3*sin(etv)*sinh(ehv); 
        c3 = etv^5+ehv^2*etv^3*cos(etv)*cosh(ehv)... 
            -ehv^3*etv^2*sin(etv)*sinh(ehv); 
        U(count) = c1*(cos(etv*x)-cosh(ehv*x))... 
            +c2*sin(abs(etv*x))+c3*sinh(abs(ehv*x));     
        integrand = U(count)*U(count); 
        Bn = quadl(@(xx)subs(integrand,x,xx),-1,1); 
        U(count) = vpa(U(count)/sqrt(Bn)); 
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        fprintf(1,'%8i\t%8.4f\tSYM\n',count,ETA(count)); 
    end 
    % anti-symmetric modes 
    if fanti_le*fanti_ue < 0 
        ctrl_anti = 1; 
        etv = fzero(@(x)subs(fanti,et,x),range,options); 
        ehv = subs(eh,et,etv); 
        count = count+1; 
        ETA(count) = ehv*etv/sqrt(12); 
        U(count) = ehv^2*sinh(ehv)*sin(etv*x)... 
            +etv^2*sin(etv)*sinh(ehv*x); 
        integrand = U(count)*U(count); 
        Bn = quadl(@(xx)subs(integrand,x,xx),-1,1); 
        U(count) = vpa(U(count)/sqrt(Bn)); 
        fprintf(1,'%8i\t%8.4f\tANTISYM\n',count,ETA(count)); 
    end 
    %% sort the modes 
    if ctrl_anti && ctrl_sym 
        if ETA(count) < ETA(count-1) 
            eta_swap = ETA(count-1); 
            ETA(count-1) = ETA(count); 
            ETA(count) = eta_swap; 
            U_swap = U(count-1); 
            U(count-1) = U(count); 
            U(count) = U_swap; 
        end 
    end 
    et_le = et_ue; 
    fsym_le = fsym_ue; 
    fanti_le = fanti_ue; 
    if et_le > et_max 
        stop = 1; 
    end 
    if modes > 0 && count >= modes 
        stop = 1; 
    end 
end 
U = U(logical(ETA <= eta_max)); 
ETA = ETA(logical(ETA <= eta_max)); 
disp('DONE!') 
end 
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A4 ANSYS input files 

 
File name: dirMic-wo-cavity_using_shell-elements_modal.inp 
!* MODAL ANALYSIS OF TWO MEMBRANES COUPLED BY A BRIDGE 
!* NO AIR CAVITY 
 
!* uMKSv Unit: http://www.kxcad.net/ansys/ANSYS/ansyshelp/Hlp_G_COU1_3.html 
!* Length:  m  * 1e6   ->  um 
!* Force:  N  * 1e6   ->  uN 
!* Time: s * 1  -> s 
!* Velocity  m/s * 1e6  -> um/s 
!* Mass: kg * 1  -> kg 
!* Pressure Pa * 1e-6  -> MPa 
!* Density kg/m^3 * 1e-18  ->  kg/(um)^3 
!* Power W * 1e12  -> pW 
 
NMOD = 20  ! NUMBER OF MODES TO BE CALCULATED 
FREQLB = 1E1  ! LOWER BOUND OF THE FREQUENCY RANGE  
FREQUB = 1E6 ! UPPER BOUND OF THE FREQUENCY RANGE 
NDIVR = 20  ! NUM OF DIVS ALONG DIAPHRAGM’S RADIAL DIR 
NDIVBX = 30  ! NUM OF DIVS ALONG BEAM’S AXIAL DIR  
NDIVBY = 10  ! NUM OF DIVS ALONG BEAM’S WIDTH DIR 
 
!* DIMENSIONS OF THE DIAPHGRAM/MEMBRANE 
RD = 500  ! DIAPHRAGM RADIUS 
HD = 0.50  ! DIAPHRAGM THICKNESS    
 
!* DIMENSIONS FOR THE BRIDGE 
L = 600   ! HALF LENGTH 
B = 300   ! WIDTH 
HB = 2.5    ! THICKNESS 
 
!* MATERIAL LIBRARY 
E_SI = 169E3  ! YOUNG'S MODULUS OF SILICON 
NU_SI = 0.25  ! POISSON'S RATIO OF SILICON 
RHO_SI = 2.3E-15    ! DENSITY OF SILICON 
                                       
E_SIO2 = 90E3  ! YOUNG'S MODULUS OF OXIDE 
NU_SIO2 = 0.17 ! POISSON'S RATIO OF OXIDE 
RHO_SIO2 = 2.2E-15 ! DENSITY OF OXIDE 
                                       
E_SI3N4 = 290E3 ! YOUNG'S MODULUS OF NITRIDE 
NU_SI3N4 = 0.24 ! POISSON'S RATIO OF NITRIDE 
RHO_SI3N4 = 3.1E-15 ! DENSITY OF NITRIDE 
 
                                       
!* CHOOSE MATERIAL FOR THE DIAPHRAGME/MEMBRANE AND BRIDGE/BEAM 
ED = E_SI 
NUD = NU_SI 
RHOD = RHO_SI 
 
EB = E_SI3N4 
NUB = NU_SI3N4 
RHOB = RHO_SI3N4 
 
 
/PREP7 
!* ELEMENT TYPE: SOLID FOR THE DIAPHGRAM/MEMBRANE 
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ET,1,SHELL181 
 
!* MATERIAL MODEL FOR THE MEMBRANE 
MP,EX,1,ED 
MP,NUXY,1,NUD 
MP,DENS,1,RHOD 
 
!* MATERIAL MODEL FOR THE MEMBRANE 
MP,EX,2,EB 
MP,NUXY,2,NUB 
MP,DENS,2,RHOB 
 
!* REAL CONSTANT/SECTION FOR THE DIAPHGRAM/MEMBRANE 
SECTYPE,1,SHELL 
SECDATA,HD,, 
 
!* REAL CONSTANT/SECTION FOR THE BRIDGE/BEAM 
SECTYPE,2,SHELL 
SECDATA,HB,, 
 
!* GEOMETRY 
LOCAL,11,1,-L,0,0, , , ,1,1,   
LOCAL,12,1,L,0,0, , , ,1,1,   
CSYS,11 
WPCSYS,-1 
CYL4,0,0,RD, , , ,, 
 
!* MESH THE MEMBRANE 
HPTCREATE,AREA,1,,COORD,0,0,0    
AESIZE,1,RD/NDIVR, 
MAT,1 
TYPE,1 
SECNUM,1 
MSHAPE,0,2D 
MSHKEY,2 
AMESH,ALL 
 
!* COPY THE AREA TO GENERATE ANOTHER DIAPHGRAM 
CSYS,0    
AGEN,2,1, , ,2*L, , , ,0  
 
!* APPLY THE CLAMPED BOUNDARY CONDITION 
CSYS,11 
NSEL,S,LOC,X,RD 
NSEL,R,LOC,Z,0 
CM,NEDGEL,NODE 
CSYS,12 
NSEL,S,LOC,X,RD 
NSEL,R,LOC,Z,0 
CM,NEDGER,NODE 
ALLSEL,ALL 
CSYS,0 
CMSEL,S,NEDGEL 
CMSEL,A,NEDGER 
D,ALL,UX,0 
D,ALL,UY,0 
D,ALL,UZ,0 
D,ALL,ROTX,0 
D,ALL,ROTY,0 
D,ALL,ROTZ,0 
ALLSEL,ALL 
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!* NODE AT DIAPHRAGM CENTERS 
NDL = NODE(-L,0,0) 
NDR = NODE(L,0,0) 
 
!* GEOMETRY FOR THE BEAM 
CSYS,0 
WPCSYS,-1 
BLC4,-L,-B/2,2*L,B 
 
!* MESH THE BEAM 
ASEL,S,LOC,X,0 
LSLA,S 
LSEL,U,LOC,Y,-B/2 
LSEL,U,LOC,Y,B/2 
LESIZE,ALL,,,NDIVBY 
ASEL,S,LOC,X,0 
LSLA,S 
LSEL,U,LOC,X,-L 
LSEL,U,LOC,X,L 
LESIZE,ALL,,,NDIVBX 
MAT,2 
TYPE,1 
SECNUM,2 
AMESH,ALL 
ALLSEL,ALL 
 
! NODE AT THE JOINTS AND PIVOT 
ASEL,S,LOC,X,0 
NSLA,S,1 
CM,NBEAM,NODE 
NSEL,R,LOC,X,-L 
NSEL,R,LOC,Y,0 
NBL = NDNEXT(0) 
ASEL,S,LOC,X,0 
NSLA,S,1 
NSEL,R,LOC,X,L 
NSEL,R,LOC,Y,0 
NBR = NDNEXT(0) 
ASEL,S,LOC,X,0 
NSLA,S,1 
NSEL,R,LOC,X,0 
NSEL,R,LOC,Y,0 
NBC = NDNEXT(0) 
ALLSEL,ALL 
 
!* APPLY BOUNDARY CONDITION AT THE PIVOT 
D,NBC,UX,0 
D,NBC,UY,0 
D,NBC,UZ,0 
 
!* COUPLE THE MOTIONS AT THE JOINTS 
CP,NEXT,UX,NDL,NBL 
CP,NEXT,UY,NDL,NBL 
CP,NEXT,UZ,NDL,NBL 
CP,NEXT,UX,NDR,NBR 
CP,NEXT,UY,NDR,NBR 
CP,NEXT,UZ,NDR,NBR 
 
FINISH 
 
/SOLU 
ANTYPE,MODAL 
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MODOPT,LANB,NMOD 
EQSLV,SPAR   
MXPAND,NMOD, , ,0    
LUMPM,0  
PSTRES,0 
MODOPT,LANB,NMOD,FREQLB,FREQUB, ,OFF 
SOLVE 
FINISH 
 
/POST1 
SET,LIST 
FINISH 
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Appendix B: List of Publications 

Journal Publications 

1. A.P. Lisiewski, H. Liu, M. Yu, L. Currano, and D. Gee, Fly-ear inspired micro-

sensor for sound source localization in two dimensions, Journal of the Acoustical 

Society of America Express Letters, 129(5): EL166-EL171, 2011. 

2. H. Bae, X.M. Zhang, H. Liu, and M. Yu, Miniature surface-mountable Fabry-Perot 

pressure sensor construction with a 45-degree angled fiber, Optics Letters, 35 (10): 

1701-1703, 2010. 

3. H. Liu, M. Yu, and X.M. Zhang, Biomimetic optical directional microphone with 

structurally coupled diaphragms, Applied Physics Letters 93(24): 243902, 2008. 

(Selected for the January 1, 2009 issue of Virtual Journal of Biological Physics 

Research) 

4. H. Liu, L. Currano, D. Gee, T. Helms, and M. Yu, Deciphering and mimicking the 

superior sound localization of the fly. (To be submitted) 

5. H. Liu, and M. Yu, Dynamic analysis of a pressure sensor diaphragm backed with an 

cavity. (To be submitted). 

Conference Proceedings 

1. L. Sawaqed, H. Liu, and M. Yu, Robotic sound source localization using bio-inspired 

acoustic sensors, Proceedings of IMECE2012: ASME 2012 International Mechanical 

Engineering Congress and Exposition, Houston, Texas, Nov 9-Nov 15, 2012 
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2. H. Liu and M. Yu, Effects of air cavity on fly-ear inspired directional microphones: a 

numerical study, Proc. SPIE 7981 (SPIE Smart Materials/NDE): 79811V, 2011 

3. A.P. Lisiewski, H. Liu, and M. Yu, Fly ear inspired miniature sound source 

localization sensor: localization in two dimensions, Proceedings of IMECE2010: 

2010 ASME International Mechanical Engineering Congress and Exposition, 

Vancouver, British Columbia, Nov 12-Nov 18, 2010 

4. H. Liu and M. Yu, A new approach to tackle noise issue in miniature directional 

microphones: bio-inspired mechanical coupling, Proc. SPIE 7647 (SPIE Smart 

Materials/NDE): 76470P , 2010 

5. H. Liu, M. Yu, L.J. Currano, and D. Gee, Fly-ear inspired miniature directional 

microphones: modeling and experimental study, Proceedings of IMECE2009: 2009 

ASME International Mechanical Engineering Congress and Exposition, Lake Buena, 

FL, Nov 13-Nov 19, 2009 

6. H. Liu, M. Yu, and X.M. Zhang, Understanding fly-ear inspired directional 

microphones, Proc. SPIE 7292(SPIE Smart Materials/NDE):  72922M , 2009 

7. H. Liu, L. Currano, D. Gee, B. Yang, and M. Yu, Fly-ear inspired acoustic sensors 

for gunshot localization, Proc. SPIE 7321(SPIE Smart Materials/NDE):  73210A, 

2009 

8. L.J. Currano, H. Liu, B. Yang, M. Yu, and D. Gee, Microscale implementation of a 

bio-inspired acoustic localization device, Proc. SPIE 7321, 73210B, 2009 

9. H. Liu, Z. Chen, and M. Yu, Biology-inspired acoustic sensors for sound source 

localization, Proc. SPIE 6932(SPIE Smart Materials/NDE):  69322Y, 2008 
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