ABSTRACT

Title of Dissertation: Understanding and Mimicking the Fly’s Directional
Hearing: Modeling, Sensor Development, and
Experimental Studies

Haijun Liu, Doctor of Philosophy, 2012

Dissertation directed by: Professor Miao Yu

Department of Mechanical Engineering

Microphone arrays have been widely used in sound source localization for many
applications. In order to locate the sound in a discernible manner, the separation between
microphones needs to be greater than a critical distance, which poses a fundamental
constraint for the miniaturization of directional microphones. In nature, animal hearing
organs are also governed by the size constraint; the smaller the organ size, the smaller the
available directional cues for directional hearing. However, with an auditory organ
separation of only 520 um, the fly Ormia ochracea is found to exhibit remarkable ability

to pinpoint its host cricket at 5 kHz. The key to this fly’s phenomenal directional hearing



ability is believed to be the mechanical coupling between the eardrums. This innovative
solution can inspire one to find alternative approaches to tackle the challenge of

developing miniature directional microphones.

The overall goal of this dissertation work is to unravel the underlying physics of the fly
ear hearing mechanisms, and to apply this understanding to develop and study novel bio-
inspired miniature directional microphones. First, through mechanics and optimization
analysis, a fundamental biological conclusion is reached: the fly ear can be viewed as a
nature-designed optimal structure that is endowed with the dual optimality characteristic
of maximum average directional sensitivity and minimum nonlinearity, at its working
frequency of 5 kHz. It is shown that this dual optimality characteristic is only achievable
when the right mechanical coupling between the eardrums is used (i.e., proper
contributions from both rocking and bending modes are used). More importantly, it is
further revealed that the dual optimality characteristic of the fly ear is replicable in a
synthetic device, whose structural parameters can be tailored to work at any chosen
frequency. Next, a novel bio-inspired directional microphone with mechanically coupled
diaphragms is designed to capture the essential dynamics of the fly ear. To study the
performance of this design, a novel continuum mechanics model is developed, which
features two coupling modules, one for the mechanical coupling of the two diaphragms
through a beam and the other for each diaphragm coupled through an air gap. Parametric
studies are carried out to explore how the key normalized parameters affect the
performance of this directional microphone. Finally, this mechanics model is used to

guide the development of a large-scale microphone and a fly-ear sized microphone, both



of which are experimentally studied by using a low-coherence fiber optic interferometric
detection system. With the large-scale sensor, the importance of using proper
contribution from both rocking and bending modes is validated. The fly-ear sized sensor
is demonstrated to achieve the dual optimality characteristic at 8 kHz with a ten-fold
amplification in the directional sensitivity, which is equivalent to that obtainable from a
conventional microphone pair that is ten times larger in size. To best use this sensor for
sound source localization, a robotic platform with a control scheme inspired by the fly’s
localization/lateralization scheme is developed, with which a localization accuracy of

better than +2° (the same as the fly ear) is demonstrated in an indoor lab environment.

This dissertation work provides a quantitative and mechanistic explanation for the fly’s
sound localization ability for the first time, and it provides a framework for the

development of fly-ear inspired acoustic sensors that will impact many fronts.
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Chapter 1 Introduction and background

1.1 Problem of interest

Directional microphones have been widely used in a variety of applications for sound
source localization, including hearing aid devices, robotic navigation, and underwater
sensor networks (Brandstein & Ward, 2001). To build a directional microphone, there
are mainly two approaches: either the microphone itself is inherently directional, or the
microphone is omnidirectional but two or more of them form a microphone pair or array

to extract directional cues (Csermak, 2000).

In inherently directional microphones, the net pressure force deflecting the diaphragm
varies with incident azimuth. One example of inherently directional microphones used for
hearing aids is illustrated in Figure 1-1(a). The acoustic waves travel along two paths to
arrive at the diaphragm, the front wave (Wave B) acting on the external surface directly,
the rear one (Wave A) experiencing a time delay due to the mechanical screen before
reaching the internal side. The mechanical screen is typically designed to match the time
difference of sound wave propagating from the rear port to the front port so that the
sound coming from the rear is completely suppressed. On the other hand, the propagation
distance difference is maximal for sound wave from the front, which is usually the sound

of interest for the hearing aid wearers. Like a pressure gradient microphone (Beranek,



1954), the microphone’s response is proportional to the pressure gradient times the
propagation distance difference. The cardioid shape directivity pattern in Figure 1-1(b)
shows the variation of the response as the incident azimuth changes. When it is used for
sound source localization, the performance is determined by how the propagation
distance difference will change with the azimuth, which is limited by the distance
between the front port and the rear port. It should be noted that this type of directional
microphone requires an extra sensor to measure the pressure or pressure gradient in order

to decouple it from the azimuth in the directivity pattern.

Wave B =
Wave A E
—————l H
Rear Port : Diaphragm Front P
v
1\
\
Mechanical Screen
(a) (b)

Figure 1-1: An inherently directional microphone for hearing aid: (a) schematic; (b) a cardioid

shaped directivity pattern.

In the case of a microphone pair or array using omni-directional microphones, the most
popular method to determine the sound direction is based on the time delay of arrival
(TDOA) (Benesty, Chen, & Huang, 2008; Brandstein & Ward, 2001), which is
proportional to the separation between microphones. Thus, in order for a microphone pair
to detect the TDOA in some discernible manner, the microphones need to be separated
greater than a critical distance. Such distance is dependent on a number of factors,

including the signal-to-noise ratio (SNR), choice of estimator, number of samples, etc.
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Therefore, no matter how the directional microphone is constructed, there is a
fundamental size limit; the smaller the device size, the worse the localization
performance. However, it is desirable to develop miniature directional microphones for
many scenarios. One situation is when only miniature acoustic sensors are feasible, e.g.,
on a micro air vehicle (MAV) or in a hearing aid device where a smaller size is favored in
order to be cosmetically acceptable for the hearing impaired individuals. A smaller size
also means the perturbation to the primary sound field caused by the sensor itself is
greatly reduced, enabling high accuracy measurements. Furthermore, miniaturization is
advantageous from a physics viewpoint when the microphone array works in the near
field, in which the far field or plane wave assumption made in the design and analysis of
microphone arrays is no longer valid (Gay & Benesty, 2000). Many attempts have been
undertaken to deal with near-field effects by using either modal expansion or multi-
dimensional filter techniques (Asano, Asoh, & Matsui, 2000; Kennedy, Abhayapala, &
Ward, 1998; Ryan & Goubran, 2000; Zheng, Goubran, & El-Tanany, 2004). Rather than
compensating for wave-front curvature at the cost of computational complexity, by using
miniature directional microphones, one can effectively deal with the near-field effects
since the array’s aperture can be chosen to be much smaller than the wave-front curvature

(Brooks & Humphreys, 1999).

To develop miniature directional microphones for the above-mentioned applications and
other applications, a solution needs to be sought to overcome the size constraint. The
natural world has served as an inspiration for countless inventions and innovations, and it

is conceivable that miniaturization of sensor technology can significantly benefit from



biology-inspired ideas (Bar-Cohen, 2006; Bhushan, 2009; Bleckmann, Schmitz, & Von

der Emde, 2004; Vincent, Bogatyreva, Bogatyrev, Bowyer, & Pahl, 2006).

To detect the direction of a sound source, humans use the directional cues such as
interaural intensity difference (IID), also known as interaural level difference (ILD),
interaural time difference (ITD), and the spectral composition difference (Popper & Fay,
2005). When the dimension of the head is larger than one-tenth of the sound wavelength,
the sound wave is disturbed (diffraction). In this case, human brain makes use of the
spectra received from the two ears to estimate the direction of the sound wave, which are
different with respect to most directions. In the case of a narrow-band sound source, the
spectra difference reduces to IID at the center frequency. Human ears can also localize
long pure tones that are less than 1400 Hz by extracting the TDOA at the two ears. Given
that the average diameter of an adult head is 17 cm and the sound propagation speed in

air is 344 m/s, this time different is about 50 ms.

For much smaller insects, due to their limited capacities of frequency analysis, narrow-
band sound is commonly detected. Because the part of the body that the ears are placed is
about 10-50 times smaller than the human head, the diffraction occurs only at very high
frequencies, and the expected maximum time difference is only in the ranges of tens of
microseconds or even smaller (Hoy, Popper, & Fay, 1998). Even though they have much
smaller directional cues in the sound stimulus and limited neural processing capability,

some insects still possess phenomenal sound source localization abilities.

One striking example is found in the parasitoid fly Ormia Ochracea, which shows a

remarkable ability to locate the calling song (at ~ 5 kHz) of its host cricket even though
4



its ears are separated by only 520 um (Cade, 1975; Mason, Oshinsky, & Hoy, 2001;
Robert, Amoroso, & Hoy, 1992; Walker, 1993). Despite the minute directional cues (the
best possible ITD of 1.5 us and IID of less than 1 dB), the fly is able to localize the sound
source with a resolution of 2° (Mason et al., 2001), which is equal to that of humans. The
key to the fly’s exceptionally accurate directional hearing is that the fly possesses a
unique mechanical structure called the intertympanal bridge to couple the motions of the
two tympanal membranes (eardrums) (Miles, Robert, & Hoy, 1995; Robert, Miles, &
Hoy, 1996, 1998). With such a mechanically coupled structure, the IID and ITD at the
mechanical response level are amplified significantly to 13 dB and 50 us, respectively
(Robert et al., 1996). The time delay after neural processing is further amplified to 313 us,
because the latency, defined as the time difference between the onset stimulus and the

afferent neuron spike, increases as the stimulus intensity decreases (Mason et al., 2001;

Oshinsky & Hoy, 2002).

This dissertation work is aimed to achieve enhanced understanding of the hearing
mechanism of the fly ear and apply such understanding to the development of a novel

miniature directional microphone to overcome the size constraint.

1.2  Previous work

1.2.1 Directional hearing in insects
The ears of insects can be classified into two categories, the flagellar ears and the
tympanal ears (Hoy et al.,, 1998; Popper & Fay, 2005). The inherently directional

flagellar ears (also called near-field detectors), such as the antennae in mosquitoes, are



sensitive to the air particle velocity of a sound field. There have been much more studies
on the tympanal ears. Tympanal ears are characterized by three features, which include a
tympanal membrane, an air-filled sac or tracheal expansion, and an associated
chordotonal sensory organ (Hoy & Robert, 1996). There are three types of tympanel ears:
pressure receivers, pressure difference receivers, and mechanically coupled receivers

(Axel Michelsen & Larsen, 2008; Yager, 1999), as shown in Figure 1-2.

Pressure receivers Pressure difference receivers
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) (o)

Mechanically coupled receivers () Fw

Ohy ¥ N

: F 3
R O
| A Fulcrum

®Fy o 2 @ Py v?
a. .= =
F3A AFs Fq

Figure 1-2: Tymapnal ears in insects. Pure pressure receivers in large noctuid moths (a). Pressure
difference receivers in locusts and grasshoppers (b), bushcrickets (c), field crickets (d).

Mechanically coupled pressure receivers in tachinid flies (e), and sacrophagid flies (f). (Popper &

Fay, 2005)

The main difference between the three types of ears is how the two ears are coupled.
There is no coupling in the pure pressure receivers, see Figure 1-2(a). Due to the large
size of this category of insects relative to the sound wavelength, the main directional cue

used for the pressure receivers is IID. In the pressure difference receivers, shown in



Figure 1-2(b)-(d), the sound pressure are applied to both the external and internal surface
of the tympanum. The vibration of the tympanum can be excited by the sound amplitude
difference or by the phase difference. Due to the smaller size of the insects in this
category (usually a fraction of sound wavelength), the frequency-dependent phase
difference plays a more important role than the amplitude difference. The mechanically
coupled pressure receivers are found in the smallest insects, such as the parasitoid flies,
as shown in Figure 1-2(e)-(f). In this case, the pressure is applied only to the external
surface of the tympanum. The average pressure causes the ipsilareral and contralateral
ears to move in phase (called bending mode or translational mode), while the pressure
difference causes the two ears to move out-of-phase (called rocking mode or rotational

mode). A typical response of the ears is a combination of these two modes.

It has been found that the parasitoid fly Ormia ochracea (tachinid family) (Miles et al.,
1995; Robert et al., 1996) has superior performance compared with the fly Emblemasoma
sp. (sacrophagid family), which lacks a central fulcrum (Robert, Miles, & Hoy, 1999).
The ear of the fly Ormia ochracea also differs significantly from that of the cricket hosts
of both parasitoid flies, where the tympanal is a four-input pressure difference system

(Axel Michelsen & Larsen, 2008; A. Michelsen, Popov, & Lewis, 1994).

By localizing the calling song of the male cricket, the parasitoid fly Ormia ochracea
locates its host and deposits its larvae on it (Cade, 1975; Mason et al., 2001; Robert et al.,
1992; Walker, 1993), as shown in Figure 1-3. Although its ears are separated by only 520
pm (the best possible ITD of 1.5 pus and IID of less than 1 dB) (Robert et al., 1996), a
phonotactic experiment has shown that fly can resolve an azimuthal deviation as small as
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2° when a loudspeaker was used to broadcast a cricket song (Mason et al., 2001). It has
been found that the key to this remarkable localization ability is that the two tympana are
coupled by a cuticular bridge pivoted about its center (Miles et al., 1995; Robert et al.,

1996), as shown in Figure 1-4.

Figure 1-3: Photographs of fly Ormia ochracea on the back of a cricket. (Lab of Prof. Ronald R.
Hoy, http://hoylab.cornell.edu)

Figure 1-4: Equivalent lumped model (two degrees-of-freedom (2-DOF) model ) of the fly ear
where each eardrum is modeled as a rigid bar supported by a spring (k;, k) and a dashpot (ci, ¢,),
and the bridge connecting the two eardrums is modeled as a combination of a spring (k;) and a

dashpot (c3). (Miles et al., 1995)



The whole process from the acoustical input to the neural time difference is depicted in
Figure 1-5. First, when the tympana are excited by a sound wave, the minute ITD and IID
are transformed to the cues at the mechanical response level; that is, mechanical 11D
(mIID) and mechanical ITD (mITD). It is found that the ipsilateral tympanum is 50 ps
ahead of the contralateral one, and its amplitude is about 10 dB larger. Next, when the
vibrations of the tympana are detected by the sensory organs (acoustical afferents), the
directional cues are converted to the neuron latency, defined as the time delay between
the sound stimulus and the first spike. It is striking that the latency difference between the
two ears (neuron ITD) further amplifies mI/TD (Robert & Gopfert, 2002). The underling
mechanism is found to be the intensity-level dependent latency shift, in which the latency
and the stimulus intensity are inversely related, as shown in Figure 1-6(a) (Oshinsky &
Hoy, 2002). Finally, the neuron ITD is processed via the inter-neuron cross-correlation

and a decision is made by the Central Nervous System (CNS).

In addition to the latency coding scheme as described above, the fly may use a population
coding scheme, where the number of active afferents depends on the sound stimulus
intensity, as shown in Figure 1-6(b). It is due to the fact that different afferents have

different thresholds to elicit spikes.
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Figure 1-5: The auditory acuity of the fly ear. (a) The acoustical inputs. ITD is 1.45 ps and IID is
too small to be measured. (b) The mechanically coupled tympanal ears to amplify the acoustical
inputs. (c) Directional cues at the mechanical response level. mITD is about 50 ps. (d) Time

difference at the neural level compared with ITD and mITD. (Robert & Gopfert, 2002)

In terms of the relationship of the coding scheme to the available directional cues (i.e.,
mITD and mlIID), the latency coding uses a combination of both, while the population
coding solely utilize mIID. Whether the latency or population coding scheme is used by
the fly’s CNS is not clear yet (Oshinsky & Hoy, 2002). However, it should be noted that
in latency coding, the latency difference between the ipsilateral and contralateral afferents
depends on the stimulus intensity, as shown in Figure 1-6(a). It has been shown that the
neuron ITD increases with decreasing stimulus intensity. This may indicate the fly uses
both coding schemes, which means both m/TD and mlIID are available to the fly for

carrying out sound source localization.
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Figure 1-6: Coding schemes for directional sensitivity in the auditory system of the fly Ormia. (a)
Latency coding scheme where there is a latency difference in the spikes of the predominant type 1
afferents. (b) Population coding scheme where the number of active afferents depends on the

stimulus intensity. (Oshinsky & Hoy, 2002)

Answers have been sought for an important question: when the directional cues are made
available to the CNS, and how does the fly localize its cricket host? In the experiments
carried out by Mason, et al, the fly was found to be able to reliably locate the sound
source by continuously turning the midline of its head towards the speaker (Mason et al.,
2001). When the turn size was measured as a function of the speaker azimuth, a sigmoid
response curve was found, as shown in Figure 1-7. It was proposed that sound source
localization ability of the fly is simply limited to lateralization when the source is beyond
~20° azimuth, namely just deciding if the source is from the left or right. Only when the

source is within ~20° azimuth, the fly can truly localize the calling song.
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Figure 1-7: Turn size of fly Ormia ochracea as a function of speaker azimuth. (Mason et al., 2001)
In another study, the fly was found to have ability to distinguish the elevation in the
vertical plane, but the performance is not as good as that in azimuth (Arthur & Hoy,
2006). Moreover, the phonotactic experiment carried out by Muller and Robert
demonstrated that the fly can localize the sound source in three dimensions and land in
the vicinity of a loudspeaker, even after the sound is turned off during the latter half of

the trajectory (Muller & Robert, 2001).

1.2.2 Fly-ear inspired directional microphones
The observations of the directional hearing ability of the fly in the biological experiments
have elicited a variety of research activities to study the fly’s hearing mechanism from

the mechanical perspective and to seek novel bio-inspired designs for sound localization..

Inspired by the fly ear, Miles et al have presented pioneering work in developing
miniature directional microphones (Cui et al., 2006; Miles et al., 2009; Yoo, Gibbons, Su,
Miles, & Tien, 2002). Guided by a two-degree-of-freedom (2-DOF) model (Miles et al.,
1995), these microphones typically consist of two micro-machined poly-silicon plates

that are supported by a flexible pivot, as shown in Figure 1-8(a). Typical dimensions of
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these microphones are about 1 mm x 2 mm. When a sound wave is incident on these
microphones, the pressure difference causes the two plates to rotate in opposite directions

(rocking mode) while the average pressure causes them to move in the same direction

(bending mode).

6!
Sound wave\\\\{‘i
. Diaphragm

(B—

Immovable post

(a) (b)

Figure 1-8: (a) A fly-ear inspired differential microphone (Miles et al., 2009). (b) A conventional

pressure gradient microphone (Beranek, 1954) .

In these microphones, because the pivot is very compliant and the diaphragms are rib-
reinforced, the natural frequency of the rocking mode (15220 Hz) is far higher than that
of the bending mode (735 Hz) and the working frequency (800 Hz) (Miles et al., 2009).
In this way, the influence of the bending mode to the microphone response is greatly
suppressed, and the rocking mode is primarily utilized. The intention of this design is to
make the diaphragm have a good rotational sensitivity even when subject to a minute

sound pressure gradient (Miles et al., 2009).

In essence, the above mentioned differential microphones are similar to the conventional
pressure gradient microphone as shown in Figure 1-8(b), in which the driving force is

given by
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sz(a—pcosﬁjSAl, (1-1)

Ox

where S is the diaphragm area, Op/Ox is the pressure gradient in the propagation direction
x, Al 1s the sound propagation path difference, and @ is the incident azimuth (Beranek,
1954). For comparison, in the design of the pressure differential microphone by Miles et
al, the driving moment for the rocking mode is given by

MDz(a—psinﬁJlA, (1-2)

Ox

where I, is the area moment of inertia about the fulcrum (Miles et al., 2009). The
difference is that the sound waves are applied to both sides of the diaphragm in the
conventional design, while in microphones developed by Miles group, the sound wave is

applied on the external side of a rigid plate that rotates about its pivot.

As for the detection method, a Polytec laser vibrometer (OFV 302 optical head and OFV-
2100 electronics unit) is used in the early system (Yoo et al., 2002). Later designs (Cui et
al., 2006; Miles et al., 2009) are based on an optical detection system demonstrated by
Hall et al (Hall et al., 2005; Hall & Degertekin, 2002; Hall, Okandan, Littrell, Bicen, &
Degertekin, 2007). The structure is similar to a typical capacitive acoustic sensor, except
the back electrode is shaped as an optical diffraction grating used in an optical
interferometer system, which uses vertical-cavity surface-emitting laser (VCSEL) as the
light source. The diaphragm deflection is obtained by measuring the intensity of reflected
beams with different diffraction orders. A bias voltage is applied to the two plates to

adjust the initial gap to achieve maximal sensitivity.
14



The directivity pattern achieved by this differential microphone is a figure eight pattern,
as shown in Figure 1-9 for its response to an 800 Hz sound wave (Miles et al., 2009). To
obtain this directivity pattern, the sound source is at a fixed location above the diaphragm
plane while the microphone is mounted on a rotational stage. In this setup, it is assumed
that the pressure gradient is constant at the microphone, and as a result its response is

proportional to | cos@|, where @is the azimuth angle.

Another similar fly-ear inspired directional microphone is shown in Figure 1-10(a),
which makes use of a comb fingers based electronic readout (Touse et al., 2010). It
consists of two square wings (1 mm x 1 mm) connected by a 500 um bridge. The entire
substrate under the wings is removed to prevent the squeezed film damping. The two
natural frequencies are at 2689 Hz and 5931 Hz, which were measured by a laser
vibrometer. Because of the large surface area of the flexible wings, the measured
frequency response of the microphone has a much higher peak at the bending mode
natural frequency than that at the rocking mode natural frequency, which is different from

that obtained from the microphone developed by Miles group (Miles et al., 2009).
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Figure 1-9: The measured directivity pattern (black solid line) and the ideal pattern (red dashed
line) of the diaphragm of a fly-ear inspired pressure differential microphone (Miles et al., 2009).
The sound frequency is 800 Hz.

When this microphone is excited by a sound wave at the bending mode frequency, the
sound wave reaches the front and back sides of the wings through different propagation
paths. Similar to conventional pressure gradient microphones, the net sound pressure that
bends the flexible wings is proportional to | cosé |, when the sound wavelength is much
larger than the sensor dimensions. As a result, a |cosé pattern is observed for its angular

response, as shown in Figure 1-10(b).
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Figure 1-10: A fly-ear inspired directional microphone developed by Touse et al. (a) Photograph

of the sensor consisting of two square wings connected by a bridge and pinned to the substrate.

The inset shows scanning electron microscope image of one section of the comb fingers used for

electronic readout of amplitudes of wing oscillations. (b) Normalized directivity pattern compared

to a sine wave at the bending mode natural frequency of 5931 Hz. (Touse et al., 2010)

In another design, a circular bronze diaphragm with its center supported by a gimbal is

proposed (Ono, Arita, Senjo, & Ando, 2005; Ono, Saito, & Ando, 2003; Saito, Ono, &

Ando, 2002), as shown in Figure 1-11. The radius and thickness of the diaphragm are

10.8 mm and 30 um, respectively. This diaphragm structure has one in-phase mode and

two out-phase modes for localization of the sound source in a two-dimensional plane.
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Figure 1-11: Microphone design with a gimbal supported diaphragm. (a) Top view of the circular
diaphragm. (b) Cross-section view. (Saito et al., 2002)

A laser vibrometer is used to detect the vibrations at four points on the diaphragm
(forming a 10 mm x 10 mm square), from which the in-phase and two reversed-phase
waveforms can be calculated. Because the wavelength is much larger than the diameter of
the diaphragm, the in-phase vibration is independent of the sound source location. Thus,
from the two reversed-phase waveforms, the azimuth and elevation angles can be

obtained.

More recently, another gimbal diaphragm design with a clover-stem-like structure as the
center pivot is reported (Chen & Cheng, 2012). The analysis shows that this new design

can achieve 47% improvement of net diaphragm displacement.

1.3 Motivation for this dissertation work

While it appears that the puzzle of the fly-ear mechanism has been solved, there are still
many unresolved questions about the fly’s superior sound source localization capability.
To unravel the underlying science of the fly ear, this dissertation seeks to answer the

following important but largely unexplored fundamental questions: i) how have the
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structural parameters of the fly ears been tailored for achieving its superior localization
ability at 5 kHz, ii) does the fly ear represent a natural optimal structure to facilitate the
fly’s unique localization-lateralization scheme, and iii) can a synthetic device be

developed to truly replicate the fly-ear characteristics.

Furthermore, another goal of the dissertation work is to develop novel fly-ear inspired
miniature directional microphones for sound source localization. Although various fly-ear
inspired directional microphones have been proposed and developed, there are several

major limitations in the existing work.

First, the key to the superior directional hearing of the fly Ormia ochracea is the
mechanical coupling, which enables great amplification of the minute directional cues at
the acoustic stimulus level to much higher values at the mechanical response level (Miles
et al.,, 1995). Moreover, the coupling bridge in the fly ear has a finite stiffness, which
suggests that proper contribution from both the rocking and bending modes of the fly ear
structure are utilized. However, in the differential microphone design (Miles et al., 2009),
the rocking mode is greatly suppressed, and only the bending mode is used. Similarly, in
a later reported directional sound sensor, only the second mode (bending mode) is used

(Touse et al., 2010).

Second, the above mentioned directional microphones (Miles et al., 2009; Touse et al.,
2010) have a similar working principle to a conventional pressure gradient microphone,
in which the response amplitude depends not only on the sound source direction, but also
on the sound stimulus intensity or the pressure gradient. This is similar to a monaural

hearing system. Due to the limitation of such a system, an additional sensor is required to
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measure the local sound pressure or pressure gradient in order to determine the sound
source direction (Miles et al., 2009; Touse et al., 2010). In contrast, mostly animals,
including the fly Ormia ochracea, rely on binaural hearing in which the difference
between the signals received by the auditory organs is utilized. These interaural
directional cues are usually much more reliable and accurate than the purely intensity

based monaural hearing, as they are independent of the excitation sound level.

Third, to detect the minute diaphragm response in miniature microphones, a detection
system with high sensitivity and large signal-to-noise ratio (SNR) is needed. There are a
variety of methods that have been used to detect the deflection of the diaphragm,
including piezo-resistive, capacitive, and optical techniques (Eaton & Smith, 1997).
Touse group uses an electronic readout with comb fingers to implement a capacitive
detection system (Touse et al., 2010). Although it has better pressure sensitivity and less
temperature sensitivity over piezo-resistive microphones, capacitive detection technique
suffers by the excess signal loss from parasitic capacitance and the requirement of
expensive and bulky high-impedance preamps at the sensor head. In addition, when the
size is reduced, capacitive microphones are very susceptible to the mechanical noise due
to molecular agitation, and thus a tradeoff has to be made between the sensitivity and the
noise floor. Miles group intended to use the diffraction-based optical displacement
detection system (Hall et al., 2005). However, this optical detection system has not been
integrated with its directional microphone design yet, and the data reported in the
literature were obtained by using laser Doppler vibrometer (Miles et al., 2009). In this

dissertation work, a versatile and robust detection system based on low-coherence fiber
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optic interferometry will be developed. It has advantages of optical microphones include
high pressure sensitivity, high SNR, immunity to electromagnetic interference (EMI), and

safety in hazardous and explosive environments.

14 Overview of the dissertation work

The overall goal of this dissertation work is to develop an enhanced understanding of the
underlying science of the fly ear’s hearing mechanism and use this understanding to
design, develop, and study a novel bio-inspired miniature directional microphone for

sound source localization.

This dissertation work includes the following three research thrusts.

Research thrust 1: Achieve an enhanced understanding of the underlying science of

the fly’s hearing mechanism.

Based on the equivalent 2-DOF model of the fly ear and its structural parameters reported
in the literature, this research thrust is aimed to provide a quantitative and mechanistic
explanation for the fly’s superior sound localization ability at SkHz and establish a
correlation between the fly ear’s structural characteristics and its localization
performance. The gained understanding will be used to establish a framework for

developing synthetic devices that can capture the characteristics of the fly-ear.

Research thrust 2: Carry out analytical and numerical investigations into a fly-ear

inspired sensor with structurally coupled diaphragms.
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In this research thrust, a fly-ear inspired directional microphone design is proposed that
fully incorporates the fly ear’s mechanical coupling mechanism and its unique
characteristics revealed in the first research trust. To achieve a fundamental
understanding of the structural dynamics of the sensor, a continuum mechanics model
will be developed first, which will feature two coupling modules, one for the mechanical
coupling of the two diaphragms through a bridge and the other for each diaphragm
coupled through an air-backed cavity. Parametric studies will then be conducted to

investigate the effects of key parameters on the sensor performance.

Research thrust 3: Develop novel fly-ear inspired directional microphones and carry

out experimental studies on these microphones for sound source localization.

In this research thrust, the established framework and mechanics model for the fly-ear
inspired directional microphone will be first used to develop a large-scale proof-of-
concept sensor. A low-coherence fiber optic interferometer system will be developed to
detect the microphone’s responses. Following a similar approach, a fly-ear sized
miniature directional microphone will be developed, which captures the fly ear’s essential
characteristics. Moreover, a fly-ear inspired localization/lateralization scheme will be
developed and implemented on a robotic system that aims to achieve a comparable

localization accuracy of the fly.

The rest of this dissertation is organized as following. In Chapter 2, by using an
equivalent 2-DOF model, the fly ear’s unique characteristic, i.e., dual optimality at its
working frequency 5 kHz, will be revealed and studied. Then, a framework will be

established to mimic the fly’s dual optimality feature in a synthetic device for any
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frequency or size. In Chapter 3, the design of a bio-inspired directional microphone will
be described, and a continuum mechanics model will be developed and used to study the
performance of the bio-inspired directional microphone. The effects of an air gap on the
sensor characteristics will also be investigated. In Chapter 4, the detection system based
on low-coherence fiber optic interferometer will be described. The fabrication process
and experiment results of a large-scale proof-of-concept directional microphone will be
presented. Then, the previously established framework will be used to develop a fly-ear
sized acoustic sensor that has dual optimality characteristic at 8 kHz. Further, a bio-
inspired localization scheme will be implemented on a robotic platform. In Chapter 5, the
dissertation work and the contributions will be summarized along with an outline for

future work.
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Chapter 2 Understanding the bio-physics of the fly ear: dual-

optimality

In the literature (Miles et al., 1995), a two-degree-of-freedom (2-DOF) model of the fly
ear has been used to investigate the exceptional directional hearing ability of the fly.
However, no further efforts have been made to explain whether the fly ear represents a
natural optimal design and how the structural parameters of the fly ear are evolved to
facilitate the superior localization performance at its working frequency of 5 kHz.
Furthermore, the fly’s unique localization/lateralization scheme (Mason et al., 2001) has
never been well understood. In this chapter, the equivalent 2-DOF model and the fly ear
parameters obtained experimentally (Miles et al., 1995) will be used to unravel the

underlying physics of the fly ear mechanism.

2.1 Lumped model of the fly ear and its analytical solution

In the 2-DOF model (Miles et al., 1995), as shown in Figure 2-1, each tympanum is
modeled as a mass-spring-dashpot system, i.e. a mass (m;, m,) supported by a spring (ki,
ky) and a dashpot (c;, ¢2). The two masses are connected by a torsion spring k3 and a
dashpot c3. All the parameters used to study the fly ear structure are listed in Table 2-1 as

reported in the literature (Miles et al., 1995).
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Figure 2-1: Schematic of the fly ear and its equivalent two degrees-of-freedom model.

Table 2-1: Parameters used in the lumped model for the fly ear (Miles et al., 1995)

Parameters Values

Mass of bar m 2.88x10" kg
Translational spring &y, k, 0.576 N/m

Translation dashpot cy,c, 1.15%x10° N s/m
Torsional spring k; 5.18 N/m

Torsional dashpot ¢; 2.88x10” N s/m
Separation of force locations d 1.2x10° m
Tympanum area s 0.288x10° m?
Excitation frequency @ 3.14x10* rad/s (5 kHz)
Sound speed ¢ 344 m/s

The governing equations of the lumped model can be written as follows

X1 X1 xl Fil
M +C +K = n (2-1)
X, FzJ
X2 X2
where
m
M { } (2-2)
m
¢ tc c
c { e G } o
[ c, +¢
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K_k1+k3 k, oy
|k kytk | (2-4)

For free vibrations, the natural frequencies and mode shapes of the system can be

obtained as

o, =k /'m0, = J(k +2k)/ m, (2-5)

_1 _1 6
V=1 =, (2-6)

The two eardrums move 180° out of phase in the first mode (rocking mode), and in phase

in the second mode (bending mode). The two modes are illustrated in Figure 2-2.

Rocking mode Bending mode

Figure 2-2: Vibration modes of the fly ear — rocking mode and bending mode.

Assuming the eardrum is much smaller than the sound wavelength, the harmonic forcing

terms due to the sound pressure can be written as

F Jjodsin@/2c

1 i i

{F}:p"s'e‘/ { }:p (pvipv), @)
2 e

where p; and p; are the modal forces that can be written as

p =jsin(¢/2),p, =cos(¢/2), (2-8)
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and ¢ is the initial phase difference at the acoustic stimulus. Note that
p=wdsin@/c=2rysind, (2-9)
where y is the ratio between the separation and wavelength; i.e.
y=d/A. (2-10)

By using modal analysis (Meirovitch, 2001), the modal coordinates of the response can

be obtained as

ulzpos 2p1 : ,u2:p°S . 2172 : , (2-11)
k 1-Q7+2jQ¢8 k, n°=Q°+2jnQ¢,

where Q is the frequency normalized by the first natural frequency
Q=0/o, (2-12)

n is the ratio between the two natural frequency as the following

n=w,/ o =1+2k /k , (2-13)

and & and & are the damping ratios defined by

& =¢ /(2a)1m), (2-14)

&, :(c1 +203)/(20)2m). (2-15)
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In terms of the physical coordinates of the two DOFs, the responses can be determined to

be

{x‘}:{Al}e/m _ P cos(4/2) o {F+jtan(¢/2)}’ 2-16)

ke 1-Q%+j26Q T —jtan(g/2)
where I is the unit modal response ratio defined as

1-Q° + j2£Q

I'= 2 2 . .
n —Q +j2né,Q

(2-17)

Note that ¢ represents the phase difference of the incident sound pressure applied to the

eardrums, which determines the ratio of modal forces p; and p; as

P/ p,=jtan(4/2). (2-18)

The directional cues, m/ID and mechanical interaural phase difference (m/PD) can be

obtained from the mechanical responses of the two eardrums as

A I+t /2
mlID =20log,, 4l _ 201og,, T+ jtan(g/2) : (2-19)
|A2| ‘F—jtan(¢/2)
'+t /2
mipp = oA _ LrJtan(4/2) (2-20)
4, I'—jtan(¢p/2)
The range of mIPD is from -rt to t. mITD can be calculated from mIPD by
IPD
mITD == (2-21)
w
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The derivative of mIPD with respect to € is defined as the directional sensitivity (DS);

that is,

ps = miFD. (2-22)
00

To have a better understanding of how the mechanical coupling helps amplify the
directional cues, the solution of the 2-DOF model is interpreted in the complex plane. In
Figure 2-3, the trajectory of I' is first drawn, and a point D is selected for any given
frequency Q. When the azimuth & increases from 0° to 90°, point B (jtan(¢#/2)) and point
C (vtan(¢@/2)) moves along the vertical axis from the origin to the farthest point possible.

Consequently, mIPD can be interpreted as the angle between vectors DB and DC, and

mlID as the magnitude ratio of these two vectors.
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Figure 2-3: Interpretation of mI/PD and m/ID on a complex plane. I" is the unit modal response
ratio, and ¢ is the initial phase difference at the acoustic stimulus. mIPD is equal to the angle

between DB and DC , and mlID is equal to the vector length ratio ‘ﬁj‘ /‘ﬁ;‘ )

This geometric representation can help us explain how the mechanical coupling helps
amplify the directional cue. First, as long as point D is not on the real axe, vectors DB
and DC have different lengths, rendering a nonzero m/ID. This also implies that in order
to have significant amplification of m/ID, the damping of the system cannot be close to
zero. Second, to explain how the phase difference is amplified, let us assume point D is
on the real axe (i.e., zero damping). In this case, m/PD and ¢ have the following

relationship

¢ i
tan % (2-23)
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To have the phase difference amplified, i.e. [m/PD| > |@, |I'| has to be less than one (| <

1), which requires that the excitation frequency is below a critical frequency, namely

(2-24)

From this geometric representation of the directional cues, the following characteristics

of the mechanically coupled 2-DOF system can be observed. As #increases, points B and

C move further away from the origin, and thus the angle between DB and DC increases.

In other words, mIPD increases/decreases monotonically with respect to €. It can also be

proven that mIID achieves maximum when DB is perpendicular to DC . To prove this,

let

_ tan(¢/2)

a=/T. (2-25)
T

Then the two directional cues m/ID and mIPD can be written as

2 . .
miID =20log,, \/l+z‘2 +27s¥na ~20log,, 1+‘1151$ , (2-26)
I+7°-2rsina 4. _Ddsina
T
-1 1_T2
mlIPD = cos (2-27)

\/(1—72 )2 +477 cos’ & '

It can be readily verified that when 7= 1, mIPD is equal to 90°, and |m/ID| reaches the

maximum; that is,
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l+sina

max |m1]D| = ‘1Olog10 . (2-28)

l-sinx

If mIID needs to be a monotonic function of &, mI/PD cannot exceed 90°. This implies

that there is a tradeoff between the two directional cues.
2.2  Parametric studies

In this section, the analytical solutions obtained in the previous section will be used to
investigate the effects of key parameters in the lumped model on the characteristics of
directional cues. For sound source localization, the relative relationship between the two
ears is more important than the transfer function of each individual ear, although they are
closely related. As such, three parameters are identified in Equation (2-19), namely the
stiffness ratio ks/k; (which determines the natural frequency ratio @,/®;), damping ratios
& and &, and separation-to-wavelength ratio y = d/A. All these parameters affect the

relative contributions from the rocking and bending modes.

2.2.1 Stiffness ratio

The coupling strength is determined by the stiffness ratio k3/k;, which is related to the
natural frequency ratio 7 = @/, by 1* = 142ks/k;. As the coupling becomes stiffer (7
becomes larger), the contribution from the rocking mode is more dominant than that from
the bending mode. In Figure 2-4, the frequency spectra and spatial distributions of m/PD
are compared for three coupling scenarios: =2, 7 =4.36, and 1 = 10. Since the mI/PD
is 180° at the rocking mode frequency and 0° at the bending mode frequency, a stiffer

coupling usually renders a higher phase difference. Another phenomenon observed from
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Figure 2-4(b)-(c) is that mIPD as a function of frequency may experience a sign change
(from 180° to -180° or vice versa) around the rocking mode natural frequency for a stiffer

coupling.

However, when designing a directional microphone with mechanically coupled
diaphragms, the amplification of m/PD or the absolute value of m/PD should not be the
sole objective. If the contribution from the bending mode is negligible, mIPD is always
+180° regardless of the incident azimuth. In this case, m/PD cannot be used as an

indicator to differentiate azimuth angles of the sound source.

A more important parameter for sound source localization is the change of m/PD with
respect to azimuth perturbation, which is defined as the directional sensitivity (DS). As
shown in Figure 2-5(d)-(f), increasing the coupling strength will generally help increase
DS near the midline (i.e., €= 0). However, if the coupling is too stiff, the increase of DS
will only happen in the range near the midline, and at large azimuth angles near £90°, the
DS is significantly reduced. Another disadvantage of stiff coupling is that the rapid

change of DS will cause a strongly nonlinear relationship between m/PD and 6.

33



[{=]
o

6=10°
=
g
45+
@
(5]
c
o
£
o
o 0 ;
8 .
T Uncoupled s~‘------------‘
-45 . . : )
0 5 10 15 20 3
Frequency f [kHz]
180
135
=
o] L
a 90
£
o 4571
[&]
c
@ 0
£
T -45
@
s -90
o
135 |
-180
0 5 10 15 20 25
Frequency f [kHz]
180 (b)
-——
T I 6= 90°
— 135 1
s 1
g oo '
S
45
3
c
2 o0
5 :
S 45 '
@
@ 1
& 90 .
o 1
-135 :
-180 L L L L L L L
0 5 10 15 20 25
Frequency f[kHz]

(©

180

ey
(]
w

o
o

S
[

n=2

Phase difference mIPD [°]
[=]

L".'!..P.'a/u.! (L)

Dot

Uncoupled |

-30

(@)

30 60

f=5kHz
135

o

Phase difference mIPD [°]
©
o

-135

------.n-lu_oll_l‘I,}Fl

<180
-30

ey
[+-]
o

(&)

0
Azimuth 6 [?]

30 60 90

L f=8 kHz

ey
£ w0 W
ot o o

(=]

IS
o

Phase difference mIPD [°]
8

0
ry
(]
o

-

'.....---llll-l.lJF
-

Uncoupled |

-60 -30

0

30 60 90

Azimuth 8 [7]

®

Figure 2-4: Effects of the stiffness ratio k3;/k; on the phase difference mIPD. All the parameters

used in the simulations are the fly ear’s structural parameters listed in Table 2-1, with k3 modified

for three scenarios 17 = 2, n = 4.36 (fly ear’s case), and n = 10. k3/k; is related to the natural

frequency ratio ks/k; = (17-1)/2. (a)-(c): Spectra of mIPD for azimuths of 10°, 30°, and 90°. (d)-(f):
Spatial distributions of m/PD for frequencies of 2 kHz, 5 kHz, and 8 kHz.
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Figure 2-5: Effects of the stiffness ratio k3/k; on directional sensitivity DS. All the parameters
used in the simulations are the fly ear’s structural parameters listed in Table 2-1, with k3 modified
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frequency ratio ks/k; = (17°-1)/2. (a)-(c): Spectra of DS for azimuths of 10°, 30°, and 90°. (d)-(f):
Spatial distributions of DS for frequencies of 2 kHz, 5 kHz, and 8 kHz.
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2.2.2 Damping

In Figure 2-6 and Figure 2-7, mIPD and DS for three damping scenarios are obtained and
compared, which are the following: i) & =0.10 and & = 0.14, ii) & = 0.50 and & = 0.69,
and ii1) & = 0.89 and & = 1.23 (fly ear’s case). As the damping decreases, the phase
difference is generally more amplified, as shown in Figure 2-6(a)-(c). For a small
damping, mIPD as a function of frequency experiences a sign change near the rocking
mode. The effects of damping on m/PD are more pronounced in the frequency range near
the rocking mode. For example, as shown in Figure 2-6(d)-(e) and Figure 2-7(d)-(e), the
change of mIPD is much less for 2 kHz than the change for 8 kHz (rocking mode natural
frequency is 7.12 kHz). It can be explained by the fact that damping has much less effects
on the transfer function of either diaphragm for frequencies much less than the rocking

mode natural frequency.
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Figure 2-6: Effects of the damping ratios on the phase difference m/PD. All the parameters used
in the simulations are the fly ear’s structural parameters listed in Table 2-1, with the two damping
ratios & and & modified for three scenarios , & = 0.10 and & = 0.14, & = 0.50 and & = 0.69, and
£ =0.89 and & = 1.23 (fly ear’s case). (a)-(c): Spectrums of m/PD for azimuth 10°, 30°, and 90°.
(d)-(f): Spatial distributions of mIPD for frequencies 2 kHz, 5 kHz, and 8 kHz.
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Figure 2-7: Effects of the damping ratios on the directional sensitivity DS. All the parameters

used in the simulations are the fly ear’s structural parameters listed in Table 2-1, with the two

damping ratios & and & modified for three scenarios: & = 0.10 and & = 0.14, & =0.50 and & =

0.69, and &, =0.89 and & = 1.23 (fly ear’s case). (a)-(c): Spectra of DS for azimuths 10°, 30°, and

90°. (d)-(f): Spatial distribution of DS for frequencies 2 kHz, 5 kHz, and 8 kHz.
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2.2.3 Separation-to-wavelength ratio

As can be seen from the analytical solution of the lumped model (Equation (2-20)), mIPD
and DS are determined by two parameters, the modal response ratio I' and the modal
force ratio jtan(@/2). The former relates to the coupled system’s design parameters,
including the previously discussed stiffness ratio and damping ratio; the latter relates to

the separation-to-wavelength ratio y = d/A.

In Figure 2-8 and Figure 2-9, mIPD and DS are obtained for three different diaphragm
separations: d = 0.4 mm, d = 1.2 mm, and d = 3.6 mm. Overall, increasing the separation
will increase the contribution from the rocking mode, rendering a higher m/PD and DS.
However, if the separation is too big, it has a similar effect as a stiff bridge; that is, mIPD
saturates easily as the sound source moves away from the midline. Other disadvantages
for big separations include the increased size and the disturbance to the sound field due to

the increased size.
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Figure 2-8: Effects of the interaural separation d on the phase difference mI/PD. All the
parameters used in the simulations are the fly ear’s structural parameters listed in Table 2-1, with
d modified for three scenarios, d = 0.4 mm, d = 1.2 mm (fly ear’s case), and d = 3.6 mm. (a)-(c):
Spectra of mIPD for azimuths of 10°, 30°, and 90°. (d)-(f): Spatial distributions of mIPD for
frequencies of 2 kHz, 5 kHz, and 8 kHz.
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Figure 2-9: Effects of the interaural separation d on the directional sensitivity DS. All the
parameters used in the simulations are the fly ear’s structural parameters listed in Table 2-1, with
d modified for three scenarios, d = 0.4 mm, d = 1.2 mm (fly ear’s case), and d = 3.6 mm. (a)-(c):
Spectra of DS for azimuth 10°, 30°, and 90°. (d)-(f): Spatial distributions of DS for frequencies 2
kHz, 5 kHz, and 8 kHz.
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2.3  Dual-optimality in the fly ear

With the analytical solutions of the directional cues and directional sensitivity that were
obtained previously, here, an answer is sought for the following question: is the fly ear a
nature designed optimal structure that is tailored to localize the cricket’s 5 kHz calling
song? mIPD is chosen as the directional cue for further investigation due to the following
considerations. First, equivalent to mITD, mIPD is a normalized measure that is
independent of the sound wavelength and sound speed. Second, mIPD/mITD is usually
more reliable and accurate for sound source localization than intensity based
measurement (Harris & Sergeant, 1971). Third, mIPD/mITD is widely used in sound
source localization using microphone arrays, which means the results to be obtained here
will be consistent with existing algorithms and have a much broader impact. Lastly,
based on the analytical solutions, mI/PD/mITD is a monotonic function of azimuth in all

scenarios whereas this one-to-one correspondence is not guaranteed for m/ID.

From the perspective of sensor design, the ideal relationship between the m/PD and the
azimuth @ for sound source localization is a straight line with a maximal slope, as the
ideal line shown in Figure 2-10. Because mIPD is confined between -180° and 180° as &
varies from -90° to 90°, the maximal slope is £2. However, as the relationship between
mIPD and @ is determined by the governing equations for the mechanically coupled
system, mIPD cannot be an arbitrary function of 8. For example, the slope at the two
extreme positions (8 = £90°) is equal to zero regardless of the structural parameters,
which implies that m/PD(6) cannot be a straight line. As such, appropriate design

objectives need to be sought that are constrained by the governing equations.
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Next, the effects of mechanical coupling on mIPD are investigated. The fly ear
parameters listed in Table 2-1 are used to calculate m/PD at 5 kHz for various coupling
scenarios by changing the stiffness of the coupling bridge k3. Note that the natural
frequency ratio 7 is related to the stiffness ratio ks/k; by 7° = 142ks/k;. First, for the size
of the fly ear (i.e., the separation between eardrum centers is 1.2 mm), the phase
difference at the acoustic inputs (i.e, /PD) is equal to 6.3°xsin(8), which is the phase
difference obtained for the uncoupled case (7 = 1) in Figure 2-10. If the coupling is soft
(= 2), mIPD is amplified to 20.9° at an azimuth of 90°, which is far less than 180°. On
the other hand, if the coupling is stiff (77 = 20), although mIPD is amplified to 176.8° at
90° azimuth, it cannot be differentiated for most of the azimuth range. As can be clearly
seen from Figure 2-10, for the stiff coupling case, mIPD increases very rapidly to ~=180°
when @ is slightly off 0°. The fly ear (77 = 4.36) represents a case between the soft
coupling and the stiff coupling, in which a proper contribution from both rocking and

bending modes is utilized.
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Figure 2-10: Phase difference mIPD at 5 kHz as a function of azimuth for different coupling
strength scenarios: stiff (natural frequency ratio 7 = 20), fly ear (7 = 4.36), soft (n = 2), and
uncoupled (77 = 1). The results are obtained by using the fly ear’s structural parameters with

varying bridge stiffness £;.

Note that the localization performance does not rely on the absolute value of mIPD.
Rather, the variation of mIPD with respect to & (i.e., DS) is the key to determine the
localization performance. The simulation results shown in Figure 2-11 can be used to
confirm the previous observation: the mechanical coupling needs to be “medium” in
order to render sufficient amplification of the phase difference without compromising the

ability of differentiating azimuths.

Another important finding from Figure 2-11 is that the DS for the fly ear is flat in the
azimuth range of -30° to 30°. This is consistent with the localization/lateralization
scheme that was observed in the experiments about the fly’s localization of its host
crickets (Mason et al., 2001). Recall that as shown in Figure 1-7, the fly is able to
estimate the true azimuth location when the source is in the range of -30° to 30°. When

the source is out of this range, the fly can only make a left or right turn decision.
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Figure 2-11: Directional sensitivity DS at 5 kHz as a function of azimuth for different coupling
strength scenarios: stiff (natural frequency ratio 7 = 20), fly ear (77 = 4.36), soft (7 = 2), and

uncoupled (77 = 1). The results are obtained by using the fly ear’s structural parameters with

varying bridge stiffness 43. (a) and (b) are shown in different scales for clarity.

When DS as a function of azimuth angle is plotted at different sound frequencies, as
shown in Figure 2-12(a), it is found that at 5 kHz, the calling song frequency of the fly’s
host cricket, the fly ear can not only achieve a constant DS for azimuth angles between -
30° to 30°, but can also obtain a higher DS than those obtained at other frequencies (e.g.,
2 kHz and 8 kHz). To further investigate this result, two performance metrics, the
average DS (ADS) and the nonlinearity (NL) of mIPD over the azimuth range of -30° to

30° are defined as follows.
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Figure 2-12: Dual-optimality of the fly-ear and fly-ear inspired sensor. (a) DS at three different

frequencies. (b) Spectra of average directional sensitivity (4DS) and nonlinearity (NL).

In the vicinity of midline (i.e., -® <8 <O (O =30°)), mIPD(6) can be approximated by

a linear function of #@based on linear least squares; that is,
mIPD(6)=mIPD, + ADS -6 . (2-29)

The error of this linear approximation is used as a measure of nonlinearity (NL), which

takes the form of

=l o0 -wp@ a0, o

NL has a unit of degrees and it is normalized by the absolute value of 4DS. It should be
noted that this normalization has two important implications. One is to make NL
independent of the scaling of mI/PD so that NL only depends on the overall shape of
mlIPD; the other is the physical meaning of NL, as the normalized nonlinearity indicates

the average error of azimuth estimation using the linear approximation.
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When these two metrics of the fly ear are plotted in the frequency domain, an interesting
result can be observed: the minimum NL and the maximum ADS are achieved
simultaneously at 5 kHz, as shown in Figure 2-12(b). This result suggests that the fly ear

is endowed with a dual optimality characteristic at its working frequency.

As discussed previously, it should be stressed that the fly ear does not work like a rigid
seesaw; that is, a structure with a purely rocking mode. Rather, it utilizes a proper
combination of both rocking mode and bending mode. To further illustrate the
characteristics of such a rigid system, the maps of m/PD and the absolute DS in the space
of azimuth and frequency are shown in Figure 2-13. Since the rocking mode dominates
the bending mode for the structure with a rigid coupling, the phase difference increases
quickly to £180° and saturates when the incident azimuth deviates slightly from the
midline (€ = 0°), as shown in Figure 2-13(a). As a result, such a rigid system cannot
perform well when using mIPD or mITD is used as the directional cue due to the small
directional sensitivity shown in Figure 2-13(b). Theoretically, it can only work in a very
confined spatial range in the close vicinity of midline. It should also be noted that the
detection system may not be able to differentiate the azimuths of 180° and -180° due to
issues of noise and asynchronous data acquisition. In other words, the seesaw system may

not even make a correct left/right estimation based on m/PD/mITD readings.
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Figure 2-13: Contour of (a) m/PD and (b) DS in the space of azimuth and frequency for the rigid

system in Figure 2-11.

2.4  Mimicking the fly ear’s dual-optimality

Here, further investigation is carried out to find out whether a synthetic device endowed
with the fly ear’s dual optimality characteristic can be developed. An optimization
problem is formulated to seek solutions in the entire design space which will meet the
objective of achieving dual optimality (i.e., minimal NL and maximal 4ADS) over the
azimuth of -30° to 30° at the same sound frequency (i.e., the optimal working frequency).
For simplicity, the problem is constrained in one dimension (azimuth). Note that there are
several key parameters, the natural frequency ratio 7, the separation-to-wavelength ratio

¥, and the damping ratios that can influence the NL and ADS.

In Figure 2-14(a), the rocking and bending mode natural frequencies that ensure the dual
optimality characteristic are plotted as a function of separation-to-wavelength ratio y,
given the fly ear’s damping scenario (i.e., & = 0.89, & =1.23). Based on the fly-ear’s
geometry and its working frequency of 5 kHz, following the two curves in Figure 2-14(a),
the natural frequencies required to achieve the dual optimality can be obtained (rocking

mode: 6.99 kHz, bending mode: 30.1 kHz); these predictions are in excellent agreement
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with the experimental data reported in the literature (7.12 kHz and 31.0 kHz) (Miles et al.,
1995). This finding confirms that the fly ear represents a nature-designed optimal
structure that can simultaneously achieve the maximum DS and the minimum NL at its
working frequency of 5 kHz. Similar design curves can be obtained for different damping

scenarios, e.g. & = 0.09, & = 0.12 as shown in Figure 2-14(b).
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Figure 2-14: Natural frequencies (normalized by the optimal working frequency) obtained in
optimization analysis to ensure dual-optimality characteristic as a function of the wavelength-to-
separation ratio . (a) High damping case (& = 0.89, & = 1.23). (b) Low damping case (& = 0.09,
& =0.12).

Clearly, based on Figure 2-14, the fly-ear structure is not the only optimal structure that
has the dual optimality characteristic at its designated working frequency. For any given
separation-to-wavelength ratio y, the required natural frequencies for achieving the dual
optimality characteristic can be obtained. Note that the dual optimality is only obtained
here for y in the range of 1:100 to 1:25. For y larger than ~1:25, while the maximum
ADS and the minimum NL may not be achieved at the same frequency, conventional

directional microphone without mechanical coupling usually suffice for the localization
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task; at the other end of the spectrum, although an optimal structure can be found, the
amplified phase difference may still be too low for accurate sound localization. Therefore,
the results in Figure 2-14 provide a framework that enables one to create synthetic
devices that mimic the fly ear’s dual optimality characteristic, which can be tailored to

work at any frequency and/or with a desirable size.

For example, given the same interaural separation as the fly ear (1.2 mm), one can design
fly-ear inspired structures that are tailored to work at the optimal frequencies of 2 kHz
and 8 kHz, for which y is calculated as 0.0070 and 0.0279, respectively. According to the
design curves in Figure 2-14(a), the two natural frequencies to achieve dual-optimality
are 3.41 kHz and 22.31 kHz for the device with the working frequency of 2 kHz, and
10.29 kHz and 36.03 kHz for the 8 kHz working frequency. The spectra of ADS and NL
in Figure 2-15(a) indicate that the designed systems possess the dual-optimality
characteristic of the fly ear. For the three optimal systems in Figure 2-15(a), the resulting
DS at the corresponding optimal frequencies have similar flat plateaus in the linear region

of -30°< < 30°, as shown in Figure 2-15(b).
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Figure 2-15: Dual optimality of three designs, which have the same damping and center-to-center
separation as the fly ear, to work at 2 kHz, 5 kHz, and 8 kHz, respectively. (a) Average
directional sensitivity (4DS) and nonlinearity (NL) in the frequency domain. (b) Directional

sensitivity in the spatial domain at the corresponding optimal working frequencies.

Further, the dual-optimality characteristic is not limited to the damping scenario of the fly
ear. For a center-to-center separation of 1.2 mm and working frequency of 5 kHz, three
systems, as shown in Figure 2-16(a), are designed to achieve dual-optimality for different
damping scenarios. As the damping decreases, the peak of ADS spectrum and the dip of
NL spectrum become sharper. As a result, when the working frequency is slightly off the
optimal working frequency, the characteristics of the low damping system will change
drastically, as shown in Figure 2-16(b). On the other hand, the system with a high
damping is more robust to the variation of sound source frequency (Figure 2-16(c)),
which is important for the fly Ormia as the calling song of its host crickets varies in the

frequency range of 4.6 to5 kHz (Robert et al., 1998).
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Figure 2-16: Three design examples with different damping scenarios, given the same center-to-
center separation (1.2mm) and working frequency of 5 kHz as the fly ear. (a) ADS and NL in the
frequency domain. (b) Variation of DS at frequencies slightly off the optimal frequency for the
low damping system (&; = 0.09, & = 0.12). (c) Variation of DS at frequencies slightly off the
optimal frequency for the high damping system (& = 0.89, & = 1.23).

2.5  Summary

The superacute directional hearing of the parasitic fly Ormia ochracea has been
attributed to the mechanical coupling between its eardrums. The results obtained in this
dissertation provide a new insight into the fly ear’s directional hearing abilities. By
defining the two performance metrics, ADS and NL, the fly ear is shown to possess a
unique characteristic of dual optimality, which may indicate that the structural parameters
of the fly ear are optimized for its localization ability at the specific frequency of 5 kHz,

the calling song frequency of its host crickets.
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The dual optimality characteristic can provide a basis for understanding the fly’s superior
directional hearing capability as well as its unique localization-lateralization scheme.
First, although the absolute value of the m/PD is maximal at the two extreme positions (&
= £90°), the corresponding DS is close to zero at these positions and the maximal DS is
actually achieved in the vicinity of the midline. Therefore, the fly naturally turns the head
front (midline of the ear) towards the source so that the maximum DS (i.e., maximal slope)
can be achieved to ensure the best localization precision. This is similar to a related
finding reported for an Egyptian fruit bat, which uses not the maximal sonar beam
intensity but its maximal slope for target localization (Yovel, Falk, Moss, & Ulanovsky,
2010). Second, mIPD is a linear function of azimuth in the range from -30° to 30°, which
is coincident with the sigmoid relationship of fly’s turning speed with respect to the
azimuth, obtained in the phonotactic experiments with the fly (Mason et al., 2001). Given
the limited neural processing ability, a constant and maximal DS can certainly help the
fly perform the localization task more accurately and more efficiently for the azimuths
from -30° to 30°. Therefore, in this sense, it is not only the mechanical coupling
mechanism that helps the fly ear obtain significantly amplified directional cues, but more
importantly, the structural parameters of the fly ear have been tailored to achieve the dual
optimality characteristic at 5 kHz, facilitating a unique localization-lateralization scheme

for accurately pinpointing its host.

To achieve the dual-optimality characteristic, this dissertation work also shows that the
structural parameters need to be tuned to have a proper contribution from both the

rocking mode and the bending mode. As an example, the stiffness of the coupling bridge
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cannot be too soft or too stiff, otherwise the directional cue mIPD is not sufficiently

amplified or it is overly amplified so that the directional sensitivity is greatly reduced.

Furthermore, this dissertation work provides a framework to design a fly-ear inspired
acoustic sensor that can mimic not only the mechanical coupling mechanism but more
importantly the dual-optimality characteristic. For any desired working frequency and/or
interaural separation, the natural frequencies of the two vibration modes of the
mechanically coupled system can be obtained according to the optimal design curves
shown in Figure 2-14. To design a fly-ear inspired sensor, the structural parameters of the
sensor can be obtained through analytical or numerical modeling. It is also demonstrated
in this chapter that different systems can be designed for different damping scenarios. In
general, a high damping results in a much smoother peak in the ADS spectrum, which is
beneficial to accommodating the variation of structural parameters or sound stimulus
frequencies. On the other hand, although a low damping system with a much sharper 4ADS
peak is less robust to stimulus frequency variations, a low damping level renders a higher
amplification ratio, a much higher ADS, and better frequency selectivity, which can be

advantageous in certain applications.
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Chapter 3 Fly-Ear Inspired Directional Microphones: Design and

Model Development

3.1 Fly-ear inspired directional microphone design

Based on the framework developed in the previous chapter, bio-inspired directional
microphone that consists of two circular diaphragms coupled by a medially supported
bridge is designed, as shown in Figure 3-1. The two diaphragms are clamped on its
periphery boundary to a substrate. The two ends of the bridge are connected to the
diaphragm centers. To detect the sound induced vibrations of the diaphragms, a Fabry-
Perot interferometer is formed between each diaphragm and an optical fiber tip, which is
part of a low coherence fiber optic interferometric detection system. The details of the
detection system will be provided in the next Chapter along with the development of the

directional microphones.
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Figure 3-1: A fly-ear inspired directional microphone. (a) Schematic. (b) Cross-section view.

3.2  Overview of model development

In the hearing organ of the fly Ormia ochracea, there is an undivided air space backing
the two eardrums, as shown in Figure 3-2(a). Theoretically, the coupling between the
eardrums can be through the cuticular intertympanal bridge (stiffness K3), or the air space
(stiffness K's). The latter represents a pressure difference receiver mechanism, as
introduced in Chapter 1. To study the relative contributions of both mechanisms, one
experiment was designed to stimulate one eardrum mechanically with a vibrating pin, and
the responses before and after opening the air space were compared, as illustrated in

Figure 3-2(b) (Robert et al., 1998). It is concluded that the coupling is solely due to the
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intertympanal mechanical coupling, and the amplitude of the eardrums is not greatly

affected by surgically opening the air space.

In comparison to the fly’s hearing organ configuration, the proposed design of the fly-ear
inspired directional microphone shown in Figure 3-1 has several unique features. First,
the two air gaps backing each diaphragm are not interconnected, which completely
excludes the possibility of pressure difference receiver mechanism. Second, both air gaps
are closed by the diaphragm and rigid walls. This ensures that the sound wave cannot
propagate to the back surface of the diaphragm, as in the case of conventional pressure
gradient microphones. Third, the diaphragms are connected to the bridge at the
diaphragm centers. In this way, the coupling force applied to the diaphragm does not
excite the un-axisymmetric modes of the diaphragms, and the diaphragm has maximal
deflection at its center. These features will ensure that the coupling is solely through the

center pivoted bridge and the coupling force is well transmitted.

F

1 K3 F2 1
0 . Vibrating pin K3

Spiracular opening “ [ ] ==

(a) (b)

Figure 3-2: Mechanical analog of the fly’s hearing organ. (a) The two prosternal tympanal

membranes (PTM) are connected by a cuticular intertympanal bridge (K3). K3’ is the stiffness
due to the air space of the tracheal sac. (b) A mechanical stimulation is applied to one end of the
bridge by a vibrating pin. One side of the air space is opened to study the relative contribution of

K3 and K3’.(Robert et al., 1998)
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Although the air gap does not contribute directly to the mechanical coupling between the
diaphragms, it does affect the diaphragm’s response to external stimulus, including the
acoustic sound wave and the mechanical force through the coupling bridge. Therefore, a
novel continuum mechanics model needs to be developed that features two coupling
modules, one for the mechanical coupling of the two diaphragms through the bridge and
the other for each diaphragm coupled with the backing air gaps. This model can be used
to achieve a fundamental understanding of the structural dynamics of the fly-ear inspired
directional microphone described in the previous section and guide the development of

this microphone.

The continuum mechanics model will include three individual components: the
diaphragm, the bridge, and the air gap. The diaphragm will be modeled as a thin plate
with in-plane tension, which can account for any scenario between a pure plate and a pure
membrane (M. Yu & Balachandran, 2005). The bridge will be modeled as an Euler-
Bernoulli beam that is pinned in the middle. The air gap will be described by a sound
wave equation. The models for each individual component will be described in Section
3.3. In Section 3.4, the coupling module between a single diaphragm and an air gap will
be detailed by assuming a no-slip boundary condition at the interface. In Section 3.5, the
coupling module through the bridge will be described by assuming a geometric
compatibility condition at the joints. Furthermore, the developed model will be compared
with a finite element model in ANSY'S and the 2-DOF model in Section 3.6, followed by

parametric studies in Section 3.7.
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3.3  Models of individual components of the sensor structure

3.3.1 Diaphragm

A cylindrical coordinate system is established at the diaphragm center, as shown in
Figure 3-3. The radial coordinate » is normalized so that 0 < » < 1. The clamped circular
diaphragm is modeled as a plate with in-plane tension. Depending on a normalized
tension parameter, the diaphragm can have a pure plate behavior with zero tension, or a
pure membrane behavior with a high tensile stress (M. Yu & Balachandran, 2005). This
generalized model is particularly useful for microelectromechanical system (MEMS )
pressure sensors where residual thermal stress cannot be completely relieved from the
fabrication process. For the clamped circular plate with in-plane tension, the transverse

displacement of the plate w,(r,6,¢) is described by the thin plate theory

o*w ow D

4
ol g T H G

N,
—a—z‘)Vzwp =f, (r,H,t) , (3-1)

P

where p,, h,, 1, D, a, Ny, f, are respectively the density, thickness, damping coefficient,
flexural rigidity, radius, in-plane force, and external pressure. Subscript p denotes the
plate. D is related to the Young’s modulus £, and Poisson’s ratio v by

3
Ephp

D= 207 (3-2)
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Figure 3-3: Coordinate system for the circular clamped diaphragm.

Because the plate is clamped on its circular edge, the following boundary conditions can

be obtained:

w, (r, 9,1‘)‘ =0

r=1

8wp (r, 49,t)
or

: (3-3)
=0

r=1

The mode shapes of free vibration U, ,u,(r)-®n(6) of the diaphragm can be obtained as (m

and n denotes the mode orders in the azimuthal and radial directions)

m = 5 (3-4)
cos(m6?+¢m)/\/; m=1,2,3--
Up,mn (l") = Amn []m (almn )Jm (a2mnr)_ Jm (a2mn )[m ((Zlmnr)] n= 1,2,"' 5 (3-5)

where @, is the constant phase determined by initial conditions, &;,,, and @y, are solved

from the characteristic equations

al=a;+g, (3-6)
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a1, (a)J], (a,)-aJ, (a,)],()=0, (3-7)

X = Noaz/D is the normalized surface tension parameter, J,, and J’,, are Bessel function
of first kind and its first derivative, and /,, and /’,, are modified Bessel function of first
kind and its first derivative. 4,,, is the coefficient used to normalize the mode shapes to

ensure the orthogonality of the mode shapes; that is
J‘rl:O Up””” (r)UPs’”k (l")l"dl’ = 5”"".'.;.1:0@"1 (r)®n (I’)dl" = 5mn ’ (3_8)

where 0, is the kronecker delta.

The natural frequencies can be calculated from «;,,, and @y, by

o =—L-LA (3-9)

where A, =« /12, and c,= \/Ep /p, (l—vz) is the speed of longitudinal wave.

2mn

The first five modes and their natural frequencies of a circular clamped plate without in-

plane tension are shown in Table 3-1.
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Table 3-1: Natural frequency and mode shapes of circular clamped plate without in-plane tension

Order (m,n) | Natural frequency A, Mode shape
0,1 2.9490 ‘ ‘ ’
(1,1) 6.1373 f Q
@.1) 10.0681 N

s
(0,2) 11.4809 o

(3,1) 14.7311 --
-

The transfer function relating the modal coordinates of the pressure and transverse

displacement response (F}, u, and W), ) is obtained as follows

w F
pumn _ H,,, L (3-10)
a ’ Ep
where
’ 1
H mnz(l_vz)[i] > > ~ R (3_11)
’ hp Amn—Qp+,ujQp



U= ,u(l —vz)(a /h, )2 /JE,p,,and Q =wa® /(cphp) is the normalized frequency.

3.3.2 Airgap

The air gap is modeled as a cylindrical air chamber with a flexible top (the diaphragm). A
cylindrical coordinate system is established at the center of the top surface, as shown in
Figure 3-4. The coordinates are normalized so that z = 0 at the top, and z = 1 at the

bottom. The air gap can be described by the wave equation in terms of velocity potential

Y(r,0z,t) as

o’ ror o6

1(*Y 16¥ 10°¥W) 1 0°F 1 0¥
— + = (3-12)

a g’ o7 _cg o'’

where ¢y and g are the sound speed and air gap height, respectively. ¢y is related to the
static pressure po of the air gap and density py by ¢, =+/y p, / p, » Where yis the adiabatic

index. A no-slip boundary condition is assumed at the interface between the plate and the

air; 1.e.

1ov] _ow
goz|_, Ot '

0

(3-13)
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Figure 3-4: Cylindrical air gap with rigid walls and a top surface. (a) Coordinate system. (b)

Cross-section view.

Through separation of variables, the solution to a harmonic excitation at the top surface

can be assumed as
¥(r,0,2,0)=U, (r)®(0)Z(z)e™ . (3-14)

Here, the subscript a denotes the air gap. The radial part of the mode shape function can

be obtained as (the azimuthal part ®,,(6) is same as that in Equation (3-4) for the plate)

Up (1) =B (Bor) n=12,---, (3-15)

a,mn mn* m

where f,,, 1s solved from the characteristic equation
Jm'(,B):() ) (3-16)

m and n denote the mode order number in the azimuthal and radial directions. B, is the

coefficient used to normalize the mode shapes to ensure the following orthogonal

property

1 1
Lan,mn (U, . (r)rdr=6,, jr:()@m (r)e,(r)dr=35,, . (3-17)
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Note that for the axisymmetric mode when m = 0, Equation (3-16) has a zero root

(labeled as fgp = 0), which corresponds to the commonly known air spring mode.

In the case of a close-ended air gap (the top surface is also rigid), the natural frequencies

are obtained as

a)mnl :i:o\/ﬂrin +7Z'212 (a/g)2 12091329'“ . (3'18)

In order to establish a relationship between the displacement excitation of the flexible top
wy(r,0,t), the velocity potential solution to the wave equation ¥(r,6,z,f), and the reaction
pressure at the interface p(r,6) = p(r,6,z=0,f), they are decomposed to the following

forms

(r.0.1) Z U ()0, (0) €, (3-19)
(r,0,z,1) Z\Pm o (1)©,(0)Z,, (0,2)e™ (3-20)
l" 6 t Z r,mn a mn m (0) ej!Ul B (3'21)

m,n

where W, un, Win, and P,y are the modal coefficients, and Z,,,(®,z) is the z-component
of the velocity potential solution that is dependent on the excitation frequency. Substitute
(3-19) and (3-20) into the no-slip boundary condition and use the orthogonality in (3-17)

to obtain
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=0. (3-22)

z=0

1 0Z
(ja)Wa mn - \Plﬂﬂ - - j
’ g oz

The reaction pressure is related to the velocity potential by
p, (r.0.t)=(-p,0% /01)_, (3-23)

z=

where p, is the air density. Then, the transfer function between the modal coordinates of

the displacement excitation and the reaction pressure can be obtained as follows

— :Ha,mn - s (3_24)
by a
where

th
Ha,mn (Qa) = g Qi co (g) 5 (3'25)

-
c=5p, -, (3-26)

a

and Q_ = wa /¢, is the normalized frequency.

3.3.3 Bridge

The bridge is modeled as an Euler-Bernoulli beam with an axial load. A coordinate
system is established at the center. The range of the normalized axial coordinate is -1 < x
< 1. The governing equation in terms of the transverse displacement wy(x,?) is given by

(subscript b denotes the beam/bridge)
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82

ow, B, 0'w, E,, 0'w,

(3-27)

w
Pyhyb 8t2b T4

+
ot I* ox*

=1,

L' oxt

where 4, b, 2L are the beam’s thickness, width, and length, respectively, pp, Ep, I, are the

beam’s density, Young’s modulus, and

and f, are the damping coefficient, axial

area moment of inertia, respectively, and 14, Py,

load, and external distributed force, respectively.

The boundary conditions are zero bending moment and zero shearing force on both ends

(x = %1), zero displacement and continuity of moment at the center point (x = 0); i.e.

Free vibration

The center-pinned beam has three kinds

rotational mode

Uh

for which the natural frequency is

Wolemor oo = 0
ow, | _ow, |
0x |._y+ OX |,
2 2
om0 v?,| (3-28)
ox™ | . Ox"|
o’w, _0
axz x=%1
o’w, _0
ax3 x=%1

of mode shapes. The first kind of mode is a rigid

(3-29)

0=V3/2x,

67



®,,=0. (3-30)

The second kind of mode is non-rigid and symmetric. The mode shapes functions are

described by

’712,17713,1* (77,,1, cosn,, sinhp,  —n,, sinn,; coshn, , ) (cos n,,;x —cosh nh,ix)
U,,(x)=G,| + (ﬂ;,i +1, 1;,sinn,  sinh g, +m, 7’ cosny,, coshr, ) ‘sin nt,ix‘ .(3-31)

5 3 2 . 2 3 .
+(n},—n,m} siny,, sinh,  +7; 5}, cosn, , coshn, , )|sinh 7, x|

ny and 7, are solved from the characteristic equations

n+nt+nm, (nf -n; )sin n,sinhn, + 25,17} cosn, coshn, =0, (3-32)

2_

77t 77/? = Zths (3_33)

where yy is the normalized axial load parameter

2=k (3-34)
® 2EI°

The third kind of modes is non-rigid and anti-symmetric, for which the mode shapes are

described by
U, (x)=6, (77,12’1. sinh 7, sinz,x +n/,sinz,, sinh nh,ix) . (3-35)

1, and 7, are solved from (3-33) and

n,cosn, sinhn, —n, sinn, coshn, =0. (3-36)
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The natural frequency is calculated by

¢, hy, _
@, =——=, 3-37
b,i L L i ( )
where
= _ il
B, =—=", (3-38)
Jiz
and ¢, 1s the longitudinal wave speed in the beam
E
¢, = |1, (3-39)
P

The coefficients in the mode shapes function are chosen to ensure the orthogonal

property

I,llUb,i (x)U,, (x)dx=0, . (3-40)

The normalized natural frequencies for the first seven modes for a center-pinned beam
with zero axial load are listed in Table 3-2. The modes shapes for the first three modes

are shown in Figure 3-5.
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Table 3-2: Natural frequencies (normalized) of center-pinned beams (zero axial load).

Mode i Natural frequency =i Comment on symmetry
1 0 Anti-symmetric
2 1.0150 Symmetric
3 4.4509 Anti-symmetric
4 6.3608 Symmetric
5 14.4236 Anti-symmetric
6 17.8105 Symmetric
7 30.0937 Anti-symmetric
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Figure 3-5: First three mode shapes of the beam (zero axial load).
Transfer function

Assuming the forcing term f, and the corresponding displacement w, are
fy=2 10U, (x)e™ (3-41)
Wy = X, Uy, () (3-42)

and substituting them into the governing equation, it can be obtained that

(-p b + p by, + w, jo)w,, = £, (3-43)
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where the orthogonal properties have been applied.

Therefore, the transfer function is obtained as

Woi _ Hb[_@ (3-44)
L " E,b
where
LY 1
H,, :(_J — — (3-45)
hy ) EF =S+ 1, jQ,
L2
0, =2 (3-46)
c,hy,
~ I?
(3-47)

Hy =y ————.
' bh, VEP,
3.4 Diaphragm coupled with an air gap

In this section, a continuum mechanics model is developed to describe a single
diaphragm backed by an air gap, which can serve as a platform for studying any pressure

sensors that have an air gap underneath the diaphragm for dynamic measurements.

A common complication arises when a pressure sensor contains an air gap backing the
vibrating diaphragm. To understand the dynamics of such a sensor structure, one
technique is to employ a dynamical analogy converting the involved mechanics to a

conventional electric circuitry form (Beranek, 1954; Olson, 1958). In this approach,
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usually only the fundamental mode of the diaphragm is considered, and the air gap is
replaced by an equivalent elastic spring (i.e. the air spring model). However, this much
simplified approach has several limitations. It does not take the full structural-acoustic
interaction into account, and thus, it cannot be used to predict the sound field in the air
gap. More importantly for sensor design, the estimation of the fundamental frequency is
inaccurate in some scenarios, for example, when the height of air gap is very small in

micro-electro-mechanical systems (MEMS) pressure sensors.

A more sophisticated approach is to use continuum mechanics governing equations to
fully describe the structural-acoustic coupling (Dowell, Gorman lii, & Smith, 1977;
Gladwell & Zimmermann, 1966; Gorman, Reese, Horacek, & Dedouch, 2001; Guy, 1979;
Pan, 1992; Pretlove, 1965, 1966; Pretlove & Craggs, 1970; Qaisi, 1988; Rajalingham,
Bhat, & Xistris, 1995; Rajalingham, Bhat, & Xistris, 1998). The diaphragm is usually
modeled as a thin-plate or a membrane, while the air gap is governed by a wave equation
in terms of the pressure field or velocity potential. A geometric compatibility condition is
assumed between the diaphragm and the air gap (i.e., equal displacement/velocity at the
interface). For example, a multimodal analysis has been used to study the response of a
cavity backed panel to external airborne excitation (Guy, 1979). In another work, a
receptor-rejector system model has been used to study the vibration of rectangular and
circular membranes backed by air cavity. It has been found that the natural frequencies of
the coupled system are different from those obtained for an isolated membrane, an open-
end cavity, or an closed-end cavity (Rajalingham et al., 1995; Rajalingham et al., 1998).

More recently, a similar modal analysis has been employed to study a circular disc
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backed by a cylindrical cavity (Gorman et al., 2001). The coupling effects are studied
using an analytical-numerical method and a finite element analysis in ANSYS. The
numerical results are verified experimentally for a thin steel disc (radius of 38 mm and

thickness of 0.38 mm) with a short cavity (§1 mm) and a long one (255 mm).

Although the structural-acoustic coupling of the air-backed diaphragm has been
extensively studied, few have studied this problem from the perspective of pressure
sensor development. Moreover, a fundamental but comprehensive understanding of the
effects of the air gap on the diaphragm dynamics is needed. In the literature, free
vibrations of a rectangular plate-cavity system have been studied by formulating the mass
and stiffness matrices of the plate and the cavity numerically (Qaisi, 1988). A simplified
equation is provided to calculate the fundamental natural frequency and it is shown that it
increases with decreasing cavity depth. However, this study has several limitations. First,
the coefficients of the mass and stiffness matrices for the whole system are frequency-
dependent, eliminating the possibility of using linear algebra to solve the eigenvalue
problem. Second, the formula for the fundamental frequency only considers the
fundamental mode of the plate and the air spring mode of the cavity. As a result, it will
become invalid for much shorter cavity depth when the fundamental frequency of the

whole system is comparable to the second axisymmetric mode of the plate.

In the following subsections, a normalized solution for the plate-cavity problem will first
be derived by using the multimodal analysis approach (continuum model). Then, a
distinction is made between the stiffness effect and the mass effect of the air gap, and the
solution is recast in a linear matrix form (simplified model). Next, through a
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representative example, the variation of the fundamental frequency of the coupled system
with respect to the air gap depth is divided into three stages and an approximate formula

1s provided for each stage.

3.4.1 Continuum mechanics model

As depicted in Figure 3-1, a cylindrical coordinate system with normalized coordinates
(r,02) 1s established at the center of the diaphragm. The range of the coordinates is
0<r<1,0<0<2n,and 0<z<1. Modal analysis will be employed to derive the

transfer function between the external pressure stimulus and the diaphragm response.

Diaphragm

Diaphragm a

h

g

Rigid walls

(a) (b)

Figure 3-6: A pressure sensor diaphragm backed by an air gap. (a) Schematic of the coordinate

system. (b) Cross-section view.

Assume the external pressure applied on the top surface of the plate is

L (r,6,1) Z iUy ()9, (0) " . (3-48)

In response to the external pressure, the reaction pressure at the interface is assumed as

r 9 t Z pr.mn P mn ®m (9) ejwt 9 (3'49)
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and the transverse displacement of the diaphragm as

L(r0.0)=>w, .U, (r)0,(8)e". (3-50)

m,n

First, the transfer function of the air gap in equation (3-24) is transformed in terms of the

diaphragm’s modes, that is

7, mn W
p = ZZTlvdmnHa kITl'clst s (3-51)
p kJ st a

where

T = |, Usit(P)U,,,., (r)rdr [ ©,(8)0, (8)d6. (3-52)

m

Combing (3-51) with the transfer function of the diaphragm (Equation (3-10)), it can be

obtained for the coupled system that

P w
pemn H ' p,st , 3_53
Ep YZJ: ap ,mnst a ( )
where
Py
Hap,mnxt = E Z (T;c/mnHa k/Y;c/?t ) + Hp m;15nzv5;1t : (3-54)
k.l

P

The natural frequencies and mode shapes of the coupled system can be obtained by

finding the roots when the determinant of the matrix { Hap} is equal to zero. In the

absence of the air gap, i.e. the chamber underneath the diaphragm is sealed in vacuum,
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one can obtain that H,y = 0, and (3-53) reduces to the conventional form for the

diaphragm (i.e., Equation (3-10)).

3.4.2 Simplified model

Due to the nature of the transfer function of the air gap, the transfer function for the
coupled system derived in previous section is different from the conventional form of a
constant mass matrix and stiffness matrix, as the coefficient in (3-25) is frequency-
dependent. In this section, the continuum model will be simplified according to the
different effects of the various modes of the air gap. Assuming the sensor size is much
less than the sound wavelength of interest (@ << 2mcy/a), which is typically true in most

applications, only the axisymmetric modes (m = 0) need to be considered.

Spring mode of the air gap

For the first mode of the air gap (m = 0, n = 0), it can be obtained that Sy = 0. The

transfer function described in (3-25) reduces to

coth(gQaij 0
Ha00:_7§9¢21' g ! =7 - . (3-55)
=Q tan(gQaj
a a

Further, if it is assumed that Q,g/a << 1, i.e. @ << ¢y/g, one can obtain tan(Q,g/a) ~

Q.g/a and

H, p~y—. (3-56)
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The assumption is valid when the excitation frequency is much smaller than the acoustic

resonance in the z direction.

The above equation can be written in terms of the pressure change Ap and the change of

gap height Ag as

Ap _ Py H,=y2, (3-57)

Ag a g
which is consistent with the commonly known air spring approximation.
Mass modes of the air gap

For the second and higher modes of the air gap (m = 0, n > 1), if we assume Q, << fy; =

3.8317 (or @ << fyico/a), it can be obtained that ¢~ fy,g/a, and H, reduces to

Ha,()n = _Ma,OnQi = _Ma,()nQi) 4 (3-58)
where
M oon = ycoth(B,,g/a)! B, (3-59)
coth(f,,g/a)( c (h Y
M,,, =y ——tul’ (—P] (—”j : (3-60)
B, Co a

The assumption @ << fy;co/a is valid for the case when the excitation frequency is much

smaller than the acoustic resonance in the horizontal plane.
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Because there is a negative sign in Equation (3-58) and the reaction pressure is applied to
the bottom surface of the diaphragm, the effect of these modes is equivalent to increasing
the mass of the diaphragm. This effect is more pronounced for a shorter air gap. This
phenomenon can be explained by the fact that the air moves together with the diaphragm
at the top of the air gap and has zero velocity at the bottom. As the air gap becomes
shorter, the velocity gradient increases, rendering a bigger reaction pressure at the
interface, which has an opposite sign to the velocity excitation at the interface. As a result,

the effect is equivalent to that resulted from increasing the mass of the diaphragm.

The assumptions made in the two scenarios can be combined as
. ¢ C
O <<min _Oaﬂ()l_o > (3-61)
g a
which means that the excitation frequency is much smaller than any acoustic resonance
of the air gap.

Simplified model in matrix form

By assuming the first N modes of the diaphragm and the first M modes of the air gap are

used, the forcing F, and response W, term (Nx1 vectors) can be written as

1 T

Fp:E—[Fp,Ol Frp = Foon]s (3-62)
p
1 r

szz[me Wy = Wy | - (3-63)
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Define the stiffness and mass matrices (MxM) of the air gap as

a
]/_
K =2£o 0 ,
Ep
- O_
0
M, = Po Ma,Ol
EP
Ma,O(M—l)

where Iy is a NxN identity matrix.

The transformation matrix (MxN) takes the following form
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(3-65)

(3-66)

(3-67)
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%001 7;)002 "' T000N

T= 0.101 0.102 . Ol.ON (3-69)
YE)(M—I)OI YE)(M—I)OZ e TO(M—1)0N

Then, the transfer function of the air-backed diaphragm can be written in the following

compact matrix form as

H W =F, (3-70)
where
H,A =K, +/QC,-M, Q72 (3-71)
K,=T'KT+K,, (3-72)
M, =T'M,T+M,. (3-73)

Since the diaphragm radius is assumed to be much smaller than the sound wavelength,

the sound field impinging on the diaphragm will be uniformly distributed, which can be

described as pe’ . As a result, the nth component of the forcing vector F, can be

obtained as
P 1
F,, =2« %L:O U, on (r)rdr . (3-74)

Once the displacement vector W, is solved, the center displacement w, can be obtained as
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w,=B W, (3-75)
where B, is an Nx1 vector and its nth component B, ¢, 1s

B,,=U,,(r=000,=U,, (r=0)/y2x. (3-76)

p.on = p,0On
Results and discussion

To investigate the effects of the air gap on the performance of pressure sensors, a
representative pressure sensor is used. The dimensions of the sensor is @ = 500 um, and
h, = 0.5 pm. It is made of silicon (£ = 169 GPa, v=0.25, p= 2.3x10° kg/m®). The air in

the gap is at room temperature conditions (pg = 1.01x10° Pa, ¢, = 343 m/s).

First, the effects of air gap on the static sensitivity of the air-backed diaphragm are
studied. As shown in Figure 3-7, the static sensitivity decreases as the air gap becomes
shorter. In addition, the difference in the results obtained from the continuum mechanics

model, the simplified model, and even the air spring model (N = 1, M =1) is negligible.

Next, the effects of air gap on the fundamental frequency of the air-backed diaphragm are
investigated. In the continuum mechanics model, as shown in Figure 3-8, when the air
gap is long, the fundamental frequency is close to that of the closed-ended cavity. This
can be explained by the fact that the diaphragm has a much higher stiffness than the air
gap so that the diaphragm can be regarded as a rigid wall for the air gap. As the air gap
becomes shorter, the fundamental frequency increases and saturates before dropping in
the much shorter air gap range. The air gap has two functions, one as an spring to

increase the equivalent stiffness of the diaphragm, and the other as an added mass to
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increase the equivalent mass of the diaphragm. Therefore, for longer air gaps, the spring

effect dominates, while for shorter air gaps, the mass effect is more pronounced.

-
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o

-
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-
o

Normalized static sensitivity
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Continuum model 1
= = = Simplified model

=+ = 1 Ar spring model

2 3

10" 10" 10 10
Air gap height g/a

10

Figure 3-7: Static sensitivity of the center displacement of a diaphragm backed by air gaps with
respect to air gap height. The static sensitivity is normalized by that for the same diaphragm

without the air gap (in vacuo).

The results obtained with the simplified model (N =5, M = 5) (see Figure 3-8) exhibit
similar behavior as the continuum mechanics model for short air gaps. However, for
longer air gaps, the simplified model cannot capture those acoustic modes obtained by
using the continuum mechanics model. For the simplifed model, Q,; is close to the
fundamental frequency of the diaphragm in vacuo for long air gaps. However, since the
emphasis here is to study the effects of the structural characteristics of the diaphragm on
sensory performance, there is no need to distinguish the structural modes from the

acoustic modes. The simplified model will therefore be used in the following analysis.
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Figure 3-8: The fundamental frequency of an air-backed diaphragm (normalized by that of the
same diaphragm in vacuo) for various air gap heights. The diaphragm is made of silicon, and its
dimensions are 500 um x 0.5 um (radius x thickness). In this plot, the continuum model and

simplified model are compared to the close-ended cavity and the diaphragm in vacuo.

Here, in order to well quantify the spring and mass effects, the minimum numbers of
modes for the diaphragm and the air gap are determined. Clearly, the change of the air-
backed diaphragm’s fundamental frequency €; with respect to the air gap height can be
characterized in three stages, as shown in Figure 3-9. In the up-slope stage, the increase
of QQ; can be simply captured by the air spring model (N = 1, M = 1), until it reaches the
plateau stage where it can be modeled by including one more diaphragm’s mode (N = 2,
M = 1). To describe the down-slope stage, the mass effect mode of the air gap has to be
included. The overall characteristics of the variation of ; can be well captured by using

two modes for both the diaphragm and the air gap (N =2, M =2).

83



iy
=]
W

e ZZZZ
[T T TR T T
Lo o ]
ST =T

nm nn
R = M=

/
HI

nn

Normalized fundamental frequency
=]
L

10- I-1 '0 I 1
10 10 10 10
Air gap height g/a

Figure 3-9: Effects of number of modes used in the simplified model on the calculated
fundamental frequency (normalized by that of the same diaphragm in vacuo). The diaphragm is

made of silicon, and its dimensions are 500 um x 0.5 um (radius x thickness).

Closed-forms of the 3-stage approximation

While the developed simplified model can be used to study the effects of the air gap, a
more straightforward method to estimate the fundamental frequency can be developed to
facilitate the design of pressure sensors, which will be described next to provide closed-

form estimations for the three stages.

In the up-slope stage, (2 can be estimated by the air spring model (N = 1, M = 1), where

the stiffness matrix K,, reduces to a scalar form as

h Y a
K, = (fj A012+]}1%7f- (3-77)

<

The fundamental frequency of the air spring model €2, can thus be calculated as

Ql,up = \j/\Ol2 + T;l /19 ° (3-78)
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where

3
go— L Efh)e (3-79)
7/(1—v2)p0 a) a

If the diaphragm is a pure plate (without in-plane force), it can be obtained that A =

2.9490, and 77, = 0.7287.
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Figure 3-10: A 3-stage approximation of the fundamental frequency of an air-backed diaphragm
(normalized by that of the same diaphragm in vacuo) as air gap height changes. The diaphragm is
made of silicon, and its dimensions are 500 pm x 0.5 um (radius x thickness). In this plot, the

fundamental frequency (red solid line) is obtained by using the simplified model (N =2, M = 2).
To estimate ; at the plateau stage, the first two modes of the diaphragm and the air
spring mode of the air gap (N =2, M = 1) are used. In this case, the transfer function of

the air-backed diaphragm H,, reduces to

3 -
qH - B YA+ T 8- 21q1n§/3 |, (3-80)
a I,T,/8 Ay +1,7/9-Q

Q; can be obtained by by finding the root of the determinant of H,, i.e.
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Ao’ + Ay  +(T7+T,7)/ 9
2 . (3-81)
1

_5 (T112 +lez )2 /g +2(A012 _Aozz)(Tllz _lez)/'g"‘(Amz _A022 )2

2'12912:

As g — 0, 9 — 0, and Q, approaches the plateau value Q; ,;

Q = Aoz2 + A012 + Aoz2 _A012 ];12 _lez ) (3-82)
2 2 L+
If the diaphragm is a pure plate (without in-plane force), Q;,; is equal to 10.1034, as

compared to 2.9490 and 11.4809 for Ag; and A, respectively.

To estimate €; in the down-slope stage, the simplified model (N =2, M = 2) is used, for
which the transfer function is (assuming coth(fy1g/a) = a/(fy1g) for short air gaps)

T2+ 9A," - (O-T212 + ‘9)92 LT, —oT, T,

H, =7 , (3-83)

Py @
E, g LT, —oT, 1,0 T, + A, _(GTzzz + ‘9)92

where

s 2 hp 2
o= Z(C—] (7} . (3-84)

From the determinant of H,,, Q; can be obtained as follows
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(Ay+Ay,")F +0,8+0,

Q= 5

287 +20,9

> , (3-85)
\/[(Aof +A,") 8 +0,9+0, | —4(F +0.9) (A A, +0,9)
28 +20,9
where

0 = O-(TI2T21 —T1,,T,, )2 ) (3-86)
0, ZG(T212A022 "'T222A012)"'(T112 +T122)° (3-87)
0,=0c (L, +T,’), (3-88)
0, = (Tlleoz2 + lezAmz)' (3-89)

Note that Equation (3-85) is the closed-form equation to calculate the fundamental
frequency of the coupled system in all three stages. However, as g/la — 0, $ — 0, and Q;

— 0. Therefore, Q; can be approximated by

f f h
Ql,dw = &19 = kdw &_Pg ’ (3'90)
o Py a a

where

ko = \/Tl12A022 +T122A012
dw —
|leT21 _T11T22|

B - (3-91)

If the diaphragm is a pure plate (without in-plane force), k4, = 51.5651.
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The two critical air gaps, marked in Figure 3-10, can be calculated from Equations (3-78),

(3-82), and (3-90) as

3
gup 2 pO a T;l
—=y(l-v' )= - —, 3-92
=== | P a2
Q 2
@:&i[ Lp_fr) (3-93)
a pp hp kdw

For the representative example, these critical values are calculated as g, = 3.0705 mm

and gz, = 10.0491 pm.

3.4.3 Parametric studies
Equations (3-92) and (3-93), which can be used to calculate the two critical gaps, are
used here to study how the structural parameters affect the variation of QQ; with respect to

the air gap height.

The first parameter to study is the Young’s modulus of the diaphragm E,. Equations
(3-92) and (3-93) indicate that g,, is inversely proportional to E,, while gu, is
independent of E,. As E, increases (other parameters are kept constant), as shown in
Figure 3-11(a), the up-slope region shifts to the left, but the down-slope region does not
move. In the up-slope region, for the same air gap height, increasing E), leads to a smaller
Q;, which can be seen from equation Equation (3-78). An increase in E, can also results

in a narrower plateau, which disappears if E,, is larger than a critical value.
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Figure 3-11: The variation of the fundamental frequency of an air-backed diaphragm (normalized
by that of the same diaphragm in vacuo) as a function of air gap height. (a) The Young’s modulus
of the diaphragm changing from 0.5 to 100 times Silicon’s. (b) The diaphragm’s density changing
from 0.1 to 10 times Silicon’s. (c) Pressure level of the air gap changing from 0.01 atm to 1 atm
(assuming the temperature does not change). (d) The diaphragm thickness changing from 0.2 pm

to 10 pm.

The second parameter to study is the diaphragm’s density p,. Equations (3-92) and (3-93)
indicate that g4, 1s inversely proportional to p,, while g,, is independent of p,. When p, is
decreased (other parameters are kept constant), as shown in Figure 3-11(b), the down-
slope region moves to the right, but the up-slope region does not change. In the down-
slope region, for the same air gap height, decreasing p, leads to a smaller Q;, which can
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be seen from Equation (3-78). Also based on Equation (3-90), the slope of the down-
slope region in a log-log plot is not affected by the change of p,. Decreasing p, also

results in a narrower plateau, which disappears if p, is smaller than a critical value.

In the third case, the influence of the static pressure in the air gap py is investigated.
Assuming the temperature is kept constant at room temperature, the air density o
changes proportionally with py. Since g,,/gaw 15 proportional to py/py, decreasing the air
pressure will result in a shift of the entire curve to the left in the log-log plot, as shown in
Figure 3-11(c). It is intuitive that as the air density becomes smaller, the air gap needs to

be shorter to have the same spring and mass effects.

In the last scenario, the effect of the diaphragm thickness # is studied. From Equations
(3-92) and (3-93), it can be seen that g,,/gs. is proportional to (a/h)’. Therefore, as h
increases, the plateau region becomes smaller in the log-log plot, as shown in Figure
3-11(d), although both the up-slope region and the down-slope region move to the left. In
the up-slope region, as 4 increases, €, decreases for a fixed air gap height g, and its slope
with respect to g becomes smaller due to the increased stiffness of the diaphragm. In the

down-slope region, a thinner diaphragm leads to a smaller €2;.
3.5 Modeling of diaphragms coupled through a bridge

In this section, the previous derived transfer functions for the air-backed diaphragm and
the bridge will be combined to model the fly-ear inspired directional microphones.

Assume the pressure load on the left and right diaphragms are
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ppL V@f Z men pmn m(@)ej’”t

o 3-94
ppR r, gt Z pRmn pmn m(g)ejwt ( )

The pressure load consists of the external pressure load p.., p.r, and the reaction pressure
from the bridge p,., px (i.e., coupling force). The reaction pressure is due to a

concentrated force described by

P, (r#0)=0,p, (r=0)=cx, Zﬁazjlopd (r)rdr=F,

1 (3-95)
Pr(r#0)=0,p,(r=0)= oo,27ra2I P (r)rdr=F,

The external pressure can be written as

peL r, gt Z eLmn pmn m(g)eja”

peR I" Ht Z eRmn pmn m(e)ejwt .

m,n

(3-96)

Combining Equatoins (3-94)-(3-96), it can be obtained that

‘i . (3-97)

The load (force per unit length) on the bridge is assumed to be solely caused by the

reaction force; that is

szLi[F,La(xH)+ S(x-1)]e = ZF,”U,” x)e™ (3-98)
b
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where

) . (3-99)

b=y R b

In response to the pressure load, assume the displacement of the two plates and the bridge

arc

L(r00)=>w, U  (r)0,(8)e”

m,n

< (7.0,1) z Uy ()0, (8) " (3-100)

Wb Xt ZVVblUbl ) o

Based on Equations (3-53) and (3-44), one can obtain

pL mn Z PpL st
- ap ,mnst E
P
pR — = z ap,mnst b (3_101)
EP

w,. F,
# — Hb i b,i

L "Ep

(3-102)

or
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z WpL,On Up,On ’,20@0 = z m,i Ub,i‘x=71
n i

_ (3-103)
Z WpR,On Up,On ‘},:0@0 = z VVbsi Ub,i‘x:l

Because U, ui(r = 0) = 0 for m # 0 and the center displacement will be measured by a
detection system, only the axisymmetric modes (m = 0) will be considered. For simplicity,

these equations will be recast in matrix forms next.

The forcing terms for the two plates in Equation (3-97) are written as

P, =P, —a—lzBpF,.L : (3-104)
P,.=P, —%BPFVR, (3-105)
where
P = {2} Por ={Prranf (3-106)
P ={ P} Py ={Pron} - (3-107)
B,={U,, (r=0)0,} . (3-108)

The forcing term on the bridge (beam) in Equation (3-99) is written as

1 1
F, :ZBbLEL +ZBbRER > (3-109)

where
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F,={F,}, (3-110)

B, ={U,|_}.B={U,]_} (3-111)

The transfer functions in Equation (3-101) are written as

w P
£=H, ", (3-112)
a E,,
\\J P
Z=H," = (3-113)
a Ep
Wop, b, (3-114)
L E,b
where
W :{WPL,On}’WpR = {WpR,On}’Wb :{Wb,i} , (3-115)
Hﬂp = I:Hap,OnOt}’Hb = dlag{Hb,} . (3—1 16)

The geometric compatibility described in Equation (3-103) can be written as

B,W,=B,'W,, (3-117)

B/W =B, 'W,. (3-118)

Combining all the above matrix form equations, the following equations in terms of the

reaction forces can be obtained
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_ E a E a —
{BPTHap B, +FprbLTHbBbL}F,L ey B,'H,B,F,=BH, P, (3-119)

b b

E E
Fp%BbRerBbLFrL + {BpTHap_pr + Ep%BbRTHbBbR }Fﬂe = BpTHap_ll)eRaz . (3-120)

b b

The above two equations can be rewritten in a more compact matrix form as

H,F,=NP,a’ , (3-121)
where
Ep anr Tyy -1
H, =—2Bb HbBb+Bp Hap BpI2 , (3-122)
b
B'H !
N:{ poap ; 1} , (3-123)
BP H“P

B,=[B,, B,]|. (3-124)

PeL
P = . (3-125)

PeR

From Equation (3-121), the reaction force can be solved as

F,=H, 'NP,a’ . (3-126)

Once the reaction forces at the connecting joints are known, the displacement solutions

for the diaphragms and the bridge can be obtained as follows
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w P
—L=H, P (3-127)
a p
Wo_y, P (3-128)
a E,
where
w
w, ={ ”L} , (3-129)
W,
-1
u | Mo L H,'N (3-130)
sp H -1 2N B R 4
ap P
a E
H,=——H,BH,'N . (3-131)
b E,

When a sinusoidal plane sound wave impinges on the directional microphone, the forcing

terms can be calculated as

I L .
])()L,On = pm 277’- exp(_jzﬂ-zsn’lgjj.:o Up,On (r)l"dr s (3'132)
Pron = PuN27 exp(jZ;r%sin 9) I::O U, (r)rdr, (3-133)

where p,, is the pressure field at the pivot, and @ is the incident azimuth. The phase term

2ntL/A can also be written as
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A ¢ P¢, a

Q |~

(3-134)

3.6 Validation of the continuum mechanics model

3.6.1 Validation of the model with a finite element model
In this section, the developed continuum mechanics model will be validated by a finite
element model in ANSYS. To facilitate the comparison, a representative design is chosen

with the parameters listed in Table 3-3.

A finite element model is created by using a commerical finite element method (FEM)
software ANSYS (Version 13.0), as shown in Figure 3-12. Shell elements (SHELL181,
2950 elements) are chosen to model both the diaphgrams and the coupling bridge, and 3-
D acoustic fluid elements (FLUID30, 53000 elements) are used to model the air gap.
Fluid-structure interaction (FSI) flag is created at the interface between the diaphragms

and the air to ensure the coupling of displacement and pressure field.

Bridge Diaphragm

s Ay

Pivot in the middle

Joints at two ends
Air

Figure 3-12: Finite element modeling (ANSYS) of fly-ear inspired directional microphones
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Table 3-3: Parameters of a representative fly-ear inspired directional microphone

Parameters Values Parameters Values

Diaphragm (silicon) Bridge (silicon nitride)
Young’s modulus E, 169 GPa Young’s modulus E, 290 GPa
Poisson’s ratio v 0.25 Density p, 3100 kg/m’
Density p, 2300 kg/m’ Length 2L 1.2 mm
Radius a 500 pm Width b 300 pm
Thickness h, 0.5 um Thickness hy, 2.5 um
In-plane tension N, 0 Axial load 0
Damping 1, 0 Damping 0

Air gap
Static pressure 101325 Pa Air gap height g 250 um
Sound speed 343 m/s

For the boundary conditions, except for the top surface, the air gap is constrained by
surrounding rigid walls (this is the default boundary condition). The translational degrees
of freeom (DOFs) of the diaphragm and the bridge are coupled at the joints (equal
translational displacements), and the bridge is pinned in the middle (zero translational

displacements).

The mode shapes and natural frequencies for the mechanically coupled
microphone with and without considering the effects of the air gap are compared in Table
3-4 and Table 3-5. Overall, the results obtained from the analytical model agree well with
those obtained with ANSYS. In addition to the discretization in the FEM and the
numerical calculation error, the slight discrepancy is largely due to the fact that the bridge
is described by an Euler-Bernoulli beam in the analytical model, while it is modeled

using shell elements in ANSYS.
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Table 3-4: Mode shapes and natural frequencies of mechanically coupled microphone without air

gap (comparison between analytical model and finite element model)

Analytical model (Matlab)

Finite element model (ANSYS)

Natural Natural
Mode shape frequency Mode shape frequency
(kHz) (kHz)
1" Rocking | W 4.04 w 4.03
1 Bending m 10.05 “ 10.13
2 Rocking | M <y 1005 | =GRy | 1967
2" Bending | (Y 21.26 “ 21.02

Table 3-5: Mode shapes and natural frequencies of mechanically coupled microphone with air

gap (comparison between analytical model and finite element model)

Analytical model (Matlab)

Finite element model (ANSYS)

Natural Natural
Mode shape frequency Mode shape frequency
(kHz) (kHz)
1 Rocking e B 8.56 “ 8.39
1* Bending “ 14.18 “ 14.18
2™ Rocking -« k@ 42.47 “ 42.29
2 Bending | 47.82 m 46.79

It should be noted that the air gap has a significant effect on the natural frequencies and

mode shapes. For example, with an air gap, the natural frequencies for the first rocking

and bending modes increase from 4.04 kHz and 10.05 kHz to 8.56 kHz and 14.18 kHz,
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respectively (using the analytical model). There are also noticeable differences in the
mode shapes. For example, with an air gap, the displacement in the mode shapes is more

concentrated around the diaphragm center.

3.6.2 Comparison of the continuum mechanics model with the lumped model

Here, the frequency response of the diaphragm obtained with the continuum mechanics
model will be compared with that obtained from the equivalent two degrees-of-freedom
model described in Chapter 2. To do this, the static stiffness of the diaphragm, the two
natural frequencies, and the two damping ratios should be obtained and used in the 2-
DOF model. To simplify the problem for the validation purpose, the damping ratios are
assumed to be zero. The other three parameters are equal to those obtained from the

analytical model.

The spectra of the diaphragm’s center displacement are shown in Figure 3-13 for two
scenarios: with and without the air gap. The incident azimuth is chosen as 90° so that the
rocking mode can be excited. Note that if the system’s damping is zero, the
displacements of the two diaphragm centers have same absolute magnitudes. As can be
seen from Figure 3-13(a), the continuum model can capture multiple rocking and bending
modes, while the lumped model can only capture the first rocking and the first bending
modes. Furthermore, the results in Figure 3-13(b) confirm that including an air gap will
shift the natural frequencies. In both scenarios, the results obtained with the lumped

model agree well with those obtained with the continuum mechanics model.
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Figure 3-13: Comparison of center displacement spectra of a fly-ear inspired directional
microphone using the continuum mechanics model and the lumped model. (a) Without

considering the effects of air gap. (b) Effects of air gap included. Incident azimuth is 90°. The

two diaphragms have the same responses.

Figure 3-14 compares one of the directional cues m/PD for the same two scenarios. As
noted previously, since the two diaphragms have same absolute displacements, the other
directional cue mlIID is equal to zero. The results shows the results from both lumped

model and continuum model are consistent.
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Figure 3-14: Comparison of phase difference m/PD of a fly-ear inspired directional microphone
obtained by using the continuum mechanics model and the lumped model. (a) Without air gap. (b)
With the air gap included.
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The slight discrepancy between the continuum model and the lumped model can be
attributed to several factors. The main cause is that in the lumped model, the bridge is
assumed to be massless. The mass of the bridge should be added to the diaphragm based

on the equivalence of kinetic energy. The equivalent added mass can be calculated by

[\X. pbh, LU, (x) :%Mesz (x=1). (3-135)

02
From the above equation, one can obtain the equivalent mass M,

M, =eM,, (3-136)

e

where

e I;sz (x)dx

SR (3-137)

and M}, = pbh,L. Apparently, the equivalent mass varies for different modes of the bridge.
For example, if there is no axial loading on the beam, ¢is equal to 33% for the first mode,
and 25% for the second mode. This is different from the continuum mechanics model
where no such equivalence is needed. The results show that the lumped 2DOF model, as

simplified as it is, captures the essential dynamics of the coupled system.
3.7 Parametric studies

To understand how the structural parameters of the fly-ear inspired directional

microphone affect its performance, the following parameters should be investigated:

102



1) Separation-to-wavelength ratio. This ratio is predetermined by the
working frequency and desired size.

2) Damping ratios. The damping characteristics can be tuned by adding a
plate with perforated holes in the back chamber.

3) Natural frequencies. The frequencies for the rocking and bending modes
are important in determining the performance characteristics of the

coupled system.

However, since the overall effects of these parameters are similar to what has been
studied using the 2-DOF model in Chapter 2, the parametric studies about these
parameters are omitted here to avoid being repetitive. In the following subsections,
parametric studies will be carried out to study the effects of the several other key
structural parameters on the natural frequencies of the mechanically coupled system. One
parameter is the air gap height, which affects the diaphragm’s effective stiffness. The
structural parameters of the bridge that can change the effective stiffness and mass of the

bridge relative to the diaphragm also need to be investigated.

Given all the parameters for the circular plate and air gap, the effects of the coupling
bridge can be studied by varying its material parameters and geometric dimensions. For
the material parameters, changing the Young’s modulus £, and the density p, will simply
change the stiffness and the mass of the bridge, respectively. On the other hand, the
effects of geometric parameters are more complicated, since they change the stiffness and
mass simultaneously. For example, the mass of the beam is linearly proportional to the
bridge’s width b and thickness 4;. The stiffness of the beam, as described by Equation
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(3-45), is proportional to A,”, but independent of b. Also, the beam width does affect the

coupling force between the plate and the bridge, as indicated in Equation (3-122).

For simplicity, a hypothetical material will be created with modified £, and p;, which is

used to study the effects of changing the bridge’s stiffness and mass separately.

3.7.1 Air gap height

As previously discussed in the study on a single circular clamped diaphragm, the air gap
needs to be considered to obtain accurate natural frequencies and frequency response of
the system. The same conclusion can be drawn here for the directional microphone with
mechanically coupled diaphragms. In the air gap range as shown in Figure 3-15(a), a
shorter air gap increases the stiffness of the diaphragm, rendering a higher rocking and
bending mode frequencies. However, the ratio of between the two frequencies decreases

with reduced air gap height, as shown in Figure 3-15(b).
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Figure 3-15: The effects of air gap on the natural frequencies of the fly-ear inspired directional
microphone. (a) The natural frequencies of the first rocking mode and first bending mode as a

function of the air gap height. (b) The ratio of the two natural frequencies.

3.7.2 Young’s modulus of the coupling bridge

A hypothetical material is created with a modified Young’s modulus E,’, ranging from
0.1 times to 100 times of the original value E,. As shown in Figure 3-16(a), increasing
the bridge stiffness will increase the natural frequencies of the rocking and bending
modes. However, they cannot be increased to any arbitrary number. Rather, the natural
frequencies saturate when £}’ is larger than a critical value. Another relevant conclusion
can be drawn from Figure 3-16(b) is that the natural frequency ratio of the first bending
mode to the first rocking mode cannot be increased to an arbitrary high value as indicated

by the lumped model.
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Figure 3-16: The effects of the Young’s modulus of the diaphragm on the natural frequencies of
the fly-ear inspired directional microphone. (a) The natural frequencies of the first and second
rocking modes and bending modes as a function of Young’s modulus ratio. (b) The ratio of
natural frequencies to the first rocking mode natural frequency.

3.7.3 Density of the coupling bridge

A hypothetical material is created with modified density p,’, ranging from 0.1 times to
100 times of the original value p,. As shown in Figure 3-17(a), increasing the bridge
density will decrease the natural frequencies of the rocking and bending modes. Although
following a similar downward trend, the variations of the natural frequencies have
different shapes. In the range chosen in Figure 3-17(b), the natural frequency ratio of the
first bending mode to the first rocking mode stays almost constant same as the density

changes.
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Figure 3-17: The effects of the diaphragm’s density on the natural frequencies of the fly-ear
inspired directional microphone. (a) The natural frequencies of the first and second rocking
modes and bending modes as a function of the density ratio. (b) The ratio of natural frequencies

to the first rocking mode frequency.

3.8 Summary

Based on the mechanically coupling mechanism found in the fly, a bio-inspired
directional microphone design is proposed, which consists of two circular clamped
diaphragms connected by a coupling bridge. A continuum mechanics model is developed
to achieve a fundamental understanding of the structural dynamics and the performance
of the coupled system. This model can capture two types of essential coupling of the
system: one for the mechanical coupling of the two diaphragms through a beam and the
other for each diaphragm coupled through an air gap. The developed model is validated
with a finite element mode in ANSYS, and the equivalence between the continuum
mechanics model and the Ilumped two degrees-of-freedom model is established.
Parametric studies are carried out to study the effects of key structural parameters. The

developed continuum mechanics model is necessary for the sensor development to be
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discussed in the next chapter, which cannot be carried out by using the lumped 2-DOF

model discussed in the previous chapter.
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Chapter 4 Fly-Ear Inspired Directional Microphones: Sensor System

Development and Experimental Studies

4.1 Overview of sensor system development

As illustrated in Figure 4-1, the sensor system development consists of two parts, one for
the mechanical components, and the other for the detection system. The mechanical part
has a rigid substrate with two flexible diaphragms. A bridge connects the two diaphragm
centers so that only the axisymmetric modes of the diaphragm transmit the coupling force
via the connecting joints. The bridge is free to rotate about the pivot in the middle. To
detect the minute diaphragm response, a detection system with high sensitivity and large
signal-to-noise ratio (SNR) is needed. Here, a fiber optic interferometric system is used to
detect the vibrations at the diaphragm centers where the deflection is maximal. For each
diaphragm, an optical fiber is inserted through the back of the substrate and aligned with

the diaphragm center.

In the next section (Section 4.2), the development of optical detection system will be
detailed. A large-scale proof-of-concept directional microphone is developed in Section
4.3 to validate the mechanical coupling mechanism and the overall system development.
Then, a fly-ear sized sensor is demonstrated to achieve the dual optimality characteristic

at 8 kHz (Section 4.4). Finally, to best use this sensor for sound source localization, a
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robotic platform with a control scheme inspired by the fly’s localization/lateralization

scheme is developed in Section 4.5, followed by a brief summary in Section 4.6.

(a) Bridge, Pivot /Diaphragm

Optical fibers /!

Substrate

(b)

Fiber Optic Interferometric System

Figure 4-1: Overview of the sensor system development. (a) Mechanical part which consists of
two diaphragms coupled by a bridge. (b) Detection system where a fiber optic interferometric

detection system is used.

4.2  Development of optical detection system

Capacitive detection technique is the most widely employed sensing method for
miniature microphones. It has better pressure sensitivity and less temperature sensitivity
over piezo-resistive microphones. Drawbacks of capacitive microphones include the
excess signal loss from parasitic capacitance and the requirement of expensive and bulky
high-impedance preamps at the sensor head. In addition, when the size is reduced,
capacitive microphones are very susceptible to the mechanical noise due to molecular

agitation, and thus a tradeoff has to be made between the sensitivity and the noise floor.
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Microphones based on optical detection techniques possess several advantages over
conventional capacitive technique, which are preferred in some applications (Bilaniuk,
1997). In addition to the absence of parasitic capacitance, the advantages of optical
microphones include high pressure sensitivity, high SNR, immunity to electromagnetic
interference, and safety in hazardous and explosive environments. By incorporating fiber
optic components into the optic detection method, a versatile and robust system can be
constructed, which has further advantages of light weight, capability of remote operation,

and multiplexiblity.

As one of the optical detection methods in microphones, fiber optic interferometers (FOI)
offer high sensitivity by measuring the change of the optical phase induced by the optical
path difference (OPD) change. Other advantages of fiber optic interferometers include
immunity to electromagnetic interference (EMI), robustness in hazardous environments,
capability of remote operation (Grattan & Meggitt, 2000; Hariharan, 2003). The most
commonly used FOI sensors are those based on two-beam interferometry, such as the

Mach-Zehnder, Fabry-Perot, and Michelson interferometers, as shown in Figure 4-2.
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Figure 4-2: Schematics of two beam interferometers: (a) Mach-Zehnder, (b) Fabry-Perot, and (c)

Michelson. (Wild & Hinckley, 2008)

The light from the light source, ideally a single frequency laser in a conventional

interferometer configuration, is split to two beams on the reference arm and the sensing

arm. The OPD between these two beams results in an intensity change of the

interferometer output /, which has a sinusoidal form given by

I=1,(1+Vcos(¢,—4,)),

(4-1)

where I is the dc component, ¢, ¢ are the optical phase of the sensing and reference

arms, and V' is the visibility of the interference given by
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V: max min’ 4_2
I +1 (+-2)

max min

where 1, and [,,;, are the maximum and minimum values of /. The highest sensitivity is

achieved when the interferometer is operated at the quadrature points, i.e.

2m—1
Ap=4,—, =""Tﬁ, (4-3)

where m =0,%1,+2,---, and A is the wavelength of light.

In a low coherence fiber-optic interferometry (LCFOI) configuration, a low coherent
broadband light source is used (Grattan & Meggitt, 2000; Miao Yu, 2002). When using
time domain signal processing, the system is usually arranged to have two
interferometers: one sensing interferometer and one reference interferometer (also called
read-out interferometer). The schematic of the LCFOI is shown in Figure 4-3. In order to
obtain temporally incoherent light after the light passes the sensing interferometer, the
OPD in the sensing interferometer L, should be arranged to be greater than the coherence

length L. of the light source. When the OPDs satisfy the following conditions:
L ~Land|L -L|<L, (4-4)
the light intensity received at the photo detector can be approximated by

I~1,+1,cosky(L —L,). (4-5)
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Figure 4-3: Basic configuration of low coherence fiber optic interferometric system

Different from the conventional FOI, LCFOI measures the differential optical phase
change between a sensing interferometer and a readout interferometer. This technique can
not only take advantage of the features of the conventional optical interferometer based
sensors, but provide a much higher signal-to-noise ratio, lower drift, and more reliable
sensing data, and allows for a large bandwidth, large dynamic range, and a much more

simplified phase demodulation scheme.

Because of these characteristics of LCFOI, an optical detection system without phase
demodulation based on LCFOI is developed to detect the vibrations of the two
diaphragms for the bio-inspired directional microphone. As illustrated in Figure 4-4, each
diaphragm and its corresponding fiber tip forms a Fabry-Pérot (FP) interferometer.
Broadband light from a super-luminescent light emitting diode (SLD) (O/E Land Inc,
OELED-100) is first sent via a 3dB optical coupler to two other couplers. At the output of
each coupler, the light beam is directed to the FP sensor. The reflected light from each FP
sensor is then coupled back to a tunable Fabry-Pérot filter (Micro Optics, FFP-TF2) and

finally to a photo detector (New Focus, Model 2011). The outputs from the

114



photodetectors are then acquired through a data acquisition board (DAQ) (National

Instruments, USB-6259) for post-processing.

Bridge, Pivot /Diaphragm

/ Substrate

Optical fibers

p J
0 J Light source
Coupler 111
<
Qx> SLD
% / TTTT
= b‘ g
Qx> o

—b-

Tunable filter Photodetector

Figure 4-4: schematic of a low-coherence fiber optic interferometric system for the fly-ear

inspired directional microphone.

In the experimental setup, the maximum sensitivity is achieved when the initial OPD is in

the vicinity of quadrature points; that is,

L=, =(2m=1)32, (4-6)

S r

where m = 0, £1, £2, ---. To ensure the detection system working at the quadrature points,
bias voltages are applied to the tunable filters, which can compensate the cavity length

deviation in the fabrication process and the post-fabrication drift.

115



4.3 Large-scale proof-of-concept directional microphone

To mimic the fly ear and provide a proof-of-concept prototype of the proposed design
and model, a large-scale directional microphone is developed. The distance between

diaphragms centers is 25.4 mm. The integrated microphone device is shown in Figure 4-5.

Diaphragm

Housing
block

Fiber connectors

Figure 4-5: Photograph of large-scale bio-inspired directional microphone. The separation

between the two diaphragm centers is 25.4 mm (one inch).

The fabrication starts with the Mylar diaphragm, disassembled from a commercially
available microphone cartridge (CUI Inc, Model CMP-5247TF-K). The peripheral
boundary of the diaphragms is bonded to the end face of a plastic tube by epoxy. A fiber
optic connector ferrule is attached to the tube by thread connection. Then, two of these
tubes and a Z-shaped pivot (metal sheet) are glued to an aluminum housing block. After
that, optical fibers are inserted from the back side, and the distance of the Fabry-Perot
cavities are adjusted based on the interference fringe obtained with an optical spectrum
analyzer (OSA). When the cavity length of the sensor is found to match that of the
tunable filter, a room cured optic connector epoxy is used to fix the cavity length. This
makes a conventional microphone pair, namely a directional microphone without

mechanical coupling.
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Next, the uncoupled directional microphone is assembled onto a manual rotational stage.
Using the low coherence fiber optic interferometer described in Section 4.1, the response
of the two uncoupled diaphragms subject to a sound field can be measured, which can be

used to obtain the characteristics of the diaphragm alone.

Based on the continuum mechanics model described in Chapter 3, the selection of an
appropriate material and geometry for the coupling bridge is made. Here, a steel beam is
used as the coupling bridge. The last step is to connect the diaphragm centers with the
coupling bridge to finish the coupled microphone, which can be placed on the rotation

stage to study its performance for sound source localization.

As only one tunable filter was available at the time of the experimental measurement, the
detection system was different from that illustrated in Figure 4-4. In the modified LCFOI
system shown in Figure 4-6, the cavity lengths of both Fabry-Perot interferometer
(between fiber tip and diaphragm) need to be approximately equal to the cavity length of
the tunable filter. In order for both to work at the quadrature points, the difference of
cavity lengths of two Fabry-Perot interferometers needs to be an integer multiple of the
light source’s center wavelength. This poses great challenges to the distance control in
the fabrication process. For example, the amount of epoxy needs to be similar and the
curing needs to be synchronized. The difference can be slightly adjusted by manually

fine-tuning the thread connecting the ferrule and the plastic tube.

The design parameters of the fabricated directional microphone are listed in Table 4-1.
The separation-to-wavelength ratio is chosen to be about 1/10. This ratio will be bigger if

the full width of the substrate is used instead of the distance of diaphragms in the
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calculation. Since the sound field is disturbed due to diffraction, it is expected that errors
will occur in the measurement of the m/ID. Therefore, in the experiments, m/IPD or

mlITD is used as the only directional cue to study the performance of the microphones.

Bridge, Pivot Membrane

Optical fibers / Substrate

o J

Coupler

Light source

SLD
L

Tunable filter

B> 2P =
Photodetector

Figure 4-6: Low-coherence fiber optic interferometer system using one tunable filter for the

large-scale bio-inspired directional microphone.

Table 4-1: Parameters of the large-scale directional microphone

Parameter Value
Separation of diaphragm centers d 25.4 mm
Diaphragm thickness /4, 22 ym
Diaphragm radius R 3.5 mm
Bridge thickness 4, 0.10 mm
Bridge width b 1.9 mm
Mass Ratio y,, 16.4
Stiffness Ratio y; 6.4
Damping Factors &, &, 0.1, 0.1
First natural frequency f; 1.3 kHz
Second natural frequency /> 2.2 kHz
Separation-to-Wavelength Ratioy, atf;  1/10.4
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First, a band-limited white noise is generated from a speaker placed 0.5 m away from the
microphone. The obtained microphone response spectrum exhibits multiple peaks. The
natural frequencies corresponding to the first two peaks are 1.3 kHz and 2.2 kHz, as listed

in Table 4-1.

Next, a pure tone at various frequencies is used to characterize the microphone’s response
to different incident angles. mITD as a function of incident azimuths is shown in Figure
4-7(a) when the excitation frequency is 1100 Hz. The insets illustrate two experimentally
obtained waveforms at the azimuth angles of 20° and 60°. The corresponding mIPD can
be observed to change from 47° to 118°, corresponding to a mITD change from 120 ps to
297 us. When compared with the uncoupled case, mITD is amplified more than 4.4 times
at the 90° azimuth. The experimental data compare well with the simulation results
obtained based on the continuum mechanics model with a plane wave assumption.
According to the fitted curve of the experimental data, the directional sensitivity reaches

a peak at 6.5 ps/deg and stays almost constant within £30° azimuth.

The frequency response of mITD obtained at a constant azimuth of 40° is plotted in
Figure 4-7(b). Below the first rocking natural frequency of 1.29 kHz, mITD goes up as
the excitation frequency is increased. In the vicinity of the rocking mode natural
frequency, mITD experiences a sudden sign change. Although the absolute value of mITD
peaks at this frequency region, the directional sensitivity is extremely small at a large
azimuth (e.g, when the excitation frequency is 1.3 kHz, as shown in the inset). Further

increase of the frequency causes a decrease of mI7D. In the vicinity of the bending mode
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natural frequency of 2.2 kHz, the absolute value of mITD reaches almost 0. For

comparison, ITD of the uncoupled case (75 us) is also shown in Figure 4-7 (b).
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Figure 4-7: Directional cues of large-scale prototype. (a) mITD versus incident angle for 1.1 kHz;

(b) mITD in the frequency domain when incident angle is fixed at 40°. (Liu, Yu, & Zhang, 2008)
4.4 Development of a micro-scaled sensor mimicking the fly-ear’s dual

optimality characteristic

4.4.1 Sensor design based on dual-optimality

Since the dual-optimality property enables the fly to accurately locate its host crickets
despite of its limited signal processing capability, it is important to note that the dual-
optimality characteristic is not limited to the fly ear’s size or the cricket’s calling song
frequency. Rather, for any damping scenarios (given damping ratio & and &), the two
natural frequencies can be calculated as a function of separation-to-wavelength ratio y
that ensure the designed system the dual-optimality characteristic at its desired working
frequency f. For example, when & = 0.18, & = 0.05 (the damping ratios for the prototype

introduced later), the optimal design curves are shown in Figure 4-9(a), from which the
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two natural frequencies for the rocking and bending modes can be obtained for any given
separation-to-wavelength ratio (calculated by using the working frequency and desired
size). Three representative systems (marked as A, B, and C) that are optimized for
working at 2 kHz, 8 kHz, and 12 kHz are shown for an interaural separation of 1.2 mm.
The calculated two natural frequencies are 2.36 kHz and 9.19 kHz (system A), 9.47 kHz
and 20.23 kHz (system B), and 14.23 kHz and 26.20 kHz (system C). The spectra of 4ADS
and NL in Figure 4-9(b) confirm the dual-optimality characteristic of these three systems.
As a result, the spatial distribution of DS has a flat region within the linear range (Figure
4-9(c)), which is also higher than those obtained at other frequencies, as shown in Figure

4-9(d) for system B.

As shown in Figure 4-9, the proposed miniature fly-ear inspired directional microphone
consists of four layers, numbered 1 to 4 in the plot. Two clamped circular diaphragms
and a coupling bridge are on the front plate layer (Layer 1). A back chamber is formed by
Layer 2-4 with perforated holes in the middle layer, which are designed to tune the
system’s damping characteristics. Four through holes are made at the corners of all four

layers to facilitate the alignment during the bonding process.
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Figure 4-8: Design guideline based on the fly ear’s dual-optimality. (a) Optimal natural
frequencies for designing fly-ear like systems (damping ratio & = 0.18, & = 0.05). With an
interaural separation of 1.2 mm, three examples are marked on this plot for working frequencies
at 2 kHz, 8 kHz, and 12 kHz, respectively, (b) Spectra of average directional sensitivity (4DS)
and nonlinearity (NL) for the three examples in (a). (c) Spatial distribution of directional
sensitivity (DS) for the three examples in (a) at their respective optimal working frequencies. (d)

Spatial distribution of DS for the representative system B in (a) at three different frequencies.

The center-to-center separation is chosen to be equal to that of the fly ear (i.e., 1.2 mm).
Polysilicon is chosen as the material for the diaphragm with a diameter of 1.1 mm and
thickness of 0.5 um. Alternating layers of silicon dioxide and silicon nitride are used for
the bridge that is 300 um wide and 3.2 um thick (2.6 um of dioxide and 0.6 pm of nitride).

The layer with perforated holes has eight 60 um diameter through holes for damping
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tuning and one 250 um diameter hole for optical fiber guiding under each diaphragm.
The thickness of all four layers is 250 um. The above dimensions are chosen based on the

mechanics model of the sensor discussed in Chapter 3.

/ Alignment holes

gridge Membrane
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Figure 4-9: Design of a miniature MEMS directional microphone inspired by the fly ear. It
consists of four layers, device layer (Layer 1), perforated holes plate (Layer 2), back chamber

(Layer 3), and back plate (Layer 4).

4.4.2 Sensor fabrication

The fabrication process for the front layer is illustrated in Figure 4-10. Starting from a
blank double side polished silicon wafer, a 1 um thick silicon dioxide layer is deposited
by plasma enhanced chemical vapor deposition (PECVD) to serve as an etch stop for the
upcoming back-etching step. The SiO; is annealed in nitrogen at 700°C for 60s to densify
the film and drive off excess trapped hydrogen. Then, a 0.5um thick layer of polysilicon
is sputtered on top of the SiO; as the diaphragm material (Figure 4-10(a)). These two
deposition steps can be replaced by using a customized silicon-on-insulator (SOI) wafer.
Next, four holes are etched through the top silicon layer by deep reactive ion etching
(DRIE) until reaching the SiO, etch stop layer, forming part of the alignment through
holes (Figure 4-10(b)). Then, a photoresist sacrificial layer is deposited and patterned on

top of the polysilicon, and hard baked at 175°C (Figure 4-10(c)), defining the shape of
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the joints between the diaphragm and the bridge. This is followed by PECVD of the
coupling beam, which consists of alternating layers SiO; and SisNy (Figure 4-10(d)). The
sequence is 0.8 um of oxide followed by 0.2 um nitride, which is repeated three times
and capped by a final 0.2 pm of oxide on the top. The total thickness of the beam is 3.2
um, including 2600A SiO, and 600A Si;N,. The temperature is controlled at 175°C to
avoid burning the photoresist. The coupling beam is patterned with a second layer of
photoresist and etched by reactive ion etching (RIE), shown in Figure 4-10(e). A
photoresist layer is patterned on the backside of the wafer to define the diaphragm
geometry. Then, the silicon wafer is etched by deep reactive ion etching (DRIE) until
reaching the Si0O; etch stop layer. Using the same mask, the SiO, layer is removed also
by RIE (Figure 4-10(f)). The process is completed after removing the sacrificial

photoresist with an isotropic oxygen plasma ash process (Figure 4-10(g)).
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Figure 4-10: Fabrication and assembly process of the bio-inspired sensor. (a)-(g) Fabrication

process for the front plate layer. (h)-(j) Fabrication process for the remaining three layers:
damping layer, perforated holes layer, and back plate layer. (k) The assembled device after
thermally bonding the four layers, inserting the fibers to the desired positions, and gluing them to

the back plate layer using ultraviolet cured epoxy.

For the other three layers, a photo-resist layer is patterned on one surface of the wafer,
followed by a DRIE step to make the through holes, shown in Figure 4-10(h-j). The
residual photo-resist remains on the wafers. The four layers are stacked together using
four optical fibers running through the through-holes on the four corners. The inter-layer
photo-resist glues all the layers together on a 300°C oven for 3 minutes. Finally, two
optical fibers are inserted into the two center holes underneath the diaphragm till the gap
between the fiber tip and the diaphragm matches with the tunable filter, after which an

ultraviolet-cured epoxy is used to seal the gap and fix the fiber to the wafers, as shown in
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Figure 4-10(g). The completely assembled sensor device is depicted in Figure 4-11 along

with a house fly.

Figure 4-11: A fabricated MEMS directional microphone placed next to a house fly

2 mm

The MEMS fabrication process is carried out in the clean room of the US Army Research

Lab (Adelphi, MD) by Luke Currano, Danny Gee, and Tristan Helms.

4.4.3 Experiment study of the MEMS sensor

As shown in Figure 4-12, the MEMS device is mounted on the tip of a small aluminum
rod (diameter of 0.25”) of a home-made fixture on a motorized rotational stage (Newport,
URS75BPP) connected to a motion controller (Newport, ESP 300). A pure tone or chirp
sound of various frequencies is played through a speaker (ESS Heil air motion
transformer). The movement of the source is simulated by another motorized rotational
stage under the stage mounting the sensor (the speaker’s position is fixed). The responses
from the two diaphragms are acquired for every 2.5 degrees in the linear range and every
5 degrees otherwise. For each frequency, this process is repeated 5 times to get the
average values. Signals received from the photodetectors are sampled at a rate of 500

kHz for each channel.
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Time delay is calculated by finding the maximum of the cross-correlation of two
channels and converted to phase difference m/PD. For the sampling rate used in the
experiment (500 kHz), the time resolution of the cross-correlation is 2 us (note that a
center-to-center distance of 1.2 mm only renders a time difference of up to 3.53 us). For a
sound frequency of 8 kHz, a time delay of 2 us is equivalent to a phase difference of
5.76°. To improve the resolution, a second order polynomial is used for the curve fitting

around the center peak of the cross-correlation (Benesty, Chen, & Huang, 2004).
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Figure 4-12: Experimental setup to characterize the fabricated miniature directional microphone

inspired by the fly ear

To characterize the device performance, the directional cue mIPD is obtained for
different sound frequencies and incident azimuths in an anechoic chamber, as shown in
Figure 4-13(a). Least square fitting is used to obtain the natural frequencies and damping
ratios in the 2-DOF model. The damping ratios are fitted to be & = 0.18 and & = 0.05.
The rocking mode and bending mode natural frequencies of the device are determined to
be 9.75 kHz and 22.0 kHz, respectively, which are close to the designed optimal values

of 9.47 kHz and 20.2 kHz. Overall, as illustrated in as shown in Figure 4-13(a-b), the
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experimental results compare well with the results obtained on the basis of the 2-DOF
model by using the two designed natural frequencies and characterized damping ratios.
The mode shapes are also verified by using Doppler scanning vibromteter (Polytec MSA-

500), as shown in Figure 4-14.

The natural frequencies predicted by the continuum mechanics model are 6.91 kHz for
the rocking mode and 12.40 kHz for the bending mode, based on the assumption of zero
in-plane force in the diaphragm and zero axial force on the bridge. The discrepancy is
believed to due to the thermal residual stress in the micro-fabricated device. By fitting the
continuum model with the experimentally calibrated natural frequencies, the tension
parameters for the diaphragm and the bridge can be determined as y,, = 100 and y, = 6.9.
The corresponding residual stresses are calculated to be 1.24 MPa for the diaphragm, and

3.85 MPa for the bridge (both of them are tensile stress).
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Figure 4-13: Phase difference m/PD for fabricated directional microphone inspired by the fly ear.

(a) Experiment. (b) Simulation.

(b)

Figure 4-14: Mode shapes obtained by laser Doppler vibrometer measurement for the miniature

directional microphone inspired by the fly ear. (a) Rocking mode (9.8 kHz). (b) Bending mode

(22.0 kHz).
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Further, ADS and NL as a function of frequency are obtained, by using least squares as
follows. At each frequency, mIPD is related to the incident azimuth by the following

form

F+jtan(7zjsin6’j
mIPD = /£

7 (7
F—jtan(ﬂlsin 6’]

where I' = x+ yjis the unknown parameter, which can be obtained by using nonlinear

least squares. Once I is solved, 4DS and NL can be calculated by using their definitions.
This curve fitting technique can help reduce the influences of the environmental noise,
disturbance of sound field by the mounting fixtures, and the randomness of the

asynchronous sampling, which is particularly important for the NL characterization.

As illustrated in Figure 4-15(a), it can be clearly seen that the designed device does
exhibit a similar dual optimality characteristic as the fly ear, which is, however, achieved
at a different frequency of 8 kHz. At this frequency, the experimental value of mIPD is
clearly a linear function of & in the range of -30° < #< 30°, as shown in Figure 4-15(b).
ADS, the slope of mIPD in this azimuth range, is estimated to be 1.69 deg/deg, which is
10 times the DS at the midline in the acoustic stimulus (0.17 deg/deg). Such a directional
sensitivity is only obtainable from a conventional microphone pair with a separation that

is 10 times larger.
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Figure 4-15: Dual-optimality of the fly-ear inspired directional microphone. (a) Spectra of
averaged directional sensitivity (4DS) and nonlinearity (NVL). It shows the device works best at 8
kHz, where it has maximal 4DS and minimal NL. (b) Spatial distribution of phase difference
mIPD at 8 kHz .

4.5  Fly inspired localization scheme

The fly utilizes a unique localization/lateralization scheme to pinpoint the host crickets
(Mason et al., 2001). When the source is out of the linear range around the midline, the
fly makes a simple left/right decision (lateralization) and moves its head toward the
source until the source falls in the linear range. Once the source is in the linear range, the
fly can estimates the sound source position more accurately and turns by the calculated

angle size.

To implement the fly’s localization/lateralization scheme, a sigmoid approximation is
first used to represent the relationship between the phase difference m/PD and the
azimuth @, as shown in Figure 4-16. The slope in the linear range -30° < 0 < 30° is 1.69

deg/deg, which is the value of ADS at this frequency.
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Figure 4-16: Approximation of the relationship between the phase difference m/PD and azimuth

0 by a sigmoid function (blue solid line). Red dots are experimental results.

Note that the sensor does not need to acquire signals continuously. Rather, data
acquisition is carried out only at some discretized time instants. If the measured mIPD is
larger than that obtainable at 8 =+30°, a lateralization decision (i.e., left or right) is made
to rotate the sensor toward the sound source with a constant step (e.g., 20°) until the
source is within the linear range. A localization decision is then performed and the actual
source location is estimated by using the linear portion of the sigmoid approximation.

Finally, localization is achieved when the sensor midline pinpoints the source.

One example is given in Figure 4-17, where the source’s initial position is at 80°. In the
whole process, the sensor is rotated by 20° for three times (three lateralization steps) till
the source reaches the linear range, followed by one localization step. Combining the fly-
ear inspired directional microphone and this bio-inspired localization-lateralization

scheme, the developed sound source localization system can take full advantage of the
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high sensitivity and low nonlinearity in this azimuth range -30° < 6 < 30° at its optimal

working frequency 8 kHz.
: D .9 k.
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Figure 4-17: An example of applying the bio-inspired sound source localization scheme for an

initial azimuth of 80°

This localization scheme is implemented using the robotic platform shown in Figure 4-12.
First, this platform is used to demonstrate its localization ability for stationary sound
source (a chirp sound of 8 kHz is played through the speaker). Figure 4-18 shows the
trajectories of the sound source localization for various starting azimuth positions. For
any initial position in the range of -30° < @ < 30°, it only requires up to four steps to
locate the sound source. As shown in Figure 4-19, the errors of azimuth estimation are all

within 1.88°£2°. The standard deviation is only 0.84°, which, divided by 4DS, translates

to a directional resolution of 0.50°.
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(a) (b)

Figure 4-18: Trajectories of sound source localization using fly’s localization/lateralization
scheme. (a) Trajectories when the fly’s localization scheme is implemented on a fly-ear inspired
sensor using a motorized rotational stage. Blue dots on the periphery represent the initial azimuth
position, red dots near the origin are the final position, and magenta dots are the positions in

between. (b) Virtual path of the fly in the phonotactic experiment (Mason et al., 2001).

The estimation error is attributed to several reasons. First, the data acquisition is not
synchronized across different analog input channels. Second, although the measurement
was made in an anechoic chamber, the mounting fixture, including the tripod, rotational
stage and mounting rod, is much larger than the device size. This will disturb the input
sound wave to the directional microphone. Third, the sensor may drift at the tip of the
mounting rod as it is secured by Scotch double-sided tape. Last, as discussed previously,
the time resolution is limited by the sampling rate of 500 kHz, and a curve fitting method
is used to improve the resolution. However, the simulation results show that even if the

signals are perfect, the standard deviation of azimuth estimation is 0.30°.
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Figure 4-19: Estimation error using the fly-ear inspired sensor and bio-inspired
localization/lateralization scheme. The mean and standard deviation of the error are 1.88° and

0.85°, respectively.

Given the non-perfect conditions, the developed sound source localization system is still
shown to achieve a localization resolution of £2°, which is the same as that achieved by
the fly in the phonotactic experiment (Mason et al., 2001). Note that the localization
performance does not deteriorate when the testing setup is moved from the anechoic

chamber to an in-door laboratory environment.

The developed robotic platform is also investigated to track a moving sound source
(represented by the same 8 kHz chirp sound). Note that in the robotic platform, the fly-
ear inspired sensor is mounted on the top of a rotational stage (sensor stage), which is
stacked on top of another rotational stage (speaker stage). The random movement of the
sound source is realized by operating the speaker stage. In the example shown in Figure

4-20, the sound source initially is located at an azimuth of 80°, and the sensor is able to
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localize it in four steps as previously described. When the sound source starts to move

randomly after that, the robotic platform is able to keep track of the moving source.
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Figure 4-20: Tracking of a randomly moving source using the developed robotic platform. (a)
Time history of the readings from the speaker and sensor stages. (b) Time history of the actual

and estimated azimuths of the sound source.

4.6 Summary

The framework established in Chapter 2 and the continuum mechanics model developed
in Chapter 3 are used to guide the design of a fly-ear inspired miniature directional
microphone. First, a low-coherence fiber optic interferometer system with high sensitivity
and large signal-to-noise ratio is developed to detect the diaphragm vibrations subject to
the sound stimulus. Then, as a proof-of-concept prototype, a large-scale directional
microphone with an interaural separation of 25.4 mm is fabricated and characterized. At
1.1 kHz, the phase difference is amplified by more than 4 times. Next, a miniature
directional microphone that is designed to mimic the fly’s dual optimality at 8 kHz is
micro-machined and characterized in an anechoic chamber. The experimental results

show that the fabricated device indeed has the dual-optimality property as the fly ear. At
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its optimal working frequency 8 kHz, the directional sensitivity is amplified by 10 times.
Finally, a bio-inspired localization-lateralization scheme is developed and implemented
on a robotic platform with the fly-ear inspired sensor mounted. A directional resolution of

only 0.5° is demonstrated with this robotic platform, which is better than the fly’s

localization resolution of £2°.
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Chapter 5 Summary

5.1 Summary of the dissertation work

Hearing animals mainly rely on a few directional cues for sound-source localization,
including interaural intensity difference (IID), interaural time difference (ITD), and sound
spectral shape difference. Since these cues are proportional to an animal’s interaural
separation, there exists a fundamental physical constraint for sound source localization —
a size constraint. With such a constraint, small animals, especially insects, face
formidable challenges. The same fundamental physical constraint applies to a
conventional microphone pair or array used for sound source localization, in which the

separation between individual microphones need to be larger than a critical distance.

The striking innovation found in the tachinid fly Ormia ochracea provides a new solution
to tackle the aforementioned size constraint through the mechanical coupling between the
eardrums. This innovation helps the fly possess a superacute directional hearing
capability, which can inspired one to address the size constraint in acoustic sensor

development.

Although several fly-ear inspired directional microphones have been reported in the
literature, their working principles cannot fully capture the essence of the fly ear

mechanism. This is also due to the fact that before this dissertation work, no study has
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been reported to investigate how the fly ear’s structural parameters are tailored to

facilitate the superior localization of the calling song of fly’s host at 5 kHz.

This dissertation work aims to unravel the underlying science of the fly ear mechanism
and provide a framework for developing miniature acoustic sensors for sound source

localization. The dissertation work is summarized as follows.

First, by using the two degrees-of-freedom (2-DOF) model and the fly ear parameters
reported in the literature, an enhanced understanding of the underling science of the fly
ear structure has been achieved. Since the fly is shown to only be able to accurately
locate its host in the azimuth range of ~ -30° to 30°, two performance metrics are defined:
average directional sensitivity (4DS) and nonlinearity (NL). When using a straight line to
approximate the relationship between phase difference mI/PD and azimuth 6, ADS
represents the slop and NL is the resulting estimation error. Through an analytical study,
it has been found that the fly possesses a unique dual-optimality characteristic; the fly ear
achieves the maximum directional sensitivity ADS and the minimum nonlinearity NL at
the calling song frequency of the crickets (5 kHz). This indicates that the fly ear
represents a “nature designed optimal structure” for obtaining the best acoustic
directional cues at 5 kHz. The 2-DOF model has also been used to study the effects of
key parameters on the directional hearing performance, including the stiffness ratio, the
damping ratios, and the separation-to-wavelength ratio. The key is to achieve proper
contributions from both the rocking and bending modes. Moreover, it has been shown
that this dual-optimality property is replicable in a synthetic device that can be tailored to

work at any frequency or any device size. A framework has been developed to guide the
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development of such a synthetic device. Given the target working frequency and/or
desired size, the two natural frequencies for the rocking and bending modes have been
obtained in this framework for both high damping and low damping scenarios.
Parametric studies have been carried out to study the effects of the previously identified

key parameters on the performance of the fly ear and fly-ear inspired device.

Next, a novel bio-inspired directional microphone has been designed. It consists of two
clamped circular diaphragms with their centers connected by a medially-pivoted bridge.
Different from the microphones reported in the literature, this design is intended to not
only employ the mechanical coupling mechanism but also obtain a proper contribution
from both the rocking and bending modes. Correspondingly, a comprehensive continuum
mechanics model has been developed to further understand the mechanism and help
guide the design. Parametric studies have also been carried out to analyze the effects of
key parameters, including the ratio of Young’s modulus, density and geometric
dimensions of the beam. In particular, the results obtained with the continuum mechanics
have shown that the air gap underneath a diaphragm has significant effects on the
dynamics of the single air-backed diaphragm and the mechanically coupled diaphragms.
In addition to the commonly known stiffness effect, the air gap has been shown to have a

mass effect, which can be pronounced for short air gaps.

For proof-of-concept, a large-scale directional microphone has been developed by using
traditional machining and assembly tools. In the experiments, the deflections of the
diaphragms are detected by a low-coherence fiber optic interferometer. Experimental
results have shown that phase difference can be amplified by 4 times.
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Built upon the design framework, continuum mechanics model, and the knowledge
gained in the development of the proof-of-concept large-scale device, a fly-ear inspired
MEMS directional microphone has been developed, which has the same interaural
separation as the fly ear but achieves the dual-optimality at a different working frequency
(8 kHz). This device consists of four layers. The top layer has two circular clamped
diaphragms connected by a pivoted bridge, which is similar to its large-scale counterpart.

The bottom three layers are designed for tuning the damping characteristics of the system.

The micro-scale device has been characterized by measuring the directional cues for
various frequencies and azimuths. The experimental results have shown that this device
does possess the dual-optimality characteristic of the fly ear. Working at its optimal
frequency of 8 kHz, the directional sensitivity is determined to be 1.69, which is

equivalent to that obtainable by a conventional microphone pair of 10 times larger.

Inspired by the fly’s localization/lateralization scheme, a control scheme for sound source
localization has been developed and implemented on a robotic platform with two
motorized rotational stages. The fly-ear inspired sensor is designed to have the best
directional sensitivity and linearity in the azimuth range of -30° < 0 < 0°. To utilize this
dual-optimality in the fly inspired localization scheme, the sensor is steered toward the
sound source when the source is out of the linear range, and an accurate azimuth
estimation is made once the source falls within the linear range. A localization accuracy
of better than +2° (the same as the fly ear) has been demonstrated in an indoor lab

environment.
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The original contributions in this dissertation work are summarized as follows.

Contribution 1: The fly ear has been revealed to be a “nature designed optimal
structure” that achieve maximal directional sensitivity ADS and minimal
nonlinearity NL simultaneously (dual-optimality) at the calling song frequency of
host crickets. This finding is consistent with the fly’s localization/lateralization scheme
in that it utilizes the linear azimuth range to achieve the best localization accuracy. The
investigation shows that properly tuned structural parameters are as important as the
mechanical coupling mechanism itself in designing a fly-ear inspired directional

microphone.

Contribution 2: A framework is established to mimic the fly ear’s dual optimality in
a synthetic device for other frequencies and sizes. For given damping ratios, the
natural frequencies of the rocking and bending modes are obtained as functions of

separation-to-wavelength ratio.

Contribution 3: A directional microphone consisting of two diaphragms connected
by a center pivoted bridge is developed to mimic the fly ear. Different from
previously reported work in the literature, this design is intended to use the directional
cues as the fly does to carry out sound source localization. It does not require any

additional sensors to measure the absolute value of pressure or pressure gradient.

Contribution 4: A novel comprehensive continuum mechanics model is developed
for understanding the dynamics of a fly-ear inspired directional microphone with

mechanically coupled diaphragms. This model has been verified against a finite
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element model in ANSYS and the equivalence of this model the 2-DOF model has been
established. This model is expected to provide more accurate prediction of the sensor
behavior and a better guideline for the sensor development. The effects of air gap are
studied from the perspective of sensor design to provide guidelines for pressure
sensors with an air-backed diaphragm. The key finding from this study is the air gap

not only has a stiffness effect, but also a mass effect.

Contribution 5: A bio-inspired localization/lateralization scheme is developed for
sound source localization with a fly ear inspired sensor. With the fly-ear inspired
sensor mounted on a robotic platform, the fly’s localization/lateralization scheme is

implemented to achieve a standard deviation of 0.84° for the azimuth estimation.

5.2  Future work

Upon the completion of this dissertation work, the future work is suggested as follows.

1) Active tuning of fly-ear inspired directional microphones. In this
dissertation work, the framework for designing acoustic sensors to mimic the
fly’s dual-optimality is passive. Once the sensor is designed and fabricated for
a specific frequency, it cannot be changed and there is no mechanism to
compensate the discrepancy between the designed value and the actual one.
The active tuning is aimed to provide a means to fine tune some properties of
the diaphragms or the bridge to minimize the discrepancy due to the
fabrication process. When a continuous tuning is performed, the working
frequencies can be swept to achieve a desired broadband operation and for
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2)

3)

each of the frequency the device possesses the dual-optimality characteristic.
One possibility to realize the active tuning is to apply a lead zirconate titanate
(PZT) film on top of the diaphragms and/or the bridge. Biases can be applied
to the films to change their equivalent stiffness.

Integration of sensor system on a miniature platform. Although the fly-ear
inspired sensor is small, the optical detection system is fairly bulky as it is
built using commercially available components, such as power source, light
source, photodetectors, and data acquisition board. Research on this topic is
being carried out by colleagues in our research group to integrate all the
components into a package about the size of a business card. In addition to
optical sensing mechanism, other detection methods, for example, capacitance
and resistance based detection methods, which are friendlier and mature to
MEMS/circuitry integration, can also be attempted.

Extension the fly-ear inspired sensor to two or three dimensions. The fly-
ear inspired directional microphone can only locate a sound source in one
dimension (1D) (i.e., the azimuth). However, this work can be readily
extended to locate sound source in two or three dimensions (2D or 3D).
Lisiewski in our research group has used the same fabrication process to
develop a fly-ear inspired directional microphone consisting of three
mechanically coupled diaphragms on a single plane (Lisiewski, Liu, Yu,
Currano, & Gee, 2011). By using this sensor, localization of a sound source in
two dimensions (i.e., azimuth and elevation) has been demonstrated. Taking

the advantage of mass production of MEMS fabrications, an alternative
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method is to use an array of 1D directional microphones. Without increasing
the complexity of the individual device, the directional microphone array can
also use the existing algorithms in sound source localization. One of the
ultimate goals is to use the fly-ear inspired acoustic sensors as the “ears” of a

micro air vehicle.
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Appendix A: Matlab codes and ANSYS input files

Al  Matlab codes for the lumped two degrees-of-freedom model

File name: getIPDNorm.m

%% Calculate the interaural phase difference using the normalized formula
%

% IPD = getlPDNorm(eta,chil,xil,xi2,theta,omega)

%

% Input:

%

% eta - resonance frequency ratio eta=f2/f1
% chil - separation-to-wavelength ratio at f1
% xil - damping factor for the first mode
% @ Xi2 - damping factor for the second mode
% theta - incident angle, deg

% omega - normalized frequency, omega = f/fl
%

% Output:

%

% 1PD - phase difference, deg

function IPD = getlPDNorm(eta,chil,xil,xi2,theta,omega)
theta = theta(:);
omega = omega(:);
[THETA,OMEGA] = meshgrid(theta,omega);
Gamma = (1-OMEGA."2+2*xi1*1i*OMEGA) ./ (eta”2-OMEGA."2+2*xi2*1i*eta*OMEGA) ;

chi = chil*OMEGA;

phi = 2*pi*chi.*sind(THETA);
nom = Gamma+li*tan(phi/2);
den = Gamma-li*tan(phi/2);
IPD = angle(nom./den)*180/pi ;

end

File name: getDSNorm.m

%% Calculate the directional sensitivity using the normalized formula
%
% DS = getDSNorm(eta,chil,xil,xi2,theta,omega)

% Input:

%

% eta - resonance frequency ratio eta=t2/f1
% chil - separation-to-wavelength ratio at fl
% xil - damping factor for the first mode
%  xi2 - damping factor for the second mode
% theta - incident angle, deg

% omega - normalized frequency, omega = f/fl
%

% Output:

%

% DS - directional sensitivity, DS
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function DS = getDSNorm(eta,chil,xil,xi2,theta,omega)
theta = theta(:);
omega = omega(:);
[THETA,OMEGA] = meshgrid(theta,omega);
Gamma = (1-OMEGA.N"2+2*xi1*1i*OMEGA) ./ (eta”2-OMEGA."2+2*x12*1i*eta*OMEGA) ;
chi = chil*OMEGA;
reGamma = real (Gamma);
imGamma = imag(Gamma);
tanphi = tan(pi*chi.*sind(THETA));
noml 2*reGamma.*(reGamma.”2+imGamma.”2+tanphi .~2);
nom2 (1+tanphi .~2)*pi.*chi.*cosd(THETA) ;
den = (reGamma.”2+imGamma.”2-tanphi ."2) ./2+4*reGamma.”2.*tanphi ."2;
DS = noml.*nom2./den;

end
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A2  Matlab codes for processing the acquired signals to

directional cues

calculate

File name: getCues2Mic.m

%% calculate interaural directional cues
% number of microphones: two
%  syntax: [IPD,ITD,I1ID] = getCues2Mic(X,fc,fs)

% input:

% X - time signals, two columns

% fc - signal frequency

% bw - bandwidth

% fs - sampling frequency

% output:

% 1PD - interaural phase difference, deg

% 1TD - interaural time difference, sec

% 11D - interaural intensity difference, dB

%%
function [IPD,ITD,11D,A1,A2] = getCues2Mic(X, fc,bw,fs)

x1 = X(1:end,1);
x2 = X(1:end,2);
dt = 1/fs;

%%  Amplitude

Al sqrt(2)*norm(x1)/sqrt(length(x1));
A2 sgrt(2)*norm(x2)/sqrt(length(x2));
11D = 20*10g10(A1/A2);

%% Filter data

Wn = [fc-bw/2 fc+bw/2])/(fs/2);
[b,a] = butter(2,Wn);

x1 = Filtfilt(b,a,x1);

x2 = Filtfilt(b,a,x2);

%%  Cross-correlation
[delay,~,Ffig] = getDelay(x1,x2,fs/fc);
ITD = delay*dt;

close(fig);

IPD = fc*1TD*360;

IPD = mod(1PD+180,360)-180;
ITD = IPD/360/fc;

File name: getDelay.m

%% Calculate the time delay between two signals

%

% [delay_fit,delay_pk,fig] = getDelay(x1,x2,¥f,bw)
%

% Input:

% x1 - first signal

% X2 - second signal

% T - frequency of the puretone signals
% bw - bandwidth for the filtering
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%
% Output

% delay_fit - time delay after the curve-fitting
% delay_pk - time delay by finding the max
% fig - figure handle

%

% peakdet.m is used to find the peaks of the cross-correlation. This is
% is written by Eli Billauer, and available to public

% http://www_billauer.co.il/peakdet._html

function [delay_fit,delay pk,fig] = getDelay(x1,x2,f,bw)
%%
N = length(x1);

Al = sqrt(2)*norm(x1)/sqrt(N);
A2 = sqrt(2)*norm(x2)/sqrt(N);
x1 = x1/A1;
X2 = X2/A2;

y = xcorr(x2,x1);
delta = (max(y)-min(y))/5;
[maxtab,mintab] = peakdet(y,delta);
%%
if exist("f","var™) && exist("bw","var-)
Wn = [f-bw/2 f+bw/2];
[b,a] = butter(6,Wn);
x1 = filtfilt(b,a,x1);
filtfilt(b,a,x2);

X2
end

%% only use the center peak
[max_v,max_i] = max(y);
mintabl = sort(mintab(:,1), "ascend");
[v1,index1] = min((mintabl-max_i)."2);
mintab2 = mintabl;
mintab2(index1) = [];
[v2,index2] = min((mintab2-max_i)."2);
cf_index1l = min(mintabl(index1),mintab2(index2));
cf_index2 = max(mintabl(index1),mintab2(index2));
cf_start = max_i-floor((max_i-cf_index1)/4);
cf_end = max_i+ceil((cf_index2-max_i)/4);

X = (cf_start:cf_end)-max_i;
Y = y(cf_start:cf_end);

X = X(3);

Y = Y();

p = polyfit(X,Y,2);
delay_fit = -p(2)/p(1)/2+max_i-N;
delay_pk = max_i-N;

fig = figure("Position",[100 300 1000 300]);
subplot(1,3,1)
plot(0:N-1,x1,"b-","linewidth",2)

hold on

plot(0:N-1,x2,"r--","linewidth",2)
legend("Mic 17,"*Mic 2%)

xlabel ("Sample #")

ylabel ("Value®)

subplot(1,3,2)
plot(1-N:1:N-1,y,"b-","linewidth",2)

set(gca, "xhim",[1-N N-1],"ylim",[min(y) max(y)])
xlabel ("Sample #%)
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ylabel (*Cross-correlation®)

XX = min(X):0.2:max(X);

subplot(l,3,3)
plot(X+max_i-N,Y, "bs", "markersize”,6, "markerfacecolor®,"b");
hold on

plot(XX+max_i-N,polyval(p,XX),"g-", "linewidth",2.5)
viine([1 1]*delay_pk,"b-_%)

vline([1 1]*delay_fit,"g-.")

xlabel ("Delay [samples]®)

ylabel (*Cross-correlation®)

end
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A3 Matlab codes for the continuum mechanics model

File name: getPlateModeslOrder.m

%% Get the vibration modes (radial directioni) of circular clamped plate
% for a specific order within the specified frequency range

% Usage:

% [U,ALPHA] = getPlateModes10rder(m,modes,chi_t,alpha_min,alpha_max)
% Input:

% m - integer order number, starting from zero.
% modes - number of modes to solve

% chi_t - normalized tension parameter

% alpha_min - lower bound of normalized frequency

% alpha_max - Uper bound of normalized frequency

% Output:

% u - mode shape function

% ALPHA - normalized frequency

function [U,ALPHA] = getPlateModeslOrder(m,modes,chi_t,alpha_min,alpha_max)
%%
if nargin < 1
disp(["The first argument for order number is not specified. *
"The default value of zero is used."]);

end

if nargin < 2 || isempty(modes)
modes = Inf;

end

if nargin < 3 || isempty(chi_t)
chi_t = 0;

end

if nargin < 4 || isempty(alpha_min)
alpha_min = 0;

end

if nargin < 5 || isempty(alpha_max)
alpha_max = Inf;

end

if alpha_min < 0
disp(["Low bound of frequency range has to be non-negative.
"The default value of zero is used."])
alpha_min = 0;
end
if alpha_max <= 0
disp(["Upper bound of frequency range has to be positive. *
"The default values of infinity is used."])
alpha_max = Inf;
end

if modes <= 0
error("Number of modes has to be positive®)
end

if isinf(modes) && isinf(alpha_max)
error(["Either the number of modes or the upper bound®
" has to be specified™])
end

alpha2_min
alpha2_max

sgrt((sqrt(chi_t"2+4*12*alpha_min~2)-chi_t)/2);
sgrt((sqrt(chi_t"2+4*12*alpha_max~2)-chi_t)/2);
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syms r alpha2 real;

% Eliminate alphal by substitution
alphal = sgrt(alpha2”2+chi_t);
alpha2_step = 0.2;

Ur = besselj(m,alpha2*r)*besseli(m,alphal)...
-besselj(m,alpha2)*besseli(m,alphal*r);

dur = diff(Ur,r);

% Apply boundary condition at r=1

f_bnd = vpa(subs(dur,r,1));

% Find the roots

alpha2_valuel = alpha2_min;

alpha2_value2 alpha2_valuel+alpha2_step;

options=optimset("TolX",1le-6);
count = 0O;
stop = O;
U = sym([D;
while (~stop)
it (subs(f_bnd,alpha2_valuel)*subs(f_bnd,alpha2_value2) < 0)
ALPHA2 = fzero(@(aa)real (subs(f_bnd,alpha2,aa)),---
[alpha2_valuel,alpha2_value2],options);
ALPHA1 = sqrt(ALPHA2"2+chi_t);
count = count+1l;
U(count) = besselj(m,ALPHA2*r)*besseli(m,ALPHAL). ..
-besselj(m,ALPHA2)*bessel i (m,ALPHAL1*r);
ALPHA(count) = ALPHA1*ALPHA2/sqrt(12);
% Normalize mode shape function
integral = vpa(U(count)*U(count)*r);
amn = quadl(@(radius)subs(integral,r,radius),0,1);
U(count) = vpa(U(count)/sqrt(amn));

end

alpha2_valuel alpha2_value2;
alpha2_value2 = alpha2_valuel+alpha2_step;
if ~isempty(modes) && count >= modes

stop = 1;
end
ifT ~isempty(alpha_max) && alpha2_valuel > alpha2_max
stop = 1;
end
end
if count == 0
u=1[I;
ALPHA = [1:;
end

U = U(logical (ALPHA >= alpha_min & ALPHA <= alpha_max));

ALPHA = ALPHA(logical (ALPHA >= alpha_min & ALPHA <= alpha_max));
U= U();

ALPHA = ALPHA(:);

end

File name: getAirModeslOrder.m

%% Get the vibration modes (radial direction) of cylindrical air cavity
% for a specific order within the specified frequency range

%
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% Usage:

% [U,BETA] = getAirModeslOrder(m,modes,beta_min,beta_max)
% Input:

% m - integer order number, starting from zero.
% modes - number of modes to solve

% beta_min - lower bound of normalized frequency

% beta_max - upper bound of normalized frequency

% Output:

% u - mode shape function

% BETA - normalized frequency

function [U,BETA] = getAirModeslOrder(m,modes,beta_min,beta_max)
%%
if nargin < 1
disp(["The first argument for order number is not specified.
"The default value of zero is used."]);

end

if nargin < 2 || isempty(modes) || modes <= 0
modes = Inf;

end

if nargin < 3 || isempty(beta_min)
beta_min = 0;

end

if nargin < 4 || isempty(beta_max)
beta _max = Inf;

end

if beta min < 0
disp(["Low bound of frequency range has to be non-negative. *
"The default value of zero is used."])
beta_min = 0;
end
if beta_max <= 0
disp(["Upper bound of frequency range has to be positive.
"The default values of infinity is used."])
beta_max = Inf;
end
if isinf(modes) && isinf(beta_max)
error(["Either the number of modes or the upper bound®
" has to be specified™])
end

syms r beta2 real;

Ur = besselj(m,beta2*r);

dur = diff(Ur,r);

% Apply boundary condition at r=1
f_bnd = subs(dUr,r,1);

beta_step = 0.2;
beta valuel beta min;
beta_value2 beta_valuel+beta_step;

options=optimset("TolX",le-6);
count = 0O;
stop = 0;

while (~stop)
if (subs(f_bnd,beta_valuel)*subs(f_bnd,beta_value2) <= 0)
beta_sol = fzero(@(betabeta)subs(f_bnd,beta2,betabeta), ...
[beta_valuel,beta _value2],options);
count = count+1;
U(count) = besselj(m,beta_sol*r);
BETA(count) = beta_sol;
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% Normalize mode shape function
integrand = U(count)*U(count)*r;
amn = double(int(integrand,r,0,1));
U(count) = U(count)/sgrt(amn);

end

beta_valuel = beta_value2;

beta_value2 = beta_valuel+beta_step;

if modes >= 0 && count >= modes

stop = 1;
end
if beta _valuel > beta_max
stop = 1;
end
end
if count ==
U= [I;
BETA = [1;
end

if ~isinf(modes)
U = U(1:max(0,modes));
BETA = BETA(1:max(0,modes));
end
U = U(logical (BETA >= beta_min & BETA <= beta_max));
BETA = BETA(logical (BETA >= beta_min & BETA <= beta_max));
U= U();
BETA = BETA(:);

end

File name: getBeamModes.m

%% Calcualte the mode shapes and natural frequency for a beam with
% free-pinned-free boundary condition

% Usage: [U,ETA] = getBeamModes(modes,chi_t,eta_min,eta_max)

% Inputs:

% modes - number of modes

% chi_t - chi_t = P*L"2/El is the normalized axial load
% eta_min - lower bound of frequency range

% eta_max - upper bound of frequency range

% Outputs:

% u - mode shapes
% ETA - natural frequency parameter
% omega = sqrt(El/mL"3)*etan2

%
% Note: The beam has a length of 2L, and is pinned in the middle. x is
% normalized so that x=+/-1 on both ends

function [U,ETA] = getBeamModes(modes,chi_t,eta_min,eta_max)
%%

if isempty(modes) || modes <= 0O
modes = -1;

end

if nargin < 2 || isempty(chi_t)
chi_t = 0;

end

if nargin < 3 || isempty(eta_min)
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eta_min = 0;

end

if nargin < 4 || isempty(eta_max)
eta_max = Inf;

end

if isinf(modes) && isinf(eta_max)
error(["Either the number of modes or the upper bound®
" has to be specified™])
end

syms X et real;
eh = sqgrt(et™2-2*chi_t);

options = optimset("TolX",1le-6);

disp(["Solving the mode shapes and natural frequencies for*

" the coupling beam ..."])
fprintf(l, "\tMode #\t\tOMEGA\tType\n");

%% rigid motion

count = 1;

U(count) = x*sqrt(3/2);
ETA(count) = 0;

fprintf(l, "%8i\t%8.4F\tRIGID\n",count,ETA(count));

%% symmetric and anti-symmetric modes

et_step = 0.01;

et_min sgrt(chi_t+sqrt(chi_t"2+12*eta_min"2));

et_max = sgrt(chi_t+sgrt(chi_t"2+12*eta_max”"2));

et_le = et_min;

fsym = (eh*et"3-eh”"3*et)*sinh(eh)*sin(et)+...
2*eh"2*et"2*cosh(eh)*cos(et)+eh™+et™4;

fsym_le = double(subs(fsym,et,et_le));

fanti = et*cos(et)*sinh(eh)-eh*sin(et)*cosh(eh);

fanti_le = double(subs(fanti,et,et_le));

stop = O;
while ~stop
et _ue = et_letet_step;
fsym_ue = double(subs(fsym,et,et_ue));
fanti_ue = double(subs(fanti,et,et_ue));
range = [et_le et_ue];
ctri_sym = 0;
ctrl_anti = 0;
% symmetric modes
if fsym_le*fsym_ue < O
ctrl_sym = 1;
etv = fzero(@(xX)subs(fsym,et,x),range,options);
ehv = subs(eh,et,etv);
count = count+1;
ETA(count) = ehv*etv/sqrt(12);
cl ehv"2*etv2*(etv*cos(etv)*sinh(ehv)-ehv*sin(etv)*cosh(ehv));
c2 ehv/"5+ehvr3*etv/2*cos(etv)*cosh(ehv)...
+ehv2*etv"3*sin(etv)*sinh(ehv);
c3 = etv"5+ehv"2*etv”r3*cos(etv)*cosh(ehv). ..
-ehv"3*etv2*sin(etv)*sinh(ehv);
U(count) = cl*(cos(etv*x)-cosh(ehv*x))...
+c2*sin(abs(etv*x))+c3*sinh(abs(ehv*x));
integrand = U(count)*U(count);
Bn = quadl (@(xx)subs(integrand,x,xx),-1,1);
U(count) = vpa(U(count)/sqrt(Bn));
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end

end

fprintf(l, "%8i\t%8.4F\tSYM\n" ,count,ETA(count));

% anti-symmetric modes
if fanti_le*fanti_ue < 0

end

ctrl_anti = 1;

etv = fzero(@(xX)subs(fanti,et,x),range,options);

ehv = subs(eh,et,etv);

count = count+1;

ETA(count) = ehv*etv/sqrt(12);

U(count) = ehv"2*sinh(ehv)*sin(etv*x)...
+etv2*sin(etv)*sinh(ehv*x);

integrand = U(count)*U(count);

Bn = quadl (@(xx)subs(integrand,x,xx),-1,1);

U(count) = vpa(U(count)/sqrt(Bn));

fprintf(l, "%8i\t%8 . 4F\tANTISYM\n" ,count,ETA(count));

%% sort the modes
if ctrl_anti && ctrl_sym

end

if ETA(count) < ETA(count-1)
eta_swap = ETA(count-1);
ETA(count-1) = ETA(count);
ETA(count) = eta_swap;
U_swap = U(count-1);
U(count-1) = U(count);
U(count) = U_swap;

end

et le = et _ue;
fsym_le = fsym ue;

fanti_le
if et _le

end

if modes

end

fanti_ue;
et_max
1;

v 1

stop

0 && count >= modes
1;

\%

stop

U = U(logical (ETA <= eta_max));
ETA = ETA(logical (ETA <= eta_max));
disp("DONE! ")

end
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A4  ANSYS input files

File name: dirMic-wo-cavity_using_shell-elements_modal.inp
I* MODAL ANALYSIS OF TWO MEMBRANES COUPLED BY A BRIDGE
1* NO AIR CAVITY

1* uMKSv Unit: http://www.kxcad.net/ansys/ANSYS/ansyshelp/HIp_G_COU1_3.html

1* Length: m * le6 -> um

1* Force: N * le6 -> uN

I* Time: S *1 -> S

I* Velocity m/s * le6 -> um/s

1* Mass: kg *1 -> kg

1* Pressure Pa * le-6 -> MPa

1* Density kg/m"3 * 1e-18 -> kg/ (um)”~3
1* Power w * lel2 -> pw

NMOD = 20 I NUMBER OF MODES TO BE CALCULATED
FREQLB = 1E1 ! LOWER BOUND OF THE FREQUENCY RANGE
FREQUB = 1E6 ! UPPER BOUND OF THE FREQUENCY RANGE

NDIVR = 20 T NUM OF DIVS ALONG DIAPHRAGM”S RADIAL DIR
NDIVBX = 30 T NUM OF DIVS ALONG BEAM”S AXIAL DIR
NDIVBY = 10 I NUM OF DIVS ALONG BEAM”S WIDTH DIR
I* DIMENSIONS OF THE DIAPHGRAM/MEMBRANE

RD = 500 1 DIAPHRAGM RADIUS

HD = 0.50 I DIAPHRAGM THICKNESS

1* DIMENSIONS FOR THE BRIDGE

L = 600 1 HALF LENGTH

B = 300 ! WIDTH

HB = 2.5 I THICKNESS

1* MATERIAL LIBRARY

E_SI = 169E3 I YOUNG"S MODULUS OF SILICON

NU_SI = 0.25 1 POISSON*S RATIO OF SILICON

RHO_SI = 2.3E-15 I DENSITY OF SILICON

E_S102 = 90E3 I YOUNG"S MODULUS OF OXIDE

NU_SI102 = 0.17 I POISSON"S RATIO OF OXIDE

RHO_SI102 = 2.2E-15 I DENSITY OF OXIDE

E_SI3N4 = 290E3 I YOUNG"S MODULUS OF NITRIDE
NU_SI3N4 = 0.24 1 POISSON"S RATIO OF NITRIDE

RHO_SI3N4 = 3.1E-15 ! DENSITY OF NITRIDE

1* CHOOSE MATERIAL FOR THE DIAPHRAGME/MEMBRANE AND BRIDGE/BEAM
ED = E_SI

NUD = NU_SI

RHOD = RHO_SI

EB = E_SI3N4

NUB = NU_SI3N4
RHOB = RHO_SI3N4

/PREP7
1* ELEMENT TYPE: SOLID FOR THE DIAPHGRAM/MEMBRANE
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ET,1,SHELL181

1* MATERIAL MODEL FOR THE MEMBRANE
MP,EX,1,ED

MP,NUXY,1,NUD

MP,DENS,1,RHOD

1* MATERIAL MODEL FOR THE MEMBRANE
MP,EX,2,EB

MP,NUXY,2,NUB

MP,DENS, 2 ,RHOB

1* REAL CONSTANT/SECTION FOR THE DIAPHGRAM/MEMBRANE
SECTYPE,1,SHELL
SECDATA,HD, ,

I* REAL CONSTANT/SECTION FOR THE BRIDGE/BEAM
SECTYPE,2,SHELL
SECDATA,HB, ,

1* GEOMETRY
LOCAL,11,1,-L,0,0, , , ,1,1,
LOCAL,12,1,L,0,0, , , ,1,1,
CSYS, 11

WPCSYS, -1

cyL4,0,0,RD, , , ,,

1* MESH THE MEMBRANE
HPTCREATE,AREA,1, ,COORD,0,0,0
AESIZE,1,RD/NDIVR,

MAT,1

TYPE,1

SECNUM, 1

MSHAPE,0,2D

MSHKEY , 2

AMESH,ALL

1* COPY THE AREA TO GENERATE ANOTHER DIAPHGRAM
CSYS,0
AGEN,2,1, , ,2*L, , , ,O

1* APPLY THE CLAMPED BOUNDARY CONDITION
CSYS,11
NSEL,S,LOC,X,RD
NSEL,R,LOC,Z,0
CM,NEDGEL , NODE
CSYS, 12
NSEL,S,LOC,X,RD
NSEL,R,LOC,Z,0
CM,NEDGER , NODE
ALLSEL,ALL
CSYS,0

CMSEL ,S,NEDGEL
CMSEL ,A,NEDGER
D,ALL,UX,O
D,ALL,UY,0
D,ALL,UZ,0
D,ALL,ROTX,0
D,ALL,ROTY,O
D,ALL,ROTZ,0
ALLSEL,ALL
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1* NODE AT DIAPHRAGM CENTERS
NDL = NODE(-L,0,0)
NDR = NODE(L,0,0)

1* GEOMETRY FOR THE BEAM
CSYS,0

WPCSYS, -1
BLC4,-L,-B/2,2*L,B

1* MESH THE BEAM
ASEL,S,LOC,X,0
LSLA,S
LSEL,U,LOC,Y,-B/2
LSEL,U,LOC,Y,B/2
LESIZE,ALL,, ,NDIVBY
ASEL,S,LOC,X,0
LSLA,S
LSEL,U,LOC,X,-L
LSEL,U,LOC,X,L
LESIZE,ALL,, ,NDIVBX
MAT, 2

TYPE,1

SECNUM, 2

AMESH,ALL

ALLSEL ,ALL

! NODE AT THE JOINTS AND PIVOT
ASEL,S,LOC,X,0
NSLA,S,1

CM, NBEAM, NODE
NSEL,R,LOC,X,-L
NSEL,R,LOC,Y,0
NBL = NDNEXT(O)
ASEL,S,LOC,X,0
NSLA,S,1
NSEL,R,LOC,X,L
NSEL,R,LOC,Y,0
NBR = NDNEXT(O)
ASEL,S,LOC,X,0
NSLA,S,1
NSEL,R,LOC,X,0
NSEL,R,LOC,Y,0
NBC = NDNEXT(O)
ALLSEL,ALL

1* APPLY BOUNDARY CONDITION AT THE PIVOT
D,NBC,UX,0
D,NBC,UY,0
D,NBC,UZ,0

1* COUPLE THE MOTIONS AT THE JOINTS
CP,NEXT,UX,NDL,NBL
CP,NEXT,UY ,NDL,NBL
CP,NEXT,UZ,NDL,NBL
CP,NEXT,UX,NDR,NBR
CP,NEXT,UY,NDR,NBR
CP,NEXT,UZ ,NDR,NBR

FINISH

/SOLU
ANTYPE ,MODAL
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MODOPT , LANB , NMOD

EQSLV, SPAR

MXPAND,NMOD, , ,0

LUMPM, O

PSTRES, 0

MODOPT , LANB, NMOD , FREQLB , FREQUB,,
SOLVE

FINISH

/POST1
SET,LIST
FINISH

,OFF
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Appendix B: List of Publications

Journal Publications

1.

A.P. Lisiewski, H. Liu, M. Yu, L. Currano, and D. Gee, Fly-ear inspired micro-
sensor for sound source localization in two dimensions, Journal of the Acoustical
Society of America Express Letters, 129(5): EL166-EL171, 2011.

H. Bae, X.M. Zhang, H. Liu, and M. Yu, Miniature surface-mountable Fabry-Perot
pressure sensor construction with a 45-degree angled fiber, Optics Letters, 35 (10):
1701-1703, 2010.

H. Liu, M. Yu, and X.M. Zhang, Biomimetic optical directional microphone with
structurally coupled diaphragms, Applied Physics Letters 93(24): 243902, 2008.
(Selected for the January 1, 2009 issue of Virtual Journal of Biological Physics
Research)

H. Liu, L. Currano, D. Gee, T. Helms, and M. Yu, Deciphering and mimicking the
superior sound localization of the fly. (To be submitted)

H. Liu, and M. Yu, Dynamic analysis of a pressure sensor diaphragm backed with an

cavity. (To be submitted).

Conference Proceedings

1.

L. Sawaged, H. Liu, and M. Yu, Robotic sound source localization using bio-inspired
acoustic sensors, Proceedings of IMECE2012: ASME 2012 International Mechanical

Engineering Congress and Exposition, Houston, Texas, Nov 9-Nov 15, 2012
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. H. Liu and M. Yu, Effects of air cavity on fly-ear inspired directional microphones: a
numerical study, Proc. SPIE 7981 (SPIE Smart Materials/NDE): 79811V, 2011

. A.P. Lisiewski, H. Liu, and M. Yu, Fly ear inspired miniature sound source
localization sensor: localization in two dimensions, Proceedings of IMECE2010:
2010 ASME International Mechanical Engineering Congress and Exposition,
Vancouver, British Columbia, Nov 12-Nov 18, 2010

. H. Liu and M. Yu, A new approach to tackle noise issue in miniature directional
microphones: bio-inspired mechanical coupling, Proc. SPIE 7647 (SPIE Smart
Materials/NDE): 76470P , 2010

. H. Liu, M. Yu, L.J. Currano, and D. Gee, Fly-ear inspired miniature directional
microphones: modeling and experimental study, Proceedings of IMECE2009: 2009
ASME International Mechanical Engineering Congress and Exposition, Lake Buena,
FL, Nov 13-Nov 19, 2009

. H. Liu, M. Yu, and X.M. Zhang, Understanding fly-ear inspired directional
microphones, Proc. SPIE 7292(SPIE Smart Materials/NDE): 72922M , 2009

. H. Liu, L. Currano, D. Gee, B. Yang, and M. Yu, Fly-ear inspired acoustic sensors
for gunshot localization, Proc. SPIE 7321(SPIE Smart Materials/NDE): 7T3210A,
2009

. L.J. Currano, H. Liu, B. Yang, M. Yu, and D. Gee, Microscale implementation of a

bio-inspired acoustic localization device, Proc. SPIE 7321, 73210B, 2009

. H. Liu, Z. Chen, and M. Yu, Biology-inspired acoustic sensors for sound source

localization, Proc. SPIE 6932(SPIE Smart Materials/NDE): 69322Y, 2008
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