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A B S T R A C T   

Energy system modelling may support policymakers in their energy planning efforts. Energy system modellers 
usually identify the optimal system configuration based on an economic objective function, or in multi-objective 
optimization, a combination of multiple objectives such as greenhouse gas emissions and total system cost. 
However, there could be political, socio-economic, or environmental reasons justifying a policymaker’s selection 
of a solution that is slightly more costly or greenhouse gas polluting than the uniquely optimal solution. Solely 
focusing on the uniquely optimal solution disregards potentially diverse alternatives, which based on different 
evaluation metrics could even be preferable. In response to this challenge, the evaluation of near-optimal so
lutions is gaining attention in the energy system modelling field as an extension of traditional multi-objective 
optimization studies and as a way to bridge the gap between simulation and optimization approaches. In this 
study, we explore near-optimal solutions, outline the diversity of near-optimal solutions, and evaluate the 
relevance of these solutions in the context of energy planning. The proposed methodology is applied to the Italian 
case to determine its potential as a tool to support policymakers in evaluating energy system scenarios from a 
selection of optimal and near-optimal solutions.   

1. Introduction 

Energy system modelling and energy system scenario-making have 
become increasingly important tools for policymakers in their energy 
planning efforts. Chang et al. [1] identified three main trends in the 
energy system modelling research field: increasing modelling of 
cross-sectoral synergies, growing focus on open access, and improved 
temporal detail to deal with high levels of variable renewable energy 
sources. Energy system modelling aims to determine the best system 
setup and capacity expansion by using an economic objective function 
or a mix of multiple objectives, such as minimizing greenhouse gas 
emissions and total system cost [2]. Nonetheless, policymakers may 
choose a solution that is marginally more expensive or environmentally 
damaging than the optimal solution due to political, socio-economic, or 
environmental reasons [3]. This is where near-optimal solutions come 
into play. 

In recent years, the evaluation of near-optimal solutions has gained 
attention in the energy system modelling field as an extension of 

traditional multi-objective optimization studies and as a way to bridge 
the gap between simulation and optimization approaches [4]. The 
near-optimal solutions provide an opportunity to explore a wide range 
of alternatives that can be evaluated based on different metrics, such as 
socio-economic and environmental impacts. This approach allows pol
icymakers to consider not only the most efficient solutions, but also 
solutions that are more sustainable, resilient, and equitable. Chang et al. 
[5] stated that a challenge of the energy system modelling research field 
is a better understanding of the near-optimal solutions space and 
studying these solutions going beyond the usual criteria for 
optimization. 

The objective of this study is to explore the potential of near-optimal 
solutions in the context of energy planning. We propose a methodology 
to produce and evaluate near-optimal solutions using the EnergyPLAN 
software [6], which is a widely used energy system modelling tool. 
Although there are several existing articles on the topic of evaluating 
near-optimal solutions (see Table 1), all of them focus on the coupling of 
a linear programming energy system model and a modelling technique 
to generate alternatives or a similar approach. This article, however, 
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takes a different approach by implementing the evaluation of 
near-optimal solutions through a Heuristic method and introducing an 
Equality function and Sharing function. This approach allows for the 
identification of near-optimal solutions not only for a particular CO2 
emissions constraint but for all CO2 emissions reduction levels among 

the optimal Pareto front solutions. Additionally, a set of indicators are 
utilized to enhance the transparency of the results for policy makers by 
exploring socio-economical aspects. The approach also incorporates a 
clustering technique to better understand the differences and similarities 
of the found optimal and near-optimal solutions, providing policy 

Nomenclature 

k Index of the decision variables 
K Vector of the decision variables 
DVk Generic decision variable k 
DV(L)

k Lower bound for decision variable k 
DV(U)

k Upper bound for decision variable k 
i Index of the solutions 
I Vector of the solutions 
f E

i New value of the fitness of solution i resulting from 
equality function 

E∗ Optimal fitness value for a certain constraint of CO2 
emissions 

Ei Fitness value of solution i 
ε Defines the space of near-optimal solutions 
f S

i New value of the fitness of solution i resulting from sharing 
function 

σs Threshold of dissimilarity 
di,j Euler distance between solution i and a generic solution j 
P The penalty that is applied if the solutions are too similar 

DoSi Diversity of energy supply indicator 
gm,i Electricity generation of source m in solution i 
Gi Total electricity generation in solution i 
m Index of the sources 
M Vector of the sources 
LUi Land use indicator for solution i 
JCi Jobs creation indicator for solution i 
Pm,i Installed power of source m in solution i 
lum Land use factor for source m 
jcm Job creation factor for source m 

Acronyms 
IAM Integrated Assessment Model 
MGA Modelling to Generate Alternatives 
MAA Modelling All Alternatives 
MOEA Multi-Objective Evolutionary Algorithm 
PES Primary Energy Supply 
SSD sum of squared distances 
HRE4 Heat Roadmap Europe 4 
DHW Domestic Hot Water  

Table 1 
Existing literature exploring near-optimality in energy system modelling. Method to analyse the identified near-optimal solutions are explained in Ref. [7].   

Pub. 
year 

Model on which is 
applied near- 
optimality 

Programming technique of 
the model on which is applied 
near-optimality 

Application case study Method to 
implement near- 
optimality 

Method to analyse the identified 
near-optimal solutions 

De Carolis et al. 
[4] 

2016 Temoa Linear programming 
(minimize the system-wide 
costs) 

US single node (electricity 
and transport sectors) 

Modelling to 
generate 
alternatives (MGA) 

Statistical analysis of decision 
variables in the near-optimal 
space 

Price et al. [8] 2017 E3 model (IAM) - 
TIMES 

Linear programming 
(minimize total system cost) 

Global (sector coupling) 16 
regions. Time horizon 
2005–2050 (5 years periods) 

Modified MGA Statistical analysis of decision 
variables in the near-optimal 
space 

Berntsen and 
Trutnevyte 
[7] 

2017 EXPANSE Linear programming Swiss electricity system MGA Distance-to-selected approach 

Hennen et al. 
[9] 

2017 SPREAD Linear programming Small system with one 
heating demand and one 
electricity demand 

MGA Statistical analysis and 
correlation calculation of 
decision variables in the near- 
optimal space 

Nacken et al. 
[10] 

2019 PyPSA-Eur-Sec Linear programming Germany (Sector coupled 
energy system model) 

MGA Distance-to-selected approach 

Lombardi et al. 
[11] 

2020 Calliope (SPORES) Linear programming Italian power system Extension to the 
MGA 

Statistical analysis and 
correlation calculation of 
decision variables in the near- 
optimal space 

Neumann and 
Brown [3] 

2021 PyPSA-Eur Linear programming European power sector MGA Statistical analysis and 
correlation calculation of 
decision variables in the near- 
optimal space 

Pedersen et al. 
[12] 

2021 PyPSA-Eur Linear programming European power sector MGA Statistical analysis and 
correlation calculation of 
decision variables in the near- 
optimal space 

Pickering et al. 
[13] 

2022 Calliope (SPORES) Linear programming European energy system Extension to the 
MGA 

Statistical analysis of decision 
variables in the near-optimal 
space 

Grochowicz 
et al. [14] 

2023 PyPSA-Eur Linear programming European power sector MGA and Modelling 
All Alternatives 
(MAA) 

Statistical analysis and 
correlation calculation of 
decision variables in the near- 
optimal space 

This study – EnergyPLAN, 
EPLANopt 

Heuristic approach Italian energy system (sector 
coupling) 

Equality function 
and sharing function 

Cluster analysis  
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makers with a transparent tool to make informed decisions. 
In this paper, we will present the methodology and its application to 

a specific case study and discuss the potential of this approach to support 
local policymakers in evaluating energy system scenarios from a selec
tion of optimal and near-optimal solutions. This study will contribute to 
the ongoing debate on the trade-offs between technical efficiency, social 
and environmental sustainability, and resilience in energy planning. 

Policy or industry users of energy scenarios usually prefer a concise 
and informative collection of scenarios [15]. Thus it is important to 
reduce the large amount of scenario results to a small, diverse set of 
solutions [7]. There are available methods to characterize and filter a 
vast number of scenario results to derive a small and diverse set of 
scenarios. Berntsen and Trutnevyte [7] reports a list of methods for 
choosing a small, diverse set of scenarios among optimal and 
near-optimal solutions. The distance-to-selected approach, also used by 
Berntsen and Trutnevyte [7], searches for scenarios that are most dis
similar from the initial scenario in terms of their attributes. The differ
ence from the initial scenario is calculated as the squared Euclidian 
distance. A cluster analysis allows for the identification of groups of 
similar solutions in the near-optimal space. One scenario in each cluster 
is selected to represent that cluster. Many methods do not use a tech
nique to pick a small set of distinct solutions from the near-optimal so
lutions for analysis. Instead, they conduct statistical analysis on the 
decision variable values within the near-optimal space. Some of these 
methods also perform correlation analysis among the decision variables. 
Price et al. [8] applied a statistical analysis to understand how decision 
variables vary in the near-optimal space. The authors also stated that 
adding additional criteria to the identified near-optimal scenario and 
transition pathways may be of interest to decision makers. 

The proposed article contributes novelty to the field of energy system 
modelling and planning by introducing two key elements in the meth
odology for evaluating near-optimal scenarios. Firstly, a heuristic 
approach is employed through a multi-objective genetic algorithm with 
equality and sharing functions to evaluate the near-optimal space. This 
approach allows for the identification of near-optimal solutions across 
all CO2 emissions reduction levels among the optimal Pareto front so
lutions. Secondly, the adoption of cluster analysis is used to select 
representative solutions and analyse the identified near-optimal solu
tions with the introduction of additional criteria to better drive the de
cisions of policy makers. This approach enhances the transparency of the 
results for policy makers by exploring socio-economic aspects and pro
vides a concise and informative collection of scenarios to aid decision- 
making. The novelty of the proposed method lies in the unique combi
nation of these two elements, which distinguishes it from existing 
literature on the evaluation of near-optimal solutions in the energy 
system modelling field. 

The structure of the article is as follows: in the second section, we 
describe the material and methods used in this study, including the 
EnergyPLAN software, the EPLANopt model implementing a Multi- 
Objective Evolutionary Algorithm (MOEA), the technique to imple
ment near-optimal evaluation through this method as well as the addi
tional evaluation indicators and clustering analysis to better analyse the 
final results. In the third section, we present the case study to which the 
methodology is applied including a baseline scenario from 2019 and the 
decision variables considered. In the fourth section, we provide results 
of our methodology applied to an Italian case study, and a discussion of 
the results, highlighting the key findings and implications. Finally, in the 
conclusion section, we summarize our contribution and suggest di
rections for future research. The appendix provides a detailed descrip
tion of the clustering analysis method used in this study. 

2. Material and methods 

This section provides an overview of the materials and methods used 
in the study. Section 2.1 highlights the EnergyPLAN software, the multi- 
model approach and its integration with the multi-objective 

evolutionary algorithm through the EPLANopt model. Section 2.2 ex
plains the near-optimal evaluation process and how it is implemented in 
this application of EPLANopt through the use of equality and sharing 
functions. Section 2.3 details the additional indicators used to broaden 
the analysis to socio-economic and security aspects. Finally, section 2.4 
outlines the clustering analysis used to classify and present the results in 
a clear and organized manner for policymakers. 

The method is based on the following steps:  

i) Application of the EPLANopt model which couples EnergyPLAN 
with a Multi-Objective Evolutionary Algorithm to the Italian case 
study (method described in section 2.1). 

ii) Selection of the admissible range for near-optimality and appli
cation of equality and sharing functions to identify the near- 
optimal solutions, (method described in section 2.2).  

iii) Application of a set of indicators to the near-optimal solutions to 
estimate their impact on socio-economic and environmental as
pects (method described in section 2.3). 

iv) Clustering analysis to understand the trends and common pat
terns of near-optimal solutions (method described in section 2.4). 

2.1. EnergyPLAN software 

The EnergyPLAN software was created in 1999 and has undergone 
continual improvement to accommodate new technologies and potential 
synergies across the different sectors of the energy system [16]. Devel
oped by Aalborg University, EnergyPLAN is one of the first energy sys
tem models to implement the concept of smart energy systems. This 
concept is based on the idea of linking energy sectors and studying the 
potential exchange benefits and synergies among them [17]. Ener
gyPLAN allows the user to take a holistic approach to the analysis of the 
cross-sectoral interaction of the energy system, linking demand sectors 
like buildings, industry, and transport with supply technologies via 
electricity, gas, district heating and cooling grids. With EnergyPLAN, 
users can perform comparative and consistent analyses of both fossil 
fuel-based and renewable energy systems, calculating hourly energy 
system operation with supply and demand matching. 

In 2021, Lund et al. [6] published a review of the EnergyPLAN 
software and the main findings are:  

1. EnergyPLAN is a free energy system analysis tool designed to study 
and research future sustainable energy solutions with a focus on high 
shares of renewable energy sources.  

2. EnergyPLAN enables the analysis of the whole energy system, linking 
different demand sectors (buildings, industry, and transport) with 
supply technologies (electricity, gas, district heating and cooling 
grids) to consider cross-sectoral interactions.  

3. The tool can model the entire energy system, including electricity, 
heat, industry, and transport sectors and a wide variety of 
technologies.  

4. EnergyPLAN allows the user to perform consistent and comparative 
analyses of energy systems based on renewable energy, fossil fuels, 
and nuclear power.  

5. The tool can perform technical and market-economic simulations, 
and calculate the costs of the total system, including investments 
costs, operation costs, fuel costs, CO2 costs, and other taxes.  

6. EnergyPLAN can be executed from other platforms such as Excel, 
MATLAB or Python and can perform hourly operation analysis. 

In 2022 Østergaard et al. [18] published a review and validation of 
EnergyPLAN software. They concluded that EnergyPLAN has been 
applied in 315 peer-reviewed articles, and its large-scale application 
serves as inferred internal validation. The study has highlighted the 
important role of EnergyPLAN in modelling integrated smart energy 
systems. Moreover, the study revealed that EnergyPLAN, while 
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primarily utilized as a standalone energy system analysis tool, has also 
been integrated within multi-tool approaches in conjunction with other 
energy system models or optimization algorithms. The implementation 
of EnergyPLAN in these multi-tool setups further supports its credibility 
and reinforces its inferred internal validation. 

Østergaard [19] found that the most common performance in
dicators applied in energy systems analyses with EnergyPLAN are Pri
mary Energy Supply (PES), CO2 emissions, excess power, and costs, 
which are in line with the goals of countries seeking to minimize impacts 
on the climate. The most dominant indicator for probing the technical 
workings and feasibility of a given energy system is excess power. 
Table 2 shows the different multi-tool approaches applied in existing 
literature. 

The EPLANopt model is the outcome of merging the EnergyPLAN 
software [6,44] and an optimization algorithm for expansion capacity. 
The full source code of EPLANopt can be found atthis open repository 
[45]. EnergyPLAN is a deterministic simulation model capable of 
simulating future scenarios with high levels of variable renewable en
ergy sources (VRES). It uses an hourly time-step to simulate a one-year 
period and incorporates all three primary sectors of the energy system. 
The EnergyPLAN model has been used in various scales, such as at the 
European level [46], national level [47–54], regional level [55,56], as 
well as for towns and municipalities [57,58] and small islands [59–61]. 

In this work, EnergyPLAN has been adopted with the following 
characteristics: i) EnergyPLAN version 16.1 is used, ii) a technical 
simulation strategy balancing both heat and electricity demands is 
chosen, iii) for electric mobility dump charge is chosen. A Multi- 
Objective Evolutionary Algorithm (MOEA) [62–64] was used to 
perform a multi-objective expansion capacity optimization, which 
evaluates the optimal solutions by considering both economic and 
environmental factors. The objectives chosen in this case were to 
minimize the total annual costs and minimize annual CO2 emissions. 
Equation 1shows the objective functions of the multi-objective mini
mization problem. The main constraints to which the optimization is 
subjected describe how the value of the decision variables should remain 
in a fixed range defined by the lower DV(L)

k and upper DV(U)

k bounds of 
decision variable k. Other constraints such as balance between demand 
and generation at each time-step or storage behaviour with initial con
tent equal to final content are defined within the EnergyPLAN software.  

Optimization function 
min
DV

[
Total Annual Costs [M€]

Annual CO2 Emissions [kt]

]
(1) 

Subject to DV(L)
k ≤ DVk ≤ DV(U)

k  

The operational simulation of the year is performed through Ener
gyPLAN software, while the expansion capacity optimization is achieved 
through the MOEA. The MOEA starts by generating an initial population 
of random solutions, each of which is characterized by a set of decision 
variables K and a value for each of them defined between a minimum, 
DV(L)

k , and a maximum bound, DV(U)

k . EnergyPLAN is then used to 
evaluate each solution by substituting the decision variable values into 
EnergyPLAN reference scenario and calculating the values of the 
objective functions (total CO2 emissions and total annual costs). By 
means of the operators that are typical of the genetic algorithms (such as 
selection, crossover and mutation) the optimization algorithm moves 
forward until the convergence is reached and the final Pareto front is 
found. 

2.2. Near-optimal evaluation 

This section provides an overview of the materials and methods used 
to adapt EPLANopt model to enable the evaluation of near-optimal so
lutions. Fig. 1 shows in a total annual costs-CO2 emissions diagram, 
given a certain CO2 emissions constraint, the single-optimal solution, the 
near-optimal solutions included in the space limited by the constraint on 

Table 2 
Existing multi-tool approaches with EnergyPLAN as energy system simulation 
model.  

Author Publication 
year 

Tool coupled to 
EnergyPLAN 

Scope 

Bjelic and Rajakovic 
[20] 

2015 GenOpt – single- 
objective 
optimization 
algorithm 
(MATLAB) 

Perform a single- 
objective expansion 
capacity 
optimization 

Bjelic et al. [21] 2016 GenOpt – single- 
objective 
optimization 
algorithm, EPOPT 
(MATLAB) 

Perform a single- 
objective expansion 
capacity 
optimization 

Komušanac et al. 
[22] 

2016 Brute-force 
algorithm 

Obtain a Pareto 
front of optimal 
solutions and apply 
a multi-criteria 
analysis 

Mahbub et al. [23] 2016 Strength Pareto 
Evolutionary 
Algorithm (SPEA2) 
– multi-objective 
optimization 

Obtain a four- 
dimensional Pareto 
front of optimal 
solutions 

Mahbud et al. [24] 2016 Strength Pareto 
Evolutionary 
Algorithm (SPEA2) 
– multi-objective 
optimization 

Obtain a Pareto 
front of optimal 
solutions by 
coupling domain 
knowledge with 
algorithms 

Mahbud et al. [25] 2017 Strength Pareto 
Evolutionary 
Algorithm (SPEA2) 
– multi-objective 
optimization 

Obtain multiple 
Pareto fronts for 
different time 
horizons and 
identify transient 
scenarios for a 
gradual transition 

Prina et al. [26] 2018 EPLANopt – multi- 
objective 
optimization 
(Python) 

Obtain a Pareto 
front of optimal 
solutions 
incorporating 
considering 
combined cycle gas 
turbine flexibility 
constraints 

Prina et al. [27] 2018 EPLANopt – multi- 
objective 
optimization 
(Python) 

Obtain a Pareto 
front of optimal 
solutions 
considering 
residential energy 
efficiency 
improvements 

Prina et al. [28] 2019 EPLANoptTP – 
multi-objective 
optimization 
(Python) 

Minimize 
cumulative costs 
and carbon 
emissions for an 
entire transition 
period and optimize 
the timing of 
capacity expansions 

Bellochi et al. [29] 2020 Multi-objective 
optimization 
(MATLAB) 

Obtain a Pareto 
front of optimal 
solutions to 
evaluate electrified 
transport and 
heating scenarios 

Viesi et al. [30] 2020 Multi-objective 
optimization 

Obtain a Pareto 
front of optimal 
solutions for 
evaluating regional 
energy scenarios 

Menapace et al. [31] 2020 Multi-criteria 
decision analysis 
(MATLAB) 

Evaluating 100% 
renewable urban 
energy systems 

Fischer et al. [32] 2020 Multi-objective 
optimization 

Obtain a Pareto 
front of optimal 

(continued on next page) 
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CO2 emissions the Pareto front of optimal solutions and a given ε that 
defines the ΔCosts range. 

Table 1 has shown that the most used method to implement the near- 
optimal analysis is Modelling to generate alternatives technique coupled 
to linear programming energy system models. This study makes use of 
the heuristic model, EPLANopt, and for this reason, a different approach 
is proposed to implement the near-optimal analysis. Liu et al. [65] 
introduced two functions for this purpose: the equality and sharing 
functions. Equality function to prevent individual solutions from 
converging into a single optimal solution. Sharing function to ensure 
diversity among optimal results. 

Eq. (2) shows the mathematical formulation of the equality function. 
fE
i is the new resulting value of the fitness of solution i (objective func

tion on total annual costs) after applying the equality function. E∗ is the 
optimal fitness value for a certain constraint of CO2 emissions. Ei is the 
fitness value of solution i and ε defines the space of near-optimal solu
tions. This method is applied in this article to the Italian case study 
assuming an ε equal to 5%, a value in line with assumptions in similar 
studies, as highlighted by Neumann and Brown [3]. 

f E
i =

{
E∗ Ei ≥ (1 + ε)E∗

Ei Ei < (1 + ε)E∗ (2)  

In the sharing function, the fitness value of a solution is penalized when 
the solution is too similar to other solutions in the population. This 
penalty forces the spread of solutions in the decision space, allowing for 
the discovery of various optimal solutions and multiple non-optimal 
solutions. Eq. (2) shows how to calculate the sharing function. fS

i is 
the new resulting value of the fitness after applying the sharing function. 
σs is the threshold of dissimilarity, di,j is the Euler distance between 
solution i and a generic solution j. P is the penalty that is applied if the 
solutions are too similar. The sharing function penalizes the fitness value 
of a solution i if its fitness is too similar to an existing solution of the 
population. 

f S
i =

{
Ei min

j

(
di,j

)
< σs

Ei + P otherwise
(3)  

2.3. Additional indicators 

The optimal and near-optimal solutions found by the method 
explained in sections 2.1 and 2.2 are by now characterized by two 
outputs: total annual costs and CO2 emissions. In this phase, it is possible 
to apply to the found solutions a set of indicators to account for the 
impacts of these solutions on socio-economic, security of supply and 
environmental aspects. This is useful to better support policy makers in 
the choice of the most appropriate future energy system configuration. It 
is also possible to use other criteria, such as renewable energy share, 
reliability, the amount of energy demand that can be satisfied by 
renewable sources, or the level of electrification of the system, to further 

Table 2 (continued ) 

Author Publication 
year 

Tool coupled to 
EnergyPLAN 

Scope 

solutions for 
evaluating 
municipal energy 
scenarios 

Prina et al. [33] 2020 EPLANopt – multi- 
objective 
optimization 
(Python) 

Obtain a Pareto 
front of optimal 
solutions for 
evaluating national 
energy scenarios 

Prina et al. [34] 2020 EPLANopt – multi- 
objective 
optimization 
(Python) 

Obtain a Pareto 
front of optimal 
solutions for 
evaluating regional 
energy scenarios 
considering 
flexibility and 
excess electricity 
integration 

Groppi et al. [35] 2021 EPLANopt – multi- 
objective 
optimization 
(Python) 

Obtain a Pareto 
front of optimal 
solutions for 
evaluating sector 
coupling options for 
isolated island case 

Laha and 
Chakraborty [36] 

2021 EPLANopt (multi- 
objective 
optimization) and 
multi-criteria 
assessment 

Obtain Pareto front 
of optimal solutions 
for electricity 
system 
configurations and 
evaluate based on a 
multi-criteria 
assessment 

Prina et al. [37] 2021 EPLANoptMAC - 
hill climbing 
Single-Objective 
expansion capacity 
optimization 
(Python) 

Obtain a marginal 
abatement cost 
curve to estimate 
the relationship 
between carbon 
emission reductions 
and relative costs 

Vaccaro and Rocco 
[38] 

2021 EPLANopt coupled 
with Input-Output 
analysis (IOA) 

Obtain Pareto front 
of optimal solutions 
and process 
solutions in an IOA 
to evaluate regional 
economic and 
environmental 
impacts 

Hasterok et al. [39] 2021 Grey Wolf 
Optimizer (meta- 
heuristic search 
process) 

Optimize national 
energy system 
configuration 

Groppi et al. [40] 2022 EPLANoptMAC - 
hill climbing 
Single-Objective 
expansion capacity 
optimization 
(Python) 

Obtain a marginal 
abatement cost 
curve for the 
decarbonization of 
the maritime sector 
for an island 

Herc et al. [41] 2022 EPLANopt (multi- 
objective 
optimization) and 
post-processing 
evaluation 
procedure 

Determine optimal 
national energy 
system 
configuration based 
on post-processing 
procedure 

Maigret et al. [42] 2022 Multi-objective 
optimization 

Obtain Pareto front 
of optimal solutions 
for decarbonization 
of refinery 
considering 
resource 
availability 

Johannsen et al. [43] 2023 EPLANopt - multi- 
objective 
optimization 
(Python) 

Obtain Pareto front 
of optimal solutions 
for comparison to 
results obtained 
from a stepwise 
simulation 
approach  

Fig. 1. Near-optimal evaluation representation in a total annual costs-CO2 
emissions diagram. 
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assess the performance of the solutions found by the model. Some other 
examples could be reliance on import of electricity and fuels, land use, 
particle emissions, local investment and employment opportunities, 
system flexibility, and resilience towards future price changes. 

In this study, three indicators are introduced to expand the solutions 
impacts on socio-economic aspects: land use, job creation, and diversity 
of energy supply. It should be noted that these indicators are just ex
amples of commonly used criteria and that other indicators could also be 
applied in this phase. The choice of indicators should depend on the 
specific context and objectives of the energy planning exercise, as well as 
the available data and resources for their calculation. Eq. (4) shows the 
mathematical formulation of the diversity of energy supply indicator 
DoSi for solution i based on the Shannon-Wiener Index. gm,i is the elec
tricity generation of source m in solution i. M is the list of electricity 
generation resources. Gi is the total electricity generation in solution i. 
The range of values for this index is from 0 to infinity. A value of 
0 represents a complete lack of diversity, where a single power source is 
used to meet the entire electricity demand. On the other hand, a value of 
infinity represents a perfectly diversified electric system, where the 
electricity demand is met by an equal proportion of all available power 
sources. In general, the greater the diversity of power sources used in the 
system, the higher the value of the diversity indicator, which reflects the 
reduced dependence on a single power source. 

DoSi = −
∑M

m

gm,i

Gi
• ln

(
gm,i

Gi

)

(4) 

Eq. (5) shows the mathematical formulation of the land use indica
tor. LUi is the land use indicator for solution i. lum is the land use factor 
for source m (see Table 3 for the assumed values) [66]. Pm,i is the 
installed power of source m in solution i. 

LUi =
∑M

m
Pm,i • lum (5) 

Eq. (6) shows the mathematical formulation of the job creation in
dicator. JCi is the jobs creation indicator for solution i. jcm is the job 
creation factor for source m (see Table 3 for the assumed values) [67, 
70]. 

JCi =
∑M

m
Pm,i • jcm (6)  

2.4. Clustering analysis 

The outcome of section 3.3 is a collection of optimal and near- 
optimal solutions, each of which is also analysed in terms of land use, 
job creation, and energy supply diversity. With such a large number of 
solutions, it becomes necessary to utilize statistical analysis to gain a 
deeper understanding of their characteristics and see if they can be 
grouped into smaller sub-groups or clusters. Clustering Analysis is a data 
mining technique used to partition a dataset into groups (also known as 
clusters) based on their similarity. In this study, the K-Means method 
was used for clustering analysis [72]. The K-Means method is a popular 
and widely used clustering algorithm that partitions a dataset into K 
pre-defined number of clusters based on the mean distance between the 
data points and the cluster centroid [73]. This distance metric used to 
measure the dissimilarity between solutions is based on the Euclidean 
distance. To determine the optimal number of clusters, two evaluation 
metrics were used in this study: the Elbow Method and the Silhouette 
Score. 

The Elbow Method [74] is based on the idea that the optimal number 
of clusters is the value of K at which the increase in explained variance 
starts to decrease and becomes marginal. The explained variance can be 
represented by the sum of squared distances (SSD) between the data 
points and their assigned cluster centroid. The Silhouette Score [75] 
measures the similarity between a data point and the data points in its 
own cluster compared to those in other clusters. It ranges from − 1 to 1, 
with a score close to 1 indicating that the data point is well-matched to 
its own cluster and poorly matched to other clusters. In this study, the 
optimal number of clusters was selected based on both the Elbow 
Method and Silhouette Score. 

The clustering analysis is performed on each of the selected solu
tions, both optimal and near-optimal, by taking into account the values 
of five indicators: total annual costs, annual CO2 emissions, land use, job 
creation, and energy supply diversity. 

A representative solution has been selected for each cluster based on 
the closest to centroid criterion. Selecting the closest to centroid solution 
ensures that the representative solution is a good representative of the 
cluster as a whole, as it is located at the centre of the cluster in terms of 
its decision variable values. This method also simplifies the process of 
selecting representative solutions, as it is based on a single criterion that 
is easy to calculate. It should be noted, however, that other criteria could 
also be used for selecting representative solutions, such as the most 
extreme solution or the solution with the highest weight in a weighted 
average of the solutions in the cluster. The choice of criterion should 
depend on the specific objectives of the energy planning exercise and the 
characteristics of the solutions and clusters being analysed. More details 
of the clustering analysis are reported in Appendix A. The results of the 
clustering analysis and the selection of the optimal number of clusters 
are discussed in the results section of the article. 

3. Italian case study 

The previous chapter outlines the general model formulation and 
optimization process. This chapter focuses on the application case study, 
detailing the input variables, parameters, and decision variables selected 
for the case study which is the Italian energy system. Furthermore, it is 
important to emphasize that the purpose of the article is to test the 
proposed methodology on a case study, rather than to study in depth the 

Table 3 
Land use and job creation factors.  

Technology Land use, lum, [m2/ 
MW] or [m2/MWh] for 
Lithium-ion Batteries 
and Hydrogen storage 

Ref. Job creation, jcm, 
[jobs-years/MW] or 
[jobs-years/MWh] for 
Lithium-ion Batteries 
and Hydrogen storage. 

Ref. 

On-shore 
wind 
power 

14548 (8.4 for 
generated MWh) 

[66] 8.92 [67] 

Off-shore 
wind 
power 

62750 (25.0 for 
generated MWh) 

[66] 26.79 [67] 

Rooftop PV 3780 (3.0 for generated 
MWh) 

[66] 35.31 [67] 

Utility-scale 
PV 

23940 (19.0 for 
generated MWh) 

[66] 21.20 [67] 

Lithium-ion 
Batteries 

139.6 [68] 28.90 [67] 

Electrolyser 25.0 [69] 2.72 [70] 
Fuel cell 30.0 [71] 2.17 [70] 
Hydrogen 

storage 
5.0 [69] 0.06 [70]  

Table 4 
Baseline 2019 main additional sources in the power sector to HRE project data 
[76].  

Data Source 

Installed capacity for VRES GSE [80], Terna [81] 
Hourly distribution for VRES GSE [80], Terna [81] 
Installed capacity for other technologies Terna [81], HRE [77]  
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decarbonization options and scenario results of the selected case study. 
The chapter is divided into two sections. The first section presents the 
assumptions made in the Baseline scenario, which represents the current 
state of the energy system. The Baseline was created for the year 2019, 
and the EPLANopt expansion capacity optimization model was run for 
the future target year 2050. The second section discusses the decision 
variables considered in the optimization problem. 

3.1. Baseline 2019 

A Baseline 2019 energy system is created based on Heat Roadmap 
Europe 4 (HRE4) [76]. A 2015 EnergyPLAN input file is provided by this 
project for 14 EU member countries (including Italy) [77]. Based on 
more precise data from Italian authorities: GSE [76], RSE [78] and Terna 
[79], this 2015 HRE4 baseline has been modified and updated to 2019 
(see Table 4 for more details). The following publication [33] provides 
more information about the Baseline 2015. 

The costs of various technologies have been updated using different 
sources. This previous study [33] lists all the different assumptions, 
emissions factors, technology costs, and fuel costs for the year 2050 in 
the Italian energy system. 

3.2. Decision variables 

The decision variables are the decarbonization measures on which 
the expansion capacity optimization is performed. The relevant decar
bonization measures for the specific case study must be determined, 
considering the potential synergies between different sectors. It is also 
important to define their bounds. dv(L)k corresponds to the current state 
of the decision variable while dv(U)

k is the upper bound and corresponds 
to its maximum potential. 

The considered decision variables are listed in Table 5 and are chosen 
from different energy sectors. 

• Onshore Wind power. Tröndle et al. [82] provide the technical po
tential of Onshore wind power for European countries. 

• Offshore Wind power. Tröndle et al. [82] provide the technical po
tential of Offshore wind power for all European countries.  

• Solar PV. For residential rooftop PV, a couple of studies, Taylor et al. 
[83] and Vartiainen et al. [84], together with internal studies of 
Eurac research based on the Solar Tyrol project [85] identified a 
share of 3 kW per person as maximum rooftop PV potential.  

• Utility-scale PV. Tröndle et al. [82] provide the technical potential of 
Utility-scale PV for European countries.  

• Electric storage. The maximum potential of lithium-ion batteries and 
hydrogen storage has been estimated through a series of simulations. 
It has been verified that a value higher than 500 GWh is typically not 
considered by the optimization because it brings a higher increase in 

costs without the balanced benefits in terms of renewable energy 
integration.  

• The installation of heat pumps is allowed only after a deep energy 
refurbishment of buildings. This decision variable is the percentage 
of the overall buildings that have switched their heating system from 
boilers to heat pumps. For this reason, its maximum potential is 
100%.  

• The energy efficiency of buildings. The energy efficiency cost curve 
and the way it is implemented in the source code of EPLANopt are 
explained in a previous publication [27].  

• The industry sector. Two decision variables are adopted in this field 
to replace the current fossil fuel consumption: electrification and 
adopting green gases. Thus, the system can substitute conventional 
fossil fuels in the industry sector depending on the share of electri
fication and green gases. A constraint is introduced to guarantee that 
the sum of the share of electrification and the share of green gases do 
not exceed 100%. The cost of green gases is assumed equal to 150 
€/MWh [86,87]. 

Additional assumptions were made regarding the heating sector: the 
domestic hot water (DHW) in buildings that are connected to the district 
heating network is supplied by the district heating itself. For individual 
buildings, there are two separate demands: one for DHW and another for 
heating. Energy efficiency measures can decrease the heating demand, 
but they do not impact the DHW share. The optimization process de
termines the proportion of renovated buildings that should install heat 
pumps. In the individual sector, at the increase of the energy efficiency 
share, heat pumps substitute different types of boilers with the following 
priorities: 1) Coal boilers, 2) Oil boilers, 3) Electric boilers, 4) Natural 
gas boilers and 5) Biomass boilers. 

The expenses associated with the establishment of electric vehicle 
charging infrastructure have been accounted for in the model. Based on 
the research conducted by Enel foundation [88], the cost of electric 
vehicle infrastructure was calculated for various levels of battery electric 
vehicle adoption. These costs encompass the cost of infrastructure for 
both urban and suburban areas, as well as the costs of different types of 
charging stations. Further details and the method used for interpolation 
are described in a prior publication [33]. 

The model also incorporates a decrease in energy consumption from 
the industrial sector. Utilizing historical data from the Odyssee-Mure 
database [89], a logarithmic interpolation was applied to examine the 
energy efficiency trend for the industrial sector in a “business as usual” 
scenario. This leads to a 15% decrease in energy consumption by 2050 
compared to the energy consumption in 2019. 

The following additional assumptions have also been made:  

1) a constant demographic situation from 2019 to 2050, 
2) transport demand in terms of miles driven and mode of trans

portation are assumed to be constant, 

Table 5 
List of decision variables per sector and type, their current state dv(L)k , their maximum potential dv(U)

k .  

Sector Type Name Unit Current state, dv(L)k Maximum potential, dv(U)

k 

Power sector Generation source Residential photovoltaic GW 15.8 178 
Utility-scale photovoltaic GW 4.2 119 
Wind power GW 10.2 68 
Offshore wind power GW 0 46 

Balancing & storage Batteries GWh 0 500 
Electrolyzer GW 0 50 
Fuel cell GW 0 50 
Hydrogen storage GWh 0 500 

Heating sector Energy refurbishment Energy efficiency % 0 60 
Generation source Heat pumps % 0 100 

Industry sector Generation source Electrification % 0 100 
Green gases % 0 100  
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Fig. 2. Pareto front optimal and near-optimal solutions for the Italian case study in 2050.  

Fig. 3. Results of the clustering analysis with five clusters.  
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Fig. 4. Results of the clustering analysis with five clusters among all optimal and near-optimal solutions (first subplot on the top), the values of diversity of supply for 
all these solutions (second subplot from the top), the land use for each of these solutions (second subplot from the bottom) and jobs created (first subplot from 
the bottom). 
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3) fixed proportions of battery electric vehicles have been assumed for 
the future target years (100% for the year 2050),  

4) complete elimination of coal and oil by 2030,  
5) learning curves for certain key technologies are based on data from 

past years. Based on different publications on the development of 
these learning curves in the years to come average data have been 
calculated for 2050 [33].  

6) trends in electricity costs are not considered, electricity prices are 
assumed to remain constant,  

7) emission factors are taken from IPCC (biomass emission factor is 
equal to 0),  

8) electricity consumption accounts for losses in the grid and  
9) costs of electric vehicles are assumed to be equal or lower than the 

costs of conventional cars by 2050 (Bloomberg in the electric vehicle 
outlook of 2018 [90]). 

Additionally, the calculation of final energy consumption only ac
counts for combustion processes, with emissions from fermentation 
processes not taken into account, and the consequences of global 
warming, rebound effect and disruptive technologies are not considered. 

4. Results and discussion 

In this study, we aimed to explore the near-optimal solutions and 
their relevance in energy planning. To achieve this, we applied the 
proposed methodology to the Italian case and evaluated energy system 
scenarios from a selection of optimal and near-optimal solutions. The 
results of our analysis are presented in the following section. 

Fig. 2 shows the resulting Pareto front of the optimal solutions and 
the near-optimal solutions for the Italian case in 2050 in a chart with 
total annual costs on the y-axis and annual CO2 emissions on the x-axis. 
The Pareto front represents the trade-off between the total annual costs 

and the annual CO2 emissions and provides a visual representation of the 
different near-optimal solutions that are available. The near-optimal 
solutions are the points that are located close to the optimal solution 
and provide alternative options that are only slightly more expensive or 
emit slightly more CO2. These solutions represent a diverse range of 
options that can support and guide policymakers in their energy plan
ning efforts. The optimal and near-optimal solutions found are in total 
8434. 

Fig. 3 presents the results of the clustering analysis applied to the 
optimal and near-optimal solutions for the Italian case study. The clus
tering analysis considered five indicators: total annual costs, annual CO2 
emissions, land use, job creation, and energy supply diversity. Using the 
elbow method and Silhouette score as described in Appendix A, five 
clusters were identified as the optimal number for this analysis. 

The five clusters shown in Fig. 3 represent a range of options that 
policymakers can consider when evaluating energy system scenarios. 
Cluster 2 represents the solutions with the lowest CO2 emissions 
reduction, the lowest total annual costs, and the best diversity of supply. 
This cluster could be a suitable option for policymakers who prioritize 
cost savings and energy supply diversity over reducing CO2 emissions. 
On the other hand, Cluster 3 represents the solution with the highest CO2 
reduction, the highest total annual costs, the worst diversity of supply, 
and the highest land use and job creation values. This cluster could be a 
suitable option for policymakers who prioritize reducing CO2 emissions 
and creating jobs but are willing to accept higher costs and less diversity 
of energy supply. 

The other clusters, 1, 4, and 5, represent solutions that fall in be
tween the extremes of Clusters 2 and 3. Cluster 5, for example, has lower 
CO2 emissions than Cluster 2 but higher costs, worse values of diversity 
of supply and land use and better in terms of jobs created. Cluster 1 has 
lower CO2 emissions than Cluster 5, higher costs, worse values of di
versity of supply and land use and better in terms of jobs created. Cluster 

Fig. 5. Electricity generation mix in the closest solutions to centroids for each cluster.  
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4 has lower reduction of CO2 emissions compared to cluster 3, lower 
costs, better values in terms of diversity of supply and land use but worse 
in terms of jobs created. 

Overall, the results of the clustering analysis show the diversity of 
near-optimal solutions available for energy planning in the Italian case 
study. The results highlight the trade-offs between different indicators, 
and how policymakers can prioritize different objectives depending on 
their policy goals and constraints. The analysis also provides a way to 
bridge the gap between simulation and optimization approaches and 
support policymakers in evaluating energy system scenarios from a se
lection of optimal and near-optimal solutions. 

Fig. 4 consists of four subplots, where the first one displays the 
clustering results in the CO2-costs chart. It indicates that the clusters are 
nearly sequential from low to high CO2 emissions reduction, with clus
ters 2, 5, 1, 4, and 3 arranged from right to left. The second subplot 
represents the diversity of supply for all optimal and sub-optimal solu
tions, showing a decline in supply diversity from right to left. This is 
because solutions with high CO2 emissions reduction involve extensive 
installation of few variable renewable energy technologies, resulting in a 
reduction of electricity generation from conventional power plants. As a 
consequence, land use increases from right to left due to the significant 
ground occupied by renewables, leading to an increase in land use in
dicator values. Similarly, jobs created by the installation of renewables 
also rise from right to left due to the same reason. Overall, the figure 
suggests that high CO2 emissions reduction comes at a cost of decreasing 
supply diversity, increasing land use, but also correlates to an increase in 
and job creation. 

The results presented in Fig. 4 have important implications for pol
icymakers in terms of designing and implementing effective energy 
policies. Policymakers can use the clustering results in the CO2-costs 
chart to identify the most cost-effective clusters that can achieve the 
desired level of CO2 emissions reduction. The decline in supply diversity 
and increase in land use and job creation associated with high CO2 
emissions reduction should also be considered by policymakers when 
designing energy policies. They need to balance the trade-off between 
CO2 emissions reduction and the impacts on supply diversity, land use, 
and job creation. Policymakers may consider implementing policies that 
encourage the deployment of a diverse range of renewable energy 
technologies to maintain a balanced energy mix and avoid over-reliance 
on a single technology. Moreover, policies that promote the develop
ment of low-carbon technologies with low land use requirements can 
help mitigate the impact on land use. Finally, policymakers can take into 
account the potential increase in job creation associated with high CO2 
emissions reduction to create employment opportunities and support the 
transition to a low-carbon economy. 

In Fig. 5, the electricity generation and demand for the baseline and 
each cluster’s closest scenario result are displayed. Moving from lower 
to higher CO2 emission reductions, the electrification of transport, 
heating, and industry sectors leads to an increase in electricity demand, 
along with a rise in electricity generation from variable renewable en
ergy sources. Despite the reduction in gas power plant generation 
compared to the baseline, it does not vanish. The last two clusters with 
the highest CO2 emission reductions experience a decrease in electricity 

demand, primarily due to investments in green gases in the industry 
sector instead of electrification, which is costlier for the system. 
Furthermore, the generation of electricity from gas power plants de
creases due to high variable renewable energy source generation and 
storage options’ investments, which raise the system’s costs. 

5. Conclusions 

In this study, we proposed a novel modelling approach to support the 
optimal planning of energy systems. This approach integrates multi- 
objective optimization, near-optimal solutions evaluation, the applica
tion of environmental and socio-economic indicators and clustering 
analysis to better understand the dynamics between main decarbon
ization measures. The method has been applied to the Italian case study 
and scenario results for the year 2050 have been developed. 

The results of the application of our approach showed that it is 
possible to achieve a significant reduction in CO2 emissions and improve 
the diversity of energy supply while minimizing the overall system costs. 
Our approach also allowed us to identify different clusters of optimal 
and sub-optimal solutions, which provided insights into the trade-offs 
between different objectives and the role of different renewable tech
nologies in achieving these objectives. 

The analysis of the environmental and socio-economic indicators 
also revealed the importance of considering these aspects in the plan
ning of renewable energy systems. We found that the expansion of 
renewable energy systems can have both positive and negative impacts 
on the environment and society, depending on the technology mix and 
the location of the installations. Our approach provided a useful tool to 
evaluate these trade-offs and identify optimal and near-optimal solu
tions that minimize negative impacts and maximize positive ones. 

Overall, the results of our study demonstrate the effectiveness of 
exploring near-optimal scenario results and supporting the optimal 
planning of renewable energy systems at the national level through 
additional indicators. Our approach can be applied to other countries 
and regions to support the transition to a more sustainable and low- 
carbon energy system and could in future studies be expanded to 
include additional indicators. 
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Appendix A. clustering analysis 

In this appendix, we provide a detailed explanation of the clustering analysis conducted in the study to identify the optimal number of clusters for 
the Italian case study. We used two methods, namely the elbow method and the silhouette score indicator, to determine the number of clusters that 
would best represent the data. 

Figure A1 shows the elbow method’s results for a variable number of clusters. This allows us to identify a first range for the optimal number of 
clusters in the range of 4 and 18. The elbow method is a common technique used to identify the optimal number of clusters in clustering analysis. It is 
based on the observation that the variance explained by the clusters increases with the number of clusters, but at a certain point, the gain in variance 
explained decreases significantly. This point is called the elbow point and represents the optimal number of clusters.  
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Figure A2 shows the values of the silhouette score for a variable number of clusters. The silhouette score measures the quality of the clustering and 
ranges from − 1 to 1, where a score of 1 indicates that the data point is well-matched to its own cluster and poorly matched to neighbouring clusters. 
We identified the optimal number of clusters to be five based on the highest average silhouette score in the range between 4 and 18.   

Figure A3 reports the characterization of the clusters for a variable number between 4 and 18. We used the k-means clustering algorithm to create 
the clusters and characterized them based on the values of the indicators (total annual costs, annual CO2 emissions, land use, job creation, and energy 
supply diversity). In the chart, the x-axis shows the silhouette score values, while the y-axis shows the cluster labels. Each bar on the chart represents a 
solution, and the colour indicates the corresponding cluster. The distribution of the bars in the chart can give insights into the quality of clustering. 
Ideally, the chart should show distinct, well-separated clusters with a high average silhouette score. The chart also includes a breakdown of the 
composition of each cluster. This can help to understand the characteristics of each group and how they differ from one another.   

Fig. A.2. Results of the clustering analysis with six clusters.   

Fig. A.1. Results of the clustering analysis with six clusters.   
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Figure A4 shows the results of the clustering analysis with five clusters through a violin plot that displays the values of the indicators for each 
cluster. The violin plot provides a visual representation of the distribution of the data and allows us to compare the clusters based on their values for 
the different indicators. Overall, this analysis allowed us to identify distinct groups of solutions based on their characteristics and helped us to draw 
meaningful conclusions from the results. 

Fig. A.3. Results of the clustering analysis with six clusters.   
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Fig. A.4. Results of the clustering analysis with six clusters.  
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