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The stability of curved or rectangular shocks in hypersonic inlets in response to flow 

perturbations can be determined analytically from the principle of minimum entropy. 

Unsteady shock wave motion can have a significant effect on the flow in a hypersonic 

inlet or combustor. According to the principle of minimum entropy, a stable 

thermodynamic state is one with the lowest entropy gain.  A model based on piston 

theory and its limits has been developed for applying the principle of minimum 

entropy to quasi-steady flow. Relations are derived for analyzing the time-averaged 

entropy gain flux across a shock for quasi-steady perturbations in atmospheric 

conditions and angle as a perturbation in entropy gain flux from the steady state. 

Initial results from sweeping a wedge at Mach 10 through several degrees in AEDC's 

Tunnel 9 indicates the bow shock becomes unsteady near the predicted normal Mach 

number. Several curved shocks of varying curvature are compared to a straight shock 

with the same mean normal Mach number, pressure ratio, or temperature ratio. The 



 

present work provides analysis and guidelines for designing an inlet robust to off-

design flight or perturbations in flow conditions an inlet is likely to face. It also 

suggests that inlets with curved shocks are less robust to off-design flight than those 

with straight shocks such as rectangular inlets. Relations for evaluating entropy 

perturbations for highly unsteady flow across a shock and limits on their use were 

also developed. The normal Mach number at which a shock could be stable to high 

frequency upstream perturbations increases as the speed of the shock motion 

increases and slightly decreases as the perturbation size increases. The present work 

advances the principle of minimum entropy theory by providing additional validity 

for using the theory for time-varying flows and applying it to shocks, specifically 

those in inlets. While this analytic tool is applied in the present work for evaluating 

the stability of shocks in hypersonic inlets, it can be used for an arbitrary application 

with a shock. 
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Chapter 1: Introduction 

 

1.1 Motivation 

 Despite advances in computational methods for analyzing hypersonic flow 

problems, an analytic method to characterize unsteady hypersonic flows can provide 

additional insight into the performance and design of hypersonic vehicles and 

propulsion systems. In the present work, an analytical method is developed based on 

the principle of minimum entropy for determining the stability of shocks to flow 

perturbations and evaluated, and then applied to the problem of designing a scramjet 

inlet. 

 Unsteady or periodic shock-wave motion can have a significant effect on the 

flow in a hypersonic inlet or scramjet combustor. A scramjet is a supersonic 

combustion ramjet with supersonic flow entering the combustor that operates at Mach 

numbers typically above Mach 4.5 -- when ramjets lose their ability to provide thrust. 

An efficient inlet would be a crucial part of the operation of a scramjet-powered 

hypersonic vehicle and must provide efficient compression, enough mass flow, a high 

enough static temperature ratio, and generally uniform flow into the combustor with 

minimal total pressure losses. Because of the high drag, total pressure drop, and 

mixing losses typical in a scramjet combustor, inlet losses due to unsteady effects or 

poor inlet design can outweigh any thrust gains in the combustor. Numerous types of 

inlets have been researched for applications to hypersonic flow, with so-called "two-

dimensional" inlets favored in most flight-tested designs. Additional research has 
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focused on three-dimensional inward turning inlets -- specifically an inlet with a 

rectangular capture area and a circular or elliptical combustor shape or axi-symmetric 

Busemann inlets. 

 

 Previous work has shown that three-dimensional inlets that use a rectangular 

capture area with a circular combustor provide several advantages over axi-symmetric 

Busemann or two-dimensional rectangular inlets. The Busemann inlet is created from 

a flow field that obeys the Taylor–Maccoll equations for axi- symmetric flow. These 

inlets have several benefits including very high pressure recovery, enabling the use of 

a circular combustor, and are based on an inviscid flow field that is defined 

analytically. Some drawbacks include sensitivity to off-design conditions and their 

longer lengths, resulting in high viscous losses. Rectangular inlets have comparatively 

reduced boundary layer losses because of their shorter length and can stack without 

flow leakage but match to a rectangular combustor, which has several disadvantages 

over a circular or elliptical combustor. Circular combustors weigh less; have a lower 

wetted surface and hydraulic diameter; reducing drag and viscous effects in the 

combustor and fewer problems due to hypersonic corner flow.  

 

 Inlets with a rectangular capture area and circular combustor can offer 

advantages from each type of inlet without some of the disadvantages. The curved 

shocks in inward turning and axi-symmetric inlets have a higher entropy gain than a 

straight shock for the case of steady flow in similar conditions. This research will use 
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entropy considerations to explore which types of curved shocks, if any, are inherently 

more forgiving to flow perturbations and off-design effects. 

  

 Changes in the flow at the capture plane of the inlet can cause inlet unstart as 

well as large changes in the quality of the flow downstream in the combustor.76 An 

unstart in a hypersonic inlet results from a mismatch in the mass flow entering the 

inlet and downstream in the engine. An inlet unstart is a very unsteady and violent 

phenomena that typically results in an unsteady normal shock wave in the inlet, 

increased total pressure losses, viscous losses, flow separation, and insufficient mass 

flow to the engine. As the flow is perturbed from its design conditions, either by 

changes in angle-of-attack, turns, or travel through non-uniformities, the shock angles 

can change. If the shock angle increases such that the shock does not intersect the 

inlet, spillage can occur leading to increased vehicle drag and decreased mass flow 

into the combustor. On the other hand, if the shock moves inside the inlet, shock 

boundary-layer interactions can cause flow separation and intense localized heating. 

Control of the shock position on or near the cowl is thus desired to prevent 

destructive heating, separation losses, and maintain high enough airflow into the inlet. 

Understanding under what circumstances the flow is steady or stable to slight 

perturbations in a given inlet is therefore useful in designing scramjet inlets. 

  

 The principle of minimum entropy suggests that entropy considerations can 

determine whether a shock can be stable to slight perturbations. This work examines 

the validity of the principle of minimum entropy as a tool for such using analysis and 
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experimental data. Assuming that the principle of minimum entropy can be applied to 

time-varying flows across shocks, this work compares the stability of shocks of 

varying curvature in a range of inlet types. Response to high and low frequency 

perturbations in several flow parameters a scramjet vehicle might face is also 

examined. A model is developed to explain the validity of methods used to compare 

the entropy gain to the steady state for quasi-steady shocks and to find the limits of 

the quasi-steady approximation with this model. A model and its limits are derived 

for high frequency density perturbations.   

 

 The present work provides analysis and guidelines for designing an inlet that 

is robust to off-design flight or likely perturbations in flow conditions. It also suggests 

that inlets with curved shocks are less robust to off-design flight conditions than those 

with straight shocks such as rectangular inlets. The present work advances the theory 

of the principle of minimum entropy theory for time-varying flows with application to 

shocks, specifically those in supersonic inlets.  

 
 

1.2 Principle of Minimum Entropy 

1.2.a Principle of Minimum entropy theory 

 
 The current work uses entropy considerations based on the principle of 

minimum entropy as developed by Prigogine1 to analyze the stability of shocks in 

hypersonic inlets to flow perturbations.  According to Prigogine, a stationary non-

equilibrium state is characterized by an extremum principle, which states that in the 
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stationary state, the entropy production has its minimum value compatible with the 

external constraints imposed on the system. Non-equilibrium thermodynamics deals 

with systems that are not in thermal equilibrium and/or changing in time, often 

because of fluxes of matter and energy between systems or chemical reactions. The 

principle of minimum entropy is the thermodynamic equivalent of other variational 

principles in physics such as the principle of least-action in mechanics and Fermat's 

principle in optics that light follows the shortest optical length connecting two points.  

 

 Consider the entropy production per unit time of a system with mass diffusion 

and heat flow, such as two vessels at different temperatures connected with a thin 

capillary or porous wall 

   

� 

dS
dt

= JthXth + JmXm > 0      (1) 

as required by the Second Law of Thermodynamics, where 

� 

Jm and 

� 

Jth  are the fluxes 

associated with diffusion and heat flow, respectively, and 

� 

Xm and 

� 

Xth  are the 

corresponding thermodynamic forces. A thermodynamic force is an extensive 

variable like pressure P that forces a change in its conjugate intensive thermodynamic 

variable, which for pressure is volume V. The product of the thermodynamic force 

and a change in its conjugate equal work, such as 

� 

dU = PdV . For a general system, 

the time rate of change of entropy can be written as 

� 

˙ S = Ji
i
∑ Xi > 0. Generalized 

thermodynamic fluxes J are linearly related to thermodynamic forces X.  
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 For the heat conduction and mass diffusion system, those forces and fluxes 

are, 

   

� 

Xth = Δ
1
T

⎛ 
⎝ 

⎞ 
⎠ = −

1
T 2 ΔT

Xm = −
Δµ i( )T

T
= −

ν i

T
Δp

    (2)

 

   

� 

Jth =
dE
dt

− h dn
dt

Jm =
dn
dt

     (3) 

 where 

� 

µ i  is the chemical potential of species i, 

� 

ν i  is the specific volume, 

� 

E is 

the energy, 

� 

h is the specific molar enthalpy,  and

� 

n  is the number of moles. A 

chemical potential can be described as a potential energy that can be released or used 

up in a reaction and can be described as the change in Gibbs free energy G, as a result 

of a change in the number of that species with temperature, pressure, and the number 

of other species kept constant, 

� 

µ i =
∂G
∂Ni

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

T ,P,N j≠i

. For this example, entropy and 

Equation 1 can be written as, 

   

� 

dS =
1
T
du − µ i

T
dρ      (4) 

  

� 

dS = Xth dE − hdn( ) − Xmdρ→
dS
dt

= JthXth + JmXm  (5) 

where 

� 

ρ is density and u is the internal energy and Equation 4 is the expression of 

entropy for an open system of a fixed size that can exchange heat and matter with an 

external reservoir. 
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 The property of a stationary state of a non-equilibrium system being in a state 

of minimum entropy production is only valid if three general constraints are imposed: 

 

 1. Linear: A non-equilibrium thermodynamic process is characterized as 

linear if the generalized thermodynamic fluxes 

� 

Ji (such as heat flow 

� 

Jth , mass 

diffusion 

� 

Jm, fluid deformation) are linearly related to the generalized thermodynamic 

forces 

� 

Xi  (such as temperature 

� 

Xthor pressure gradient as in Equation 2 or chemical 

potential gradient 

� 

Xm).  

 

 2. Constant phenomenological coefficients: The system must also be such 

that the phenomenological coefficients 

� 

Lij , which might be related to heat or electrical 

conductivity, are constants. For most real systems, this is not true in general, but this 

holds if the overall gradients of thermodynamic variables are small enough such that 

the coefficients can be assumed to be constant.2 Thus, the principle of minimum 

entropy can only be applied to systems near equilibrium. For compressible flows, 

including those containing shock waves, the system can be considered near 

equilibrium locally because of the large number of particles in the small regions of 

interest, according to Horne et al.3. Prigogine4 and others have found that if a system 

is far from equilibrium or non-linear, the principles governing entropy production can 

be quite different. In fact, Ziegler5 proposed that entropy production be maximized 

for systems far from equilibrium. 
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 The phenomenological laws are1,2: 

    

� 

Jth = L11Xth + L12Xm

Jm = L21Xth + L22Xm

    (6a) 

 For a basic thermodynamic system with mass transport and heat diffusion, 

    

� 

Jth = Lthth∇
1
T

+ Lthm∇
µ i

T

Jm = Lmth∇
1
T

+ Lmm∇
µ i

T

   (6b) 

 From these relationships, well-known relationships for thermal conductivity 

and mass transport and their corresponding coefficients can be derived. If the mass 

transport is zero, the heat flux reverts to a version of Fourier's law of thermal 

conduction with 

� 

Lthth = kT 2 , 

    

� 

Jth = Lthth∇
1
T

= −k∇T     (6c) 

 If the thermal conduction is zero, the mass transport reverts to a version of 

Fick's law of diffusion with 

� 

Lmm =
Dici

RT
 and 

� 

Xmi = −
1
T
∇µ i , 

    

� 

Jm = −
Dci

RT
∇µ i              (6d) 

 where i indicates the i-th species, R is the universal gas constant, c is the 

concentration of species-i, and D is the diffusivity.  

 Finally, from Onsager's relations, for the stationary state,  

    

� 

Jm = L21Xth + L22Xm = 0     (7) 

 

 3. Satisfy Onsager's reciprocal relations: For coupled thermodynamic 

processes, Onsager's reciprocal relations for the phenomenological coefficients must 
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be satisfied. This requires that the "interference coefficients" 

� 

L12 and 

� 

L21  be equal. For 

the mass diffusion and heat flow system, this would require that the influence of the 

chemical potential or the difference in concentrations of a species 

� 

Xmon the heat flux 

� 

Jm is equal to that of the temperature gradient 

� 

Xthon the mass diffusion flux 

� 

Jm. 

 

 Using these three relations and constraints, we can derive that the stationary 

state is the state of minimum entropy production. Substitute Equation 6a for 

� 

Jm and 

� 

Jth  into the equation for the time rate of change of entropy using 

� 

L12 = L21 from 

Onsager's reciprocity relations: 

  

� 

dS
dt

= L11Xth

2 + 2L21XthXm + L22Xm

2 > 0     (8) 

Take the derivative of this with respect to 

� 

Xm at constant 

� 

Xth , 

   

� 

1
2

∂
∂Xm

dS
dt

⎛ 
⎝ 

⎞ 
⎠ 

Xth

= L21Xth + L22Xm = Jm     (9) 

which is 

� 

Jm from the phenomenological laws in Equation 2 for a linear relation 

between the fluxes and forces. From Equation 3,  

   

� 

1
2

∂
∂Xm

dS
dt

⎛ 
⎝ 

⎞ 
⎠ 

Xth

= L21Xth + L22Xm = Jm = 0          (10) 

for a stationary state where 

� 

Jm = 0. This is equivalent to a minimum in entropy 

production 

 

   

� 

∂
∂Xm

dS
dt

⎛ 
⎝ 

⎞ 
⎠ 

Xth

= 0               (11) 

 
Note that because Equation 8 is a positive definite quadratic, this corresponds to a 

minimum. 



 10 
 

 
 

 In this work, it is postulated that, if a stationary state in a non-equilibrium 

system is a state of minimum entropy, then it should be stable to perturbations from 

that state, as deviations would increase the entropy production. According to 

Prigogine, a stationary state is one that has the lowest entropy production per unit 

time and is stable, as it cannot leave that state by a spontaneous irreversible change. 

Thus, slight perturbations from that state would result in the system returning to the 

stationary state.  Prigogine shows that irreversible processes taking place in a non-

equilibrium system always lower the production of entropy per unit time. A system in 

the state of lowest minimum entropy production - the stationary state - cannot 

spontaneously deviate from that state. If an external fluctuation is imposed on the 

system that brings it slightly away from the stationary state, the system will adjust to 

bring it back to its initial stable. This state can be referred to as a "stable state".   

 

 It can be show that a system that undergoes two thermodynamic changes can 

only decrease entropy production per unit time over time. Prigogine presents an 

example with two simultaneous chemical changes1  

 

� 

dS
dt

= L11
A1

T
⎛ 
⎝ 

⎞ 
⎠ 

2

+ 2L12
A1A2

T 2 + L22

A2

T
⎛ 
⎝ 

⎞ 
⎠ 

2

> 0     (12) 

where 

� 

A1  and 

� 

A2 are the chemical affinities of species 1 and 2. A chemical affinity of 

a species is an electronic property by which dissimilar chemical species are capable 

of forming compounds or reacting. With the assumption that the phenomenological 
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coefficients 

� 

Lij  are constant in time, taking the second derivative of entropy with 

respect to time produces, 

 

� 

1
2
d 2S
dt 2

= L11
A1

T
+ L12

A2

T
⎛ 
⎝ 

⎞ 
⎠ 
d
dt

A1

T
⎛ 
⎝ 

⎞ 
⎠ + L12

A1

T
+ L22

A2

T
⎛ 
⎝ 

⎞ 
⎠ 
d
dt

A2

T
⎛ 
⎝ 

⎞ 
⎠   (13) 

 

� 

1
2
d 2S
dt 2

= v1
d
dt

A1

T
⎛ 
⎝ 

⎞ 
⎠ + v2

d
dt

A2

T
⎛ 
⎝ 

⎞ 
⎠      (14) 

where 

� 

vi  is the rate of reaction of species i. The chemical affinities 

� 

Ai  can be 

expressed in terms of two independent physical variables, which are taken to be 

pressure p and temperature T in this example, and the degree of advancement or 

extent of the reaction 

� 

ξ1and 

� 

ξ2  introduced by De Donder6 such that 

� 

1
2
d 2S
dt 2

=
v1
T

∂A1

∂ξ1

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

p ,T

v1 +
∂A1

∂ξ2

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

p,T

v2
⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 

+
v2
T

∂A2

∂ξ1

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

p,T

v1 +
∂A2

∂ξ2

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

p ,T

v2
⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 
  (15) 

The degree of advancement measures how far a chemical reaction has progressed or 

how much the reactant has turned into product, and is measured in units of moles. For 

a simple reaction 

� 

aA⇔ bB  where a and b are the stoichiometric coefficients of 

reactant A and product B, 

� 

ξA =
ΔnA

a
. Because chemical affinities can be written as the 

partial derivative of the Gibbs free energy,  

  

� 

Ai = −
∂G
∂ξi

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

p,T

       (16) 

  

� 

∂A1

∂ξ2

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

p,T

=
∂A2

∂ξ1

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

p,T

= −
∂ 2G
∂ξ1ξ2

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

p ,T

    (17) 

Equation 13 can be written as, 

  

� 

1
2
d 2S
dt 2

=
1
T

∂A1

∂ξ1
v1
2 + 2∂A1

∂ξ2

v1v2 +
∂A2

∂ξ2

v2
2⎛ 

⎝ ⎜ 
⎞ 
⎠ ⎟ < 0    (18) 
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This is true because 

� 

∂Ai

∂ξ j

< 0  must be satisfied for 

� 

Δ i S < 0  for fluctuations from an 

equilibrium state. If 

� 

Δ i S > 0 , then the state the system fluctuated from was not an 

equilibrium state, because the system would spontaneously move from that state to 

the state with higher entropy and thus not be an equilibrium state. This result is 

general and applies whether temperature, pressure, or degrees of advancement is the 

fluctuating parameter. Although this derivation was for a closed system, the same 

result and a similar logic apply for an open system.1 The inequality in Equation 18 

states that over time the entropy production per unit time always decreases. 

 

The previous development suggests that, if an unsteady flow characterized by 

slight perturbations from a mean has a higher entropy production than the mean, then 

the system would tend to seek the steady solution. Likewise, if the perturbations 

result in the system having a lower entropy rise than the mean steady state solution, 

the steady state solution would not be a stationary equilibrium state and the system 

would favor unsteadiness. This suggests that the principle of minimum entropy may 

be applied to the characterization of some time-varying flows. Entropy considerations 

alone do not cause the unsteadiness, which would typically be caused either by 

changes in flight conditions, structural deflection, vibration of the vehicle, or 

combustion instabilities, but rather can be used to explain whether the perturbations 

in the flow is likely to decay into a steady-state or persist.  
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1.2.b Previous work using principle of minimum entropy production theory 

 The principle of minimum entropy has been successfully applied to several 

non-convective dissipative systems.1,7,8 Initial work explored applying it to heat 

conduction or mass diffusion problems through analysis. Meijir and Edwards showed 

that it could be applied to a system with heat conduction with two levels for arbitrary 

deviations.8 Tadmor's analysis shows that entropy solutions of gas dynamics 

equations satisfy the principle of minimum entropy9. Biot found that it applies for 

near-equilibrium processes.10 Endre used variational calculus to show that the 

minimum entropy solution agreed with energy balance for linear and quasi-linear heat 

conduction.11 Borovkov found the principle of minimum entropy agreed with entropy 

production in a mass diffusion and heat conduction problem with two containers at 

different temperatures connected with a small capillary tube and a heat conduction 

problem with a heat-conducting layer separating two reservoirs.12 Researchers in 

other fields have shown that crystal formation in snow in glaciers13, which is driven 

by mass diffusion introduced by thermal gradients, and the relation between 

photosynthesis efficiency and chloroplast transport properties in plants14 can be 

explained by the principle of minimum entropy production. Henderson and Atkinson 

note that many of the examples such as where the principle of minimum entropy does 

not apply are cases where convection is present.15  

 

 Several researchers have also found flow across shock waves and some 

viscous flow phenomena agree with the principle of minimum entropy. Helmholtz 

showed Newtonian flow is characterized by a minimum of viscous dissipation16. 



 14 
 

Horne, Smith, and Karamcheti incorporated the principle of minimum entropy 

production rate to identify parallel-wall channel flow, irrotational flow, 

incompressible channel flow, and the cylindrical vortex flow as having minimally 

dissipative velocity distributions17,18. They also found that some features of 

irrotational, steady, viscous flow near an airfoil, such as the effect of trailing-edge 

radius on circulation, are compatible with the principle of minimum entropy.  

 

 The principle of minimum entropy could also be used to interpret the stability 

of amplitude disturbances in initially laminar, parallel shear flows17. Horne, Smith, 

and Karamcheti found that their results were consistent with experiment and 

linearized hydrodynamic stability theory17. Shi and Zhou also found application of the 

principle of minimum entropy to turbulent flow in local mechanical equilibrium19. 

Kalugin proposed a variational method based on the principle of minimum entropy 

for calculating two-dimensional supersonic turbulent separated flows20. 

 

 Several types of supersonic flow problems result in multiple possible solutions 

- for example, a strong shock and a weak shock solution - based on the conservation. 

equations. Flow over a wedge with an angle less than the angle at which shock 

detachment occurs for a given Mach number can allow for either a strong or weak 

shock. Several such as Carrier21 and Henderson and Atkinson15 linearized the time-

dependent Euler equations based on linearized Rankine-Hugoniot equations at the 

shock subjected to boundary conditions. However, these studies did not consider 

other boundary conditions and did not look at entropy conditions. Work by Morgan 
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and Salas22 for the same problem of supersonic flow over a wedge, Salas23 for a shock 

interaction with an abrupt area change, and Li and Ben-Dor24,25 for shock reflections 

showed that a solution based on the principle of minimum entropy was consistent 

with experimental observations and numerical results for steady or pseudo-steady 

flows, defined as varying the Mach number and angle such that the normal Mach 

number was constant. 

 

Morgan and Salas examined the stability of shock waves attached to wedges and 

cones when either a strong or weak shock is possible based on boundary conditions22. 

They considered a two-dimensional wedge or cone placed in a uniform supersonic 

flow and restricted the wedge or cone angle to less than the angle corresponding to 

the detachment angle. Because the flow downstream of a shock is mathematically 

elliptic for the strong shock and hyperbolic for the weak shock, this suggests that the 

solution would depend on the boundary conditions. They imposed several boundary 

conditions including some that are varied to allow for strong shocks. They imposed a 

downstream pressure for the strong shock, as an imposed condition far downstream is 

necessary to close an elliptic problem. In order to make the problem tractable, they 

assumed the solution had conical similarity, which requires changes to the Euler 

equations that no longer allow for a downstream pressure as boundary condition. 

Thus, they required a specific pressure at the wall, but allowed the wall to move as 

long as the normal velocity component relative to it at each time was zero and the 

velocity at the wall vanished as the steady state was reached asymptotically. For the 

hyperbolic problem (weak shock), they fixed the wall and solved for the variation of 
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pressure in time and for the elliptic (strong shock), they fixed the pressure but moved 

the wall. They numerically integrated the Euler equations with the conditions and 

boundary conditions provided and allowed the shock to move in time, while 

satisfying the Rankine-Hugoniot equations at each time step. 

 

Morgan and Salas found that their results for the stability of strong or weak shocks 

attached to wedges and cones were consistent with the principle of minimum entropy. 

They found that for the wedge, the weak solution is stable for the fixed-wall boundary 

conditions, while the strong solution was not. The weak shock solution corresponds to 

a lower pressure rise across the shock and lower entropy gain. The weak shock was 

also stable for the cone with a fixed pressure boundary condition. Both solutions were 

stable for a wedge with a fixed pressure boundary condition. The most interesting 

result is for a strong shock on a cone because, for a given surface pressure, multiple 

values of the cone deflection angle exist. Their results showed that when a surface 

pressure is specified between the maximum value and that of a normal shock, the 

stable solution corresponds to cone deflections greater than the cone deflection angle, 

corresponding to the maximum surface pressure. Morgan and Salas provided an 

example of this, which is shown in Figures 1 and 2. For a fixed surface pressure of 

4.675, a cone at 12 degrees or 38.35 degrees satisfies that boundary condition. Figure 

1 is for a cone with an initial angle less than 12 degrees at the start of the numerical 

integration. Figure 2 is for a cone with an initial angle greater than 38.35 degrees. As 

shown in Figure 1, the solution diverges (not stable) as the shock waves become 

increasingly stable and in Figure 2, the solution converges (stable).  For the strong 
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shock solution on the cone, the stable solution, which has a larger cone deflection 

angle, is also the minimum entropy solution. Morgan and Salas found these results 

consistent with experimental observations. 

 

Figure 1.1 Convergence history and isobar pattern for a strong-shock solution with 

a fixed-pressure boundary condition for a starting cone-angle less than 12 degrees. 

The solution diverges as the shock waves become stronger22. 
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Figure 1.2 Convergence history and isobar patterns for strong-shock solution with 

fixed pressure boundary condition. The solution converges to the solution with the 

minimum entropy gain. 

 

Salas23 found that the solutions for the interaction of a shock wave with a channel 

of abrupt area change were consistent with the principle of minimum entropy 

production. This type of interaction may be applicable to the passage of a shock 

through a wire-mesh screen, the starting process in a supersonic inlet, and some 

phenomena that occur in pistons and jet engines. The solution of the conservation 

equations for this problem can include more than one wave pattern. Oppenheim, 

Urtiew, and Stern proposed that a minimum entropy production principle could 

resolve the problem to one solution26. Salas used a self-similar analytic model to map 

out the different wave patterns that occur in terms of incident shock strength and area 
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ratio and verified his results by solving the time-dependent quasi-one-dimensional 

Euler equations. He found that the wave pattern that was actually observed where the 

conservation equations allowed for several possible solutions was in agreement with 

the principle of minimum entropy. 

 

Li and Ben-Dor24,25 applied the principle of minimum entropy to determining the 

solution to a shock reflection problem with multiple possible solutions. As indicated 

in Ben-Dor24, there are multiple solutions possible for the problem of an oblique 

shock reflecting off a straight surface - either a weak or strong regular reflection or a 

Mach reflection - depending on the initial Mach number 

� 

Miand the wedge angle 

� 

θw .  

Courant and Friedrichs27 found that in the pseudo-steady case, a flow regime that 

occurs in closed reservoirs after the pressure transient have reached the reservoir 

boundaries, was constant three different types of Mach reflections could occur: A 

direct Mach reflection (DiMR) results in the triple point moving away from the 

surface; a stationary-Mach reflection (StMR) results in the triple point moving 

parallel to the reflecting surface; and an inverse-Mach reflection (InMR) occurs when 

the triple point moves towards that surface. The inverse-Mach reflection is inherently 

unstable because the triple point will eventually meet the reflecting surface. These 

types of reflections are shown in Figure 3a-d. 
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Figure 1.3. a.) Regular reflection b) Direct Mach reflection c) Stationary Mach 

reflection d) Inverse Mach reflection.24  

 

 Li and Ben-Dor employed an analytic approach using the principle of 

minimum entropy to choose the observed solution from among several 

mathematically possible solutions for the criteria for transition between shock 

reflection types and stability of regular reflections and Mach reflections in both 
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steady and pseudo-steady flows. For the steady case, they develop an analytical 

approach to explaining experimental and numerical results found by Chpoun et. al.28 

and Vuillon, Zeitoun, and Ben-Dor 29 that contradict current understanding on regular 

reflection to Mach transition for steady flows. 

 

 To determine what solutions are possible for given wedge angles, there are 

several criteria for transitioning between different reflection types.  The pressure 

deflection diagrams in Figure 1.4 show the possible reflections and cases with 

multiple solutions for different values of the angle of incidence 

� 

φ1 .  A solution of a 

regular reflection in the 

� 

P,θ( ) plane occurs at the intersection of the R-polar, 

reflection polar, with the P-axis where the boundary condition for regular reflection 

� 

θ1 −θ2 = θ3 = 0 is satisfied. When the R-polar crosses the P-axis twice, the lower 

pressure value corresponds to a weak shock and the higher-pressure value, a strong 

shock. Locations where the incident and reflected polars intersect correspond to Mach 

reflections, with the type depending on whether the reflecting angle or flow deflection 

is negative (inverse), zero (stationary), or positive (direct).   

 

 When the R and I-polars, initial shock polar, intersect on the P-axis, either a 

stationary Mach reflection or regular reflection is possible.  This only occurs for a 

specific range of reflection wedge angles. The highest wedge angle at which this 

occurs is 

� 

θw

N . For 

� 

θw > θw

N  only a regular reflection or inverse Mach reflection, which 

is unstable, is theoretically possible. The reflecting wedge angle can be decreased to 

less than 

� 

θw

D , the detachment deflection angle, such that an attached solution and 
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regular reflection is no longer possible because the R-polar no longer intersects the P-

axis. (Figure 1.4d)  Thus for reflection wedge angles 

� 

θw

D ≥ θw ≥ θw

N  both regular 

reflection and Mach reflections are possible. This situation is shown in Figure 1.4f. 

There is some dispute in the literature on what the exact transition criteria are 

between regular reflection and Mach reflection; this could be resolved with minimum 

entropy considerations. 

 

	
  

	
  

	
  

	
  

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 1.4. Possible I-R pressure deflection diagram combinations 

 

 These three solution domains can be further subdivided by incorporating 

criteria for strong or weak shocks.  A point K where 

� 

θw = θw

N  and 

� 

θw = θw

D  lines as a 
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function of the incident Mach number distinguishes between strong and weak shocks. 

This occurs at 

� 

Mi

k = 1.48 and 

� 

θw

k = 48.6 . 

 

 To determine the minimum entropy solution, Li and Ben-Dor used a control 

volume analysis for entropy for a volume containing a shock wave for steady uniform 

flow. The entropy production per unit time 

� 

˙ S  inside the volume assuming uniform 

flow and the entropy change across the shock segment 

� 

dy  is  

    

� 

˙ S = ρuΔsdy
S
∫      (19)  

� 

Δs = Cv γ ln
2

γ +1( )M 2 sin2 β
+

γ −1
γ +1
⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ + ln 2γ

γ +1
M 2 sin2 β −

γ −1
γ +1

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥         (20) 

    

� 

sin2 β =
1

1+ dy dx( )2               (21) 

where S is the curved shock surface,  

� 

β  is the shock angle, and 

� 

γ  is the ratio of 

specific heats.   Applying the principle of minimum entropy requires that the change 

in entropy satisfies the following requirements:  

  

� 

∂ ˙ S =0    and 

� 

∂ 2 ˙ S ≥ 0.         (22a-b) 

  

� 

−
∂Δs
∂x

+
∂ 2Δs

∂yd(dx /dy)
= 0      (23) 

  

� 

∂ 2 ˙ S =
G(γ ,Mi,dx /dy)
H(γ ,Mi,dx /dy)

≥ 0     (24) 

 

Equations 23 and 24 are the Euler-Lagrange equation and Legendre condition 

resulting from calculus of variations.  Equation 24 is automatically satisfied because 

the entropy change across the shock does not depend on x or y.  
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 Although this method was obtained from equations for a steady shock wave 

reflection, it can be applied for a pseudo-steady case under certain constraints. The 

unsteady case is limited to constant-velocity incident shock waves (i.e. the shock 

angle and Mach number is varied such that incident Mach number 

� 

Mi  is constant) 

and made steady by a Galilean transformation where 

� 

θw  is the wedge angle: 

  

   

� 

θw =
π
2
−φ1 and  

� 

Mi = M0 sinφ1   (25a-b) 

 

 Following from solving for Equation 20 such that Equation 22a and b are 

satisfied, there exists a line 

� 

θw = θw

* . Below this line, regular reflections are unstable, 

according to the principle of minimum entropy. This line follows the 

� 

θw = θw

D  line 

until some point Q where it diverges above it. This creates a small region in the dual-

solution domain 

� 

Mi ≥ Mi

Q  where the strong regular reflection is unstable but a Mach 

reflection is stable. 

 

 Incorporating minimum entropy considerations, Li and Ben-Dor characterized 

the stability of solutions in the small region in dual solution domain where 

� 

θw
D ≤ θw ≤ θw

*  and 

� 

Mi ≥ Mi
Q .  Because strong stationary Mach reflections look like 

regular reflections, they can also be considered stable along the line 

� 

θw = θw
N ≥ θw

*  and 

� 

Mi ≥ Mi

k  where regular reflections are considered stable. For the case of a strong 

direct Mach reflection, because the Mach number 

� 

Mo  is smaller than that for the case 

of a stationary Mach reflection and because a direct Mach reflection is obtained with 
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a smaller reflecting wedge angle, the pressure behind a direct Mach reflection and the 

angle of incidence of the reflected shock 

� 

φ2  is smaller. Based on the principle of 

minimum entropy, if a strong stationary Mach reflection is stable, 

� 

φ2
st ≤ φ2

*  where 

� 

G(γ ,Mi,φ2
*) = 0, then the strong direct Mach reflection is stable.   

  

 A similar analysis can be done to show that a weak direct Mach reflection is 

unstable above the detachment angle. Looking at a shock polar solution of a weak 

direct Mach reflection in Figure 1.4g, this solution has a higher pressure and reflected 

incidence angle than the strong regular reflection solution which was shown by Li 

and Ben-Dor24 to be unstable because 

� 

φ2
sRR > φ2

*. Thus, if the strong regular reflection 

is shown to be unstable by minimum entropy considerations, so is the weak direct 

Mach reflection.  

 

 Finally, in the small region in dual solution domain where the principle of 

minimum entropy is applied 

� 

θw
D ≤ θw ≤ θw

*  and 

� 

Mi ≥ Mi
Q , only the strong direct Mach 

reflection is stable, even though the wedge angle is higher than the detachment angle.  

The new criteria for transition from strong regular reflections to strong Mach 

reflections for 

� 

Mi > Mi
Q  is 

� 

θw = θw
*  and transition from strong Mach reflections and 

strong regular reflections is 

� 

θw
* ≤ θw ≤ θw

N . 

 

 A summary of what solutions are stable and in what domain is provided in 

Figure 1.5 and Table 1.1 
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Regular reflection Mach reflection 

� 

θw  

� 

1< Mi < Mi

Q  

� 

Mi > Mi

Q  

� 

θw  weak

� 

1< Mi < Mi

k  
strong   

� 

Mi > Mi

k  

� 

θw > θw

*  Stable Stable 

� 

θw > θw

*  Unstable Unstable 

� 

θw

* > θw > θw

D  N/A Unstable 

� 

θw

N ≥ θw > θw

D  Unstable Stable 

� 

θw < θw

D  
Theoretically 
impossible 

Theoretically 
impossible 

� 

θw < θw

D  Stable Stable 

 

   Table 1.1  Shock wave configurations 

   
Figure 1.5. Solution domains. Region C contains both Strong Mach reflections and 

Strong regular reflections24 

 

 Li and Ben-Dor also compared their stability results in the dual-solution 

domain and new transition criteria based on entropy considerations to experimental 

data available. Their analysis suggested that the strong direct Mach reflection is 

theoretically stable in that region even though it has not been seen. This is because for 

pseudo-steady flow, a regular reflection has first appeared in many of the 

experimental cases with single wedges; and because it is a stable configuration, the 

regular reflection remains. Experimental results for a double wedge by Syschchikova 
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and Krassovskaya30 and Takayama and Ben-Dor31 showed a strong direct Mach 

reflection in the dual-solution domain. 

 

 Horne and Karamcheti proposed a method for applying the principles of 

entropy extrema to unsteady flows17,18. They proposed examining an unsteady wall jet 

as a function of the mean and fluctuating components of the dissipation function 

below. 

  

� 

Φ1 = −
2µ
ρ0

∇2p + µω 2      (26) 

where 

� 

ρ0  is the total density, 

� 

µ  is the viscosity, 

� 

p  is the pressure, and 

� 

ω  is the 

vorticity. Writing the vorticity and pressure in terms of the mean and the fluctuation 

from that mean,  

  

� 

ω = ˆ ω + ω t( ) = ˆ ω + ′ ω 
p = ˆ p + ′ p 

     (27a-b) 

the dissipation function 

� 

Φ1 can be written as, 

  

� 

Φ1 = −
2µ
ρ
∇2 ˆ p + ′ p ( ) + µ ˆ ω + ′ ω ( )

ˆ Φ 1 = −
2µ
ρ
∇2 ˆ p + µ ˆ ω 2 + ′ ω ( )2[ ]

    (28a-b) 

They determined the relative contributions to the dissipative structure of the wall jet 

by finding a time average of the observed values of the field variables in the cross-

stream direction17,18. For the steady case, they used the same process as Li and Ben-

Dor to extremize the dissipation function subject to a set of constraints to show that 

incompressible channel flows and the cylindrical vortex are minimal dissipative 

distributions.  



 28 
 

 

 Lewis and Smith32 used a similar method to Horne and Kamacheti18 to apply 

the principle of minimum entropy to unsteady shocks to suggest that entropy 

considerations could be used to determine shock stability to perturbations.  The non-

linearity of changes in thermodynamic variables across a shock wave produces some 

interesting results when looking at the time-average of the total pressure ratio and 

entropy jump across an oscillating shock. Figure 1.6 presents the time history of the 

entropy jump across a shock that is oscillating about a steady-state mean with a 

normal Mach number of 2 subjected to a sinusoidally varying 10% plus-or-minus 

variation,

� 

Mn = ˆ M n 1 + 0.1sin(wt)( ) . At the beginning of the cycle, when the static 

pressure ratio is higher and the shock is moving towards the approaching flow, the 

entropy jump has a larger magnitude than later in the cycle, when the static pressure 

ratio is smaller and the shock is moving away from the upstream flow. Thus, for 

Mach 2, over the entire cycle, the net entropy rise is greater than the mean or steady 

case. However, as shown in Figure 1.7, for higher normal Mach numbers, the 

magnitude of the entropy rise compared to the mean in the beginning of the cycle 

when the static pressure ratio is largest is less than the magnitude of the entropy rise 

compared to the mean at the end of the cycle when the static pressure ratio is the 

smallest. Because of the non-linearity of the governing equations, these results 

suggest that, based on entropy considerations, shocks in hypersonic inlets, which have 

lower supersonic normal Mach numbers, will be stable to certain perturbations, while 

a ramjet or supersonic inlet, which will typically have normal shocks at Mach 

numbers around M=2.5 to M=4.5 might not be stable to perturbations.  
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Figure 1.6. Time history of entropy jump across a shock with a normal Mach number 

of 2 and a 10% sinusoidal variation in normal Mach number. The entropy rise at the 

beginning of the cycle is higher than the entropy rise in the latter half is less than the 

mean.   

     

Figure 1.7. Time history of entropy jump across a shock with a normal Mach number 

of 5 and a 10% sinusoidal variation in normal Mach number. The entropy rise at the 

beginning of the cycle compared to the mean is less than the difference between the 

lower entropy rise in the latter half and the mean. 
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 Lewis and Smith32 presented analysis that includes functions that allow for the 

calculation time-averaged entropy rise across an unsteady shock and compare it to 

computational results.  In their work, they looked at perturbations of the upstream 

normal Mach number 

� 

M1 and static pressure ratio P with a similar construction to 

Horne and Kamacheti18, where 

� 

M1 = ˆ M 1 + ′ M (t) and 

� 

P = ˆ P + ′ P t( ).  The entropy 

jump across a shock depends on just the upstream normal Mach number and the ratio 

of specific heats 

� 

γ , 

   

� 

Δs
R

= ln 1+
2γ
γ +1

M1
2 −1( )⎡ 

⎣ ⎢ 
⎤ 
⎦ ⎥ 

1
γ −1 γ −1( )M1

2 + 2
γ +1( )M1

2

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

⎧ 
⎨ 
⎪ 

⎩ ⎪ 

γ
γ −1⎫ 

⎬ 
⎪ 

⎭ 
⎪ 

 (29) 

The perturbations for normal Mach number and pressure can also be expressed as 

� 

M1 = ˆ M 1 1 + ε sin(wt)( ) and 

� 

P = ˆ P 1 + φ sin(wt)( )  where 

� 

ε  and 

� 

φ  small perturbation 

magnitudes. Lewis and Smith chose a sinusoidal perturbation so that the solution can 

be integrated, but other waveforms (including a saw-tooth or square wave) would also 

be equally appropriate. Assuming a quasi-steady perturbation, such that at any 

moment in time the shock properties are only a function of the upstream normal Mach 

number in the shock frame of reference and the ratio of specific heats, the time-

averaged quasi-steady entropy rise across the shock is 

� 

Δs
R

=
1
T

ln 1 +
2γ
γ + 1

ˆ M + ′ M (t)( )2

−1[ ]⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

1
γ −1 γ + 1( ) ˆ M + ′ M (t)( )2

+ 2

γ −1( ) ˆ M + ′ M (t)( )2

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

γ
γ −1⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 

0

T

∫  (30) 

After substituting in 

� 

M1 = ˆ M 1 1 + ε sin(wt)( ) , this equation can be linearized based on 

several approximations and algebraic manipulations. The time average can be taken, 

and only terms of 

� 

ε 2 sin2(wt) remain when higher order terms are dropped. The 
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entropy rise across the shock for an unsteady flow with a sinusoidal Mach number 

perturbation can be expressed as 

� 

Δs
R avg

=
Δs
R steady

−
2 γ −1( ) γM 6 +1( ) − 9γ 2 − 4γ −1( )M 4 + 3 γ 2 − 4γ −1( )M 2

γ −1[ ]M 2 + 2( ) 2γM 2 γ −1[ ]( )[ ]2 M 2 −1( )γε 2  

(31) 

or 

  

� 

Δs
R avg

=
Δs
R steady

+ G M,γ( )ε 2     (32) 

The function 

� 

G M,γ( )  can be easily solved to determine whether the entropy 

perturbation is positive 

� 

G M,γ( ) > 0  or negative for a given Mach number and ratio of 

specific heats. It has a zero value at M=3.314 for a ratio of specific heats of 1.4. 

However, the time rate of change of entropy depends on entropy flux, not just the 

entropy gain across the shock. For an upstream perturbation in normal Mach number, 

the mass flux also changes in the moving shock frame, so the time-averaged entropy 

flux 

� 

ρus is of interest and can produce higher order terms that change the results.  

Lewis and Smith determined that the time averaged entropy flux for an upstream 

Mach number perturbation is 

� 

ρu Δs( )
ρ1u1R average

≅
Δs
R steady

+ −
2 γ +1( )M1

2

2 + γ −1( )M1
2( )2

⎧ 
⎨ 
⎪ 

⎩ ⎪ 
Δs
R steady

+
4γ 1− M1

2( )3
2 + γ −1( )M1

2( )2 2γM1
2 − γ −1( )( )

− M1
2 −1( )2 γ −1( ) γM1

6 +1( ) − 9γ 2 − 4γ −1( )M1
4 + 3 γ 2 − 4γ −1( )M1

2

4γ γ −1( )M1
2 + 2( ) 2γM1

2 − γ −1( )( )( )2
⎫ 
⎬ 
⎪ 

⎭ ⎪ 
ε 2

(33) 

   

� 

ρu Δs( )
ρ1u1R average

≅
Δs
R steady

+ H M,γ( )ε 2             (34) 
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The qualitative behavior is similar, but the normal Mach number at which 

� 

H(M,γ ) = 0  is at M=1.58 instead of M=3.31. Similarly for a static pressure ratio 

perturbation, which for downstream pressure perturbations does not produce a 

changing mass flux in the moving shock frame, the relation for the time-averaged 

entropy flux across a shock is 

� 

Δs
R

=
Δs
R steady

+
1

γ −1
⎧ 
⎨ 
⎩ 

1− 4γ 2 ˆ P 
γ −1( ) ˆ P 2 + 2 γ 2 −1( ) ˆ P + γ 2 −1( )

⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 

φ sinwt
π

d(wt)
0

2π

∫ −
1

2 γ −1( ) ×

1−
8γ 2 γ 2 −1( ) ˆ P 3 + γ 2 + 1( ) ˆ P [ ]

γ 4 − 2γ 2 + 1( ) ˆ P 4 + 1( ) + 4 γ 4 −1( ) ˆ P 3 + ˆ P ( ) + 6γ 4 + 4γ 2 + 6( ) ˆ P 2
⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 

φ sinwt( )2

π0

2π

∫ d(wt)
⎫ 
⎬ 
⎪ 

⎭ ⎪ 

 

(35) 

   

� 

Δs
R

=
ρuΔs
ρu1R

=
Δs
R steady

+ F P( )φ 2    (36) 

The zero occurs at M=2.198, suggesting that shocks with normal Mach numbers 

below M=2.198, where 

� 

F P,γ( ) > 0 for 

� 

γ = 1.4, will be stable to downstream pressure 

quasi-steady perturbations, while shocks above M=2.198 will not, according to the 

principle of minimum entropy. While the details of how these relations in equations 

31, 33, and 35 were derived was not explained in this section, they will be discussed 

at length in Chapter 2.4 as the current study will use these relations and derive similar 

relationships for other perturbations using the same methods that Lewis and Smith 

used. Lewis and Smith also conducted a numerical simulation of the entropy rise to 

confirm the validity of their approximations and found errors on the order of 10-6 for 

the difference between approximated total pressure ratio and entropy jump and 

numerical simulation for small perturbations (<20%). 
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 Lewis and Smith32 also developed similar relationships for the time-averaged 

total pressure ratio as a function of the mean plus a perturbation in total pressure. 

Because the entropy jump is the natural log of total pressure 

� 

Δs
R

= − ln
p0,2
p0,1

, the total 

pressure should behavior qualitatively similar to the entropy rise as in Figures 6 and 

7. This suggests that an unsteady shock at lower Mach numbers could have a higher 

total pressure ratio than the mean or steady case. However, unlike entropy, total 

pressure is not a state variable and is frame of reference dependent. This analysis only 

applies in the moving shock frame, not the absolute frame. In the absolute frame, the 

total pressure rise is always less for an unsteady perturbation.  

 

 While the principle of minimum entropy has been successfully applied to a 

variety of problems, including supersonic flows with shocks, several questions about 

its validity and application to unsteady shock problems still remain. Horne and 

Karamcheti18 and Lewis and Smith32 used time averaging to compare the entropy 

jump across an unsteady shock; however, no analysis or experimental validation was 

presented demonstrating that time averaging is a valid approach for time-varying 

flows. This research will present an argument for the suitability of time-averaging the 

entropy jump across a shock for a quasi-steady flow.  

  

 The qualitative difference between low supersonic normal Mach numbers and 

large supersonic normal Mach numbers shown by Lewis and Smith32 suggests a 

fundamental difference in stability for oblique shocks in hypersonic inlets and nearly 

normal shocks in supersonic inlets. At low supersonic normal Mach numbers, the 
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entropy rise is greater for the unsteady flow, suggesting that a shock in a hypersonic 

inlet, but not a normal shock in a supersonic inlet, could be stable to small 

perturbations if the principle minimum entropy applies. Previous research on 

applying the principle of minimum entropy to shock systems22-25 provides some 

support for using this approach.  

 

 This research will also expand on the method presented in Lewis and Smith32 

by evaluating additional perturbations that an inlet shock system might be subjected 

to such as angle perturbations, upstream Mach number perturbations, and changes in 

upstream atmospheric conditions. These are upstream perturbations that result in 

perturbations of the upstream mass flux, which Lewis and Smith32 either did not 

evaluate or analyze, and introduce higher order terms that change the normal Mach 

number at which an unsteady shock has a higher entropy rise than the steady shock. 

Finally, this research will also consider shocks representative of those seen in 

different inlet types. 

 

 Previous research by Li and Ben-Dor24 and Lewis and Smith32 only evaluated 

the entropy jump across the shock and applicability of entropy considerations to 

pseudo-steady and quasi-steady flows. For highly oscillatory perturbations with high 

frequencies, the quasi-steady assumptions no longer apply, and the thermodynamic 

time derivatives become important. In addition, at sufficiently high enough 

frequencies, the disturbances downstream will effectively cancel each other, resulting 

little effect due to the unsteadiness on the inviscid thermodynamic variables 
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downstream.  Thus, for a highly unsteady flow a different approach is needed and is 

presented in this work. 

 

1.3 Previous work -- unsteady shocks and inlets 

  

 Successful hypersonic vehicle operation depends on accurate prediction of the 

flow into a scramjet engine and where oblique shocks form and intersect the vehicle. 

A typical hypersonic scramjet vehicle is shown in Figure 1.8 with the shock 

intersecting the inlet cowl. The aircraft forebody provides compression for the engine 

and acts as an external part of the inlet, and the aircraft aftbody acts as an extension of 

the nozzle by providing expansion to increase thrust. At the back of the inlet, the 

shock would intersect the shoulder before propagating through the isolator. As the 

flow is perturbed from its design conditions, either by changes in angle-of-attack, 

turns, or travel through non-uniformities, the shock angles can change.  If the shock 

angle moves outside the cowl, spillage can occur leading to increased vehicle drag 

and decreased mass flow in the combustor. On the other hand, if the shock moves 

inside the inlet, shock boundary-layer losses can cause flow separation and intense 

localized heating. Control of the shock position on or near the cowl is desired to 

prevent destructive heating, separation losses, and maintain high enough airflow into 

the inlet. In addition, scramjets operate at thrust-to-drag ratios close to unity so that 

any additional cowl drag, spillage, changes in the flow downstream into the 

combustor, or excessive drag and shock losses in the inlet could be intolerable. 
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Figure 1.8. Diagram of a planar or 2D geometry scramjet engine and a scramjet-

powered vehicle.76 

 Lewis presented analysis design a hypersonic inlet for bow shock location 

control and on which designs would be less sensitive to changes in flow conditions44. 

At low hypersonic Mach numbers, an increase in the surface angle for a 5-degree 

wedge causes the shock to move away from the surface of the vehicle, but causes it to 

move towards the surface of the vehicle for a high freestream Mach number (Mach 

20). At Mach 15, this wedge is relatively insensitive to changes in angle-of-attack. If 
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the Mach number is varied, increasing the freestream Mach number decreases the 

displacement for a small-angle wedge (2 degrees), but increases the displacement for 

a large-angle wedge (15 degrees). Generally, as the Mach number increases, the 

shock angle always decreases and thus is displaced towards the surface. This 

displacement decreases as the surface wedge angle increases. These results are from 

the well-known theta-beta-Mach number relation 

   

� 

cotθ = tanβ

γ +1
2

M1
2

M1
2 sin2 β −1

−1

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
   (37) 

 where 

� 

θ  is the wedge angle, 

� 

β  is the shock angle, and 

� 

M1 is the upstream Mach 

number lead to several inlet design questions that motivated the research in Reference 

44. Some of these questions outlined in Reference 44 relevant to off-design flight or 

the effects of unsteadiness are: 

 1. Is there a specific wedge angle, which minimizes relative shock 

displacement due to a change in flight Mach number? 

 2. Is there a specific wedge angle, which minimizes relative shock 

displacement due to a change in wedge angle? 

 3. What is the effect of adding an additional ramp downstream of the first? 

 4. What is the effect of a thick hypersonic boundary layer on the match? 

 5. How significant is the effect of frequency at which Mach number or angle-

of-attack change? 

 

For designing for changes in flight Mach number, Lewis made several observations 

based on familiar shock relations and their approximations for small angle wedges at 
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hypersonic speeds. The Mach number or wedge angle at which the shock will be the 

smallest, occurs when 

� 

∂β
∂M

= 0 . Taking Equation 37 for the theta-beta-Mach number 

relation, and taking the high Mach number 

� 

M >> 1 and small-angle limit 

� 

θ,β << 1, 

one can use the approximations 

� 

sinβ ≈ β , 

� 

sinθ ≈ θ , 

� 

θ ≈ β , 

� 

cosβ ≈1, and 

� 

cosθ ≈1. 

quadratic relationship is derived for the shock angle 

   

� 

β
θ

=
γ +1
4

+
γ +1
4

⎛ 
⎝ 

⎞ 
⎠ 

2

+
1
Mθ( )2    (38) 

The derivative of this with respect to Mach number is 

   

� 

∂β
∂M

=
1

M 2 γ +1( ) 4[ ]2 Mθ( )2 +1
   (39) 

This equation shows that the shock motion with respect to changing Mach number 

will never be zero, but this derivative goes to zero as Mach number increases. At 

small deflection angles, the derivative becomes smaller as the shock angle decreases 

and the wedge angle or angle-of-attack increases. In other words, for a fixed 

geometry inlet, there is no way to match bow shock to the cowl at off-design Mach 

numbers, but these changes can be minimized at higher Mach numbers and surface 

angles or angle-of-attack.  

 A similar line of analysis can be used to show the variation in pressure ratio as 

the Mach number changes. For hypersonic flow at small angles, the pressure ratio is 

often written as 

 

� 

p2
p1

= 1+ γ γ +1( ) 4[ ] Mθ( )2 + γ Mθ( )2 γ +1( ) 4[ ]2 +
1
Mθ( )2   (40) 

The change in pressure ratio with respect to Mach number is 
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� 

γ γ +1( )Mθ γ +1( )2 Mθ( )2 +16 + γ γ +1( )2 Mθ( )2 + 8γ

2 γ +1( )2 Mθ( )2 +16
  (41) 

Thus thermodynamic changes caused by changing Mach numbers increase as the 

Mach number or wedge (or angle-of-attack) increases. Lewis also used similar 

derivations for examining the effect of changing shock angle and adding a second 

compression ramp. Figure 1.9, which shows shock displacement for a 1-degree 

change in angle-of-attack, shows an interesting result that for wedge angles of 10 

degrees at about Mach 7 and wedge angles of 5 degrees at Mach 15, the shock is not 

displaced. 

  

Figure 1.9. Shock displacement with 1-deg increment in angle-of-attack for a  

30-meter wedge inlet.44 

 The results from Lewis' analysis indicate several interesting guidelines for 

inlet design. Not surprisingly, fixing the shock becomes more difficult with a thick 

boundary layer with the thickness varying with angle-of-attack. The shock can not be 
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fixed with varying Mach number, so if an inlet is intended to be robust to off-design 

operation or fly over a range of Mach numbers, it would need to be designed with 

variable geometry. Lewis suggests that an inlet be designed with a fixed shock 

criterion where possible matched to a cruise Mach number under the boundary layer 

conditions for that cruise Mach number. Lewis found that the shock could be fixed 

against perturbations in altitude, which are more likely than variations in Mach 

number if a vehicle flies at its fixed design Mach number. If a secondary ramp is 

used, two ramps provide the most control over shock position, as multiple ramps have 

less control because the shock displacement decreases as shock angle and Mach 

number increase. However, the addition of more ramps or increasing the wedge 

angle, increases the sensitivity of the overall inlet pressure ratio to changes.  

 

 A shock that is less resistant to changing its angle will experience a larger 

increase in pressure ratio as upstream Mach number is increased. Thus, there is a 

trade-off between controlling the shock position and minimizing thermodynamic 

fluctuations that would propagate into the inlet. In related work, Lewis and Hastings46 

found that high-frequency variations tend to be transmitted directly to the bow shock 

so that shock motion follows surface motion closely. They also found that, even if a 

thick boundary layer is present, there was not a significant mismatch at reasonable 

frequencies despite the potential for the boundary layer to amplify the effect of the 

surface motion. 

 
 Lewis et al.45 examined the effect that unsteady hypersonic vehicle motion has 

on its bow shock. This unsteadiness could come from vehicle plunging and pitching 
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motions. In their work, they aimed to determine what the relative motion of the inlet 

bow shock at high Mach numbers in under the influence of an oscillating wall, and 

what that does to the thermodynamic properties of the air entering the inlet. 

Preferably, the shock would move with the vehicle such that the shock remains fixed 

relative to the vehicle. The shock's movement could be different in amplitude and/or 

phase, resulting in a displacement of the shock relative to the body. This problem is 

depicted in Figure 1.10. Typically the angular deviation differs by about 10% of the 

vehicle's angular displacement, which seems insignificant, but some hypersonic 

vehicles would have long inlets, so a small angular displacement could result in a 

large linear displacement at the entrance to the engine46. 

  

Figure 1.10. Shock motion relative to vehicle.45 

 In their study, they varied the frequency of oscillations and examine the shock 

and flow field responses as a function of frequency. They looked at two frequency 

limits - quasi-steady and highly unsteady - for their analytic approach and look at a 

computational solution including the intermediate region for validation using a  

time-accurate inviscid MacCormack scheme. Details on the qualitative differences 
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between the quasi-steady and high frequency limit and what frequency range they 

include are discussed at length in Chapter 2.  

 

 The approach used in the current study for describing the two limits is similar 

to that used by Lewis and Surline45. They found good agreement between their 

analytic and computational results and behavior not predicted by their analysis in the 

intermediate region. For frequencies of 1 Hz, the shock did not move relative to the 

plate for Mach numbers of 5 and 10 with a normal motion relative to the surface with 

an amplitude of 0.5 meters and 0.1 meters, respectively. For 10 Hz, as shown in 

Figure 1.11, the resulting motion of the shock was sinusoidal but out of phase with 

respect to the vehicle motion, for the case of a  Mach 10 wedge with an oscillation 

amplitude of 0.1 and 0.5 meters. For the 100 Hz case, which is the limit of the quasi-

steady solution based on Lewis and Hastings46, the results showed the shock tends to 

curve downstream of the leading edge of the surface. The maximum and minimum 

displacement also increased by a factor of 5 over the input amplitude, creating a non-

uniform pressure profile behind the shock a shown in Figure 1.12. Figure 1.13 shows 

the amplification of the oscillation for a Mach 20 wedge. However, this amplification 

does depend on oscillation amplitude, such for a small oscillation, the shock remained 

almost stationary. Finally, Lewis et al. found that the shock did not move when the 

surface was oscillated at frequencies of 1 and 5 KHz as shown in Figure 1.14. 

However at high frequency oscillations, for locations closer to the leading edge where 

the shock sits closer to the surface, the distance at which the expansion and 

compression waves produced by the moving surface cancel is equal to the shock 
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wave height, so the shock is curved and affected by the moving wall. In the 

intermediate region where neither the quasi-steady nor high frequency limit applies, 

the resulting expansion and compression waves interact with the shock and affect its 

location. This also resulted in a non-uniform flow field downstream, which could 

have serious consequences on the operation of the combustor.  

 

 Figure 1.11.  Unsteady 10 Hz Mach 10 wedge flow.45 
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Figure 1.12. Pressure profiles for Mach 10 with a frequency of 100 Hz and 

displacement amplitude of 0.1 meters.45 

    

Figure 1.13. Unsteady Mach 20 wedge flow for wedge oscillating with an amplitude 

of 0.1 meters at a frequency of 100 Hz.45 
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Figure 1.14. Unsteady Mach 20 wedge flow at high frequency (5 kHz).45 

 To summarize, at low frequencies, the shock motion matches the amplitude of 

the vehicle motion. At mid-range frequencies, a resonating effect seems to occur and 

the amplitude of the shock motion is several times greater than the vehicle's. At high 

frequencies, there is an attenuation effect and the shock does not see the vehicle's 

motion. As Mach number increases, the effect of the vehicle's motion decreases. This 

is not surprising, as it will be shown in Chapters 2.2 and 7.4, that the upper bound of 

the quasi-steady limit and lower bound of the high frequency limit increase with 

Mach number. These results and similar analysis to References 45 and 46 behind the 

quasi-steady and high frequency limits that will be presented in Chapter 2 are 

important for determining how to calculate the entropy rise across a shock subjected 
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to perturbations at different frequencies. The computational results presented in 

Reference 45 also provide some validity to the two different approaches and 

frequency limits that will be discussed in Chapters 2 and 6. 

1.3.a Type IV Shock Interactions 

 
Accurate determination of where a hypersonic oblique shock intersects the surface 

of the body and resulting shock boundary-layer interactions is crucial to a successful 

scramjet vehicle operation. Shock-boundary layer interactions produced by the 

impingement of the bow shock on the cowl produces an area of intense local heating 

and complicated flow field35. Shock interactions - particularly a Type IV interaction -

- also tend to be highly sensitive to shock motion, and the inherent unsteadiness also 

affects cowl-shock matching33,34.  

 

A type IV shock interaction typically occurs at the cowl of a hypersonic inlet 

where the weak oblique vehicle bow shock intersects the nearly normal cowl bow  

 

Figure 1.15. Type IV interaction.77 
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shock. This interaction produces a supersonic jet embedded in the subsonic flow 

region between the bow shock and the surface (Figure 1.15).  When the supersonic jet 

impinges on the wall, a bow shock is produced. This bow shock produces a small 

stagnation region with intense localized heating and high pressures. The level of 

intense heating and maximum pressure depend on jet characteristics like size, wall 

impingement angle, flow state such as turbulent or laminar, and pressure. In addition, 

the transmitted shock and the supersonic jet is generally unsteady possibly because 

small variations in upstream flow propagate to large changes downstream. Several 

computational and experimental studies have found that these shock interactions are 

inherently unsteady40-43. A type IV interaction is one of six types of shock interactions 

first categorized by Edney in 196837. Figure 1.16 shows the shock interference pattern 

on the lip of a scramjet inlet cowl. For example, types I and II occur when two weak 

shocks of opposite families intersect with a Type II occurring closer to the sonic 

point.  
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Figure 1.16. Six types of shock interference patterns.77 

 

Understanding the stability of shocks to unsteadiness is of particular interest to 

locate and control Type IV interactions. Experimental results indicate that heating 

rates and pressure loads associated with a Type IV interaction can be 30 times larger 

than other types of shock intersections with a surface35,36 . High heat transfer rates and 

high pressures resulting from these types of interactions are an important factor to 

consider in designing an inlet37,38 .These large temperature gradients and thermal 

stresses could significantly damage structural components and could limit the 

duration and usefulness of the vehicle if they are not accurately predicted. These 

interactions could also occur on the wings or tail section of a hypersonic vehicle. 
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Experimental results have also shown that the maximum pressure, heat transfer rate, 

and surface pressure distribution are highly sensitive to upstream conditions such as 

Mach number, shock strength, and thermodynamic flow conditions35,37,38.  

 

Lind and Lewis found that slight perturbations in freestream conditions can have 

large effects on the type IV shock/shock interaction flowfield34. They examined the 

effect that slight perturbations in upstream flow conditions34 and the location of the 

impinging bow shock have on Type IV interactions39. Lewis and Lind conducted a 

parametric analytic study to determine the effect freestream Mach number, the 

incident shock angle, and the bow shock angle have on the transmitted shock angle. 

For example, to determine the effect of different cowl radii on the transmitted shock 

angle, they varied the bow shock angle while keeping all other parameters constant. 

For examining the effects of speed changes, they varied Mach number, and to look at 

changes in angle of attack or different inlet designs, they varied the inlet deflection 

angle.  

 

In their work34, Lind and Lewis developed several guidelines for inlet design to 

mitigate the effects of Type IV interactions. In general, they found that whenever the 

inlet bow shock intersects the cowl bow shock near the stagnation region, the 

transmitted shock is effectively unsteady because small upstream variations are 

magnified downstream. At the limit of very high Mach numbers, the interaction and 

the transmitted shock angle exhibits a Mach number independence and also becomes 

less dependent on inlet deflection angle or angle-of-attack. However, as the Mach 
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number decreases small changes in Mach number or incident shock angle result in 

large changes in the transmitted shock angle. Their results also suggested that to 

minimize unsteadiness of the transmitted shock, the inlet deflection angle should be 

small. At large inlet deflection angles or angles-of-attack, small changes in angle have 

a large effect on the transmitted shock angle34. 

Lind and Lewis39 used a computational approach to examine the effect of location 

of the impinging shock. They used a high-resolution upwind scheme with second-

order accuracy in time and space. They varied the impinging shock location on the 

cowl, which was modeled as a blunt body, between 168 and 186 degrees using flow 

conditions provided by experiments conducted by Holden35. Their results indicated 

that the location of the impinging shock strongly influenced the development of the 

interaction, the maximum pressure, and frequency of oscillation associated with the 

interaction39. They found that for shock impingement angles greater than 185 degrees, 

the Type IV interaction was unsteady. This resulted from an unstable separation 

region located above where the jet impinged on the wall and how the shock resulting 

from the jet's impingement was oriented. When the resulting shock from the jet 

impingement was either parallel with the surface or angled such that the flow through 

the shock was deflected down, the interaction would be unsteady. Shock 

impingement angles less than 175 degrees, produced steady Type IV interactions. 

Figure 1.17 shows the time history of surface pressure for a shock impingement angle 

on the cowl of 174 degrees. For shock angles between 175 and 185 degrees, the 

interaction could be steady or unsteady. 
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Figure 1.17. Time history of surface pressure for shock impingement angle of 174 

degrees.43 

Unsteadiness has also been studied at length for other propulsion applications, 

including for flow in a transonic compressor or turbine passage47-50. Ng and Epstein47 

identified that there are significant entropy-related consequences resulting from 

unsteadiness in a transonic compressor passage because of unique properties of 

unsteady flow compared to steady flow. Inlets of pulse detonation engines may have 

unsteady flows because of the detonations used in pulse detonation engines are 

periodic51-54. Cullick and Rogers55 examine the frequency response of a normal shock 

in a diverging channel, a critical problem for ramjet engines subjected to pressure 

oscillations. Under steady conditions, a normal shock sits in the divergent section of 

the inlet diffuser. To a first approximation, the problem of the effect of the pressure 

oscillations can be treated based on the small-amplitude acoustic motion 
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approximations. Thus the problem can be thought of as a problem of interaction 

between a normal shock and acoustic waves.  It is well known that a normal shock is 

stable in a divergent channel but unstable in a converging channel. For a normal 

shock in a channel, if it is displaced, a disturbance propagates downstream where it 

could be reflected, causing it propagate upstream. Cullick and Rogers55 examined 

whether this disturbance grows or decays assuming quasi-steady oscillations and 

small amplitudes acoustic wave and shock wave motion. They developed a linearized 

model for representing the unsteady behavior of a shock inlet system for a ramjet. 

However, their results only encompassed the acoustic field and not the velocity 

fluctuations that may arise. 

 

Because hypersonic flights are sensitive to changes in flow conditions, 

understanding the conditions under which a flow would remain unsteady is crucial.  

Mitigating, accommodating, and containing the effects of Type IV shock interactions 

on the engine cowl or on control surfaces is critical to their survivability and use in 

long duration flight. Mitigating and predicting unsteady effects also facilitates 

maintaining sufficient airflow into the engine and preventing additional losses 

through shock-boundary layer interactions and non-uniform pressure and temperature 

profiles.  This research proposes one method of predicting unsteadiness and the effect 

of flow perturbations on hypersonic vehicle operation based on the principle of 

minimum entropy production. 
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1.4 Previous work -- three-dimensional inlets  

Much of scramjet inlet research since the late 1990’s has focused on 

streamline traced axi-symmetric inward-turning Busemann inlets and inlets that 

transition from a rectangular capture area to a circular combustor. In the 1950s, inlet 

designs and research focused on inward-turning axi-symmetric inlets. These designs 

fell out of favor with a preference for rectangular two-dimensional inlets for flight 

vehicles. The late 1990’s saw a renewed interest in inlets with circular or elliptical 

combustors specially inward-turning or shape-changing inlets.57 The joint Australian-

US Hypersonic International Flight Research Experimentation (HiFire) program will 

flight test a 3-D scramjet based on the REST inlet56 

 
A much-studied candidate for a streamline traced axi-symmetric inlet is the 

Busemann inlet58,59. These inlets have several benefits including relatively high 

pressure recovery, the ability to easily blend with a circular combustor, and can be 

designed based on an inviscid flow field that is completely known analytically. 

Busemann first proposed an internal axi-symmetric flow that consisted of internal 

isentropic compression followed by a conical shock.58 Molder and Szpiro59 proposed 

an inlet based on using any stream surface of this flow field proposed by Busemann 

as the inlet wall. This flow field obeys the Taylor-Maccoll equations for axi-

symmetric conical flow: 

 

 

� 

′ u R
2 uR + ′ ′ u R( ) =

γ −1( )
2

1− uR

2 − ′ u R
2( ) ′ ′ u R + ′ u R cotθ + 2uR( )  (47) 
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where 

� 

uR  is the radial velocity non-dimensionalized with respect to the freestream 

speed59. The tangential velocity 

� 

uϑ  is found from the irrotationality condition 

 

� 

uθ = ′ u R =
duR

dθ
 (48) 

 

where  is the angle emanating from the conical shock from the center of the inlet to 

the entrance of the inlet. The conical shock turns the flow such the flow is uniform 

and parallel to the inlet wall coming into the combustor. The shock then cancels at the 

shoulder during on-design conditions. Figure 1.18 shows the shock structure in a 

Busemann inlet. A numerical method for designing these inlets was developed by 

Van Wie and Molder60. 

 

Figure 1.18. The Busemann inlet.4 

  

 Although these inlets have relatively high total pressure recovery, they have 

several drawbacks. Busemann inlets have such high contraction ratios that they will 

 

!
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not start in steady flow. The contraction ratio determines the minimum Mach number 

the inlet can operate and how much the flow can be compressed before it chokes. 

When the inlet unstarts, a normal shock adjusts the flow and the flow becomes 

subsonic entering the combustor61.  Several researchers have proposed modifications 

to the Busemann inlet to avoid contraction ratios that are too high60,62. Busemann 

inlets also tend to be very long, leading to high viscous losses due to higher boundary 

layer growth, which can mitigated somewhat by truncating the inlet with an initial 

turning angle at the leading edge with small total pressure losses due to the oblique 

shock formed at the sharp leading edge for small angles63. Busemann inlets also have 

poor off –design performance because of their sensitivity to flow angularity 

particularly if the inlet has no truncation angle or a sharp leading edge. 

  
 
 

The design of a transition duct from a rectangular capture area to an elliptical 

combustor has been the focus of several efforts. Inlets with a rectangular capture area 

and circular combustor can combine many of the benefits of rectangular inlets and 

circular combustors. However, streamline tracing in a parent flow field with uniform 

inflow and outflow requires the same shape at freestream as at the throat. Stream-

traced inlets contain the features of the parent flow-field. Most efforts to create this 

transition duct have involved blending together the two parent flow fields – 

rectangular and Busemann.  

 

In particular, considerable work on these inlets has been done by Smart, who 

used a modified-streamline tracing method involving blending together multiple sets 
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of streamlines to form the transition duct of rectangular-to-elliptical “REST” inlet.64 

The process involved calculating a pre-determined capture area and pressure ratio 

required for the inlet. First, an axi-symmetric compression flow field with the 

required pressure ratio was calculated. Several capture shapes and inlets varying from 

rectangular to elliptical were defined.  The path of the streamlines from the inlet 

entrance to the exit plane was calculated. Specifically, a streamline-traced inlet with 

rectangular-like capture shape like in Figure 1.19.b. was determined. A second 

streamline traced inlet with a capture area like Figure 1.19.b. but with radiuses 

corners as shown in Figure 1.21.a. was then calculated. A third inlet shape with an 

elliptical throat with the same area as Figure 1.21.b. was calculated and similar to that 

shown in Figure 1.21.b. All three shapes were smoothly blended together to form a 

REST inlet with the rectangular capture shape of Figure 1.21.b., the cross-sectional 

shape of Figure 1.21.a. at the cowl closure, and the throat shape of Figure 1.21.b. A 

mathematical lofting procedure smoothly blended the streamlines together to produce 

a smooth transition from rectangular capture area to elliptical combustor.  

A resulting transition is shown in Figure 1.20. 
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Figure 1.19.  Inlet cross-sectional shape distributions for different 

rectangular capture areas. a.) Rectangular capture shape b.) Rectangular 

shape used for REST inlets.64 

 

  

Figure 1.20. Cross-sections of a blended REST inlet.64 
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Figure 1.21. Cross-sectional shapes for the three blended inlets for 

constructing a REST inlet.65 
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 Smart's design procedure produced an inlet that performs better than similar 

two-dimensional inlets64 for a vehicle cruising at Mach 7 with Mach 6 flow entering 

the inlet. Tables 1.2-1.4 contain these performance values calculated with a three-

dimensional CFD flow solver for Mach 6.0 REST inlet under inviscid flow 

assumptions for on-design and off-design Mach numbers compared to a rectangular 

inlet.  Even at off-design conditions, the REST inlet performed better than the 

rectangular inlet. A Mach 6.0 REST inlet was also tested experimentally and found to 

have slightly lower performance than predicted but higher performance than 

previously-tested three-dimensional inlets.66 The parameters typically used to 

evaluate the performance of scramjet inlets are static temperature ratio 

� 

ψ  , total 

pressure recovery 

� 

π c  , kinetic energy efficiency 

� 

ηKE  , adiabatic compression 

efficiency, 

� 

mc mass capture percentage, 

� 

PR  pressure ratio, 

� 

Lin dh ratio of the inlet 

length to the hydraulic diameter, and 

� 

CD  coefficient of drag.  

 

Property Mach 3.6 Mach 4.8 Mach 6.0 
 84.40% 94.00% 99.50% 
 14.8 +/- 3.0% 13.7 +/- 19.1% 13.8 +/- 9.8% 

� 

Ψ  2.19 +/- 2.2% 2.16 +/- 5.8% 2.16 +/- 6.4% 
  1.77 +/- 2.7% 2.82 +/- 5/3% 3.74 +/- 4.2% 

Table 1.2.  Characteristics of inviscid Mach 6.0 REST inlet. 

Property Mach 3.6 Mach 4.8 Mach 6.0 

� 

π c  0.960 0.932 0.926 
 0.995 0.996 0.997 
 0.99 0.982 0.981 
 0.349 0.185 0.114 
  17.57 17.57 17.57 

Table 1.3. Inviscid performance of Mach 6.0 REST inlet 

mc

PR

Mexit

!KE

!c

CD

Lin dh
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Property Mach 3.6 Mach 4.8 Mach 6.0 
 0.784 0.795 0.791 
 0.972 0.985 0.99 
 0.945 0.946 0.945 
 0.348 0.193 0.125 
  7.9 13.26 18.08 

Table 1.4. Inviscid performance of 2D rectangular inlet for comparison.64 

 
   

   

Figure 1.22. REST Inlet.64 

 

 Other methods for designing a three-dimensional inlet have been presented. 

Recent work by Bussey67,68,79 introduces a methodology for designing a scramjet inlet 

with a different capture than combustor shape using compound compressible flow 

theory for both inviscid and viscous flow with a shock wave is presented. This is an 

inverse method that determines the flow through the inlet and flow at the capture 

plane for a chosen inlet design and flow profile into the combustor. 

 
 
 Three-dimensional or axi-symmetric inlets with curved shocks are of interest 

because they may also be more or less stable to perturbations based on entropy 

considerations. Similar to the physics behind the three-dimensional relieving effect of 

flow over a cone, the flow in a three-dimensional inlet may be inherently more stable 

PT
!KE

!KD

CD

Lin dh
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to perturbations than an axi-symmetric or rectangular design. Steady curved shocks 

also have a higher entropy rise than a straight shock with a shock angle equivalent to 

the average angle of the curved shock, suggesting that curved shocks may be more 

stable to perturbations. On the other hand, the curved shock creates an ordered 

pressure, temperature, and entropy gradient that suggests a three-dimensional surface 

may decrease the rate of entropy production, which could mean a curved shock might 

be less stable. This research will explore using entropy considerations which three-

dimensional inlet shapes, if any, are inherently more forgiving to flow perturbations 

and off-design effects. 
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Chapter 2: Quasi-Steady Shocks Analysis 

 

2.1 Quasi-steady shocks versus highly unsteady shocks 

For low frequency oscillations, the quasi-steady assumption can apply, allowing for 

simplifications in calculating entropy at each point in time. Following the approach of 

Ng and Kerrebrock69, the continuity equation for unsteady flow evaluated for a 

control volume around a shock is 

   
  

� 

− ρ
 

U ⋅  n dS =
∂
∂t

ρdV
V∫∫∫S∫∫     (49) 

   

� 

∂
∂t

ρV( ) = ρ
∂V
∂t

+V ∂ρ
∂t

    (50) 

where V is the control volume. Under the quasi-steady assumption, the time 

derivatives of thermodynamic variables are negligible so the continuity equation can 

be simplified to  

   

� 

∂
∂t

ρV( ) ≅ ρ
∂V
∂t

     (51) 

Thus, continuity is satisfied by moving the shock at a speed of 

� 

W = ∂V ∂t . This 

quasi-steady assumption thereby treats the moving shock as if it were a steady-state 

solution with a constant velocity each time step. This means that the familiar shock 

relations from the Rankine-Hugoniot equations for the pressure ratio, temperature 

ratio, density ratio, down stream Mach number, and entropy change can be used.   

This limit is restricted to frequencies below about 100 Hz46. The next section will 

provide analysis showing how that limit is derived. For low frequencies, the entropy 

jump across the shock will be calculated according to the following familiar relations: 
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� 

Δs
R

= ln 1+
2γ
γ −1

M1
2 −1( )⎡ 

⎣ ⎢ 
⎤ 
⎦ ⎥ 

1
γ −1 γ −1( )M1

2 + 2
γ +1( )M1

2

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

γ
γ −1⎧ 

⎨ 
⎪ 

⎩ ⎪ 

⎫ 
⎬ 
⎪ 

⎭ ⎪ 
 (52) 

  

� 

Δs
R

= ln P
1

γ −1 (γ −1)P + γ +1( )
(γ +1)P + γ −1( )
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

γ (γ −1)⎫ 
⎬ 
⎪ 

⎭ ⎪ 

⎧ 
⎨ 
⎪ 

⎩ ⎪ 
  (53) 

 

 

2.2 Wavy wall and piston analogy 

Lewis and Smith32 and Horne18 both used time averaging to look at the total 

change in entropy production versus a steady case; however, it is not obvious whether 

time averaging is appropriate. This work proposes an analogy that explains the 

appropriateness of using time averaging and its limitations. One-dimensional piston 

theory and the hypersonic equivalence principle suggest that the oscillatory 

unsteadiness could be considered as spatial variations for calculating the entropy 

jump across a shock.  

 

According to one-dimensional piston theory, a sinusoidal unsteady piston 

movement in one-dimension looks the same as flow over a wavy wall in two 

dimensions as discussed in Liepmann and Roshko70. The plot of the distance the 

shock resulting from an unsteady piston moving at a constant velocity 

� 

Upiston  travels 

versus time resembles that of the height above the wedge and distance downstream an 

oblique shock formed from a two-dimensional wedge that moves constant velocity of 

� 

Uwedge  travels. The wedge would have an angle 

� 

θ = Upiston Uwedge . Figure 2.1 shows 

graphically this similarity between one-dimensional unsteady piston motion and 
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supersonic flow over a wedge. For an unsteady oscillating piston, the wedge would 

resemble a wavy wall. 

 

 

 

Figure 2.1. On the left is the piston and wave motion in the x-t plane. The figure 

on the right is the same picture, but for an oblique shock and two-dimensional wedge 

in the x-y plane70. 

 

The hypersonic equivalence principle also permits solutions of the unsteady piston 

problem to be used for hypersonic flow problems with small disturbances. For a 

slender body of length L traveling at hypersonic speeds with slenderness ratio of 

� 

τ , 

the change in velocities of the flow travelling over the body can be treated as 

perturbations 

� 

u = V∞ + ′ u  in the x-direction and 

� 

v = ′ v  and assumed to follow the 

surface of the body such that 

� 

′ v 
′ u + V∞

. Each variable such is non-dimensionalized as 

follows 

    

� 

˜ x =
x
L

, 

� 

˜ y =
y

Lτ
, 

� 

z =
z
τL

    (54) 
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� 

′ ˜ u =
′ u 

V∞τ
2 , ˜ ′ v =

′ v 
V∞τ

, ′ ˜ w =
′ w 

V∞τ
    (55) 

   

� 

˜ p = p
ρ∞V∞

2 , ˜ ρ =
ρ
ρ∞

     (56) 

 

 This allows for several simplifications to the Euler equations known as the 

hypersonic small-disturbance or hypersonic slender-body equations outlined in 

Rasmussen71 : 

   

� 

∂ ˜ ρ 
∂˜ x 

+
∂ ˜ ρ ˜ ′ v ( )
∂˜ y 

+
∂ ˜ ρ ˜ ′ w ( )
∂˜ z 

= 0

∂˜ ′ u 
∂˜ x 

+ ˜ ′ v ∂
˜ ′ u 
∂˜ y 

+ ˜ ′ w ∂
˜ ′ u 
∂˜ z 

= −
1
˜ ρ 
∂˜ p 
∂˜ x 

∂ ˜ ′ v 
∂˜ x 

+ ˜ ′ v ∂
˜ ′ v 
∂˜ y 

+ ˜ ′ w ∂
˜ ′ v 
∂˜ z 

= −
1
˜ ρ 
∂˜ p 
∂˜ y 

∂ ˜ ′ w 
∂˜ x 

+ ˜ ′ v ∂
˜ ′ w 
∂˜ y 

+ ˜ ′ w ∂
˜ ′ w 
∂˜ z 

= −
1
˜ ρ 
∂˜ p 
∂˜ z 

∂˜ s 
∂˜ x 

+
∂˜ s 
∂˜ y 

+
∂˜ s 
∂˜ z 

= 0

˜ s =
˜ p 
˜ ρ γ    (57a-f)

 

 

 An important consequence of the hypersonic small-disturbance approximations is 

the hypersonic equivalence principle identified by Hayes72. A slender body moving at 

hypersonic speeds causes perturbations in the axial velocity of the body of the order 

of 

� 

τ 2 and of the order 

� 

τ in the lateral direction. This means that a fluid motion caused 

by a slender body in the a hypersonic flow is mostly in a plane normal to the 

freestream and equivalent to that of an unsteady piston (Figure 2.2). These equations 

are equivalent to those for an unsteady flow with one less space dimension80. For an 
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unsteady two-dimensional flow with time non-dimensionalized as 

� 

˜ t =
t

l V∞

, which is 

equivalent to

� 

˜ x , so it can be replaced in the small-disturbance equations. This 

substitution results in the same set of partial differential equations for  

two-dimensional unsteady flow as three-dimensional steady flow73.    

 

 

Figure 2.2. Hypersonic equivalence principle: Steady two-dimensional shock 

compared to unsteady piston shock motion.71 

 

Using the hypersonic equivalence principle, for a sinusoidal hypersonic unsteady 

flow that contains a shock in an inlet, the unsteadiness can translate to a steady 

hypersonic flow in an inlet with an additional spatial dimension replacing the time 

dimension. Hypersonic inlets have small turning angles, so they can be considered 

slender bodies. Thus for the purposes of comparing entropy production across the 

shock, an unsteady flow can be considered analogous to the flow over a wavy wall.  
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The time-dependence in pressure and Mach number can be replaced with a new shock 

angle and summed up over all shock angles as shown below in Equations 58 and 59:   

  

� 

M = ˆ M 1 + ε sin(ωt)( )sinβ = ˆ M sinβww , M    (58) 

  

� 

P = 1+
2γ
γ +1

M1
2 sin2 β −1( )⎛ 

⎝ ⎜ 
⎞ 
⎠ ⎟ 1+ ε sinωt( ) = 1+

2γ
γ +1

M1
2 sin2 βww ,P −1( )⎛ 

⎝ ⎜ 
⎞ 
⎠ ⎟  (59)

  

where 

� 

βww  can be constructed by re-arranging Equations 58 and 59 to solve for 

� 

βww  and is defined below for each type of perturbation, 

  

� 

βww ,M = sin−1 sinβ 1+ ε sinωt( )[ ]

βww ,P = sin−1 sinβ 1+ ε sinωt 1− 1
M 2 sin2 β

γ −1
2γ

⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ 

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 

   (60a-b)

        

Using this transformation from time unsteadiness to changes in shock angle results 

in the same entropy jump across the shock because the normal Mach number is the 

same whether looking at the problem in spatial or time-spatial dimensions80. Thus, it 

follows that time averaging can be used for evaluating the entropy jump across the 

shock as it is the same as summing up the entropy jump across a shock for flow 

across a wavy wall. Li and Ben Dor25 also used a transformation for unsteady shocks 

to deal with the time-dependence, to apply minimum entropy considerations by 

requiring the Mach number and wedge angle to change such that normal Mach 

number was constant. They found that available experimental evidence supported 

their conclusions25.  
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2.2 Limits on wavy wall analogy and quasi-steady assumptions 

 

This analogy is only valid for a range of frequencies and perturbation magnitudes. 

If the frequency is too high or the perturbation too large, the disturbances will cancel 

too close to the shock and the shock will not be affected by the wavy wall. From 

piston theory, if the piston motion is symmetric, at sufficiently high reduced 

frequencies, the expansion fans created from withdrawing the piston and compression 

waves created from pressing the piston will meet and cancel. From hypersonic small 

disturbance theory, a small bump in a wall results in an expansion fan and 

compression wave that will eventually meet and cancel as shown in Figure 2.5.  

Above the cancellation distance, the flow does not see the wall disturbance. In 

addition, if the compression waves and expansion fans cancel too close to the shock 

relative to the shock disturbance or the inlet height, the unsteadiness will cancel out 

and not enter the combustor, and a different approach to looking at entropy gain is 

needed.  

 

To determine the frequency range for using the quasi-steady assumption, take an 

oscillating normal shock with a perturbation on the order of 1% of the freestream 

Mach number - perturbation size that will be shown later is well with-in the quasi-

steady limit as shown in Figure 2.3. The upstream flow has a maximum velocity of 

� 

u1,max = ˆ M 1 1 + ε( )a1  at 

� 

t = 0 . The downstream flow has a velocity of 

� 

u2,max =
ˆ M 1 1 + ε( )a1

ρ2 ρ1( )u1,max

 

where the density ratio is based on 

� 

M1 = ˆ M 1 1 + ε( ) . At a time of 

� 

t =
π
f

 and a shock 
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physical perturbation distance of l, the upstream flow has a minimum velocity of 

� 

u1,min = ˆ M 1 1− ε( )a1  and downstream velocity of 

� 

u2,min =
ˆ M 1 1− ε( )a1

ρ2 ρ1( )u1,min

 where the density 

ratio is based on 

� 

M1 = ˆ M 1 1− ε( ).  The position of the downstream disturbance at a 

time t associated with each shock is: 

 

Figure 2.3. Oscillating normal shock with shock movement distance of l. The two 

shocks shown are associated with the minimum and maximum downstream flow 

speeds. 

   

� 

u2,max t + u2,max
π
f

+ l = dmax     (61) 

   

� 

u2,mint = dmin     (62) 

Cancellation occurs when the expansion wave, which corresponds to the highest 

downstream velocity, meets the compression wave, which corresponds to the lowest 
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downstream velocity in the cycle. When the two intersect, the disturbances will 

cancel and wash out, resulting in no effect of the oscillation on the downstream flow 

past that point. Solving each equation for t and equating, the intersection of the two 

disturbances 

� 

di  can be determined: 

   

� 

t =
d − u2,max π f − l

u2,max
   (63) 

   

� 

t =
d
u2,min

    (64) 

   

� 

di =
u2,max π f + l
u2,max u2,min −1

    (65) 

As expected, as the freestream Mach number increases, the intersection distance 

increases, and the intersection distance goes as 

� 

1 f .  Above frequencies of 1 kHz, the 

cancellation distance is on the order of 10s of meters or less - within the flow path of 

a scramjet-powered vehicle. Figure 2.4 shows the ratio of the cancellation distance for 

an unsteady piston to the movement of the shock for Mach 5, 7, and 10 and suggests 

that the wavy wall approximation is applicable for analysis in an inlet for frequencies 

under 100 Hz.  A shock perturbation distance of 1 mm was used in this example.   
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Figure 2.4. Ratio of cancellation distance to shock perturbation amplitude versus 

frequency for a 10% Mach number oscillation. 

 

Figure 2.5 Expansion fan and compression waves over a wavy wall. 

 

By examining flow over a wavy wall, the quasi-steady limit for perturbation sizes 

can be determined. Assume a wavy wall similar to that in Figure 2.5, which is angled 

at some angle 

� 

θ . When the flow is at the peak of the cycle or at the mean the second 

time in the cycle at point 4, it expands, creating expansion waves. When the flow is at 

the minimum at point 1 until it reaches the maximum, it compresses, creating 
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compression waves. If the wavy wall is too small, then the effect of the wavy wall 

will cancel under the shock, leaving the shock unaffected. A Mach number 

perturbation can be translated to a wedge angle perturbation by Equation 60a and the 

theta-beta-Mach number relation. This results in a perturbation length of 

� 

L = 2π f( ) ˆ M 1 ˆ a 1 and height of 

� 

h = L 4( ) tanΔθ  where 

� 

Δθ  depends on the Mach 

number or pressure perturbation size. From the geometry in Figure 2.5, the height 

above the wall of the expansion fan and the compression waves is 

   

� 

y4 = tan(µ4 + θ)x4     (66) 

   

� 

y1 = tan(µ1 + θ + Δθ) x +
L
4

⎛ 
⎝ 

⎞ 
⎠ − h   (67) 

   

� 

µ1 = sin−1 1
ˆ M 2

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟     (68) 

where 

� 

µ4  is determined from the Prantl-Meyer function for 

� 

υ2 M 4( ) = υ1
ˆ M 2( ) + Δθ  

and 

� 

µ4 = sin−1 1
M 4

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ . The angles 

� 

µ1  and 

� 

µ4  are Mach angles associated with a 

compression wave in the middle of the cycle and an expansion wave at the cycle's 

peak, respectively. To find the location of the intersection, set 

� 

y4 = y1. 

  

� 

tan(µ4 + θ)xi = tan(µ1 + Δθ + θ) xi + L 4( ) − h  (69) 

  

� 

yi = tan(µ4 + θ)xi      (70) 

  

� 

xi =
π
2 f

ˆ M ̂  a 1
tanΔθ − tan µ1 + Δθ + θ( )

tan µ1 + Δθ + θ( ) − tan µ4 + θ( )   (71) 

 

� 

yi =
π
2 f

ˆ M ̂  a 1
tanΔθ − tan µ1 + Δθ + θ( )

tan µ1 + Δθ + θ( ) − tan µ4 + θ( ) tan µ4 + θ( )  (72)  
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Figure 2.6 shows the ratio of the cancellation height to the length of the 

perturbation for Mach 5, 7, and 10 and three different wedge angles for a Mach 

number perturbation. Examination of the equation for cancellation height shows that 

if it is divided by the length of the perturbation, the frequency dependence divides 

out. The data plotted in Figure 2.6 is independent of frequency as expected for a 

quasi-steady flow. For perturbations 

� 

ε > 0.1, this ratio begins to level out to 102, 

suggesting that the wavy wall analogy is only applicable to small perturbations of 

Mach number of 10%. The limits on the wavy wall analogy are for Mach number 

perturbation sizes under 10%. The limits of pressure ratio of 20% or 

� 

φ = 0.2  can be 

found by the influence coefficient74 relating pressure and Mach number,  

     

� 

dP
P

=
4γ

2γM1
2 − γ +1( )

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 
dM1

M1

    (73) 

 For comparison, Figure 2.7 shows the regimes applicable for the quasi-steady and 

high frequency solutions for the relative shock motion to the vehicle motion 

calculated by Lewis and Surline45 for a 1-meter thick downstream region between the 

shock and surface. These limits are on the same order of magnitude (on the order of 

less than 100 Hz for quasi-steady and greater than 1 kHz for high frequency) as those 

calculated here and in section 7.4. 
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Figure 2.6. Cancellation height to wavy wall height for Mach 5,7, and 10 and 

average wedge angles of 3, 5, and 10 degrees versus Mach number perturbation size. 

   
 
 Figure 2.7. Relative shock motion to surface motion for a vehicle with a  

1-meter thick downstream region between the surface and shock.45 
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2.4 Entropy flux perturbation for quasi-steady shock perturbations 

Entropy considerations are used to evaluate the stability of unsteady shocks by 

applying it to four types of perturbations to the flow through a hypersonic three-

dimensional inlet. A value of 

� 

γ = 1.4  is used throughout this work for the ratio of 

specific heats except when varied to analyze the effect of changing gas chemistry.  

 

2.4.a Upstream Mach number 

 

 A perturbation in normal Mach number could result from vehicle yaw,  

plunging motion, or speed changes. This perturbation can be represented by a steady 

and unsteady component  

         (74) 

where 

� 

ε  is the magnitude of the Mach number perturbation and 

� 

ˆ M  is the Mach 

number normal to the shock.  The magnitude of the perturbation is small enough such 

that 

� 

ε 3  or 

� 

µ 3 t( ) = ε 3 sin3 wt( )  can be neglected. Inserting Equation 74 for Mach 

number into Equation 52 for the entropy jump across the shock, the following 

relationship describes the entropy jump across a shock for a sinusoidal Mach number 

perturbation: 

  

  

� 

Δs
R

= ln 1+
2γ
γ −1

M 2 1+ µ t( )( )2 −1( )⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

1
γ −1 γ −1( )M 2 1+ µ t( )( )2 + 2

γ +1( )M 2 1+ µ t( )( )2
⎛ 

⎝ ⎜ 
⎞ 

⎠ ⎟ 

γ
γ −1⎡ 

⎣ 

⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
 (75) 



 76 
 

 

To linearize, Equation 75 needs to be factored into the steady and unsteady 

components, 

 

� 

Δs
R

=
1

γ −1
ln 1+

2γ
γ −1

M 2 −1( )⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 1+ Aµ 2 + µ( )( )⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ +

γ
γ −1

ln γ −1( )M 2 + 2( ) 1+ Bµ 2 + µ( )( )[ ]− γ
γ −1

ln γ +1( )M 2( ) 1+ µ 2 + µ( )( )[ ]
    (76) 

 

The third term is already factored, leaving the coefficients A and B to be determined.  

To solve for A, set the polynomial equal to the expanded version of the factor in 

Equation 75 corresponding to the pressure ratio, 

 

� 

1+
2γ
γ −1

M 2 −1( )⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 1+ Aµ 2 + µ( )( ) = 1+

2γ
γ −1

M 2 −1( )⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ +

2γ
γ −1

M 2µ 2 + µ( )   (77) 

   

� 

A =
2γM 2

γM 2 − γ −1( )        (78) 

Similarly to solve for B, 

 

� 

γ −1( )M 2 + 2( ) 1+ µ 2 + µ( )( ) = γ −1( )M 2µ 2 + µ( )   (79) 

 

� 

B =
γ −1( )M 2

γ −1( )M 2 + 2
       (80) 

Plugging in the coefficients and using the fact that the product of multiple functions 

in a logarithm is equal to the sum of the logarithms of each product, 
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� 

Δs
R

=
1

γ −1
ln 1+

2γ
γ −1

M 2 −1( )⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ +

γ
γ −1

ln
γ −1( )M 2 + 2
γ +1( )M 2

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

+
1

γ −1
ln 1+

2γM 2 2µ + µ 2( )
γM 2 − γ −1( )

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

−
γ

γ −1
ln 1+ 2µ + µ 2( ) +

γ
γ −1

ln 1+
γ −1( )M 2 2µ + µ 2( )

γ −1( )M 2 + 2
⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

   (81) 

The perturbation terms can be linearized because 

� 

aε << 1 where a is just a coefficient 

using the expansion 

� 

ln 1+ x( ) ≅ x − 1
2
x 2. The result of this linearization is in Equation 

80 after grouping terms of 

� 

µ  and 

� 

µ 2  and dropping terms of 

� 

µ 3  or higher. 

� 

Δs
R

=
Δs
R steady

+
2γ
γ −1

2M 2

2γM 2 − γ −1( ) −1+
γ −1( )M 2

γ −1( )M 2 + 2
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ µ

+
1

γ −1
2γM 2

2γM 2 − γ −1( ) −
4γ 2M 4

2γM 2 − γ −1( )( )2 + 3γ +
γ +1( )M 2

γ −1( )M 2 + 2
−
4γ γ +1( )2M 4

γ −1( )M 2 + 2( )2
⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 

µ 2

 

(82) 

The term corresponding to 

� 

µ  can be simplified as follows:

� 

 

� 

2γ
γ −1

γ −1( )M 2 2γM 2 − γ −1( )( ) + 2M 2 γ −1( )M 2 + 2( ) − 2γM 2 − γ −1( )( ) γ −1( )M 2 + 2
2γM 2 − γ −1( )( ) γ −1( )M 2 + 2( )  

  (83) 

The numerator simplifies to: 

� 

1
γ −1( )

2γM 2

2γM 2 − γ −1( ) −
2γ 2M 4

2γM 2 − γ −1( )( )2 + γ +
γ γ −1( )M 2

γ −1( )M 2 + 2
−
2γ γ −1( )2M 4

γ −1( )M 2 + 2( )2
⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 

=

2 γ −1( ) γM1
6 +1( ) − 9γ 2 − 4γ −1( )M1

4 + 3 γ 2 − 4γ −1( )M1
2

2γ γ −1( )M1
2 + 2( ) 2γM1

2 − γ −1( )( )( )2 M 2 −1( )
 

(84) 

So the term corresponding to 

� 

µ  is 
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� 

4γ M 2 −1( )2
2γM 2 − γ −1( )( ) γ −1( )M 2 + 2( ) µ   (85) 

  

� 

1
γ −1( )

2γM 2

2γM 2 − γ −1( ) −
2γ 2M 4

2γM 2 − γ −1( )( )2 + γ +
γ γ −1( )M 2

γ −1( )M 2 + 2
−
2γ γ −1( )2M 4

γ −1( )M 2 + 2( )2
⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 

=

2 γ −1( ) γM1
6 +1( ) − 9γ 2 − 4γ −1( )M1

4 + 3 γ 2 − 4γ −1( )M1
2

2γ γ −1( )M1
2 + 2( ) 2γM1

2 − γ −1( )( )( )2 M 2 −1( )
 

(86) 

  Thus, the entropy jump across a shock with a quasi-steady sinusoidal Mach number 

oscillation is 

� 

Δs
R

=
Δs
R steady

+
4γ M 2 −1( )2

2γM 2 − γ −1( )( ) γ −1( )M 2 + 2( )ε sin θ( )
0

2π

∫
dθ
2π

+

2 γ −1( ) γM1
6 +1( ) − 9γ 2 − 4γ −1( )M1

4 + 3 γ 2 − 4γ −1( )M1
2

2γ γ −1( )M1
2 + 2( ) 2γM1

2 − γ −1( )( )( )20

2π

∫ M 2 −1( )ε 2 sin2 θ( ) dθ
2π

  (87) 

 Averaged over the entire cycle, only the 

� 

ε 2 remains. However, the upstream mass 

flux crossing the shock is time-varying for the Mach number and atmospheric 

conditions perturbations in the shock frame. The product of the time-varying mass 

flux and the entropy jump across the shock introduces higher order terms that 

contribute significantly to the production of entropy. For the purposes of analyzing 

the stability of different inlets to perturbations, the convected entropy flux will be 

examined in this study. The convected entropy flux 

� 

pus for Mach number 

perturbations with the upstream velocity normal to the shock 

� 

u1 = ˆ M 1 + ε sinwt( )a1 , 

 

� 

ρ2u2s2 − ρ2M1a1µs2 = ρ2 u2 − ˆ M a1µ( ) Δs + s1[ ]    (88) 

From mass conservation, substitute in the following relations to remove 

� 

u2  and 

� 

ρ2   

and 

� 

u1 = ˆ u 1 1 + ε sinwt( ) , 
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� 

ρ1u1 = Ma1 1+ µ( )     (89) 

   

� 

u2 =
ρ1u1
ρ2

     (90) 

 

� 

ρ2

u1ρ1

ρ2

1 + µ( ) − ˆ M a1µ
⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ Δs + s1[ ] = ρ1a1

ˆ M 1 + ε 1− ρ2

ρ1

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ Δs + s1[ ] =

ρ1a1
ˆ M 1 + ε 1−

γ + 1( )M 2 1 + 2µ + µ 2( )
γ −1( )M 2 1 + 2µ + µ 2( ) + 2

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ Δs + s1[ ]

 (91) 

Substituting in Equation 53 for the entropy jump across the shock for 

� 

Δs
R

, dropping 

terms of 

� 

µ 2 , and integrating over one cycle, where the odd 

� 

µ  terms integrate to zero,  

  

� 

1−
γ +1( )M 2

γ −1( )M 2 + 2
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ µ ×

4γ M1
2 −1( )2

2 + γ −1( )M1
2( ) 2γM1

2 − γ −1( )( ) µ =

−
γ −1( )M 2 + 2 − γ +1( )M 2( )[ ]4γ M1

2 −1( )2

2 + γ −1( )M1
2( )2 2γM1

2 − γ −1( )( ) µ 2 =

−
γM 2 − M 2 + 2 − γM 2 − M 2( )[ ]4γ M1

2 −1( )2
2 + γ −1( )M1

2( )2 2γM1
2 − γ −1( )( ) µ 2 =

4γ 1− M1
2( )3

2 + γ −1( )M1
2( )2 2γM1

2 − γ −1( )( ) µ 2

(92) 

� 

ρu Δs( )
ρ1u1R average

≅
Δs
R steady

+ −
2 γ +1( )M1

2

2 + γ −1( )M1
2( )2

⎧ 
⎨ 
⎪ 

⎩ ⎪ 
Δs
R steady

+
4γ 1− M1

2( )3
2 + γ −1( )M1

2( )2 2γM1
2 − γ −1( )( )

− M1
2 −1( )2 γ −1( ) γM1

6 +1( ) − 9γ 2 − 4γ −1( )M1
4 + 3 γ 2 − 4γ −1( )M1

2

4γ γ −1( )M1
2 + 2( ) 2γM1

2 − γ −1( )( )( )2
⎫ 
⎬ 
⎪ 

⎭ ⎪ 
ε 2

  

(93) 

This is the final result for the entropy flux across the shock for a sinusoidal Mach 

number perturbation that will be used for analysis.  This can be written as   

    

� 

Δs
R

=
Δs
R steady

+ G M,γ( )ε 2  (94)  
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As defined, if 

� 

G M,γ( )  is positive, then the unsteady perturbation results in higher 

entropy, and according to the principle of minimum entropy, should be an unstable 

state and should stabilize to the mean or steady state. Mach numbers at which 

� 

G M,γ( ) becomes positive or negative will be of interest.  

2.4.b Downstream pressure ratio 

 

 Changes in entropy can also be compared for perturbations in the pressure 

ratio resulting from a perturbation in the back pressure in the combustor or isolator.  

Changes in the pressure ratio could result from changes in back pressure in the 

combustor or isolator and isentropic changes in atmospheric flight conditions. In a 

hypersonic inlet, pressure changes in the combustor or isolator can propagate forward 

to the inlet through the subsonic portion of the boundary layer. A brief change in 

pressure imposed downstream of the shock creates an unsteady flow and an 

imbalance of forces across the shock, pushing the shock upstream for an increase in 

pressure and downstream for a decrease.  

 

 For a downstream pressure rise, the shock will have a velocity relative to the 

upstream velocity, resulting in the shock strength decreasing and pushing the shock 

back to its previous position. A downstream pressure decrease will have the opposite 

effect. Both result in the oscillation in pressure ratio. This oscillation in pressure ratio 

can be written as 

� 

P = p2 p1 = ˆ P 1 + φ sin(wt)( ) where 

� 

φ  is a small fraction of the 

pressure ratio and can be neglected for powers of three or higher.  Using Equation 53 
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for the entropy jump across the shock in terms of the pressure ratio, the entropy jump 

across the shock subjected to a perturbation in pressure ratio is 

  

� 

Δs
R

= ln ˆ P 1 + ε( )[ ]
1

γ −1 + ln
γ −1( ) ˆ P 1 + ε( ) + γ + 1( )
γ + 1( ) ˆ P 1 + ε( ) + γ −1( )

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

γ
γ −1

 (52) 

After factoring out the perturbation components, the entropy jump across the 

shock becomes, 

  

� 

Δs
R

=
1

γ −1
ln ˆ P +

γ
γ −1

ln
γ −1( ) ˆ P + γ + 1( )
γ + 1( ) ˆ P + γ −1( )

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

+
1

γ −1
ln 1 + ε( ) +

γ
γ −1

ln 1 +
γ −1( ) ˆ P ε

γ −1( ) ˆ P + γ + 1( )
⎛ 

⎝ ⎜ 
⎞ 

⎠ ⎟ −
γ

γ −1
ln 1 +

γ + 1( ) ˆ P ε
γ + 1( ) ˆ P + γ −1( )

⎛ 

⎝ ⎜ 
⎞ 

⎠ ⎟ 

(95) 

For small perturbations, the logarithms can be linearized as 

� 

ln 1+ aε( ) ≅ aε − aε( )2

2
, 

resulting in the following relation for 

� 

Δs R , 
 

� 

Δs
R

=
Δs
R steady

+

1
γ −1

1 + γ
γ −1( ) ˆ P ( )

γ −1( ) ˆ P + γ + 1( ) − γ
γ + 1( ) ˆ P ( )

γ + 1( ) ˆ P + γ −1( )
⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 
ε −

1
2 γ −1( ) 1 + γ

γ −1( ) ˆ P ( )2

γ −1( ) ˆ P + γ + 1( )( )2 − γ
γ + 1( ) ˆ P ( )2

γ + 1( ) ˆ P + γ −1( )( )2

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 
ε 2

 (96) 

 
Looking at the term associated with 

� 

ε  first, the common denominator of the second 

and third term is 

 

� 

γ −1( ) ˆ P + γ + 1( )[ ] γ + 1( ) ˆ P + γ −1( )[ ] = γ 2 −1( ) ˆ P 2 + 2 γ 2 + 1( ) ˆ P + γ 2 −1( )    (97) 
 
The numerator can be simplified as follows, 
 

� 

γ γ −1( ) γ + 1( ) ˆ P 2 + γ −1( )2 ˆ P − γ −1( ) γ + 1( ) ˆ P 2 − γ + 1( )2 ˆ P [ ] = γ 2 − 2γ + 1− γ 2 − 2γ −1[ ]γ ˆ P = −4γ ˆ P 
 (98) 
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Next, the second term can be simplified using a similar method, 
 

� 

1 + γ
γ −1( ) ˆ P ( )2

γ −1( ) ˆ P + γ + 1( )( )2 − γ
γ + 1( ) ˆ P ( )2

γ + 1( ) ˆ P + γ −1( )( )2

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 

=

1 + γ
γ −1( ) ˆ P ( )2

γ + 1( ) ˆ P + γ −1( )( )2

− γ + 1( ) ˆ P ( )2

γ −1( ) ˆ P + γ + 1( )( )2

γ + 1( ) ˆ P + γ −1( )( )2

γ −1( ) ˆ P + γ + 1( )( )2

   (99) 

 
Starting by expanding out the denominator, 
 

� 

γ + 1( ) ˆ P + γ −1( )( )2

γ −1( ) ˆ P + γ + 1( )( )2

= γ 2 −1( ) ˆ P 2 + 2 γ 2 + 1( ) ˆ P + γ 2 −1( ) =

γ 2 −1( )2 ˆ P 4 + γ 2 −1( )2
+ 4 γ 2 + 1( ) γ 2 −1( ) ˆ P 3 + 4 γ 2 + 1( ) γ 2 −1( ) ˆ P + 4 γ 2 + 1( )2

+ 2 γ 2 −1( )2[ ] ˆ P 2 =

γ 4 − 2γ 2 + 1[ ] ˆ P 4 + 1( ) + 4 γ 4 −1[ ] ˆ P 3 + ˆ P ( ) + 6γ 4 + 4γ 2 + 6[ ] ˆ P 2
 

(100) 
 
The numerator simplifies to, 
 

� 

γ −1( )2 γ + 1( )2
− γ −1( )2 γ + 1( )2( ) ˆ P 4 + 2 γ −1( )3 γ + 1( ) − γ + 1( )3 γ −1( )[ ] ˆ P 3 + γ −1( )4

− γ + 1( )4[ ] ˆ P 4 =

0 − 8 γ 2 −1( ) ˆ P 3 − 8 γ 2 + 1( ) ˆ P 2
 

(101) 
 
Substituting in the results from Equations 95, 96, 98, and 99, the final result for the 

linearized entropy perturbation across the shock is 

� 

Δs
R

=
Δs
R steady

+
1

γ −1
1− 4γ 2 ˆ P 

γ 2 −1( ) ˆ P 2 + 2 γ 2 + 1( ) ˆ P + γ 2 −1( )
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ ε +

1
2 γ −1( )

8 γ 2 −1( ) ˆ P 3 + 8 γ 2 + 1( ) ˆ P 2

γ 4 − 2γ 2 + 1[ ] ˆ P 4 + 1( ) + 4 γ 4 −1[ ] ˆ P 3 + ˆ P ( ) + 6γ 4 + 4γ 2 + 6[ ] ˆ P 2
−1

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 
ε 2

(101) 

If the entropy gain across the shock is averaged over an entire cycle, the odd terms 

drop out, leaving only the 

� 

ε 2  terms. The odd term will become important for 

analyzing the entropy gain perturbation for perturbations in upstream thermodynamic 

variables, where the mass flux across the shock will also vary in time. Because the 
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mass flux across a shock is not affected for a downstream pressure perturbation, the 

normalized entropy flux across the shock for perturbations in back pressure is 

� 

Δs
R

=
Δs
R steady

+
1

2 γ −1( )
8 γ 2 −1( ) ˆ P 3 + 8 γ 2 + 1( ) ˆ P 2

γ 4 − 2γ 2 + 1[ ] ˆ P 4 + 1( ) + 4 γ 4 −1[ ] ˆ P 3 + ˆ P ( ) + 6γ 4 + 4γ 2 + 6[ ] ˆ P 2
−1

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 
ε 2

Δs
R

=
Δs
R steady

+ H ˆ P ,γ( )φ 2

 

(103) 

 

2.4.c Upstream pressure and atmospheric conditions 

 
Changes in the pressure ratio can also be caused by changes in altitude or 

atmospheric conditions. Upstream thermodynamic changes resulting from altitude 

perturbations or perturbations in air density and temperature would occur 

isentropically. For small isentropic changes in atmospheric conditions, the upstream 

density and temperature also have an unsteady component and can be linearized as 

follows: 

 

� 

ρ1 = ˆ ρ 1 1 + φ sin(wt)( )−
1
γ ≈ ˆ ρ 1 1− 1

γ
φ sin(wt)

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟      for 

� 

φ << 1 (104)  

             

  

� 

T1 = ˆ T 1 1 + φ sin(wt)( )
1−γ
γ ≈ ˆ T 1 1−φ 1− γ

γ
⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ sin(wt)

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟  for 

� 

φ << 1     (105)

  
 
 While further calculations will be done using a perturbation in the pressure 

ratio, perturbations in upstream density or temperature will qualitatively have the 

same effect on the difference in the time-averaged and mean unperturbed entropy. 

The value of the entropy difference will change, but the normal Mach at which the 
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maximum entropy difference or there is no difference between the time-averaged 

entropy gain across the shock and entropy gain across the shock for the unperturbed 

mean will not change. Unlike for back pressure perturbations, changes in the pressure 

ratio resulting from perturbations upstream of the shock will vary the mass flux 

across the shock. The changing convected mass flux re-introduces the higher order 

term that time-averaged to zero. Returning to the equation for convected entropy, 

  

� 

ρus = ρ1a1
ˆ M 1 + ε 1− ρ2

ρ1

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ Δs + s1[ ]      (91) 

The linearized upstream density perturbation in Equation can be substituted into 

equation 89, 

� 

ρus = ˆ ρ 1a1
ˆ M 1− ε

γ
⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 1 + ε 1− (1 +

ε
γ

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ Δs + s1[ ] = ˆ ρ 1a1

ˆ M 1− ε
γ
−

ε
γ
⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

3⎛ 

⎝ ⎜ 
⎞ 

⎠ ⎟ Δs + s1[ ] (106) 

After substituting in Equation 102 for 

� 

Δs R  and dropping terms of 

� 

ε  that time 

average to zero and higher order terms, the convected entropy flux for perturbations 

in upstream thermodynamic variables can be found by dividing the 

� 

ε  term by 

� 

−γ ,  

� 

puΔs
p1u1R avg

=
Δs
R steady

+
1

γ γ −1( )
⎧ 
⎨ 
⎩ 

4γ 2 ˆ P 
γ −1( ) ˆ P 2 + 2 γ 2 −1( ) ˆ P + γ 2 −1( ) −1

⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 
−

1
2 γ −1( )

1−
8γ 2 γ 2 −1( ) ˆ P 3 + γ 2 + 1( ) ˆ P [ ]

γ 4 − 2γ 2 + 1( ) ˆ P 4 + 1( ) + 4 γ 4 −1( ) ˆ P 3 + ˆ P ( ) + 6γ 4 + 4γ 2 + 6( ) ˆ P 2
⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 

⎫ 
⎬ 
⎪ 

⎭ ⎪ 
φ 2

(107) 

� 

puΔs
p1u1R avg

=
Δs
R steady

+ J P( )φ 2        (108) 
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2.4.d Sinusoidal angle perturbation  

  

 Perturbations in angle of attack and sideslip angle or pitching motions can 

result in perturbations in the shock angle relative to the vehicle. Displacement of the 

shock can result in increased wave drag if it moves away from the vehicle and 

decreased mass flow if it moves into the inlet. Perturbations in the shock angle can be 

written as 

� 

β t( ) = ˆ β 1 + ε sinwt( )  with 

� 

µ ≡ ˆ β ε sinwt  so that 

� 

M1,n = ˆ M 1 sin β 1 + ε sin(wt)( )( ). A similar method can be used to derive the expression 

for the entropy perturbation due to sinusoidal perturbations in the shock angle. The 

shock angle perturbation can be expanded using               

� 

sin β t( )( ) = sin ˆ β 1 + ε sin(wt)( )( ) = sin ˆ β ( )cos µ( ) + cos ˆ β ( )sin µ( )( )      (109)  

such that 

   

� 

M1,n
2 = ˆ M 1

2 sin2 cos2 µ + cos2 β sin2 µ + 2sinβ cosβ sinµ cosµ[ ]      (110) 

For small perturbations in the shock angle, the small angle approximation 

� 

cos2 µ = 1− µ 2 2 can be used, resulting in a form that can be substituted into the 

original derivation for the Mach number perturbation and separated into the steady 

and unsteady components using

� 

2sinµcosµ = sin2µ , 

� 

M1,n
2 = ˆ M 1

2 sin2 1− µ 2

2
⎛ 
⎝ ⎜ ⎞ 

⎠ ⎟ + cos2 β sin2 µ + sinβ cosβ sin2µ
⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥    (111) 

� 

M1,n
2 = ˆ M 1

2 sin2 β 1− µ 2

2
⎛ 
⎝ ⎜ ⎞ 

⎠ ⎟ + cot 2 β sin2 µ + cotβ sin2µ⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ 

M1,n
2 = ˆ M 1,n

2 1− µ 2

2
⎛ 
⎝ ⎜ ⎞ 

⎠ ⎟ + cot 2 β sin2 µ + cotβ sin2µ⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ 

   (112) 
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which is analogous to 

� 

M 2 = M 2 1+ 2ε + ε 2( ) for Mach number perturbations, with a 

major difference being the non-linear dependence on the perturbation size and the 

mean shock angle in Equation 112. The expression for the shock angle perturbation is 

thus very similar to the expression found for the Mach number perturbation but with 

different weighting to each term based on a non-linear dependence on the 

perturbation size and mean shock angle. 

� 

ρu Δs( )
Rρ1u1 average

≅
Δs
R steady

−
2 γ + 1( )M1

2

2 + γ −1( )M1
2( )2

⎧ 
⎨ 
⎪ 

⎩ ⎪ 
Δs
R steady

sin2 µ cot 2 ˆ β − µ 2( )

+
2γ 1− M1

2( )3

2 + γ −1( )M1
2( )2

2γM1
2 − γ −1( )( ) cos ˆ β cot ˆ β sinµ sin2µ( )

− M1
2 −1( )2 γ −1( ) γM1

6 + 1( ) − 9γ 2 − 4γ −1( )M1
4 + 3 γ 2 − 4γ −1( )M1

2

γ −1( )M1
2 + 2( ) 2γM1

2 − γ −1( )( )( )2 γ cot 2 ˆ β sin2 µ − µ 2( )
⎫ 
⎬ 
⎪ 

⎭ ⎪ 

 

(113)  

� 

ρu Δs( )
Rρ1u1 average

≅
Δs

R steady
+ −

2 γ + 1( )M1
2

2 + γ − 1( )M1
2( )2

⎧ 
⎨ 
⎪ 

⎩ ⎪ 

Δs

R steady
sin2

ε cot2 ˆ β − εβ( )2( )

+
2γ 1 − M1

2( )3

2 + γ − 1( )M1
2( )2

2γM1
2
− γ − 1( )( )

× cos ˆ β cot ˆ β sinεβ sin 2εβ( )

− M1
2
− 1( ) 2 γ − 1( ) γM1

6
+ 1( ) − 9γ 2

− 4γ − 1( )M1
4

+ 3 γ
2
− 4γ − 1( )M1

2

4γ γ − 1( )M1
2

+ 2( ) 2γM1
2
− γ − 1( )( )( )2 γ cot2 ˆ β sin2

εβ − εβ( )2( )
⎫ 
⎬ 
⎪ 

⎭ ⎪ 
 

(114) 

 

� 

ρu Δs( )
ρ1u1R average

=
Δs
R steady

+ K M,ε,γ( )ε 2         (115) 
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 2.4.e Thermodynamic derivatives with quasi-steady assumption  

  

 As a consistency check, it can be shown that the time-derivatives of the 

thermodynamic variables are zero under the quasi-steady assumption. Following the 

approach of Li and Ben-Dor24, the equation for conservation of entropy is 

  

� 

∂ ρs( )
∂t

dV + ρujs +
q
T

⎛ 
⎝ 

⎞ 
⎠ n jdA − σdV

V∫∫∫ = 0
A∫∫V∫∫∫   (116) 

where 

� 

σ =
1
T

λ
T

dT
dx j

dT
dx j

⎛ 

⎝ ⎜ 
⎞ 

⎠ ⎟ + Φ
⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 
 is the thermal conductivity, and

� 

Φ  is the viscous 

dissipation. For the flow across a shock, this can be simplified to 

  

� 

ρujn jΔsdw
J ( x,y )
∫ = σdV −

∂ ρs( )
∂t

dV
V∫∫∫V∫∫∫    (117) 

   

� 

ρuΔsdw
J ( x,y )
∫ = ˙ S      (118) 

 where 

� 

uj  is the velocity component normal to the shock, which is along J(x,y).  

 

For sinusoidal Mach number perturbations with the entropy jump calculated by 

Equation 5 and assuming quasi-steady flow for the oblique shock relations, those 

derivatives are,     

� 

ρ2

R
ds2

dt
= ρ1

γ + 1( ) ˆ M 2 1 + ε sinwt( )2

2 + γ −1( ) ˆ M 2 1 + ε sinwt( )2

γ
γ −1

ρ2 t( ) d ρ1 ρ2( )
dt

+
1

γ −1
1

p2 t( )
d p2 p1( )

dt
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

 (119) 
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� 

d p2 p1( )
dt

= 8 ˆ M 2εwcos(wt) 1 + ε sinwt( ) γ
γ −1

  (120) 

    

� 

d ρ1 ρ2( )
dt

= 4wε ˆ M 2 coswt 1
γ + 1( )M 2 1 + ε sinwt( )2   (121) 

 The indefinite integral of Equation 121 is  

� 

4wε ˆ M coswt 1
γ + 1( ) ˆ M 2 1 + ε sin(wt)( )2 = −

4ε ˆ M 
γ + 1( ) ˆ M 2 ε 2 sin(wt) + ε( )∫  (122) 

which is the same value at the beginning and end of the cycle, so the time-average 

of the density ratio is zero. 

 

For sinusoidal pressure ratio perturbations with entropy calculated by Equation 53 

where 

� 

Tref  and 

� 

pref  are the reference values for calculating entropy, 

             

� 

1
R

ds2

dt
=

γ
γ −1

1
T2 t( )

d T2 T1 t( )( )
dt

−
1

p1P t( )
ˆ P φwcoswt   (123)  

     

� 

d ρ2 ρ1( )
dt

=
−4 γ + 1( ) ˆ P φwcos(wt)

γ + 1( ) + γ −1( ) ˆ P 1 + φ sinwt( )[ ]2    (124) 

� 

d T2 T1( )
dt

= ˆ P φwcoswt( )
γ −1( ) p2

p1

+ γ + 1( )

γ + 1( ) p2

p1

+ γ −1( )
+ ˆ P 1 + φ sinwt( ) −4 γ + 1( ) ˆ P φwcoswt

γ −1( ) + γ + 1( ) ˆ P 1 + φ sinwt( )[ ]2

(125)             

� 

dρ1s1

dt
= s1

dρ1

dt
= −

R ˆ ρ 1φwcoswt
γ

1 + φ sinwt( )
− γ +1( )

γ
γ

γ −1
ln

ˆ T 1
Tref

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ − ln

ˆ p 1
pref

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

⎛ 

⎝ ⎜ 
⎞ 

⎠ ⎟ 
⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 
  (126)

      

If back pressure changes are considered, Equation 126 is equal to zero as there are no 

changes to the upstream density and entropy caused by changes in the downstream 
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pressure. If perturbations in the pressure ratio from atmospheric conditions are used, 

then the pressure term in Equation 123 is zero because the back pressure is constant. 

Each derivative is evenly distributed around zero and when time-averaged is equal to 

zero so 

� 

ρ ds dt( ) = 0 . With the exception of 

� 

s∂ρ
∂t

, it is easy to see that most 

derivatives would time-average to zero because their time-dependence is of the forms 

� 

cos wt( ) , 

� 

sin(wt) ,  

� 

sin(wt)cos(wt), or cos(wt)/(1+esin(wt), which have values of zero 

integrated over the whole cycle. However, it is not obvious that the time average of 

the time rate of change of density multiplied by the downstream entropy, which when 

time averaged does not equal zero or the steady state value, should also equal zero. 

Figure 2.8 shows that for quasi-steady flow, this term in the time rate of change in 

entropy production is exactly zero and the quasi-steady assumption and wavy wall 

analogy still applies. Each time derivative depends on the perturbation times the 

frequency 

� 

εw , so if they are both small (w<100 Hz, 

� 

ε < 0.1), then the density 

derivative would be negligible in the continuity equation and the quasi-steady 

assumption would hold. 

 

 

 

 

 

 

 

Figure 2.8. Each derivative is a sinusoid with a time-average of zero. 
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Chapter 3: Inlet Shock Design 

 

 Several inlet shocks will be used to study the effect of curvature and Mach 

number on the perturbation in the entropy gain. There are several different ways of 

comparing shocks that could prove useful in inlet design. For the purposes of 

comparing curvature and the stability of different methods of designing inlets, as the 

shock's curvature is increased, each shock has the same mean parameter as a straight 

shock and the same capture plane and cowl intersection location.  Whether a shock 

that is designed to have a particular mean normal Mach number, pressure ratio, or 

temperature ratio is less stable to certain perturbations as the curvature is increased 

would be of interest to an inlet designer. This section will discuss how the curved 

shocks used for comparison were constructed. 

 
 

3.1 Design parameters and methodology 

 

Several inlets will be used to study the effect of curvature and Mach number on the 

perturbation in the entropy gain. Inlets are constructed for a three-degree wedge angle 

� 

θ  for the straight shock and Mach numbers of 5, 7, and 10. In order to compare the 

inlets created, each inlet has the same ratio of the inlet height to the distance to the 

cowl for a straight shock where the shock intersects the inlet and has either the same 

average Mach number normal to the shock, pressure ratio, or temperature ratio. 

Comparing inlets created with the same normal Mach number reverts the comparison 

to one of shock geometry. However, combustion rates in a scramjet are more 
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sensitive to pressure, and hypersonic inlets are usually created with achieving a 

desired pressure or temperature ratio. For each method of curving the inlet shocks, the 

shock angle is varied as a power law as it propagates towards the inlet cowl 

           

     

� 

β x,n( ) =
1
cn

x n + βmin,n     (127) 

where x is the fraction of the length to the cowl L divided by the height of the inlet 

� 

H  at the capture plane, n is the curvature, and 

� 

cn  is a constant determined such that 

the mean shock angle is always the same as n=0, which is a straight shock. The 

minimum shock angle specified in the profile 

� 

βmin,nis chosen such that the 

corresponding wedge angle at the inlet entrance is 

� 

βmin,n = βn=0 −10ndβmin  and 

� 

dβmin = βn=0 − βmin,n=1( ) 10 . The curvatures used were n=0, 0.1, 0.2, 0.3, 0.5, 0.75, and 

1.0 with n=0 as the baseline straight shock. The allowed wedge angles run from 3 

degrees for n=0 to 0.5 degrees for n=1.0. For the shocks with the most curvature, the 

wedge angle at the capture plane was the smallest and restricted to a minimum of 0.5 

degrees.  

 

3.2 Shocks analyzed 

 

For each design parameter like mean normal Mach number or pressure ratio, 24 

inlet shocks were created.  The shock angles computed for a Mach 5 inlet are shown 

in Figure 3.1. As shown in Figure 3.2, which shows the shock position in the inlet, the 

shock profiles constructed can be thought of as a string stretched from fixed end 
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points with only the curvature changing, allowing for a comparison based primarily 

on curvature, with respect to the parameter of interest. The inlet length to capture 

height ratios were L/H=4.15 for Mach 5, L/H=5.53 for Mach 7, and L/H=7.27 for 

Mach 10, which is consistent with a straight oblique shock for a three degree wedge 

angle at these Mach numbers intersecting the cowl. The inlet wall can be computed 

from the theta-beta-Mach number relation and is shown in Figure 3.3 for the Mach 5 

shock profiles. Tables 3.1- 3.9 contain the constants 

� 

cn  for each inlet and maximum 

and minimum shock angles. 

 

� 

M∞  Curvature 
n 

� 

cn  

� 

βmin  

� 

βmax  

� 

θmin  

� 

θmax  

5 0.1 6.129 13.39010 13.57821 2.7629 3.0240 
5 0.2 3.2401 13.21938 13.62963 2.5232 3.0949 
5 0.3 2.29948 13.04865 13.71513 2.2809 3.2122 
5 0.5 1.5900 12.70721 13.98844 1.7876 3.5831 
5 0.75 1.29722 12.28041 14.52182 1.1542 4.2905 
5 1.0 1.215427 11.85360 15.2680 0.5 4.9747 
Table 3.1. Constants and shock angles used to create Mach 5 inlets of varying 

curvature for shocks with same mean normal Mach number (shock angle). 

� 

M∞  Curvature 
n 

� 

cn  

� 

βmin  

� 

βmax  

� 

θmin  

� 

θmax  

7 0.1 6.23852 10.07926 10.26945 2.7668 3.0234 
7 0.2 3.3937   9.90658 10.32141 2.5303 3.0929 
7 0.3 2.47845   9.73389 10.40786 2.2904 3.2080 
7 0.5 1.81485   9.38852 10.68428 1.7999 3.5708 
7 0.75 1.59071   8.95681 11.22382 1.1642 4.2596 
7 1.0 1.601184   8.52510 11.97879 0.5 5.1854 
Table 3.2. Constants and shock angles used to create Mach 7 inlets of varying 

curvature for shocks with same mean normal Mach number (shock angle). 
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� 

M∞  Curvature 
n 

� 

cn  

� 

βmin  

� 

βmax  

� 

θmin  

� 

θmax  

10 0.1 6.1969   7.65857  7.85544 2.7668 3.0229 
10 0.2 3.4643   7.47993  7.90918 2.5392 3.0907 
10 0.3 2.600005   7.30121  7.99862 2.3027 3.2030 
10 0.5 2.0108   6.94376  8.28467 1.8159 3.5564 
10 0.75 1.8871   6.49696  8.84311 1.1777 4.2242 
10 1.0 2.03387   6.05015  9.62461 0.5 5.1180 
Table 3.3. Constants and shock angles used to create Mach 10 inlets of varying 

curvature for shocks with same mean normal Mach number (shock angle). 

  

 Figure 3.1. Constructed shock angles for Mach 5 inlet; Rectangular inlet has a 

wedge angle of 3 degrees. Each shock has the same mean angle. 
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Figure 3.2. Position of shock in inlet where each shock has the same mean shock 

angle for Mach 5 inlet.   

 

Figure 3.3. Mach 5 inlet profile along centerline constructed from each shock with 

the same mean shock angle.   
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� 

M∞  Curvature 
n 

� 

cn  

� 

βmin  

� 

βmax  

� 

θmin  

� 

θmax  

5 0.1 6.1293842 13.39010 13.57821 2.7629 3.0240 
5 0.2 3.241255 13.21938 13.62963 2.5232 3.0947 
5 0.3 2.3018 13.04865 13.71513 2.2809 3.2121 
5 0.5 1.595831 12.70721 13.98376 1.7876 3.5768 
5 0.75 1.3099357 12.28041 14.50065 1.1542 4.2620 
5 1.0 1.23869875 11.85360 15.20389 0.5 5.166 

Table 3.4. Constants and shock angles used to create Mach 5 inlets of varying 

curvature for shocks with same mean pressure ratio. 

� 

M∞  Curvature 
n 

� 

cn  

� 

βmin  

� 

βmax  

� 

θmin  

� 

θmax  

7 0.1 6.23902 10.07926 10.07926 2.7629 3.0235 
7 0.2 3.395332 9.90658 9.90658 2.5232 3.0927 
7 0.3 2.4818837 9.73389 9.73389 2.2809 3.2067 
7 0.5 1.8240337 9.38852 9.38852 1.7877 3.5624 
7 0.75 1.61219644 8.956812 8.95681 1.1542 4.2216 
7 1.0 1.64335119 8.525100 8.52510 0.5 5.0788 

Table 3.5. Constants and shock angles used to create Mach 7 inlets of varying 

curvature for shocks with same mean pressure ratio. 

� 

M∞  Curvature 
n 

� 

cn  

� 

βmin  

� 

βmax  

� 

θmin  

� 

θmax  

10 0.1 6.197482 7.85542 7.65866 2.7629 7.8554 
10 0.2 3.4665219 7.90889 7.47993 2.5232 7.9089 
10 0.3 2.6049504 7.99729 7.30121 2.2809 7.9973 
10 0.5 2.0247769 8.27541 6.94376 1.7877 8.2754 
10 0.75 1.92206157 8.80043 6.49696 1.1542 8.8004 
10 1.0 2.10712665 9.50034 6.05015 0.5 9.5003 

Table 3.6. Constants and shock angles used to create Mach 10 inlets of varying 

curvature for shocks with same mean pressure ratio. 
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 Figure 3.4. Pressure ratio along inlet for each inlet constructed with same 

mean pressure ratio for Mach 5 inlet. 

 

 

 Figure 3.5. Mach 5 inlet centerline wall profile for inlets designed for same 

mean pressure ratio. 

0 0.5 1 1.5 2 2.5 3 3.5 41

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

Ratio of position along inlet to capture height (x/H)

Pr
es

su
re

 ra
tio

 

 

n=0
n=0.1
n=0.2
n=0.3
n=0.5
n=0.75
n=1.0

0 0.5 1 1.5 2 2.5 3 3.5 40.75

0.8

0.85

0.9

0.95

1

Ratio of position along inlet to capture height (x/H)

R
at

io
 o

f i
nl

et
 to

 c
ap

tu
re

 h
ei

gh
t (

y/
H

)

 

 

n=0
n=0.1
n=0.2
n=0.3
n=0.5
n=0.75
n=1.0



 97 
 

 

Figure 3.6. Position of shock in inlet where each shock has the same mean 

pressure ratio for Mach 5 inlet. 

        

Figure 3.7. Pressure ratio along inlet for each inlet constructed with same mean 

pressure ratio for Mach 7 inlet. 
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Figure 3.8 Mach 7 inlet centerline wall profile for inlets designed for same mean 

pressure ratio.  

  

Figure 3.9. Mach 7 inlet profile along centerline constructed from each shock with 

the same mean pressure ratio.  
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� 

M∞  Curvature 
n 

� 

cn  

� 

βmin  

� 

βmax  

� 

θmin  

� 

θmax  

5 0.1 6.12895 13.39010 13.57821 2.7629 3.0240 
5 0.2 3.2399155 13.21938 13.62963 2.5232 3.0949 
5 0.3 2.2990725 13.04865 13.71513 2.2809 3.2123 
5 0.5 1.588936 12.70721 13.98930 1.7876 3.5847 
5 0.75 1.2948698 12.28041 14.52589 1.1542 4.2958 
5 1.0 1.21118875 11.85360 15.27999 0.5 5.2619 

Table 3.7. Constants and shock angles used to create Mach 5 inlets of varying 

curvature for shocks with same mean temperature ratio. 

� 

M∞  Curvature 
n 

� 

cn  

� 

βmin  

� 

βmax  

� 

θmin  

� 

θmax  

7 0.1 6.238545 10.07926 10.26945 2.7629 3.0235 
7 0.2 3.393774 9.90658 10.32140 2.5232 3.0929 
7 0.3 2.4785935 9.73389 10.40782 2.2809 3.2079 
7 0.5 1.81518032 9.38852 10.68404 1.7877 3.5705 
7 0.75 1.5913986 8.95681 11.22284 1.1542 4.2583 
7 1.0 1.60259635 8.52510 11.97575 0.5000 5.1817 

Table 3.8. Constants and shock angles used to create Mach 7 inlets of varying 

curvature for shocks with same mean temperature ratio. 

� 

M∞  Curvature 
n 

� 

cn  

� 

βmin  

� 

βmax  

� 

θmin  

� 

θmax  

10 0.1 6.197024 7.82921 6.19702 2.7629 3.0229 
10 0.2 3.4649172 7.80235 3.46491 2.5232 3.0906 
10 0.3 2.60144157 7.75510 2.60144 2.2809 3.2025 
10 0.5 2.0147566 7.59848 2.01476 1.7877 3.5532 
10 0.75 1.89679918 7.29567 1.89680 1.1542 4.2102 
10 1.0 2.05396055 6.89729 2.05396 0.5000 5.0789 

Table 3.9. Constants and shock angles used to create Mach 10 inlets of varying 

curvature for shocks with same mean temperature ratio. 
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Figure 3.10. Constructed temperature ratios across a shock along each Mach 10 

inlet; Rectangular inlet has a wedge angle of 3 degrees. Each shock has the same 

mean temperature ratio. 

      
Figure 3.11. Mach 10 inlet centerline wall profile for inlets designed for same mean 
temperature ratio. 
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Figure 3.12. Position of shock in inlet where each shock has the same mean 

temperature ratio for Mach 10 inlet.  
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Chapter 4: Quasi-steady shock entropy analysis results 

 A comparison of the time average of the convected entropy flux across a 

shock for a straight shock in a rectangular hypersonic inlet and a curved shock in a 

three-dimensional hypersonic inlet reveals several interesting trends. First, results will 

be shown relating the entropy perturbation for Mach number, downstream pressure, 

upstream thermodynamic variable, and angle perturbations to normal Mach number. 

Because the chemistry and properties of air changes at the high temperatures 

corresponding to hypersonic flight, the entropy perturbation, which depends on the 

ratio of specific heats 

� 

γ , will be compared at different ratios of specific heats. Finally, 

a comparison of curved shocks in general, shocks with different curvature, and shocks 

in inlets designed for different parameters of interest to rectangular shocks will be 

shown. 

4.1 Upstream Mach number 

 Equations 93 and 94 for entropy perturbation, resulting from a sinusoidal 

change in normal Mach number, 

� 

ρu Δs( )
ρ1u1R average

≅
Δs
R steady

+ −
2 γ +1( )M1

2

2 + γ −1( )M1
2( )2

⎧ 
⎨ 
⎪ 

⎩ ⎪ 
Δs
R steady

+
4γ 1− M1

2( )3
2 + γ −1( )M1

2( )2 2γM1
2 − γ −1( )( )

− M1
2 −1( )2 γ −1( ) γM1

6 +1( ) − 9γ 2 − 4γ −1( )M1
4 + 3 γ 2 − 4γ −1( )M1

2

4γ γ −1( )M1
2 + 2( ) 2γM1

2 − γ −1( )( )( )2
⎫ 
⎬ 
⎪ 

⎭ ⎪ 
ε 2

(93) 

   

� 

Δs
R

=
Δs
R steady

+ G Mn,1,γ( )ε 2

    
           (94)

 
can be used to determine the normal Mach number at which the shock is no longer 

stable to upstream Mach number perturbations, based on the principle of minimum 
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entropy. The zero of 

� 

G Mn,1,γ( ) can be determined by re-arranging and setting the 

numerator of the perturbation,

� 

4γ 1− M1
2( )3 2γM1

2 − γ −1( )( ) − M1
2 −1( ) 2 γ −1( ) γM1

6 +1( ) − 9γ 2 − 4γ −1( )M1
4 + 3 γ 2 − 4γ −1( )M1

2( ) 

equal to zero. This results in a zero at a normal Mach number of 1.58. For normal 

Mach numbers less than this, the principle of minimum entropy suggests that the 

unsteady flow tends to stabilize to a steady flow. For normal Mach numbers higher 

than 1.58, the flow should remain unsteady as a result of the perturbations or flight at 

off-design conditions. Thus, this result predicts that an inlet will be stable to Mach 

number perturbations if the turning angle is less than 8.96 degrees for a Mach 5 inlet, 

6.42 degrees for a Mach 7 inlet, and 4.52 degrees for a Mach 10 inlet. The function  

has a maximum at M=1.32, which suggests that inlets designed near this normal 

Mach number might be more forgiving to speed and Mach number changes.  The 

inflection point where the second derivative becomes positive is M=2.56. Figures 4.1 

and 4.2 show a plot of Mach number versus the entropy perturbation function 

� 

G Mn,1,γ( ) and Figure 4.3 shows the first and second derivative of the entropy 

perturbation with respect to Mach number. As expected, the entropy flux perturbation 

asymptotes to a very large negative value as the normal Mach number gets large. 
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Figure 4.1 Normalized entropy flux perturbation versus normal Mach number. 

 

Figure 4.2. Focus on normal Mach numbers applicable to hypersonic inlets. 
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Figure 4.3. First and second derivative of entropy perturbation with respect to normal 

Mach number for normal Mach number perturbation. 
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� 

Δs
R

=
Δs
R steady

+
1

2 γ −1( )
8 γ 2 −1( ) ˆ P 3 + 8 γ 2 + 1( ) ˆ P 2

γ 4 − 2γ 2 + 1[ ] ˆ P 4 + 1( ) + 4 γ 4 −1[ ] ˆ P 3 + ˆ P ( ) + 6γ 4 + 4γ 2 + 6[ ] ˆ P 2
−1

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 
ε 2

Δs
R

=
Δs
R steady

+ H ˆ P ,γ( )φ 2
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or pressure ratios less than this, the principle of minimum entropy suggests that the 

unsteady flow tends to stabilize to a steady flow for back pressure perturbations. For 

normal Mach numbers higher than 2.19 or pressure ratios higher than 5.43, the flow 

remains unsteady to back pressure perturbations. Thus, this result predicts that an 

inlet will be stable to back pressure perturbations if the turning angle is less than 

16.55 degrees for a Mach 5 inlet, 11.84 degrees for a Mach 7 inlet, and 8.29 degrees 

for a Mach 10 inlet. The function 

� 

H P Mn,1( ),γ( )  has a maximum at M=1.47.  The 

inflection point where the second derivative with respect to Mach number 

� 

d 2H dM 2

becomes positive is M=2.62. This occurs at M=2.21 and a pressure ratio of 5.535 for 

the second derivative with respect to pressure ratio 

� 

d 2H dP 2 . Figure 4.8 shows the 

first and second derivative of the entropy perturbation with respect to Mach number, 

while Figure 4.9 shows these derivatives with respect to pressure. As expected, the 

entropy flux perturbation asymptotes to a very large negative value as the normal 

Mach number gets large. The Mach number and pressure ratios at which a hypersonic 

inlet should be stable to small quasi-steady back pressure perturbations based on the 

principle of minimum entropy is higher than for atmospheric perturbations or other 

upstream perturbations. This suggests that the varying mass flux may have a de-

stabilizing effect. 
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Figure 4.4 Normalized entropy flux perturbation for back pressure perturbation 

versus normal Mach number. 

 

Figure 4.5. Focus on normal Mach numbers applicable to hypersonic inlets for 

entropy perturbation resulting from back pressure perturbations. 
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Figure 4.6 Normalized entropy flux perturbation for back pressure perturbation 

versus pressure ratio. 

       

Figure 4.7. First and second derivative of entropy perturbation with respect to normal 

Mach number for back pressure perturbation. 
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Figure 4.8. First and second derivative of entropy perturbation with respect to 

pressure ratio for back pressure and upstream conditions perturbations. 

 

4.3 Upstream pressure and atmospheric conditions 

 Because perturbations in atmospheric conditions change the upstream mass 

flux, higher order terms are introduced, decreasing the entropy gain relative to the 

steady shock. The velocity does not change, but the upstream speed of sound and 

density do change isentropically.  The convected entropy flux perturbation for 

perturbations in upstream thermodynamic variables can be determined from Equation 

107 derived above,  
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� 

puΔs
p1u1R avg

=
Δs
R steady

+
1

γ γ −1( )
⎧ 
⎨ 
⎩ 

4γ 2 ˆ P 
γ −1( ) ˆ P 2 + 2 γ 2 −1( ) ˆ P + γ 2 −1( ) −1

⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 
−

1
2 γ −1( )

1−
8γ 2 γ 2 −1( ) ˆ P 3 + γ 2 + 1( ) ˆ P [ ]

γ 4 − 2γ 2 + 1( ) ˆ P 4 + 1( ) + 4 γ 4 −1( ) ˆ P 3 + ˆ P ( ) + 6γ 4 + 4γ 2 + 6( ) ˆ P 2
⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 

⎫ 
⎬ 
⎪ 

⎭ ⎪ 
φ 2 =

Δs
R steady

+ J P( )φ 2

   

This time-averaged convected entropy flux perturbation is plotted in Figures 4.9 to 

4.11. This perturbation has the same behavior as the time-averaged convected entropy 

flux perturbation for changes in Mach number or downstream pressure, however it is 

smaller than the time-averaged entropy flux perturbation resulting from changes in 

downstream pressure and of order magnitude smaller than that resulting from changes 

in normal Mach number. Figure 4.9 shows the dependence on normal Mach number 

with Figure 4.10 showing a zoom on the area where the perturbation is positive. This 

equation has a zero at 

� 

M1 = 1.25, which is the lowest Mach number at which the 

theorized transition between stable and unstable based on entropy considerations 

occurs for any of the four perturbation types examined. This result means that only 

inlets with turning angles under 4.24 degrees for Mach 5, 3.04 degrees for Mach 7, 

and 2.15 degrees for a Mach 10 inlet would be stable to this type of perturbation. It 

also suggests that inlets may be less forgiving to perturbations in altitude than other 

expected types of perturbations; however, as Lewis' analysis46 indicates, it is possible 

based on the shock equations and geometry to choose an inlet turning angle for a 

given speed that results in a fixed shock even if the vehicle is flying at a slightly 

lower or higher altitude. The increase in entropy production is the highest at 

� 

M1 = 1.12. Figure 4.11 shows the dependence of the time-averaged convected 

entropy flux perturbation J on the pressure ratio. Culick and Rogers' work on 
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linearizing acoustic waves to look at the response of a normal shock in a diffuser to 

an upstream sinusoidal pressure oscillation found a similar result for the shock's 

stability55. Incorporating viscous effects such as separation, they found the shock 

should become unstable above Mach 1.48, which is not too far off the result of Mach 

1.25 using the principle of minimum entropy. 

 

Figure 4.9 Normalized entropy flux perturbation for atmospheric perturbations versus 

normal Mach number. 
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Figure 4.10. Focus on normal Mach numbers applicable to hypersonic inlets for 

entropy perturbation resulting from atmospheric perturbations. 

           

Figure 4.11. Normalized entropy flux perturbation for perturbation in upstream 

conditions versus pressure. 
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Figure 4.12. First and second derivative of entropy perturbation with respect to Mach 

number for upstream conditions perturbations. 
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expressions are similar, but with a different weighting to each term based on a non-

linear dependence on the perturbation size and mean shock angle. This also results in 

a freestream Mach number dependence on the results, which was not the case for the 

other perturbations. The expression used for assessing the entropy perturbation 

derived previously is as follows, 

� 

ρu Δs( )
Rρ1u1 average

≅
Δs

R steady
+ −

2 γ + 1( )M1
2

2 + γ − 1( )M1
2( )2

⎧ 
⎨ 
⎪ 

⎩ ⎪ 

Δs

R steady
sin2

ε cot2 ˆ β − εβ( )2( )

+
2γ 1 − M1

2( )3

2 + γ − 1( )M1
2( )2

2γM1
2
− γ − 1( )( )

× cos ˆ β cot ˆ β sinεβ sin 2εβ( )

− M1
2
− 1( ) 2 γ − 1( ) γM1

6
+ 1( ) − 9γ 2

− 4γ − 1( )M1
4

+ 3 γ
2
− 4γ − 1( )M1

2

4γ γ − 1( )M1
2

+ 2( ) 2γM1
2
− γ − 1( )( )( )2 γ cot2 ˆ β sin2

εβ − εβ( )2( )
⎫ 
⎬ 
⎪ 

⎭ ⎪ 

(114) 

� 

ρu Δs( )
Rρ1u1 average

=
Δs

R steady
+ K M ,ε , ˆ β ( )ε 2

     (115) 

Figure 4.13 shows the behavior of the perturbation in normalized convected entropy 

versus upstream normal Mach number for a shock angle perturbation where 

� 

K M ,ε , ˆ β ( ) 

is the perturbation term in Equation 115 divided by the square of the perturbation 

size. This was done to normalize the entropy perturbation to allow for a direct 

comparison with the other perturbations, which will become useful when curved 

shocks are analyzed. As the freestream Mach number increases, so does the size of 

the entropy perturbation, the normal Mach number at which the maximum 

perturbation occurs, the range of normal Mach numbers at which the perturbation is 

positive, and the normal Mach number of the zero in the second derivative where the 

perturbation is negative. Also, as expected, as the freestream Mach number is 
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decreased, the normal Mach number at which the inlet becomes unstable approaches 

the value for Mach number perturbations.  

 

 Table 4.1 contains the Mach number at which the maximum, zero entropy 

perturbation, and change in curvature of the entropy perturbation occurs for Mach 

number and shock angle perturbations. The range of stable normal Mach numbers, 

according to the principle of minimum entropy, is larger for a shock angle 

perturbation than a freestream Mach number perturbation. For example, a Mach 10 

inlet with a 5-degree ramp would be stable to perturbations in the vehicle's orientation 

but not to changes in its speed.  

  Shock angle perturbation Mach number perturbation 

  Maximum Zero Inflection point Maximum Zero 
Inflection 
point 

� 

M ∞  

� 

Mn 

� 

β  

� 

θ  

� 

Mn 

� 

β  

� 

θ  

� 

Mn 

� 

β  

� 

θ  

� 

Mn 

� 

Mn 

� 

Mn 

5 1.31 15.19 5.15 1.63 19.02 9.62 2.32 27.65 18.08 1.32 1.58 2.56 

7 1.35 11.12 4.13 1.7 14.06 7.56 2.6 21.8 15.19 1.32 1.58 2.56 

10 1.36 7.82 2.97 1.75 10.08 5.62 2.78 16.14 11.6 1.32 1.58 2.56 

 
Table 4.1. Entropy perturbation due to shock angle perturbations versus Mach 

number and compared to Mach number perturbations. 
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Figure 4.13. The behavior of the perturbation in convected entropy across a shock 

versus normal Mach number for a sinusoidal perturbation in the shock angle. 

4.5 Effect of ratio of specific heats 
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γ  will no longer 

be a constant value of 1.4.  Because the thermodynamic properties across the shock 

depend on 

� 

γ , this could affect the value of the time-averaged convected entropy flux 
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the ratio of specific heats 
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perturbation is equal to zero very slightly decreases. However, as can seen in Figure 

4.14, this effect is insignificant and 

� 

γ  has a negligible effect on the entropy 

perturbation for shock angle perturbations. A similar result was found for Mach 

number and upstream thermodynamic perturbations.  

  

Figure 4.14. Effect of changing ratio of specific heats on stability range in normal 

Mach number for angle perturbations. The dashes represent the location of maximum 

entropy production 

  

 However, as shown in Figure 4.15 for back pressure perturbations, 
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γ  had a 

significant effect on the entropy perturbation. Because the back pressure perturbation 
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Figure 4.15. A comparison of the effect of ratio of specific heats on the change in 

entropy production for unsteady versus steady flow at various normal Mach numbers 

for a sinusoidal perturbation in the back pressure.      

   

4.6 Results for curved shocks 

4.6.a Curved versus straight 

The results shown in Table 4.2 for each perturbation and curvature and second 

derivative of each perturbation shown in Figures 4.3, 4.7, 4.8, and 4.12 indicate that a 
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� 

d 2G M1( )
dM1

2 ≤ 0 , 

� 

d 2H M1( )
dM1

2 ≤ 0,  
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    Maximum Zero Inflection point 

Perturbation     Second derivative   

� 

M∞  1.32 1.58 

� 

d 2G(M,γ ) dM 2
  2.56 

M=5 1.31 1.63 2.32 

M=7 1.35 1.7 2.6 

� 

β  
M=10 1.36 1.75 

� 

d 2K(M,γ ,ε) dM 2
  

2.78 

 

� 

d 2H(P(M),γ ) dM 2
 2.62 

� 

p2
p1 Backpressure

 1.47 2.19 
 

� 

d 2H(P,γ ) dP 2
 2.21 

 

� 

d 2J(P(M),γ ) dM 2
 2.01 

� 

p2
p1 Upstream

 1.12 1.25 
 

� 

d 2J P,γ( ) dP 2
 1.667 

Table 4.2. The normal Mach numbers at which a shock subjected to each 

perturbation should have the highest entropy flux difference from the steady case, 

have an entropy flux gain equivalent to that of the steady case, and where the second 

derivative of the entropy flux perturbation function becomes positive. Note that the 

second derivative is everywhere negative where the difference in entropy gain 

between the unsteady and steady shocks is positive. 

 

� 

d 2J P M1( )( )
dM1

2 ≤ 0 , and 

� 

d 2K M1, ˆ β ,ε( )
dM1

2 ≤ 0   where the entropy perturbation 

� 

G M1( ) , 

� 

H ˆ P ( ) , 

� 

J ˆ P ( ),  or 

� 

K M1,ε, ˆ β ( )   is positive. At normal Mach numbers above 2.56, 2.62, 

2.01, and 2.32 to 2.78, the second derivative with respect to Mach number is positive 

for Mach number, back pressure, atmospheric condition perturbations, and shock 

angle perturbations (depending on Mach number).  However, in this regime, the 

unsteady shock is the lowest entropy gain solution, and there is no curved inlet that 

would result in the unsteady flow having a higher entropy rise than the steady 

solution.  
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 A property of concave functions is that the mean of two values of the function 

is always less than the function evaluated at the mean between two points. This can 

be expressed as 

� 

G M1,a( ) + G M1,b( )
2

≤ G
M1,a + M1,b

2
⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ . This means that summing the 

entropy perturbations along a curved shock and finding the total entropy perturbation 

will produce a smaller increase/larger decrease in entropy production above that of its 

corresponding steady shock than for a straight shock with the same average shock 

angle. The higher the curvature is, the smaller the increase and the larger the 

decrease. However, at regions where the entropy flux perturbation is negative, a 

curved shock may have a smaller decrease in the entropy flux gain than the straight 

shock. It is not clear if the magnitude of the entropy flux perturbation translates to 

greater or less stability, but if it does, this could mean a curved shock that is unstable 

to flow perturbations might be more forgiving to off-design conditions than the 

straight shock even though both would remain unsteady. 

 

The second derivatives with respect to pressure for back pressure or upstream 

conditions entropy flux perturbations have a zero much closer to the pressure ratio 

and normal Mach number where the shock should no longer be stable to those 

perturbations. The entropy perturbation has the same trend in the second derivative 

for the temperature ratio and pressure ratio, but the mean pressure ratio of a curved 

shock is not the same as the pressure ratio found using the mean Mach number, and in 

some cases may correspond to a smaller normal Mach number. Thus, it is also useful 

to look at the second derivative with respect to pressure ratio - particularly if a shock 

is designed to have the same mean pressure ratio as a straight shock rather than the 
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same mean normal Mach number. As stated above, even though curved shocks 

created with the same mean pressure or temperature ratio as a corresponding straight 

shock could have a higher entropy perturbation than an unsteady straight shock, the 

concavity of the second derivative is still concave down where the entropy 

perturbation is positive, such as the second derivative with respect to Mach number. 

However, there are some notable differences aside from the lower normal Mach 

number at which the second derivative with respect to the pressure ratio is zero 

occurs.  

 

 Comparing the first derivatives with respect to pressure in Figure 4.8 to the 

derivatives with respect to Mach number in Figures 4.3, 4.7, and 4.12 show that the 

first derivative with respect to pressure is an order of magnitude smaller. This isn't 

surprising as 

� 

dP dM = 4γM γ +1( ) , meaning slight changes in normal Mach number 

are magnified by 2 to 2.33 and slight changes in pressure ratio translate to even 

smaller changes in normal Mach number. The smaller first derivative with respect to 

pressure and location of the zero of the second derivative suggest that curved shocks 

that produce the same mean pressure ratio as a straight shock with a normal Mach 

number or pressure ratio near that zero may be more stable to these perturbations than 

inlets designed for another parameter. In other words, at pressure ratios or normal 

Mach numbers near the transition from stable to unstable--particularly for back 

pressure perturbations, curvature has little effect.  
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 This effect can also be shown effectively by looking at curved shocks created 

with varying curvatures based on different mean parameters. Figures 4.16 to 4.18 

show the increase and decrease in entropy production along each of the Mach 5, 7, 10 

inlets created for each curvature with each shock having the same mean normal Mach 

number or shock angle for a Mach number perturbation. The distance is normalized to 

the inlet height and is the length along the inlet from the entrance to the cowl. As 

shown in Figure 4.16, although for part of the inlet, the entropy production is higher 

than for an unsteady straight shock, the amount below the line corresponding to the 

rectangular inlet is always greater. For higher curvatures at Mach 7, part of the middle 

of the inlet has a higher entropy production than the straight shock, but the normal 

Mach number passes through the maximum and the entropy production is less than 

for a straight shock. 

 

 

Figures 4.16 and 4.17. Entropy flux perturbation for Mach 5 and Mach 7 inlets 

with various curvature designed with the same mean normal Mach number versus a 

straight 3-degree baseline wedge inlet. 
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Figures 4.18 and 4.19. Normalized entropy flux perturbation from normal Mach 

number perturbation for inlets of various curvature. The shocks on the left all have 

the same mean normal Mach number and shock angle for a Mach 10 inlet. The shocks 

on the right all have the same mean pressure ratio for a Mach 5 inlet. 

 

Figures 4.20 and 4.21. Normalized entropy flux perturbation from normal Mach 

number perturbation for inlets of various curvatures for Mach 7 and 10. Each shock 

has the same mean pressure ratio. 
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Figure 4.22. Normalized entropy flux perturbation from normal Mach number 

perturbation for inlets of various curvatures for Mach 5 inlets. Each shock has the 

same mean temperature ratio. 

 

 Figure 4.23. Normalized entropy flux perturbation from normal Mach number 

perturbation for inlets of various curvatures for Mach 7 inlets. Each shock has the 

same mean temperature ratio. 
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Figure 4.24. Normalized entropy flux perturbation from normal Mach number 

perturbation for inlets of various curvatures for Mach 10 inlets. Each shock has the 

same mean temperature ratio. 

  

Figure 4.25. Normalized entropy flux perturbation from shock angle perturbation 

for inlets of various curvatures for Mach 5 inlets. Each shock has the same mean 

normal Mach number. 
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Figure 4.26. Entropy flux perturbation for a Mach 7 inlet of various curvatures 

versus a baseline 3 degree rectangular inlet for shock angle perturbation. 

 

Figure 4.27. Entropy flux perturbation for a Mach 10 inlet of various curvatures 

versus a baseline 3 degree rectangular inlet for shock angle perturbation. Almost no 

part of any of the curved inlets is above the straight shock.  
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Figure 4.28. Entropy flux perturbation for a Mach 5 inlet of various curvatures 

versus a baseline 3 degree rectangular inlet for back pressure perturbation.  

 

Figure 4.29. Entropy flux perturbation for a Mach 7 inlet of various curvatures 

versus a baseline 3 degree rectangular inlet for back pressure perturbation.  
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Figure 4.30. Entropy flux perturbation for a Mach 10 inlet of various curvatures 

versus a baseline 3 degree rectangular inlet for back pressure perturbation.  

 

Figure 4.31. Entropy flux perturbation for a Mach 5 inlet of various curvatures 

versus a baseline 3 degree rectangular inlet for upstream conditions perturbation.  
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Figure 4.32. Entropy flux perturbation for a Mach 7 inlet of various curvatures 

versus a baseline 3 degree rectangular inlet for upstream conditions perturbation.  

 

Figure 4.33. Entropy flux perturbation for a Mach 10 inlet of various curvatures 

versus a baseline 3 degree rectangular inlet for upstream conditions perturbation.  
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As shown in Figures 4.19 to 4.33, the same trend is present whether the shocks are 

curved based on the same mean normal Mach number or pressure or temperature 

ratio. As shown in Figures 4.19 to 4.33, the entropy flux perturbation below the n=0 

line is always greater than that above for all perturbation types and all curvatures. In 

Figure 4.27 for a Mach 10 shock angle perturbation, no part of any of the curved 

shocks has a higher entropy flux perturbation than the straight shock. This indicates 

that the straight shock's shock angle or normal Mach number are where the maximum 

entropy perturbation for shock angle perturbations occurs. 

 

Figures 4.34. and 4.35.  A comparison of the total entropy perturbation for shocks 

of varying curvature for Mach 5 and Mach 7 inlets. Each shock has the same mean 

normal Mach number.  
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Figure 4.36. A comparison of the total entropy perturbation for shocks of varying 

curvature for Mach 10 inlets. Each shock has the same mean normal Mach number. 

Note that at higher Mach numbers, the results are more sensitive to curvature for 

Mach number or angle perturbations. 
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 The difference in entropy gain between the curved inlets and the rectangular 

inlets increases as Mach number decreases. This is likely because the average Mach 

number is increasing towards the maximum of the entropy perturbation. As shown in 

Figures 4.18, 4.21, and 4.24 for Mach 10, the entropy gain perturbation for a Mach 

number perturbation increases as 

� 

n  increases to 

� 

n = 0.5 and then decreases. This is 

because the normal Mach number of the rectangular inlet is very close to the 

maximum value of the entropy production perturbation.  

 

Figures 4.37 and 4.38. Entropy flux perturbation compared to the steady case for 

Mach 5 and Mach 7 inlets with curved shocks of varying curvature and the same 

mean pressure ratio. 

 

Figures 4.39. and 4.40. Entropy flux perturbation for inlets at Mach 10 of varying 

curvature. The shocks on the left are generated with the same mean pressure ratio, 

and the shocks on the right are generated with the same mean temperature ratio. 
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Figures 4.41. and 4.42. Entropy flux perturbation for inlets at Mach 5 and 7 of 

varying curvature. Each shock has the same mean temperature ratio. 

 

Figures 4.37 to 4.39 show the same for inlets created with the same mean pressure 

ratio. Figures 4.40 to 4.42 show the total entropy production perturbation for each 

perturbation for Mach 5,7, and 10 inlets created with the same temperature ratio. In 

addition, for all methods of designing the shocks, the entropy flux perturbation was 

higher for Mach number perturbations than shock angle perturbations for Mach 5 

inlets but not Mach 7 and 10.  

 

Figures 4.43 to 4.45 show the difference in entropy production perturbation 

between the curved shocks and the straight shock for Mach 5, 7, and 10 for each type 

of perturbation and each method of curving the shocks. As Mach number and 

curvature increases the difference between entropy flux perturbation for an unsteady 

straight shock and an unsteady curved shock increases with the unsteady straight 

shock always having a higher entropy perturbation. This is true regardless of whether 

the shocks all have the same mean normal Mach number, pressure ratio, or 

temperature ratio. 
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Figure 4.43. Difference in entropy perturbation for shocks of varying curved and 

straight shocks with the same mean normal Mach number or shock angle. 

  
Figure 4.44. Difference in entropy perturbation for shocks of varying curved and 

straight shocks with the same mean pressure ratio. These curves have the same trends 

as for shocks with the same mean normal Mach number and temperature ratio. 



 135 
 

  
Figure 4.45. Difference in entropy perturbation for shocks of varying curved and 

straight shocks with the same mean temperature ratio.  

 

4.6.b Comparison of stability for shocks designed with different mean physical 

parameters 

 
Figures 4.46 to 4.57 show that three-dimensional inlets, whose curvature varies 

such that the mean pressure ratio or temperature are the same, have the same general 

decrease in entropy perturbation with respect to the straight shock. However, as 

shown each of these figures with the exception of 4.46, 4.56, and 4.57, the size of the 

entropy perturbation generally decreases when each curved shock has the same mean 

of the perturbed quantity. For positive entropy perturbations, this means curvature has 

more of an effect, and less of an effect for negative entropy perturbations. For 

example, if each curved shock has the same mean shock angle, then the positive 

entropy perturbation for Mach number or shock angle perturbations is less as 
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curvature increases than if each curved shock had the same mean pressure or 

temperature ratio.  

 

 For lower Mach number shocks subjected to a Mach number or shock angle 

perturbation, the shocks designed with the same mean pressure ratio were more 

sensitive to curvature.  For back pressure or atmospheric conditions, designing for 

either the same pressure or temperature ratio as curvature increases generally resulted 

in the smallest entropy perturbations. At Mach 7 and 10, the inlets created with the 

same mean pressure ratio had a noticeably smaller entropy increase, while there was 

little difference between the inlets created with the same mean Mach number and 

temperature ratios. This suggests that designing for a certain pressure can result in 

shocks more stable to Mach number or shock angle perturbations at higher normal 

Mach numbers. Designing for a certain Mach number can result in shocks more stable 

to back pressure perturbations. For perturbations in atmospheric conditions, the mean 

pressure ratio inlets had the smallest entropy perturbations at Mach 10, but the largest 

at Mach 5.   
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Figure 4.46. Comparison of entropy gain over steady shock for Mach number 

perturbations versus curvature for a Mach 5 inlet with overall wedge angle of 3 

degrees for each method designing the curved shocks. 

  
Figure 4.47 Comparison of entropy gain over steady shock for Mach number 

perturbations versus curvature for a Mach 7 inlet with overall wedge angle of 3 

degrees for each method designing the curved shocks. 

 

0.4 0.5 0.6 0.7 0.8 0.9 10.2

0.205

0.21

0.215

0.22

0.225

0.23

Shock curvature n

N
or

m
al

iz
ed

 e
nt

ro
py

 fl
ux

 p
er

tu
rb

at
io

n

 

 

Mean Mach number
Mean Pressure ratio
Mean Temperature ratio

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.22

0.23

0.24

0.25

0.26

Shock curvature n

N
or

m
al

iz
ed

 e
nt

ro
py

 fl
ux

 p
er

tu
rb

at
io

n

 

 

Mean Mach number
Mean pressure ratio
Mean temperature ratio



 138 
 

          
Figure 4.48. Comparison of entropy gain over steady shock for Mach number 

perturbations versus curvature for a Mach 10 inlet with overall wedge angle of 3 

degrees for each method designing the curved shocks. 

        
Figure 4.49. Comparison of entropy gain over steady shock for back pressure 

perturbations versus curvature for a Mach 5 inlet with overall wedge angle of 3 

degrees for each method designing the curved shocks. 
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Figure 4.50. Comparison of entropy gain over steady shock for back pressure 

perturbations versus curvature for a Mach 7 inlet with overall wedge angle of 3 

degrees for each method designing the curved shocks. 

 
Figure 4.51. Comparison of entropy gain over steady shock for back pressure 

perturbations versus curvature for a Mach 10 inlet with overall wedge angle of 3 

degrees for each method designing the curved shocks. 
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Figure 4.52. Comparison of entropy gain over steady shock for upstream atmospheric 

perturbations versus curvature for a Mach 5 inlet with overall wedge angle of 3 

degrees for each method designing the curved shocks.           

         

Figure 4.53. Comparison of entropy gain over steady shock for upstream atmospheric 

perturbations versus curvature for a Mach 7 inlet with overall wedge angle of 3 

degrees for each method designing the curved shocks.          
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 Figure 4.54. Comparison of entropy gain over steady shock for upstream 

atmospheric perturbations versus curvature for a Mach 10 inlet with overall wedge 

angle of 3 degrees for each method designing the curved shocks.  

 

 
Figure 4.55. Comparison of entropy gain over steady shock for shock angle 

perturbations versus curvature for a Mach 5 inlet with overall wedge angle of 3 

degrees for each method designing the curved shocks.  
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Figure 4.56. Comparison of entropy gain over steady shock for shock angle 

perturbations versus curvature for a Mach 7 inlet with overall wedge angle of 3 

degrees for each method designing the curved shocks.  

 
Figure 4.57. Comparison of entropy gain over steady shock for shock angle 

perturbations versus curvature for a Mach 10 inlet with overall wedge angle of 3 

degrees for each method designing the curved shocks.  
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Chapter 5:  Experimental Results 
 

 Data from an experiment run at Arnold Engineering Development Center's 

(AEDC) Hypervelocity Tunnel 9 was used to provide preliminary experimental 

validation of the application of the principle of minimum entropy to the stability of 

shock waves to unsteady effects or perturbations. 

5.1 Facility 

 AEDC Hypervelocity Tunnel 9 is a hypersonic wind tunnel capable of 

running at Mach 7, 8, 10, and 14 at high Reynolds numbers that match flight 

conditions. The facility is a blow-down tunnel that uses nitrogen as its working fluid. 

It is capable of pressures up to 144.8 MPa and temperatures up to 1944 K. Because 

the facility has relatively long run times of up to 15 seconds, researchers can conduct 

an angle-of-attack sweep with a model during one run. The facility has a 1.5 meter 

diameter test section that can accommodate larger test articles.78  

5.2 Experimental Setup 

 The goal was to acquire readily available data from a simple geometry model 

undergoing an angle-of-attack sweep at hypersonic speeds that covered a range of 

normal Mach numbers above and below the theorized transition point between stable 

and unstable. A run with Reynolds number of 1.16x106 and the Mach 10 nozzle that 

fit this criteria using a blunted wedge was chosen. Data from a run with a low 

Reynolds number was chosen to minimize the effect of unsteadiness in a turbulent 

boundary layer on the bow shock near the nose. Table 5.1 shows freestream test 

conditions for the Mach 10 nozzle with a Reynolds number of 1.16x106. Because of 
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the boundary layer in the tunnel nozzle, which depends on Reynolds number, the 

effective size of the wind tunnel nozzle changes so the Mach number for the Mach 10 

nozzle could differ between 9.44 and 10.23 depending on Reynolds number. For a 

Reynolds number of 1.16x106, the Mach number in the test section is M=9.55. A 

blunted wedge with a half-angle of 5.38 degrees pitching through -5 degrees to +15 

degrees angle-of-attack at these conditions was used. Because the top also pitches 

through a range of angles that include the transition point, the shock off the top of the 

vehicle can be examined in addition to the shock off the bottom. If the calculations 

based on the principle of minimum entropy are correct, the transition from stable to 

unstable should occur at -0.6552 degrees angle-of-attack for a sinusoidal normal 

Mach number perturbation (

� 

Mn,1 = 1.58) or 0.4376 degrees for a sinusoidal angle 

perturbation (

� 

Mn,1 = 1.74 ). Schlieren flowfield imagery is used to determine when the 

bow shock near the nose becomes unsteady relative to the vehicle's motion. 

 
Re/ft 
(106) 

P0 
(psia) 

T0 
(F) 

H0 
(BTU/lbm) 

� 

M∞  

� 

P∞  (psia) 

� 

T∞  (K) 

1.160 730 1310 441 9.55 2.15 x10-2 51.2 
Table 5.1. Test conditions for Re=1.16x106 with Mach 10 nozzle 

5.3 Data and Results 

 Initial results from this test run indicate that the shock did become unsteady 

relative to the vehicle's motion near the normal Mach number predicted for a normal 

Mach number perturbation. Unsteadiness was determined by looking at schlieren 

images taken about 250 times every second compiled into a video. It was difficult to 

determine precisely when the shock became unsteady because the unsteady 

oscillations in this region were small and difficult to see near the hypothesized 
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transition angle-of-attack. Thus, a range of image frames and angles was found for 

when this transition occurred. The approximate point of transition was first 

determined by two different observers without any knowledge of what the model's 

angles were or where the transition should occur for this test run. The transition 

occurred at an angle-of-attack between -0.538 degrees (Frame 538) and +0.390 

degrees (Frame 560 bottom) for normal Mach numbers of 1.596 and 1.731 for the 

bottom. This is 1 percent above to 9.6 percent above the theoretized transition normal 

Mach number of 1.58. For a sinusoidal angle perturbation, this transition would occur 

around 1.74 for Mach 9.55. So this range is 8.2 percent under to 0.5 percent under the 

normal Mach number at which it should become unsteady to angle perturbations. A 

normal Mach number of 1.58 occurred in Frame 536 and a normal Mach number of 

1.74 occurred in Frame 561.  

 

 Looking at the shock on the top, the transition occurred at normal Mach 

numbers and angles between 1.587 and -0.60 degrees (Frame 565) and 1.741 and 

0.453 degrees (Frame 540). The experimental results are in good agreement with the 

theory. Differences would also result from tunnel noise, viscous boundary layer 

interaction near the nose and an increased deflection angle because of the boundary 

layer, and any unsteadiness in the boundary layer that may have propagated upstream. 

Figures 5.1 and 5.2 show the model at minus 5 degrees angle of attack and plus 5 

degrees angle-of-attack. For the first figure, the top shock is less straight and unsteady 

and the bottom is straighter and steady. The reverse is true for the second figure.  
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Figure 5.1. Minus 5 degrees AOA. The top has a more developed boundary layer and 

is unsteady. The shock is not as straight and some of the darker regions compared to 

Figure 5.2 correspond to places where the shock wobbles slightly. 

  
Figure 5.2. Plus 5 degrees AOA. The shock on the bottom is darker in spots and less 

straight, indicating shock unsteadiness. The boundary layer is also significant. 
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Chapter 6:  Highly Unsteady Shocks Analysis 

 

 Based on the analysis in Chapter 2, perturbations at higher frequencies will 

require a different treatment that those at lower frequencies. The entropy flux 

perturbations derived in Chapter 3 and the results discussed in Chapter 4 would no 

longer apply beyond the quasi-steady limit. Thus, a different model is needed for high 

frequency oscillations. Very high frequency oscillations could result from vehicle 

pitching or plunging motion or oscillations in the combustor propagating forward. 

 

6.1 Highly Unsteady Shock Relations 

For very high frequency oscillations, the assumption of a stationary shock can 

apply, allowing for simplifications in calculating the entropy at each point in time. 

Following the approach of Ng and Kerrebrock69 for quasi-steady flow across a shock, 

shock relations in the high frequency limit can be determined. From the unsteady 

continuity equation, 

    

� 

∂ ρu( ) =
∂V
∂t

dρ + dV ∂ρ
∂t

   (128) 

where V is the control volume around the shock, as argued in Chapter 2, the 

second term can be neglected in the quasi-steady limit and the entropy rise evaluated 

according to the steady oblique shock relations at each point in the cycle. For the high 

frequency limit, the first term can be neglected as the thermodynamic derivatives 

become large relative to the motion of the shock represented in the first term. At high 

frequencies, the shock is relatively stationary, with 

� 

dV = L corresponding to the 
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shock displacement and on the order of a few millimeters at hypersonic speeds. Thus, 

continuity is satisfied by large density changes rather than the motion of the shock 

and the density change accommodates all of the unsteadiness. As discussed in 

Chapter 2.2, the high frequency regime can be understood with a one-dimensional 

piston. The piston oscillates at a high enough frequency such that the compression 

and expansion waves meet and cancel, so a shock's position is not affected by vehicle 

motion. 

 

For high frequency oscillations, this study analyzes downstream density 

perturbations 

� 

ρ2 t( ) = ˆ ρ 2 1 + ε sinwt( )  corresponding to flow perturbations downstream, 

possibly from the combustor, or 

� 

ρ1 t( ) = ˆ ρ 1 1 + ε sinwt( )  from changes in the upstream 

conditions.  As found in the quasi-steady case, results for changing upstream density 

should be qualitatively similar to pressure, temperature, or normal Mach number 

perturbations. For the case of changing conditions upstream where  

� 

dρ2

dt
= 0 , 

continuity of mass evaluated for highly unsteady flow under this approximation 

becomes, 

    

� 

ρ2u2 − ρ1u1 = −L dρ1
dt

   (129) 

Divide by 

� 

ρ1, 

    

� 

ρ2

ρ1
u2 − u1 = −

L
ρ1
dρ1
dt

   (130)   

Add 

� 

u1 to both sides, 

    

� 

ρ2

ρ1
u2 = u1 − L

d lnρ1
dt

   (131) 
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Divide by 

� 

u2 to get the result for density ratio across the shock in terms the 

upstream and downstream Mach numbers in terms of upstream conditions, the rate of 

change of upstream density, and the small distance the shock moves,  

   

� 

ρ2

ρ1
=

u1 −
L
ρ1

dρ1
dt

u2

=
ρ2

ρ1
=

M1 −
L
a1

d lnρ1( )
dt

′ M 2
   (132)  

Similarly for 

� 

dρ1
dt

= 0, 

    

� 

ρ2u2 − ρ1u1 = L dρ2

dt
    (133) 

    

� 

u2 −
ρ1
ρ2

u1 =
L
ρ2

dρ2

dt
    (134) 

    

� 

ρ1
ρ2

=
u2 − L

d lnρ2

dt
u1

    (135) 

   

� 

ρ2

ρ1
=

u1

u2 − L d lnρ2

dt

=
M1

′ M 2 −
L
a1

d lnρ2

dt

   (136) 

From the conservation of momentum and substituting in the above expressions for 

continuity, a relationship for the downstream Mach number in terms of the upstream 

conditions, 

� 

′ M 2  can be found for both cases. For a perturbation in upstream density, 

where 

� 

dρ2

dt
= 0 , conservation of momentum can be written as,   

    

� 

ρ2u2
2 − ρ1u1

2 + p2 − p1 = −u1L
dρ1
dt

   (137) 

Mass conservation represented by Equation 128 can be used to remove 

� 

ρ2 , 

    

� 

ρ2u2
2 = ρ1u1 − L

dρ1
dt

⎛ 
⎝ 

⎞ 
⎠ u2   (138) 
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� 

ρ1u1 u2 − u1( ) + p2 − p1 − u2L
dρ1
dt

= −u1L
dρ1
dt

  (139) 

  
 

� 

p2 − p1 = L dρ1
dt

u2 − u1( ) − ρ1u1 u2 − u1( )   (140) 

to find the pressure ratio in terms of the time rate of change in upstream density, 

upstream density, and velocities, 

 
  

� 

p2
p1

= 1+
ρ1u1
p1

u1 − u2( ) +
L
p1
dρ1
dt

u2 − u1( )   (141) 

 
   

� 

p2
p1

= 1+
γ
a1
2 u1 − u2( ) u1 −

L
ρ1
dρ1
dt

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟    (142) 

 
  

� 

P ≡
p2

p1

= 1+ γ M1 − ′ M 2( ) M1 −
L

a1ρ1
dρ1
dt

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟   (143) 

From this relation for the pressure ratio P, the Mach number across the shock in 

terms of the upstream speed of sound is 

    

� 

′ M 2 = M1 +
1− P
γ

1

M1 −
L
a1

d lnρ1
dt

   (144) 

Similarly, for a perturbation in downstream density, where 

� 

∂ρ1
∂t

= 0, conservation 

of momentum can be written as,  

   

� 

ρ2u2
2 − ρ1u1

2 + p2 − p1 = u2L
dρ2

dt
   (145) 

Mass conservation represented by equation 128 can be used to remove 

� 

ρ2 , 

   

� 

u2L
dρ2

dt
ρ2u2 − ρ1u1( )u2      (146) 

   

� 

p2 − p1 − ρ1u1
2 = −ρ1u1u2     (147) 
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to find the pressure ratio in terms of the time rate of change in upstream density, 

upstream density, and velocities, 

    

� 

p2
p1
1+

u1ρ1
p1

u1 − u2( )     (148) 

    

� 

p2

p1

= 1+ γM1 M1 − ′ M 2( )    (149) 

From this relation for the pressure ratio P, the Mach number across the shock in 

terms of the upstream speed of sound is 

     

� 

′ M 2 = M1 +
1− P
γM1

    (150) 

The highly unsteady energy equation in the absence of heat addition or work 

produces another relation for the pressure ratio. For 

� 

∂ρ1
∂t

= 0,    

  

� 

ρ2u2Tt ,2 − ρ1u1Tt ,1( ) = Tt ,2L
dρ2

dt
−
γ −1
γ

LT2
dρ2

dt
   (151) 

� 

T2 1+
γ −1
2

M 2
2⎛ 

⎝ 
⎞ 
⎠ u2ρ2 − L

dρ2

dt
⎛ 
⎝ 

⎞ 
⎠ −

γ −1
γ

L dρ2

dt
⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ = T1u1ρ1 1+

γ −1
2

M1
2⎛ 

⎝ 
⎞ 
⎠  (152) 

Divide out 

� 

ρ2  on the left hand side to bring it to the front, 

� 

T2ρ2 1+
γ −1
2

M 2
2⎛ 

⎝ 
⎞ 
⎠ u2ρ2 − L

d lnρ2

dt
⎛ 
⎝ 

⎞ 
⎠ −

γ −1
γ

L d lnρ2

dt
⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ = T1u1ρ1 1+

γ −1
2

M1
2⎛ 

⎝ 
⎞ 
⎠  (153) 

Divide by 

� 

T1ρ1  and the expression on the left containing 

� 

d lnρ2

dt
 and use the ideal 

gas equation 

� 

P = ρRT  to find the pressure ratio, 

� 

P =
p2
p1

=
u1 1+

γ −1
2

M1
2⎛ 

⎝ 
⎞ 
⎠ 

1+
γ −1
2

M 2
2⎛ 

⎝ 
⎞ 
⎠ u2 − L

d lnρ2

dt
⎛ 
⎝ 

⎞ 
⎠ −

γ −1
γ

L d lnρ2

dt

   (154) 
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� 

P =
p2

p1

=
M1 1+

γ −1
2

M1
2⎛ 

⎝ 
⎞ 
⎠ 

1+
γ −1
2

M 2
2⎛ 

⎝ 
⎞ 
⎠ ′ M 2 −

L
a1

d lnρ2

dt
⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ −

γ −1
γ

L
a1

d lnρ2

dt

  (155) 

Although total temperature of the flow is not constant for an unsteady flow, total 

temperature is constant for each particle of the flow, so a constant total temperature 

can be assumed in this derivation. From equations 136 for the density ratio and 150 

for the downstream Mach number in terms of the upstream conditions, 

� 

M 2
2 = ′ M 2

2 1
P
ρ2

ρ1
=
1
P

M1 +
1− P
γM1

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 
2

M 2

M1 − 1− P( ) γM1 − L a1ρ2( ) dρ2 dt
⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟  (156) 

For perturbations in upstream density, 

   

� 

ρ2u2Tt ,2 − ρ1u1Tt ,1( ) = −Tt ,1L
dρ1
dt

+
γ −1
γ

LT1
dρ1
dt

  (157) 

� 

T2u2ρ2 1+
γ −1
2

M 2
2⎛ 

⎝ 
⎞ 
⎠ = T1 1+

γ −1
2

M1
2⎛ 

⎝ 
⎞ 
⎠ u1ρ1 − L

dρ1
dt

⎛ 
⎝ 

⎞ 
⎠ +

γ −1
γ

L dρ1
dt

⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥  (158) 

  

� 

P =
M1 −

L
a1ρ1

dρ1
dt

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 1+

γ −1
2

M1
2⎛ 

⎝ 
⎞ 
⎠ +

γ −1
γ

L
a1ρ1

dρ1
dt

′ M 2 1+
γ −1
2

M 2
2⎛ 

⎝ 
⎞ 
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  (159) 

� 

M 2
2 = ′ M 2

2 1
P
ρ2

ρ1
=
1
P

M1 +
1− P

γ 1 M1 − L a1( ) dρ1 dt( )
⎛ 

⎝ ⎜ 
⎞ 

⎠ ⎟ 

2

M1 − L a1ρ1( ) dρ1 dt
′ M 2

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟  (160) 

Equations 155 with 156 and 159 with 160 cannot be solved in closed form, but do 

provide unique solutions for the shock pressure ratio and downstream conditions as a 

function of upstream conditions and Mach number and the perturbed density 

derivative. These can be solved at each time step, and then an average entropy flux 

gain can be calculated. When the density derivatives are equal to zero, the solutions 
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revert to the Rankine-Hugoniot equations. For quasi-steady flow, the density 

derivatives are very small, and the entropy perturbation is zero to machine precision, 

justifying the use of the Rankine-Hugoniot equations for quasi-steady perturbations in 

Mach number, shock angle, or pressures calculated at each time step.   

 
 Figures 6.1, 6.2, and 6.3 show upstream and downstream density derivatives, 

pressure ratio for both perturbation types, and the entropy flux across the shock for 

both perturbation types throughout the cycle for a Mach 5 flow with a 10% upstream 

or downstream density perturbation and a frequency of 15 kHz. 

 
Figure 6.1. Perturbed logarithmic density derivatives upstream and downstream. 
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Figure 6.2. Time-varying pressure ratio for upstream and downstream density 

perturbations versus steady Mach 5 flow. Frequency is 15 kHz and perturbation size 

is 10% of upstream or downstream density. 

 

Figure 6.3. Entropy flux for upstream or downstream density perturbations at 15 kHz 

for a Mach 5 flow. For both upstream and downstream density perturbations at this 

Mach number, frequency, and perturbation size, the time-averaged entropy flux is less 

than the entropy flux for the steady case. 
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6.2 High Frequency Perturbation Methodology 

6.2.a Perturbations 

This study examines the entropy gain flux relative to the steady case for 

downstream and upstream density perturbations as a function of the perturbation size 

 and a non-dimensional pseudo-Mach number 

� 

Mp  that characterizes the speed of 

the shock. Unlike the quasi-steady case, the entropy flux perturbation depends on two 

non-dimensional variables with the additional variable describing how much the 

shock is moving. In each equation for flow across a highly unsteady shock, there is a 

non-dimensional term  

� 

L
a1ρ1

dρ1
dt

=
L
a1

d lnρ1( )
dt

=
Lw
a1

ε cos wt( )
1+ ε sinwt
⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ = Mp

ε cos(wt)
1+ ε sin(wt)
⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟    (161)  

    for a sinusoidal perturbation defined as 

� 

ρ2 t( ) = ˆ ρ 2 1 + ε sinwt( )  or 

� 

ρ1 t( ) = ˆ ρ 1 1 + ε sinwt( ) .  Hypersonic high frequency shock oscillation amplitudes are 

typically are the order of 1 mm75. For this study, a value of 1 mm will be used for L. 

Upstream parameters were the same as those used for the quasi-steady analysis and 

are based on the assumption of a vehicle flying at an altitude of 30 kilometers. 

 

 This analysis used a range of frequencies and perturbations with the majority 

of cases run well within the high frequency limit. Frequencies varied between 1 kHz 

and 50 kHz, with the bulk of analysis occurring for frequencies well within the high 

frequency regime (5 kHz to 30 kHz). This corresponds to a pseudo-Mach number 

with the parameters used of 0.1 to 1.0. Perturbation sizes varied between 0.05 and 0.3, 

 

!
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with the majority of analysis occurring with perturbation sizes between 0.1 and 0.3 

with frequencies above 5 kHz. Several cases were run and compared with the same 

factor of 

� 

εw  to directly compare the effect of frequency and perturbation size. The 

lower limit at various Mach numbers for the high frequency limit for both 

perturbation sizes at a given frequency and also frequencies at a given perturbation 

size is also examined. 

6.2.b Calculations of Time-Averaged Entropy Gain for High Frequency Oscillations 

  

 A root-finding method was used to iterate a solution for the pressure ratio 

across the shock at a given freestream Mach number, 

� 

Mp , and perturbation size. 

Appendix B contains the Matlab code used for these calculations. For each freestream 

Mach number, 

� 

Mp , and perturbation size, there is a unique pressure ratio and 

downstream Mach number. 

 

 Unlike for the quasi-steady case, numerical integration is required, as there are 

no closed form solutions for the time-averaged entropy flux. Matlab, Mathematica, 

and Microsoft Excel's averaging or mean functions were used to find the time-

average initially. Each program uses the same numerical integration method. As 

found when finding the time-average of 

� 

d
dt

ρs( ) for the quasi-steady case, these 

numerical integrators do a poor job of averaging sinusoidal functions. For example, 

these programs gave non-zero averages for functions that have easily derived analytic 

expressions that can be shown to be zero over one cycle. The results using these 
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numerical integrators also did not make physical sense. It predicted that all upstream 

density perturbations at all frequencies, Mach numbers, and perturbation sizes had a 

higher entropy rise than the steady case and would revert back to the steady case prior 

to the perturbation. This is not physical as research on Type IV interactions discussed 

in Chapter 1.3 shows that there are stable unsteady high frequency shock systems that 

are not transient phenomena. For downstream density perturbations, this method 

predicted that no shock would be stable to high frequency downstream density 

perturbations. For both types of perturbations, as the Mach number increased, the 

mean or average entropy perturbation using these functions decreased towards zero, 

as expected. The pressure ratio and entropy flux across the shock has a very nearly 

sinusoidal response to a sinusoidal input, only varying from a sinusoid at the 

maximum and minimums. Given this, the time average can be calculated by 

subtracting the difference from the minimum in entropy flux to the steady entropy 

flux from the difference from the maximum in entropy flux from the steady entropy 

flux, 

 

� 

ρu t( )Δs t( )
ρ1u1R max

−
ρuΔs
ρ1u1R steady

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 
−

ρu t( )Δs t( )
ρ1u1R min

−
ρuΔs
ρ1u1R steady

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 
 

If this quantity is greater than zero, then the principle of minimum entropy states that 

the shock should be stable to perturbations and will become steady again. If this 

quantity is less than zero, then the shock would be unstable to perturbations and 

remain unsteady. This method produced curves of entropy flux perturbation versus 

normal Mach number that had a similar shape to those produced for quasi-steady 

perturbations. Limits found usually this method were also consistent with predictions 

in Chapter 2 for the high frequency limits.



 158 
 

Chapter 7:  Results for entropy perturbation across shocks for 

highly unsteady perturbations 

 
 Analysis of the entropy flux across a shock subjected to high frequency 

perturbations shows several interesting trends, including some not observed for a 

quasi-steady perturbation82. The analysis presented indicates that shocks in 

hypersonic inlets may be stable to upstream perturbations at normal Mach numbers 

up to Mach 3.5 for very high frequencies, but not stable to any downstream 

perturbations in the high frequency limit. The entropy flux depends on frequency 

such that increasing the frequency increases the normal Mach number at which the 

entropy flux perturbation is positive. The size of the density perturbation has a much 

smaller inverse effect. The lower limit of the high frequency approximation for 

frequency (or pseudo-Mach number 

� 

Mp ) and perturbation at a given Mach number is 

also presented and is generally consistent with previous work and the analysis 

presented in Chapter 2 for quasi-steady shocks. 

 

7.1 Downstream density perturbations 

 
 Unlike for the quasi-steady case where shocks were stable to downstream 

pressure perturbations at higher normal Mach numbers, unsteady shocks because of 

downstream density perturbations were found to be unstable for any high frequency 

(greater than 1 kHz) perturbation at any normal Mach number. Figure 7.1 shows a 

plot of the entropy flux perturbation resulting from a downstream density perturbation 

for frequencies between 10 and 30 kHz (

� 

0.3 < Mp < 1.0) and perturbations between 
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0.1 and 0.3. Results were normalized by the upstream mass flux and the square of the 

perturbation size 

� 

ε  to allow for comparisons for different Mach numbers, 

perturbation sizes, and the quasi-steady results. As expected and consistent with 

theory, the entropy flux perturbations all go to zero as Mach number goes to infinity.  

 

Figure 7.1. Normalized entropy gain relative to steady solution across shock for 

downstream density perturbation plotted against Mach number at different 

� 

Mp  and 

perturbation sizes. 
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downstream density derivative magnifies the difference from the steady case. The 

entropy jump across the shock for a downstream perturbation is also not multiplied by 

a counteracting sinusoidal change in mass flux that would decrease the difference in 

entropy flux from the steady case.  

 

 Finally, increasing the frequency or 

� 

Mp  increased the difference in 

normalized entropy flux perturbation from the steady case by an order of magnitude 

as shown in Figure 7.1. However, this resulted in the normalized entropy flux 

becoming more negative and could translate to the shock being less stable to 

downstream perturbations in thermodynamic variables. Increasing the perturbation 

size 

� 

ε  slightly decreased the difference from the steady case or increases the entropy 

flux gain, but this effect is many times smaller than changing the frequency or 

� 

Mp . 

 

 Figure 7.1 does not start at Mach 1 because the root solver was not able to 

find a solution for low normal Mach numbers typically under 1.25. This may be 

because at high frequencies part of the flow is subsonic relative to the shock and thus 

a solution for the pressure ratio is not possible for that Mach number. This was an 

issue also for upstream density perturbations and did depend on frequency with 

higher frequencies increasing the lower bound for a solution. For some cases, at lower 

Mach numbers at which a solution was possible, the entropy flux was not positive 

throughout the cycle.  However, entropy can decrease during a process as long as the 

process must finish and finishes with an entropy gain. A well-known example of this 

is that as flow crosses the very small region of a shock, the entropy decreases in the 
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shock before increasing again such that the overall process results in an entropy gain. 

For frequencies of 10 kHz, some portions of the cycle at M=1.41 had a negative 

entropy flux. At 15 kHz and 30 kHz, this occurred below M=1.50 and M=1.72 

respectively. 

 

7.2 Upstream density perturbations 

 Unlike for the case with downstream density perturbations, the entropy flux 

perturbation from the steady state was positive for some normal Mach numbers for 

upstream density perturbations. The entropy flux perturbation's dependence on 

upstream normal Mach number was similar to that for a quasi-steady with a region at 

lower normal Mach numbers where the entropy flux perturbation was positive and the 

principle of minimum entropy predicts the shock should be stable to perturbations. 

However, as shown in the next section, the normal Mach number at which the steady 

entropy flux is equal to the perturbation depends highly on perturbation frequency.  

  

 Figure 7.2 shows the relationship between normalized entropy flux 

perturbation and normal Mach number for a perturbation of 10% of the upstream 

density at a frequency of 10 kHz. As with the downstream density perturbations, the 

entropy flux was also normalized by the square of the perturbation size and upstream 

steady mass flux. Figure 7.3 shows the normalized entropy gain flux perturbation for 

a 10% perturbation in upstream density at almost the lowest frequency at which the 

high frequency approximation would still apply. At 1 kHz, the relationship is very 

similar, but the zero occurs at a lower normal Mach number and the entropy gain flux 
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is several orders of magnitude less. The effect of frequency and perturbation size will 

be discussed in more detail the next section. The general trend and shape of the graph 

is the same for perturbation sizes and frequencies at which the high frequency 

approximation is applicable.  

 
Figure 7.2. Normalized time-averaged entropy gain flux perturbation for a 10% 

perturbation in upstream density at a frequency of 10 kHz. 
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Figure 7.3. Normalized time-averaged entropy gain flux perturbation for a 10% 

perturbation in upstream density at a frequency of 1 kHz. 
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finding the difference between the maximum and mean and the minimum and mean 

of the normalized entropy flux perturbation and determining which difference is 

larger is not appropriate for these lower normal Mach numbers and another method of 

time-averaging is needed. Figures 7.6 and 7.7 show the pressure ratio versus time and 

entropy flux per time for a Mach 5 flow. All of these figures used a frequency of 10 

kHz and a perturbation of 10%. Comparing these figures to those for Mach 1.19 show 

that as Mach number increases, the pressure ratio and entropy flux more closely 

resemble a sinusoid. This is not surprising and is to be expected.  

 

Figure 7.4. Pressure ratio at Mach 1.19 during cycle with frequency of 10 kHz. 
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Figure 7.5. Entropy flux at Mach 1.19 during cycle with frequency of 10 kHz. 

 

Figure 7.6. Pressure ratio at Mach 5 during cycle with frequency of 10 kHz. 
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Figure 7.7. Entropy flux at Mach 5 during cycle with frequency of 10 kHz. 

 

Figure 7.8. Pressure ratio at Mach 3 during cycle with frequency of 10 kHz. 
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In addition, as shown also in Figure 7.8, as the freestream Mach number increases, 

the phase of the pressure ratio and entropy flux perturbation shifts. Like with 

downstream density perturbations, portions of the cycle at lower normal Mach 

numbers had a negative entropy flux. The Mach numbers at which this occurred 

increased with frequency. For the frequencies looked at, the lowest normal Mach 

number at which the entropy flux was positive for all portions of the cycle was 

between M=1.53 and M=1.65. This may also be contributing to some of the 

inaccuracy at the lower normal Mach numbers because there may be portions of the 

cycle where the flow is subsonic and a solution should not be possible. 

 

7.2.a Frequency and Pseudo-Mach number dependence 

  

 The entropy perturbation and normal Mach numbers at which a steady shock 

should be stable to high frequency upstream density perturbation had a significant 

dependence on the movement of the shock. Figure 7.9 shows three combinations of 

perturbation sizes and frequencies or pseudo-Mach numbers for the normalized 

entropy flux. The plots correspond to 

� 

ε = 0.2,Mp = 0.5, 

� 

ε = 0.1,Mp = 1.0 , and 

� 

ε = 0.3,Mp = 0.33 where 

� 

εMp = 0.1 or 

� 

εw = 3 kHz. Even though the product of the 

perturbation size and frequency or pseudo-Mach number is the same, the 

perturbations corresponding to a higher frequency are of higher value and positive 

longer.  
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Figure 7.9. Normalized entropy flux for upstream density perturbations. The product 

of the perturbation size and pseudo-Mach number was the same for each at 0.1. 
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frequency so that the difference in where the entropy perturbation relation for each 

frequency crosses zero can be seen. Figure 7.12 is a zoom on the x-axis. These figures 

show how much the cross-over between stable and unstable and magnitude of the 

entropy flux perturbation decrease as frequency decreases. This is also consistent with 

the quasi-steady results for perturbations in upstream thermodynamic variables, 

which had a zero at M=1.25. Table 7.1 includes the location of the zero and maximum 

entropy gain versus steady for the different perturbation sizes and frequencies studied. 

The lowest normal Mach number at which the shock would no longer be stable to 

high frequency upstream thermodynamic variable perturbations was 800 Hz  

(

� 

Mp = 0.0264 ) and 

� 

ε = 0.1 at M=1.461. The highest normal Mach number at which 

this occurred was M=3.525 for 30 kHz perturbations of 5 percent. 

 

Figure 7.10.  Normalized time-averaged entropy gain relative to steady solution 

across shock for upstream density perturbation of 10%. 
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Figure 7.11. Normalized time-averaged entropy gain relative to steady solution 

across shock for upstream density perturbation of 10%. Results divided by frequency 

to facilitate viewing of the effect of frequency on the stability region. 

 

Figure 7.12. Zoom on the horizontal axis of Figure 7.11. 
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Perturbation 
size Mp Frequency 

(kHz) 

Normal Mach 
number of maximum 
entropy gain versus 

steady 

Normal Mach 
number of 

entropy gain 
equal to steady 

0.1 0.0264 0.8 1.41 1.461 
0.1 0.0328 1 1.41 1.577 
0.1 0.164 5 1.375 2.804 
0.1 0.328 10 1.37 2.880 
0.15 0.328 10 1.37 2.876 
0.3 0.328 10 1.36 2.873 
0.1 0.492 15 1.36 3.033 
0.2 0.492 15 1.37 3.029 
0.05 0.984 30 1.37 3.525 
0.1 0.984 30 1.37 3.516 

Table 7.1.  Predicted normal Mach number at which the shock becomes unstable 

according to the principle of minimum entropy as a function of perturbation size and 

frequency 

� 

Mp .  

 

7.2.b Perturbation size dependence  

 

 The size of the perturbation also affects the size of the time-averaged entropy 

flux perturbation and the Mach number stability region, but in a different way and an 

order of magnitude smaller than the frequency. From Table 7.1, doubling the 

frequency could increase the stability region by several tenths of a Mach number. 

This is 16% of Mach 3.033 to Mach 3.516 if the frequency increases from 15 kHz to 

30 kHz. However, doubling the perturbation size slightly decreased the stability 

region but increases the entropy flux perturbation magnitude. The normal Mach 

number at which the shock no longer becomes stable decreased by several 

thousandths of a normal Mach number. This is 0.13% of Mach 3.033 for a 15 kHz 
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perturbation if the perturbation size is doubled. Increasing the perturbation size 

increases the peak but brings the zero in closer to a lower normal Mach number. 

Decreasing the perturbation size broadens the graph--lowering the peak but spreading 

it out such that the zero is at a higher normal Mach number. The effect compared to 

frequency is different because the effect of the perturbation size varies during the 

cycle between 

� 

ε
1+ ε

Mp < εMp <
ε
1− ε

Mp . Figure 7.13 shows three different 

perturbation sizes of 10%, 20%, and 30% for an upstream density perturbation at 30 

kHz. Figure 7.14 shows several different perturbation sizes and frequencies to show 

the scale of the effect of changing perturbation size compared to changing the 

frequency or the amount the shock moves by. Figure 7.15 is a plot of Table 7.1 and 

the location of the zero versus 

� 

Mp  at different perturbation sizes showing a clear 

relationship between the zero and

� 

Mp  or frequency and that the effect of perturbation 

size relative to frequency or 

� 

Mp  is minimal. 
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Figure 7.13. Normalized time-averaged entropy flux for frequency of 30 kHz and 

� 

Mp =1.0. Increasing perturbation size has a small effect compared to changing 

frequency. 

      

Figure 7.14. Comparison of effect of frequency or pseudo-Mach number and 

perturbation size on normalized time-averaged entropy flux perturbation. 
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Figure 7.15. Location of transition from stable to unstable versus frequency and 

perturbation size. 

7.3 High Mach limit 
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 It is expected that the model would be inaccurate at higher normal Mach 

numbers and the entropy flux perturbation would go to zero as Mach number 

increases. This is because, when the density derivative, perturbation size, or 

frequency is zero, the equations for pressure ratio and downstream Mach number 

derived in Section 6 provide the same entropy jump, pressure ratio, and downstream 

Mach number as for a steady shock.  This is the quasi-steady solution, where the 

shock is assumed stationary at each moment in time and the flow properties across the 

shock can be calculated with the steady shock equations.  In the equations for 

pressure ratio and downstream Mach number, the perturbation appears either 

subtracted from or added to the normal Mach number or normal Mach number 

squared. If the ratio of the perturbation to normal Mach number 

� 

εMp

Mn,1

<<< 1, then 

according to the high frequency model, the high frequency perturbation will have no 

discernable effect on the properties of the flow across the shock and the entropy flux, 

so the quasi-steady approximation applies.  However, it does not make physical sense 

that a high frequency perturbation would not affect the shock at high Mach numbers 

when the quasi-steady approximation predicted it would significantly decrease the 

entropy flux relative to the steady case.  From the control volume approach, where 

   

� 

∂ ρu( ) =
∂V
∂t

dρ + dV ∂ρ
∂t

   (128) 

the first term dominated for high normal Mach numbers with the frequencies studied. 

This means that any relation of the entropy perturbation with respect to Mach number 

will include all three regimes at frequencies above the high frequency limit for lower 
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normal Mach numbers.  The region of normal Mach numbers somewhere between the 

minimum (most negative) entropy flux perturbation and the normal Mach number at 

which the entropy flux perturbation is a small negative value approximately equal to 

the second but essentially zero peak is an intermediate region where neither the shock 

movement nor the thermodynamic derivative terms dominate. Thus, the graphs 

presented in 7.3 and 7.12 contain all three frequency regimes--quasi-steady, 

intermediate region where a computational solution is required, and the high 

frequency regime.  

7.4 Frequency and pseudo-Mach number limit at a given normal Mach number 

 This analysis suggests that as the normal Mach number increases, the 

frequency or pseudo-Mach number at which the high frequency limit applies 

increases. For example, while the high frequency model may adequately determine 

the entropy flux perturbation for a Mach 1.5 shock with a 10% density oscillation 

frequency of 1 kHz, the quasi-steady model will be needed to described whether this 

shock is stable to a upstream density perturbation at Mach 3 and what the entropy 

flux perturbation is. Figures 7.16 and 7.17 show a plot of the time-averaged entropy 

flux versus frequency for a 10% density perturbation at Mach 2.5.  
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Figure 7.16. Time-averaged entropy flux versus frequency at Mach 2.5. The 

minimum frequency for the high frequency approximation is the maximum negative 

value or the function's minimum. 

  

Figure 7.17 Time-averaged entropy flux versus frequency at Mach 2.5 from 10 Hz to 

40 kHz.  
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 The minimum or highest negative value occurs where the high frequency 

approximation is no longer valid. The full computational solution will be necessary at 

frequencies below this point until the thermodynamic density derivatives are very 

small compared to the shock velocity and the quasi-steady assumption holds. While 

the time-averaged entropy flux asymptotes to zero with this model, the quasi-steady 

limit can be approximated based on where the time-averaged entropy flux becomes 

small enough or is at least an order of magnitude smaller than its value at the 

minimum frequency at which the high frequency model still applies. This analysis for 

the two limits is consistent with the relation for normalized time-averaged entropy 

flux versus Mach number as shown in Figures 7.18 and 7.19 for a 10% density 

perturbation of at Mach 2 flow at 1 kHz. Figure 7.18 is a log-log plot of magnitude of 

the normalized time-averaged entropy flux versus frequency for Mach 2. On the log-

log plot, the dip in the graph is when the entropy flux perturbation becomes positive. 

  

Figure 7.18. Log-log plot of magnitude of time-averaged entropy flux for Mach 2 

flow with a 10% density perturbation. The maximum before the function goes 

through the zero is the high frequency limit. 
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Figure 7.19. Plot of normalized time-averaged entropy flux for a 10% upstream 

density flux at 1 kHz and what regions might require a different treatment than the 

high frequency approximation.  
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because more terms in Equation 126 are needed and a fully computational solution is 

necessary to produce an adequate result. Also, as shown in Figure 7.20, the entropy 

flux perturbation for 

� 

ε = 0.1 and 100 Hz using the high frequency method is nearly 

zero and also is a similar relation as that for the entropy flux with a downstream 

density perturbation. This suggests that the quasi-steady limit would apply for a 

upstream density perturbation at this frequency and of this size. This is consistent 

with the previous analysis on the quasi-steady limits. 

 

 

Figure 7.20. Invalid use of high frequency approximation and application of time-

averaging method with lower frequencies. 
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 As expected, the frequency or 

� 

Mp  required to use the high frequency 

approximation increases as normal Mach number increases. The relationship between 

normalized entropy flux perturbation and frequency is shown in Figure 7.21 for 

normal Mach numbers of M=1.5, 2, 2.5, 3.5, and 5 with a 10% upstream density 

perturbation. As the normal Mach number increases, the dip on the log-log plot of 

normalized entropy flux where the function reaches a minimum and trends back 

towards zero, crosses the horizontal axis, and turns back towards zero moves to the 

right towards high frequencies. For higher normal Mach numbers, the second dip at 

higher frequencies corresponds to where the entropy flux perturbation goes from 

positive (shock stable to upstream density perturbations) to negative (unstable). 

Figure 7.22 shows the same relationship but versus 

� 

Mp  instead of frequency.  

 

Figure 7.21 Time-averaged normalized entropy flux perturbation versus frequency at 

different normal Mach numbers for a 10% upstream density perturbation. 
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Figure 7.22. Time-averaged normalized entropy flux perturbation versus frequency at 

different normal Mach numbers for a 10% upstream density perturbation. 
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multiplied by 
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ε
1+ ε sin(wt)
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Figure 7.23. Normalized time-averaged entropy flux perturbation for 5% perturbation 

versus frequency at different normal Mach numbers. 

    

 
Figure 7.24. Normalized time-averaged entropy flux perturbation at Mach 2 versus 

frequency and perturbation size.  
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Perturbation 
size 

� 

ε  

Normal 
Mach 

number 

� 

Mn,1 

Frequency 
(kHz) Mp 

� 

εMp

Mn,1

 

0.2 2 0.5 0.0164 0.00082 
0.1 1.5 0.8 0.0262 0.00175 
0.1 2 1.0 0.0321 0.00164 
0.1 2.5 1.75 0.0574 0.00229 
0.1 3 6.3 0.2067 0.00688 
0.1 3.5 6.3 0.2067 0.006 
0.1 5 10.0 0.328 0.00656 
0.05 1.5 1.5 0.0492 0.00164 
0.05 2 2.0 0.0656 0.00164 
0.05 2.5 2.6 0.0853 0.00170 
0.05 3 6.6 0.2165 0.00361 
0.05 3.5 16.0 0.5249 0.00750 
0.05 5 19.0 0.6889 0.006888 

Table 7.2 Minimum frequencies for high frequency limit at different perturbation 

sizes and normal Mach numbers 

7.5 Perturbation size limit at a given normal Mach number 

 The validity of the high frequency approximation would also depend on the 

perturbation size for a given normal Mach number and frequency. However, as shown 

in table 7.3 and figure 7.25, this is only really applicable at lower frequencies and 

lower normal Mach numbers. At high enough frequencies (greater than 5 kHz), the 

high frequency limit applies for any size perturbation at lower normal Mach numbers. 

At Mach 2 and 1 kHz, this method found 10% as the minimum perturbation size, 

which is consistent with the finding of 1 kHz as the minimum frequency for Mach 2 

with a 10% perturbation. 10% and 15% for Mach 2 and Mach 2.5 perturbations at 1 

kHz is also consistent with the finding for the quasi-steady limit for perturbation size 

in Section 3. As figure 7.25 shows, as the frequency increases, the allowable 

perturbation size decreases. As Mach number increases, the minimum perturbation 
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size also increases. The same method to determine the minimum frequency was used 

to determine the minimum perturbation size allowed for the high frequency 

approximation at a given normal Mach number.  

Frequency 
(kHz) 

Normal Mach 
number 

� 

Mn,1 

� 

Mp  
Perturbation 

size 

� 

ε  

� 

εMp

Mn,1

 

1 1.5 0.0328 0.045 0.00098 
1 2 0.0328 0.1 0.00164 
1 2.5 0.0328 0.15 0.00197 
5 1.5 0.164 0.0075 0.00082 
5 2 0.164 0.015 0.00164 
5 2.5 0.164 0.019 0.00025 
5 3 0.164 0.15 0.00164 
10 1.5 0.328 0.003 0.00066 
10 2 0.328 0.003 0.00049 
10 2.5 0.328 0.004 0.00052 
10 3 0.328 0.035 0.00383 

Table 7.3 Minimum perturbation sizes for high frequency limit at different 

frequencies and normal Mach numbers. 

 

Figure 7.25. Time-averaged normalized entropy flux perturbation dependence on 

perturbation size at a given frequency for a Mach 2 shock. 
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 At higher normal Mach numbers and frequencies at or above 5 kHz, 

perturbations below 10% generally did not produce consistent results. For 

perturbations below 0.1, instead of crossing the horizontal axis, the function never 

crossed but still had the same behavior of reaching a local minima, increasing to 

another near zero local maxima and then trending towards zero. This is shown in 

Figure 7.26 for a 0.5% perturbation at 5 kHz. This is most likely due to numerical 

error and is also consistent with the limits on the quasi-steady approximation of 

perturbations up to 10%. None of the frequencies examined above the high frequency 

limit had this issue for perturbation sizes above 10%. 

 

Figure 7.26. Plot of normalized time-averaged entropy flux perturbation for a 0.5% 

upstream density perturbation at 5 kHz.  
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Chapter 8. Conclusions and Summary 
 
  

 A method has been presented for analytically determining the unsteadiness in 

hypersonic inlets resulting from flow perturbations based on the principle of 

minimum entropy. Following this principle, if a perturbation applied to the flow 

results in a higher entropy increase across the shock than the unperturbed flow, then 

the shock would eventually revert back to its original steady state.  

 

 Analytic expressions were found for the entropy perturbation across the shock 

for a flow undergoing quasi-steady Mach number, angle, back pressure, and upstream 

thermodynamic variables perturbations. This entropy perturbation became negative, 

and thus the shock unstable at normal Mach numbers of 1.58, 2.19, and 1.25 for 

quasi-steady Mach number, back pressure, and upstream thermodynamic variables 

perturbations, respectively. Shock angle perturbations depend on freestream Mach 

number such that at Mach 5, the shock was unstable to perturbations at a normal 

Mach number of 1.63 and 1.75 for Mach 10. Based on this analysis, hypersonic inlets 

are more accommodating to quasi-steady back pressure changes than upstream 

perturbations. They are also more accommodating to orientation changes than speed 

changes. The figure below shows a Mach number and wedge angle map of where a 

shock in an inlet would be stable or unstable to these perturbations. These values 

indicate that shocks in inlets operating at hypersonic but not supersonic speeds may 

be stable to these types of perturbations. 
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Figure 8.1. Angle and freestream Mach numbers at which the shock is stable to 

perturbations. Each line represents the normal Mach number at which the shock 

becomes unstable to perturbations. To the right, it is unstable. 

 

Figure 8.2. Zoom to shock detachment region. Below the freestream Mach number 

corresponding to the normal Mach number that the shock becomes unsteady to 

perturbations, all attached oblique shocks are stable to that perturbation. 
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 A curved shock is less likely to be stable to perturbations than a comparable 

straight shock as defined in Chapter 3 as having the same mean pressure or 

temperature ratio or normal Mach number. Although a steady curved shock produces 

a higher entropy gain than a steady straight shock, a curved unsteady shock has a 

lower entropy gain or higher entropy decrease with respect to the steady shock than 

for an unsteady straight shock with the same average normal Mach number, shock 

angle, temperature ratio or pressure ratio. This is because the second derivative of the 

entropy perturbation is always negative for quasi-steady perturbations where the 

entropy perturbation is positive. Although the curved unsteady shock has a lower 

entropy gain than the unsteady straight shock for low normal Mach numbers, this 

might explain why an unsteady shock would settle to a steady straight shock rather 

than a curved straight shock when geometry permits either case, such as in a 

transmitted shock Type IV interaction. However, for a 3D curved inlet or shock, 3D 

effects would have to be considered, which was beyond the scope of this study. 

  

 Curved shocks constructed according to different parameters of interest were 

also compared to determine how sensitive different curved shocks were to certain 

perturbations. Shocks were constructed such that they had the same length and height 

and mean parameter of interest, such as pressure ratio, as a straight shock. 

Unsurprisingly, a shock designed to have a certain mean parameter such as pressure 

ratio was found to be generally more sensitive to perturbations in that parameter.  
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 A primary contribution of this research is the development of a highly 

unsteady shock model. Because the above results only apply to the quasi-steady limit, 

a model was constructed for determining the flow downstream from a highly 

unsteady shock.  This method was restricted to highly unsteady density perturbations 

on only one side of the shock. Although density perturbations were used, other 

perturbations more appropriate to inlets would produce qualitatively similar results. 

Only high frequency upstream density perturbations produced a positive entropy 

perturbation, suggesting that a shock is only stable to upstream but not downstream 

highly oscillatory or large density perturbations. For both types of perturbations, this 

has a significant dependence on the frequency or a pseudo-Mach number, which 

characterizes how much the shock moves, by increasing the range of normal Mach 

numbers at which the shock is stable if the frequency increases. For example, the 

shock may become unstable to a 30 kHz upstream 10% density perturbation at Mach 

3.516 but if the frequency is 10 kHz, it would become unstable at Mach 2.880. 

Increasing the size of the density perturbation, decreased the normal Mach number at 

which the shock became unstable to perturbations by a few thousandths of a Mach 

number.  

  

 Limits for the validity of the upstream density perturbation were found to be 

consistent with our analysis of the quasi-steady limits and entropy perturbations and 

other numerical studies of these limits. For example, at a normal Mach number of 

M=1.5 and a 10% upstream density perturbation, the high frequency limit applies 

above 800 Hz. For a normal Mach number of M=5, the high frequency limits applies 
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above 10 kHz. Analyzing the entropy perturbation for high frequency density 

oscillations will require more accurate numerical integration than used for normal 

Mach numbers under 1.3 and might not have physical solutions for normal Mach 

numbers under 1.2. 

 

 From this study, several guidelines for inlet construction were developed: 

 

 1. The flow in hypersonic inlets is likely most stable to unsteadiness in back 

pressure compared to unsteadiness in angle, speed, or upstream thermodynamic 

variables. 

 2. The flow in hypersonic inlets is likely more stable to unsteadiness in angle 

or orientation than speed. 

 3. Inlets with unsteadiness and with a small amount of curvature, defined as 

n=0.75 in this study, will still have an entropy gain over the steady case if the straight 

shock does. 

 4. Curved shocks with the same mean parameter as a straight shock are 

generally less stable to perturbations of that parameter. 

 5. No shocks are stable to high frequency downstream perturbations. 

 6. Stability to perturbations is sensitive to the ratio of specific heats only for 

downstream perturbations. 

   

 This work provides additional validation of the use of the principle of 

minimum entropy production for time-varying systems.  In addition, this theory was 
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applied specifically to shocks and in a problem applicable to hypersonic system 

design. An analogy was presented explaining a theoretical basis using piston theory 

for quasi-steady flows on which the principle of minimum entropy could be applied 

to time-varying shock systems. Experimental data from a wind tunnel run in AEDC's 

Tunnel 9 showed that a bow shock on a simple geometry became unsteady at the 

hypothesized normal Mach number, providing some initial validity to the use of the 

principle of minimum entropy to analyzing time-varying shock systems. This data 

suggests some value in exploring applying the principle of minimum entropy to other 

aerodynamics problems, especially if they involve time-varying systems or shocks. 
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Chapter 9. Future Work 
 
 
 This research presents several opportunities for future work. Although this 

study presented data that provides some initial experimental validation of the idea of 

using the principle of minimum entropy to determine unsteadiness as a result of 

perturbations, additional experiments could strengthen the validity of this application. 

Unsteadiness is difficult to test in wind tunnels because of tunnel noise, so additional 

validation could be provided if similar results are found in a quiet tunnel or another 

facility. Additional experimental data with more curved shapes, at different 

freestream Mach numbers, or with different perturbation types would be useful. 

 

 Several questions also arise that are beyond the scope of this paper. For 

instance, for the multi-shock system, does the principle of minimum entropy require  

examining each shock separately or does it require minimizing the entropy gain 

across the whole system? In a multi-shock system, having a minimum entropy gain 

across the first shock would result in a lower normal Mach number at the second 

shock. Then the entropy jump across the second shock might be higher at that lower 

normal Mach number, resulting in a higher entropy gain for the whole system. 

Intuitively, each shock should be treated separately, but effects can propagate 

upstream through a boundary layer, which couples the shocks. This question as well 

as shock-boundary layer interaction effects is worth further consideration. 

 

 A few topics related to specific inlet and perturbation types could also be 

explored. Exploration of three-dimensional effects for 3D inlets by experimentation 
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or computational fluid dynamics could provide interesting results. Perturbations in the 

intermediate range could also be looked at with computational fluid dynamics to 

bridge the gap between the quasi-steady and highly unsteady results. Also, it might be 

worthwhile to develop a high frequency model for pressure or Mach number 

perturbations and see if the trends for the entropy gain perturbation are the same as 

for quasi-steady or the high frequency density perturbations. However, the ultimate 

goal of this type of future work is to come up with inlets with stable shock solutions. 
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Appendices 
 

A. Inlet performance parameters 

 
The parameters typically used to evaluate the performance of scramjet inlets 

are static temperature ratio 

� 

ψ , total pressure recovery 

� 

π c , kinetic energy efficiency 

� 

ηKE , and adiabatic compression efficiency 

� 

ηc . These are defined below76: 

    

� 

ψ =
Tthroat
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Because the compression procession is adiabatic, total temperature is conserved. 
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� 

ηc =
ψ −

1
π c

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

γ
1−γ

ψ −1
 (3) 

Adiabatic compression efficiency is the ratio of the change in static enthalpy to the 

ideal, isentropic change in static enthalpy. The dependence of adiabatic compression 

efficiency on total pressure ratio is such that even a modest decrease in adiabatic 

compression results in a large decrease in total pressure. This is partially why the total 

pressure ratio is not always the best figure of merit for determining performance of 

scramjets. This can be determined knowing the total pressure recovery and static 

temperature ratio 

� 

ψ  
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� 

ηKE = 1− 2
γ −1( )M ∞

2

1
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Kinetic energy efficiency is defined as the ratio of the square of the velocity that the 

exit flow would have if it were isentropically expanded to the freestream pressure to 

the square of the freestream velocity. Because of the high velocities in hypersonic 

flow, large changes in adiabatic compression efficiency result in only modest changes 

in kinetic energy efficiency. Kinetic energy efficiency needs to be calculated to three 

decimal places in order to be accurate. 

 

B. High frequency perturbation code 

%This is the program to compute the properties across a 
highly oscillatory 
%shock for changes in the density ratio caused by changes 
upstream or 
%downstream. 
% 
% 
% 
%M=input('Enter Mach number:  '); 
flag=input('Enter 1 for dr1dt=0 or Enter 2 for dr2dt=0:' 
); 
w=input('Frequency:  '); 
e=input('Epsilon:  '); 
%n=input('Index:  '); 
  
MachN=1.3:.05:3.5; 
for j=1:length(MachN) 
    M=MachN(j); 
     
g=1.4;  %Ratio of specific heats 
R=287.058; %Real gas constant 
T=231.24;  %Temperature at 30 km 
V=1*10^(-2); %Shock movement distance  
a1=sqrt(g*R*T); %Speed of sound 
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tf=pi/w; 
tstep=tf/100; 
t=[-2*tf:tstep:2*tf]; 
roe1=1.7861*10^(-2); %Atmospheric density at 30 km 
P1=roe1*R*T;   %Atmospheric pressure at 30 km 
roe2roe1=((g+1).*M.^2)./(2+(g-1).*M.^2); %Steady density 
ratio across shock 
roe2=roe1*roe2roe1*(1+e*sin(w*t));  %Downstream density 
roe2s=roe1*roe2roe1;  %Steady downstream density 
   
P2P1s=1+(2*g)/(g+1).*(M.^2-1); %Steady pressure ratio 
steadySR=(log((P2P1s).^(1/(g-1)))+log((roe2roe1).^(-g/(g-
1)))); %Steady entropy gain 
  
top=P2P1s+.7;  %Search limits for root finder 
bottom=P2P1s-.7; 
z=[]; 
y=[]; 
   
if(flag==1) 
    droedt=e*w*cos(w*t)*roe2s; 
    X=V./(a1*roe2).*droedt; 
for i=1:length(X) 
Dir=X(i); 
z(i)=fzero(@(P) gilliansolver(P,M,Dir,g),[bottom top]); 
end 
L=[]; 
  
M2=sqrt(1./z.*(M+(1-z)./(g*M)).^2.*(M./(M+(1-z)/(g*M)-
X))); 
M2p=M+(1-z)/(g*M); 
r2r1=M./(M2p-X); 
roe1t=roe1; 
   
P2P1s=1+(2*g)/(g+1).*(M.^2-1); 
deltasR=(log((z).^(1/(g-1)))+log((r2r1).^(-g/(g-1)))); 
%Unsteady entropy gain 
steadySR=(log((P2P1s).^(1/(g-1)))+log((roe2roe1).^(-g/(g-
1)))); 
pusteadySR=steadySR.*roe1.*M.*a1; %Steady entropy flux 
pudeltasR=roe1t.*M.*a1.*deltasR; %Unsteady entropy flux 
  
%droe2/dt=0 
  
else 
     
    droedt=e*w*cos(w*t)*roe1; 
    X=V./(a1*roe1*(1+e*sin(w*t))).*droedt; 
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    droe2dt=e*w*cos(w*t)*roe2s; 
for i=1:length(X) 
Dir=X(i); 
z(i)=fzero(@(P) gilliansolver3(P,M,Dir,g),[bottom top]); 
end 
%k=fzero(fun1,1) 
L=[]; 
  
%For droe2/dt=0 
M2=sqrt(1./z.*(M+(1-z)./(g*(M-X))).^2.*((M-X)./(M+(1-
z)/(g*(M-X))-X))); 
M2p=M+(1-z)/(g*(M-X)); 
r2r1=(M-X)./(M2p); 
roe1t=roe1*((1+e*sin(w*t))); 
  
P2P1s=1+(2*g)/(g+1).*(M.^2-1); 
deltasR=(log((z).^(1/(g-1)))+log((r2r1).^(-g/(g-1)))); 
steadySR=(log((P2P1s).^(1/(g-1)))+log((roe2roe1).^(-g/(g-
1)))); 
pusteadySR=steadySR.*roe1.*M.*a1; 
pudeltasR=roe1t.*M.*a1.*deltasR; 
  
a=[-2*tf:tstep:2*tf-tstep]; 
roe2a=roe1*roe2roe1*(1+e*sin(w*a)); 
i=diff(deltasR)./tstep.*roe2a; 
i=[roe2a.*diff(deltasR)./tstep, i(1,1)]; 
  
A(1,j)=mean(pudeltasR); 
A(2,j)=max(pudeltasR)-pusteadySR-(pusteadySR-
min(pudeltasR)); 
%A(3,i)=e; 
A(3,j)=M; 
A(4,j)=pusteadySR; 
  
end   
     
end 
 
function output=gilliansolver(P,M,Dir,g) 
M12=M+(1-P)/(g*M); 
M22=1/P*(M+(1-P)/(g*M))^2*(M/(M+(1-P)/(g*M)-Dir)); 
output=M*(1+((g-1)/2)*M^2)./((M12-Dir)*(1+((g-1)/2)*M22)-
(g-1)/g*Dir)-P; 
end 
 

function output=gilliansolver3(P,M,Dir,g) 
M12=M+(1-P)/(g*(M-Dir)); 



 199 
 

M22=1/P*(M+(1-P)/(g*(M-Dir)))^2*((M-Dir)/(M+(1-P)/(g*(M-
Dir)))); 
output=((M-Dir)*(1+((g-1)/2)*M^2)+(g-
1)/g*Dir)./((M12)*(1+((g-1)/2)*M22))-P; 
end 
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