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In the transportation field, the shift of airline and railway industries toward web-based 

distribution channels has provided passengers with better access to fare information. 

This has resulted in passengers becoming more strategic to price. Therefore, a better 

understanding of passenger choice behavior is required in order to support fare 

strategies. Methods based on discrete choice (DC) analysis have recently been 

introduced in revenue management (RM). However, applications of DC models in 

railway ticket pricing are limited and heterogeneity in choice behavior across 

different categories of travelers has mostly been ignored. Differences in individual 

taste are crucial for the RM sector. Additionally, strategic passenger behavior is 

significant, especially in markets with flexible refund and exchange policy, where 

ticket cancellation and exchange behavior has been recognized as having major 

impacts on revenues. 



  

This dissertation examines innovative approaches in discrete choice modeling 

to support RM systems for intercity passenger railway. The analysis, based on ticket 

reservation data, contributes to the existing literature in three main aspects. Firstly, 

this dissertation develops choice models of ticket purchase timing which account for 

heterogeneity across different categories of passengers. The methodology based on 

latent class (LC) and mixed logit (ML) model framework offers an alternative 

approach to demand segmentation without using trip purposes which are not available 

in the data set used for the analysis.  

Secondly, this dissertation develops RM optimization models which use 

parameters estimated from the choice models and demand functions as key inputs to 

represent passenger response to RM policy. The approach distinguishes between 

leisure and business travelers, depending on departure time and day of week. The 

formulated optimization problem maximizes ticket revenue by simultaneously solving 

for ticket pricing and seat allocation. Strategies are subjected to capacity constraints 

determined on the basis of the railway network characteristics.  

Finally, this dissertation develops ticket cancellation and exchange model 

using dynamic discrete choice model (DDCM) framework. The estimated model 

predicts the timing of ticket cancellations and exchanges in response to trip schedule 

uncertainty, fare, and refund/exchange policy of the railway service. The model is 

able to predict new departure times of the exchanged tickets and covers the full range 

of departure time alternatives offered by the railway company.  
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Chapter 1 : Introduction 

The field of revenue management (RM) was established in 1978 after the US airline 

deregulation with the main objective of revenue maximization under demand uncertainty. 

The deregulation has established a strong competition among US domestic air carriers 

which drives airline companies to invest time and money to satisfy customer demand by 

optimally allocating the available resources (Glover et al., 1982; Davis, 1994). Analysts 

have also become increasingly interested in predicting passenger demand to support RM 

strategy. As a consequence, in recent years, discrete choice models have been integrated 

into RM systems. The approach supports RM decisions by providing insight on passenger 

level responses to product attributes based on behavioral preferences. Researchers have 

also begun to investigate how discrete choice models and passenger-level data can be 

integrated with optimization models at a system level.  

More recently, the shift of airline and railway industries toward web-based 

distribution channels has provided passengers better access to fare information. This 

phenomenon has influenced passengers to become more strategic to price. In RM, the 

term “strategic passengers” generally refers to passengers who anticipate future sales and 

choose purchase timing and products to maximize their expected consumer surplus. In 

some circumstances, not only do strategic passengers decide when and where to purchase 

tickets, but they are also influenced to exchange and cancel their tickets. This is 

especially true in markets with flexible refund and exchange policy, where strategic 

passengers are inclined to buy tickets in advance and adjust ticket schedules when their 

travel plans or fare rates change. Reliable predictions in ticket cancellation and exchange 

decisions can support analysts to improve efficiency in capacity planning and 
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refund/exchange policies. Indeed, despite the fact that small improvements in accuracy of 

the demand models can contribute to millions of dollars in annual revenue for an airline 

(Neuling, Riedel et al. 2004), the cancellation models used in practice are still fairly 

simplistic. Currently, many airlines forecast cancellation rates using time-series or 

averaging methods which do not capture or explain how individual passengers make 

decisions. To the extent that different types of passengers and itineraries exhibit distinct 

cancellation and exchange rates, current state of practice cannot make accurate 

predictions when the underlying passenger or itinerary mix changes.  

While numerous RM studies have focused on airline and hotel industries, its 

applications to railway are relatively limited. A railway is a green alternative compared to 

other transportation modes and plays significant roles in emission reduction policy. In the 

US, $8 billion ($2009) has been made available under the American Recovery and 

Reinvestment Act of 2009 for rebuilding high speed rail links throughout the country. 

The Amtrak Northeast Corridor Infrastructure Master Plan 2010 (Amtrak, 2010) called 

for $52 billion ($2010) in investment to cover needed system repair, upgrades, and some 

capacity enhancements to accommodate passenger demand in 2030 which is projected to 

increase 60% from 2012 (Amtrak, 2012). To this extent, it is expected that the railway 

passenger traffic will almost certainly increase over the next decade. In term of revenue, 

Amtrak saw $2 billion ($2009) in 2009 (Amtrak, 2009) and combined revenues for all 

passenger railway operators in the UK for 2009 were in excess of £6 billion (£2009) 

(Office of Rail Regulation, 2009).  

As in the airline industry, the goal of railway RM systems is to find the optimal 

number of passengers travelling along each leg in order to maximize the overall revenue. 
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This can be achieved by implementing ticket pricing or by limiting the availability of 

certain ticket class or certain market to passengers. However, the problem is very 

complex due to its probabilistic and dynamic nature. The probabilistic aspect is due to the 

uncertainty in forecasting passenger demand while the dynamic aspect is due to inter-

temporal effects of passenger behavior such as trip rescheduling or ticket cancellation 

decisions. To support the development of railway RM strategies, a better understanding 

of the railway passenger choice behavior is required. It is also important that the model 

be capable of supporting a broad range of policy implications by utilizing the availability 

of disaggregate data. The approach is expected to offer a rich behavioral interpretation of 

passenger behavior and explore differences based on passenger and trip characteristics.  

1.1 Problem Statement 

While railway pricing and RM are based on the heterogeneity of choice behavior across 

different categories of passengers, the use of passenger choice models to directly support 

this aspect of railway planning applications has been relatively limited so far. Given that 

RM strategy relies on the premise that different passengers are willing to pay different 

amounts for a product, incorporating heterogeneous choice models in the RM strategy is 

expected to contribute to significant revenue improvements. 

Meanwhile a number of studies have proposed different approaches to model 

ticket cancellation and exchange behavior, their primary focus is to predict the timing of 

cancellations and exchanges without predicting new departure times of the exchanged 

tickets. The prediction of new departure times can further support RM capacity planning. 

More importantly, previous studies have mostly ignored inter-temporal effects of 

strategic passengers in ticket cancellation and exchange behavior. This behavior is crucial 
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in markets with flexible refund and exchange policy where ticket cancellation and 

exchange behavior has been recognized as having major impacts on revenues.  

In this dissertation, we will then focus on how a railway operator can use existing 

data sources to develop passenger choice models that capture the characteristics 

previously mentioned and relax the limitations of previous studies.   

1.2 Research Objectives and Scope 

The first objective of this research is to develop passenger choice models of ticket 

purchase timing which account for heterogeneity across different categories of passengers 

and capable of supporting railway RM decisions. To demonstrate choice models’ 

application in RM strategy, the estimated models are incorporated into RM optimization 

models which optimize ticket revenue based on pricing and seat allocation strategy. The 

second objective of this research is to explore the use of dynamic discrete choice model 

(DDCM) for an important aspect of passenger behavior, namely cancellation and 

exchange behavior. The developed model is expected to capture inter-temporal effects on 

individual behavior in ticket cancellation and exchange decisions that are usually treated 

in a static context.  

The principal objectives can be summarized as follows: 

1. Develop passenger choice models of ticket purchase timing which account for 

taste heterogeneity across different categories of passengers. The models should 

be able to capture passenger behavioral characteristics under railway RM policy 

as well as differences in taste preferences across segments. The model output is 

then integrated into the RM optimization model system.  
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2. Develop RM optimization models which optimize ticket revenue by 

simultaneously solving for pricing and seat allocation strategy under capacity 

constraints determined on the basis of the railway network characteristics. The 

optimization model should be formulated to allow passengers to realistically 

respond to RM policy based on purchase timing and variation in demand volume. 

3. Assess the impact of heterogeneous choice models toward RM strategy and assess 

their performance in the RM optimization models.  

4. Develop ticket cancellation and exchange model which captures inter-temporal 

behavior of strategic passengers based on a dynamic discrete choice model 

(DDCM) framework.  The model should reflect exchange, refund, and fare policy 

of the railway operator. Its structure must be designed to be capable of predicting 

not only ticket cancellation and exchange time, but also the new departure times 

of the exchanged tickets. The prediction of new departure times is expected to 

further support RM capacity planning. 

5. Develop an efficient algorithm to approximate dynamic programming problem in 

the DDCM.  

Given the primary focus of this dissertation is on developing choice models using 

railway operator data sources, the analysis is subjected to certain data limitations which 

do not allow certain aspects of the problem to be investigated, which are:  

Demand substitution across markets 

In this research, consideration of changes in origin-destination will be ignored because it   

requires the definition of a choice set that is significantly different across passengers. 

Actually, no information is available to construct a realistic choice set for each passenger. 
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However, given that railway operators typically forecast demand based on historical 

booking independently for each origin-destination market, this assumption should have 

limited impact for most applications.  

Demand substitution across transportation modes 

Since a railway operator cannot get full access to its competitors booking data, the 

analysis will primarily focus on its existing demand without direct consideration of 

demand substitution across transportation modes. Given that this research is based on 

ticket reservation data which reflect the outcomes of the travelers’ decisions on 

transportation mode and service, this assumption is consistent with our approach. On the 

other hand, the model development will focus on other elements of passenger decisions 

such as ticket purchase timing, and ticket cancellation/exchange. Moreover, to represent 

the variation in passenger demand volume corresponded to changes in RM policy, 

passenger demand functions are proposed to represent induced and lost demand. 

Demand substitution across passenger classes 

This railway service offers two passenger classes; first class and coach class. Given that 

coach class passengers constitute 92% of the total demand; this research primarily 

focuses on coach class passengers. The sample size of the first class passengers is also 

relatively small compared to coach class passengers. The small sample size of first class 

passengers poses difficulties in estimating choice models and the demand functions, thus 

incapable for the models to be integrated in the RM revenue optimization.   

Revenue management objective 

The primary goal of this research is to propose RM strategy which requires minimal 

changes from its existing operational routine. Therefore, the proposed RM optimization 
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problem will not consider strategy which requires change in their train operation (e.g. 

adjusting number of car, distributing capacity across multiple passenger classes). This 

assumption results in the operation cost to remain unchanged from the existing condition, 

and therefore reasonable for the RM strategy to consider revenue maximization as their 

primary objective. 

1.3 Contributions 

This dissertation develops and estimates models of railway passenger choice that better 

reflect the characteristics of the choice environment in the railway industry. The 

dissertation contributes to the existing literature of discrete choice model in RM by: (1) 

accounting for passenger taste heterogeneity in ticket purchase timing, (2) incorporating 

heterogeneous passenger choice models in RM optimization strategy, and (3) explicitly 

modeling inter-temporal effects on individual decisions in ticket cancellation and 

exchange.  

With respect to the first category, this dissertation develops choice models of 

ticket purchase timing which account for taste heterogeneity across different categories of 

passengers based on latent class and mixed logit model frameworks. We develop an 

alternative approach to segment railway demand without using trip purpose. Since trip 

purpose is not available in the ticket reservation data, other elements in the ticket 

reservation data such as the characteristics of the trip (departure schedule) are used. The 

proposed approach has several advantages over previous studies in the literature based on 

deterministic segmentation of the demand. This approach leads to a more intuitive 

segmentation of the market between time-sensitive business travelers and price-sensitive 

leisure travelers.   



8 

With respect to the second category, we develop RM optimization models which 

incorporate the proposed choice models into ticket revenue optimization process. The 

optimizations account for both passenger demand volume and purchase timing in 

response to RM policy and simultaneously solve for pricing and seat allocation. 

Strategies are subjected to capacity constraints determined on the basis of the railway 

network characteristics. In particular, the parameters estimated from the choice models 

and the demand functions are used as key inputs for passenger responses to RM policy.  

Finally, this dissertation is the first study to model ticket cancellation and 

exchange behavior using a dynamic discrete choice model (DDCM) framework. The 

approach enables to account for inter-temporal behavior of strategic passengers who are 

considered to be forward-looking agents. A model is formulated as an optimal stopping 

problem to predict the timing of ticket cancellations and exchanges, as well as the new 

departure times of the exchanged tickets. The prediction of new departure times is 

expected to further support RM capacity planning. 

1.4 Dissertation Overview 

This dissertation is organized as follows: 

Chapter 1 introduces the research background, objectives, and the expected 

contributions from this research. Chapter 2 provides a comprehensive review of discrete 

choice model used in RM focusing on its applications to airline and railway industries.  

Shortcomings in the existing studies are also identified and research directions for this 

dissertation are proposed. Chapter 3 presents methodologies for the passenger choice 

model applicable to disaggregate data including multinomial logit (MNL), latent class 

(LC), mixed logit (ML), and dynamic discrete choice model (DDCM). Chapter 4 presents 
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descriptive statistics relative to the ticket reservation data used in this research. The 

analysis focuses on data related to passenger choice model development such as the 

distribution of demand, advance booking, and fare as well as ticket cancellation and 

exchange behavior. Chapter 5 proposes passenger choice models of ticket purchase 

timing which account for taste heterogeneity using methodologies presented in Chapter 3. 

In Chapter 6, the passenger demand functions are presented; they represent the demand 

volume of each market in response to RM policy based on linear and log-linear 

regression. In Chapter 7, the RM optimization models are developed for a single-leg 

problem and network problem. Both approaches account for passenger responses in term 

of purchase timing and demand volume developed in the previous two chapters. In 

Chapter 8, the choice model for ticket cancellation and exchange behavior is developed 

using dynamic discrete choice model (DDCM) framework. Finally, Chapter 9 presents a 

summary of major findings, contributions and suggested future research directions.  
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Chapter 2 : Literature Review 

In this chapter, we review the existing literature in passenger choice model for revenue 

management (RM). First, a brief overview of RM problem is provided. Then, an 

extensive review on discrete choice model in RM is presented, focusing on its application 

in airline and railway industries as well as strength and weakness of each approach. Then, 

a comprehensive review in dynamic discrete choice model (DDCM) formulation is 

presented, focusing on the setting and application related to this research. Next, we 

review approaches used in ticket cancellation and exchange modeling. Finally, the review 

summary is presented, some of the shortcomings of the existing studies are identified, 

and the research directions for this dissertation are described.  

2.1 Fundamentals of Revenue Management Problem 

Revenue management (RM) is the analytical application that predicts consumer behavior 

and optimizes product availability and price to maximize revenue. To achieve RM 

objective, it is essential for the firm to understand customers' perception of product value 

and accurately align product prices, placement, and availability with each customer 

segment in a profitable manner.  

In the railway industry, given the short term cost of the operation are largely fixed 

and the variable costs per passenger are small, the problem reduces to seeking booking 

policies that maximize revenues. The fundamental revenue management strategy consists 

of four major elements: forecasting, overbooking, seat inventory control, and pricing. 

Given that overbooking has not been widely practiced in railway industry, three aspects 

of RM will be discussed: demand forecast, seat inventory control, and pricing.  

http://en.wikipedia.org/wiki/Consumer_behavior
http://en.wikipedia.org/wiki/Revenue
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2.1.1 Demand Forecast 

Forecasting is essential for RM in determining the number of reservations which should 

be accepted based on seat allocation policy. RM demand forecasting primarily relies on 

two major approaches; aggregate and disaggregate. Aggregate approach focuses on using 

short term booking data to predict the future demand where the focus is on the total 

number of passenger demand instead of individual passenger behavior. The approach 

typically relies on simple smoothing technique to incorporate partial booking data from 

related flights at different phases in their booking process (McGill and van Ryzin, 1999). 

Disaggregate approach involves the use of discrete choice model. The approach is based 

on discrete choice transportation demand modeling framework of Ben-Akiva (1987). 

Discrete choice analysis has been applied in several choice behavior of the revenue 

management industry, for instance, path preference models (Hopperstad, 1994), and a 

deterministic model of demand behavior under price changes which incorporate diversion 

and recapture of passenger in different booking classes (Gallego, 1996).  

2.1.2 Seat Allocation 

The problem of seat allocation (seat inventory control) has been studied by many 

researchers since 1972. The approach practiced in airline RM problem is generally based 

on expected marginal seat revenue (EMSR) which is a refinement of the displacement 

cost valuation technique. The seat inventory control problem ranges from single-leg seat 

inventory control which considers a single flight leg to network seat inventory control 

with the consideration of network effects. Due to hub-and-spoke nature of the airline 

industry since the 1980s, a network seat inventory control has been significantly 

considered to account for passenger making flight connection. Several approaches which 
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deals with network revenue management have been studied such as mathematical 

programming, segment control, virtual nesting, and bid price methods. The detailed 

description of these techniques are in McGill and van Ryzin (1999) and Talluri and van 

Ryzin (2004a). 

2.1.3 Pricing 

Pricing is essential for RM process in several aspects. In quantity-based RM, the 

existence of differential pricing of airline seats is considered as given. In price-based RM, 

price is the most important determinant of passenger demand behavior. Pricing and seat 

inventory control are dual to one another (Gallego and van Ryzin, 1997), however, there 

exists limited number of studies on joint seat allocation and pricing problem. McGill and 

van Ryzin (1999) suggests that the detailed empirical studies of the behaviors of different 

passenger types in response to changes in fare is a promising research directions for 

improving accuracy in demand forecast.  

2.1.4 Joint Pricing and Seat Allocation  

In the traditional RM optimization problem, pricing and seat allocation have often been 

considered as two independent problems. On one hand, the pricing focused on demand 

segmentation and optimal fare regardless of any capacity constraint. On the other hand, 

seat allocation focuses on setting booking limits by fare products based on fare and 

capacity constraint. Nevertheless, the two problems are interrelated and complementary 

to one another; the prices charged influence demand where acceptable demand is 

determined by seat allocation, and should be jointly considered as a single optimization 

problem. As noted by McGill and van Ryzin (1999), the integration of pricing and 

inventory allocation decisions should receive more attention by analysts in RM. In this 
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context, Weatherford (1997) emphasized the importance of considering prices as part of 

the optimization problem and suggested including them as decision variables in the seat 

allocation problem. The author considered a single flight leg with at least two fare 

products. The demand for each fare product was assumed to be normally distributed and 

represented by a linear demand function of the competing products’ fare. 

Kuyumcu and Garcia-Diaz (2000) studied joint pricing and seat allocation 

problems for an airline network using historical data. The optimization problem aimed at 

maximizing the total revenues within the network. The study assumed that demand is 

normally distributed and that there is no interaction of demand across fare classes, and 

markets (origin-destination pairs). Fare was assumed to be an exogenous variable for the 

passenger decision process, as no explicit hypothesis regarding the relationship between 

demand and fare or any other product characteristics was made.  

Bertsimas and de Boer (2002) analyzed the joint problem of pricing and seat 

allocation in a network setting. The authors assumed that demand for each fare product 

was uncertain and that expectation of the product demand only depends on the product’s 

price. The numerical experiment suggested that coordination of pricing and seat 

allocation policies in the network and accounting for demand uncertainty can lead to 

significant revenue gains. It was also demonstrated that the underlying optimization 

problem is convex for certain types of demand distributions, thus tractable for large 

instances.   

Cote et al. (2003) proposed a model with the capability of jointly solving the 

pricing and seat allocation problem in a network with competitor. The approach was 

based on a bi-level programming framework: the airline was assumed to know how its 
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competitor would react and this behavior was explicitly integrated in the decision 

process. The decision variables include fares with seat allocation considered as 

constraints. The main assumption was that the demand for each fare product and itinerary 

combination was assumed to be fully known without relationship between fare and 

demand. 

Ongprasert (2006) studied the seat allocation problem for intercity high speed rail 

services in Japan. The analysis includes: revenue maximization, average passenger load 

factor (APLF), and the number of passenger rejection. The choice model was estimated 

using nested logit model where the upper level consists of two transportation alternatives 

(high speed rail and airlines) and the lower level consists of fare product alternatives. The 

passenger choice model was incorporated in the seat allocation optimization problem 

which accounted for shared capacity of the railway network. Results show that seat 

allocation accounting for passenger choice behavior contributes to revenue improvement 

by offering discounted fare in the off peak trip.     

Chew et al. (2008) developed a joint optimization model of pricing and seat 

allocation for a single product with a two period lifetime. Product price was assumed to 

increase as the time it perishes approaches, while demand is expressed as a linear 

function of price. To maximize the expected revenue, a discrete time dynamic 

programming model was developed to obtain the optimal prices and the optimal 

inventory allocations. Based on the concave property of the objective function, the 

authors used an iterative procedure to find the optimal solution. The problem was also 

extended to multiple time periods, where the concavity property no longer holds; for this 

case, several heuristics were suggested to solve the problem.  
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Cizaire (2011) developed several approaches to solve the joint problem of airline 

optimal fare and seat allocation. The underlying demand volume is modeled as a function 

of fares. The analysis proposes both deterministic and stochastic approaches to model 

demand; in particular, heuristics were developed to solve the stochastic problem. The 

problem considers a multiple products, multiple time periods without network 

considerations. 

2.2 Discrete Choice Model in Revenue Management 

Discrete choice analysis (DCA) is an ongoing field of research in RM which assumes that 

passenger makes choice among list of product alternatives. The approach is capable of 

revealing factors that influence passenger decisions in term of product attributes, trip 

characteristics, and passenger profile. In recent years, DCA has been applied in several 

RM industries. Airlines are considered to be the industry where DCA has been most 

widely applied. However, the railway industry has also seen ongoing application of DCA 

for its RM system.  

2.2.1 Airline Industry 

One of the most recognizable studies in the discrete choice model application for airline 

industry are the work of Andersson (1998) and Algers and Besser (2001) who applied 

logit choice models to estimate buy-up and recapture factors at one of Scandinavian 

Airline Systems (SAS) hubs. Another line of research focusing on understanding choice 

behavior is the passenger origin and destination simulator (PODS) studies of Belobaba 

and Hopperstad (1999) which is a simulation model of passenger purchase behavior that 

accounts for airline preference, time preference, path preference, and price sensitivity.  
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Talluri and van Ryzin (2004) analyzed a single-leg RM problem where a 

consumer choice behavior is modeled by a general discrete choice model. Their choice 

model specifies the probability of purchasing each product as a function of the set of 

available fare products. Their approach is based on expectation maximization (EM) 

method which overcomes the limitation of incomplete data when only purchase 

transaction data are available but it is not possible to distinguish a period without an 

arrival from a period in with an arrival without customer making purchase. The model is 

applied to the buy-up and buy-down behavior of airline product to support RM decisions 

for the set of product offering. 

The feasibility and benefit of the discrete choice analysis in RM was examined in 

Vulcano et al. (2008), which focused on buy-up, buy-down, and diversion of airline 

market. They used the same approach as Talluri and van Ryzin (2004) to address 

unobservable shopping data issue using variation of expectation maximization (EM) 

method. Their choice model was estimated with multinomial logit (MNL) model where 

the choice set consists of all the flights offered by multiple airlines on a given day 

between specific pair of airports. Their result indicates the revenue improvement of 1.4% 

to 5.3% in the tested markets. Their study suggests testing a model with unobservable 

segment (latent class) to allow for the model to predict more accurately.  

2.2.2 Railway Industry 

Railways have several characteristics different from airline. A railway trip generally 

consists of more legs due to more station stops. Each leg, defined by pair of stop, must be 

determined in terms of opportunity cost or capacity allocation. Walk up ticket is general 

for railway, where passenger purchases the ticket on the day of departure, especially for 
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high speed service. Other RM policies used by the airlines such as overbooking, nested 

fare structure are typically not considered in railway RM.  

Ciancimino et al. (1999) is the first published work which deals with passenger 

railway RM. They studied a single-fare multi-leg capacity allocation problem with an 

objective of allocating a specific number of seats for each origin-destination pair to 

maximize revenue for the entire journey. Their analysis involves deterministic and 

probabilistic approaches. The deterministic approach is based on linear programming 

while the probabilistic approach involves modeling the service demand with truncated 

normal distribution. Hood (2000) developed a logit choice model to incorporate demand 

estimation in time tabling and pricing decisions. Their result indicates similar demand 

estimation to the observed values with computational time burden.  

Whelan and Johnson (2004), and Whelan et al. (2008) estimated a nested logit 

model to evaluate the impact of fare structure on train overcrowding. The model structure 

presents a lower nest corresponding to passenger’s choice of ticket types and an upper 

nest corresponding to the decision of whether to travel by railway or not. Li et al. (2006) 

conducted simulation study to assess dynamic pricing policy for railway RM and overall 

network performance. They proposed passenger response model as an activity based 

model accounting for time shifting, mode choice, departure time choice, and route choice. 

Their model is based on two steps, first the demand is modeled with micro level behavior 

model to respond with parametric policies such as pricing and then the interaction is 

simulated by linking the demand and supply simulation by using sensitivity of demand 

information to optimize the policy parameters. The forms of dynamic pricing considered 
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include time-based pricing (time of day, and day of week), regional-based, and route-

based and other discount availability.  

Sibdari et al. (2008) studied dynamic pricing policy for Amtrak Auto Train. They 

proposed discrete-time multi product dynamic pricing model which is updated on a daily 

basis. The choice model involves a multi-stage decision process similar to the model 

proposed by Whelan and Johnson (2004) and by Whelan et al. (2008); passengers make 

the decisions to buy or not to buy and whether to upgrade the accommodation or not. 

Their data indicate that the relationship between time before departure and the average 

daily demand can be approximated by an exponential function. The analysis reveals that 

there was almost no reservation activity until 30 days before departure given a sale 

horizon of 330 days. Passenger demand is specified as Poisson random variable with 

specified mean and a passenger demand on a given day is a function of remaining time 

before departure, car accommodation price, and coach seat price.   

Ongprasert (2006) studied seat allocation problem for the Japan intercity high 

speed rail service. The problem focuses on seat allocation problem with three objectives, 

revenue maximization, average passenger load factor (APLF), and the number of 

passenger rejection. The choice model was estimated with nested logit model where the 

upper level consists of two transportation alternatives; high speed rail and airlines, and 

the lower level consists of fare product alternatives. The passenger choice model is 

incorporated in the seat allocation optimization problem which accounts for shared 

capacity of the railway network. Results show that seat allocation accounting for 

passenger choice behavior contributes to revenue improvement by offering discounted 

fare in the off peak trip.     
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2.2.3 Choice Model Accounting for Taste Heterogeneity  

Accounting for taste heterogeneity is essential for demand forecasting especially for 

railway RM because passenger preferences generally vary by departure time of day, day 

of week, and trip distance. A number of papers have investigated special classes of 

discrete choice model that accommodates taste heterogeneity. Bhat (1998) estimated an 

intercity travel mode choice model which accommodates variations in response to level 

of service measures due to observed and unobserved individual characteristics. The study 

emphasized the necessity to incorporate systematic and random variation in 

responsiveness to level-of-service variables. Greene and Hensher (2003) compared latent 

class (LC) with mixed logit (ML) model using stated preference data on long distance 

travel survey in 2000. Shen (2009) compared the difference between latent class and 

mixed logit models using two stated choice survey data sets from Osaka, Japan relative to 

mode choice using non-nested test to compare the model fits.  

In the RM context, Carrier (2008) analyzed the choice of airline itinerary and fare 

product based on latent class (LC) model framework. In this model, passenger choice set 

was constituted from booking data, fare rules, and seat availability data. Instead of 

segmenting passenger by trip purpose, which is not available in booking data, the author 

utilizes variables such as frequent flyer membership, ticket distribution channel, and 

travel day of week for the class membership model. The approach is shown to provide a 

more distinct and intuitive segmentation across passengers. Teichert et al. (2008) applied 

the latent class model to explore preferences within airlines segments and analyzed 

respondents’ profiles in terms of individual socioeconomic and trip characteristics. They 

concluded that the segmentation criterion currently applied by airlines does not 
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adequately mirror the heterogeneity in customer’s preference patterns. They suggested 

that product marketing be aligned to passenger attitudes and socio-demographic profile 

which are different across passenger segment. Wen and Lai (2010) used latent class 

model to identify airline passengers’ potential segments and preferences for international 

air carriers using individual socioeconomic and trip characteristics as class membership 

variables. The latent class model is capable of representing heterogeneity across 

passenger segments which results in improved prediction accuracy over the multinomial 

logit model. Specifically, the willingness to pay for service attribute improvements is 

found to be substantially different across air routes and to vary by traveler segment.  

Regardless of the number of research efforts on heterogeneity in choice behavior, 

the application of heterogeneous choice model in RM problem is still relatively limited. 

Most of the studies which incorporated choice models in RM problem have assumed that 

customers are homogeneous in taste preferences. Studies which rely on this assumption 

include Zhang and Adelman (2009); Topaloglu (2009); and Erdelyi and Topaloglu (2010) 

who incorporated customer choice models in the network RM pricing. In their setting, the 

price for each product is chosen from a discrete set, and the demand for each product 

depends on the price of the product only. However, given that RM relies on the premise 

that different customers are willing to pay different amounts for a product, accounting for 

passenger heterogeneity is expected to provide high yield toward RM strategy.  

Recently, a limited number of studies which incorporate heterogeneous passenger 

choice model in RM problem have primarily focused on choice-based deterministic linear 

programming (CDLP) problem. CDLP is a class of revenue optimization which solves 

for sets of product to be made available to the customers at different points in time during 
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the sales horizon. In this context, Rusmevichientong et al. (2012) analyzed a model that 

captures the substitution between the products and preference heterogeneity. Each 

customer is assumed to belong to a particular class and the demand from each customer 

class is governed by a multinomial logit choice model with class-dependent parameters. 

This problem considers a set of different products and maximizes the expected profit 

across all customer classes. Mendez-Diaz et al. (2012) specified LC model which divides 

customers into segments based on choice of product alternatives considered by each 

customer. Their demand model allows product to overlap across segments and the 

preference parameters for each product alternative in the logit model are assumed to be 

known in advance. The authors proved that the latent class logit assortment problem is 

NP-Hard, and solved the choice-based deterministic linear program (CDLP) using branch 

and cut approximation method. The procedure was tested in the context of both 

capacitated and un-capacitated retail assortment problems. 

2.3 Dynamic Discrete Choice Model 

Dynamic discrete choice models have been firstly developed in economics and applied to 

study a variety of problems that include fertility and child mortality Wolpin (1984), 

occupational choice Miller (1984), patent renewal Pakes (1986), and bus engine 

replacement Rust (1987). In general dynamic discrete choice structural models, agents 

are forward-looking and maximize expected inter-temporal payoffs; the consumers get to 

know the rapidly evolving nature of product attributes within a given period of time and 

different products are supposed to be available on the market. The timing of consumers' 

purchases is formalized as an optimal stopping problem where the agent (consumer) must 

decide on the optimal time of purchase. 
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Existing studies on choice modeling for revenue management (RM) have mostly 

ignored temporal effects in individual decision making. Although static models enable 

analysts to address the dependence of demand on the set of products offered by the 

provider, they are unable to model forward-looking agents who would typically wait and 

see before making the final decision. There is an emerging research effort toward 

dynamic frameworks that account for inter-temporal variability in choice modeling. 

Existing research on inter-temporal price variation that considers forward-looking 

consumers includes Stokey (1979), Landsberger and Meilijson (1985), and Besanko and 

Winston (1990). These papers are based on the assumptions that customers are present in 

the market throughout the entire season, and that the seller’s inventory is practically 

unlimited. Customers purchase at most one unit during the season, and they optimally 

select the timing of their purchases so as to maximize individual surplus.  

Su (2007) studied a model of strategic customer by identifying four customer 

classes, different from each other in two dimensions: high versus low valuations and 

strategic (i.e., patient) versus myopic (impatient) behavior. The price path is assumed to 

be predefined by the seller, and after the specific pricing policy is announced, strategic 

consumers can weigh the benefits of waiting for a discount (if any is offered). The paper 

demonstrates that the joint heterogeneity in valuations and in the degree of patience is 

crucial in explaining the structure of optimal pricing policies.  

In RM, behavior of ticket cancellation and exchange is clearly influenced by 

demand uncertainty over time. Stokey (1979) showed that offering a single price can be 

optimal when inter-temporal differentiation is feasible, but assumes that consumers have 

perfect information on the future evolutions of their valuations. In Png’s (1989), 
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consumers face both uncertainty in their valuations as well as uncertainty about the 

capacity. Gale and Holmes (1992) examined advance purchase discounts where a 

monopoly firm offers two flights at different times and where consumers are assumed to 

not know their preferred flight in advance. In this study, advance purchase discounts are 

used to smooth the demand of the consumers with a low cost of time.  

Gallego and Phillips (2004) used a similar approach in their work on flexible 

products. Dana (1998) showed that advance purchase discounts may improve the 

revenues of price-taking firms when consumer demand is uncertain. In this case, firms in 

competitive markets can improve profits by offering advance purchase discounts. Shugan 

and Xie (2000) developed an inter-temporal consumer choice model for advance 

purchase which distinguishes the act of purchasing and consumption. The model accounts 

for buyer’s valuation of services that depends on buyer states at the time of consumption 

and assumes the product capacity to be unlimited. In a later paper, Xie and Shugan 

(2001) extended this analysis of advance selling to the finite-capacity case and introduced 

a refund option.  

Ringbom and Shy (2004) proposed a model where consumers have the same 

deterministic valuation (maximum willingness to pay) for a certain service of product but 

different probabilities of showing up; capacity is assumed to be infinite and prices are 

endogenously given; results show that by adjusting partial refunds it is possible to 

endogenize the participation rates. Aviv and Pazgal (2008) considered an optimal pricing 

problem of a fashion-like seasonal good in the presence of strategic customers (forward-

looking characteristics) with a time-varying valuation pattern. Customers have partial 

information about the availability of the inventory and their arrival is assumed to be time 
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dependent. The system is characterized by a leader follower game under Nash 

equilibrium where customers select the timing of their purchase so as to maximize 

individual surplus while the seller maximizes expected revenue. Gallego and Sahin 

(2010) developed a model of customer purchase decision with evolution of trip schedule 

valuations over time. This analysis considers partial refundable fare based on a call 

option approach; each customer updates his/her valuation over time and decides when to 

issue and when to exercise options in a multi-period temporal horizon.  

Meanwhile, a number of studies on demand uncertainty have focused on the 

supply chain management approach. To our knowledge, Spinler et al. (2002, 2003) are 

among the first in the operations management literature that incorporated consumer’s 

uncertainty in valuations into revenue management, and the first to study partially 

refundable fares. Other studies on uncertain valuations for traditional revenue 

management problems include Levin et al. (2009), Yu et al. (2008), and Koenigsberg et 

al. (2006). There is also an emerging literature that deals with strategic consumers who 

develop expectations on future prices and product availability based on the observed 

history of prices and availabilities (e.g. Besanko and Winston 1990, Gallego et al., 2009, 

Liu and van Ryzin, 2005, Aviv and Pazgal, 2008). 

Based on this comprehensive literature review, some of the most relevant studies 

for our dynamic discrete choice model formulation are described as follows. 

2.3.1 Optimal Replacement of Bus Engine  

Rust (1987) examined the replacement investment decisions at the level of individual 

agent (in this case is the bus manager). The problem considered the decision of how long 

the bus should be operated before the engine was replaced with a new or completely 
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overhauled bus engine. This problem is represented as a discrete decision process with a 

state variable of cumulative mileage on a bus since last engine replacement, and control 

variable which is maintenance manager’s decisions on bus engine replacement. The 

problem represents a regenerative process as the bus is considered as good as new when 

its engine is replaced. The problem is formulated as an optimal stopping problem with the 

mileage process specified as a regenerative random walk and estimated with maximum 

likelihood estimator using nested fixed point (NFXP) algorithm. The feature of this single 

individual level model enable for the model accuracy to be simply evaluated by checking 

with the individual agent whether the estimated utility function is reasonable. In this case, 

the study reveals that the model corresponded closely with the expectation of the decision 

maker. 

2.3.2 Durable Goods with Technological Evolution 

Melnikov (2000) developed estimation to analyze the impact of technological change on 

dynamic of consumer demand for durable product. The timing of consumer purchase was 

formalized as an optimal stopping problem where the solution to the problem defines a 

hazard rate of the product adoption. The empirical analysis of the study is based on the 

data on U.S. computer printer market. The empirical result support the hypothesis of 

forward long consumer’s behavior enabling for better demand forecast.  

2.3.3 New Durable Goods with Heterogeneous Consumer Taste 

Gowrisankaran and Rysman (2009) developed a dynamic model of consumer preferences 

for new durable goods with heterogeneous consumer taste. The framework was applied to 

the new durable goods with infinite time horizon. The products are assumed to be 

infinitely durable and follow Markov process based on the firm optimizing behavior. The 
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decision problem for consumer   at time   is to make decision between (1) choosing 

among one of among products available in period   and (2) choosing not to purchase any 

product in the current period. The consumer is then faced with similar but not identical 

decision problem at time     and onward. The decision maker is assumed to make a 

decision which maximizes the sum of the expected discounted utility conditional on 

information at time  .  

2.4 Ticket Cancellation and Exchange Model 

In the context of ticket cancellation and exchange model, a number of papers have been 

published in the past decade. Garrow and Koppelman (2004a) proposed an airline 

cancellation and exchange behavior model based on disaggregate passenger data; airline 

travelers’ no-show and standby behavior is modeled using a multinomial logit (MNL) 

model estimated on domestic US itineraries data. The approach enables the identification 

of rescheduling behavior based on passenger and itinerary characteristics and supports a 

broad range of managerial decisions. Variable used to identify passenger rescheduling 

behavior are traveler characteristics, familiarity to the air transportation system, 

availability of viable transportation alternatives, and trip characteristics. Garrow and 

Koppelman (2004b) extended their work by introducing a nested logit structure and 

demonstrated the benefit of directional itinerary information. The nested logit (NL) tree 

groups show, early standby, and late standby alternatives in one nest and no show 

alternative in another nest. The analysis emphasized the superiority of nested logit model 

structure over multinomial logit model and the importance of distinguishing between 

outbound and inbound itineraries.  



27 

Iliescu et al. (2008) further expanded the work of Garrow and Koppelman (2004a, 

2004b) by proposing a discrete time proportional odds (DTPO) model to predict the 

occurrence of ticket cancellation and exchange based on the Airline Reporting 

Corporation (ARC) data. The cancellation probability is defined as a conditional 

probability that a purchased ticket will be canceled in a specific time period given it 

survived up to that point (hazard probability). Results show that the intensity of 

cancellation is strongly influenced by the time from the ticket purchase and the time 

before flight departure as well as by other covariates (departure day of week, market, 

group size, etc.). Specifically, higher cancellation is observed for recently purchased 

ticket and ticket which associated departure dates are near.  

Graham et al. (2010) adopted discrete time proportional odds (DTPO) model to 

investigate when and why travelers make changes to their airline itineraries. Analysis is 

based on a nine month period panel data of university employees in Atlanta, US. The 

analysis focused on tickets issued less than 60 days before the outbound departure date. 

The use of panel data enabled the analysts to study how cancellation behavior differs by 

frequency of travel as well as by carrier. The deriving empirical analysis identifies the 

reasons why business travelers exchange their ticket, and concluded that differences 

exists between outbound and inbound itineraries, between exchange and cancellation 

rates for frequent and infrequent business travelers, across air carriers and timing when 

refund and exchange events occur. The results also indicate that the timing of 

cancellation exhibit a strong pattern, i.e., ticket changes are two to three time more likely 

to happen within the first week after purchase and are more likely to occur as the 

departure date approaches.   
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2.5 Review Summary and Research Directions 

Based on the literature review, this section summarizes major studies related to this 

research and identifies promising research directions for this dissertation. Table 2.1 

represents major studies related to passenger choice models in the RM applications. In 

term of model characteristics, it is said to be multi-fare if there are multiple fare offered 

for the same set of resources. A multi-leg indicates whether the network (in airline 

problem), or the sequential network nature (railway problem) is addressed in the problem. 

Dynamic pricing indicates whether the price of the product changes during the sale 

horizon via optimization step. Table 2.2 represents major studies of dynamic choice 

models where the framework is relevant to this research. Table 2.3 represents major 

studies of RM revenue optimization which incorporate passenger demand model in their 

framework focusing on the formulation of joint pricing and seat allocation problem. 

Consideration are given to the number of products and time periods accounted, the 

presence of a competitor, the number of legs in the network, the approaches used to 

model demand and to optimize the problem of pricing and seat allocation. These three 

tables also compare the studies proposed in this dissertation to the existing studies 

reviewed.  

 



29 

Table 2.1 Summary of static choice models 

Authors Application RM Policy Model Characteristics 

Andersson (1998); Algers and 

Besser (2001)  

Buy-up and recapture factor for 

airline 

Pricing Logit - 

Talluri and van Ryzin (2004)  Developing model framework - Logit Multi-fare, capacity allocation 

Ongprasert (2006)   Fare discount strategy for Japan 

intercity high speed rail service 

Pricing Nested Logit Multi-fare, multi-leg,  capacity 

allocation 

Vulcano et al. (2008)  Airline single-leg market Pricing Logit with expectation 

maximization (EM) 

Multi-fare, capacity allocation 

Carrier (2008)  Airline Itinerary and fare product 

choice 

- Latent Class (LC) model Multi-fare, multi-leg,  capacity 

allocation 

Sibdari et al. (2008)  Amtrak auto train dynamic 

pricing 

Dynamic 

Pricing 

Poisson demand model Capacity allocation 

Whelan et al. (2008) Fare structure on train 

overcrowding 

- Nested Logit Multi-fare, multi-leg 

This research Ticket purchase timing Joint pricing 

and seat 

allocation 

MNL, LC, ML 

(parametric, non-

parametric) 

Single-product, multiple-time 

periods, heterogeneous 

passengers 
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Table 2.2 Summary of dynamic choice models 

Authors  Application Model Data Characteristics Estimation Method 

Rust (1987) Bus engine 

replacement 

Logit 10 years monthly data on 

bus mileage (104 buses) 

Single-agent, homogeneous 

product attribute 

Nested fixed point 

Melnikov (2000) Computer printer Nested logit Monthly sales data (27 

manufacturers) 

Homogeneous consumers 

with one purchase, 

differentiated durable 

products 

Nested three step 

method  

Gowrisankaran 

and Rysman 

(2007) 

Digital camcorder 

demand 

Logit Monthly data of 378 

models and 11 brands, 

number of units sold 

Repeated purchase, 

heterogeneous consumers 

and differentiated products 

Three levels of non-

linear optimization 

Iliescu et al. 

(2008) 

Ticket 

cancellation/exchange 

(application in RM 

overbooking) 

Discrete time 

proportional 

odd (DTPO) 

model 

Airline ticketing data Heterogeneous consumers 

by segmentation covariates, 

time varying covariates. 

Conditional probability 

maximum likelihood 

(DTPO likelihood 

function) 

Graham et al. 

(2010) 

Ticket 

cancellation/exchange 

Discrete time 

proportional 

odd (DTPO) 

model 

Airline revealed preference 

ticketing data 

Heterogeneous consumers Conditional probability 

maximum likelihood 

(DTPO likelihood 

function) 

This research  Ticket cancellation/ 

exchange 

Logit Railway ticket reservation 

data 

Heterogeneous customers 

by segmentation covariates, 

single exchange/cancel 

decision 

Two step look-ahead DP 

approximation 
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Table 2.3 Summary of RM revenue optimization framework  

Authors No. of 

product>1 

Demand Model No. of time 

period>1 

Multiple legs Competitor Joint 

pricing/seat 

allocation 

Simultaneous 

Optimization 

Weatherford (1997) √ Linear function of price 

with cross elasticities 

      √ √ 

Kuyumcu and 

Garcia-Diaz (2000) 

√ Normally distributed 

demand 

  √   √   

Bertsimas and de 

Boer (2002) 

√ Function of price  √ √   √   

Cote et al. (2003) √ Constant   √ √ √   

Ongprasert (2006) √ Nested logit √ √ √ √   

Chew et al. (2008) × Linear function of price  √     √   

Iliescu (2008) √ Discrete time proportional 

odd (DTPO) 

√         

Cizaire (2011) √ Function of price  √     √ √ 

This research × MNL, LC, ML choice 

models, log-linear demand 

functions 

√ √   √ √ 
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Based on the review summary in Table 2.1 to Table 2.3, the research directions 

addressed by this dissertation are described as follows:  

2.5.1 Railway Network Characteristic 

The simplified RM problem in airline is generally formulated as a single-leg problem 

without interdependencies of RM strategies between legs. However, this simplification is 

less appropriate for railway because majority of trips are composed of multiple legs and 

the capacity of each leg is shared across multiple markets. To account for this 

characteristic, the network revenue optimization approach considered in this dissertation 

will take this aspect into account. 

2.5.2 Joint Pricing and Seat Allocation  

Based on the literature, some studies on joint pricing and seat allocation have been made 

for the network setting. However, few studies have proposed a simultaneous optimization 

of pricing and seat allocation. Most of them relied on iterative approach where each 

element is optimized sequentially. To this aspect, we believe that the railway operator 

revenues could be further improved by developing a simultaneous RM optimization 

model of pricing and seat allocation which takes choice model parameters as inputs for 

the demand side response. The analysis of the combined impacts of pricing and seat 

allocation with realistic demand response for RM strategy is expected to improve the 

revenue optimization process.  
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2.5.3 Passenger Taste Heterogeneity 

The review of choice model in airline RM provides several promising approaches 

applicable for railway problem. Review shows that the latent class approach can address 

the issue of unobservable trip purpose from the booking data by classifying passenger 

into classes using other elements of booking data such as trip characteristics. The 

applicability of the approach to this research will then be explored. More importantly, the 

choice model accounting for heterogeneity can be incorporated in the RM optimization 

models and allows for more realistic demand side response, which can be useful for 

supporting range of RM decisions (e.g. pricing, seat allocation). 

2.5.4 Inter-Temporal Effects in Ticket Cancellation and Exchange Behavior 

Ticket cancellation and exchange is influenced by passenger uncertainty of trip schedule 

which involves inter-temporal effects in the decision process. This effect is highly 

observed among strategic customers where studies have emphasized the impact of their 

behavior toward RM (e.g. Castillo et al., 2008; Zhang, 2005).This study of inter-temporal 

effects on passengers’ decisions has been very limited in the RM literature especially for 

ticket cancellation and exchange. Moreover, to date none of the ticket cancellation and 

exchange models in RM is capable of predicting a new departure time for the exchanged 

ticket. Thus, this dissertation aims to fulfill this gap by developing dynamic discrete 

choice model (DDCM) for ticket cancellation and exchange behavior. 
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Chapter 3 : Methodologies 

This chapter summarizes several methodologies in modeling passenger choice with an 

emphasis the revenue management (RM) application. The review focuses on methods 

feasible for the booking data including static and dynamic discrete choice model such as 

multinomial logit (MNL) model, latent class (LC) model, mixed logit (ML) model, and 

the dynamic discrete choice model (DDCM). 

3.1 Multinomial Logit (MNL) Model  

The logit model is the easiest and most widely used discrete choice model. This is 

because its choice probabilities take a closed-form solution, thus allowing the estimation 

to be done numerically. In a logit model, a decision maker labeled    faces   alternatives. 

The utility that the decision maker obtains from alternative   is decomposed into 

deterministic term     and error term     which is treated by researcher as random:  

                 (3.1) 

The error term,     is assumed to be independently, identically distributed 

extreme value type I (Gumbel distribution). The probability that the decision maker 

chooses alternative   is: 

                                  (3.2) 

                                      (3.3) 

If     is considered given, the expression is the cumulative distribution for each 

     evaluated at             which according to Gumbel distribution (Type I extreme 
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value) is                          . Since  ’s are independent, the cumulative 

distribution over all     is the product of the individual cumulative distribution: 

                                   

   

 (3.4) 

With     not given, the choice probability is the integral of         over all values 

of     weighted by Gumbel distribution density: 

 

         

                            

   

                              
(3.5) 

This yields the result in closed form solution: 

     
        

          
 (3.6) 

where utility is usually specified to be linear in parameters: 

           (3.7) 

where     is a vector of attributes related to alternative   thus, the logit choice 

probability becomes: 

     
          

            
 (3.8) 

3.2 Mixed Logit (ML) Model  

Mixed logit is a highly flexible model capable of approximating any random utility 

model (McFadden &Train, 2000). It obviates three limitations of the standard logit model 

by allowing for random taste variation, unrestricted substitution patterns, and correlation 
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in unobserved factors over time. From fare pricing perspective, distribution imposed on 

individual’s preference for an attribute enables an analyst to investigate the hypothesis 

that some individuals are more price conscious than other individuals, and therefore 

improve fare strategy. 

Mixed logit probabilities are the integral of standard logit probabilities over a 

density of parameters ( ). Choice probabilities of a mixed logit model can be expressed 

in the form: 

                    (3.9) 

where         is the logit probability evaluated at parameter  : 

        
           

            
 
   

 (3.10) 

and      is a density function.        is deterministic term observed by the 

analyst, which depends on the parameters  . Usually, the utility is linear in  , thus 

             . The mixed logit probability then takes its usual form: 

       
          

            
           (3.11) 

Mixed logit model can be viewed as a mixture of the logit function evaluated at 

different   s with      as the mixing distribution. 

3.3 Latent Class (LC) Model  

Latent class model is based on discrete segmentation which assumes that heterogeneity in 

passenger behavior is likely to be driven by specific elements. The approach generally 

group observations into meaningful segments which have similar needs, constraints, and 
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preferences. For instance, passengers can be segmented to business and leisure travelers 

with different preferences parameters defined. 

In latent class model, segmentation is done through probabilistic approach which 

link explanatory variable such as trip’s characteristics and passenger profile into class 

membership model when assigning passenger into classes. The class membership model 

is combined with choice model enabling the model to account for differences in choice 

behavior between different segments of the market.  

The structure of the latent class (LC) passenger choice model could be described 

as follows. Let   represents alternative from        in the choice set   of booking  . The 

model form can be written as: 

                 

 

   

                   (3.12) 

where   

    is class index; {1, 2, …, S } 

     is class membership explanatory variable 

      is class specific choice models explanatory variable 

The utility function of alternative i given the customer is in the class s can be written as: 

                (3.13) 

where    

      is a (1xK) vector of choice model explanatory variable 

     is a (Kx1) vector of parameters  

      is a random disturbance (i.i.d. extreme value) 
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The class specific choice probability of travel option i can be expressed as: 

             
               

                
  
   

               (3.14) 

where      are the unknown parameters of the class-specific choice model. The 

probability of belonging to the latent class s can be written as: 

          
            

             
 
   

 (3.15) 

where     are the unknown parameters for class membership model.  

3.4 Dynamic Discrete Choice Model (DDCM) 

3.4.1 Structural Estimation of Markov Decision Process 

Markov decision process has a rich framework in modeling problem choices made over 

time under uncertainty. The framework is generalized as sequential decision making with 

two types of variable, state variables    and control variables    both of which indexed by 

time            The decision maker is presented by set of primitives          

          is a utility function representing agent’s preference at time  .                 is 

Markov transition probability representing agent’s belief about uncertain future state. 

        is the rate at which the agent discount utility in future period. Agents are 

assumed to be rational behaving according to an optimal decision rule           which 

solves 

     
        

 
                    

 

   

  (3.16) 
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where    denotes expectation with respect to controlled stochastic process 

         induced by the decision rule  . 

3.4.2 General Case of DDCM Problem 

In discrete decision process, the agents are forward-looking which choose a decision rule 

              to maximize their expected discounted utility over the time horizon with 

discount factor          This could be represented as the inter-temporal optimization 

problem in which the solution is given recursively by Bellman’s equation: 

            
      

                     
                       (3.17) 

The function         is the maximum expected discount utility obtainable by the 

agent when the state variable is     . We then define the expected value function,    by 

                 
                      (3.18) 

This allows us to write Bellman’s equation in a slightly simpler notation as: 

            
      

                            (3.19) 

The conditional independence (CI) enables us to simplify the above problem by 

providing simple formula for the likelihood function. CI implies: 

                                                   (3.20) 

By assuming further that   is a multivariate extreme value distribution, the full 

likelihood function for the sample data could be shown by the function: 

                                      

 

   

                  (3.21) 
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Dynamic discrete choice modeling (DDCM) involves estimation of the unknown 

parameter vector  . The estimation procedure which is maximum likelihood in the case 

of DDCM has nested problem structure. It involves the estimation of   that maximizes 

the full likelihood function or the partial likelihood function as: 

                  

 

   

 (3.22) 

Subject to the constraint that the function     is given by the unique fixed point 

to the contraction mapping           defined by: 

 

                          

                            
      

       

            
(3.23) 

where the conditional choice probability ),|( xdP is given by classical 

multinomial logit formula: 

          
                       

                                  
 (3.24) 

3.5 Conclusions 

This chapter reviews passenger choice model based on several methodologies from static 

model (MNL, ML, and LC) to dynamic model (DDCM). The chapter provides 

methodological foundation for the development of ticket purchase timing model 

accounting for taste heterogeneity (in Chapter 5) and dynamic discrete choice model of 

ticket cancellation and exchange (in Chapter 8). 
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Chapter 4 : Data Analysis 

This chapter analyzes the data used in this research. The analysis focuses on elements of 

ticket reservation data useful for developing the passenger choice models in Chapter 5 

and Chapter 8, and demand functions in Chapter 6. The analysis focuses on distribution 

of passenger demand, advance purchase, fare, and behavior of ticket cancellation and 

exchange. 

4.1 Analysis of Passenger Demand 

Ticket reservation data of the US intercity passenger railway collected over two months 

period in 2009 are used for the analysis. Data contain information in terms of trip origin, 

destination, fare class, reservation date, departure date, departure time, arrival time, fare, 

and accommodation charge. Data analysis focuses on the first month data which contains 

the total of 406,422 observations.  

This railway service under consideration consists of two ticket classes: first class, 

and coach class. This research focuses on coach class passengers which are the 

predominant demand of this railway service (accounting for 92% of the total demand) 

and only on reservations which are eventually confirmed and paid. To reduce the problem 

size, the analysis focuses on the northbound trip. This results in a final data set of 

110,828 observations. Overview of data statistics in term of distribution of passenger 

demand, advance booking, and fare are as follows:  
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4.1.1 Demand by Trip Schedule 

 

Figure 4.1 Monthly passenger demand by day of week 

 

Figure 4.2 Monthly passenger demand by day of week and time of day  

Figure 4.1 shows passenger demand distribution by day of week which indicates 

higher demand on weekday rather than weekend. Saturday departure shows least demand 

compared to other days of week. Figure 4.2 shows passenger demand distribution by day 
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of week and time of day
1
 which indicates high demand for passengers departing during 

PM off peak (12:00-3:59 PM.) and during PM peak (4:00-6:29 PM.). 

4.1.2 Advance Purchase Behavior 

 

Figure 4.3 Number of purchased tickets prior to departure 

Figure 4.3 shows number of purchased tickets by number of day before departure. 

It indicates that about 98% of the passengers purchased the tickets no earlier than 30 days 

before departure. The majority of the passengers (82.56%) purchased the ticket no earlier 

than one week before departure and a significant number of passengers (60.01%) 

purchased tickets no earlier than 2 days before departure. 

 

 

 

 

                                                 
1
 Departure time is grouped using time of day period of the intercity trip (Jin, 2007). 
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4.1.3 Fare Distribution 

 

Figure 4.4 Average fare by booking time of major markets 

Figure 4.4 represents fare distribution by number of day before departure in major 

markets (Station 16 to Station 8, and Station 8 to Station 1). These two markets account 

for more than one third of the passenger demand in the northbound direction. It shows 

that fares primarily increase as time approaches departure. The same fare pattern is also 

observed in other markets.  

4.2 Analysis of Ticket Exchange and Cancellation  

The data set used for the analysis has been extracted from intercity railway ticket 

reservation records registered in March 2009.  We focus on coach class
2
 passengers 

traveling in the north bound direction. This data set contains 155,175 individual 

                                                 
2
 The coach class of this railway service accounts for 92% of the total demand. 
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transactions expressed in terms of ticket purchase, cancellation, and exchange over time 

prior to departure. Ticket exchange decision is defined as the exchange of the original 

ticket for a new one and the payment of an additional cost depending on the operator’s 

exchange policy. In our case study, passengers are not charged with exchange fee, but 

have to pay the difference between the new and the old ticket fare. In the case of ticket 

exchange, passenger either obtains a new ticket right away or after several time periods 

(repurchase). Ticket cancellation is defined as the final cancellation of the ticket with the 

passenger obtaining ticket refund depending on the operator’s refund policy.  

Table 4.1 shows the descriptive statistics derived from the data set in use. Ticket 

exchange and cancellation account for 18.22% and 29.75% of the sample respectively.  

Table 4.1 Overview of ticket cancellation and exchange statistics 

Ticket exchange No. of reservations Percent of exchange Percent of total 

1. Total exchange  28,280 100.00% 18.22% 

1.1 Number of exchange 

   
Exchange (one time) 22,857 80.82% 14.73% 

Exchange (one or two times) 27,088 95.79% 17.46% 

Exchange (more than 2 times) 1,193 4.22% 0.77% 

1.2 Type of exchange 

   
Change OD (a) 4,773 16.88% 3.08% 

No change (either OD or departure) 7,001 24.76% 4.51% 

Reschedule departure day (b) 1,406 4.97% 0.91% 

Reschedule departure time 13,565 47.97% 8.74% 

Reschedule departure day and time (c) 1,539 5.44% 0.99% 

Ticket Cancellation No. of reservations Percent of cancel Percent of total 

2. Total final cancellation 46,158 100.00% 29.75% 

2.1 Final cancellation after exchanged 3,506 7.60% 2.26% 

Total (Northbound, March 2009, Coach Class) 155,175   100.00%  

Effective Sample (Total - (a) - (b) - (c)) 147,457   95.03%  
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Single exchange and no more than two exchanges account for 80.82% and 

95.79% of the exchange ticket respectively (14.73% and 17.46% of the sample) with the 

illustration shown in Figure 4.5.  

 

Figure 4.5 Number of exchange 

We observe that only 2.26% of the sample make an exchange prior to ticket 

cancellation; thus for the model in Chapter 8, we assume that passenger make ticket 

adjustment no more than once (either exchange or cancel). Based on this assumption, 

data are constructed to model the first exchange decision in case of multiple exchange, 

and model final cancellation in case passenger both exchange and cancel. We do not 

consider passengers who change origin-destination or reschedule departure day because 

the share of these population is relatively low accounting for 3.08% and 1.90% (0.91% + 

0.99%) of the sample respectively with the illustration shown in Figure 4.6. 
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Figure 4.6 Type of exchange 

Consideration of changes in origin-destination and departure day decisions 

requires the definition of a choice set that is significantly different across passengers and 

no information is available to construct a realistic choice set for each passenger. This 

results in the focused sample population to be composed of entire sample (155,175) 

subtracted by passengers with origin-destination change and departure day change (a, b, 

and c in Table 4.1) which results in 147,457 individual ticket reservation records of the 

sample. 

4.3 Conclusions  

This chapter provides statistical overview of data focusing on the aspects related to the 

model development in the following chapters. The analysis of passenger demand 

provides an insight on distribution of demand, advance booking, and fare which are 

useful for setting up the structure and constructing the choice set of the models in Chapter 

5. The analysis also complements the specification of the demand functions in Chapter 6. 
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The analysis of ticket cancellation and exchange provides an insight for setting up the 

structure, and constructing the choice set for the model in Chapter 8. 
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Chapter 5 : Choice Models Accounting for Taste Heterogeneity  

Most of the empirical studies in railway revenue management (RM) reported so far do 

not account for heterogeneity across different categories of travelers. Passenger taste 

heterogeneity is considered a major characteristic of the railway industry since passenger 

preferences generally vary by distance (short haul or long haul) and by time of day. 

Given that RM relies on the premise that different customers are willing to pay different 

amounts for a product, accounting for passenger heterogeneity is expected to provide 

high yield toward RM strategy. More specifically, Garrow (2010) suggests that 

calibrating models by segments to distinguish between time-sensitive and price-sensitive 

customers can highly impact demand prediction accuracy and contribute to significant 

RM system performance.   

This chapter presents an application of advanced econometric techniques by 

exploiting railway ticket reservation data to develop choice model accounting for taste 

heterogeneity across different categories of passengers (Hetrakul and Cirillo, 

forthcoming). To this scope, based on the data analysis in the previous chapter, the 

methodologies in Chapter 3 based on multinomial logit, latent class, and mixed logit 

models are applied in this chapter to model ticket purchase timing decisions in three 

market segments. In Section 5.1, selected sample used for model estimation is described. 

Section 5.2 to Section 5.4 are dedicated to the choice set generation, and estimation 

results. These sections investigate heterogeneous characteristics of passenger behavior 

and quantify the impact of fare, advanced booking, and departure schedule toward 

purchase timing decision. To evaluate models’ prediction capability, their validation is 
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presented in Section 5.5 and their performance is compared in Section 5.6. Later, in 

Chapter 7, these choice models will be incorporated in the RM optimization. 

5.1 Sample Selection  

Ticket reservation data of US intercity passenger railway in 2009 are used in this 

analysis. The analysis focuses on coach
3
 class passengers traveling northbound with the 

confirmed ticket contributing to actual revenue. This results in the total of 110,828 

observations. 

This railway service consists of 16 stations total, resulting in 119 origin-

destination pairs for the north bound trip. However, some origin-destination pairs have 

relatively small sample sizes which are insufficient for the model estimation. To alleviate 

this problem and also reduce the number of models, the 16 stations are aggregated into 4 

station groups. The estimated models corresponded to each station groups are shown in 

Table 5.1. 

 

 

 

 

 

 

 

 

                                                 
3
 The coach class of this railway service accounts for 92% of the total demand. 
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Table 5.1 Choice model number corresponded to station group 

Origin/Destination Station group1 Station group2 Station group3 Station group4 

Station group1 Model 7 - - - 

Station group2 Model 6 Model 8 - - 

Station group3 Model 4 Model 5 Model 9 - 

Station group4 Model 1 Model 2 Model 3 Model 10 

 

All the models in Table 5.1 are estimated (see appendix A), however due to space 

limitation, only 3 models for representative markets are focused in this chapter as 

follows: 

1. Long Distance: trip from station group 4 to station group 2 (Model 2) 

2. Medium Distance: trip from station group 2 to station group 1 (Model 6) 

3. Short Distance: trip within station group 4 (Model 10) 

5.2 Choice Set Generation 

The fare of this railway service varies depending on departure day of week, departure 

time, how early the reservation is made in advance, and passenger demand for each 

departure. Different passenger groups are also subjected to different discount policy such 

as seniors, children, military, and group travel. Based on this fare variation over the sale 

horizon, passengers are assumed to make the choice of when to purchase the ticket. Data 

analysis indicates that 98 percents of the tickets were purchased no earlier than 30 days 

before departure. Thus, it is assumed that passenger makes the purchase timing decision 

on the choice set of 31 alternatives, from 30 days before departure (booking day 1) to 

departure day (booking day 31). In reality, although it is possible that the choice set can 

vary across individuals depending on when the travel decision is made. However, this 
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approach captures the maximum number of choice alternatives considered by the 

passenger, which results in passengers who actually consider a smaller choice set (less 

than 30days before departure) to have significantly lower probability of purchase on the 

alternative not being considered. This approach has been widely used in discrete choice 

analysis especially for the mode choice models, in the circumstance that decision maker 

does not necessarily consider all the possible choices when making the decision (e.g. 

transit not in the vicinity area being included in the mode choice). 

Based on the data set, for each individual, we can only observe fare on the 

purchase day but not on other days in the sale horizon. To accommodate choice 

modeling, fares on other days in the sale horizon have been approximated from the actual 

data by averaging over the observed fares within the same booking day over the month. 

Different choice models have been estimated for the three market segments identified: (1) 

multinomial logit (MNL), (2) mixed logit (ML), (3) latent class (LC), and (4) 

multinomial logit (MNL) with socioeconomic information. 

5.3 Estimation Results and Model Fit Comparison 

5.3.1 Estimation Results 

The estimation results derived from multinomial logit, mixed logit, and latent class model 

across three market segments are reported in Tables 5.2 to 5.4. The multinomial and 

mixed logit models are estimated with AMLET (Another Mixed Logit Estimation Tool) 

(Bastin, 2011). The latent class model is estimated with Latent Gold Choice 4.5, a 

software package by Statistical Innovations specifically designed for latent class choice 

modeling (Vermunt and Magdison, 2005).  
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For the model fit comparison, we use adjusted rho-square to account for penalty 

in including variables which are statistically insignificant. The approach encourages 

balanced specifications by trading off the improvement in the log likelihood function 

against the inclusion of additional variables. Given that our model specification does not 

include alternative-specific constants, it is appropriate to measure the goodness of fit of a 

model with respect to zero;        We have chosen the adjusted rho-square     
   

provided by Koppelman and Bhat (2006) for the model fit comparison given by: 

    
  

             

           
   

       

     
 (5.1) 

where   is the number of parameters used in the model.  
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Table 5.2 Long distance choice model result 

  MNL   ML   LC MNL with Socioeconomics 

              Choice Model Class1   Class2           

Variable Est T-Stat   Est T-Stat   Variable Est T-Stat 

 

Est T-Stat   Variable Est T-Stat   

advbk -0.184 42.872 * -0.370 141.708 * advbk -0.139 -21.091 * -0.899 -18.162 * advbk -0.248 43.103 * 

price.period1 -0.006 3.634 * -5.318 77.001 * price.period1 0.000 0.111 

 

0.014 1.560   price.adult -0.024 10.139 * 

price.period2 -0.012 9.173 * (2.830) (60.153) * price.period2 -0.003 -1.684 

 

-0.082 -2.069 * price.child (2-15) -0.004 0.279   

price.period3 -0.011 10.783 *   

 

  price.period3 -0.005 -2.778 * -0.049 -5.557 * price.senior (62+) -0.023 9.401 * 

price.period4 -0.010 10.380 *   

 

  price.period4 -0.001 -0.737 

 

-0.069 -7.931 * price.unacc child (8-11) 0.001 0.072   

price.period5 -0.005 5.287 *   

 

  price.period5 0.003 1.789 

 

-0.077 -8.052 * price.student advantage -0.010 2.838 * 

price.period6 -0.003 3.366 *   

 

  price.period6 -0.010 -4.348 * -0.059 -6.941 * price.adultAAA member -0.010 3.720 * 

  

  

    

 

    

     

  price.childAAA member - - - 

  

  

    

 

  Class  Model Class1   Class2   price.military adult -0.028 7.638 * 

  

  

    

 

  Class Size 0.619 

 

0.381   price.disabled adult -0.024 4.788 * 

  

  

    

 

  Variable Est T-Stat 

 

Est T-Stat   price.others -0.043 17.059 * 

  

  

    

 

  Intercept 0.181 4.845 * -0.181 -4.845 * price.period6 -0.019 8.249 * 

  

  

    

 

  Monday -0.402 -14.288 * 0.402 14.288 *   

  

  

wknd.period1 1.240 25.231 * 1.897 20.459 * Tuesday -0.338 -11.586 * 0.338 11.586 * wknd.period1 2.012 40.426 * 

wknd.period2 1.099 27.923 * 0.681 11.363 * Wednesday -0.375 -11.908 * 0.375 11.908 * wknd.period2 0.878 34.139 * 

wknd.period3 0.407 13.106 * 0.347 8.765 * Thursday -0.286 -9.502 * 0.286 9.502 * wknd.period3 -0.044 1.492   

wknd.period4 0.466 14.830 * 0.041 0.977 

 

Friday -0.213 -7.690 * 0.213 7.690 * wknd.period4 0.050 1.751   

wknd.period5 -0.472 13.477 * -0.483 10.257 * Saturday -0.019 -0.433 

 

0.019 0.433   wknd.period5 -0.133 4.703 * 

wknd.period6 0.260 9.369 * 0.516 11.436 *   

     

  wknd.period6 0.236 7.935 * 

  

  

    

 

  Early morning 1.085 19.204 * -1.085 -19.204 *   

  

  

  

  

    

 

  AM peak 0.985 22.737 * -0.985 -22.737 *   

  

  

  

  

    

 

  AM off peak 0.474 15.353 * -0.474 -15.353 *   

  

  

  

  

    

 

  PM off peak 0.096 3.491 * -0.096 -3.491 *   

  

  

  

  

    

 

  PM peak 0.113 4.036 * -0.113 -4.036 *   

  

  

No. of observations 37,373     37,373   No. of observations       37,373   No. of observations   37,373   

Rho-squared: 

 

0.2970     0.3397   Rho-squared: 

    

0.3034   Rho-squared: 

 

0.2904   

Adjusted rho-squared: 0.2969     0.3396   Adjusted rho-squared: 

  

0.3032   Adjusted rho-squared: 0.2903   

Log-likelihood at optimal -90,226     -84,742   Log-likelihood at optimal 

  

-89,402   Log-likelihood at optimal -91,070   

Log-likelihood  at zero -128,338     -128,338   Log-likelihood  at zero 

  

-128,338   Log-likelihood  at zero -128,338   

LL at constant -90,487     -90,487   LL at constant       -90,487   LL at constant  -90,487   

*Statistically significant at the 5% significance level. Parenthesis indicates standard deviation. 
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Table 5.3 Medium distance choice model result 

  MNL   ML   LC MNL with Socioeconomics 

              Choice Model Class1   Class2           

Variable Est T-Stat   Est T-Stat   Variable Est T-Stat 

 

Est T-Stat   Variable Est T-Stat   

advbk -0.160 30.287 * -0.392 100.986 * advbk -0.084 -10.870 * -0.672 -16.043 * advbk -0.293 69.420 * 

price.period1 -0.018 6.775 * -5.421 35.523 * price.period1 0.017 3.864 * -0.014 -0.917   price.adult -0.064 27.225 * 

price.period2 -0.024 9.831 * (4.252) (29.595) * price.period2 0.018 3.851 * -0.130 -2.310 * price.child (2-15) -0.071 5.034 * 

price.period3 -0.021 9.799 * 

   

price.period3 0.018 3.826 * -0.073 -4.953 * price.senior (62+) -0.063 24.982 * 

price.period4 -0.018 8.377 * 

   

price.period4 0.022 4.696 * -0.087 -5.805 * price.unacc child (8-11) -0.063 10.836 * 

price.period5 -0.012 5.593 * 

   

price.period5 0.029 6.196 * -0.093 -6.019 * price.student advantage -0.054 19.977 * 

price.period6 -0.008 4.074 * 

   

price.period6 0.010 1.792 

 

-0.077 -5.371 * price.adultAAA member -0.057 23.248 * 

  

  

  

   

  

     

  price.childAAA member - - - 

  

  

  

   

Class  Model Class1   Class2   price.military adult 0.396 0.786   

  

  

  

   

Class Size 0.566 

 

0.434   price.disabled adult -0.063 7.736 * 

  

  

  

   

Variable Est T-Stat   Est T-Stat   price.others -0.088 34.916 * 

  

  

  

   

Intercept 0.952 8.602 * -0.952 -8.602 * price.period6 -0.058 24.431 * 

  

  

  

   

Monday -1.212 -13.484 * 1.212 13.484 *   

  

  

wknd.period1 1.163 21.812 * 4.299 57.340 * Tuesday -1.061 -12.027 * 1.061 12.027 * wknd.period1 1.582 30.329 * 

wknd.period2 1.203 29.228 * 1.747 43.787 * Wednesday -1.161 -12.777 * 1.161 12.777 * wknd.period2 0.855 23.879 * 

wknd.period3 0.751 19.745 * 0.168 4.589 * Thursday -1.196 -13.013 * 1.196 13.013 * wknd.period3 0.389 12.255 * 

wknd.period4 0.537 17.042 * -0.664 20.754 * Friday -0.859 -11.172 * 0.859 11.172 * wknd.period4 0.398 12.808 * 

wknd.period5 -0.149 3.310 * -1.187 27.385 * Saturday -0.837 -9.565 * 0.837 9.565 * wknd.period5 0.296 6.590 * 

wknd.period6 -0.504 13.923 * -1.353 30.550 *   

     

  wknd.period6 -0.520 11.507 * 

  

  

  

   

Early morning 0.977 11.940 * -0.977 -11.940 *   

  

  

  

  

  

   

AM peak 0.852 14.129 * -0.852 -14.129 *   

  

  

  

  

  

   

AM off peak 0.428 8.998 * -0.428 -8.998 *   

  

  

  

  

  

   

PM off peak 0.109 2.949 * -0.109 -2.949 *   

  

  

  

  

  

   

PM peak -0.076 -2.027 * 0.076 2.027 *   

  

  

No. of observations 29,514     29,514   No. of observations       29,514   No. of observations   29,514   

Rho-squared: 

 

0.2779     0.3500   Rho-squared: 

    

0.2816   Rho-squared: 

 

0.2760   

Adjusted rho-squared: 0.2778     0.3499   Adjusted rho-squared: 

   

0.2814   Adjusted rho-squared: 0.2758   

Log-likelihood at optimal -73,182     -65,877   Log-likelihood at optimal 

  

-72,809   Log-likelihood at optimal -73,383   

Log-likelihood  at zero -101,351     -101,351   Log-likelihood  at zero 

  

-101,351   Log-likelihood  at zero -101,351   

LL at constant -73,807     -73,807   LL at constant       -73,807   LL at constant   -73,807   

*Statistically significant at the 5% significance level. Parenthesis indicates standard deviation. 
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Table 5.4 Short distance choice model result 

  MNL   ML   LC MNL with Socioeconomics 

              Choice Model Class1   Class2           

Variable Est T-Stat   Est T-Stat   Variable Est T-Stat 

 

Est T-Stat   Variable Est T-Stat   

advbk -0.534 20.090 * -0.602 58.485 * advbk -1.164 -6.080 * -0.327 -10.734 * advbk -0.674 32.119 * 

price.period1 0.056 7.863 * -6.945 25.872 * price.period1 -0.378 -1.451 

 

-0.066 -2.898 * price.adult -0.215 22.716 * 

price.period2 0.011 2.760 * (3.371) (20.846) * price.period2 -0.518 -1.953 

 

-0.083 -3.591 * price.child (2-15) - - - 

price.period3 -0.007 2.626 *   

 

  price.period3 -0.448 -2.712 * -0.095 -3.954 * price.senior (62+) -0.209 17.927 * 

price.period4 -0.019 11.389 *   

 

  price.period4 -0.606 -3.504 * -0.089 -3.597 * price.unacc child (8-11) - - - 

price.period5 -0.016 12.133 *   

 

  price.period5 -0.595 -3.399 * -0.081 -3.202 * price.student advantage -0.099 5.940 * 

price.period6 -0.008 8.293 *   

 

  price.period6 -0.426 -2.788 * -0.090 -4.031 * price.adultAAA member -0.158 11.881 * 

  

   

  

 

    

     

  price.childAAA member - - - 

  

   

  

 

  Class  Model Class1   Class2   price.military adult -1.084 18.308 * 

  

   

  

 

  Class Size 0.595 

 

0.406   price.disabled adult -0.227 6.498 * 

  

   

  

 

  Variable Est T-Stat   Est T-Stat   price.others -0.238 19.380 * 

  

   

  

 

  Intercept 0.462 4.444 * -0.462 -4.444 * price.period6 -0.204 21.406 * 

  

   

  

 

  Monday 0.135 1.595 

 

-0.135 -1.595     

  

  

wknd.period1 2.701 9.230 * 3.390 6.153 * Tuesday 0.031 0.379 

 

-0.031 -0.379   wknd.period1 5.381 18.684 * 

wknd.period2 1.560 7.202 * 1.483 3.920 * Wednesday 0.118 1.432 

 

-0.118 -1.432   wknd.period2 1.900 9.105 * 

wknd.period3 -0.268 1.183 

 

-0.255 0.875 

 

Thursday -0.062 -0.760 

 

0.062 0.760   wknd.period3 -0.674 3.033 * 

wknd.period4 -0.639 4.205 * -1.129 4.460 * Friday -0.037 -0.440 

 

0.037 0.440   wknd.period4 -1.646 11.372 * 

wknd.period5 -0.758 4.708 * -1.108 3.839 * Saturday 0.079 0.585 

 

-0.079 -0.585   wknd.period5 -1.577 8.975 * 

wknd.period6 0.404 4.267 * 0.618 2.516 *   

     

  wknd.period6 -0.384 3.444 * 

  

   

  

 

  Early morning -1.117 -5.476 * 1.117 5.476 *   

  

  

  

   

  

 

  AM peak -0.922 -9.202 * 0.922 9.202 *   

  

  

  

   

  

 

  AM off peak -0.297 -3.406 * 0.297 3.406 *   

  

  

  

   

  

 

  PM off peak -0.083 -1.007 

 

0.083 1.007     

  

  

  

   

  

 

  PM peak -0.287 -3.548 * 0.287 3.548 *   

  

  

No. of observations 4,454     4,454   No. of observations       4,454   No. of observations   4,454   

Rho-squared: 

 

0.5637 

 

  0.5493   Rho-squared: 

    

0.5845   Rho-squared: 

 

0.5611   

Adjusted rho-squared: 0.5628 

 

  0.5487   Adjusted rho-squared: 

   

0.5828   Adjusted rho-squared: 0.5599   

Log-likelihood at optimal -6,674 

 

  -6,894   Log-likelihood at optimal 

  

-6,356   Log-likelihood at optimal -6,713   

Log-likelihood  at zero -15,295 

 

  -15,295   Log-likelihood  at zero 

   

-15,295   Log-likelihood  at zero 

 

-15,295   

LL at constant -6,478     -6,478   LL at constant       -6,478   LL at constant   -6,478   

*Statistically significant at the 5% significance level. Parenthesis indicates standard deviation. 



58 

 

5.3.2 Statistical Test to Compare Non-nested Models 

Since our models cannot be written as a restricted version of one another, the model fit 

can be statistically compared using the non-nested hypothesis test proposed by Horowitz 

(1982). The null hypothesis associated with the non-nested hypothesis is: 

                
              

    (5.2) 

The decision rule used to express significance of the test is: 

                        
     

                 
 
     (5.3) 

where: 

   
  is the larger adjusted rho-square value, 

   
  is the smaller adjusted rho-square value, 

   is the number of parameters in the model with the larger adjusted rho-

square, 

   is the number of parameters in the model with the smaller adjusted rho-

square, 

  is the standard normal cumulative distribution function, 

      is the log likelihood at zero (associated with equally likely model), 

  is the significance level.  

The summarized measure of fit for the models are briefly shown in Table 5.5, and 

the parameters used for the non-nested model hypothesis testing is shown in Table 5.6. 
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Table 5.5 Results comparison 

Long Distance MNL ML LC MNL-Socio 

LL(0) -128,338 -128,338 -128,338 -128,338 

LL at optimal -90,226 -84,742 -89,402 -91,070 

Adjusted Rho-square 0.2969 0.3396 0.3032 0.2903 

No. of estimated parameters 13 9 26 17 

Medium Distance MNL ML LC MNL-Socio 

LL(0) -101,351 -101,351 -101,351 -101,351 

LL at optimal -73,182 -65,877 -72,809 -73,383 

Adjusted Rho-square 0.2778 0.3499 0.2814 0.2758 

No. of estimated parameters 13 9 26 17 

Short Distance MNL ML LC MNL-Socio 

LL(0) -15,295 -15,295 -15,295 -15,295 

LL at optimal -6,674 -6,894 -6,356 -6,713 

Adjusted Rho-square 0.5628 0.5487 0.5828 0.5599 

No. of estimated parameters 13 9 26 15 

 

Table 5.6 Hypothesis testing parameters 

 Market H-L*    
 

    
 

                    

Long ML-MNL 0.3396 0.2969 9 13 -128,338 -104.75 0.0000 E+00 

 

LC-MNL 0.3032 0.2969 26 13 -128,338 -40.44 0.0000 E+00 

 

ML-LC 0.3396 0.3032 9 26 -128,338 -96.63 0.0000 E+00 

  MNL-MNL-socio 0.2969 0.2903 13 17 -128,338 -41.15 0.0000 E+00 

Medium ML-MNL 0.3499 0.2778 9 13 -101,351 -120.89 0.0000 E+00 

 

LC-MNL 0.2814 0.2778 26 13 -101,351 -27.07 1.1107 E-161 

 

ML-LC 0.3499 0.2814 9 26 -101,351 -117.82 0.0000 E+00 

  MNL-MNL-socio 0.2778 0.2758 13 17 -101,351 -20.21 3.9974 E-91 

Short MNL-ML 0.5628 0.5487 13 9 -15,295 -20.88 4.9783 E-96 

 

LC-MNL 0.5828 0.5628 26 13 -15,295 -24.97 6.4759 E-138 

 

LC-ML 0.5828 0.5487 26 9 -15,295 -32.55 1.0217 E-231 

  MNL-MNL-socio 0.5628 0.5599 13 15 -15,295 -9.30 7.0223 E-21 

*H= Model with the larger adjusted rho-square, L= Model with the smaller adjusted rho-square. 
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5.4 Result Discussion 

5.4.1 Multinomial Logit (MNL) Model 

A. MNL Specification 

The independent variables that enter the final models are advance booking (number of 

day before departure), fare ($), and weekend departure dummies. Fare and advance 

booking variables are aimed to capture passenger tradeoff behavior between early 

booking with cheaper fare and late booking with higher fare. The model specification 

allows for price coefficient to take different values across booking periods to 

accommodate the assumption that passengers have different price sensitivities over the 

sale horizon. The booking periods are grouped such that booking days within the same 

booking period have approximately the same number of reservations. These six booking 

periods are: (1) Booking day 1 to booking day 11, (2) Booking day 12 to booking day 20, 

(3) Booking day 21 to booking day 25, (4) Booking day 26 to booking day 29, (5) 

Booking day 30, and (6) Booking day 31. The weekend dummy variables assume 

different values across booking periods to capture the effect of departure day of week 

toward ticket purchase timing. Based on this specification, the utility of passenger   

booking the ticket on day   which falls within the booking period   can be expressed as: 

                               
               

             (5.4) 

 where the independent variables and their associated index are: 

   = Booking day,             

   =Booking period,               

        = Number of day before departure of booking day    
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       = Fare of booking day   ($) 

       = Weekend dummy (1 if departure is on weekend, 0 otherwise) 

    = A mutually independent noise term of individual   on choice   following a 

Gumbel distribution  

B. MNL Result 

Results obtained with the MNL indicate that disutility is associated with advance booking 

and that the lack of flexibility to change travel plan is negatively perceived. Passengers 

generally prefer to hold their purchase and pay for the product as late as possible. The 

price sensitivities in all the booking periods have negative sign and are statistically 

significant at the 5% significance level in all the three markets. The decreasing magnitude 

of price sensitivity as booking period approaches departure is in line with the expectation. 

Passengers are expected to be most sensitive to fare at the beginning of the sale horizon. 

As time approaches departure, passengers become less sensitive to fare especially on the 

departure day and more concerned about seats availability. The weekend dummies show 

the expected pattern; the value decreases as the booking period approaches departure 

indicating that passenger traveling on weekend generally purchase ticket earlier in 

advance compared to passenger traveling on weekday. It is also expected that weekend 

travelers are primarily leisure travelers.   

5.4.2 Mixed Logit (ML) Model 

A. ML Specification 

The price coefficients in the MNL are found to vary across booking periods, thus the 

specification of mixed logit model is expected to capture variation in price sensitivities 
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across population. For simplicity a parametric approach is used in mixed logit model 

specification; price is specified as a log-normally distributed random coefficient. The log-

normal distribution is selected over the normal distribution because it provided a better fit 

and because it ensures a negative value of the parameter for the entire population. Based 

on this specification, the utility of passenger   booking the ticket on day   which falls 

within the booking period   can be expressed as: 

 

                                               

       
             

(5.5) 

The index follows equation 5.4. In this specification            is distributed as 

normal. The price coefficient of mixed logit in Table 5.2-5.4 represents the mean (   and 

standard deviation (   of the log of price coefficient.   

B. ML Result 

The mixed logit model accounting for heterogeneity in price sensitivity with log-normal 

distribution
4
 shows a better model fit compared to the MNL and the LC model in long 

and medium distance markets based on the adjusted rho-square value (shown in Table 

5.5). However, in short distance model, the MNL has a better fit compared to the ML; it 

should be noted that these two models are not nested. This could be due to the fact that 

price coefficient segmented by time period reflects the observed data better than one 

random coefficient parameter for price specified with a log-normal distribution.  

When comparing the ML and the MNL, based on the null hypothesis that that 

both models perform equally well, the non-nested hypothesis test indicates that the 

                                                 
4
 The price parameters of mixed logit in Table 5.2-5.4 are log of the price coefficients with the underlying  

normal distribution. 
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probability of the MNL performing as well as the ML in long and medium distance 

market are 0.0000 and 0.0000 respectively (shown in Table 5.6) which result in the 

rejection of null hypothesis at the 0.03% significance level (the ML outperforms the 

MNL). As for short distance model, the probability of the ML performing as well as the 

MNL is 4.9783      96 which results in the rejection of null hypothesis at the 0.03% 

significance level (the MNL outperforms the ML).  

The ML model results show the expected sign for advance booking, fare and 

weekend dummies as observed in the MNL models. The estimates are all statistically 

significant at the 5% significance level except for the weekend dummy at booking period 

4 (long distance market) and booking period 3 (short distance market).   

5.4.3 Latent Class (LC) Model 

A. LC Specification 

In latent class model specifications, we aim at segmenting passenger behavior by trip 

characteristics because we believe that passengers traveling at particular periods are 

relatively homogeneous in their characteristics. The explanatory variables of the choice 

model include fare ($) and advance booking (number of day before departure). Similar to 

the MNL model, the price coefficient is allowed to take different values across booking 

periods. Based on this specification, the utility of choice   for a specific class   in the 

class specific choice model
5
 can be written as: 

                  
                

               (5.6) 

                                                 
5
 Based on latent class (LC) model methodology in Chapter 3, Equation 3.14. 
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The index follows equation (5.4). In addition to the explanatory variables of the 

choice model, other elements of the booking data are extracted to segment demand and 

capture heterogeneity across different categories of passengers in class membership 

model which are: 

Departure day of week: Dummy variables are used to indicate whether the trip is taken 

on a particular day of week; this results into six dummy variables for the class 

membership model, one for each day of the week (except Sunday). 

Departure time of day: Dummy variables are used to indicate whether the trip is taken on 

a particular time of day. We use six departure times as suggested by Jin (2007) for the 

intercity trip which are (1) early morning (0:00 am-6:29 am), (2) a.m. peak (6:30am-8:59 

am), (3) a.m. off-peak (9:00 am-11:59 am), (4) p.m. off-peak (12:00pm-15:59 pm), (5) 

p.m. peak (16:00 pm-18:29 pm), and (6) evening (18:30 pm-23:59 am). Five departure 

times of day (except evening) are used for the class membership model. 

Based on this specification, the utility that customer   belongs to class   in the 

class membership model
6
 has the form: 

                
       

 

   

       
       

 

   

     (5.7) 

where    is class specific constant.  

B. LC Result 

In this context, the main advantage of the latent class specification over multinomial logit 

model is the ability to identify distinct group of passengers’ behavior on ticket purchase 

                                                 
6
 Based on latent class (LC) model methodology in Chapter 3, Equation 3.15. 
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timing. We assume two latent classes of passenger, business and leisure trip which are 

segmented by the class membership model. Passengers are assumed to have different 

preferences about trip schedule which results in different willingness to pay (WTPs) for 

delaying ticket purchase across classes.  

When comparing the LC and the MNL, the non-nested hypothesis test indicated 

that the probability of the MNL performing as well as the LC in long, medium, and short 

distance markets are 0.0000, 1.1107      161, and 6.4759     138 respectively 

which result in the rejection of null hypothesis at the 0.03% significance level (the LC 

outperforms the MNL). On the other hand, when we compare between the LC and the 

ML, the non-nested hypothesis test indicated that the probability of the LC performing as 

well as the ML in long and medium distance market are 0.0000 and 0.0000 respectively 

which result in the rejection of null hypothesis at the 0.03% significance level (the ML 

outperforms the LC). This concludes that the ML has the best statistical fit in long and 

medium distance markets. As for short distance model, the probability of the ML 

performing as well as the LC is 1.0217      231 which results in the rejection of null 

hypothesis at the 0.03% significance level (the LC outperforms the ML). This concludes 

that the LC has the best statistical fit in short distance market.    

In this setting, the variables used to specify class membership model resulted in a 

set of 42 underlying scenarios of booking, also called covariate pattern. For each 

scenario, the likelihood that a booking belongs to a latent class can be calculated as a 

binary logit probability corresponded to class membership parameters. Figure 5.2 to 
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Figure 5.4 represent the probability of passenger belonging to class 1 for the 42 different 

covariate patterns. 

The results obtained with the latent class model are coherent with those given by 

the multinomial logit and mixed logit models except that in the medium distance market, 

passengers in class 1 have positive price coefficient meaning that they are insensitive to 

price. Given that the magnitude of the coefficients within the same model could not be 

compared between different classes due to scale parameter (Carrier, 2008), the ratio of 

advance booking coefficient to the price coefficient is calculated to represent the 

willingness to pay (WTP) to delay the ticket purchase for one day and shown in Table 

5.7. We report the minimum, maximum, and the average WTPs obtained from six price 

coefficients of each passenger class across three markets. We assume that the leisure 

passengers generally know their travel plans earlier in advance while the business 

travelers generally book their tickets closer to departure date. Therefore, the passenger 

class with higher WTP is assumed to be business passenger.  

Table 5.7 Willingness to pay (WTPs) for one day delay in ticket purchase 

  

WTP Long 

distance 

($/day) 

WTP Medium 

Distance 

($/day) 

WTP Short 

Distance 

($/day) 

  Class1 Class2 Class1 Class2 Class1 Class2 

Minimum 13.92 11.03 *   5.19 1.92 3.44 

Maximum 99.43 18.38 * 46.68 3.08 5.00 

Average 46.17 13.86 *   6.36 2.42 3.96 

*Denotes price insensitive (price coefficient with positive sign) 

For the long distance market, Table 5.7 shows higher WTP for purchase delay in 

class 1 (average $46.17 per day) than class 2 (average $13.86 per day) for the majority of 
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the booking periods, indicating that passengers from class 1 are willing to pay more for 

the possibility to change their travel plans. Based on our assumption, passengers in class 

1 are believed to be business travelers which accounts for 61.9% of this market (see 

Table 5.2). More specifically, the class membership model indicates that passengers 

departing from early morning to AM peak are predominantly class 1 passenger (see 

Figure 5.2).  

For the medium distance market results in Table 5.7, WTP for class 1 (price 

insensitive) is higher than for class 2 (average $6.36 per day) for most of the booking 

periods considered. The results indicate that passenger in class 1 are predominantly 

business travelers which accounts for 56.6% of this market (see Table 5.3). More 

specifically, the class membership model indicates that passenger class 1 (business 

travelers) predominantly depart from early morning to AM off peak especially on Sunday 

as shown in Figure 5.3.  

Based on the short distance market results in Table 5.7, WTP for purchase delay 

of class 1 (average $2.42 per day) is lower than for class 2 (average $3.96 per day). The 

result indicates that passengers in class 1 are predominantly leisure travelers which 

accounts for 59.5% of this market (see Table 5.4). More specifically, the class 

membership model indicates that passenger class 1 (leisure travelers) predominantly 

depart from AM off peak until evening as shown in Figure 5.4.  
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Figure 5.2 Probability of passenger belonging to class 1 in long distance market 

 

Figure 5.3 Probability of passenger belonging to class 1 in medium distance market 
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Figure 5.4 Probability of passenger belonging to class 1 in short distance market 
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sensitivity of booking period 6 is specified separately and assumed to be the same across 

all passenger types. Based on the specification, the utility of passenger   of type   

booking the ticket on day   which falls within the booking period   can be expressed as: 

 

                            
    

      
        

   
    

      
                 

             

(5.8) 

The index follows equation (5.4).   
  is a dummy equal to 1 when booking day   

satisfies condition   and 0 otherwise.  

B. MNL with Socioeconomic Result 

Finally we report the results obtained from the estimation of a multinomial logit model 

accounting for deterministic taste heterogeneity (Table 5.2 to Table 5.4). The data set 

contains a limited number of observations including passenger types. This makes 

impossible the estimation of price sensitivity for a certain number of class and results into 

statistically insignificant coefficients for some of the classes considered (e.g. child and 

unaccompanied child for the long distance market).  

When comparing the MNL with socioeconomic and the MNL, the non-nested 

hypothesis test indicated that the probability of the MNL with socioeconomic performing 

as well as the MNL in long, medium, and short distance markets are 0.0000, 3.9974  

    91, and 7.0223      21 respectively which results in the rejection of null 

hypothesis at 0.03% significance level (the MNL outperforms the MNL with 

socioeconomic). 

For the long distance market, the results are in line with the expectations. The 

price sensitivity in the last booking period shows relatively low magnitude (-0.019) 
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indicating that passengers become less sensitive to price. The unidentified passenger type 

is shown to be the most price sensitive (-0.043); passengers in this group are subjected to 

special discounts, thus it is reasonable that they are highly price sensitive. Military adult 

is the second most price sensitive passenger type (-0.028). The adult passenger type 

subjected to full fare amount shows price sensitivity equal to disabled adult (-0.024). 

Passengers subjected to student advantage discount and adult passenger with AAA 

membership have equal price sensitivity (-0.010) which is the lowest price sensitivity 

among all the passenger types.  

For the medium distance market, the price sensitivity in the last booking period 

shows relatively low magnitude (-0.058) as expected. The unidentified passenger type are 

shown to be the most price sensitive (-0.088) among all passenger types. Child is the 

second most price sensitive passenger type (-0.071) followed by adult passenger (-0.064). 

Senior (-0.063), unaccompanied child (-0.063), and disabled adult (-0.063) are slightly 

less price sensitive than adult. Passengers associated with student advantage (-0.054) and 

adult with AAA membership (-0.057) are the least price sensitive.   

For the short distance market, the estimation results show a slightly different 

pattern compared to long and medium distance market. The result indicates that the 

military group is the most price sensitive (-1.084). They are followed by unidentified 

passenger (-0.238), disabled adult (-0.227), adult (-0.215), senior (-0.209), and adult with 

AAA membership (-0.158) respectively. The passengers subjected to student advantage 

discount are the least price sensitive (-0.099). The weekend dummies indicate that 

passenger departing on weekend generally purchase their ticket ahead of time.  
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5.5 Model Validation 

To compare the prediction capabilities of the models, we perform the out of sample 

validation for the long distance market. The data (37,373 observations) are divided into 

two groups. The first group consists of approximately 80 percents of the data (30,125 

observations) containing passenger traveling from the 1
st
 day to 25

th
 day of the month. 

Departure day was chosen as a cut point because we assumed that data from the first 

group is obtained prior to the second group. The model is re-estimated using data of the 

first group and the results are applied to predict the decision of the second group which 

contains passengers who traveled on day 26
th

 to 31
st
 of the month (7,248 observations). 

The prediction capabilities of the four models are compared in Table 5.8. The root mean 

square error (RMSE) is used as the measure of error. The predictions from four models 

are compared in Figure 5.5 to Figure 5.8. 
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Table 5.8 Out of sample validation for long distance market 

Choice* Actual MNL MNL-socio LC ML 

Day1 42 8 5 11 0 

Day2 21 10 6 13 0 

Day3 25 12 8 15 0 

Day4 23 15 9 18 0 

Day5 32 18 11 20 0 

Day6 42 22 14 24 0 

Day7 45 27 17 28 1 

Day8 41 33 20 32 1 

Day9 60 41 24 38 1 

Day10 50 50 30 45 2 

Day11 50 61 36 57 3 

Day12 58 30 29 37 2 

Day13 66 36 36 43 3 

Day14 95 45 44 50 5 

Day15 61 54 53 58 7 

Day16 86 64 64 67 11 

Day17 103 75 78 77 15 

Day18 86 89 95 89 22 

Day19 73 105 116 102 31 

Day20 88 123 141 118 44 

Day21 133 119 142 103 60 

Day22 143 139 172 123 85 

Day23 148 166 210 154 123 

Day24 254 199 255 204 178 

Day25 257 238 310 298 257 

Day26 261 330 384 337 349 

Day27 459 395 467 402 504 

Day28 608 473 569 490 728 

Day29 503 560 692 617 1,045 

Day30 1,196 1,344 821 1,390 1,419 

Day31 2,139 2,368 2,391 2,188 2,352 

Total 7,248 7,248 7,248 7,248 7,248 

RMSE 62 95 54 125 

*Choice indicates booking day. 

Based on Table 5.8, the LC model results in the least error with the root mean 

square error (RMSE) of 54 compared to RMSE of the MNL, the MNL with 
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socioeconomic, and the ML which are 62, 95, and 125 respectively. The detailed 

prediction capability is elaborated in the next section. 

5.6 Comparison on Model Performance 

5.6.1 Model Fit 

To conclude, for the long distance market, the mixed logit provides the best statistical fit 

with the adjusted rho-square highest among all other models. Both mixed logit and latent 

class models outperform multinomial logit models (with and without socioeconomics) as 

expected. In medium distance market, mixed logit provide the best statistical fit; it 

outperforms both multinomial logit specifications (with and without socioeconomics). In 

short distance model, latent class provides the best statistical fit while in this case the 

multinomial logit models (with and without socioeconomics) outperform mixed logit 

model. This is because in this market, the price coefficient segmented by time period and 

passenger type is capable of representing the observed behavior better than assuming log-

normal distribution for the price coefficient. The overall results also indicate that 

segmenting the passengers’ price sensitivity by booking period (the MNL) appears to be 

more appropriate than segmenting by socioeconomic (the MNL with socioeconomic) 

information for all the three markets. 

5.6.2 Prediction Capabilities 

The validation in Table 5.8 is grouped into periods and shown in Figure 5.5 to Figure 5.8. 

All the models under predict purchase decision on day 1 to day 9. This is because the 

fluctuation in passengers’ decision in these days cannot be captured by the fare variable 
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and because the pattern of observed purchases is not mono-tone, thus cannot be explained 

by the advance booking variable.  

On day 10 and 11 the MNL and the LC models perform relatively well. From 

day1 to11, the MNL with socioeconomic performs the worst which could possibly be 

influenced by specific passenger type price sensitivity within these days (this model 

allows for different price sensitivity by passenger type). This confirms the 

aforementioned conclusion that segmenting price sensitivity by time period is more 

suitable than by passenger type in this empirical study. On day 12 to 20, the LC model 

performs the best and slightly better than the MNL, while the MNL with socioeconomic 

does not do well on day 11, 19, and 20 which should be influenced by the same reason 

given for day 1 to 11. Throughout day 1 to day 20, the prediction from the ML drastically 

under predicts purchase decision.  

On day 21 to 28, the LC performs close to the MNL. On day 29 to 31 when the 

observed purchase decisions are significantly high, the LC performs almost as well as the 

MNL on day 29 and 30. On day 31, the LC model shows notable performance. Its 

predicted number of purchase is 2,188 which is very close to the observed value (2,139) 

where the MNL and the MNL with socioeconomic over predict the value (2,368 and 

2,391 respectively). The ML model provides prediction for day 21 to day 31 relatively 

similar to those obtained with other models, although its performance is not very good. 
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Figure 5.5 Booking day 1-10 prediction  

 

 

Figure 5.6 Booking day 12-20 prediction  
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Figure 5.7 Booking day 21-28 prediction 

 

 

Figure 5.8 Booking day 29-31 prediction 
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5.7 Conclusions 

In this chapter, advanced demand modeling approaches are proposed to study railway 

intercity passenger booking decision and to segment preferences; all the models are 

calibrated on ticket reservation data. Modeling formulations considered include 

multinomial logit, mixed logit, and latent class models; markets are segmented on trip 

distances: long, medium, and short. The results show that the following variables: fare, 

advance booking (number of day before departure), and departure day of week, can be 

used as determinants affecting ticket booking. Mixed logit and latent class models are 

then applied to account for taste heterogeneity. In term of statistical goodness of fit, the 

results indicate that the mixed logit model provides the best fit for the long distance and 

medium distance markets, while the latent class model provides the best statistical fit for 

the short distance market. In term of prediction capability, the out of sample validation 

for the long distance market indicated that the LC model provides the best prediction with 

least error based on root mean square error (RMSE) while the ML does not perform well 

in prediction. Interestingly, our analysis shows that models with better goodness of fit are 

not necessarily those with better prediction capabilities. Results also indicate that 

segmenting passengers by booking period provides better fit than segmenting passengers 

by socioeconomic characteristics.  

Results from this study show that advanced demand models can be estimated on 

ticket reservation data and that market segmentation can be obtained even with limited 

knowledge of socio-demographic characteristics of the population.  
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Chapter 6 : Passenger Demand Functions 

In the previous chapter, the passenger choice models are proposed. The models represent 

passenger response to fare by means of purchase timing decision. However, they do not 

account for the possibility of passenger leaving the service or induced demand. In this 

chapter, this assumption is relaxed by proposing demand functions which predict demand 

volume for each market corresponded to fare and other departure characteristics using 

linear and log-linear regression. This approach adopts the framework from Sibdari et al. 

(2008).  

Although the demand functions provide similar level of aggregation to the choice 

models presented in the previous chapter, the estimation procedure is different. In choice 

models, each observation refers to an individual booking. Thus, for each booking, it is 

reasonable to assume dependency between choices since only one booking day can be 

selected. In contrast, each observation in the demand function refers to an aggregate 

demand volume on each booking day. Thus, demand on each booking day predicted from 

demand function does not necessarily influence demand of other booking days. The 

demand volume is then computed from the summation of predicted demand on each 

booking day over the sale horizon.  

Two specifications of demand functions are presented in this chapter. In Section 

6.1, the linear demand function is presented. The approach is applied to markets of 

single-origin multiple-destinations where the estimated parameters are later incorporated 

in the single-leg revenue optimization in Section 7.1. In Section 6.2, the log-linear 

demand function is presented. The approach is applied to network of selected stations 
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where the estimated parameters are later incorporated in the network revenue 

optimization in Section 7.2 and Section 7.3. 

6.1 Linear Demand Function 

The monthly ticket reservation data from US intercity passenger railway in 2009 are used 

for the analysis. The analysis focuses on coach class passengers traveling from south end 

station (station 16) to other stations in the corridor; only reservations that were not 

cancelled and eventually contributed to the actual revenue are focused in this analysis. 

This results in the total of 44,847 reservation records. 

6.1.1 Model Specification 

In the linear demand function, other than the constant, the independent variables included 

in the final model are advance booking square, departure day of week dummies, fare, and 

booking day specific dummies. The advance booking square is used to represent the non-

linear relationship between demand and advanced booking observed from the data set. 

Initially, we estimated one model for each destination using the same specification. 

However, with this approach, the relatively high booking demand close to departure 

associated with relatively high fare results in a model with a positive price coefficient. 

This is because, unlike the classical demand model, in this case fare is not a completely 

independent variable. The revenue management team periodically changes fare in 

response to the demand to maximize ticket revenue.  

To address this problem, the booking day is grouped into 5 periods and the 

demand function for each period is estimated independently. These 5 booking periods 

denoted by   are: (1) Booking day 1 to booking day 11, (2) Booking day 12 to booking 
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day 20, (3) Booking day 21 to booking day 25, (4) Booking day 26 to booking day 29, 

and (5) Booking day 30 to booking day 31. With this approach, it is assumed that, in each 

booking period, fare is almost independent of demand and can be used as an independent 

variable in the demand function. This assumption is not far from reality, as the fare of this 

railway operator changes in piecewise manner. In other words, fares do not change 

continuously and instantaneously in response to any small fluctuation in demand. On the 

other hand, the demand responds to changes in the fare continuously and instantaneously.  

This approach enables the analysis to compare the demand of the booking period 

subjected to different fare throughout the month and to obtain a service demand that is 

sensitive to price within the booking period. In the demand function, the passenger 

demand on booking day   which falls into booking period    for the trip departure on day  

of week   takes the form: 

 

              

   
            

         
         

        

 

   

          
          

    

   

(6.1) 

where:   

        =  Advanced booking (number of day before departure)  

       =  Departure day of week dummies 

        =  Booking day specific dummies  

    =  Error term 
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The daily passenger demand on day of week   for each origin-destination pair is 

the summation of passenger reservation on each booking day j over the sale horizon: 

                          

  

   

 (6.2) 

Due to space limitations, demand function results are shown only for 3 

representative markets in Table 6.1 to Table 6.3. Note that the predicted demands 

obtained from the demand functions are unconstrained, meaning that they are not 

bounded by a particular value; therefore induced demand is allowed. With this approach, 

in periods where historically demand was at capacity, the predicted demand obtained 

from this approach does not have such restriction.  

6.1.2 Results and Interpretations 

The models are estimated with Stata 9.0, data analysis and statistical software (Stata 

Corp). The price coefficients have the expected sign for the majority of the models. The 

square of the advance booking could only be included in some of the models estimated 

due to the difficulties encountered in applying the proposed regression procedure. Note 

that for each booking period, the number of booking day specific dummies is equal to 

number of booking day in the period minus one. This is because the booking day specific 

dummy of the last booking day in the period is absorbed in the constant term. However, 

in the case that no reservation is observed on a particular booking day from the sample, it 

is not possible to estimate the booking day specific dummy. The destination which shows 

the best model fit is station 8; this can be explained by the large sample available for this 

market. The results for booking period 5 across all destinations show the best model fit 
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compared to other booking periods for the same destination. For this booking period, the 

fare strategy does not significantly vary across observations, which results in the demand 

to be relatively stable and therefore in a good model fit.  
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Table 6.1 Linear demand function result (origin16-destination1) 

 
Booking period 1(Day1-11) Booking period 2(Day12-20) Booking period 3(Day21-25) Booking period 4 (Day26-29) Booking period 5 (Day30-31) 

  Variable Est T-Stat   Variable Est T-Stat   Variable Est T-Stat   Variable Est T-Stat   Variable Est T-Stat 

(Constant) 1.820 1.600 (Constant) 16.531 2.104 (Constant) 1.650 1.664 (Constant) 5.492 2.579 (Constant) 5.865 0.681 

AdvbkSq 0.002 1.739 AdvbkSq - - AdvbkSq - - AdvbkSq -0.040 -1.213 AdvbkSq - - 

Fare -0.007 -1.375 Fare -0.057 -1.497 Fare 0.002 0.371 Fare -0.010 -1.061 Fare 0.004 0.118 

Mon Dep -0.065 -0.136 Mon Dep -6.354 -1.380 Mon Dep -0.315 -0.779 Mon Dep -0.093 -0.106 Mon Dep 5.990 1.280 

Tues Dep 0.545 1.082 Tues Dep -7.519 -1.488 Tues Dep -0.546 -1.237 Tues Dep -0.200 -0.200 Tues Dep 0.228 0.052 

Wed Dep 1.340 2.328 Wed Dep -5.486 -1.138 Wed Dep -0.531 -1.171 Wed Dep 0.125 0.123 Wed Dep -1.697 -0.366 

Thurs Dep 0.087 0.162 Thurs Dep -5.606 -1.185 Thurs Dep -0.163 -0.330 Thurs Dep -0.874 -0.901 Thurs Dep -2.982 -0.606 

Fri Dep 0.727 1.761 Fri Dep -4.764 -1.095 Fri Dep 0.389 0.861 Fri Dep -0.050 -0.058 Fri Dep 0.458 0.104 

Sat Dep -0.148 -0.219 Sat Dep -6.399 -1.297 Sat Dep -0.332 -0.514 Sat Dep -1.184 -0.880 Sat Dep -1.455 -0.220 

Book Day1 -0.054 -0.069 Book Day12 -2.188 -0.393 Book Day21 -0.068 -0.168 Book Day27 -0.271 -0.421 Book Day30 -2.932 -1.233 

Book Day2 -1.713 -2.254 Book Day13 -2.330 -0.383 Book Day22 -0.320 -0.765 Book Day28 0.263 0.373 

   
Book Day3 -0.224 -0.353 Book Day14 -1.949 -0.319 Book Day23 0.614 1.632 

      
Book Day4 -1.452 -2.255 Book Day15 -0.981 -0.147 Book Day24 0.298 0.785 

      
Book Day5 -0.966 -1.763 Book Day16 -2.683 -0.506 

         
Book Day6 -0.041 -0.063 Book Day17 -1.335 -0.270 

         
Book Day7 -0.592 -0.963 Book Day18 -1.344 -0.236 

         
Book Day8 -0.401 -0.750 Book Day19 7.085 1.371 

         
Book Day9 -0.488 -0.824 

            Book 

Day10 -0.284 -0.542                         

R Square   0.265 R Square   0.102 R Square   0.146 R Square   0.078 R Square   0.149 
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Table 6.2 Linear demand function result (origin16-destination8) 

Booking period 1(Day1-11) Booking period 2(Day12-20) Booking period 3(Day21-25) Booking period 4 (Day26-29) Booking period 5 (Day30-31) 

  Variable Est T-Stat   Variable Est T-Stat   Variable Est T-Stat   Variable Est T-Stat   Variable Est T-Stat 

(Constant) 28.999 8.464 (Constant) 36.398 4.829 (Constant) 106.553 3.598 (Constant) 304.186 2.097 (Constant) 622.579 2.230 

AdvbkSq -0.016 -4.459 AdvbkSq - - AdvbkSq -0.757 -8.406 AdvbkSq -3.492 -3.700 AdvbkSq - - 

Fare -0.059 -3.169 Fare -0.064 -1.183 Fare -0.153 -0.712 Fare -1.153 -1.238 Fare -2.659 -1.513 

Mon Dep -3.791 -2.680 Mon Dep -7.461 -2.899 Mon Dep 6.741 1.017 Mon Dep 54.432 2.480 Mon Dep 154.914 3.893 

Tues Dep -2.660 -1.786 Tues Dep -3.150 -1.117 Tues Dep 20.845 2.837 Tues Dep 29.003 1.131 Tues Dep 292.668 6.378 

Wed Dep 0.453 0.299 Wed Dep -6.486 -2.171 Wed Dep 34.130 3.751 Wed Dep 53.104 2.008 Wed Dep 306.067 5.554 

Thurs Dep -0.792 -0.532 Thurs Dep -7.384 -2.419 Thurs Dep 40.334 4.477 Thurs Dep 77.027 2.664 Thurs Dep 285.056 4.989 

Fri Dep 1.117 0.743 Fri Dep 1.253 0.406 Fri Dep 27.562 2.912 Fri Dep 71.676 2.404 Fri Dep 233.648 4.123 

Sat Dep -6.725 -4.299 Sat Dep -17.913 -6.509 Sat Dep -18.054 -2.653 Sat Dep -61.375 -2.569 Sat Dep -121.852 -3.060 

Book Day1 -0.104 -0.052 Book Day12 -7.331 -2.205 Book Day22 -8.010 -1.550 Book Day27 -10.791 -0.727 Book Day30 -88.365 -4.159 

Book Day2 -1.710 -0.900 Book Day13 -6.897 -2.127 Book Day23 -10.422 -2.084 Book Day28 -16.384 -1.029 

   
Book Day3 -1.626 -0.917 Book Day14 -7.171 -2.230 Book Day24 -1.125 -0.211 

      
Book Day4 1.051 0.607 Book Day15 -5.125 -1.580 

         
Book Day5 -2.010 -1.175 Book Day16 -2.226 -0.696 

         
Book Day6 -2.206 -1.315 Book Day17 6.965 2.112 

         
Book Day7 -2.470 -1.441 Book Day18 2.161 0.691 

         
Book Day8 -1.169 -0.660 Book Day19 -1.994 -0.642 

         
Book Day9 -0.253 -0.142 

            
Book Day10 1.002 0.546                         

R Square   0.247 R Square   0.265 R Square   0.567 R Square   0.293 R Square   0.766 
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Table 6.3 Linear demand function result (origin16-destination12) 

Booking period 1(Day1-11) Booking period 2(Day12-20) Booking period 3(Day21-25) Booking period 4 (Day26-29) Booking period 5 (Day30-31) 

 Variable Est T-Stat   Variable Est T-Stat   Variable Est T-Stat   Variable Est T-Stat   Variable Est T-Stat 

(Constant) 8.032 3.969 (Constant) 1.218 0.427 (Constant) 9.006 1.368 (Constant) 25.821 0.876 (Constant) -27.493 -0.438 

AdvbkSq -0.003 -1.376 AdvbkSq - - AdvbkSq - - AdvbkSq -0.832 -2.892 AdvbkSq - - 

Fare -0.020 -1.570 Fare 0.030 1.176 Fare 0.002 0.030 Fare -0.026 -0.103 Fare 0.811 1.420 

Mon Dep -0.143 -0.148 Mon Dep 1.365 1.062 Mon Dep 9.400 3.423 Mon Dep 26.292 3.428 Mon Dep 58.549 4.161 

Tues Dep 1.561 1.629 Tues Dep 5.933 4.308 Tues Dep 15.760 5.249 Tues Dep 21.164 2.539 Tues Dep 127.369 8.371 

Wed Dep 1.697 1.654 Wed Dep 2.235 1.456 Wed Dep 17.200 5.412 Wed Dep 27.782 3.175 Wed Dep 126.381 7.006 

Thurs Dep 2.161 2.142 Thurs Dep 1.431 0.903 Thurs Dep 22.381 6.885 Thurs Dep 31.801 3.354 Thurs Dep 128.991 6.627 

Fri Dep 1.929 1.911 Fri Dep 2.597 1.733 Fri Dep 10.876 3.265 Fri Dep 26.899 2.778 Fri Dep 79.858 4.012 

Sat Dep -0.762 -0.619 Sat Dep -0.736 -0.459 Sat Dep -2.315 -0.751 Sat Dep -6.522 -0.818 Sat Dep -5.564 -0.372 

Book Day1 -1.241 -0.896 Book Day12 -0.769 -0.489 Book Day21 

-

10.180 -4.077 Book Day27 -2.405 -0.472 Book Day30 -69.534 -8.922 

Book Day2 -1.471 -1.116 Book Day13 -1.345 -0.879 Book Day22 -9.089 -3.804 Book Day28 -1.836 -0.341 

   
Book Day3 -1.067 -0.830 Book Day14 0.367 0.229 Book Day23 -2.895 -1.181 

      
Book Day4 -0.352 -0.316 Book Day15 -1.546 -0.921 Book Day24 0.352 0.145 

      
Book Day5 -1.769 -1.577 Book Day16 1.343 0.869 

         
Book Day6 0.270 0.237 Book Day17 1.252 0.821 

         
Book Day7 -2.035 -1.810 Book Day18 -0.567 -0.381 

         
Book Day8 -2.331 -2.113 Book Day19 0.160 0.105 

         
Book Day9 -2.157 -1.946 

            
Book Day10 0.136 0.120                         

R Square   0.117 R Square   0.177 R Square   0.524 R Square   0.317 R Square   0.873 
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The validation of the demand functions on a hold-out sample extracted from the 

period March 16 to March 22, 2009 is reported in Table 6.4. Results indicate that the 

volumes of ticket sales predicted are comparable to the actual demand. 

Table 6.4 Demand function out of sample validation  

Station 

Demand Monday Tuesday Wednesday Thursday Friday Saturday Sunday 

(No. of 

passengers) 

March 

16 

March 

17 

March  

18 

March 

19 

March 

20 

March 

21 

March 

22 

1 Actual  38 39 50 28 36 16 32 

Predicted 35 38 31 27 34 11 56 

2 Actual  4 9 15 10 11 5 5 

Predicted 6 7 12 10 12 5 5 

6 Actual  43 35 38 34 57 22 35 

Predicted 34 33 39 43 46 24 44 

7 Actual  36 34 57 56 76 8 49 

Predicted 36 43 55 63 70 11 39 

8 Actual  1,432 1,584 1,845 1,684 1,776 466 1,302 

Predicted 1,527 1,734 1,903 1,952 1,862 478 1,136 

9 Actual  251 227 316 351 314 39 114 

Predicted 246 313 358 381 341 53 97 

10 Actual  204 235 288 271 231 36 47 

Predicted 148 262 298 306 278 41 81 

12 Actual  546 633 559 739 664 97 212 

Predicted 468 684 667 745 587 81 204 

 

6.2 Log-Linear Demand Function 

The log-linear-demand function is broadly used in econometric studies and has several 

desirable theoretical and practical properties. By taking the log of the demand as 

dependent variable, the estimated demand is bounded by zero. This also allows for the 

estimation using linear regression.  

Data used for this model are based on monthly ticket reservation data of intercity 

passenger railway in the U.S. in 2009. Data focus on the coach class passenger traveling 
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on the northbound trip in which the ticket is confirmed. This results in the total of 

110,828 reservation records. 

6.2.1 Model Specification 

For each departure day over the entire month, the data are prepared by summing the 

number of passenger demand on each booking day. This number is transformed to log of 

passenger demand. The average fare paid for each booking day is used as the fare 

variable. The independent variables which enter the final model include the intercept, the 

square of the time until departure (      ), fare (    ), weekend dummy (    ) 

indicating whether the departure day is in weekend, and booking period specific 

intercepts. The square of the advance booking is motivated from the analysis of the 

booking data where the non-linear relationship between advance booking and number of 

passenger booking is observed. The weekend dummy is included to account for the 

seasonality of train departing on different day which is motivated by the demand function 

in Sibdari et al. (2008). The specification of the log-linear demand function can be 

expressed as follows: 

 

                                
                 

                 
 
              +   

(6.3) 

 

 

                               
                

                  

 

   

               

(6.4) 
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where 

            = Demand on booking day j for origin o, destination d 

      
   = Square of advance booking for booking day j  

       = Fare ($) of booking day j  

       =  Weekend dummy of departure day   

               = Booking period dummy (1 if    , 0 otherwise) 

     =  Intercept 

    = Error term   

The daily passenger demand for each origin-destination pair is the summation of 

passenger reservation on each booking day d over the sale horizon: 

            

  

   

 (6.5) 

6.2.2 Results and Interpretations 

The models are estimated with Stata 9.0, data analysis and statistical software (Stata 

Corp). There are total of 119 origin-destination pair for the north bound trip which results 

in the total of 119 demand function estimated. However, in this chapter, only demand 

functions of major markets are shown in this report in Table 6.5 to Table 6.9.  
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Table 6.5 Log-linear demand function result (origin 16-destination 1) 

Variable Est Std Err. T-Stat P>|t| [ 95% confidence Interval] 

advbksq 0.0003 0.0004 0.86 0.389 -0.0004 0.001 

fare -0.0003 0.0009 -0.34 0.732 -0.002 0.0014 

wkndmy 0.0314 0.0673 0.47 0.641 -0.1011 0.1639 

period 1 (dropped) 

    period 2 -0.0531 0.1649 -0.32 0.748 -0.3776 0.2715 

period 3 0.0899 0.2138 0.42 0.675 -0.331 0.5107 

period 4 0.3009 0.23 1.31 0.192 -0.1519 0.7537 

period 5 0.5023 0.2502 2.01 0.046 0.0099 0.9947 

period 6 1.1967 0.2502 4.78 0 0.7043 1.6891 

constant 0.2092 0.2597 0.81 0.421 -0.3021 0.7204 

No. obs 297       R-squared 0.277 

F( 8, 288 ) 13.81 

   

Adj R-squared 0.257 

Prob>F 0       Root MSE 0.504 

 

Table 6.6 Log-linear demand function result (origin 16-destination 8) 

Variable Est Std Err. T-Stat P>|t| [ 95% confidence Interval] 

advbksq -0.0018 0.0003 -6.46 0 -0.0024 -0.0013 

fare -0.005 0.0015 -3.36 0.001 -0.0079 -0.0021 

wkndmy -0.2318 0.0664 -3.49 0.001 -0.3622 -0.1014 

period 1 -3.3826 0.2444 -13.84 0 -3.8623 -2.9029 

period 2 -3.2735 0.1811 -18.08 0 -3.6289 -2.9181 

period 3 -2.8051 0.1696 -16.54 0 -3.138 -2.4723 

period 4 -1.8583 0.169 -10.99 0 -2.1901 -1.5265 

period 5 -0.7223 0.2119 -3.41 0.001 -1.1381 -0.3065 

period 6 (dropped) 

    constant 6.4649 0.3018 21.42 0 5.8726 7.0572 

No. obs 886       R-squared 0.657 

F( 8, 877 ) 209.65 

   

Adj R-squared 0.654 

Prob>F 0       Root MSE 0.834 
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Table 6.7 Log-linear demand function result (origin 16-destination 12) 

Variable Est Std Err. T-Stat P>|t| [ 95% confidence Interval] 

advbksq -0.0008 0.0003 -2.57 0.01 -0.0015 -0.0002 

fare -0.0003 0.0015 -0.17 0.864 -0.0032 0.0027 

wkndmy -0.7216 0.0763 -9.46 0 -0.8713 -0.5718 

period 1 -2.4704 0.2537 -9.74 0 -2.9685 -1.9723 

period 2 -2.46 0.1666 -14.76 0 -2.7872 -2.1328 

period 3 -1.8049 0.1537 -11.74 0 -2.1067 -1.5032 

period 4 -1.2621 0.1527 -8.27 0 -1.562 -0.9623 

period 5 (dropped) 

    period 6 1.1766 0.1926 6.11 0 0.7984 1.5548 

constant 3.6227 0.2353 15.4 0 3.1607 4.0848 

No. obs 652       R-squared 0.68 

F( 8, 643 ) 170.39 

   

Adj R-squared 0.676 

Prob>F 0       Root MSE 0.758 

 

Table 6.8 Log-linear demand function result (origin 16-destination 13) 

Variable Est Std Err. T-Stat P>|t| [ 95% confidence Interval] 

advbksq 0.0002 0.0007 0.27 0.786 -0.0011 0.0015 

fare -0.0052 0.002 -2.54 0.012 -0.0092 -0.0012 

wkndmy -1.0837 0.1186 -9.14 0 -1.3171 -0.8503 

period 1 -3.3299 0.4431 -7.51 0 -4.2021 -2.4577 

period 2 -3.122 0.2142 -14.57 0 -3.5437 -2.7004 

period 3 -2.899 0.1663 -17.43 0 -3.2264 -2.5716 

period 4 -2.1572 0.1547 -13.95 0 -2.4616 -1.8527 

period 5 -1.0922 0.188 -5.81 0 -1.4623 -0.7221 

period 6 (dropped) 

    constant 4.1615 0.2464 16.89 0 3.6766 4.6465 

No. obs 296       R-squared 0.681 

F( 8, 287 ) 76.45 

   

Adj R-squared 0.672 

Prob>F 0       Root MSE 0.727 
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Table 6.9 Log-linear demand function result (origin 16-destination 14) 

Variable Est Std Err. T-Stat P>|t| [ 95% confidence Interval] 

advbksq 0.0004 0.001 0.34 0.733 -0.0017 0.0024 

fare -0.0108 0.0049 -2.2 0.029 -0.0204 -0.0011 

wkndmy -0.5392 0.101 -5.34 0 -0.7388 -0.3396 

period 1 (dropped) 

    period 2 -0.0652 0.4432 -0.15 0.883 -0.9408 0.8103 

period 3 0.0353 0.5758 0.06 0.951 -1.1022 1.1728 

period 4 0.3672 0.6143 0.6 0.551 -0.8463 1.5807 

period 5 1.3027 0.6307 2.07 0.041 0.0567 2.5486 

period 6 3.3476 0.6314 5.3 0 2.1002 4.595 

constant 0.5958 0.6452 0.92 0.357 -0.6789 1.8705 

No. obs 162       R-squared 0.873 

F( 8, 153 ) 131.73 

   

Adj R-squared 0.867 

Prob>F 0       Root MSE 0.473 

 

The estimated demand functions show goodness of fit from 0.277 to 0.873. Most 

of the parameters estimates have the expected sign, and are statistically significant at the 

5% significance level. The square of advance booking and fare coefficients have 

expected sign in majority of the models shown in the examples. The sign of the square of 

advance booking is in line with the data analysis which indicates that number of 

reservation increase non-linearly as time approaches departure. The weekend dummy is 

statistically significant at the 5% significance level in most of the models. The negative 

coefficient of weekend is in line with the expectation since based on the data analysis, the 

passenger demand on Saturday and Sunday are significantly lower than weekday. The 

booking day period intercept is statistically significant and shows the expected pattern 

with increasing value as departure period approaches departure.  
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6.3 Conclusions 

In this chapter, the demand functions are proposed to represent variation of demand 

volume in response to RM policy while taking into account trip departure characteristics. 

Demand functions estimated with linear and log-linear regression are presented, both 

approaches provides intuitive results which are in line with the expectation and capable 

of representing demand response to RM policy.   
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Chapter 7 : Revenue Optimization Framework 

In the previous two chapters, discrete choice models and demand functions are 

developed. The choice models represent the passenger purchase timing decisions, while 

the demand functions represent passenger demand volume in response to fare and 

departure characteristics. In this chapter, the revenue optimization problem that 

incorporates both the choice models and the demand functions are developed to derive a 

fare strategy. Two optimization approaches are developed; the first is based on a single-

leg approach, while the second proposes a network approach.  

The single-leg approach is presented in Section 7.1, the problem assumes that 

revenue optimization is derived independently for each market without consideration of 

capacity redistribution among markets. The formulation proposed optimizes ticket 

revenue for each daily departure. The formulation considers markets with single-origin 

and multiple-destinations by incorporating the choice models in Section 7.1.2 and the 

demand functions in Section 6.1.  

The network approach is presented in Section 7.2 and Section 7.3, the problem 

accounts for the shared capacity among multiple markets by allowing for seat capacity 

redistribution. The problem is formulated to jointly solve for pricing and seat allocation 

and optimizes ticket revenue for each train trip. The problem considers a network of 

selected stations by incorporating the choice models presented in Chapter 5. In Section 

7.2, the heterogeneous choice models based on discrete segmentation (latent class model) 

is incorporated into the problem that considers nine stations in the network. Section 7.3 

incorporates the heterogeneous choice model based on continuous segmentation (mixed 
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logit model) with parametric and non-parametric distribution to a reduced network 

including five stations.  

7.1 Single-Leg Revenue Optimization  

7.1.1 Optimization Framework and Procedure 

The optimization framework incorporates both passenger choice models and the demand 

functions (Cirillo et al., 2011). A two step process is proposed to model passenger 

demand. In the first step, passenger choice model of purchase timing is estimated using a 

multinomial logit model. In the second step, a linear regression determines passenger 

demand in response to fare. The proposed models are incorporated into RM optimization 

model to maximize expected revenue. With this framework, fare strategies that can be 

updated on a daily basis over the sale horizon are strategically calculated from this 

optimization problem. 

In this setting, it is assumed that the railway operator aims to maximize ticket 

revenue for each daily departure. In this specific case study, the fares over a 

representative week in March (March 16 to March 22, 2009) are optimized. The fare 

strategy resulting from the optimization process is tested by comparing “model” revenue 

to the actual revenue registered from March 16 to March 22, 2009. This new fare strategy 

is then applied to a representative week in April (April 20 to April 26, 2009). This is 

mainly to show how fare strategies derived from choice models estimated for a specific 

month performs in the subsequent month.   
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7.1.2 Choice Model 

A. Sample Selection 

The same data set used for choice model estimation in Chapter 5 is used in the analysis. 

Data on coach class passengers traveling from south end station (station 16) to other 

stations in the corridor are selected. This results in 44,847 valid observations.  

B. Model Specification 

The specification of the final model includes the following explicative variables: advance 

booking (number of days before departure), fare ($), destination specific dummies, and 

long distance dummy. Some parameters are allowed to take different values in each 

booking period. The 31 days sale horizon is divided into 6 booking periods denoted by   

as: (1) Booking day 1 to booking day 11, (2) Booking day 12 to booking day 20, (3) 

Booking day 21 to booking day 25, (4) Booking day 26 to booking day 29, (5) Booking 

day 30, and (6) Booking day 31.  

The advance booking coefficient enters the model as a generic parameter while 

the fare, destination specific dummies, and long distance dummy enter the model as 

booking period specific parameters. Destination specific dummies and long distance 

dummy are included to account for passenger heterogeneity across different markets. 

Accounting for destination specific effects is motivated by Iliescu et al. (2008) which 

shows promising model results adopting this approach. In this study, destination markets 

are selected from high demand markets which are believed to exhibit specific effects 

toward passengers’ booking behavior. A high demand market is assumed to have limited 

seat capacity; passengers are more likely to book the ticket in advance to make sure that a 
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ticket is available on the day of travel. Several destinations have been tested in model 

calibration for their significance in explaining passengers’ behavior. Three stations are 

found to significantly influence choice behavior: Station 1, Station 8, and Station 12. The 

effect of long distance is motivated by Whelan et al. (2008). In this study, it was found 

that leisure trips are in general long distance trips. In this context, by taking into account 

long distance trip variable the model is expected to capture specific effects deriving from 

trip purpose, and associated unobservable factors such as trip flexibility. For this 

problem, long distance trips are assumed to have travel time greater than or equal to two 

hours. The resulting utility of passenger   booking the ticket on day   which falls within 

the booking period   can be expressed as:  

 

                              
              

       

      
              

               
             

(7.1) 

where the independent variables and their associated index are: 

   = Booking day,             

   =Booking period,             

      = Advance booking of booking day   

       = Fare of booking day   ($) 

     = Destination dummy (1 if destination is Station 1, 0 otherwise) 

     = Destination dummy (1 if destination is Station 8, 0 otherwise) 

      = Destination dummy (1 if destination is Station 12, 0 otherwise) 

     = Long distance dummy (1 if trip travel time 2 hours, 0 otherwise) 
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     = A mutually independent noise term of individual   on choice   following 

a Gumbel distribution  

The probability of passenger i booking on day j can be calculated by using the 

logit probability formulation as:     

            
            

             
  
   

 (7.2) 

C. Result Interpretation 

The results obtained from the choice model calibration are reported in Table 7.1; most of 

the parameters estimated have the expected sign and statistically significant. The price 

coefficients show high statistical significance and the expected sign. The monotonically 

increasing value of price coefficients from booking period 2 to booking period 6 indicates 

that passengers become less price sensitive as time approaches departure which is in line 

with the expectation. Specifically, in booking period 6, the small positive price 

coefficient indicates that passengers are insensitive to price on the day of departure. This 

result is reasonable for this railway service, given that the majority of the passengers are 

business travelers who book the ticket close to the departure date and are not very 

sensitive to fare. The smaller magnitude of the price coefficient in booking period 1 

compared to other booking periods (2 to 5) could be explained by the relatively low 

number of passenger booking in this period.  

Station 1 destination coefficients are coherent with the expected pattern. The 

monotonically decreasing value of the coefficients with respect to booking time implies 

that it is preferred to book the ticket for Station 1 as early as possible to ensure the 

availability of the seat. Station 1 is a high demand long distance market, with travel time 
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by railway comparable to travel time by plane. Station 8 destination coefficients show an 

opposite pattern to Station 1, the increasing value of the coefficients with respect to 

booking time implies that passengers prefer to book the ticket closer to the departure date 

preferably in booking period 5 and 6 respectively. Station 12 destination coefficients 

follow the same pattern as Station 1, the most preferred booking periods being periods 2 

and 1 respectively.  

Long distance coefficients show statistically significant coefficients except for 

booking period 3. The long distance coefficients pattern is in line with the expectation; 

the earlier booking periods being more preferred by travelers, with booking period 2 

being the most preferred. This could be explained by the fact that driving to these long 

distance destinations is onerous and that traveling by bus is relatively time consuming 

and uncomfortable. It is then sensible to assume that passengers book the ticket for these 

destinations early enough to ensure the availability of seats. The advance booking 

coefficient indicates that it is generally more preferred to book and to pay the ticket as 

late as possible. The advance booking coefficient is statistically significant and has a 

negative sign indicating a strong preference toward late booking. 
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Table 7.1 Passenger choice model result 

I. Alternative specific estimates Price T-stat   Station1 T-stat   Station8 T-stat   Station12 T-stat    LONG T-stat 

Booking period1 (Day 1-11) -0.0029* -2.0 

 

 0.3082 0.9 

 

-0.3010* -2.6 

 

  0.0303 0.1 

 

-0.5191* -4.7 

Booking period2 (Day 12-20)            -0.0223* -21.0 

 

 0.3501 1.1 

 

-0.4095* -3.1 

 

0.8036* 2.5 

 

0.9610* 3.5 

Booking period3 (Day 21-25) -0.0157* -19.6 

 

-0.4483 -1.4 

 

-0.4366* -3.3 

 

  -0.1100 -0.4 

 

 -0.1939 -0.8 

Booking period4 (Day26-29) -0.0132* -23.1 

 

-0.6941* -2.2 

 

-0.2819* -2.2 

 

  -0.4220 -1.4 

 

-0.6633* -2.8 

Booking period5 (Day30) -0.0056* -9.9 

 

-0.9606* -2.8 

 

0.0700 0.5 

 

-0.7294* -2.4 

 

-1.6420* -6.9 

Booking period6 (Day31) 0.0018* 3.9 

 

-0.9760* -3.1 

 

-0.0761 -0.6 

 

-0.9678* -3.2 

 

-2.4790* -10.7 

II. Generic estimate        Advbk           T-stat               Rho-square wrt. zero 0.3040 

 

-0.2269* -65.5 

       

Log-likelihood at zero  -154,004 

          

Log-likelihood at optimal    -107,192 

                    Number of observations 44,847 

*Statistically significant at the 5% significance level. 
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7.1.3 Model Validation 

To illustrate the choice model prediction capability, the model is validated on the major 

destination markets which will be included in the revenue optimization in the next 

section.  

The prediction using the model estimated from the entire data set (within sample 

validation) is shown in Table 7.2. The prediction using the model estimated from the data 

excluding hold out sample (March 16 to March 22, 2009) (out of sample validation) is 

shown in Table 7.3 

Results indicate that the choice model performs better for stations with large 

sample size such as Station 8, 9, 10, and 12 especially on booking day 31. Given that 

smaller stations only account for less than 5% of the entire market, it can be said that 

model predictions reproduce reasonably well the distribution of the demand over the sale 

horizon.  
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Table 7.2 Choice model within sample validation 

Booking 

Day No. of reservations Station Total 

  

 

1 2 6 7 8 9 10 12 (15 Stations) 

16 Actual 10 2 7 11 275 41 27 59 450 

  Predicted 10 1 6 4 247 32 16 56 391 

17 Actual 18 2 10 16 375 36 43 64 595 

  Predicted 15 1 4 5 341 50 32 61 526 

18 Actual 7 3 11 16 270 45 33 59 463 

 

Predicted 8 1 9 14 267 46 39 57 466 

19 Actual 11 2 12 17 272 43 25 54 457 

  Predicted 13 1 8 10 322 80 52 63 575 

20 Actual 10 3 17 17 257 42 42 68 487 

 

Predicted 15 1 9 14 426 78 51 97 721 

21 Actual 14 1 17 14 315 57 37 74 557 

  Predicted 9 1 12 17 400 78 57 101 724 

22 Actual 7 2 16 27 401 73 57 109 737 

 

Predicted 12 2 12 16 457 90 66 122 838 

23 Actual 20 5 20 31 529 97 82 163 984 

  Predicted 14 3 14 21 569 116 78 158 1,050 

24 Actual 19 3 28 39 813 165 131 211 1,478 

 

Predicted 17 3 17 24 740 143 90 184 1,315 

25 Actual 10 2 28 31 1,029 134 133 241 1,693 

  Predicted 18 3 26 30 903 186 117 230 1,635 

26 Actual 27 6 37 44 1,082 211 117 249 1,867 

 

Predicted 19 4 28 39 1,190 207 138 284 2,085 

27 Actual 20 6 49 57 1,355 224 163 327 2,345 

  Predicted 23 5 34 35 1,429 256 161 342 2,498 

28 Actual 20 2 42 60 1,765 292 158 433 2,953 

 

Predicted 28 5 43 44 1,731 296 192 429 3,036 

29 Actual 31 9 60 66 2,076 345 200 539 3,541 

  Predicted 29 7 47 57 1,936 336 214 496 3,432 

30 Actual 45 14 70 100 4,380 665 284 1,242 7,415 

 

Predicted 45 14 93 113 4,410 541 376 1,249 7,560 

31 Actual 106 9 97 145 7,539 1,221 875 3,373 15,686 

  Predicted 106 30 217 260 7,509 1,080 722 3,365 15,052 

Total (31 Booking days) 462 90 623 756 24,645 3,916 2,593 7,668 44,847 
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Table 7.3 Choice model out of sample validation  

Booking Day No. of reservations Station Total 

  

 

1 2 6 7 8 9 10 12  (15 Stations) 

16 Actual 3 0 2 3 65 2 4 11 97 

  Predicted 2 0 1 1 51 7 4 13 83 

17 Actual 5 2 3 7 74 7 10 17 133 

 

Predicted 3 0 1 1 71 11 7 14 113 

18 Actual 3 2 1 1 65 6 8 13 102 

  Predicted 2 0 2 3 56 10 9 13 100 

19 Actual 4 1 3 7 52 8 6 14 101 

 

Predicted 3 0 2 2 68 18 12 15 125 

20 Actual 4 0 2 7 60 10 14 17 121 

  Predicted 4 0 2 3 91 17 12 23 158 

21 Actual 4 0 2 3 66 16 7 18 124 

 

Predicted 2 0 3 4 84 17 13 22 156 

22 Actual 3 0 3 2 83 18 13 28 161 

  Predicted 3 1 3 3 97 20 15 28 183 

23 Actual 4 3 2 8 117 14 12 36 207 

 

Predicted 3 1 3 5 123 26 18 36 231 

24 Actual 7 0 3 6 160 23 24 51 290 

  Predicted 4 1 4 5 161 32 21 42 292 

25 Actual 1 1 7 7 186 27 30 54 331 

 

Predicted 4 1 6 7 199 42 28 53 368 

26 Actual 7 1 7 12 213 62 34 49 408 

  Predicted 5 1 6 8 245 43 30 63 437 

27 Actual 6 2 10 10 281 52 38 76 494 

 

Predicted 6 1 7 7 298 53 35 76 530 

28 Actual 4 0 13 15 394 57 33 118 676 

  Predicted 7 1 10 9 365 62 42 97 652 

29 Actual 5 3 15 11 472 84 58 132 829 

 

Predicted 7 2 10 12 412 71 48 113 742 

30 Actual 13 3 20 14 894 148 59 291 1,578 

  Predicted 10 4 21 24 934 117 86 282 1,636 

31 Actual 15 2 22 31 1,554 261 194 750 3,336 

 

Predicted 30 8 49 55 1,621 237 167 783 3,344 

Total (31 Booking days) 113 24 141 160 5,227 841 590 1,759 9,760 

 

7.1.4 Problem Formulation 

Revenue optimization is formulated by maximizing the revenue of each station for each 

departure day. The problem is formulated as an expected revenue maximization problem: 

    
     

                            

  

   

                     

  

   

  (7.3) 
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 The first term represents the acceptable demand volume on a particular departure 

day. The acceptable demand is the minimum between the predicted demand and the train 

capacity; this is to ensure that acceptable demand can be accommodated with the train 

capacity. The predicted demand is obtained from the demand function in Section 6.1. The 

train capacity allocated for each destination market is approximated with historical data 

by assuming that the actual demand was at 80 percent of the allocated capacity. The 

capacity redistribution is not accounted in this analysis because fare optimization for each 

origin-destination pair is treated as an independent problem.  

 The second term in the objective function represents the expected fare expressed 

as the booking day specific fare         weighted by the probability that passengers 

purchase the ticket on that booking day          . The probability is obtained from the 

choice model parameters in Section 7.1.2. Thus, the overall formulation represents the 

expected revenue per day for each destination with the booking day specific fare        

as decision variables. It is assumed that the railway operator fare strategy is subjected to 

predetermined fare bound restriction and that the fares can only increase monotonically 

as time approaches departure. The incremental amount of fare from one booking day to 

the next is assumed to be within a certain value    (assumed to be $ 5.00). The 

assumptions used in this research do not necessarily represent this railway operator RM 

policy. The constraints for this optimization problem corresponded to our RM control 

assumptions are:  

                     (7.4) 
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                    (7.5) 

                            (7.6) 

 The first constraint imposes bounds on fares for each destination. These bounds 

are assumed to be the maximum and the minimum of the average day specific fares 

recorded for the entire sale horizon in March, 2009. The second constraint ensures that 

the fare increases monotonically with respect to booking day, while the last constraint 

ensures that the increment of fare on each day does not exceed the incremental 

allowance. The classifications of all the variables are:  

        Real decision variable     
   (7.7) 

        = Lower bound on fare ($) for each destination (7.8) 

        = Upper bound on fare ($) for each destination (7.9) 

7.1.5 Optimization Result 

The optimization problem is solved as a non-linear programming problem with LINGO 

12.0, the optimization software by Lindo System Inc. (Lindo System Inc., 2010). The 

non-linearity nature of this problem is influenced by the exponential function of the MNL 

choice probability. The methodology is applied to 8 major destination markets out of the 

15 destinations. The resulting fares in March representative week (March 16 to March 

22) for 8 representative destinations are shown in Figure 7.1 to Figure 7.8. 
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Figure 7.1 Fare strategy (origin 16-destination 1)  

 

Figure 7.2 Fare strategy (origin 16-destination 2)  
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Figure 7.3 Fare strategy (origin 16-destination 6)  

 

Figure 7.4 Fare strategy (origin 16-destination 7)  
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Figure 7.5 Fare strategy (origin 16-destination 8)  

 

Figure 7.6 Fare strategy (origin 16-destination 9)  
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Figure 7.7 Fare strategy (origin 16-destination 10)  

 

Figure 7.8 Fare strategy (origin 16-destination 12)  
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For Station 1, the fare strategy conforms to its demand function estimated. Its 

demand function indicates the highest demand on Wednesday and the lowest on Saturday 

particularly in the booking period 1 (Day 1-11), 2 (Day 1-20) and 4 (Day 26-29). The fare 

strategy suggests that the fares should be charged high on high demand day (Wednesday) 

and low on low demand day (Saturday). Fare strategies obtained from other stations show 

similar pattern to Station 1. 

For Station 2, its demand function indicates high demand on Monday, 

Wednesday, and Friday. In particular,  Monday has high demand in booking period 2 to 5 

(Day 12-31), Wednesday has high demand in the booking period 1 (Day 1-11), and 

Friday has high demand in booking period 1, and 2 (Day 1-20). The lowest demand is on 

Saturday in booking period 1 (Day 1-11) and 4 (Day 26-29). Thus, the fare strategy 

imposes the highest fare to Monday, Wednesday, and Friday and the lowest fare to 

Saturday.  

For Station 6, its demand function indicates high demand on Friday especially in 

booking periods 3 to 5 (Day 21-31). The lowest demand is on Saturday in booking period 

1 (Day 1-11), 3 (Day 21-25), and 5 (Day 30-31). Thus, the fare strategy imposes the 

highest fare on Friday and the lowest fare on Saturday.  

For Station 7, its demand function indicates high demand on Wednesday 

especially in booking periods 2 (Day 12-20) and 4 (Day 26-29). The lowest demand is on 

Saturday in booking periods 1 (Day 1-11), 3 (Day 21-25), 4 (Day 26-29), and 5 (Day 30-

31). Thus, the fare strategy imposes the highest fare to Friday and the lowest fare to 

Saturday.  
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For Station 8, its demand function indicates high demand on Tuesday especially 

in booking periods 2 (Day 12-20) and 5 (Day 30-31). Thus, the fare strategy imposes the 

highest fare to Tuesday and the lowest fare on Saturday.  

For Station 9, its demand function indicates high demand on Thursday especially 

in booking periods 1 (Day 1-11), 3 (Day 21-25), 4 (Day 26-29), and 5 (Day 30-31). The 

lowest demand is on Saturday from booking period 2 to 5 (Day 12-31). Thus, the fare 

strategy imposes the highest fare on Thursday and the lowest fare on Saturday.   

For Station 10, its demand function indicates high demand on Tuesday especially 

in booking period 2 (Day 12-20) and 5 (Day 30-31). The lowest demand is on Saturday in 

all booking periods. Thus, the fare strategy imposes the highest fare on Tuesday with the 

lowest fare on Saturday.   

For Station 12, its demand function indicates high demand on Thursday in 

booking period 3 to 5 (Day 21-31). The lowest demand is on Saturday for all booking 

periods. However, due to the relatively low fares for this station, the feasible fare range 

imposed by the constraint is smaller compared to other stations. In this case, the day of 

week effect does not sufficiently influence fare strategy.       

These findings support the intuition that high demand days have a larger impact 

on revenue maximization than low demand days. The revenue improvements for each 

departure day of the representative weeks in March (March 16 to March 22) and April 

(April 20 to April 26) are shown in Table 7.4 and Table 7.5. The total revenue 

improvement includes the stations which we do not apply the optimization and provide 

null revenue improvement. The total revenue improvement ranges from 1.92% to 13.76% 
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per day and from 0.65% to 10.60% per day for March and April representative weeks 

respectively. Results indicate that the application of the proposed fare strategy results into 

significant revenue improvement on Monday, Tuesday, and Saturday.  

Table 7.4 Revenue change in March representative week 

Station 

Mach16 Mach17 Mach18 Mach19 Mach20 Mach21 Mach22 

Monday Tuesday Wednesday Thursday Friday Saturday Sunday 

Improved Improved Improved Improved Improved Improved Improved 

(%) (%) (%) (%) (%) (%) (%) 

1. Station1  19.1 20.29 17.84 10.26 -1.01 15.08 9.23 

2. Station2  30.63 16.05 24.08 13.03 27.58 71.28 -0.63 

3. Station6  51.63 16.74 20.23 9.8 6.71 23.57 4.17 

4. Station7  18.03 2.8 8.71 2.83 2.62 15.35 13.98 

5. Station8  10.36 11.46 5.52 1.32 5.5 13.01 -0.71 

6. Station9 20.68 13.85 4.99 2.31 3.7 -8.77 0.98 

7. Station10  16.35 17.23 -0.5 1.9 -2.23 18.98 12.23 

8. Station12 20.41 11.77 6.81 2.95 5.41 45.44 25.5 

9. Other 7 Stations  0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Total change (%) 13.76 11.52 5.26 1.92 4.43 13.74 2.45 

 

Table 7.5 Revenue change in April representative week 

Station 

April 20 April 21 April 22 April 23 April 24 April 25 April 26 

Monday Tuesday Wednesday Thursday Friday Saturday Sunday 

Improved 

(%) 

Improved 

(%) 

Improved 

(%) 

Improved 

(%) 

Improved 

(%) 

Improved 

(%) 

Improved 

(%) 

1. Station1  28.83 11.20 41.09 5.36 5.79 10.00 17.41 

2. Station2  23.61 13.11 18.81 20.66 -5.46 -22.78 -3.57 

3. Station6  39.70 27.78 9.07 17.17 4.31 9.56 10.42 

4. Station7  20.98 9.64 19.54 -5.03 -0.35 4.31 2.56 

5. Station8  5.40 8.59 4.49 1.25 3.76 12.36 -4.03 

6. Station9 14.75 9.51 2.20 -0.38 1.37 -15.33 4.35 

7. Station10  10.93 9.40 -2.47 -3.16 -3.97 23.08 22.38 

8. Station12 11.41 13.53 9.34 8.02 3.50 27.46 33.21 

9. Other 7 Stations 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Total change (%) 8.40 9.33 5.07 2.10 2.70 10.60 0.65 
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7.2 Network Revenue Optimization with Discrete Market Segmentation  

Pricing and seat allocation have often been considered as two independent problems. 

Nevertheless, the two problems are interrelated and complementary to one another. In 

this section, the simultaneous RM optimization model of pricing and seat allocation is 

proposed. The framework incorporates choice model which realistically represent railway 

market by allowing for heterogeneity across categories of passengers based on latent 

class approach (Hetrakul and Cirillo, forthcoming). This study primarily adopts the 

framework of Ongprasert (2006), and further allows for pricing and seat allocation to be 

simultaneously optimized based on heterogeneous categories of passengers under 

capacity constraints determined on the basis of the railway network characteristics.   

7.2.1 Optimization Framework and Procedure 

The proposed RM optimization model accounts for both passengers’ response to RM 

policy and for demand volumes. The passenger choice models, estimated with discrete 

choice methods, predict the timing in which passengers purchase the ticket as a function 

of fare and other trip attributes (Chapter 5). The demand functions account for passengers 

deciding not to travel with this service or for induced demand due to advantageous fare 

policy. Passenger volumes are estimated using log-linear regression, where independent 

attributes are fare and trip attributes (Section 6.2). The passenger choice models and the 

demand functions are then incorporated into a RM revenue optimization system in a 

network setting.  

In this setting, it is assumed that the railway operator maximizes the ticket 

revenue of coach class ticket for each train trip from the south end to the north end 
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station. The railway service in consideration departs hourly from 5:00 AM to 7:00 PM. In 

this analysis, we focus on the trains which depart from the south end station at four 

different departure times which are:  5:00 AM., 9:00 AM., 1:00 PM., and 4:00 PM. on 

Friday, March13, 2009. These four departure times (named Train#1 to Train#4) are 

selected to represent railway traffic at different time periods across the day.  

7.2.2 Selected Stations 

This railway network has total of 16 stations; however in this optimization problem, 

seven stations are excluded from the analysis because passenger demands in these 

markets are low and insufficient for estimating demand function. The remaining nine 

stations are shown in Figure 7.9 and are renumbered into station 1 to station 9.  The 

optimization focuses on the selected stations; seats currently occupied by the excluded 

stations and seats currently empty     are not allowed to contribute to the revenue. These 

seats are extracted from the total seat capacity     in the constraint. The decision 

variables are: fare for each origin-destination pair on each booking day over the sale 

horizon (      
 

) and the acceptance ratio (   ) which is the ratio of accepted demand 

over the total demand for each origin-destination pair. 
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Figure 7.9 Station renumbering 
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7.2.3 Demand Conversion 

The demand functions in Section 6.2 are used in this optimization. The function provides 

daily passenger demand, however the proposed revenue optimization solves for each train 

trip which requires demand for each departure time as an input. We use conversion 

factors to convert daily demand to demand by departure time. The conversion factors are 

obtained from the historical data based on the distribution of daily passenger demand 

across different departure times of day. Our optimization focuses on the trains which 

depart from south end station (station 9) at four different departure times. Within our 

selected network, the corresponded departure time ( ) for each station which loads 

passengers into these trains are shown in Table 7.6.  

Table 7.6 Departure time for each origin   

Departure time ( ) 

Origin Trian#1 Trian#2 Trian#3 Trian#4 

9 5:00AM 9:00AM 1:00PM 4:00PM 

8 5:30AM 9:30AM 1:30PM 4:30PM 

7 6:35AM 10:35AM 2:35PM 5:35PM 

6 7:19AM 11:19AM 3:19PM 6:19PM 

5 7:30AM 11:30AM 3:30PM 6:30PM 

4 8:00AM 12:00PM 4:00PM 7:00PM 

3 8:44AM 12:44PM 4:44PM 7:44PM 

2 10:55AM 2:55PM 6:55PM 9:55PM 

 

The conversion factor is denoted as    
  where t represents departure time, o 

represents origin station, and d represents destination station. The passenger demand by 

departure time can be computed from estimated demand function as follows: 

    
     

      (7.10) 

where 
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  = Number of passenger demand from origin o to destination d at departure 

time t.  

   
  = Conversion factor from daily demand to demand by departure time. 

    = Estimated passenger daily demand from origin o to destination d   

obtained from the demand function. 

7.2.4 Problem Formulation 

    = Number of stations (nine stations within the selected network). 

    = Boarding station index.  

    = Alighting station index.  

    
   = Passenger demand from origin o to destination d at departure time t. 

    = Acceptance ratio; a fraction of demand (   
  ) to be accepted. 

      
 

 = Fare for origin   destination   on booking day  .  

   = Total coach class seat capacity; equal to 260 (Railway Technology, 

2011). 

   = Number of seats currently occupied by the excluded stations and seats 

currently empty. 

        = Revenue per train trip ($) from the selected stations in the network.   

         = Probability that passengers purchase the ticket on booking day   for 

origin  , destination  . 
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7.2.5 Revenue Optimization with MNL Choice Model  

The problem formulation is shown as follows: 

    
      

 
    

                 
                  

 
 

  

   

 

 

     

   

   

 (7.11) 

Subject to  

 Capacity constraint 

         
 

 

     

 

   

     (7.12) 

         (7.13) 

for all             

 Fare policy constraint 

       
        

 
       

  (7.14) 

The probability          represents the share of passengers who purchase ticket 

on booking day  . The MNL choice model parameters estimated in Chapter 5 are used in 

this optimization. The probability is calculated based on the logit choice probability as:   

          
       

        
  
   

 (7.15) 

where     is a deterministic utility of booking day   of origin   destination  .    is 

a deterministic utility of booking day   of origin   destination  . 
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Objective Function 

The first two summations sum the passenger demand departing from origin   

           to destination           within the same train trip. Note that this index 

has different value from the station number. The value     represents south end station 

(station 9) and increases up to     for north end station (station 1). The index   is used 

to represent the corresponded departure time for each station which loads passengers into 

this train. The third summation represents weighted average of the ticket fare which is the 

product of fare (      
 

) and probability that the ticket be purchased on booking day    

(        ) over the sale horizon. The ratio of total demand which can be accepted for 

each origin-destination pair is denoted as    . 

Constraint 

The capacity constraint restricts the number of accepted passengers in each segment to be 

within the allowable seat capacity which is equal the total seat capacity     subtracted by 

the seats currently occupied by the excluded stations and seats currently empty   . The 

decision variable     is an acceptance ratio used to control the number of accepted 

passengers to be within the allowable seat capacity. Figure 7.10 represents the capacity 

constraint where the line connecting each origin-destination pair represents the passenger 

demand. Fare policy constraint restricts fares to be within the allowable fare bounds. The 

fare bounds are obtained from the data based on the maximum and minimum of the 

average fare of a particular time of day, and day of week of departure within the entire 

month. These fare bounds are also adjusted to ensure that fare of shorter distance does not 

exceed fare of longer distance.  
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Figure 7.10 Capacity constraint  

7.2.6 Revenue Optimization with LC Choice Model  

The application of latent class (LC) choice model in the fare optimization allows for 

passenger taste heterogeneity in a discrete approach. Given the choice probability of LC 

model as: 

                      

 

   

                     (7.16) 

where   

   is class index;         

    is class membership explanatory variable 

     is class specific choice models explanatory variable 

The corresponded optimization problem can be expressed as: 

  

 +1 
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(7.17) 

The LC choice model parameters estimated in Chapter 5 are used in this 

optimization. The latent class optimization has the same constraints as the MNL 

optimization.   

7.2.7 Optimization Result  

The optimization problem is solved as a nonlinear programming problem with LINGO 

12.0, the optimization software by Lindo System Inc. (Lindo System Inc, 2010). The 

nonlinearity property of this problem is influenced by the exponential term in the logit 

choice probability function (MNL and LC).  For brevity, we do not show results of all the 

decision variables obtained from the optimization. We chose certain categories of 

decision variables to show the overview of the result reported in Table 7.7 to Table 7.9.   
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Table 7.7 Acceptance ratio  

(O,D) 5AM (Train#1) 9AM (Train#2) 1PM (Train#3) 4PM (Train#4) 

  MNL LC MNL LC MNL LC MNL LC 

(9,8) 1 1 1 1 0 0 0.275 0.285 

(9,7) 1 1 1 1 0.861 0.861 1 1 

(9,6) 0 0 1 1 0 0 1 1 

(9,5) 0 0.010 0 0 0 0 1 1 

(9,4) 0 0 0.054 0.048 0 0 0.195 0.186 

(9,3) 0 0 0 0 0 0 0 0 

(9,2) 0 0 0 0 0 0 0 0 

(9,1) 0 0 0 0 0 0 0 0 

(8,7) 0.839 0.336 0 1 1 1 1 1 

(8,6) 0 0 0 1 1 1 1 1 

(8,5) 0 1 1 1 1 1 1 1 

(8,4) 0 0 0.958 0.827 0 0 0 0 

(8,3) 0 0 0 0.636 0 0 0 0 

(8,2) 0 0 0 0 0 0 0 0 

(8,1) 0 0 0 0 0 0 0 0 

(7,6) 0 0 0 0 1 1 1 1 

(7,5) 1 1 1 1 1 1 1 1 

(7,4) 0.331 0.322 0.866 0.891 0.714 0.714 0.587 0.591 

(7,3) 0 0 0 0 0 0 0 0 

(7,2) 0 0 0 0 0 0 0 0 

(7,1) 1 1 0 0 0 0 0 0 

(6,5) 1 1 1 1 0.464 0.468 1 1 

(6,4) 1 1 0.184 0.174 0 0 0 0 

(6,3) 1 1 1 1 0 0 0 0 

(6,2) 1 1 0 0 0 0 0 0 

(6,1) 1 1 0 0 0 0 0 0 

(5,4) 0.954 1 0.366 0.201 0 0 0 0 

(5,3) 1 1 1 1 0 0 0 0 

(5,2) 0 0 0 0 0 0 0 0 

(5,1) 0 0 0 0 0 0 0 0 

(4,3) 1 1 1 1 0 0 1 1 

(4,2) 0.479 0.511 0.411 0.462 0.348 0.352 0.388 0.497 

(4,1) 0.295 0.302 0.347 0.370 0.227 0.226 0.316 0.340 

(3,2) 0 0 0 0 0 0 0 0 

(3,1) 0.374 0.432 0.600 0.718 0 0 0 0 

(2,1) 1 1 1 1 1 1 1 1 

 

Table 7.7 compares the acceptance ratio (   ) between the MNL and the LC; the 

acceptance policy obtained with the two models are similar.  
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Table 7.8 Accepted demand  

(O,D) 5AM (Train#1) 9AM (Train#2) 1PM (Train#3) 4PM (Train#4) 

  Exist MNL LC Exist MNL LC Exist MNL LC Exist MNL LC 

(9,8) 0 1 1 9 4 4 0 0 0 3 1 2 

(9,7) 0 9 9 7 63 63 11 49 49 53 89 89 

(9,6) 0 0 0 0 13 12 5 0 0 39 22 22 

(9,5) 0 0 0 10 0 0 10 0 0 22 9 9 

(9,4) 9 0 0 65 21 22 21 0 0 72 81 80 

(9,3) 1 0 0 1 0 0 0 0 0 10 0 0 

(9,2) 0 0 0 4 0 0 2 0 0 1 0 0 

(9,1) 1 0 0 5 0 0 0 0 0 2 0 0 

(8,7) 0 3 1 3 0 2 6 8 8 1 11 12 

(8,6) 0 0 0 0 0 0 1 3 3 2 4 4 

(8,5) 0 0 2 0 1 1 1 4 4 1 5 5 

(8,4) 1 0 0 13 14 11 11 0 0 13 0 0 

(8,3) 0 0 0 2 0 1 0 0 0 4 0 0 

(8,2) 0 0 0 0 0 0 0 0 0 0 0 0 

(8,1) 0 0 0 1 0 0 1 0 0 1 0 0 

(7,6) 0 0 0 0 0 0 5 5 5 3 5 3 

(7,5) 1 4 4 1 4 3 5 5 5 2 4 4 

(7,4) 25 39 37 17 79 81 38 84 84 22 61 62 

(7,3) 3 0 0 1 0 0 0 0 0 5 0 0 

(7,2) 0 0 0 1 0 0 0 0 0 2 0 0 

(7,1) 2 0 0 11 0 0 4 0 0 2 0 0 

(6,5) 0 0 0 0 3 3 0 3 3 0 0 0 

(6,4) 0 0 0 0 7 7 0 0 0 0 0 0 

(6,3) 0 0 0 0 3 3 0 0 0 0 0 0 

(6,2) 0 0 0 0 0 0 1 0 0 1 0 0 

(6,1) 0 0 0 0 0 0 2 0 0 2 0 0 

(5,4) 1 8 9 0 2 1 0 0 0 0 0 0 

(5,3) 0 6 7 0 4 5 0 0 0 0 0 0 

(5,2) 1 0 0 1 0 0 0 0 0 1 0 0 

(5,1) 9 0 0 9 0 0 4 0 0 4 0 0 

(4,3) 1 4 4 0 4 4 0 0 0 1 3 3 

(4,2) 24 34 34 21 34 35 44 50 51 27 32 32 

(4,1) 45 43 42 49 59 58 81 89 88 59 71 71 

(3,2) 4 0 0 3 0 0 0 0 0 0 0 0 

(3,1) 1 10 10 3 13 14 0 0 0 1 0 0 

(2,1) 2 5 5 1 6 7 2 5 6 2 2 2 

Total 131 166 166 238 334 336 255 306 306 358 401 399 
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In Table 7.8 the number of accepted passengers         
   by the modeling 

system is compared to the actual demand. Results show that the proposed strategy 

increases the total number of passengers in all the four trains. Based on our assumption 

that limits the number of seats to those occupied in the actual situation, we can conclude 

that the optimal solution suggests accepting more short-haul passengers , thus occupying 

capacity in a shorter duration and allow for the same number of seats to serve more 

passengers. 
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Table 7.9 Revenue per train trip ($) 

(O,D) 5AM (Train#1) 9AM  (Train#2) 1PM  (Train#3) 4PM  (Train#4) 

 

Exist MNL LC Exist MNL LC Exist MNL LC Exist MNL LC 

(9,8) 0 28 9 396 190 64 0 0 0 171 86 31 

(9,7) 0 1,013 994 764 6,907 6,888 1,433 7,326 7,326 7,521 13,310 13,310 

(9,6) 0 0 0 0 1,882 1,686 894 0 0 7,244 4,317 4,317 

(9,5) 0 0 1 1,704 0 0 1,808 0 0 4,433 1,863 1,849 

(9,4) 1,203 0 0 9,589 3,709 3,606 3,575 0 0 14,529 19,035 18,810 

(9,3) 137 0 0 183 0 0 0 0 0 1,959 0 0 

(9,2) 0 0 0 332 0 0 396 0 0 222 0 0 

(9,1) 149 0 0 694 0 0 0 0 0 422 0 0 

(8,7) 0 287 37 244 0 48 690 1,123 1,085 132 1,492 1,145 

(8,6) 0 0 0 0 0 43 205 655 655 390 871 770 

(8,5) 0 0 194 0 99 72 212 733 731 191 975 943 

(8,4) 95 0 0 1,717 2,186 1,698 2,038 0 0 2,693 0 0 

(8,3) 0 0 0 212 0 62 0 0 0 827 0 0 

(8,2) 0 0 0 0 0 0 0 0 0 

 

0 0 

(8,1) 0 0 0 124 0 0 223 0 0 223 0 0 

(7,6) 0 0 0 0 0 0 566 658 658 354 584 250 

(7,5) 86 456 395 114 357 298 715 688 688 272 611 491 

(7,4) 2,064 4,225 4,086 1,860 8,663 8,879 5,025 12,461 12,461 2,790 9,088 9,153 

(7,3) 273 0 0 152 0 0 0 0 0 760 0 0 

(7,2) 0 0 0 107 0 0 0 0 0 386 0 0 

(7,1) 274 0 0 1,449 0 0 847 0 0 389 0 0 

(6,5) 0 0 0 0 125 84 0 199 200 0 0 0 

(6,4) 0 0 0 0 334 278 0 0 0 0 0 0 

(6,3) 0 0 0 0 290 272 0 0 0 0 0 0 

(6,2) 0 0 0 0 0 0 140 0 0 124 0 0 

(6,1) 0 0 0 0 0 0 281 0 0 298 0 0 

(5,4) 32 336 342 0 83 35 0 0 0 0 0 0 

(5,3) 0 488 479 0 313 224 0 0 0 0 0 0 

(5,2) 93 0 0 124 0 0 0 0 0 140 0 0 

(5,1) 795 0 0 978 0 0 520 0 0 523 0 0 

(4,3) 71 220 162 0 259 190 0 0 0 71 246 202 

(4,2) 2,366 3,396 3,361 2,263 3,429 3,362 5,293 6,747 6,830 3,061 4,320 4,251 

(4,1) 4,781 4,416 4,331 5,430 6,103 5,896 10,629 12,364 12,278 7,117 9,865 9,794 

(3,2) 396 0 0 370 0 0 0 0 0 0 0 0 

(3,1) 104 978 956 343 1,299 1,350 0 0 0 119 0 0 

(2,1) 70 181 174 25 227 135 90 243 278 75 100 57 

Total 12,989 16,023 15,520 29,174 36,456 35,169 35,580 43,197 43,191 57,436 66,761 65,372 

% Improve 23.36 15.80   24.96 20.55   21.41 21.39   16.24 13.82 

 

Finally, Table 7.9 shows the revenue comparison per each train trip across four 

train departures. Results indicate that the RM strategy can improve revenues from low 
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traffic trains (Train#1, 2, and 3 from 15.80% to 24.96% per train trip) significantly and 

from high traffic train but in a less remarkable entity (Train#4 from 13.82% to 16.24% 

per train trip). In comparison between the LC and the MNL, it was found that the 

optimization problems which incorporate the LC choice model generally provide less 

revenue. A possible explanation for this behavior can be derived from the fact that the LC 

models enable passengers in different classes to respond to fare differently. Thus, the 

behavior of the price sensitive passengers can be revealed more realistically with the LC 

than with the MNL which assumes homogeneity across populations. Based on the results 

obtained, two markets are selected and detailed analysis in terms of pricing and seat 

allocation are provided in the next section. 

7.2.8 Pricing Result  

In this section, we select two major markets which are (9,7)
7
 and (4,1) to elaborate the 

result in detail. For these two markets, we consider the trip which loads passengers into 

Train#2 and Train#4 that depart from south end station at 9AM and 4PM respectively. 

These correspond to the departure times of 9AM and 4PM for market (9,7) and departure 

times of 12PM and 7PM for market (4,1) based on Table 7.6. 

Fare of market (9,7) is shown in Figure 7.11 and Figure 7.13 for 9AM and 4PM 

departure time respectively. The results from the MNL and the LC models are compared 

to the existing fare, which is representative fare pattern of a particular departure time of 

day and day of week obtained from the data. In general, the optimization with the LC 

model provides stepwise fare pattern which realistically reflects passenger price 

                                                 
7
 The term denotes (origin, destination) pair eg. (9,7) represents trip from Station 9 to Station7. 
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sensitivity across the sale horizon. The use of the LC choice model also enables to 

distinguish between leisure and business travelers, depending on departure time and day 

of week. When compared across different departure times, the fares of market (9,7) are 

higher in the 4PM departure compared to 9AM departure. This is primarily due to the 

difference in fare bounds across different departure times imposed in the constraints as 

well as differences in passenger price sensitivity across different departure times. It is 

expected that passengers departing 4PM which has higher traffic be less price sensitive 

than the 9AM departure.    
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Figure 7.11 Station (9,7) 9AM departure fare 

 

Figure 7.12 Station (9,7) 9AM departure demand 

Figure 7.12 shows the corresponded number of accepted passengers in market 

(9,7) of 9AM departure. The response of passenger demand in both the MNL and the LC 

are realistic; when the new fare is lower than the existing (from booking day 25 onward), 

the passenger demand increase from the existing significantly. Figure 7.14 also shows the 
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same pattern for 4PM departure, with the number of passengers increasing significantly 

on booking day 30 and 31 when fares are lower than the existing.  

 

Figure 7.13 Station (9,7) 4PM departure fare 

 

Figure 7.14 Station (9,7) 4PM departure demand 

The results of market (4,1) are shown in Figure 7.15 to Figure 7.18. Results show 

similar pattern to market (9,7) with the LC model providing stepwise fare pattern. In 
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market (4,1), the 7PM departure has a higher traffic than 12PM departure and passengers 

are expected to be less price sensitive. The passenger demand responses to fare are 

realistic following the pattern observed in market (9,7).  

 

Figure 7.15 Station (4,1) 12PM departure fare 

 

Figure 7.16 Station (4,1) 12PM departure demand 
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Figure 7.17 Station (4,1) 7PM departure fare 

 

Figure 7.18 Station (4,1) 7PM departure demand 

Based on these two markets, the total accepted passengers and corresponded 

revenue across different departure times of focused are shown in Figure 7.19 and Figure 

7.20 respectively.   
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Figure 7.19 Total accepted passengers of major markets 

 

Figure 7.20 Revenue ($) per train trip of major markets 

7.2.9 Capacity Redistribution  

This section illustrates how the proposed seat allocation strategy influences capacity 

distribution of each segment in the network. For brevity, we shall focus the analysis on 
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represents the share (percentage) of each leg capacity utilized by its related markets 

(highlighted in grey). The allowable capacity of each leg is shown in the last row of 

Table 7.10. Result shows that the proposed shares of capacity increase slightly for 

markets (9,4), (4,2), and (4,1) and significantly for markets (9,7) and (7,4). On the other 

hand, the proposed shares of capacity for markets (9,6) and (9,5) decrease. This occurs 

across all the legs these markets utilize.   
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Table 7.10 Capacity redistribution of Train#4  

OD 

Leg 9-8 (%) Leg 8-7 (%) Leg 7-6 (%) Leg 6-5 (%) Leg 5-4 (%) Leg 4-3 (%) Leg 3-2 (%) Leg 2-1 (%) 

Exist  MNL LC Exist  MNL LC Exist  MNL LC Exist  MNL LC Exist  MNL LC Exist  MNL LC Exist  MNL LC Exist  MNL LC 

(9,8) 1 1 1 

   

  

 

  

   

  

 

  

   

  

 

    

 

  

(9,7) 26 44 44 24 40 40   

 

  

   

  

 

  

   

  

 

    

 

  

(9,6) 19 11 11 18 10 10 19 12 12 

   

  

 

  

   

  

 

    

 

  

(9,5) 11 4 4 10 4 4 11 5 5 14 5 5   

 

  

   

  

 

    

 

  

(9,4) 36 40 40 33 37 36 35 42 43 44 50 50 51 57 57 

   

  

 

    

 

  

(9,3) 5 0 0 5 0 0 5 0 0 6 0 0 7 0 0 8 0 0   

 

    

 

  

(9,2) 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0   

 

  

(9,1) 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 2 0 0 2 0 0 3 0 0 

(8,7)   

 

  0 5 5   

 

  

   

  

 

  

   

  

 

    

 

  

(8,6)   

 

  1 2 2 1 2 2 

   

  

 

  

   

  

 

    

 

  

(8,5)   

 

  0 2 2 0 2 3 1 3 3   

 

  

   

  

 

    

 

  

(8,4)   

 

  6 0 0 6 0 0 8 0 0 9 0 0 

   

  

 

    

 

  

(8,3)   

 

  2 0 0 2 0 0 2 0 0 3 0 0 3 0 0   

 

    

 

  

(8,2)   

 

  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0   

 

  

(8,1)   

 

  0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 

(7,6)   

 

  

   

1 2 1 

   

  

 

  

   

  

 

    

 

  

(7,5)   

 

  

   

1 2 2 1 3 2   

 

  

   

  

 

    

 

  

(7,4)   

 

  

   

11 32 33 14 38 39 15 43 43 

   

  

 

    

 

  

(7,3)   

 

  

   

2 0 0 3 0 0 4 0 0 4 0 0   

 

    

 

  

(7,2)   

 

  

   

1 0 0 1 0 0 1 0 0 2 0 0 2 0 0   

 

  

(7,1)   

 

  

   

1 0 0 1 0 0 1 0 0 2 0 0 2 0 0 3 0 0 
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OD 

Leg 9-8 (%) Leg 8-7 (%) Leg 7-6 (%) Leg 6-5 (%) Leg 5-4 (%) Leg 4-3 (%) Leg 3-2 (%) Leg 2-1 (%) 

Exist  MNL LC Exist  MNL LC Exist  MNL LC Exist  MNL LC Exist  MNL LC Exist  MNL LC Exist  MNL LC Exist  MNL LC 

(6,5)   

 

  

   

  

 

  0 0 0   

 

  

   

  

 

    

 

  

(6,4)   

 

  

   

  

 

  0 0 0 0 0 0 

   

  

 

    

 

  

(6,3)   

 

  

   

  

 

  0 0 0 0 0 0 0 0 0   

 

    

 

  

(6,2)   

 

  

   

  

 

  1 0 0 1 0 0 1 0 0 1 0 0   

 

  

(6,1)   

 

  

   

  

 

  1 0 0 1 0 0 2 0 0 2 0 0 3 0 0 

(5,4)   

 

  

   

  

 

  

   

0 0 0 

   

  

 

    

 

  

(5,3)   

 

  

   

  

 

  

   

0 0 0 0 0 0   

 

    

 

  

(5,2)   

 

  

   

  

 

  

   

1 0 0 1 0 0 1 0 0   

 

  

(5,1)   

 

  

   

  

 

  

   

3 0 0 3 0 0 4 0 0 5 0 0 

(4,3)   

 

  

   

  

 

  

   

  

 

  1 3 3   

 

    

 

  

(4,2)   

 

  

   

  

 

  

   

  

 

  22 30 31 26 31 31   

 

  

(4,1)   

 

  

   

  

 

  

   

  

 

  48 67 67 57 69 69 81 97 97 

(3,2)   

 

  

   

  

 

  

   

  

 

  

   

0 0 0   

 

  

(3,1)   

 

  

   

  

 

  

   

  

 

  

   

1 0 0 1 0 0 

(2,1)                                           3 3 3 

% 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 

Total 202 202 202 221 221 221 203 191 188 162 160 159 142 142 142 122 106 106 103 103 103 73 73 73 

 

In addition, we compare the cumulated leg-based capacity consumption of Train#4 over the sale horizon in Appendix B 

between the existing condition and the strategy from optimizations with the MNL and the LC models.   
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7.3 Network Revenue Optimization with Continuous Market Segmentation  

The primary purpose of this section is to incorporate mixed logit passenger choice 

models which account for taste heterogeneity based on continuous segmentation. Given 

that mixed logit model with parametric distribution is consistent and applicable only in 

the case that the distribution of the unknown random coefficient can be reasonably 

assumed, this section introduces mixed logit with non-parametric distribution (Section 

7.3.2) to resolve difficulties associated with the identification of underlying unknown 

random distribution. With this approach, B-spline curve is proposed to capture 

randomness and heterogeneity presented in the population. The method adopts the model 

estimation framework of Bastin et al. (2010) where the method can explicitly estimate the 

shape of the unknown distributions. 

7.3.1 Selected Stations  

In this section, the problem setting and optimization procedure has the same structure as 

Section 7.2 where the choice models in Chapter 5 and demand functions in Section 6.2 

are incorporated. However, the network considered in this section consists of five stations 

depicted in Figure 7.21 to allow for detailed analysis. With this selected network, the 

optimization objective is to maximize ticket revenue obtained from these five stations per 

each train trip.  
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Station16* 

   

     * Indicates excluded stations. 

Figure 7.21 Station renumbering 
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7.3.2 Non-parametric Mixed Logit Model   

In this section, a mixed logit model with non-parametric distribution is proposed. We 

assume that the distribution of each random coefficient in the mixed logit function is 

random, and if we assume the independence between these values, each value can be 

considered separately. This allows us to draw from the univariate random variables. More 

specifically, if a random variable   has a bounded support, the elegant way to construct 

the non-parametric distribution is the use of B-spline functions. The bounded support is 

considered consistent with the underlying behavior assumption (Bastin et al., 2010). We 

propose the B-spline approximation of degree three given by: 

 
  
              

 

   

         (7.18) 

where the piecewise cubic polynomial functions         form an easily 

computable basis for B-spline function in [0,1]. The coefficients    is called the control 

point, and the functions         depend on the choice of special points, called knots in 

[0,1]. With these basis and knots choice,      is monotonically increasing if the control 

points have the same property, that is         .  

With non-parametric distribution, the mixed logit model specifies price sensitivity 

          with a uniform B-spline curve. The utility function corresponded to mixed logit 

choice model in Chapter 5 has the form: 

 
                                             

             (7.19) 
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where the price coefficient is estimated with a B-spline approximation of degree 

three given by: 

 
               

 

   

        (7.20) 

The constrained optimization in Bastin et al. (2010) is adopted to estimate the 

knots point    ) of the non-parametric distribution and to ensure its monotonicity. For 

price coefficient, seven control points              have been estimated for each B-

spline, where    and    give the bounds of the distribution, and the knot vector is defined 

on the percentile 0, 0.25, 0.5, and 1. An example of the estimation result for one of the 

models incorporated in the revenue optimization (model 5 based on Chapter 5) is shown 

in Table 7.11.The estimation results of all 10 models are shown in Appendix C.  
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Table 7.11 Passenger choice model with B-spline  

  MNL   ML     B-spline   LC 

                      Choice Model Class1   Class2   

Variable Est T-Stat   Est T-Stat 

 

  Est T-Stat   Variable Est T-Stat 

 

Est T-Stat   

advbk -0.220 17.952 * -0.450 89.143 * advbk -0.568 72.854 * advbk -0.199 -11.688 * -0.539 -12.988 * 

price.period1 -0.008 1.942   -6.225 54.812 * price1 -0.406 47.219 * price.period1 -0.083 -10.519 * 0.023 1.497   

price.period2 -0.017 6.735 * (3.630) 56.304 * price2 -0.406 37.111 * price.period2 -0.084 -11.562 * -0.010 -0.746   

price.period3 -0.015 8.598 * 

   

price3 -0.406 27.721 * price.period3 -0.084 -12.478 * -0.012 -0.950   

price.period4 -0.013 9.154 * 

   

price4 -0.406 11.498 * price.period4 -0.076 -11.299 * -0.024 -2.042 * 

price.period5 -0.004 3.109 * 

   

price5 4.569 7.813 * price.period5 -0.106 -6.418 * -0.015 -1.235   

price.period6 -0.002 1.533   

   

price6 6.698 15.579 * price.period6 -0.059 -8.864 * -0.035 -2.974 * 

  
  

  
   

price7 6.698 15.578 *   
     

  

  

  

  

   

  

  

  Class  Model Class1   Class2   

  
  

  
   

  
  

  Class Size 0.575 
 

0.426   

  
  

  
   

  
  

  Variable Est T-Stat   Est T-Stat   

  
  

  
   

  
  

  Intercept 0.785 8.454 * -0.785 -8.454 * 

  
  

  
   

  
  

  Monday 0.186 2.215 * -0.186 -2.215 * 

wknd.period1 1.473 8.601 * 0.468 12.337 *   0.176 1.361   Tuesday -0.408 -5.255 * 0.408 5.255 * 

wknd.period2 0.833 5.862 * 0.491 42.742 *   0.153 1.206   Wednesday -0.413 -5.272 * 0.413 5.272 * 

wknd.period3 0.396 3.485 * 0.518 36.889 *   0.245 1.396   Thursday -0.456 -5.764 * 0.456 5.764 * 

wknd.period4 0.352 4.280 * 0.355 6.400 *   -0.495 4.276 * Friday -0.317 -3.977 * 0.317 3.977 * 

wknd.period5 -0.551 5.574 * -0.163 3.125 *   -0.603 5.292 * Saturday 0.180 1.163 

 

-0.180 -1.163   

wknd.period6 0.498 7.342 * 1.332 23.902 *   0.022 0.177     

     

  

  

  

  

   

  

  

  Early morning 

     

  

  

  

  

   

  

  

  AM peak -0.917 -11.348 * 0.917 11.348 * 

  

  

  

   

  

  

  AM off peak -0.305 -5.495 * 0.305 5.495 * 

  

  

  

   

  

  

  PM off peak -0.009 -0.182 

 

0.009 0.182   

  

  

  

   

  

  

  PM peak -0.190 -3.484 * 0.190 3.484 * 

No. of observations 11,536     11,536       11,536   No. of observations       11,536    

Rho-squared: 
 

0.4327     0.4525 
 

  
 

0.6736   Rho-squared: 
    

0.4444   

Adjusted rho-squared: 0.4323     0.4523 

 

  

 

0.6733   Adjusted rho-squared: 

  

0.4437   

Log-likelihood at optimal -22,474     -21,688 
 

  
 

-12,929   Log-likelihood at optimal 
  

-22,011   

Log-likelihood  at zero -39,614     -39,614 
 

  
 

-39,614   Log-likelihood  at zero 
   

-39,614   

Log-likelihood at constant -22,530     -22,530       -22,530   Log-likelihood at constant     -22,530   

*Statistically significant at the 5% significance level. Parenthesis indicates standard deviation. 
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7.3.3 Revenue Optimization with ML Choice Model 

Mixed logit (ML) probabilities are the integral of standard logit probabilities over a 

density of parameters      Choice probabilities of a mixed logit model can be expressed 

in the form: 

 
                     

(7.21) 

where        is the logit probability evaluated at parameter  : 

 
        

       

         
   

 
(7.22) 

and      is a density function.        is deterministic term observed by the 

analyst, which depends on the parameters  . Usually, the utility is linear in  , thus 

            . The mixed logit probability then takes its usual form: 

 
      

          

            
          

(7.23) 

The application of mixed logit choice model in the revenue optimization allows 

for passenger taste heterogeneity in a continuous approach. Given the choice probability 

of mixed logit specified in the choice model as: 

         
          

            
          (7.24) 

The corresponded optimization problem could be expressed as:  
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(7.25) 

The optimization is subjected to the same set of constraints described in Section 

7.2 except that only five stations are considered instead of nine stations. 

7.3.4 Incorporating Random Coefficient Parameters in the Optimization   

This section describes how the random coefficient parameters estimated from mixed logit 

models in Chapter 5 and Section 7.3.2 are incorporated into the optimization framework.  

A. Random coefficient with parametric distribution 

The mixed logit choice model with parametric distribution estimated in Chapter 5 

assumes that price coefficient is log-normally distributed. Based on the estimation 

method for mixed logit model in Chapter 5 using AMLET (Bastin, 2011), the lognormal 

distribution is specified as a transformation of the normal distribution given by      

          where   is assumed to be normally distributed based on standard normal 

distribution. To incorporate the random coefficient parameters into revenue optimization, 

we discretize the price sensitivity          into six segments based on the distribution of 

 . Given   is distributed as a standard normal, Figure 7.22 shows the probability of   

lying in each of the six regions where the cut points have increment of   . The averaged 

price sensitivity of each segment       
   can then be written as            where    

is the mean value of   within region   calculated from the probability density function of 

the standard normal distribution. The averaged price sensitivity obtained is further 



143 

 

truncated at [-1.0, 0.5] to exclude extreme behaviors. This approach approximates the 

random coefficient parameters from mixed logit by segmenting price sensitivity         

into six segments and assigning each value to the population based on the probability 

distribution in Figure 7.22. 

 

Figure 7.22 Standard normal distribution 

 

B. Random coefficient with non-parametric distribution 

Based on the estimation of mixed logit model with non-parametric B-spline mentioned in 

Section 7.3.2, the control points estimated are truncated at [-1.0, 0.5] to exclude extreme 

behaviors which is not usually welcome because they are difficult to interpret. These 

control points are used to construct spline curves using De Boor’s algorithm (Lee, 1982) 

based on polynomial of degree three. Examples of the spline curves estimated are shown 

in Figure 7.23.  

To incorporate random coefficient into revenue optimization, we discretize the 

spline curve into seven regions equally based on the   axis. For each region  , the 

averaged price sensitivity       
   is obtained by drawing randomly from the distribution 
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based on the shape of the spline curve within the region. The probability mass of each 

averaged price sensitivities are equally 1/7 since the spline region is equally divided on   

axis. This approach approximates the random coefficient parameters from mixed logit by 

segmenting price sensitivity         into seven segments and assigning each value to the 

population with the probability of 1/7 each. 

 

Figure 7.23 Example of B-spline curve estimated with De Boor’s algorithm 

7.3.5 Optimization Result 

The optimization problem is solved as a nonlinear programming problem with LINGO 

12.0, the optimization software by Lindo System Inc. (Lindo System Inc, 2010). The 

nonlinearity property of this problem is influenced by the exponential function of the 

logit choice probability. For brevity, we do not show results of all the decision variables 
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obtained from the optimization. We chose certain categories of decision variables to 

show the overview of the result reported in Table 7.12 to Table 7.14.  
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Table 7.12 Acceptance ratio  

(O,D) 5AM (Train#1) 9AM (Train#2) 1PM (Train#3) 4PM (Train#4) 

  MNL LC ML Spline MNL LC ML Spline MNL LC ML Spline MNL LC ML Spline 

(5,4) 0.544 0.559 1 0.560 1 1 1 0.958 1 1 1 1 0.926 0.999 0.865 1 

(5,3) 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 0.587 

(5,2) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

(5,1) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

(4,3) 1 1 0.745 1 1 1 0.271 1 1 0 1 1 1 1 1 0 

(4,2) 0.381 0.452 0.470 0.455 0.324 0.328 0.375 0.334 0.319 0.332 0.323 0.339 0.321 0.343 0.324 0.343 

(4,1) 0.295 0.261 0.390 0.262 0.197 0.197 0.347 0.200 0.197 0.208 0.196 0.196 0.268 0.262 0.267 0.294 

(3,2) 1 0 1 0 0 0 1 0 1 0 1 0 1 0 1 1 

(3,1) 0.338 0.521 1 0.517 0.608 0.596 1 0.702 0.656 0 0.666 0.900 0.403 0.613 0.426 0.056 

(2,1) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
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Table 7.13 Accepted demand  

(O,D) 5AM (Train#1) 9AM (Train#2) 1PM (Train#3) 4PM (Train#4) 

  Exist MNL LC ML Spline Exist MNL LC ML Spline Exist MNL LC ML Spline Exist MNL LC ML Spline 

(5,4) 1 5 5 3 5 0 6 6 3 5 0 1 1 1 1 0 3 3 3 3 

(5,3) 0 6 6 3 6 0 4 4 2 5 0 1 0 1 1 0 2 2 2 2 

(5,2) 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 

(5,1) 9 0 0 0 0 9 0 0 0 0 4 0 0 0 0 4 0 0 0 0 

(4,3) 1 4 4 2 4 0 4 4 1 4 0 5 0 5 5 1 3 3 3 0 

(4,2) 24 27 32 28 32 21 30 31 25 31 44 46 48 46 48 27 27 28 27 27 

(4,1) 45 43 38 47 38 49 41 41 52 41 81 77 81 77 75 59 60 59 60 63 

(3,2) 4 5 0 1 0 3 0 0 1 0 0 1 0 1 0 0 2 0 2 1 

(3,1) 1 9 14 7 14 3 14 14 8 15 0 5 0 5 6 1 4 5 4 0 

(2,1) 2 5 5 2 5 1 6 7 2 7 2 5 6 6 6 2 2 2 2 2 

Total 88 104 104 94 104 87 106 106 95 107 131 141 136 142 142 95 102 102 102 99 

 

Table 7.12 shows acceptance ratio       across four departure times. This acceptance ratio results in the number of 

accepted passengers         
   shown in Table 7.13. Result shows that the proposed strategy suggests increasing total 

accepted passengers in all the four trains. Based on our assumption that the solution cannot utilize more seats than currently 

occupied in the existing condition, this means that the solution suggests accepting more short-haul passengers which occupy 

capacity in a shorter duration thus allowing for the same number of seats to serve more passengers.  
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Table 7.14 Revenue per train trip ($) 

(O,D) 5AM (Train#1) 9AM  (Train#2) 1PM  (Train#3) 4PM  (Train#4) 

  Exist MNL LC ML Spline Exist MNL LC ML Spline Exist MNL LC ML Spline Exist MNL LC ML Spline 

(5,4) 32 191 197 138 202 0 255 254 153 204 0 60 59 62 47 0 156 170 145 103 

(5,3) 0 488 480 193 474 0 343 325 211 282 0 79 0 85 45 0 228 205 249 87 

(5,2) 93 0 0 0 0 124 0 0 0 0 0 0 0 0 0 140 0 0 0 0 

(5,1) 795 0 0 0 0 978 0 0 0 0 520 0 0 0 0 523 0 0 0 0 

(4,3) 71 220 221 136 221 0 289 288 56 201 0 428 0 432 308 71 246 244 248 0 

(4,2) 2,366 2,703 3,206 2,771 3,214 2,263 3,373 3,416 2,758 3,411 5,293 6,182 6,426 6,228 6,409 3,061 3,575 3,816 3,590 3,645 

(4,1) 4,781 4,413 3,905 4,848 3,910 5,430 4,757 4,743 5,934 4,668 10,629 10,739 11,304 10,614 10,479 7,117 8,388 8,175 8,296 8,805 

(3,2) 396 481 0 132 0 370 0 0 154 0 0 161 0 161 0 0 203 0 202 96 

(3,1) 104 882 1,360 719 1,347 343 1,573 1,543 859 1,416 0 620 0 627 776 119 480 641 506 28 

(2,1) 70 181 185 83 190 25 248 268 93 266 90 245 278 274 268 75 100 51 112 47 

Total 8,708 9,560 9,553 9,022 9,558 9,533 10,837 10,837 10,219 10,449 16,532 18,514 18,068 18,482 18,333 11,106 13,376 13,303 13,348 12,812 

% Improve 9.78 8.85 3.29 9.43   13.68 13.68 7.19 9.61   11.99 9.29 11.79 10.89   20.44 19.78 20.19 15.36 
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Table 7.14 shows the revenue comparison per each train trip of the selected five 

stations across four train trips. Result shows that the revenue improvement ranges from 

3.29% to 20.44% per train trip depending on the departure time and the choice model. 

Train#4 has the most revenue improvement compared to other trains. The B-spline choice 

model results in the revenue improvement from 9.43% to 15.36% per train trip, its 

improvement is comparable to other models for Train#1 and Train#3, while for Train#2 

and Tran#4 the B-spline revenue improvements are relatively lower than other models. 

This could be influenced by variability of the price sensitivity imposed by the B-spline 

model which better represents heterogeneity of the passengers and reveals the behavior of 

price sensitive passengers more explicitly. In turn, this results in lower fare strategy for 

the two train trips (Train#2 and Train#4) and consequently contributes to less revenue 

improvement. Detailed fare strategy analysis for the selected high demand market is 

shown in the next section.  

7.3.6 Pricing Result 

In this section, we select market (4,1) which has the most traffic in our selected network 

to elaborate the result in detail. For this market, we consider four different departure 

times which load passengers into Train#1 to Train#4. These correspond to the departure 

times from station 4 at 8AM, 12PM, 4PM, and 7PM respectively based on Table 7.6. 

Fares of market (4,1) are shown in Figure 7.24, 7.26, 7.28, and 7.30  for the four 

train trips departing from Station4 at 8AM, 12PM, 4PM, and 7PM respectively. The 

results from all the models are compared to the existing fare, which is representative fare 

pattern of a particular departure time of day and day of week obtained from the data. In 
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general, while the MNL, the LC, and the ML with parametric distribution provide similar 

results across 4 departure times, the optimizations with B-spline choice model provide 

distinct fare pattern which is consistent with our expectation that price sensitivity should 

decrease as time approaches departure date. 

 

Figure 7.24 Market (4,1) 8AM departure fare 
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Figure 7.25 Market (4,1) 8AM departure demand 

Figure 7.25, 7.27, 7.29, and 7.31 show the corresponded number of accepted 

passengers in market (4,1) on each day over the sale horizon across four departure times. 

The responses of passenger demands to the choice models are consistent with the 

expectation of price sensitivity; with greater number of passengers when the new fares 

are lower than existing, and lower number of passengers vice versa. This behavioral 

pattern is observed across all the four train departure times. 
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Figure 7.26 Market (4,1) 12PM departure fare 

 

Figure 7.27 Market (4,1) 12PM departure demand 
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Figure 7.28 Market (4,1) 4PM departure fare 

 

Figure 7.29 Market (4,1) 4PM departure demand 
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Figure 7.30 Market (4,1) 7PM departure fare 

 

Figure 7.31 Market (4,1) 7PM departure demand 
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7.4 Conclusions  

In this chapter, the impacts of incorporating passenger choice models in RM strategy are 

assessed. RM optimization models are developed where the passenger choice models and 

demand functions are incorporated under assumptions and capacity constraints 

determined on the basis of the single-leg and network characteristics. 

In single-leg approach, the deriving pricing strategy leads to a potential increase 

in revenues ranging from 1.92% to 13.76% per day and from 0.65% to 10.60% per day 

for the representative weeks of March and April respectively. This case study is based on 

the assumption that each market independently optimizes its ticket revenue without 

allowing for capacity redistribution across the network.  

In network approach, the framework accounts for shared capacity which enables 

for capacity redistribution across the network. We first propose a methodological 

framework to incorporate a latent class model of ticket purchase timing decision in the 

railway pricing and seat allocation problem. The approach allows RM strategy to 

explicitly account for passenger taste heterogeneity by distinguishing between leisure and 

business travelers, depending on departure time and day of week. Results obtained have 

illustrated the impacts that the strategy derived from the optimization procedure has on 

the existing conditions in terms of fare, capacity distribution, and revenue. Seat allocation 

policy results into more short-haul trips acceptance, which contributes to greater revenue 

than long-haul trip with the same seat capacity. The solution from the proposed 

framework results in significant revenue improvement from 16.24% to 24.96% per train 

trip and from 13.82% to 21.39% per train trip for the MNL and the LC choice model, 
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respectively, depending on the train departure time. Finally, the optimization system also 

provides indications on how to redistribute capacity efficiently across the markets 

considered. 

Then, the mixed logit models with parametric and non-parametric distribution are 

proposed. The non-parametric approach adopts B-spline curves as a polynomial 

approximation of arbitrary distribution without assuming the shape of the distribution. 

Results show that mixed logit with non-parametric B-spline improves revenues from 

9.43% to 15.36% per train trip, which is comparable to other choice models (from 3.29% 

to 20.44% per train trip). However, the pricing strategy provided by B-spline is more in 

line with the expectation based on passenger price sensitivity behavior. 

This chapter has illustrated how passenger choice models developed can 

complement RM strategy in term of pricing and seat allocation. In particular, it shows 

that accounting for passenger taste heterogeneity based on discrete and continuous 

segmentation approach results in more realistic representation of the passenger behavior 

when incorporated in RM strategy. 
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Chapter 8 : Dynamic Discrete Choice Model 

The increasing use of internet as a major ticket distribution channel has resulted in 

passengers becoming more strategic to fare policy. This potentially induces passengers to 

book the ticket well in advance in order to obtain a lower fare ticket, and later adjust their 

ticket when they are sure about trip scheduling. This is especially true in flexible refund 

markets where ticket cancellation and exchange behavior has been recognized as having 

major impacts on revenues.  Therefore, when modeling this behavior, it is important to 

account for the characteristic of the passenger that optimally makes decision over time 

based on trip schedule and fare uncertainty.  

In this chapter, we propose an inter-temporal choice model of ticket cancellation 

and exchange for railway passengers where customers are assumed to be forward-looking 

agents. A dynamic discrete choice model (DDCM) is applied to predict the timing of 

ticket cancellations and exchanges in response to fare and trip schedule uncertainty. 

Passengers’ decisions involve a two step process. First, the passenger decides whether to 

keep or adjust the ticket. Once the decision to adjust the ticket has been made, the 

passenger has the choice to cancel the ticket or to change departure time. The problem is 

formulated as an optimal stopping problem, and a two step look-ahead policy is adopted 

to approximate the dynamic programming problem.  

To this scope, the main setting of our problem is outlined in Section 8.1. Based on 

the analysis of ticket cancellation and exchange data in Section 4.2, the selected sample 

for model development is described in Section 8.2. From the comprehensive review in 

Section 2.3, we formulate a dynamic discrete choice model and formalize the algorithm 
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used for the dynamic programming problem in this study in Section 8.3 and Section 8.4 

respectively. The approach is applied to simulated and real ticket reservation data for 

intercity railway trips in Section 8.5 and Section 8.6 respectively. In these sections, the 

superiority of the method proposed for modeling exchange and cancel decisions is 

demonstrated. Finally, conclusions drawn from the empirical analysis and future research 

directions are outlined in Section 8.7. 

8.1 Problem Setting 

In this chapter, we propose a dynamic framework based on discrete choice models 

developed in the context of railway revenue management. To the authors’ knowledge, 

this is the first attempt to incorporate dynamics in individual choices in revenue 

management modeling and in particular to formalize tickets’ exchange and cancel 

decisions for railway intercity trips. The railway operator in consideration offers fully 

refundable fare and provides flexibility in ticket exchange which makes ticket 

cancellation and exchange decision to be very crucial to the RM system. Passengers are 

inclined to purchase ticket early and adjust their ticket later when they are more certain 

about trip schedules. The model accounts for passengers’ trip adjustment choice and 

explicitly specifies the probability of exchanging ticket as a function of the set of 

available exchange tickets. The choice set is constituted by all departure times offered by 

the railway operator between a specific origin-destination pair.  

8.2 Sample Selection 

Data mentioned in Section 4.2 are used for the model development in this chapter. The 

problem is further simplified by considering only passengers who made weekday trips 
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from south end terminal station to 3 major destinations (named STA1, STA2, and STA3), 

and purchased the ticket 15 days before departure which results into a time horizon of 16 

days for each decision maker (from 15 days before departure until departure day). This 

results in 696 valid individual passenger records for model estimation. 

8.3 Problem Formulation 

8.3.1 Passenger Stopping Problem 

We consider a passenger set           where each passenger     can be in one of 

the two possible states           in time period            . Passenger is considered 

to be in the decision process when         and out of the decision process when      . 

In each time period  , passenger   in state       has two options: 

1. To make change to the ticket (either exchange or cancel). Once decided to adjust 

the ticket, the passenger makes the choice of       which is composed of 

exchange (departure time specific exchange decision at time period  ) and cancel 

alternatives and obtain a terminal period payoff     . The utility of exchange is 

primarily a function of fare difference between the original and the exchange 

ticket at time period  . The utility of ticket cancellation is primarily a function of 

trip characteristics, and the refund amount.   

2. To keep the original ticket and obtain a one-period payoff     , which is 

normalized to have a mean of zero before departure day and equal to   on 

departure day. 
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The two-step decision process assumes that, at each time period, the passenger 

decides whether to keep or change the ticket. The optimal time period in which passenger 

decides to change the ticket is denoted by  , where the passenger chooses the ticket 

change alternative   
  that maximizes the utility from  . The passenger decision is the 

optimal stopping problem at time  : 

                          
 

            
   

     

   

   

  (8.1) 

Let               . We assume that     is Gumbel distributed with a scale 

factor equals to 1. Based on dynamic programming theory, the passenger’s decision can 

be transformed into: 

                                         (8.2) 

The reservation utility is defined by function: 

                       (8.3) 

And consider the optimal policy: 

  
                

             
  (8.4) 

The problem can be simplified as: 

                     (8.5) 

A. Keep Ticket Probability 

The passenger   will keep the ticket at time   when         . Let      denotes the 

probability of keeping ticket until the next period, which can be written as: 
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                                             (8.6) 

                             
           (8.7) 

where     is the mode of the distribution of      that is: 

                        (8.8) 

B. Change Ticket Probability 

The probability of ticket change is                        and the choice specific 

ticket change probability is: 

                                            (8.9) 

                                              (8.10) 

                                                (8.11) 

8.3.2 Objective Function and Parameters to Estimate 

The parameter estimation is performed by maximizing the likelihood function: 

           

 

   

 

   

           (8.12) 

The decision probability is presented as:  

                                                        (8.13) 

                                                                     (8.14) 

The state     is observed in the data set, if the passenger has not changed the 

ticket,             and            . Once the passenger change the ticket, the 

passenger is considered to be out of the decision process, therefore             and 

            . When the passenger is out of the decision process, the probability does 
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not affect the result of the likelihood function. As a result, the completed likelihood 

function in this problem is: 

                           

       

 (8.15) 

where                             }. The decisions include keeping the 

ticket and ticket change specific choice. Thus                                 .  

8.4 Dynamic Estimation Process 

The estimation process is done with maximum likelihood estimation method. First      

must be obtained in order to calculate     . The probability     , depends on     which 

can be calculated from :                        assuming that      is the mode of the 

distribution of     

    is composed of two parts: the utility of the current ticket attributes        and 

the expected utility in the next time period               . At each time period, the 

passenger is assumed to have a perception about the future scenarios, which are 

characterized by the alternative attributes changing over time. The expectation utility 

accounts for the possible market conditions in the passenger’s perceived scenario; in our 

specification, the fare of each departure time specific exchange decision has been 

selected as independent variable in the utility specification. A passenger is assumed to 

have a perception of future attributes for a limited number of time periods, denoted by  . 

At time period  , the passenger faces two alternatives, keeping the ticket or changing the 

ticket. The passenger will continue the decision process into the period     only if he 

had decided to keep the ticket in time period    Therefore, the decision process can be 
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characterized by a scenario tree with a unique pattern (shown in Figure 8.1). This 

scenario tree constitutes the base for the expected utility calculation. The following steps 

describe the procedure to calculate       and           which will be indicated by       

because all the expectations in the example are for individual  . 

The procedure for calculating the expected utility will be described in detail as follows: 

 First, we assume that the passenger has the expectation over a limited number of 

future time periods, which is limited to two in order to reduce the number of 

leaves in the scenario tree. At time period    , the passenger can anticipate the 

future ticket characteristics (i.e. fare) from time period     and    . The 

terminal time period expected utility         because the passenger knows 

nothing for time period 3 when being at time period 0.  

 Calculate      . In order to obtain       from equation (8.6), the reservation 

utility       is required. The reservation utility       can be obtained from 

equation (8.3)                which requires the calculation of      . At 

time 0, the passenger has two alternatives for successive time 1, keep the ticket or 

change the ticket. The second term at the right hand side of the function 

                            represents the utility of keeping alternative; 

therefore when calculating      , it is necessary that the term corresponded to the 

left leave of the tree be obtained (indicated by dash line in Figure 8.1). The 

calculation                             demands the same function to be 

calculated for time period 3         which is assumed to be zero according to the 

above assumption. The process of calculating       is recursive with known 
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utility at the end of the perspective horizon (assumed to two periods in this 

formulation). After        is calculated, reservation utility at time 0       can be 

obtained.  

 This calculation procedure can be repeated to calculate      with the assumption 

that respondent can anticipate characteristics for time period 3 and        . 

The reason that a terminal value for the expected utility has to be fixed at zero is 

because it is difficult to predict a particular value for the individual’s perspective when 

future time period is far beyond his knowledge of information. This means that in the 

long term, the individual has not enough information to predict the future; passengers 

cannot anticipate the utility of keeping or cancelling the ticket. With this approach, after a 

limited number of time periods, information on future ticket fare attribute is just ignored.  
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           Figure 8.1 Scenario tree 
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8.5 Experiment with Simulated Data 

Synthetic ticket reservation data over time periods are simulated to validate the proposed 

dynamic discrete choice formulation. The data are created assuming that the 

characteristics of choice behavior are known; by adopting this procedure it is possible to 

test the ability of the dynamic discrete choice model to recover the true value of the 

parameters used to generate the data and to reproduce observed choice of individuals 

over time. Comparisons with static models, in the form of multinomial logit, are also 

presented. 

8.5.1 Data Construction 

The simulated data are partially simulated from the real individuals’ record whose 

characteristics are described in Section 8.2. Synthetic data assume that passengers have 

the same origins and destinations as the real data, while individual characteristics, 

departure day of week, and departure time, vary from the real data. Concerning individual 

characteristics, the group size variable is generated from a uniform distribution and varies 

between 1 and 3 persons. Departure day of week is assumed to be uniformly distributed 

across the weekdays, while departure time is assumed to be uniformly distributed on 

discrete hour clock time between 5:00 AM and 7:00 PM. Ticket fare of the original 

departure time and other departure times within the same departure day are constructed 

for each day over the decision horizon based on historical data; the constructed fares vary 

by departure day of week and time of day. 

Each individual is supposed to provide responses over a 16 day time period 

starting from 15 days before departure until the departure day. A total of          
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observations are then generated. There are 17 alternatives in the choice set, the first 15 

alternatives refer to departure time specific exchange decisions (5:00 AM to 7:00 PM), 

the 16
th

 alternative is cancel, and the 17
th 

alternative is keeping the ticket. An important 

assumption in the data construction process is that if at one period the passenger decides 

to make a change to his ticket, then this passenger will no longer be part of the decision 

process in the next time period (he is out of the market). This results in a total of 10,199 

observed decisions that are valid for model estimation. True value parameters have been 

used to determine individual choices. Synthetic observations are then used to estimate 

both the static multinomial logit (MNL) and the dynamic discrete choice model (DDCM). 

8.5.2 Model Specification 

The model specification considers 16 discrete time horizons defined by              

where    also represents the number of day from original ticket purchase. The first time 

period is the day when original ticket is purchased      , (day1). The last time period 

is departure day       , (day16). The utility specification is defined as follows:  
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                                               15 Exchange alternatives (5:00 – 19:00). 

                   

                                      

                                                           

            
                   
                         

  

(8.16) 

The utility of individual   on alternative   is denoted by     . For ticket exchange 

decision, the index   indicates 15 exchange departure times (5:00 AM to 7:00 PM). The 

utility of exchange        includes exchange cost defined as the difference between the 

original fare       and the new fare       at time  . The model allows a passenger to 

exchange the ticket for the same departure time as in the original ticket; transactions of 

this type are observed in the real data. This decision will result in the passenger paying 

the difference between the original cost       and the cost at time  . The utility of 

cancel        includes alternative specific constant (ASC), refund, dummy of original 

departure in the evening (3:00-7:00 PM.), dummy of original departure on Friday, and 

dummy of STA3 destination. The utility of keep        has two different specifications. 

In the last time period        passengers deciding to keep the ticket obtain the utility 

which includes the constant term referring to utility of traveling with the original ticket. 

In other time periods        the systematic term of the keep utility is normalized to 
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zero.      is the random error term for each individual  , alternative   at a given time 

period  .    is the individual error term which is assumed to be constant across all 

observations produced by the same respondent. 

To evaluate the ability to recover the true value of the model, the root mean 

square deviation (RMSD) is adopted as measure of differences between the true values 

and the estimated coefficient values. The RMSD is defined as: 

                      
          
 
   

 
 (8.17) 

where   is the number of parameters. Using the simulated data with the utility 

specification defined above, two models are estimated: dynamic discrete choice model 

(DDCM) and static multinomial logit (MNL) model. In the static model, the attributes of 

the future ticket characteristic (fare) are not considered when making decisions in each 

time period. The model is simply formulated as a traditional MNL model with 17 

alternatives (15 exchange decisions, 1 cancel, and 1 keep). The dynamic model with the 

algorithm defined in the formulation is coded in the C language and makes use of 

optimization tools available in AMLET (Another Mixed Logit Estimation Tool), (Bastin, 

2011).The static model is estimated using ALOGIT (ALOGIT, 2007). The utilities 

specifications are assumed to be the same for the static and the dynamic model; the 

derived estimation results are compared in Table 8.1.  

8.5.3 Estimation Result 

All parameters in both the MNL and the DDCM models are statistically 

significant at the 5% significance level. The RMSD value obtained with the dynamic 
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model is lower than the MNL model (0.82 compared to 3.93); this indicates that the 

dynamic model outperforms the MNL model in recovering the true value of the 

parameters. The rho-squared value obtained from the dynamic model exceeds that 

obtained from the MNL model (0.7070 compared to 0.3814); this indicates that the 

dynamic model has a better goodness of fit than the MNL model.  

Table 8.1 Estimation result: simulated data 

  E
x

ch
an

g
e 

C
an

ce
l 

K
ee

p
 

True 

Value MNL   Dynamic (2-SL)   

          Est T-stat   Est T-stat   

ASC cancel 

 

x 

 

-5.00 -12.730 -14.2 * -5.434 6.7 * 

Orig Deptt 3-7 pm 

 

x 

 

2.50 1.392 5.2 * 3.927 8.1 * 

Depart Friday  

 

x 

 

-2.00 -1.456 -3.8 * -2.018 3.3 * 

STA3 destination 

 

x 

 

4.00 2.517 10.1 * 5.252 10.8 * 

Exchange cost  x 

  

-0.02 -0.040 -77.8 * -0.020 12.1 * 

Refund 

 

x 

 

0.03 0.032 8.4 * 0.030 5.5 * 

Keep (day 16) 

  

x -7.00 -6.477 -8.9 * -5.868 27.0 * 

Cancel day1 

 

x 

 

3.00 6.609 9.1 * 2.275 13.2 * 

Exchange day16 x 

  

1.50 -6.144 -8.4 * 2.343 8.5 * 

Early exchange x 

  

-2.00 -6.366 -41.4 * -2.598 13.6 * 

Log-likelihood (0)           -28,896     -2,908   

Log-likelihood (final) 

     

-17,875 

  

-852 

 Likelihood ratio index (rho-squared) 

  

0.3814 

  

0.7070 

 RMSD 

     

3.93 

  

0.82 

 No. of individuals           696     696   

No. of observations           10,199     10,199   

* Statistically significant at the 5% significance level. 

8.5.4 Model Validation 

The results obtained from the estimation are used to validate how well the models 

reproduce the observed simulated decisions (Table 8.2). 
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Table 8.2 Validation result: simulated data 

Choice Day 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

1 Observed 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 11 

Exchange MNL 3 3 3 3 2 2 2 3 3 2 3 2 3 2 3 3 

  DDCM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 

2 Observed 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 12 

Exchange MNL 4 4 4 4 4 6 7 4 4 5 5 5 5 3 3 2 

 

DDCM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 9 

3 Observed 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 

Exchange MNL 4 5 7 6 6 8 6 6 6 7 4 3 3 2 2 2 

  DDCM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 

4 Observed 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10 

Exchange MNL 15 10 11 11 12 11 11 12 11 13 13 13 13 12 10 7 

 

DDCM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 7 

5 Observed 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 27 

Exchange MNL 31 31 30 22 23 20 21 21 20 17 14 15 23 19 19 17 

  DDCM 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 20 

6 Observed 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 18 

Exchange MNL 44 36 30 34 30 27 27 31 29 33 29 27 26 25 21 17 

 

DDCM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 18 

7 Observed 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 27 

Exchange MNL 50 53 35 33 36 32 28 39 38 44 43 46 47 33 30 33 

  DDCM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 25 

8 Observed 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 26 

Exchange MNL 48 51 35 34 37 38 42 34 40 24 27 26 35 38 33 33 

 

DDCM 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 22 

9 Observed 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 27 

Exchange MNL 44 46 37 37 38 32 45 37 38 43 40 39 37 35 29 22 

  DDCM 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 29 

10 Observed 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 28 

Exchange MNL 17 16 17 15 14 19 17 20 17 21 21 23 19 16 17 14 

 

DDCM 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 30 

11 Observed 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 20 

Exchange MNL 16 17 17 21 19 17 26 21 21 19 17 19 19 23 17 13 

  DDCM 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 19 

12 Observed 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 28 

Exchange MNL 12 18 22 19 20 17 20 19 18 20 16 19 14 15 14 15 

 

DDCM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 28 
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Choice Day 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

13 Observed 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 32 

Exchange MNL 23 27 38 43 37 32 36 29 31 39 32 29 28 28 25 22 

  DDCM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 37 

14 Observed 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 43 

Exchange MNL 59 77 69 79 67 109 64 61 66 56 58 73 47 50 51 41 

 

DDCM 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 42 

15 Observed 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 76 

Exchange MNL 183 151 132 122 135 113 127 137 137 110 132 104 108 107 113 113 

  DDCM 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 77 

16 Observed 54 0 1 0 0 0 0 1 0 0 0 0 0 0 0 94 

Cancel MNL 54 0 0 0 0 0 0 0 0 0 0 0 0 0 0 67 

 

DDCM 42 0 2 0 2 0 1 3 0 0 0 0 1 3 0 88 

17 Observed 638 637 636 635 634 634 633 632 632 632 632 632 632 632 632 148 

Keep MNL 90 93 150 153 154 152 155 157 153 179 180 188 205 224 246 210 

  DDCM 653 637 634 636 632 633 631 629 632 631 632 630 631 629 632 172 

Total Observed 4 1 0 1 1 0 1 0 0 0 0 0 0 0 0 390 

Exchange  MNL 552 545 487 483 481 482 479 476 479 453 452 444 427 408 386 355 

(1-15) DDCM 1 1 1 0 1 1 2 1 0 1 0 2 0 0 0 372 

  Total 696 638 637 636 635 634 634 633 632 632 632 632 632 632 632 632 

 

The validation in Table 8.2 indicates that the major drawback of the MNL model 

is the over-prediction of exchange decisions, especially exchange decision choice 15 

(exchange to 7 PM); which is characterized by low fare. The MNL model predicts the 

cancel decisions in the first time period (day1) precisely; however, its prediction on 

cancel decisions in the last time period (day16) is less good than the one produced by 

DDCM. More importantly, in the last time period (day16) with a high number of 

exchange decision, the DDCM model clearly outperforms the MNL. We selected the first 

(day1) and last time period (day16) of cancel decision and exchange decisions to show in 

detail the prediction capability of the DDCM over the MNL (Figure 8.2). 
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Figure 8.2 Simulated data validation: departure time specific exchange and cancel 

decision 

Figure 8.3 to Figure 8.5 briefly summarize the predictions over different time 

period (day) where exchange decision is aggregated over all departure times. 
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Figure 8.3 Validation of exchange decision: simulated data 

 

Figure 8.4 Validation of cancel decision: simulated data 

 

Figure 8.5 Validation of keep decision: simulated data 
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The choice probability for each alternative observed and predicted together with 

measure of errors for the simulated data experiment is reported in Table 8.3. The absolute 

error   is used to represent measure of error which is defined as: 

                (8.18) 

where   is error norm;       is a vector of predicted choice probability, and 

     is a vector of observed choice probability. The   value obtained from the dynamic 

model is significantly smaller than the corresponding value in the MNL model (0.176 

compared to 22.214) indicating a better prediction capability of the dynamic model over 

the MNL model. 
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Table 8.3 Model validation: choice probability of simulated data experiment 

Alternative Observed Predicted (Static) Predicted (Dynamic) 

Exchange day1 0.0057 0.7931 0.0014 

Exchange day2 0.0016 0.8542 0.0016 

Exchange day3 0.0000 0.7645 0.0016 

Exchange day4 0.0016 0.7594 0.0000 

Exchange day5 0.0016 0.7575 0.0016 

Exchange day6 0.0000 0.7603 0.0016 

Exchange day7 0.0016 0.7555 0.0032 

Exchange day8 0.0000 0.7520 0.0016 

Exchange day9 0.0000 0.7579 0.0000 

Exchange day10 0.0000 0.7168 0.0016 

Exchange day11 0.0000 0.7152 0.0000 

Exchange day12 0.0000 0.7025 0.0032 

Exchange day13 0.0000 0.6756 0.0000 

Exchange day14 0.0000 0.6456 0.0000 

Exchange day15 0.0000 0.6108 0.0000 

Exchange day16 0.6171 0.5617 0.5886 

Cancel day1 0.0776 0.0776 0.0603 

Cancel day2 0.0000 0.0000 0.0000 

Cancel day3 0.0016 0.0000 0.0031 

Cancel day4 0.0000 0.0000 0.0000 

Cancel day5 0.0000 0.0000 0.0031 

Cancel day6 0.0000 0.0000 0.0000 

Cancel day7 0.0000 0.0000 0.0016 

Cancel day8 0.0016 0.0000 0.0047 

Cancel day9 0.0000 0.0000 0.0000 

Cancel day10 0.0000 0.0000 0.0000 

Cancel day11 0.0000 0.0000 0.0000 

Cancel day12 0.0000 0.0000 0.0000 

Cancel day13 0.0000 0.0000 0.0016 

Cancel day14 0.0000 0.0000 0.0047 

Cancel day15 0.0000 0.0000 0.0000 

Cancel day16 0.1487 0.1060 0.1392 
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Alternative Observed Predicted (Static) Predicted (Dynamic) 

Keep day1 0.9167 0.1293 0.9382 

Keep day2 0.9984 0.1458 0.9984 

Keep day3 0.9984 0.2355 0.9953 

Keep day4 0.9984 0.2406 1.0000 

Keep day5 0.9984 0.2425 0.9953 

Keep day6 1.0000 0.2397 0.9984 

Keep day7 0.9984 0.2445 0.9953 

Keep day8 0.9984 0.2480 0.9937 

Keep day9 1.0000 0.2421 1.0000 

Keep day10 1.0000 0.2832 0.9984 

Keep day11 1.0000 0.2848 1.0000 

Keep day12 1.0000 0.2975 0.9968 

Keep day13 1.0000 0.3244 0.9984 

Keep day14 1.0000 0.3544 0.9953 

Keep day15 1.0000 0.3892 1.0000 

Keep day16 0.2342 0.3323 0.2722 

D   22.2140 0.1760 

 

8.6 Experiment with Real Ticket Reservation Data 

8.6.1 Data Construction 

Observations relative to ticket exchange and cancellation from 696 individuals were 

obtained from internet purchases of railway intercity tickets mentioned in Section 8.2. 

Based on the trip schedule of real data, ticket fare of the original departure time and other 

departure times within the same departure day are constructed for each day over the 

decision horizon based on historical data. In each time period, if the passenger decides to 

change or cancel the current ticket, then the same passenger will no longer be in the 

decision process in the next time period; all observations occurred in the period after 

ticket exchange are excluded from the dataset. This results in a total of 7,268 observed 

decisions that are valid for model estimation. 
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8.6.2 Model Specification 

The specification follows the same structure proposed in the simulated data experiment. 

The model specification considers 16 discrete time periods defined by              

where   also represents the number of day from original ticket purchase. The first time 

period is the day when original ticket is purchased      , (day1). The last time period 

is departure day       , (day16) The utility specification is defined as follows: 

 

                                            

                  

                                                            15 Exchange alternatives. 

                   

                                                

                                                    

                                               

            
                   
                         

  

(8.19) 

The utility of individual   on alternative   is denoted by     . For ticket exchange 

decision, the index   indicates 15 exchange departure time (5:00 AM to 7:00 PM). The 

utility of exchange        includes exchange cost which is defined as the difference 

between the original fare       and new fare       at time    and day from issue       

which is the number of day from original ticket purchase equal to   where     on the 

day of original purchase and      on departure day. The utility of cancel        
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includes alternative specific constant (ASC), refund, dummy of group traveler, dummies 

of original departure in the morning (5:00-9:00 AM.) and evening (3:00-7:00 PM.), 

dummies of original departure on Monday and Friday, dummies of  STA1 and STA3 

destination. The utility of keep        is defined in two cases. In the last time period 

       passenger deciding to keep the ticket obtain an utility that includes the constant 

term relative to the utility of traveling with the original ticket. In other time periods 

       the systematic term of the keep utility is normalized to zero.      is the random 

error term for each individual  , alternative   at a given time period  .    is the individual 

error term which is assumed to be constant across all observations produced by the same 

respondent. 

8.6.3 Estimation Result 

The results obtained from model estimation are shown in Table 8.4. Most of the variables 

are statistically significant at the 5% significance level. The results obtained from the 

dynamic model shows negative sign in a number of variables associated with cancel 

decision which are: group traveler (party size includes more than one passenger), evening 

departure (original departure time from 3:00-7:00 PM.), original departure on Friday, and 

STA1 destination. This indicates low tendency of passenger with these characteristics to 

cancel their ticket. On the other hand, passengers with morning departure (original 

departure time from 5:00-9:00 AM.), original departure on Monday, and STA3 

destination have a positive sign for the corresponding structural coefficients, indicating 

that passengers with these characteristics have higher likelihood to cancel the ticket. In 

particular, passengers traveling early in the week and traveling alone (typically associated 
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with business travelers) are more likely to cancel their ticket which is in line with the 

results of Iliescu (2008). 

The exchange cost and refund have the expected sign indicating disutility 

associated with paying additional cost to exchange ticket and the utility of receiving 

refund when ticket is canceled respectively. The variable of keeping the ticket on 

departure day (day16) shows negative sign which could be explained by the fact that the 

fare of the original ticket possessed by the passenger is higher compared to a ticket 

hypothetically exchanged to other departure times. Another reason could be that 

passengers intentionally want to exchange/cancel the ticket but could not find an 

alternative departure time which economically matches their schedule.  

The day from issues (number of days since the original ticket is purchased) has 

positive sign for the variable associated with exchange and cancel decision; this indicates 

that it is preferable for passengers to adjust their ticket later. This is line with expectations 

and consistent with results obtained by Iliescu (2008) who found that the odds of ticket 

change increase as the departure date approaches due to a strong effect of “last minute” 

change of plan. More specifically, the day from issue coefficient for the cancel decision 

has larger magnitude compared to the day from issue coefficient for the exchange 

decisions. This is intuitive based on this operator’s refund policy; passengers are fully 

refunded if the ticket is canceled at least one hour before departure, while late tickets 

exchange are possible but limited by the uncertainty about seats availability.   

The dummy variables of cancel on the original purchase date (day1) and exchange 

on the departure day (day16) show large magnitude indicating that a high number of 

cancellation and exchange occurs on the day they purchase ticket and on the departure 
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day respectively. These results are in line with Iliescu (2008) and Graham et al. (2010) 

which found that ticket changes are more likely to happen in recently purchased ticket 

(especially within the first week) and are more likely to occur as the departure date 

approaches. Finally, the variable associated with early exchange (exchanging to departure 

time earlier than original ticket) shows negative sign which indicates that passengers gain 

less utility when making early exchange compared to later exchange (which is the base 

case). In term of goodness of fit, although the rho-squared value obtained from the 

dynamic model is lower than the MNL model (0.2791 compared to 0.6295); but the 

analysis in the next section shows that the dynamic model is superior to MNL model in 

term of prediction capability.  
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Table 8.4 Estimation result: real data 

  E
x

ch
an

g
e 

C
an

ce
l 

K
ee

p
 

MNL   Dynamic (2-SL)   

        Est T-stat   Est T-stat   

ASC cancel 

 

x 

 

-6.297 12.9 * -3.652 57.1 * 

>1 psg 

 

x 

 

-0.869 2.1 * -1.090 1.5   

Orig Deptt 5-9 am 

 

x 

 

0.143 0.8   0.639 1.2   

Orig Deptt 3-7 pm 

 

x 

 

-0.327 1.9   -0.760 1.4   

Depart Monday  

 

x 

 

0.556 1.8   2.740 3.0 * 

Depart Friday  

 

x 

 

-0.286 1.8   -0.451 1.0   

STA1 destination 

 

x 

 

-0.435 2.3 * -0.306 0.6   

STA3 destination 

 

x 

 

0.557 2.5 * 1.648 2.6 * 

Exchange cost  x 

  

-0.011 19.3 * -0.026 3.7 * 

Refund 

 

x 

 

0.014 6.0 * 0.042 9.6 * 

Keep (day 16) 

  

x 1.885 11.0 * -3.547 12.8 * 

Day from issue x 

  

-1.217 35.3 * 0.189 5.8 * 

Day from issue 

 

x 

 

0.163 5.9 * 0.266 35.4 * 

Cancel (day 1) 

 

x 

 

5.629 18.3 * 3.169 42.7 * 

Exchange (day 16) x 

  

17.050 30.5 

 

1.578 10.2 * 

Early exchange x 

  

-3.299 24.5 * -1.751 12.1 * 

Log-likelihood (0)         -20,592     -4,324   

Log-likelihood (final) 

   

-7,629 

  

-3,117 

 Likelihood ratio index (rho-squared) 

  

0.6295 

  

0.2791 

 No. of individuals         696     696   

No. of observations         7,268     7,268   

* Statistically significant at the 5% significance level. 

8.6.4 Model Validation 

To test the prediction capabilities of the model proposed, the resulting coefficients of the 

model have been used to replicate the choice observed in the sample. Results are reported 

in Table 8.5. 
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Table 8.5 Validation result: real data 

Choice Day 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

1 Observed 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

Exchange MNL 5 3 1 0 0 0 0 0 0 0 0 0 0 0 0 1 

  DDCM 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 

2 Observed 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 

Exchange MNL 6 3 1 1 0 0 0 0 0 0 0 0 0 0 0 1 

 

DDCM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

3 Observed 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 

Exchange MNL 6 4 2 1 0 0 0 0 0 0 0 0 0 0 0 1 

  DDCM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

4 Observed 1 0 1 0 0 0 0 0 0 0 0 0 0 1 0 2 

Exchange MNL 13 7 3 1 0 0 0 0 0 0 0 0 0 0 0 2 

 

DDCM 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

5 Observed 1 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 

Exchange MNL 20 12 5 2 1 0 0 0 0 0 0 0 0 0 0 3 

  DDCM 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

6 Observed 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 

Exchange MNL 24 14 6 2 1 0 0 0 0 0 0 0 0 0 0 3 

 

DDCM 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 

7 Observed 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 1 

Exchange MNL 29 19 7 2 1 0 0 0 0 0 0 0 0 0 0 4 

  DDCM 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

8 Observed 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 9 

Exchange MNL 29 19 7 3 1 0 0 0 0 0 0 0 0 0 0 4 

 

DDCM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

9 Observed 3 1 0 0 0 0 0 2 0 0 0 0 0 3 0 9 

Exchange MNL 29 18 8 3 1 0 0 0 0 0 0 0 0 0 0 4 

  DDCM 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

10 Observed 1 0 0 0 1 0 0 0 3 0 0 0 0 0 0 6 

Exchange MNL 22 14 7 2 1 0 0 0 0 0 0 0 0 0 0 4 

 

DDCM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

11 Observed 2 2 1 1 0 0 0 1 0 0 0 0 1 0 0 12 

Exchange MNL 26 16 7 3 1 0 0 0 0 0 0 0 0 0 0 0 

  DDCM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

12 Observed 2 0 1 0 0 0 1 0 0 0 0 0 0 0 0 8 

Exchange MNL 32 21 9 3 1 0 0 0 0 0 0 0 0 0 0 5 

 

DDCM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
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Choice Day 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

13 Observed 4 1 0 0 0 0 0 1 1 0 1 0 1 0 0 5 

Exchange MNL 40 23 10 4 1 0 0 0 0 0 0 0 0 0 0 6 

  DDCM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

14 Observed 0 0 1 0 0 0 0 0 0 1 1 1 1 1 1 3 

Exchange MNL 62 34 13 4 1 0 0 0 0 0 0 0 0 0 0 8 

 

DDCM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

15 Observed 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 

Exchange MNL 95 154 194 213 221 218 219 214 213 200 203 190 183 175 167 36 

  DDCM 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

16 Observed 181 6 8 1 6 2 8 4 6 0 5 4 5 6 20 25 

Cancel MNL 181 1 2 3 4 4 5 6 7 8 9 11 12 14 16 4 

 

DDCM 85 0 0 0 0 0 0 0 0 0 0 0 0 2 0 20 

17 Observed 495 483 469 467 460 457 447 438 428 427 420 414 405 393 369 285 

Keep MNL 77 135 201 224 233 235 233 227 219 221 215 220 219 216 210 283 

  DDCM 606 494 483 468 467 460 457 447 438 428 427 419 414 403 393 344 

Total  Observed 20 6 6 1 1 1 2 5 4 1 2 2 4 6 4 59 

Exchange  MNL 438 359 280 243 230 221 219 215 213 200 203 190 183 175 167 80 

(11-15) DDCM 5 1 0 1 0 0 0 0 0 0 0 1 0 0 0 5 

  Total 696 495 483 469 467 460 457 447 438 428 427 420 414 405 393 369 

 

Figure 8.6 to Figure 8.8 briefly summarize the predictions over different time 

periods (days) where exchange decisions are aggregated for all exchange departure times. 

The validation results show that the DDCM slightly under-predicts cancellation and 

although it is not able to predict the cancellation on the first time period (day1) as well as 

the MNL, it is capable of predicting cancellation on the last time period (day16) 

reasonably well. In term of exchange, DDCM slightly under-predicts the total number of 

exchange except for the first (day1) and the last time period (day16) which are 

characterized by a relatively high exchange rate; however, the MNL drastically over 

predicts exchange decisions throughout all time periods. The prediction of keep obtained 
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from DDCM is reasonably close to the observed value while the MNL significantly under 

predicts the keep decision as a consequence of over prediction in exchange. 
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Figure 8.6 Validation of exchange decision: real data 

 

Figure 8.7 Validation of cancel decision: real data 

 

Figure 8.8 Validation of keep decision: real data 
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The choice probability for each alternative observed and predicted together with 

measure of errors for the real data experiment is reported in Table 8.6. It shows that the   

value of the dynamic model is significantly smaller than the corresponding value 

obtained from the MNL model (1.194 compared to 15.179) indicating a much better 

prediction capability of the dynamic model over the MNL model. 
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Table 8.6 Model validation: choice probability of real data experiment 

Alternative Observed Predicted (Static) Predicted (Dynamic) 

Exchange day1 0.0287 0.6297 0.0072 

Exchange day2 0.0121 0.7244 0.0020 

Exchange day3 0.0124 0.5797 0.0000 

Exchange day4 0.0021 0.5171 0.0021 

Exchange day5 0.0021 0.4929 0.0000 

Exchange day6 0.0022 0.4804 0.0000 

Exchange day7 0.0044 0.4799 0.0000 

Exchange day8 0.0112 0.4799 0.0000 

Exchange day9 0.0091 0.4856 0.0000 

Exchange day10 0.0024 0.4662 0.0001 

Exchange day11 0.0047 0.4763 0.0000 

Exchange day12 0.0048 0.4521 0.0024 

Exchange day13 0.0097 0.4420 0.0000 

Exchange day14 0.0148 0.4314 0.0000 

Exchange day15 0.0102 0.4254 0.0000 

Exchange day16 0.1599 0.2220 0.0136 

Cancel day1 0.2601 0.2601 0.1221 

Cancel day2 0.0121 0.0026 0.0000 

Cancel day3 0.0166 0.0048 0.0000 

Cancel day4 0.0021 0.0064 0.0000 

Cancel day5 0.0128 0.0079 0.0000 

Cancel day6 0.0043 0.0093 0.0000 

Cancel day7 0.0175 0.0112 0.0000 

Cancel day8 0.0089 0.0130 0.0000 

Cancel day9 0.0137 0.0148 0.0000 

Cancel day10 0.0000 0.0182 0.0000 

Cancel day11 0.0117 0.0206 0.0000 

Cancel day12 0.0095 0.0252 0.0000 

Cancel day13 0.0121 0.0300 0.0000 

Cancel day14 0.0148 0.0351 0.0049 

Cancel day15 0.0509 0.0410 0.0000 

Cancel day16 0.0677 0.0111 0.0542 
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Alternative Observed Predicted (Static) Predicted (Dynamic) 

Keep day1 0.7112 0.1102 0.8707 

Keep day2 0.9758 0.2729 0.9980 

Keep day3 0.9710 0.4155 1.0000 

Keep day4 0.9957 0.4765 0.9979 

Keep day5 0.9850 0.4991 1.0000 

Keep day6 0.9935 0.5102 1.0000 

Keep day7 0.9781 0.5090 1.0000 

Keep day8 0.9799 0.5072 1.0000 

Keep day9 0.9772 0.4995 1.0000 

Keep day10 0.9976 0.5156 0.9999 

Keep day11 0.9836 0.5030 1.0000 

Keep day12 0.9857 0.5226 0.9976 

Keep day13 0.9783 0.5280 1.0000 

Keep day14 0.9704 0.5336 0.9951 

Keep day15 0.9389 0.5336 1.0000 

Keep day16 0.7723 0.7669 0.9322 

D   15.1790 1.1940 

 

8.7 Conclusions 

This chapter has proposed a dynamic discrete choice model for ticket cancellation and 

exchange in the context of railway ticket purchase for intercity trips. The methodological 

framework proposed considers forward-looking agents that maximize their inter-temporal 

payoffs when deciding about exchanging or cancelling their ticket. The classical 

formulation based on the optimal stopping problem derived from dynamic programming 

is preserved here, while an innovative and elegant scenario tree formulation is proposed 

to solve the issue of calculating the passengers’ expected utility over time. The model is 

estimated using maximum likelihood estimation, which seems particularly appropriated 

in this finite horizon problem. The analysis makes an important contribution in the 

context of discrete choice models for revenue management as it allows us to account for 
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temporal effects on individual decisions that are usually treated in a static context. The 

model has been successfully estimated using both simulated and real data; results show 

that the DDCM outperforms the MNL in reproducing the initial values assumed in the 

simulated dataset and in reproducing the actual choices in both synthetic and real data.  
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Chapter 9 : Conclusions and Future Research Directions 

This chapter concludes the dissertation by summarizing the important findings and the 

contributions from this research. We then discuss future avenues for this research and the 

possible extension to other problems in RM. 

9.1 Conclusions 

This dissertation has mainly investigated the improvement of prediction accuracy in 

choice models of ticket purchase timing accounting for taste heterogeneity (Chapter 5). 

The approach exploits elements available in the ticket reservation data to segment 

passengers primarily by departure time characteristics. The application of the proposed 

choice models to RM strategy is demonstrated by incorporating them into RM 

optimization models (Chapter 7) which optimize ticket revenue. The RM optimization 

models account for demand side in term of purchase timing (Chapter 5) and demand 

volume (Chapter 6) and simultaneously solve for pricing and seat allocation strategy 

under the capacity constraints determined on the basis of the railway network 

characteristics. 

More importantly, this dissertation has investigated the impact of incorporating 

inter-temporal effects in ticket cancellation and exchange decision using a dynamic 

discrete choice model (DDCM) framework (Chapter 8). A dynamic econometric model 

accounting for realistic ticket exchange, refund policy, and the evolving characteristics of 

fare is developed. The timing of the ticket cancellations and exchanges is formulated as 

an optimal stopping problem where passengers decide when to adjust tickets. The model 
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structure is further enriched by allowing for departure time specific exchange decisions 

based on alternatives offered by the railway service. 

9.2 Contributions 

The primary contributions from this research are: 

1. The choice models accounting for taste heterogeneity are developed focusing on 

segmenting passengers between business and leisure travel. Instead of segmenting 

passengers by trip purpose, which is not available in the ticket reservation data, 

departure time characteristics are used to classify passenger into categories 

(classes). With this approach, passenger segments can be identified, and the 

differences in their behavioral preferences among classes can be captured.  

2. To assess the impact of the proposed choice models in RM strategy, an 

optimization model system is developed to maximize revenues from ticket sale on 

single-leg and network problems. The framework incorporates parameters 

estimated from the choice models and demand functions as key inputs to represent 

passenger response to RM policy.  

3. In the network problem, the optimizations allow for pricing and seat allocation to 

be optimized simultaneously under capacity constraints determined on the basis of 

the railway network characteristics. The framework allows for capacity 

redistribution; thus capacity resources are efficiently utilized across the selected 

network. The incorporated choice models accounting for heterogeneity allow the 

RM optimization to distinguish between leisure and business travelers, depending 

on departure time and day of week. Results show that seat allocation policy which 
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accepts more short-haul trips contributes to greater revenue than long-haul trips 

with the same seat capacity. 

4. For the network revenue optimization problem, the mixed logit choice model with 

non-parametric distribution is proposed as an alternative approach to resolve 

difficulties associated with the identification of underlying unknown random 

distribution. Results show that the pricing strategy provided by mixed logit with 

non-parametric B-spline is more realistic and intuitive compared to other models 

based on passenger price sensitivity behavior. 

5. This dissertation is the first study that develops a ticket cancellation and exchange 

model using dynamic discrete choice models (DDCM). Inter-temporal effects in 

ticket cancellation and exchange decisions are usually neglected or treated using 

static models incorporating lagged effects.  

6. The proposed ticket cancellation and exchange model realistically represents 

exchange, refund, and fare policy of the railway service. Complementary to the 

existing studies, the proposed model enables us to predict not only the timing of 

cancellations and exchanges, but also the new departure times. Prediction of new 

departure times is expected to further support railway operator’s RM capacity 

planning. The analysis based on simulated and real ticket reservation data 

indicates that the DDCM provides more intuitive results and better prediction 

accuracy than the multinomial logit (MNL) models.  
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9.3 Future Research Directions 

This research has illustrated how a railway operator can exploit its existing data sources 

to better understand the choice behavior of railway passengers. In this dissertation, the 

passenger choice models of ticket purchase timing capable of supporting railway RM 

decision are developed and incorporated in the RM strategy. The dynamic discrete choice 

model (DDCM) of ticket cancellation and exchange is developed to investigate the 

impact of inter-temporal effects in ticket cancellation and exchange decision. It is 

expected that these frameworks will be extended to other RM applications. The following 

areas indicate possible avenues for future research:  

For the dynamic model of ticket cancellation and exchange, in term of model 

specification, it would be desirable to allow for the fare to have dynamic attribute in the 

utility specification by specifying the process as a random walk. It is interesting to 

account for heterogeneity of passengers in the model by incorporating the unobservable 

(or latent class) segments within the population using latent class (LC) approach. It will 

also be interesting for the proposed DDCM framework to be applied to ticket purchase 

timing behavior and compare its performance with the static choice models of ticket 

purchase timing proposed in this dissertation. 

From the dynamic model estimation perspective, it will be desirable to examine 

the impact of number of steps used in the look-ahead policy toward the model 

performance. Currently, the framework allows for the passengers to look ahead for two 

time periods. Increasing the number of steps in the look-ahead policy is expected to 

improve model performance.   
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It will be desirable for the proposed dynamic model to be incorporated in the 

revenue optimization where decision variables include capacity planning parameters such 

as demand acceptance to test the impact of the dynamic model toward revenue and 

explore the possibility of adopting overbooking strategy used in the airline.  

Future research on the choice model which considers other modes of 

transportation is desirable. This involves data collection on other transportation modes’ 

service attributes. This will be able to represent impact from attributes of other 

transportation modes toward passenger demand.  

Future research which investigates other choice dimensions of the railway RM 

will be desirable, for instance, choice of departure time or departure day when making 

ticket purchase. However, for these choice dimensions, additional data collection to 

construct plausible choice set for individual might be necessary.  

From the RM revenue optimization perspective, it will be desirable to consider 

the network with hub and spoke characteristic which involves station transfer and more 

complex capacity constraints. It will also be interesting to optimize ticket revenue over 

multiple departures simultaneously by accounting for demand shifts across departures 

with choice models of departure time or departure day, thereby efficiently balancing 

passenger demand and improve total revenue.   

More specifically the dynamic discrete choice framework developed in this 

dissertation can be adapted and transferred to other case studies: departure time and route 

choice modeling under dynamic tolling, activity scheduling for activity based travel 

demand analysis.  
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Appendices 

Appendix A. Choice models accounting for taste heterogeneity 
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Table A-1 Model 1 Result 

  MNL   ML   LC MNL with Socioeconomics 

              Choice Model Class1   Class2           

Variable Est T-Stat   Est T-Stat   Variable Est T-Stat 

 

Est T-Stat   Variable Est T-Stat   

advbk -0.129 7.851 * -0.198 17.328 * advbk -0.091 -4.553 * -0.332 -1.934   advbk -0.191 16.589 * 

price.period1 -0.001 0.244   -9.218 6.708 * price.period1 -0.003 -0.702 

 

0.009 0.275   price.adult -0.032 9.420 * 

price.period2 -0.005 1.618   (6.957) (6.116) * price.period2 -0.005 -1.000 

 

-0.001 -0.073   price.child (2-15) - - - 

price.period3 -0.007 2.305 * 

   

price.period3 -0.006 -1.222 

 

-0.003 -0.250   price.senior (62+) -0.024 4.442 * 

price.period4 -0.006 2.247 * 

   

price.period4 -0.005 -1.045 

 

-0.004 -0.606   price.unacc child (8-11) - - - 

price.period5 -0.003 1.283   

   

price.period5 -0.004 -0.818 

 

0.000 -0.062   price.student advantage -0.026 7.526 * 

price.period6 0.000 0.002   

   

price.period6 -0.005 -1.116 

 

0.005 0.727   price.adultAAA member -0.021 4.750 * 

  

  

  

   

  

     

  price.childAAA member - - - 

  

  

  

   

Class  Model Class1   Class2   price.military adult - - - 

  

  

  

   

Class Size 0.723 

 

0.277   price.disabled adult 0.006 0.209   

  

  

  

   

Variable Est T-Stat   Est T-Stat   price.others -0.051 11.458 * 

  

  

  

   

Intercept 1.006 2.477 * -1.006 -2.477 * price.period6 -0.027 7.941 * 

  

  

  

   

Monday -1.145 -2.908 * 1.145 2.908 *   

  

  

wknd.period1 0.822 4.768 * 2.058 10.601 * Tuesday -1.310 -2.895 * 1.310 2.895 * wknd.period1 1.096 4.242 * 

wknd.period2 0.909 5.527 * 1.004 7.519 * Wednesday -0.856 -2.480 * 0.856 2.480 * wknd.period2 0.730 4.176 * 

wknd.period3 0.605 2.983 * 0.153 1.289 

 

Thursday -0.517 -1.490 

 

0.517 1.490   wknd.period3 0.294 0.915   

wknd.period4 0.592 4.482 * -0.058 0.686 

 

Friday -0.703 -2.013 * 0.703 2.013 * wknd.period4 0.385 2.269 * 

wknd.period5 0.287 1.570   -0.100 0.929 

 

Saturday 1.049 0.285 

 

-1.049 -0.285   wknd.period5 0.555 1.567   

wknd.period6 -0.215 1.445   -0.058 0.388 

 

  

     

  wknd.period6 -0.059 0.272   

  

  

  

   

Early morning 0.491 1.238 

 

-0.491 -1.238     

  

  

  

  

  

   

AM peak 1.195 1.509 

 

-1.195 -1.509     

  

  

  

  

  

   

AM off peak 0.731 2.147 * -0.731 -2.147 *   

  

  

  

  

  

   

PM off peak -0.048 -0.216 

 

0.048 0.216     

  

  

  

  

  

   

PM peak -0.335 0.000 

 

0.335 0.000     

  

  

No. of observations 1,361     1,361   No. of observations       1,361   No. of observations   1,361    

Rho-squared: 

 

0.1485     0.1940   Rho-squared: 

    

0.1563   Rho-squared: 

 

0.1552   

Adjusted rho-squared: 0.1457     0.1920   Adjusted rho-squared: 

  

0.1507   Adjusted rho-squared: 

 

0.1513   

Log-likelihood at optimal -3,980     -3,767   Log-likelihood at optimal 

  

-3,943   Log-likelihood at optimal -3,948   

Log-likelihood  at zero -4,674     -4,674   Log-likelihood  at zero 

   

-4,674   Log-likelihood  at zero 

 

-4,674   

LL at constant -3,988     -3,988   LL at constant       -3,988   LL at constant   -3,988   

*Statistically significant at the 5% significance level. Parenthesis indicates standard deviation. 



197 

 

Table A-2 Model 2 Result 

  MNL   ML   LC MNL with Socioeconomics 

              Choice Model Class1   Class2           

Variable Est T-Stat   Est T-Stat   Variable Est T-Stat 

 

Est T-Stat   Variable Est T-Stat   

advbk -0.184 42.872 * -0.370 141.708 * advbk -0.139 -21.091 * -0.899 -18.162 * advbk -0.248 43.103 * 

price.period1 -0.006 3.634 * -5.318 77.001 * price.period1 0.000 0.111 

 

0.014 1.560   price.adult -0.024 10.139 * 

price.period2 -0.012 9.173 * (2.830) (60.153) * price.period2 -0.003 -1.684 

 

-0.082 -2.069 * price.child (2-15) -0.004 0.279   

price.period3 -0.011 10.783 *   

 

  price.period3 -0.005 -2.778 * -0.049 -5.557 * price.senior (62+) -0.023 9.401 * 

price.period4 -0.010 10.380 *   

 

  price.period4 -0.001 -0.737 

 

-0.069 -7.931 * price.unacc child (8-11) 0.001 0.072   

price.period5 -0.005 5.287 *   

 

  price.period5 0.003 1.789 

 

-0.077 -8.052 * price.student advantage -0.010 2.838 * 

price.period6 -0.003 3.366 *   

 

  price.period6 -0.010 -4.348 * -0.059 -6.941 * price.adultAAA member -0.010 3.720 * 

  

  

    

 

    

     

  price.childAAA member - - - 

  

  

    

 

  Class  Model Class1   Class2   price.military adult -0.028 7.638 * 

  

  

    

 

  Class Size 0.619 

 

0.381   price.disabled adult -0.024 4.788 * 

  

  

    

 

  Variable Est T-Stat 

 

Est T-Stat   price.others -0.043 17.059 * 

  

  

    

 

  Intercept 0.181 4.845 * -0.181 -4.845 * price.period6 -0.019 8.249 * 

  

  

    

 

  Monday -0.402 -14.288 * 0.402 14.288 *   

  

  

wknd.period1 1.240 25.231 * 1.897 20.459 * Tuesday -0.338 -11.586 * 0.338 11.586 * wknd.period1 2.012 40.426 * 

wknd.period2 1.099 27.923 * 0.681 11.363 * Wednesday -0.375 -11.908 * 0.375 11.908 * wknd.period2 0.878 34.139 * 

wknd.period3 0.407 13.106 * 0.347 8.765 * Thursday -0.286 -9.502 * 0.286 9.502 * wknd.period3 -0.044 1.492   

wknd.period4 0.466 14.830 * 0.041 0.977 

 

Friday -0.213 -7.690 * 0.213 7.690 * wknd.period4 0.050 1.751   

wknd.period5 -0.472 13.477 * -0.483 10.257 * Saturday -0.019 -0.433 

 

0.019 0.433   wknd.period5 -0.133 4.703 * 

wknd.period6 0.260 9.369 * 0.516 11.436 *   

     

  wknd.period6 0.236 7.935 * 

  

  

    

 

  Early morning 1.085 19.204 * -1.085 -19.204 *   

  

  

  

  

    

 

  AM peak 0.985 22.737 * -0.985 -22.737 *   

  

  

  

  

    

 

  AM off peak 0.474 15.353 * -0.474 -15.353 *   

  

  

  

  

    

 

  PM off peak 0.096 3.491 * -0.096 -3.491 *   

  

  

  

  

    

 

  PM peak 0.113 4.036 * -0.113 -4.036 *   

  

  

No. of observations 37,373     37,373   No. of observations       37,373   No. of observations   37,373   

Rho-squared: 

 

0.2970     0.3397   Rho-squared: 

    

0.3034   Rho-squared: 

 

0.2904   

Adjusted rho-squared: 0.2969     0.3396   Adjusted rho-squared: 

  

0.3032   Adjusted rho-squared: 0.2903   

Log-likelihood at optimal -90,226     -84,742   Log-likelihood at optimal 

  

-89,402   Log-likelihood at optimal -91,070   

Log-likelihood  at zero -128,338     -128,338   Log-likelihood  at zero 

  

-128,338   Log-likelihood  at zero -128,338   

LL at constant -90,487     -90,487   LL at constant       -90,487   LL at constant  -90,487   

*Statistically significant at the 5% significance level. Parenthesis indicates standard deviation. 
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Table A-3 Model 3 Result 

  MNL   ML   LC MNL with Socioeconomics 

              Choice Model Class1   Class2           

Variable Est T-Stat   Est T-Stat   Variable Est T-Stat 

 

Est T-Stat   Variable Est T-Stat   

advbk -0.242 33.967 * -0.372 105.968 * advbk -0.197 -32.279 * -1.710 -0.002   advbk -0.382 78.332 * 

price.period1 0.002 1.224   -7.130 49.790 * price.period1 -0.027 -10.192 * 0.121 4.389 * price.adult -0.080 49.469 * 

price.period2 -0.009 6.020 * (4.668) (43.775) * price.period2 -0.034 -13.480 * 0.034 0.974   price.child (2-15) -0.006 0.235   

price.period3 -0.010 9.128 * 

   

price.period3 -0.032 -14.000 * -0.008 -0.244   price.senior (62+) -0.075 30.008 * 

price.period4 -0.011 11.796 * 

   

price.period4 -0.030 -13.591 * -0.104 -2.665 * price.unacc child (8-11) -0.688 18.544 * 

price.period5 -0.007 8.166 * 

   

price.period5 -0.026 -11.217 * -0.117 -2.714 * price.student advantage -0.054 12.524 * 

price.period6 -0.003 3.244 * 

   

price.period6 -0.034 -15.545 * -0.051 -1.769   price.adultAAA member -0.061 28.722 * 

  

  

  

   

  

     

  price.childAAA member - - - 

  

  

  

   

Class  Model Class1   Class2   price.military adult -0.082 10.460 * 

  

  

  

   

Class Size 0.617 

 

0.383   price.disabled adult -0.069 8.539 * 

  

  

  

   

Variable Est T-Stat   Est T-Stat   price.others -0.102 46.711 * 

  

  

  

   

Intercept 0.457 8.606 * -0.457 -8.606 * price.period6 -0.073 45.156 * 

  

  

  

   

Monday -0.396 -8.689 * 0.396 8.689 *   

  

  

wknd.period1 1.440 16.329 * 2.087 9.865 * Tuesday -0.375 -8.547 * 0.375 8.547 * wknd.period1 2.653 29.238 * 

wknd.period2 1.161 17.137 * 0.207 1.269 

 

Wednesday -0.358 -8.061 * 0.358 8.061 * wknd.period2 1.034 16.240 * 

wknd.period3 0.311 4.461 * 0.193 2.343 * Thursday -0.332 -7.578 * 0.332 7.578 * wknd.period3 -0.024 0.330   

wknd.period4 0.381 7.161 * 0.091 0.968 

 

Friday -0.215 -4.851 * 0.215 4.851 * wknd.period4 -0.175 3.260 * 

wknd.period5 -0.449 6.181 * -0.465 4.209 * Saturday -0.029 -0.396 

 

0.029 0.396   wknd.period5 -0.522 5.994 * 

wknd.period6 0.155 3.433 * 0.887 9.297 *   

     

  wknd.period6 0.034 0.702   

  

  

  

   

Early morning 0.742 10.146 * -0.742 -10.146 *   

  

  

  

  

  

   

AM peak 0.715 13.463 * -0.715 -13.463 *   

  

  

  

  

  

   

AM off peak 0.155 3.992 * -0.155 -3.992 *   

  

  

  

  

  

   

PM off peak -0.143 -4.313 * 0.143 4.313 *   

  

  

  

  

  

   

PM peak 0.051 1.550 

 

-0.051 -1.550     

  

  

No. of observations 19,032     19,032   No. of observations       19,032   No. of observations   19,032   

Rho-squared: 

 

0.3557     0.3899   Rho-squared: 

    

0.3688   Rho-squared: 

 

0.3602   

Adjusted rho-squared: 0.3555     0.3898   Adjusted rho-squared: 

  

0.3684   Adjusted rho-squared: 

 

0.3599   

Log-likelihood at optimal -42,106     -39,874   Log-likelihood at optimal 

  

-41,255   Log-likelihood at optimal -41,814   

Log-likelihood  at zero -65,356     -65,356   Log-likelihood  at zero 

   

-65,356   Log-likelihood  at zero 

 

-65,356   

LL at constant -41,704     -41,704   LL at constant       -41,704   LL at constant   -41,704   

*Statistically significant at the 5% significance level. Parenthesis indicates standard deviation. 
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Table A-4 Model 4 Result  

  MNL   ML   LC MNL with Socioeconomics 

              Choice Model Class1   Class2           

Variable Est T-Stat   Est T-Stat   Variable Est T-Stat 

 

Est T-Stat   Variable Est T-Stat   

advbk -0.141 15.520 * -0.314 52.483 * advbk -0.086 -6.378 * -0.500 -9.411 * advbk -0.192 20.516 * 

price.period1 -0.017 4.707 * -5.688 46.679 * price.period1 -0.013 -2.761 * 0.032 2.121 * price.adult -0.023 5.198 * 

price.period2 -0.021 5.909 * (4.536) (53.574) * price.period2 -0.013 -2.660 * -0.001 -0.070   price.child (2-15) - - - 

price.period3 -0.019 5.892 * 

   

price.period3 -0.012 -2.818 * 0.001 0.061   price.senior (62+) -0.025 4.552 * 

price.period4 -0.017 5.675 * 

   

price.period4 -0.009 -2.140 * -0.011 -0.991   price.unacc child (8-11) - - - 

price.period5 -0.013 4.299 * 

   

price.period5 -0.007 -1.512 

 

-0.011 -0.982   price.student advantage -0.018 4.093 * 

price.period6 -0.009 3.236 * 

   

price.period6 -0.017 -2.609 * -0.004 -0.410   price.adultAAA member -0.018 3.756 * 

  

  

  

   

  

     

  price.childAAA member - - - 

  

  

  

   

Class  Model Class1   Class2   price.military adult 0.081 1.225   

  

  

  

   

Class Size 0.574 

 

0.426   price.disabled adult 5.460 6.934 * 

  

  

  

   

Variable Est T-Stat   Est T-Stat   price.others -0.040 8.479 * 

  

  

  

   

Intercept 0.987 3.384 * -0.987 -3.384 * price.period6 -0.017 3.925 * 

  

  

  

   

Monday -1.418 -6.349 * 1.418 6.349 *   

  

  

wknd.period1 1.282 12.189 * 3.329 27.284 * Tuesday -1.224 -5.848 * 1.224 5.848 * wknd.period1 1.614 16.890 * 

wknd.period2 1.118 12.777 * 1.428 19.718 * Wednesday -1.321 -6.015 * 1.321 6.015 * wknd.period2 0.935 13.166 * 

wknd.period3 0.650 7.678 * 0.298 4.862 * Thursday -1.443 -6.325 * 1.443 6.325 * wknd.period3 0.428 6.034 * 

wknd.period4 0.622 8.762 * -0.304 5.237 * Friday -1.150 -5.589 * 1.150 5.589 * wknd.period4 0.400 5.993 * 

wknd.period5 0.013 0.129   -0.735 7.376 * Saturday -0.716 -2.674 * 0.716 2.674 * wknd.period5 0.307 2.963 * 

wknd.period6 -0.684 6.821 * -1.015 11.171 *   

     

  wknd.period6 -0.685 5.449 * 

  

  

  

   

Early morning - - 

 

- -     

  

  

  

  

  

   

AM peak 0.974 4.980 * -0.974 -4.980 *   

  

  

  

  

  

   

AM off peak 0.667 3.779 * -0.667 -3.779 *   

  

  

  

  

  

   

PM off peak 0.077 0.476 

 

-0.077 -0.476     

  

  

  

  

  

   

PM peak -0.113 -0.677 

 

0.113 0.677     

  

  

No. of observations 4,472     4,472   No. of observations       4,472    Number of observations   4,472    

Rho-squared: 

 

0.2078     0.2889   Rho-squared: 

    

0.2122   Rho-squared: 

 

0.2074   

Adjusted rho-squared: 0.2069     0.2883   Adjusted rho-squared: 

  

0.2105   Adjusted rho-squared: 

 

0.2062   

Log-likelihood at optimal -12,166     -10,920   Log-likelihood at optimal 

  

-12,097   Log likelihood at optimal 

 

-12,172   

Log-likelihood  at zero -15,357     -15,357   Log-likelihood  at zero 

   

-15,357   Log-likelihood  at zero 

 

-15,357   

LL at constant -12,330     -12,330   LL at constant       -12,330   LL at constant   -12,330   

*Statistically significant at the 5% significance level. Parenthesis indicates standard deviation. 
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Table A-5 Model 5 Result 

  MNL   ML   LC MNL with Socioeconomics 

              
Choice 

Model Class1   Class2           

Variable Est T-Stat   Est T-Stat   Variable Est T-Stat 

 

Est T-Stat   Variable Est T-Stat   

advbk -0.220 17.952 * -0.450 89.143 * advbk -0.199 -11.688 * -0.539 -12.988 * advbk -0.517 58.129 * 

price.period1 -0.008 1.942   -6.225 54.812 * price.period1 -0.083 -10.519 * 0.023 1.497   price.adult -0.123 36.196 * 

price.period2 -0.017 6.735 * (3.630) (56.304) * price.period2 -0.084 -11.562 * -0.010 -0.746   price.child (2-15) 26.057 2.985 * 

price.period3 -0.015 8.598 * 

   

price.period3 -0.084 -12.478 * -0.012 -0.950   price.senior (62+) -0.116 25.077 * 

price.period4 -0.013 9.154 * 

   

price.period4 -0.076 -11.299 * -0.024 -2.042 * price.unacc child (8-11) - - - 

price.period5 -0.004 3.109 * 

   

price.period5 -0.106 -6.418 * -0.015 -1.235   price.student advantage -0.072 15.558 * 

price.period6 -0.002 1.533   

   

price.period6 -0.059 -8.864 * -0.035 -2.974 * price.adultAAA member -0.090 17.187 * 

  

  

  

   

  

     

  price.childAAA member - - - 

  

  

  

   

Class  Model Class1   Class2   price.military adult 0.406 7.946 * 

  

  

  

   

Class Size 0.575 

 

0.426   price.disabled adult -0.075 20.376 * 

  

  

  

   

Variable Est T-Stat   Est T-Stat   price.others -0.151 29.506 * 

  

  

  

   

Intercept 0.785 8.454 * -0.785 -8.454 * price.period6 -0.118 34.320 * 

  

  

  

   

Monday 0.186 2.215 * -0.186 -2.215 *   

  

  

wknd.period1 1.473 8.601 * 0.468 12.337 * Tuesday -0.408 -5.255 * 0.408 5.255 * wknd.period1 3.522 51.264 * 

wknd.period2 0.833 5.862 * 0.491 42.742 * Wednesday -0.413 -5.272 * 0.413 5.272 * wknd.period2 0.908 3.191 * 

wknd.period3 0.396 3.485 * 0.518 36.889 * Thursday -0.456 -5.764 * 0.456 5.764 * wknd.period3 -0.125 0.435   

wknd.period4 0.352 4.280 * 0.355 6.400 * Friday -0.317 -3.977 * 0.317 3.977 * wknd.period4 -0.502 1.939   

wknd.period5 -0.551 5.574 * -0.163 3.125 * Saturday 0.180 1.163 

 

-0.180 -1.163   wknd.period5 -0.657 2.299 * 

wknd.period6 0.498 7.342 * 1.332 23.902 *   

     

  wknd.period6 0.129 0.511   

  

  

  

   

Early morning - - 

 

- -     

  

  

  

  

  

   

AM peak -0.917 -11.348 * 0.917 11.348 *   

  

  

  

  

  

   

AM off peak -0.305 -5.495 * 0.305 5.495 *   

  

  

  

  

  

   

PM off peak -0.009 -0.182 

 

0.009 0.182     

  

  

  

  

  

   

PM peak -0.190 -3.484 * 0.190 3.484 *   

  

  

No. of observations 11,536     11,536   No. of observations       11,536    Number of observations   11,536    

Rho-squared: 

 

0.4327     0.4525   Rho-squared: 

    

0.4444   Rho-squared: 

 

0.4212   

Adjusted rho-squared: 0.4323     0.4523   Adjusted rho-squared: 

  

0.4437   Adjusted rho-squared: 

 

0.4207   

Log-likelihood at optimal -22,474     -21,688   Log-likelihood at optimal 

  

-22,011   Log likelihood at optimal 

 

-22,930   

Log-likelihood  at zero -39,614     -39,614   Log-likelihood  at zero 

   

-39,614   Log-likelihood  at zero 

 

-39,614   

LL at constant -22,530     -22,530   LL at constant       -22,530   LL at constant   -22,530   

*Statistically significant at the 5% significance level. Parenthesis indicates standard deviation. 
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Table A-6 Model 6 Result 

  MNL   ML   LC MNL with Socioeconomics 

              Choice Model Class1   Class2           

Variable Est T-Stat   Est T-Stat   Variable Est T-Stat 

 

Est T-Stat   Variable Est T-Stat   

advbk -0.160 30.287 * -0.392 100.986 * advbk -0.084 -10.870 * -0.672 -16.043 * advbk -0.293 69.420 * 

price.period1 -0.018 6.775 * -5.421 35.523 * price.period1 0.017 3.864 * -0.014 -0.917   price.adult -0.064 27.225 * 

price.period2 -0.024 9.831 * (4.252) (29.595) * price.period2 0.018 3.851 * -0.130 -2.310 * price.child (2-15) -0.071 5.034 * 

price.period3 -0.021 9.799 * 

   

price.period3 0.018 3.826 * -0.073 -4.953 * price.senior (62+) -0.063 24.982 * 

price.period4 -0.018 8.377 * 

   

price.period4 0.022 4.696 * -0.087 -5.805 * price.unacc child (8-11) -0.063 10.836 * 

price.period5 -0.012 5.593 * 

   

price.period5 0.029 6.196 * -0.093 -6.019 * price.student advantage -0.054 19.977 * 

price.period6 -0.008 4.074 * 

   

price.period6 0.010 1.792 

 

-0.077 -5.371 * price.adultAAA member -0.057 23.248 * 

  

  

  

   

  

     

  price.childAAA member - - - 

  

  

  

   

Class  Model Class1   Class2   price.military adult 0.396 0.786   

  

  

  

   

Class Size 0.566 

 

0.434   price.disabled adult -0.063 7.736 * 

  

  

  

   

Variable Est T-Stat   Est T-Stat   price.others -0.088 34.916 * 

  

  

  

   

Intercept 0.952 8.602 * -0.952 -8.602 * price.period6 -0.058 24.431 * 

  

  

  

   

Monday -1.212 -13.484 * 1.212 13.484 *   

  

  

wknd.period1 1.163 21.812 * 4.299 57.340 * Tuesday -1.061 -12.027 * 1.061 12.027 * wknd.period1 1.582 30.329 * 

wknd.period2 1.203 29.228 * 1.747 43.787 * Wednesday -1.161 -12.777 * 1.161 12.777 * wknd.period2 0.855 23.879 * 

wknd.period3 0.751 19.745 * 0.168 4.589 * Thursday -1.196 -13.013 * 1.196 13.013 * wknd.period3 0.389 12.255 * 

wknd.period4 0.537 17.042 * -0.664 20.754 * Friday -0.859 -11.172 * 0.859 11.172 * wknd.period4 0.398 12.808 * 

wknd.period5 -0.149 3.310 * -1.187 27.385 * Saturday -0.837 -9.565 * 0.837 9.565 * wknd.period5 0.296 6.590 * 

wknd.period6 -0.504 13.923 * -1.353 30.550 *   

     

  wknd.period6 -0.520 11.507 * 

  

  

  

   

Early morning 0.977 11.940 * -0.977 -11.940 *   

  

  

  

  

  

   

AM peak 0.852 14.129 * -0.852 -14.129 *   

  

  

  

  

  

   

AM off peak 0.428 8.998 * -0.428 -8.998 *   

  

  

  

  

  

   

PM off peak 0.109 2.949 * -0.109 -2.949 *   

  

  

  

  

  

   

PM peak -0.076 -2.027 * 0.076 2.027 *   

  

  

No. of observations 29,514     29,514   No. of observations       29,514   No. of observations   29,514   

Rho-squared: 

 

0.2779     0.3500   Rho-squared: 

    

0.2816   Rho-squared: 

 

0.2760   

Adjusted rho-squared: 0.2778     0.3499   Adjusted rho-squared: 

   

0.2814   Adjusted rho-squared: 0.2758   

Log-likelihood at optimal -73,182     -65,877   Log-likelihood at optimal 

  

-72,809   Log-likelihood at optimal -73,383   

Log-likelihood  at zero -101,351     -101,351   Log-likelihood  at zero 

  

-101,351   Log-likelihood  at zero -101,351   

LL at constant -73,807     -73,807   LL at constant       -73,807   LL at constant  -73,807   

*Statistically significant at the 5% significance level. Parenthesis indicates standard deviation. 
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Table A-7 Model 7 Result 

  MNL   ML   LC MNL with Socioeconomics 

              Choice Model Class1   Class2           

Variable Est T-Stat   Est T-Stat   Variable Est T-Stat 

 

Est T-Stat   Variable Est T-Stat   

advbk -0.224 4.743 * -1.528 27.801 * advbk -0.145 -0.880 

 

-0.057 -0.406   advbk -0.562 6.055 * 

price.period1 -0.313 6.114 * -1.547 9.163 * price.period1 -0.228 -1.172 

 

0.693 2.660 * price.adult -0.528 3.077 * 

price.period2 -0.347 8.573 * (1.789) (22.066) * price.period2 -0.204 -1.059 

 

0.655 2.374 * price.child (2-15) - - - 

price.period3 -0.340 9.775 * 

   

price.period3 -0.391 -1.031 

 

0.681 2.358 * price.senior (62+) -1.162 0.190   

price.period4 -0.300 10.084 * 

   

price.period4 -0.171 -0.829 

 

0.655 2.333 * price.unacc child (8-11) - - - 

price.period5 -0.264 9.044 * 

   

price.period5 -0.116 -0.552 

 

0.661 2.351 * price.student advantage -0.451 2.617 * 

price.period6 -0.209 7.382 * 

   

price.period6 -0.065 -0.313 

 

0.706 2.552 * price.adultAAA member -0.429 2.526 * 

  

  

  

   

  

     

  price.childAAA member - - - 

  

  

  

   

Class  Model Class1   Class2   price.military adult - - - 

  

  

  

   

Class Size 0.629 

 

0.372   price.disabled adult - - - 

  

  

  

   

Variable Est T-Stat   Est T-Stat   price.others -0.525 3.068 * 

  

  

  

   

Intercept -0.875 -0.792 

 

0.875 0.792   price.period6 -0.460 2.679 * 

  

  

  

   

Monday 2.777 1.342 

 

-2.777 -1.342     

  

  

wknd.period1 2.469 3.299 * 18.240 14.795 * Tuesday 0.894 0.748 

 

-0.894 -0.748   wknd.period1 4.811 5.139 * 

wknd.period2 -5.359 7.223 * -0.634 7.402 * Wednesday -0.916 -0.599 

 

0.916 0.599   wknd.period2 -8.318 1.963 * 

wknd.period3 1.738 3.367 * -0.211 0.379 

 

Thursday -1.087 -0.721 

 

1.087 0.721   wknd.period3 1.614 1.530   

wknd.period4 1.495 3.441 * -4.044 7.799 * Friday -2.709 -1.421 

 

2.709 1.421   wknd.period4 1.685 1.689   

wknd.period5 0.620 0.937   -5.987 7.481 * Saturday -2.528 -0.933 

 

2.528 0.933   wknd.period5 1.689 1.547   

wknd.period6 2.144 2.990 * -4.360 6.780 *   

     

  wknd.period6 1.538 1.452   

  

  

  

   

Early morning - - 

 

- -     

  

  

  

  

  

   

AM peak - - 

 

- -     

  

  

  

  

  

   

AM off peak 4.307 2.002 * -4.307 -2.002 *   

  

  

  

  

  

   

PM off peak 1.305 0.803 

 

-1.305 -0.803     

  

  

  

  

  

   

PM peak 1.678 1.035 

 

-1.678 -1.035     

  

  

No. of observations 820     820   No. of observations        820   No. of observations   820    

Rho-squared: 

 

0.7597     0.7733   Rho-squared: 

    

0.7345   Rho-squared: 

 

0.7185   

Adjusted rho-squared: 0.7550     0.7701   Adjusted rho-squared: 

  

0.7252   Adjusted rho-squared: 

 

0.7121   

Log-likelihood at optimal -677     -642   Log-likelihood at optimal 

  

-748   Log-likelihood at optimal -797   

Log-likelihood  at zero -2,816     -2,816   Log-likelihood  at zero 

   

-2,816   Log-likelihood  at zero 

 

-2,816   

LL at constant NA     NA   LL at constant       NA   LL at constant    NA   

*Statistically significant at the 5% significance level. Parenthesis indicates standard deviation. 
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Table A-8 Model 8 Result 

  MNL   ML   LC MNL with Socioeconomics 

              Choice Model Class1   Class2           

Variable Est T-Stat   Est T-Stat   Variable Est T-Stat 

 

Est T-Stat   Variable Est T-Stat   

advbk -0.266 10.741 * -0.523 11.787 * advbk -0.280 -4.923 * -0.633 -4.482 * advbk -0.328 6.172 * 

price.period1 0.013 1.050   -4.521 12.959 * price.period1 0.044 1.243 

 

-0.445 -3.343 * price.adult -0.055 1.186   

price.period2 -0.015 1.384   (2.356) (20.432) * price.period2 0.006 0.156 

 

-0.421 -3.716 * price.child (2-15) - - - 

price.period3 -0.018 2.047 * 

   

price.period3 -0.001 -0.014 

 

-0.400 -3.758 * price.senior (62+) -0.350 5.813 * 

price.period4 -0.017 1.926   

   

price.period4 -0.003 -0.072 

 

-0.399 -3.708 * price.unacc child (8-11) - - - 

price.period5 -0.005 0.613   

   

price.period5 0.006 0.144 

 

-0.394 -3.601 * price.student advantage - - - 

price.period6 -0.002 0.231   

   

price.period6 0.017 0.455 

 

-0.399 -3.680 * price.adultAAA member -0.034 0.747   

  

  

  

   

  

     

  price.childAAA member - - - 

  

  

  

   

Class  Model Class1   Class2   price.military adult - - - 

  

  

  

   

Class Size 0.723 

 

0.277   price.disabled adult - - - 

  

  

  

   

Variable Est T-Stat   Est T-Stat   price.others -0.302 1.070   

  

  

  

   

Intercept -1.518 -1.106 

 

1.518 1.106   price.period6 -0.044 0.970   

  

  

  

   

Monday 2.646 1.835 

 

-2.646 -1.835     

  

  

wknd.period1 0.959 1.108   4.005 4.728 * Tuesday 2.443 1.728 

 

-2.443 -1.728   wknd.period1 2.200 2.824 * 

wknd.period2 1.226 2.361 * 2.291 4.164 * Wednesday 1.995 1.440 

 

-1.995 -1.440   wknd.period2 1.025 1.964 * 

wknd.period3 0.790 1.654   0.307 0.711 

 

Thursday 2.507 1.646 

 

-2.507 -1.646   wknd.period3 0.246 0.579   

wknd.period4 0.899 2.520 * -0.696 2.038 * Friday 2.121 1.523 

 

-2.121 -1.523   wknd.period4 0.423 1.282   

wknd.period5 -0.937 1.475   -1.662 3.502 * Saturday 0.456 0.204 

 

-0.456 -0.204   wknd.period5 -0.592 0.986   

wknd.period6 0.065 0.169   -1.247 3.126 *   

     

  wknd.period6 -0.301 0.807   

  

  

  

   

Early morning -1.913 -4.068 * 1.913 4.068 *   

  

  

  

  

  

   

AM peak -1.058 -3.176 * 1.058 3.176 *   

  

  

  

  

  

   

AM off peak -0.330 -0.946 

 

0.330 0.946     

  

  

  

  

  

   

PM off peak 2.270 1.454 

 

-2.270 -1.454     

  

  

  

  

  

   

PM peak 1.420 1.096 

 

-1.420 -1.096     

  

  

No. of observations 959     959   No. of observations        959   No. of observations   959    

Rho-squared: 

 

0.4190     0.4216   Rho-squared: 

    

0.4345   Rho-squared: 

 

0.4026   

Adjusted rho-squared: 0.4151     0.4188   Adjusted rho-squared: 

  

0.4266   Adjusted rho-squared: 

 

0.3972   

Log-likelihood at optimal -1,913     -1,905   Log-likelihood at optimal 

  

-1,862   Log-likelihood at optimal -1,967   

Log-likelihood  at zero -3,293     -3,293   Log-likelihood  at zero 

   

-3,293   Log-likelihood  at zero 

 

-3,293   

LL at constant NA     NA   LL at constant       NA   LL at constant   NA   

*Statistically significant at the 5% significance level. Parenthesis indicates standard deviation. 
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Table A-9 Model 9 Result 

  MNL   ML   LC MNL with Socioeconomics 

              Choice Model Class1   Class2           

Variable Est T-Stat   Est T-Stat   Variable Est T-Stat 

 

Est T-Stat   Variable Est T-Stat   

advbk -0.130 2.977 * -0.447 23.425 * advbk -0.381 -4.143 * -0.167 -2.846 * advbk -0.556 18.993 * 

price.period1 -0.031 2.869 * -23.031 5.192 * price.period1 0.109 2.234 * -0.019 -0.487   price.adult -0.151 13.208 * 

price.period2 -0.029 4.255 * (20.015) (5.006) * price.period2 0.036 0.369 

 

-0.016 -0.445   price.child (2-15) - - - 

price.period3 -0.027 5.257 *   

 

  price.period3 0.082 1.660 

 

-0.020 -0.539   price.senior (62+) -0.128 7.494 * 

price.period4 -0.022 6.002 *   

 

  price.period4 0.076 1.588 

 

-0.018 -0.530   price.unacc child (8-11) - - - 

price.period5 -0.009 3.002 *   

 

  price.period5 0.064 1.342 

 

-0.002 -0.060   price.student advantage - - - 

price.period6 -0.004 1.361 

 

  

 

  price.period6 0.092 1.877 

 

-0.010 -0.279   price.adultAAA member -0.122 8.557 * 

  

   

  

 

    

     

  price.childAAA member - - - 

  

   

  

 

  Class  Model Class1   Class2   price.military adult - - - 

  

   

  

 

  Class Size 0.549 

 

0.451   price.disabled adult - - - 

  

   

  

 

  Variable Est T-Stat   Est T-Stat   price.others -2.369 14.017 * 

  

   

  

 

  Intercept 1.348 3.218 * -1.348 -3.218 * price.period6 -0.143 12.346 * 

  

   

  

 

  Monday 0.303 0.694 

 

-0.303 -0.694     

  

  

wknd.period1 1.860 3.386 * 1.186 5.814 * Tuesday -0.705 -2.311 * 0.705 2.311 * wknd.period1 3.642 5.768 * 

wknd.period2 0.227 0.367 

 

0.452 38.652 * Wednesday -0.657 -2.056 * 0.657 2.056 * wknd.period2 0.398 0.695   

wknd.period3 0.144 0.343 

 

-1.572 3.221 * Thursday -0.486 -1.574 

 

0.486 1.574   wknd.period3 -0.368 0.823   

wknd.period4 0.605 2.305 * 8.139 3.249 * Friday -0.296 -0.945 

 

0.296 0.945   wknd.period4 -0.369 1.219   

wknd.period5 -0.583 1.550 

 

-18.146 3.635 * Saturday -0.135 -0.258 

 

0.135 0.258   wknd.period5 -0.725 1.769   

wknd.period6 0.747 3.178 * 12.915 4.613 *   

     

  wknd.period6 0.422 1.758   

  

   

  

 

  Early morning - - 

 

- -     

  

  

  

   

  

 

  AM peak -2.757 -1.640 

 

2.757 1.640     

  

  

  

   

  

 

  AM off peak -0.771 -2.522 * 0.771 2.522 *   

  

  

  

   

  

 

  PM off peak -0.706 -2.392 * 0.706 2.392 *   

  

  

  

   

  

 

  PM peak -0.787 -2.465 * 0.787 2.465 *   

  

  

No. of observations 1,307     1,307   No. of observations        1,307   No. of observations   1,307    

Rho-squared: 

 

0.4843 

 

  0.4876   Rho-squared: 

    

0.4960   Rho-squared: 

 

0.4709   

Adjusted rho-squared: 0.4814 

 

  0.4856   Adjusted rho-squared: 

  

0.4903   Adjusted rho-squared: 

 

0.4669   

Log-likelihood at optimal -2,315 

 

  -2,300   Log-likelihood at optimal 

  

-2,262   Log-likelihood at optimal -2,375   

Log-likelihood  at zero -4,488 

 

  -4,488   Log-likelihood  at zero 

   

-4,488   Log-likelihood  at zero 

 

-4,488   

LL at constant NA     NA   LL at constant       NA   LL at constant   NA   

*Statistically significant at the 5% significance level. Parenthesis indicates standard deviation. 
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Table A-10 Model 10 Result 

  MNL   ML   LC MNL with Socioeconomics 

              Choice Model Class1   Class2           

Variable Est T-Stat   Est T-Stat   Variable Est T-Stat 

 

Est T-Stat   Variable Est T-Stat   

advbk -0.534 20.090 * -0.602 58.485 * advbk -1.164 -6.080 * -0.327 -10.734 * advbk -0.674 32.119 * 

price.period1 0.056 7.863 * -6.945 25.872 * price.period1 -0.378 -1.451 

 

-0.066 -2.898 * price.adult -0.215 22.716 * 

price.period2 0.011 2.760 * (3.371) (20.846) * price.period2 -0.518 -1.953 

 

-0.083 -3.591 * price.child (2-15) - - - 

price.period3 -0.007 2.626 *   

 

  price.period3 -0.448 -2.712 * -0.095 -3.954 * price.senior (62+) -0.209 17.927 * 

price.period4 -0.019 11.389 *   

 

  price.period4 -0.606 -3.504 * -0.089 -3.597 * price.unacc child (8-11) - - - 

price.period5 -0.016 12.133 *   

 

  price.period5 -0.595 -3.399 * -0.081 -3.202 * price.student advantage -0.099 5.940 * 

price.period6 -0.008 8.293 *   

 

  price.period6 -0.426 -2.788 * -0.090 -4.031 * price.adultAAA member -0.158 11.881 * 

  

   

  

 

    

     

  price.childAAA member - - - 

  

   

  

 

  Class  Model Class1   Class2   price.military adult -1.084 18.308 * 

  

   

  

 

  Class Size 0.595 

 

0.406   price.disabled adult -0.227 6.498 * 

  

   

  

 

  Variable Est T-Stat   Est T-Stat   price.others -0.238 19.380 * 

  

   

  

 

  Intercept 0.462 4.444 * -0.462 -4.444 * price.period6 -0.204 21.406 * 

  

   

  

 

  Monday 0.135 1.595 

 

-0.135 -1.595     

  

  

wknd.period1 2.701 9.230 * 3.390 6.153 * Tuesday 0.031 0.379 

 

-0.031 -0.379   wknd.period1 5.381 18.684 * 

wknd.period2 1.560 7.202 * 1.483 3.920 * Wednesday 0.118 1.432 

 

-0.118 -1.432   wknd.period2 1.900 9.105 * 

wknd.period3 -0.268 1.183 

 

-0.255 0.875 

 

Thursday -0.062 -0.760 

 

0.062 0.760   wknd.period3 -0.674 3.033 * 

wknd.period4 -0.639 4.205 * -1.129 4.460 * Friday -0.037 -0.440 

 

0.037 0.440   wknd.period4 -1.646 11.372 * 

wknd.period5 -0.758 4.708 * -1.108 3.839 * Saturday 0.079 0.585 

 

-0.079 -0.585   wknd.period5 -1.577 8.975 * 

wknd.period6 0.404 4.267 * 0.618 2.516 *   

     

  wknd.period6 -0.384 3.444 * 

  

   

  

 

  Early morning -1.117 -5.476 * 1.117 5.476 *   

  

  

  

   

  

 

  AM peak -0.922 -9.202 * 0.922 9.202 *   

  

  

  

   

  

 

  AM off peak -0.297 -3.406 * 0.297 3.406 *   

  

  

  

   

  

 

  PM off peak -0.083 -1.007 

 

0.083 1.007     

  

  

  

   

  

 

  PM peak -0.287 -3.548 * 0.287 3.548 *   

  

  

No. of observations 4,454     4,454   No. of observations       4,454   No. of observations   4,454   

Rho-squared: 

 

0.5637 

 

  0.5493   Rho-squared: 

    

0.5845   Rho-squared: 

 

0.5611   

Adjusted rho-squared: 0.5628 

 

  0.5487   Adjusted rho-squared: 

   

0.5828   Adjusted rho-squared: 0.5599   

Log-likelihood at optimal -6,674 

 

  -6,894   Log-likelihood at optimal 

  

-6,356   Log-likelihood at optimal -6,713   

Log-likelihood  at zero -15,295 

 

  -15,295   Log-likelihood  at zero 

   

-15,295   Log-likelihood  at zero 

 

-15,295   

LL at constant -6,478     -6,478   LL at constant       -6,478   LL at constant   -6,478   

*Statistically significant at the 5% significance level. Parenthesis indicates standard deviation.
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Appendix B. Leg-based capacity consumption  

Table B-1 Leg-based capacity consumption (cumulated) 

Leg Bkday 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 

Leg(9-8) Exist 1 1 2 3 3 3 4 4 5 5 5 5 8 8 10 11 14 14 14 16 16 23 27 34 37 43 59 70 92 123 202 

Capacity*= LC 0 1 1 2 3 4 5 6 10 11 15 15 16 16 17 18 19 21 23 25 28 30 34 38 46 54 64 77 91 131 202 

202 MNL 0 0 1 1 1 2 2 3 4 5 7 7 8 8 9 9 10 12 13 15 17 20 24 28 34 40 49 60 71 110 202 

Leg(8-7) Exist 2 2 3 4 4 4 5 5 6 7 7 7 10 10 12 14 18 18 18 20 20 28 32 39 42 48 66 79 102 138 221 

Capacity= LC 1 1 2 3 3 4 6 8 11 13 17 17 18 19 20 22 23 25 27 31 33 36 40 45 53 62 73 86 102 143 221 

221 MNL 0 0 1 1 1 2 3 3 5 6 8 8 8 9 10 11 12 13 15 17 19 22 26 31 37 45 54 66 77 120 220 

Leg(7-6) Exist 2 2 3 4 4 4 4 4 5 6 6 6 9 9 10 12 16 16 16 18 18 24 28 34 39 45 62 75 92 124 203 

Capacity= LC 0 1 2 2 3 4 5 7 10 11 14 15 15 16 17 17 18 19 21 24 26 28 30 34 41 47 55 64 76 116 189 

203 MNL 0 0 0 1 1 1 2 2 3 4 5 5 6 6 7 7 8 9 10 11 13 15 17 21 25 31 38 47 56 100 190 

Leg(6-5) Exist 1 1 2 3 3 3 3 3 4 5 5 5 9 9 10 12 15 15 15 16 16 22 25 28 33 38 52 64 75 100 162 

Capacity= LC 0 1 1 2 3 3 4 6 9 10 11 11 12 12 13 13 14 15 16 19 20 22 24 27 32 38 44 52 62 95 160 

162 MNL 0 0 0 1 1 1 1 2 2 3 4 4 4 5 5 5 6 7 8 9 10 12 14 16 20 25 31 38 46 85 159 

Leg(5-4) Exist 1 1 2 2 2 2 2 2 3 4 4 4 7 7 8 10 13 13 13 14 14 19 22 25 29 31 43 53 65 86 142 

Capacity= LC 0 1 1 2 2 3 4 5 8 8 9 9 10 10 11 11 12 13 14 15 17 18 20 23 27 32 37 44 53 82 142 

142 MNL 0 0 0 0 1 1 1 2 2 3 3 3 4 4 4 5 5 6 6 7 8 10 12 14 17 21 27 34 41 76 141 

Leg(4-3) Exist 0 0 0 0 0 1 1 2 4 5 5 7 10 10 11 14 17 18 18 19 20 24 28 32 33 37 47 56 67 85 122 

Capacity= LC 0 0 0 1 1 1 1 1 2 3 4 4 5 6 7 7 8 9 11 12 14 16 18 20 24 28 34 41 49 67 106 

122 MNL 0 0 0 0 1 1 1 1 2 2 3 3 3 3 4 4 5 5 6 7 8 10 12 14 16 21 27 34 41 63 106 

Leg(3-2) Exist 0 0 0 0 0 1 1 2 4 5 5 7 10 10 10 13 15 16 16 17 18 20 23 26 27 31 40 50 60 74 103 

Capacity= LC 0 0 0 1 1 1 1 1 2 3 4 4 5 6 7 7 8 9 11 12 13 15 18 20 23 28 33 40 48 65 103 

103 MNL 0 0 0 0 1 1 1 1 2 2 2 3 3 3 4 4 5 5 6 7 8 10 11 13 16 21 27 34 40 62 103 

Leg(2-1) Exist 0 0 0 0 0 0 0 1 2 3 3 5 7 7 7 9 9 10 10 11 12 13 14 17 17 20 25 31 36 47 73 

Capacity= LC 0 0 0 0 0 1 1 1 1 2 3 3 4 4 5 6 7 8 9 10 11 12 13 15 17 20 24 28 34 46 73 

73 MNL 0 0 0 0 0 1 1 1 1 1 2 2 2 2 3 3 3 4 4 5 6 7 8 9 11 14 18 23 28 43 73 

*Indicates allowable capacity.
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Figure B-1 Leg 9-8 capacity consumption (cumulated) 

 

 

Figure B-2 Leg 8-7 capacity consumption (cumulated) 
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Figure B-3 Leg 7-6 capacity consumption (cumulated) 

 

 

Figure B-4 Leg 6-5 capacity consumption (cumulated) 
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Figure B-5 Leg 5-4 capacity consumption (cumulated) 

 

 

Figure B-6 Leg 4-3 capacity consumption (cumulated) 
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Figure B-7 Leg 3-2 capacity consumption (cumulated) 

 

 

Figure B-8 Leg 2-1 capacity consumption (cumulated) 
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Appendix C. Choice models with mixed logit using non-parametric B-spline 
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Table C-1 Choice model with mixed logit non-parametric B-Spline (model1-5) 

  Model1   Model2   Model3   Model4   Model5   

  Est T-Stat   Est T-Stat 

 

Est T-Stat   Est T-Stat 

 

Est T-Stat   

advbk -0.265 12.150 * -0.688 126.189 * -0.543 95.391 * -0.430 41.250 * -0.568 72.854 * 

price1 -0.361 4.934 * -0.214 31.776 * -0.705 16.717 * -1.187 6.673 * -0.406 47.219 * 

price2 -0.113 1.434   -0.214 21.605 * -0.240 4.276 * -0.161 7.862 * -0.406 37.111 * 

price3 -0.113 1.482   -0.214 39.311 * -0.240 16.017 * -0.161 16.483 * -0.406 27.721 * 

price4 -0.073 1.605   -0.214 6.655 * -0.240 2.711 * -0.161 5.645 * -0.406 11.498 * 

price5 0.202 1.757   -0.214 1.382 

 

2.038 14.856 * -0.127 0.926 

 

4.569 7.813 * 

price6 0.202 0.333   50.164 20.796 * 10.627 2.357 * 3.583 4.304 * 6.698 15.579 * 

price7 16.625 1.339   50.164 20.801 * 10.627 2.358 * 74.378 6.066 * 6.698 15.578 * 

  

  

  

   

  

 

  

   

  

 

  

wknd.period1 2.430 4.531 * -0.444 7.700 * 1.767 4.518 * 3.918 10.715 * 0.176 1.361   

wknd.period2 1.668 4.504 * -0.487 10.267 * -0.711 3.649 * 1.704 5.162 * 0.153 1.206   

wknd.period3 0.743 3.374 * -0.663 11.469 * 0.061 0.488   1.058 3.323 * 0.245 1.396   

wknd.period4 -0.449 1.008   -0.940 18.327 * -0.132 1.130   -0.239 0.641 

 

-0.495 4.276 * 

wknd.period5 -1.557 4.410 * -0.987 23.770 * -1.427 5.745 * -2.188 5.229 * -0.603 5.292 * 

wknd.period6 -3.132 4.400 * -0.124 2.748 * -0.138 1.631   -9.398 8.826 * 0.022 0.177   

  

  

  

   

  

 

  

   

  

 

  

No. of observations   1,361     20,000     19,032     4,472     11,536   

Rho-squared: 

 

0.3205   

 

0.5547 

 

  0.6070   

 

0.4181 

 

  0.6736   

Adjusted rho-squared: 0.3175   

 

0.5545 

 

  0.6067   

 

0.4172 

 

  0.6733   

Log-likelihood at optimal -3,176   

 

-30,582 

 

  -25,687   

 

-8,937 

 

  -12,929   

Log-likelihood  at zero -4,674   

 

-68,680 

 

  -65,356   

 

-15,357 

 

  -39,614   

Log-likelihood at constant -3,988     -47,045     -41,704     -12,330     -22,530   

* Statistically significance at the 5% significance level. 
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Table C-2 Choice model with mixed logit non-parametric B-spline (model 6-10) 

  Model6   Model7   Model8   Model9   Model10   

  Est T-Stat 

 

Est T-Stat   Est T-Stat 

 

Est T-Stat   Est T-Stat   

advbk -0.536 134.316 * -1.672 26.488 * -0.753 20.950 * -0.488 16.048 * -0.860 0.882   

price1 -0.329 64.833 * -8.762 8.907 * -0.474 17.206 * -0.653 15.617 * -0.751 0.389   

price2 -0.329 71.807 * -2.547 4.320 * -0.474 15.065 * -0.653 14.902 * -0.751 0.822   

price3 -0.329 41.721 * -2.547 5.183 * -0.474 5.190 * -0.653 15.386 * -0.751 0.859   

price4 -0.329 38.874 * -0.075 1.281   -0.474 3.950 * -0.653 10.611 * -0.751 0.972   

price5 -0.329 11.110 * -0.075 2.846 * -0.474 1.199 

 

21.804 6.994 * 12.620 1.865   

price6 14.061 19.699 * -0.075 2.230 * 8.550 4.542 * 21.804 6.996 * 71.768 5.129 * 

price7 14.061 19.717 * 13.556 3.169 * 9.061 6.272 * 21.804 6.994 * 71.768 5.130 * 

  

   

  

 

  

   

  

 

    

 

  

wknd.period1 2.174 82.375 * 18.446 17.721 * 0.406 0.753 

 

-0.939 1.816   4.497 0.637   

wknd.period2 0.828 52.888 * -1.252 18.542 * 0.432 0.787 

 

-0.951 1.837   0.597 0.067   

wknd.period3 0.487 37.030 * -1.130 2.528 * 0.418 0.769 

 

-1.174 2.327 * 0.145 0.016   

wknd.period4 0.399 30.604 * -4.613 6.015 * -0.315 1.054 

 

-1.559 5.107 * -0.059 0.006   

wknd.period5 -0.589 38.338 * -7.825 11.953 * -0.465 1.778 

 

-1.823 5.886 * -0.780 0.068   

wknd.period6 -2.184 58.208 * -3.625 4.415 * -0.568 2.227 * 1.779 0.744   1.714 1.187   

  

   

  

 

  

   

  

 

    

 

  

No. of observations   20,000     820     959     1,307     4,454   

Rho-squared: 

 

0.4677 

 

  0.7862   

 

0.5039 

 

  0.7200     0.7194   

Adjusted rho-squared: 0.4675 

 

  0.7813   

 

0.4997 

 

  0.7168     0.7185   

Log-likelihood at optimal -36,556 

 

  -605   

 

-1,634 

 

  -1,257     -4,291   

Log-likelihood  at zero -68,680 

 

  -2,830   

 

-3,293 

 

  -4,488     -15,295   

Log-likelihood at constant -49,068     NA     NA     NA     -6,478   

* Statistically significance at the 5% significance level. 
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Appendix D. Major C code for dynamic discrete choice model estimation 

D-1: library.h 

 
#ifndef LIBRARY 

#define LIBRARY 

 

#ifdef __cplusplus 

extern "C" { 

#endif 

#include <oratio/oratio.h> 

 

typedef struct { 

    // individual id 

    int id; 

    // individual specific variable 

    double *indiv; 

    } ind; 

 

typedef struct { 

    // number of time period 

    int tperiod; 

    } duration; 

     

typedef struct { 

    // original departure time 

    int tdepart; 

    } schedule;  

 

typedef struct { 

    // fare of original ticket at each time 

    double **current; 

    } cur; 

 

typedef struct { 

    // decision variable, 0 or 1 at each time period to each product type 

    double **decision; 

    // static attributes for potential choice j in time t 

    double **stati; 

    // dynamic variable for each potential product in each time 

    double **dym; 

    } poten; 

 

// Define the type of data used for the samplings. 

typedef struct { 

    // number of individuals 

    int indivNum; 

    // number of time period 

    int time; 

    // number of asc 

    int numC; 

    // number of individual variables 

    int numINDIVAR; 

    // number of current ticket variables 

    int numSTATIC; 

    // number of dynamic vars for potential choice 

    int numDYNAMIC; 

    // number of refund var 

    int numREF; 

    // number of keep 

    int numCUR; 

    // number of 'day from issue, exc' 

    int numDF; 

    // number of 'day from issue, cnl' 

    int numDF1; 
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    // number of choice 

    int numCNL1; 

    // number of day 1 cancel 

    int numEXC16; 

    // number of day 16 exchange 

    int numEX; 

    // number of early exc 

    int numLX; 

    // number of late exc    

    int numch; 

    // discount factor beta 

    double discount; 

    // flag for number of errors 

    int errs; 

    // index variable to count the number of iterations (direction changes) 

    int iterations; 

    } glo; 

 

//put all data files together 

    typedef struct { 

         ind* in; 

         duration* period; 

         schedule* depart; 

         cur* curr; 

         poten* pot; 

         glo* glonum; 

          

         double*** prob_matrix; // Probability matrix 

         Random *rand_seed;      // Random seed 

         double** draw;          //drawn from Random normal distribution 

         double ***err1; //error term for i,j,t 

         double *err2;  //error term for i 

         double **p;    //the random value (0 <= p <= 1) for calculating normal dynamic 

variable y. 

         double vp;   //the random value (0 <= p <= 1) for calculating MC v 

         double ***perror;//the random value (0 <= p <= 1) for calculating gumbel 

error_ijt for different i,j,t 

         double *perrori;//the random value (0 <= p <= 1) for calculating gumbel 

error_ijt for different i 

 

} Aldata; 

//check number of parameters (dimensions of the problem) 

    int get_dimension(Aldata* d); 

 

//read data from four data structures and allocate memory       

    Aldata* format_data(); 

//generating attributes for scenario tree 

    double** draw_random_y(Aldata* d, double** draw); 

//mode in scenario tree 

    double*** calculate_mode(Aldata* d, double* x); 

//mode that is correlated to current situation in each time 

    double** calculate_mode_real(Aldata* d, double* x); 

//v is for calculating E 

    double*** calculate_v(Aldata* d, double* x, double vp); 

//recursive process for scenario tree 

    double cal_E(Aldata* d, int t, int T, double *v, double current, int n, double* x, 

int indiv); 

 

// calculate probability 

//probability of specific ticket changing decision 

    double*** cal_probcar (Aldata* d, double* x); 

//probability of not changing ticket, PI0 

    double** cal_prob (Aldata* d, double* x); 

 

// functions of reading four .txt data files 

    void read_new_indiv(glo* paraNB, ind* paraIN); 

    void read_new_time(glo* paraNB, duration* paraIN);   

    void read_new_depart(glo* paraNB, schedule* paraIN);     
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    void read_new_current(glo* paraNB, cur* paraC, ind* paraIN); 

    void read_new_poten(glo* paraNB, ind* paraIN, poten* paraP); 

    void read_new_choice(glo* paraNB, ind* paraIN, poten* paraP); 

      

// function of reading coefficient data files      

    void read_new_para(double *x, glo* paraNB); 

      

 // functions of allocating memories to four structures and their elements     

     glo* getGlo(); 

     ind* getIn(glo *glonum); 

     duration* getT(glo *glonum); 

     schedule* getDT(glo *glonum); 

     cur* getC(glo *glonum); 

     poten* getP(glo *glonum); 

 

    double*** c_malloc_P(glo* paraNB); 

 

//function of allocating memory to error terms 

    double*** c_malloc_e(glo* paraNB); 

 

// function of allocating memory to the array of utility U[i][j][t] 

    double*** c_malloc_u(glo* paraNB); 

      

    double**** c_malloc_uy(glo* paraNB); 

 

// function of allocating memory to the array of summation of exp(U[i][j]) for each 

person i      

    double* c_malloc_w(glo* paraNB); 

 

//function of allocating memory to v_itj (the dimension of j is for 1000 draws) 

    double*** c_malloc_v(glo* paraNB); 

     

// free four structures  

    void free_ind (ind* in, glo* paraNB); 

    void free_duration (duration* period, glo* paraNB);//        

    void free_schedule(schedule* depart, glo* paraNB);// 

    void free_cur (cur* c, glo* paraNB); 

    void free_poten (poten* p, glo* paraNB); 

    void free_uy(double**** u, glo* paraNB); 

    void free_glo (glo* g); 

    void free_w(double* W); 

    void free_v(double*** v, glo* paraNB); 

    void free_u(double*** u, glo* paraNB); 

    void free_p(double*** u, glo* paraNB); 

    void free_err (Aldata *d); 

 

// Function to help in calculating t-stats 

    double amlet_t_statistics(int n, double *theta, double *hypothetical, double **I, 

double alpha, double *t); 

 

void op_matrix_inverse(const enum CBLAS_ORDER Order, const enum CBLAS_UPLO Uplo, double 

*I, int npar); 

 

#ifdef __cplusplus 

} 

#endif 

 

#endif 
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D-2: library.c 

 
#include "library.h" 

#include <stdlib.h> 

#include <string.h> 

#include <stdio.h> 

#include <oratio/oratio.h> 

 

/*read data from data structures and allocate memory*/ 

Aldata* format_data(){ 

  Aldata *d; 

  int i,j,t,n; 

  int st=2; 

   

  d= malloc(sizeof(Aldata)); 

  d->glonum = getGlo(); 

  d->in = getIn(d -> glonum) ; 

  d->period = getT(d -> glonum);   

  d->depart = getDT(d -> glonum);   

  d->pot = getP(d -> glonum); 

  d->curr = getC(d -> glonum); 

 

  read_new_indiv(d->glonum, d->in); 

  read_new_time(d->glonum, d->period); 

  read_new_depart(d->glonum, d->depart); 

  read_new_current(d->glonum, d->curr, d->in); 

  read_new_poten(d->glonum, d->in, d->pot); 

  read_new_choice(d->glonum, d->in, d->pot); 

   

  d->prob_matrix = c_malloc_P(d -> glonum);              

  d->rand_seed = ran_random(); 

  

 d->p=nt_matrix_new(d->glonum->time+1, st);           // st 

  for (t=0; t<d->glonum->time; t++){ 

    for (n=0; n<st; n++){                                   // st 

    d->p[t][n] = ran_random_get_val(d->rand_seed ); 

    } 

  } 

 

  d->vp = ran_random_get_val(d->rand_seed );    

 

  d->perror=c_malloc_e(d -> glonum);                     

  for(i = 0; i < d->glonum ->indivNum; i++) { 

    for(t = 0; t < d->glonum->time+2; t++) { 

      for(j = 0; j < d->glonum ->numch+1; j++) { 

       d->perror[i][j][t] = ran_random_get_val(d->rand_seed ); 

       } 

      } 

   } 

 

  d->perrori=malloc(d->glonum ->indivNum*sizeof(double)); 

  for(i = 0; i < d->glonum ->indivNum; i++) { 

  d->perrori[i] = ran_random_get_val(d->rand_seed ); 

  } 

 

  d->draw=nt_matrix_new(d->glonum->time, st);         // st 

  for (t=0; t<d->glonum->time; t++){ 

    for (n=0; n<st; n++){                                   // st 

    d->draw[t][n] = st_normal_icdf(d->p[t][n], 0, 16); 

    } 

  } 

  

 d->err1=c_malloc_e(d->glonum);                          

 d->err2=malloc(d->glonum ->indivNum*sizeof(double)); 

    for(i = 0; i < d->glonum ->indivNum; i++) { 

        for(t = 0; t < d->glonum->time+2; t++) { 

        d->err2[i]=st_gumbel_icdf(d->perrori[i], 0, 1 ); 
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            for(j = 0; j < d->glonum ->numch+1; j++) { 

            d->err1[i][j][t]=st_gumbel_icdf(d->perror[i][j][t], 0, 1 ); 

       } 

    } 

  } 

  free_p(d->perror, d->glonum); 

  free(d->perrori); 

  return d; 

  } 

 

/*check number of parameters (dimension of the problem)*/ 

int get_dimension(Aldata* d){ 

 

    int l0= d->glonum->numC;        //asc 

    int l1= d->glonum->numINDIVAR;  //indiv var 

    int l2= d->glonum->numSTATIC;   //static var 

    int l3= d->glonum->numREF;      //refund var 

    int l4= d->glonum->numCUR;      //keep var 

    int l5= d->glonum->numDF;       //exc dfi 

    int l6= d->glonum->numDF1;      //cnl dfi 

    int l7= d->glonum->numCNL1;     //day 1 cnl 

    int l8= d->glonum->numEXC16;    //day 16 exc 

    int l9= d->glonum->numEX;       //early exc 

    int l10= d->glonum->numLX;      //late exc      

          

   return l0+l1+l2+l3+l4+l5+l6+l7+l8+l9+l10; 

} 

 

/* get a glo variable*/ 

glo* getGlo() { 

    glo *glonum; 

    glonum = (glo*)malloc(sizeof(glo)); 

    glonum->indivNum = 696;     // 696 individuals 

    glonum->time=16;            // bkday16-bkday31 

    glonum->numch=16;           // deptt5-deptt19 (15) +cnl (1) = 16     

    glonum->numC=1;            // asc 

    glonum->numINDIVAR=7;       // gr size, mor, eve, mon, fri, sta1, sta3 

    glonum->numSTATIC=1;        // fare  

    glonum->numREF=1;          // refund  

    glonum->numCUR=1;          // keep  

    glonum->numDF=1;          // exc dfi 

    glonum->numDF1=1;         // cnl dfi 

    glonum->numCNL1=1;          // day1 cnl 

    glonum->numEXC16=1;         // day16 exc      

    glonum->numEX=1;           // early exc       

    glonum->numLX=0;           // late exc       

    return glonum; 

} 

 

//get a ind variable 

ind* getIn(glo *glonum) { 

    ind* in = malloc((glonum->indivNum) * sizeof(ind)); 

    return in; 

} 

//get period 

duration* getT(glo *glonum) { 

    duration* period = malloc((glonum->indivNum) * sizeof(duration)); 

    return period; 

} 

//get depart 

schedule* getDT(glo *glonum) { 

    schedule* depart = malloc((glonum->indivNum) * sizeof(schedule)); 

    return depart; 

} 

//get a cur variable 

cur* getC(glo* glonum) { 

    cur *curr; 

    int i; 
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    int ttnumCUR=(glonum->time) * glonum->numCUR; 

    curr = (cur *)malloc(sizeof(cur)); 

     

    curr->current = malloc( glonum->indivNum * sizeof(double *)); 

    for(i=0;i<glonum->indivNum;i++) { 

        curr->current[i]=malloc(ttnumCUR * sizeof(double)); 

    } 

   return curr;  

}     

     

//get a poten variable    

poten* getP(glo* glonum) { 

    poten *pot; 

    int i;  

    int ttnumSTA = (glonum->time) * glonum->numch * glonum->numSTATIC; 

    int ttnumDEC = glonum->time *( glonum->numch+1);    

    pot = (poten *)malloc(sizeof(poten)); 

     

    pot->stati = malloc(glonum->indivNum * sizeof(double *)); 

    for(i = 0;i < glonum->indivNum;i++) { 

        pot->stati[i]=malloc(ttnumSTA * sizeof(double)); 

    }   

    pot->decision = malloc(glonum->indivNum * sizeof(double *)); 

    for(i = 0;i < glonum->indivNum;i++) { 

        pot->decision[i]=malloc(ttnumDEC * sizeof(double)); 

    } 

    return pot;  

} 

 

/*read individual*/ 

void read_new_indiv(glo* paraNB, ind* paraIN){  

    FILE *inn; 

    FILE *out; 

    int i=0, j=0; 

     

    inn=fopen("indivX.txt","r"); 

    out=fopen("oput1.txt","w"); 

     

    if (inn == NULL) { 

        printf ("File could not be opened\n"); 

        exit(-1); 

        } 

     

    for(i = 0; i < paraNB ->indivNum; i++) {                                            

// read individual ID 

        fscanf(inn, "%d", &paraIN[i].id);    

        paraIN[i].indiv = malloc( (paraNB ->numINDIVAR) * sizeof(double));  // allocate 

memory for individual variable               

        for (j=0;j<(paraNB->numINDIVAR);j++) {                                          

// read the x variables for this individual 

            fscanf(inn, "%lg", &paraIN[i].indiv[j]); 

            } 

    }    

     

    for(i=0;i<paraNB->indivNum;i++) {                                                   

// write individual ID 

        fprintf(out,"%d", paraIN[i].id); 

        for (j=0;j<(paraNB->numINDIVAR);j++) {                                          

// write individual variable     

            fprintf(out, "%lg", paraIN[i].indiv[j]); 

            } 

        fprintf(out,"\n"); 

    }    

    fclose(inn); 

    fclose(out);     

    return; 

} 
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/*read time*/ 

void read_new_time(glo* paraNB, duration* paraIN){  

    FILE *inn; 

    FILE *out; 

    int i=0; 

     

    inn=fopen("time.txt","r"); 

    out=fopen("oput_t.txt","w"); 

     

    if (inn == NULL) { 

        printf ("File could not be opened\n"); 

        exit(-1); 

        } 

     

    for(i = 0; i < paraNB ->indivNum; i++) {                                            

// read individual ID 

        fscanf(inn, "%d", &paraIN[i].tperiod);   

    }    

     

    for(i=0;i<paraNB->indivNum;i++) {                                                   

// write individual ID 

        fprintf(out,"%d", paraIN[i].tperiod); 

        fprintf(out,"\n"); 

    }    

    fclose(inn); 

    fclose(out);     

    return; 

} 

 

/*read departure time*/ 

void read_new_depart(glo* paraNB, schedule* paraIN){  

    FILE *inn; 

    FILE *out; 

    int i=0; 

     

    inn=fopen("dtime.txt","r"); 

    out=fopen("oput_dt.txt","w"); 

     

    if (inn == NULL) { 

        printf ("File could not be opened\n"); 

        exit(-1); 

        } 

     

    for(i = 0; i < paraNB ->indivNum; i++) {                                            

// read individual ID 

        fscanf(inn, "%d", &paraIN[i].tdepart);   

    }    

     

    for(i=0;i<paraNB->indivNum;i++) {                                                   

// write individual ID 

        fprintf(out,"%d", paraIN[i].tdepart); 

        fprintf(out,"\n"); 

    }    

    fclose(inn); 

    fclose(out);     

    return; 

} 

     

/*read currrent*/    

void read_new_current(glo* paraNB, cur* paraC, ind* paraIN) { 

    FILE *inn; 

    FILE *out; 

 

    int i=0, j=0;    

    int ttnumCURT = paraNB->time * paraNB->numCUR; 

    inn=fopen("current.txt","r"); 

    out=fopen("oput2.txt","w"); 

     



 

221 

 

    if (inn == NULL) { 

        printf ("File could not be opened\n"); 

        exit(-1); 

    } 

    for(i=0;i<paraNB->indivNum;i++) {                                                   

//read individual ID 

        fscanf(inn, "%d", &paraIN[i].id); 

        for (j=0;j<ttnumCURT;j++) {                                                     

//read each individual's total current var 

            fscanf(inn, "%lg", &paraC->current[i][j]); 

      } 

    } 

    for(i=0;i<paraNB->indivNum;i++) {                                                   

//write individual ID 

        fprintf(out,"%d", paraIN[i].id); 

        for (j=0;j<ttnumCURT;j++) {                                                     

//write each individual's total current var 

            fprintf(out,"%lg",paraC->current[i][j]); 

            } 

        fprintf(out,"\n"); 

   }         

    fclose(inn); 

    fclose(out); 

} 

/*read potent */ 

void read_new_poten(glo* paraNB, ind* paraIN, poten* paraP) { 

    FILE *inn; 

    FILE *out; 

 

    int i=0, j=0; 

    int ttnumSTAT = (paraNB->time) * (paraNB->numch-1) * paraNB->numSTATIC; //fixed from 

'paraNB->numch' because 'cancel' (j=15) no-static 

    inn=fopen("poten.txt","r"); 

    out=fopen("oput3.txt","w"); 

     

    if (inn == NULL) { 

        printf ("File could not be opened\n"); 

        exit(-1); 

    } 

     

    for(i = 0;i < paraNB->indivNum;i++) {                                               

//read individual ID 

        fscanf(inn, "%d", &paraIN[i].id);                             

        for (j=0;j<ttnumSTAT;j++) {                                                     

//read each individual's total potential static variable 

            fscanf(inn, "%lg", &paraP->stati[i][j]); 

        } 

    } 

     

    for(i=0; i<paraNB->indivNum; i++) {                                             

//write individual ID 

        fprintf(out,"%d", paraIN[i].id); 

        for (j=0; j<(ttnumSTAT); j++) {                                             

//write each individual's total potential static variable 

            fprintf(out,"%lg",paraP->stati[i][j]); 

        }                 

        fprintf(out,"\n"); 

    }    

    fclose(inn); 

    fclose(out); 

} 

 

/*read choice.txt*/ 

void read_new_choice(glo* paraNB, ind* paraIN, poten* paraP) { 

    FILE *inn; 

    FILE *out; 

    int i=0, j=0; 

    int ttnumDEC = paraNB->time * (paraNB->numch+1);       



 

222 

 

    inn=fopen("choice.txt","r"); 

    out=fopen("oput4.txt","w");     

    if (inn == NULL) { 

        printf ("File could not be opened\n"); 

        exit(-1); 

    }   

    for(i=0; i< paraNB->indivNum; i++) { 

        fscanf(inn, "%d", &paraIN[i].id);   

        for (j = 0;j<(ttnumDEC);j++) { 

            fscanf(inn, "%lg", &paraP->decision[i][j]); 

        } 

    } 

    for(i=0;i<paraNB->indivNum;i++) { 

        fprintf(out,"%d", paraIN[i].id); 

        for (j=0;j<(ttnumDEC);j++) { 

            fprintf(out,"%lg",paraP->decision[i][j]); 

        } 

        fprintf(out,"\n"); 

    }    

    fclose(inn); 

    fclose(out); 

} 

 

// read the para.txt file 

void read_new_para(double *x, glo* paraNB){ 

    FILE *inn; 

    int i; 

    int j = 0; 

    float f;    

    inn=fopen("parady.txt","r");     

        if (inn == NULL) { 

            printf ("File could not be opened\n"); 

            exit(-1); 

            } 

    // Reads the ASCs 

        for(i=0; i< paraNB->numC; i++) {             

          fscanf(inn, "%f", &f); 

          x[j++] = f;   

        } 

    // Reads the individual specific parameters         

        for(i=0; i< paraNB->numINDIVAR; i++) { 

          fscanf(inn, "%f", &f); 

          x[j++] = f; 

        } 

        fscanf(inn, "\n"); 

    // Reads the static parameters 

        for(i=0; i< paraNB->numSTATIC; i++) { 

          fscanf(inn, "%f", &f); 

          x[j++] = f;   

        } 

    // Reads the refund parameters 

        for(i=0; i< paraNB->numREF; i++) { 

          fscanf(inn, "%f", &f); 

          x[j++] = f;   

        } 

    // Reads the keep parameters 

        for(i=0; i< paraNB->numCUR; i++) { 

          fscanf(inn, "%f", &f); 

          x[j++] = f;   

        } 

    // Reads 'day from issue, exc' parameters 

        for(i=0; i< paraNB->numDF; i++) { 

          fscanf(inn, "%f", &f); 

          x[j++] = f;   

        }       

    // Reads 'day from issue, cnl' parameters 

        for(i=0; i< paraNB->numDF1; i++) { 

          fscanf(inn, "%f", &f); 
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          x[j++] = f;   

        }     

    // Reads 'cancel day1' parameters 

        for(i=0; i< paraNB->numCNL1; i++) { 

          fscanf(inn, "%f", &f); 

          x[j++] = f;   

        }           

    // Reads 'exchange day16' parameters 

        for(i=0; i< paraNB->numEXC16; i++) { 

          fscanf(inn, "%f", &f); 

          x[j++] = f;   

        }           

    // Reads 'early exc' parameters 

        for(i=0; i< paraNB->numEX; i++) { 

          fscanf(inn, "%f", &f); 

          x[j++] = f;   

        }           

    // Reads 'late exc' parameters 

        for(i=0; i< paraNB->numLX; i++) { 

          fscanf(inn, "%f", &f); 

          x[j++] = f;   

        }                                   

}  

 

double*** c_malloc_u(glo* paraNB){ 

       double ***U; 

       int i,j; 

       U = (double***)malloc(paraNB ->indivNum*sizeof(double**)); 

       for(i = 0; i < paraNB->indivNum; i++) { 

       U[i] = (double**)malloc(paraNB->numch *sizeof(double*)); 

          for(j=0;j<paraNB->numch;j++){ 

         U[i][j]=(double*)malloc(paraNB->time*sizeof(double)); 

          } 

       }       

      return U; 

} 

double**** c_malloc_uy(glo* paraNB){ 

       double ****U; 

       int i,j,t; 

       int st=2;                                                  // st 

       U = (double****)malloc(paraNB ->indivNum*sizeof(double***)); 

       for(i = 0; i < paraNB->indivNum; i++) { 

       U[i] = (double***)malloc(paraNB->numch *sizeof(double**)); 

          for(j=0;j<paraNB->numch;j++){ 

         U[i][j]=(double**)malloc((paraNB->time+1)*sizeof(double*)); 

        for(t=0; t<paraNB->time+1; t++){ 

        U[i][j][t]=(double*)malloc(st*sizeof(double));                  // st 

        } 

       } 

       } 

       

      return U; 

} 

double*** c_malloc_v(glo* paraNB){ 

       double ***v; 

       int i,j; 

       int st=2;                                                         // st 

       v = (double***)malloc(paraNB ->indivNum*sizeof(double**)); 

       for(i = 0; i < paraNB->indivNum; i++) { 

       v[i] = (double**)malloc((paraNB->time+1) *sizeof(double*)); 

          for(j=0;j<paraNB->time+1;j++){ 

         v[i][j]=(double*)malloc(st*sizeof(double));                    // st 

          } 

       }      

      return v; 

} 

 

double*** c_malloc_e(glo* paraNB){ 
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       double ***e; 

       int i,j; 

       int numch=16; 

       e = (double***)malloc(paraNB ->indivNum*sizeof(double**)); 

       for(i = 0; i < paraNB->indivNum; i++) { 

       e[i] = (double**)malloc((numch+1) *sizeof(double*));          // (numch+1) 

          for(j=0;j<(numch+1);j++){                                        // (numch+1) 

         e[i][j]=(double*)malloc((paraNB->time+2)*sizeof(double)); 

          } 

       }     

      return e; 

} 

double*** c_malloc_P(glo* paraNB){ 

       double ***P; 

       int i,j; 

       int numch=16; 

       P = (double***)malloc(paraNB ->indivNum*sizeof(double**)); 

            for(i = 0; i < paraNB->indivNum; i++) { 

                P[i] = (double**)malloc((numch+1)*sizeof(double*));      // (numch+1) 

          for(j=0;j<(numch+1);j++){                                        // (numch+1) 

         P[i][j]=(double*)malloc(paraNB->time*sizeof(double)); 

          } 

       }  

      return P; 

} 

void free_ind(ind* in, glo* paraNB){ 

       int i;      

       for(i=0;i<paraNB->indivNum;i++) { 

       free(in[i].indiv); 

       } 

       free(in);                                 

}      

 

void free_duration(duration* period, glo* paraNB){ 

       free(period);                                 

} 

void free_schedule(schedule* depart, glo* paraNB){ 

       free(depart);                                 

} 

void free_cur(cur* curr, glo* paraNB){ 

       int i;      

       for(i=0;i<paraNB->indivNum;i++){  

       free(curr->current[i]); 

       } 

       free(curr->current); 

       free(curr); 

} 

void free_poten(poten* p, glo* paraNB){        

       int i;      

       for(i=0;i<paraNB->indivNum;i++){  

        free(p->stati[i]); 

        free(p->decision[i]); 

        } 

      free(p->stati); 

      free(p->decision); 

      free(p);  

} 

void free_err (Aldata *d) { 

    free_p(d->err1, d->glonum); 

    free(d->err2); 

} 

void free_glo (glo* g){ 

     free(g); 

}   

void free_v(double*** v, glo* paraNB){ 

     int i, t; 

    for(i = 0; i < paraNB ->indivNum; i++) {  
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       for(t=0; t<paraNB->time+1; t++) {   

        free(v[i][t]); 

         } 

        free(v[i]); 

      } 

    free(v); 

} 

void free_u(double*** u, glo* paraNB){ 

     int i, j; 

    for(i = 0; i < paraNB ->indivNum; i++) {  

  

       for(j=0; j<paraNB->numch; j++) {   

        free(u[i][j]); 

         } 

        free(u[i]); 

      } 

    free(u); 

} 

void free_uy(double**** u, glo* paraNB){ 

    int i, j, t; 

    for(i = 0; i < paraNB ->indivNum; i++) {  

        for(j=0; j<paraNB->numch; j++) { 

            for (t=0; t<paraNB->time+1; t++){  

            free(u[i][j][t]); 

            } 

        free(u[i][j]); 

        } 

    free(u[i]); 

    } 

    free(u); 

} 

void free_p(double*** u, glo* paraNB){ 

     int i, j; 

    for(i = 0; i < paraNB ->indivNum; i++) {  

  

       for(j=0; j<paraNB->numch+1; j++) {   

        free(u[i][j]); 

         } 

        free(u[i]); 

      } 

    free(u); 

} 
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D-3: main.c 

#include <math.h> 

#include <float.h> 

#include <stdio.h> 

#include <stdlib.h> 

#include <string.h> 

 

#include <oratio/oratio.h> 

#include "library.h" 

  

/* (I)  

Calculate mode r[i][t]*/ 

 

double** calculate_mode_real(Aldata* d, double* x){ 

   

    int i=d->glonum->indivNum; 

    int j=d->glonum->numch;  

    int t;   

    int  l,k,m;   

    double sum=0; 

     

// put the length of coefficients into  x     

    int l0= d->glonum->numC;        //asc 

    int l1= d->glonum->numINDIVAR;  //indiv var 

    int l2= d->glonum->numSTATIC;   //static var 

    int l3= d->glonum->numREF;      //refund var 

    int l4= d->glonum->numCUR;      //keep var 

    int l5= d->glonum->numDF;       //day from var 

    int l6= d->glonum->numDF1;      //day from var 

    int l7= d->glonum->numCNL1;     //day 1 cancel 

    int l8= d->glonum->numEXC16;    //day 16 exchange 

    int l9= d->glonum->numEX;       //early exc 

    int l10= d->glonum->numLX;      //late exc  

     

    double  **r_real; 

    r_real=  nt_matrix_new(d->glonum-> indivNum, d->glonum->time);  

    double  ***U=c_malloc_u(d->glonum);     

            

// calculate utility for 16 choices, from time 0 

   for(i = 0; i < d->glonum ->indivNum; i++) {     

      for(t=0; t<d->period[i].tperiod; t++) { //* 

 

// exchange decision  

// j=0-14 (deptt5-19) 

          for(j=0; j<d->glonum->numch-1; j++) {              

              sum = 0.0; 

               for (l=0; l<l2;l++ ) { 

                  sum+=((d->pot->stati[i][l2*j+l+t*(d->glonum->numch-1)*l2])-(d->curr-

>current[i][0]))*x[l0+l1+l];   

                    } 

                     

                    for (l=0; l<l5;l++ ) { 

                  sum+=t*x[l0+l1+l2+l3+l4+l];    

                    } 

                    if (t==15) { 

                        sum+=x[l0+l1+l2+l3+l4+l5+l6+l7];     

                    } 

                    if (d->depart[i].tdepart >j+5) { 

                        sum+=x[l0+l1+l2+l3+l4+l5+l6+l7+l8]; 

                    }    

              U[i][j][t] = sum; 

          } 

                 

//  cancel decision       

// j=15 (cancel) 

              j=15;   
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              sum = 0.0; 

              sum+=x[0];  

               

              for (k=0; k<l1;k++ ) { 

                  sum+=d->in[i].indiv[k]*x[l0+k];                

              }              

               for (m=0; m<l3;m++ ) { 

                  sum+=(d->curr->current[i][0])*x[l0+l1+l2+m]; 

               } 

                    for (l=0; l<l6;l++ ) { 

                  sum+=t*x[l0+l1+l2+l3+l4+l5+l];     

                    } 

                    if (t==0) { 

                        sum+=x[l0+l1+l2+l3+l4+l5+l6];        

                    }                                                     

              U[i][j][t] = sum; 

          } 

      }  

 

// calculate mode    

    for(i = 0; i < d->glonum ->indivNum; i++) {   

        for(t=0; t<d->period[i].tperiod; t++) { //*  

            sum=0;  

            for (j = 0;j<d->glonum->numch;j++) {         

            sum+=exp(U[i][j][t]);     

        } 

        r_real[i][t]= log(sum); 

        } 

    } 

       free_u(U,d->glonum); 

       return r_real;     

} 

 

/* (II) Let n=0,1 only 

calculate mode for the scenario tree, r[i][t][n], n refers to the position in the tree; 

*/ 

double*** calculate_mode(Aldata* d, double* x){ 

   

    int i=d->glonum->indivNum; 

    int j=d->glonum->numch;  

    int t;  

    int  l,k,m,n;   

    double sum=0; 

     

// put the length of coefficients into  x 

    int l0= d->glonum->numC;        //asc 

    int l1= d->glonum->numINDIVAR;  //indiv var 

    int l2= d->glonum->numSTATIC;   //static var 

    int l3= d->glonum->numREF;      //refund var 

    int l4= d->glonum->numCUR;      //keep var 

    int l5= d->glonum->numDF;       //day from var 

    int l6= d->glonum->numDF1;      //day from var 

    int l7= d->glonum->numCNL1;     //day 1 cancel 

    int l8= d->glonum->numEXC16;    //day 16 exchange 

    int l9= d->glonum->numEX;       //early exc 

    int l10= d->glonum->numLX;      //late exc  

         

    double  ***r; 

    r=  c_malloc_v(d->glonum);   

    double ****UY = c_malloc_uy(d->glonum); 

     

// calculate utility for 16 choices, from time 0 

    for(i = 0; i < d->glonum ->indivNum; i++) {     

        for(t=1; t<d->period[i].tperiod+1; t++) { //* 

         

// calculate utilities for the first level of scenario tree, n=0 

            for(n=0; n<1; n++){ 
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// exchange decision  

// j=0-14 (deptt5-19) 

          for(j=0; j<d->glonum->numch-1; j++) {   

              sum = 0.0; 

               for (l=0; l<l2;l++ ) { 

                  sum+=((d->pot->stati[i][l2*j+l+t*(d->glonum->numch-1)*l2])-(d->curr-

>current[i][0]))*x[l0+l1+l]; 

              } 

                

               for (l=0; l<l5;l++ ) { 

                  sum+=t*x[l0+l1+l2+l3+l4+l];    

                    }      

                    if (t==15) { 

                        sum+=x[l0+l1+l2+l3+l4+l5+l6+l7];     

                    } 

                    if (d->depart[i].tdepart >j+5) { 

                        sum+=x[l0+l1+l2+l3+l4+l5+l6+l7+l8]; 

                    }    

              UY[i][j][t][n]  = sum; 

          } 

//  cancel decision              

// j=15 (cancel) 

              j=15;   

              sum = 0.0; 

              sum+=x[0];    

               for (k=0; k<l1;k++ ) { 

                  sum+=d->in[i].indiv[k]*x[l0+k];                

              }              

               for (m=0; m<l3;m++ ) { 

                  sum+=(d->curr->current[i][0])*x[l0+l1+l2+m]; 

               } 

                    for (l=0; l<l6;l++ ) { 

                  sum+=t*x[l0+l1+l2+l3+l4+l5+l];     

                    }   

                    if (t==0) { 

                        sum+=x[l0+l1+l2+l3+l4+l5+l6];    

                    } 

              UY[i][j][t][n] = sum; 

          } 

// calculate utilities for the second level of scenario tree, n=1           

            for(n=1; n<2; n++){ 

             

// exchange decision  

// j=0-14 (deptt5-19) 

          for(j=0; j<d->glonum->numch-1; j++) {   

              sum = 0.0; 

               for (l=0; l<l2;l++ ) { 

                  sum+=((d->pot->stati[i][l2*j+l+(t+1)*(d->glonum->numch-1)*l2])-(d-

>curr->current[i][0]))*x[l0+l1+l]; 

              } 

               for (l=0; l<l5;l++ ) { 

                  sum+=(t+1)*x[l0+l1+l2+l3+l4+l];    

                    }                                        

                    if (t+1==15) { 

                        sum+=x[l0+l1+l2+l3+l4+l5+l6+l7];     

                    } 

                    if (d->depart[i].tdepart >j+5) { 

                        sum+=x[l0+l1+l2+l3+l4+l5+l6+l7+l8]; 

                    }    

              UY[i][j][t][n]  = sum; 

          } 

 

//  cancel decision     

// j=15 (cancel) 

              j=15;   

              sum = 0.0; 

              sum+=x[0];                 

               for (k=0; k<l1;k++ ) { 
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                  sum+=d->in[i].indiv[k]*x[l0+k];                

              }              

               for (m=0; m<l3;m++ ) { 

                  sum+=(d->curr->current[i][0])*x[l0+l1+l2+m]; 

               } 

                    for (l=0; l<l6;l++ ) { 

                  sum+=(t+1)*x[l0+l1+l2+l3+l4+l5+l];     

                    }   

                    if (t+1==0) { 

                        sum+=x[l0+l1+l2+l3+l4+l5+l6]; 

                    }                 

              UY[i][j][t][n] = sum; 

          }               

        } 

    } 

// calculate mode real 

    for(i = 0; i < d->glonum ->indivNum; i++) {    

        for(t=1; t<d->period[i].tperiod+1; t++) {  //*  

            for(n=0; n<2; n++){    

                sum=0;  

              for (j = 0;j<d->glonum->numch;j++)  

                {          

                sum+=exp(UY[i][j][t][n]); 

                } 

            r[i][t][n]= log(sum); 

            } 

       }     

    } 

       free_uy(UY,d->glonum); 

       return r;     

} 

 

/* (III) 

 v is randomly drawn from gumbel distribution with mode r_itn, also in the scenario tree; 

 n indicates the position of v in the tree; 

 v[i][t][n], n=0 is in the first level; n=1 is in the second level 

*/ 

double*** calculate_v(Aldata* d, double* x, double vp){ 

   int t,i,n; 

 

   double*** v=  c_malloc_v(d->glonum);  

   double*** r=calculate_mode(d, x); 

    

    for(i = 0; i < d->glonum ->indivNum; i++) {  

        for(t=1; t<d->period[i].tperiod+1; t++) {  //* 

            for(n=0; n<2; n++){ 

            v[i][t][n]= st_gumbel_icdf(vp, r[i][t][n], 1 );  

            }      

        } 

  } 

    free_v(r, d->glonum); 

    return v; 

} 

 

inline double max(double a, double b) { 

 

      if (a<b) { 

        return b; 

      } 

      return a; 

} 

 

/* (IV) 

p_ijt is probability of ticket change decision; 

p is calculated through traditional logit way; 

err1 is error term for i,j,t;  

err2 is error term for i; 

*/ 
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double*** cal_probcar (Aldata* d, double* x){ 

 

    int i=d->glonum->indivNum; 

    int j=d->glonum->numch;  

    int t;   

    int  l,k,m;   

    double sum=0; 

    double ***err1, *err2; 

 

    int l0= d->glonum->numC;        //asc 

    int l1= d->glonum->numINDIVAR;  //indiv var 

    int l2= d->glonum->numSTATIC;   //static var 

    int l3= d->glonum->numREF;      //refund var 

    int l4= d->glonum->numCUR;      //keep var 

    int l5= d->glonum->numDF;       //day from var 

    int l6= d->glonum->numDF1;      //day from var 

    int l7= d->glonum->numCNL1;     //day 1 cancel 

    int l8= d->glonum->numEXC16;    //day 16 exchange 

    int l9= d->glonum->numEX;       //early exc 

    int l10= d->glonum->numLX;      //late exc  

 

 

    double ***P =c_malloc_u(d->glonum);   

        

    double **w=nt_matrix_new(d->glonum-> indivNum, d->glonum->time); 

    double ***U = c_malloc_u(d->glonum); 

 

    err1 = d->err1; 

    err2 = d->err2; 

 

// calculate utility for 16 choices, from time 0 same as calculate_mode  

    for(i = 0; i < d->glonum ->indivNum; i++) {  

    int T=d->period[i].tperiod; 

        for(t=0; t<T; t++) {  

// exchange decision  

// j=0-14 (deptt5-19) 

          for(j=0; j<d->glonum->numch-1; j++) {   

            

              sum = 0.0; 

 

               for (l=0; l<l2;l++ ) { 

                  sum+=((d->pot->stati[i][l2*j+l+t*(d->glonum->numch-1)*l2])-(d->curr-

>current[i][0]))*x[l0+l1+l];   

              } 

               

               for (l=0; l<l5;l++ ) { 

                  sum+=t*x[l0+l1+l2+l3+l4+l];    

                    }       

                    if (t==15) { 

                        sum+=x[l0+l1+l2+l3+l4+l5+l6+l7];     

                    }                   

                    if (d->depart[i].tdepart >j+5) { 

                        sum+=x[l0+l1+l2+l3+l4+l5+l6+l7+l8]; 

                    }    

              U[i][j][t] = sum+err1[i][j][t]+err2[i]; 

          } 

 

//  cancel decision     

// j=15 (cancel) 

              j=15;   

              sum = 0.0; 

              sum+=x[0];    

               

               for (k=0; k<l1;k++ ) { 

                  sum+=d->in[i].indiv[k]*x[l0+k];                

              }              

               for (m=0; m<l3;m++ ) { 

                  sum+=(d->curr->current[i][0])*x[l0+l1+l2+m]; 
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               } 

                    for (l=0; l<l6;l++ ) { 

                  sum+=t*x[l0+l1+l2+l3+l4+l5+l];     

                    }                

                    if (t==0) { 

                        sum+=x[l0+l1+l2+l3+l4+l5+l6];    

                    } 

              U[i][j][t] = sum+err1[i][j][t]+err2[i]; 

        } 

    }                

               

    for(i = 0; i < d->glonum ->indivNum; i++) { 

        for(t=0; t<d->period[i].tperiod; t++) {  

                    sum=0; 

               for (j = 0;j<d->glonum->numch;j++)  

               { 

                   sum+= exp(U[i][j][t]); 

               } 

                   w[i][t]=sum; 

               for (j = 0;j<d->glonum->numch;j++)  

               { 

                   P[i][j][t]= exp(U[i][j][t])/w[i][t]; 

               } 

        } 

    } 

 

              nt_matrix_free(w); 

          

             free_u(U,d->glonum); 

              

             return P; 

} 

 

/* (V) 

recursive process for calculating E_AVE; 

 n is the position in the tree 

*/ 

 

double cal_E(Aldata* d, int t, int T, double *v, double current, int n, double* x, int 

id){ 

     

    int i; 

    int numch=16;                                

    double e_ave; 

    double ***err1, *err2; 

    double kp; 

    err1 = d->err1; 

    err2 = d->err2; 

         

    int l0= d->glonum->numC;        //asc 

    int l1= d->glonum->numINDIVAR;  //indiv var 

    int l2= d->glonum->numSTATIC;   //static var 

    int l3= d->glonum->numREF;      //refund var 

    int l4= d->glonum->numCUR;      //keep var 

    int l5= d->glonum->numDF;       //day from var 

    int l6= d->glonum->numDF1;      //day from var 

    int l7= d->glonum->numCNL1;     //day 1 cancel 

    int l8= d->glonum->numEXC16;    //day 16 exchange 

    int l9= d->glonum->numEX;       //early exc 

    int l10= d->glonum->numLX;      //late exc  

 

// Base case to cover the last time period 

 

    if (t==15) { 

    kp = x[l0+l1+l2+l3+l4-1]+err1[id][numch][t]+err2[id];    

    } 

    else { 

    kp = err1[id][numch][t]+err2[id];    
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    }    

             

    if (t==T) {     // Base Case 

      return max(v[n], kp);           // (change, keep) 

    } 

    else {          // Recursive Step 

      e_ave=0; 

          for(i=0; i<1; i++){                

           e_ave+=cal_E(d, t+1, T, v, d->curr->current[id][t+1],i+1, x, id);// go further 

to reach the second level in the tree 

          } 

      e_ave=e_ave/1; 

          return max(v[n], kp+e_ave); // (change, keep) 

   } 

 

} 

 

/* (VI) 

PI0,PI1 is probability of keep and change; 

C_it is utility payoff when keep ticket 

E_AVE, the average expectation at each time period; 

*/ 

double** cal_prob (Aldata* d, double* x){ 

 

   double **PI0,**PI1, **C, **W, **E_AVE; 

   double sum; 

   double ***err1, *err2; 

   int t, t2, i, n; 

   int numch=16;         

                                     

    int l0= d->glonum->numC;        //asc 

    int l1= d->glonum->numINDIVAR;  //indiv var 

    int l2= d->glonum->numSTATIC;   //static var 

    int l3= d->glonum->numREF;      //refund var 

    int l4= d->glonum->numCUR;      //keep var 

    int l5= d->glonum->numDF;       //day from var 

    int l6= d->glonum->numDF1;      //day from var 

    int l7= d->glonum->numCNL1;     //day 1 cancel 

    int l8= d->glonum->numEXC16;    //day 16 exchange 

    int l9= d->glonum->numEX;       //early exc 

    int l10= d->glonum->numLX;      //late exc  

     

      

    err1 = d->err1; 

    err2 = d->err2; 

 

    C=nt_matrix_new(d->glonum-> indivNum, d->glonum->time); 

    W=nt_matrix_new(d->glonum-> indivNum, d->glonum->time); 

    E_AVE=nt_matrix_new(d->glonum-> indivNum, d->glonum->time+1); 

    PI0=nt_matrix_new(d->glonum-> indivNum, d->glonum->time); 

    PI1=nt_matrix_new(d->glonum-> indivNum, d->glonum->time); 

    

   double ***v=calculate_v(d,x,d->vp); 

   double **r_real=calculate_mode_real(d,x); 

 

    for(i = 0; i < d->glonum ->indivNum; i++) {  

     

        for(t=0; t<d->period[i].tperiod; t++) { //*   

         

        sum = 0; 

 

        if (t==15) { 

        sum+= x[l0+l1+l2+l3+l4-1];   

        } 

        else { 

        sum+= 0;         

        }                                     

        C[i][t] = sum+err1[i][numch][t]+err2[i]; 
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        }        

    } 

    

   // calculate expectations E_AVE in the first level of the tree in a recursive way; 

     

    for(i = 0; i < d->glonum ->indivNum; i++)  {   

    int T=d->period[i].tperiod;         

        for (t=0; t<T; t++){ 

        t2 = t+2;       // t+(n-look ahead) 

 

    E_AVE[i][t+1]=0;     

        for(n=0; n<1; n++){ 

        E_AVE[i][t+1]+= cal_E(d, t+1, t2, v[i][t+1], d->curr->current[i][t+1], n, x, i);        

        }      

            E_AVE[i][t+1]=E_AVE[i][t+1]/1; 

 

      W[i][t]= C[i][t]+E_AVE[i][t+1];           // keep reservation utility  

        } 

    } 

 

  // calculate probabilities of keeping (PI0) with reservation utility W, mode r 

   

    for(i = 0; i < d->glonum ->indivNum; i++) {  

        for(t=0; t<d->period[i].tperiod; t++) {  //*      

      PI0[i][t]=st_gumbel_cdf(W[i][t], r_real[i][t], 1);    

      PI1[i][t]=1-PI0[i][t]; 

        } 

    } 

      

      nt_matrix_free(C); 

      nt_matrix_free(W); 

      nt_matrix_free(E_AVE); 

      free_v(v,d->glonum); 

      nt_matrix_free(r_real); 

      nt_matrix_free(PI1);  

     return PI0;
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D-4: ll.c 

#include <math.h> 

#include <float.h> 

#include <stdio.h>  

#include <stdlib.h> 

#include <string.h> 

 

#include "library.h" 

#include <ophelia/nlp.h> 

#include <ophelia/nlp_collection.h> 

#include <oratio/oratio.h> 

 

/*PB is the departure time specific probability (j= 0,1,..,14);  

PB=PI1*P 

j=15 PB is the probability of cancel 

*/ 

double fLL(double* x, int n, void* data) { 

 

   Aldata* d = (Aldata*) data; 

   double ***PB = d->prob_matrix; 

   double ***P =cal_probcar(d,x); 

   double **PI0=cal_prob (d,x);  

   

   int i, j, t; 

   int numch =16;                                                            

   double ***ch, LL; 

   ch=c_malloc_P(d->glonum);                                             

 

 

  for(i = 0; i < d->glonum ->indivNum; i++){ 

      for (t=0; t<d->period[i].tperiod; t++) { //* 

       

       for (j = 0;j<d->glonum->numch+1;j++) {  

           ch[i][j][t]=d->pot->decision[i][t*(numch+1)+j];   

          } 

      } 

   } 

 

  for(i = 0; i < d->glonum ->indivNum; i++){ 

     for (t=0; t<d->period[i].tperiod; t++) { //* 

 

       for (j = 0;j<d->glonum->numch;j++)  

        {           

          PB[i][j][t]= (1-PI0[i][t])*P[i][j][t];                 

         } 

          PB[i][j][t]= PI0[i][t];                                    

       }   

 

    } 

 

   LL=0; 

  for(i = 0; i < d->glonum ->indivNum; i++) { 

    for (t=0; t<d->period[i].tperiod; t++) { //* 

 

        for (j = 0;j<d->glonum->numch+1;j++) 

          {  

            LL+=ch[i][j][t]*log(PB[i][j][t]); 

        } 

      } 

  } 

     

  free_p(ch,  d->glonum); 

  nt_matrix_free(PI0); 

   

  free_u(P, d->glonum); 

    return -LL; 
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} 

 

/*  optimization; 

H, preallocated array of size btr->n*btr-btr->n, if the hessian is needed; 

I, Hessian matrix; 

I1, inversed Hessian matrix; 

*/ 

 

int btr_unconstrained_opt(NTLog *log, BTR *b, Aldata* d) 

{ 

   

  double **H; 

  double *t, *h; 

  int n=get_dimension(d); 

  int i; 

  double tol=0;  //sets tolerance and scale for hessian derivation 

  double scale[n]; 

  int s; 

  FILE *out; 

  out=fopen("matrix.txt","w"); 

  t=malloc(n*sizeof(double)); 

 

  double work[100*(b->n)]; 

 

  H = nt_matrix_new(n, n); 

  nt_matrix_identity(n, n, *H, n); 

  nt_log_subsection(log, "optim of Log likelihood"); 

  op_btr_init(b, n, 0);              

 

  read_new_para(b->x, d->glonum); 

  b->printer = btr_print_iteration; 

  

  nlp_btr(b, (C_GENERIC)fLL, NULL, d, log->f, H, work); 

 

  //derive hessian matrix 

 

    for(s = 0; s < n; ++s) 

    scale[s]=1.0; 

    printf("'reach this part of code\n***********\n"); 

    h = malloc(n*sizeof(double)); 

 

    nt_derive_hess_cd((C_GENERIC)fLL, b->x, H, h, tol, scale, n, NULL, work, (void*) d); 

    printf("'estimation completed \n"); 

    op_matrix_inverse(CblasRowMajor, CblasUpper, *H, n);     

     

  double bugfound[n]; 

  int bugindex = 0; 

  for(bugindex=0; bugindex<n; ++bugindex) 

    bugfound[bugindex] = 0;   

   

  amlet_t_statistics(n, b->x, bugfound, H, 0.05, t); 

  // Print out inversed hessian matrix 

  nt_matrix_print(out, "matrix", H, n, n); 

   

   // Print out the t-statistics 

   printf("t:"); 

   for(i=0; i < n; i++) { 

     printf("  %f", t[i]); 

   } 

    

  return 0; 

} 

 

 

int main(int argc, char **argv) { 

 

  BTR *b = malloc(sizeof(BTR)); 

  NTLog *log; 
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  Aldata *d = (Aldata*) format_data(); 

 

  int n=get_dimension(d);  

  op_btr_init(b, n, 0);          

 

  log = nt_log_new(NULL); 

 

  btr_unconstrained_opt(log, b, d); 

 

  nt_log_free(log); 

  op_btr_free(b);                    

  

  free_ind(d->in, d->glonum); 

  free_duration(d->period, d->glonum); 

  free_schedule(d->depart, d->glonum); 

  free_cur(d->curr, d->glonum); 

  free_poten(d->pot, d->glonum); 

  free_err(d); 

 

  free_glo(d->glonum);  

  free(d); 

 

  return 0; 

} 

;    
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Glossary 

CDLP  Choice-based Deterministic Linear Programming Problem 

DCA   Discrete Choice Analysis 

DDCM Dynamic Discrete Choice Model 

LC  Latent Class  

MNL  Multinomial Logit 

ML  Mixed Logit 

RM  Revenue Management 

RP  Revealed Preference 

SP  Stated Preference 
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