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Abstract: Determining the presence and severity of knee osteoarthritis (OA) is a valuable application
of inertial measurement units (IMUs) in the remote monitoring of patients. This study aimed to
employ the Fourier representation of IMU signals to differentiate between individuals with and
without knee OA. We included 27 patients with unilateral knee osteoarthritis (15 females) and
18 healthy controls (11 females). Gait acceleration signals were recorded during overground walking.
We obtained the frequency features of the signals using the Fourier transform. The logistic LASSO
regression was employed on the frequency domain features as well as the participant’s age, sex, and
BMI to distinguish between the acceleration data from individuals with and without knee OA. The
model’s accuracy was estimated by 10-fold cross-validation. The frequency contents of the signals
were different between the two groups. The average accuracy of the classification model using
the frequency features was 0.91 ± 0.01. The distribution of the selected features in the final model
differed between patients with different severity of knee OA. In this study, we demonstrated that
using logistic LASSO regression on the Fourier representation of acceleration signals can accurately
determine the presence of knee OA.

Keywords: inertial measurement unit; wearable technology; telemedicine; digital health; knee
osteoarthritis; gait analysis; LASSO regression

1. Introduction

In patients with knee osteoarthritis (OA), gait analysis can support clinical decisions
and contribute to the evaluation of interventions by providing relevant information on
the course of the disease and the response to treatment [1]. Objective gait analysis has
traditionally been limited to sophisticated biomechanical gait laboratories, but recently,
inertial measurement units (IMUs) have received more attention due to their several
advantages, especially for use in natural everyday settings in people’s daily lives [2].
However, compared with conventional methods, these sensors provide restricted data,
signifying the importance of comprehensive data analysis for the practical application of
IMUs in clinical settings.

One of the most useful clinical applications of IMUs, especially in telemedicine and
remote patient monitoring, is determining the presence or severity of knee OA. Different
studies used various data analysis methods for this purpose [3]. While some studies em-
ployed more computationally complex approaches to process the IMU-derived data [4–7],
others primarily used raw IMU data to classify gait deviation due to knee OA [8–10]. The
complex methods yield spatiotemporal parameters and joint kinematics comparable to
traditional gait analysis; however, some concerns have been raised about the validity of the
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results of the complex methods, in addition to the high computational costs and the need
for using multiple sensors simultaneously [3]. Analyzing raw sensor data, as an alternative
method, relies on defining discrete parameters within the waveforms (such as ranges and
peak values)—ignoring most of the information contained in the signal [11]—or employing
various time-continuous analyses [12–14]. Time-continuous analyses, even though enabling
waveforms’ overall shape and characteristics assessment, are sensitive to time variability
and the definition of stride [11,15].

Alternatively, the Fourier representation of a signal has been suggested as a quantita-
tive analysis of the entire gait waveform [16,17] with several advantages such as simplifying
the comparison and evaluation of the signals, minimizing the possible inter- and intra-
experimental errors, and facilitating efficient data storage and reconstruction of the original
signal [18–20]. These advantages can address the challenges mentioned earlier with IMU
data analysis, especially regarding patients’ remote monitoring over extended periods.
However, it is still unclear whether sensors suitable for long-term data recording (i.e.,
sensors with longer battery life and, therefore, lower sampling rate and inferior accuracy)
can detect and differentiate walking disorders. In addition, the significance of the Fourier
coefficients in various gait conditions, such as knee OA, has not been entirely investigated,
while its clarification would enable the use of noninvasive IMUs as simple and inexpensive
tools for long-term remote monitoring of patients.

Therefore, the primary objective of this study was to determine whether simple and
low-sampling frequency IMUs designed for long-term data collection can differentiate
between individuals with and without knee OA. We investigated the features from the
frequency domain representation of the lower limbs’ linear acceleration signals. In addition,
we aimed to identify the frequency domain features most related to the disease and compare
those features in patients with different severity of knee OA.

2. Materials and Methods
2.1. Study Setting and Participants

This cross-sectional observational study was conducted at Aalborg University Hospital,
Denmark. Data collection was performed at the hospital’s outpatient clinic. The participants
included 27 patients with unilateral knee osteoarthritis and 18 volunteers without lower
limb complaints. The exclusion criteria were a BMI higher than 35 kg/m2, a recent history
of surgery in the lower limbs, neurological movement disorders, and inflammatory arthritis.
In addition, we excluded the patients with complaints of pain or discomfort in the spine
and lower-limb joints other than the affected knee and healthy controls with any pain or
discomfort in the spine or lower-limb joints. Orthopedic surgeons with a subspecialty
in knee replacement surgery established the diagnosis of knee OA in the patients. The
Regional Committee on Health Research Ethics approved the study (journal 2021-000438).
All participants were informed about the study and signed informed consent forms.

2.2. Data Collection

The participants’ basic information (age, sex, and BMI) was registered in a secure
REDCap database hosted by North Jutland Region. The participants also filled out the
knee injury and osteoarthritis outcome score (KOOS) questionnaire as a subjective measure
of the problems regarding knee OA [21]. KOOS scores were analyzed separately in five
subscales: pain, symptoms (other than pain), disability regarding the activities of daily
living (ADL), disability regarding sport and recreational activities (more demanding than
activities of daily living), and quality of life (QoL). In addition, the severity of knee OA in
the patients’ radiographic images was evaluated according to the Kellgren–Lawrence (KL)
classification [22].

The IMUs were SENS Motion sensors (SENS Motion®, Copenhagen, Denmark) con-
taining only a 3D accelerometer sampling at 12.5 Hz and were previously validated [23,24].
We placed the IMUs on the lateral side of the distal thigh, ipsilateral with the affected knee
(Figure 1). According to the manufacturer’s instructions, the sensors were located approxi-
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mately 10 cm above the lateral femoral epicondyle, and no calibrations were performed
before recording data. The side of the IMU in the control group was randomly chosen. The
participants performed two overground walking trials at a self-selected speed with a 5 min
interval in a straight corridor.
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Figure 1. The photograph demonstrates the employed inertial measurement unit (IMU) at its location
on the lateral distal side of the thigh and the corresponding coordinate axes (CC: craniocaudal, AP:
anteroposterior, ML: mediolateral).

2.3. Acceleration Signal Processing

Three-dimensional linear acceleration signals from the IMUs corresponding to cranio-
caudal (CC), anteroposterior (AP), and mediolateral (ML) axes were recorded and processed
for further analysis. We randomly selected each participant’s first or second gait trial to
analyze the data. Considering the periodic nature of gait kinematic signals, we recon-
structed a continuous interpolation of the acceleration signals using the Fourier method.
Since averaged waveform is more reliable and the average variance provides additional
information as to the randomness of the variable [25], we calculated the average of ten gait
cycles extracted in the middle of the walking bout and segmented it into ten individual
cycles using autocorrelation. Subsequently, the fundamental angular stride frequency (ω),
the Fourier series representation, and the power of the signals corresponding to the signal
frequencies were obtained from the averaged signal. The power of a signal at a particular
frequency, P(fi), reveals how much of that frequency, fi, is present in the signal and calcu-
lated by adding the squares of the ith pairs of Fourier coefficients. The calculation of the
Fourier coefficients and the power of the signal was previously described by Derrick [26].

The value of the Fourier coefficients and the power at the first six frequencies, P(f 1),
P(f 2), P(f 3), . . . , P(f 6), were calculated for the signals corresponding to the CC, AP, and
ML axes.

Numerical processing of the acceleration signals was performed in Python [27].

2.4. Logistic LASSO Regression

Logistic LASSO (least absolute shrinkage and selection operator) regression was em-
ployed in this study. The LASSO is a regularization method that performs classification
tasks by selecting the most relevant features to the outcome variable, i.e., knee OA. This
shrinkage method can actively select from a large and potentially multicollinear set of
variables in the regression, resulting in a more relevant and interpretable set of predic-
tors [28]. In addition, LASSO minimizes the regression coefficients to reduce the likelihood
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of overfitting, and as regression method can handle the confounders and the correlation
within the gait data.

Since we did not perform any matching between the patients and the control group,
the potential confounders (ω, age, sex, and BMI) were added to the regression model,
in addition to the power of 18 signal frequencies along the CC, AP, and ML axes as the
explanatory variables (Table 1). The outcome variable was the participant’s group (patients
vs. controls) considered as the presence of knee OA.

Table 1. The description of explanatory and outcome variables included in the logistic LASSO
regression.

Variable Type Description

Explanatory variables

Age Continuous Age in years

Sex Binomial Male/female

BMI Continuous Body mass index as kg/m2

ω Continuous The fundamental angular stride
frequency of gait acceleration signals

Power Continuous
18 variables regarding the power of the
signal at the first six frequencies of the
CC 1, AP 2, and ML 3 axes

Outcome variable Knee OA Binomial Yes/no
1 Craniocaudal; 2 Anteroposterior; 3 Mediolateral.

To construct the features from the explanatory variables, the continuous variables (age,
BMI,ω, and the power of the signal frequencies) were standardized by removing the mean
and scaling to unit variance, and the only categorical variable (sex) was encoded as a factor
with unordered levels.

The model was a logistic LASSO regression model fitted via penalized maximum
likelihood. The penalty coefficients (λ) were computed using 10-fold cross-validation with
values ranging from 10−12 to 102, based on best computed binomial deviances. No weight
or offset was specified for the observations. Two λ values were computed: λmin, defined
as λ that minimizes the binomial deviance, and a more stringent value of λ1se, defined as
the largest λ that is still within one standard error of the minimum binomial deviance. λ1se
results in a smaller number of covariates than λmin. We estimated λmin = 0.02 and λ1se =
0.10 (Figure 2).
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We utilized R Statistical Software [29] and the related packages to fit the logistic LASSO
regression model [30,31] and to estimate the confidence intervals for the coefficients in the
model [32].

The LASSO coefficients’ 95% CI and p-values at a fixed value for the penalty parameter
(λ = λ1se) were obtained using the method described by Taylor and Tibshirani [33].

Finally, the model’s performance in classifying the gait signals into osteoarthritic
and non-osteoarthritic knees (patients vs. controls) was estimated by performing 10-fold
cross-validation on divided data into 75% training and 25% validation sets. Subsequently,
the mean and 95% CI were calculated for accuracy as the percentage of correctly classified
instances out of all cases and Cohen’s Kappa as the measure of agreement between the
actual and classified labels. We have also calculated the accuracy and Kappa for a separate
logistic LASSO regression model with potential confounder variables (age, BMI, andω) to
ascertain the superior ability of the power of the frequencies than the potential confounder
variables in classifying the gait signals.

2.5. Comparing the Severity of Knee OA

We used KOOS as a subjective measure to estimate the severity of individuals’ prob-
lems related to knee OA. We divided the participants into three groups using terciles (33rd
and 67th percentiles) for each of the KOOS subscales (pain, symptoms, ADL, sport, and
QoL): Individuals with the highest scores or no/mild knee OA (G0), individuals with scores
in the middle range or moderate knee OA (G1), and individuals with lowest scores or severe
knee OA (G2). We also divided the participants into three groups based on the radiographic
classification of knee OA. However, since we did not perform a radiographic examination
in healthy individuals, the participants in the control group, patients with KL 1 or 2, and
patients with KL 3 or 4, formed G0, G1, and G2 groups for KL classification, respectively.
The selected features of the logistic LASSO regression at λ = λ1se were compared between
three groups of participants for each KOOS subscale in addition to KL classification.

2.6. Statistical Analysis

Descriptive statistics were used to describe the participants’ characteristics. The
numerical variables (age, BMI, pain score, and KOOS) were presented as mean and standard
deviation, and categorical variables (sex, KL classification, and the affected side) were
shown as counts. The frequency domain features (ω and the power of the frequencies)
were described as mean and range. Since the Shapiro–Wilk normality test did not confirm
normality, univariate statistical comparisons were conducted using the non-parametric
Wilcoxon rank sum test. In addition, the sex between the two groups was compared with
a chi-square test. The mean and 95% confidence intervals (CI) were calculated for the
differences in the means of the continuous variables (age, BMI, KOOS, and the frequency
domain features of the signals). The significance level was considered as α = 0.05. Statistical
analyses were conducted in the R Statistical Software.

3. Results
3.1. Participants

Table 2 compares the basic characteristics of the patient and control groups. The
patients were significantly older and had higher BMI than the control group. In addition,
the knee outcome scores were markedly higher in the control group compared with the
patient group.

3.2. Frequency Content Comparison

Table 3 demonstrates the frequency domain features of the acceleration signals in the
patients and controls. Except for the power of the first and fourth frequencies in the ML
axis, the differences in the mean values for the calculated features were significant.



Sensors 2023, 23, 2734 6 of 15

Table 2. Basic characteristics of the patients and controls.

Variable Control
(n = 18)

Patients
(n = 27)

95% CI 1

(Differences of Means)
p-Value

Female sex (n (%)) 11 (61) 15 (56) - 0.9

Age (years) 60.8 ± 5.4 67.2 ± 9.4 (−10.9, −2.0) 0.006

BMI (kg/m2) 23.7 ± 3.0 27.7 ± 3.8 (−6.1 −2.0) 0.0003

Pain score 2 Ipsilateral knee - 4.3 ± 2.2 - -
Contralateral knee - 0.3 ± 0.7 - -

KOOS 3

Pain 99.7 ± 0.9 53.6 ± 17.2 (36.1, 52.8) <0.0001
Symptom 96.8 ± 5.3 58.3 ± 23.2 (28.6, 46.4) <0.0001
ADL 4 99.3 ± 1.0 60.4 ± 16.4 (30.9, 48.5) <0.0001
Sport 96.7 ± 5.4 26.0 ± 20.5 (65.0, 80.0) <0.0001
QoL 5 97.2 ± 4.4 38.2 ± 15.3 (56.2, 62.5) <0.0001

Knee OA severity 6,7

0 (n (%)) - 0 - -
1 (n (%)) - 7 (26) - -
2 (n (%)) - 8 (30) - -
3 (n (%)) - 9 (33) - -
4 (n (%)) - 3 (11) - -

Painful knee
Right (n (%)) - 14 (52) - -
Left (n (%)) - 13 (48) - -

Cadence (Steps/minute) 118 [112, 128] 109 [83, 134] (5, 16) 0.001
1 95% Confidence Interval; 2 Based on an 11-score numeric rating scale (0–10) in the patients. In the control group,
we included participants without pain in the lower extremities, so we did not obtain pain scores in this group;
3 Knee injury and osteoarthritis outcome score; 4 Activities in daily living; 5 Quality of life; 6 The severity of knee
osteoarthritis based on Kellgren–Lawrence classification; 7 We did not perform the radiographic evaluation in
the control group. The presence of knee OA was ruled out in this group based on the absence of clinical signs
and symptoms.

Table 3. The frequency domain features of the acceleration signals in the patients and controls and
their 95% confidence intervals of differences of means.

Variable Control
(n = 18)

Patient
(n = 27)

Differences of
Means (95% CI) p-Value

ω 1 6.16 [5.90, 6.68] 5.7 [4.34, 6.92] (0.18, 0.64) 0.001

CC axis

P(f 1)CC 0.15 [0.06, 0.25] 0.10 [0.02, 0.16] (0.03, 0.07) <0.0001
P(f 2)CC 0.33 [0.14, 0.46] 0.21 [0.07, 0.29] (0.07, 0.16) <0.0001
P(f 3)CC 0.20 [0.10, 0.30] 0.11 [0.01, 0.18] (0.05, 0.12) <0.0001
P(f 4)CC 0.11 [0.02, 0.46] 0.05 [0.01, 0.40] (0.03, 0.07) <0.0001
P(f 5)CC 0.08 [0.00, 0.14] 0.04 [0.01, 0.09] (0.03, 0.06) <0.0001
P(f 6)CC 0.08 [0.02, 0.30] 0.02 [0.00, 0.18] (0.03, 0.07) <0.0001

AP axis

P(f 1)AP 0.16 [0.07, 0.35] 0.09 [0.02, 0.29] (0.05, 0.10) <0.0001
P(f 2)AP 0.42 [0.14, 0.58] 0.29 [0.05, 0.44] (0.06, 0.18) 0.0002
P(f 3)AP 0.26 [0.07, 0.44] 0.19 [0.02, 0.33] (0.01, 0.12) 0.02
P(f 4)AP 0.26 [0.11, 0.57] 0.12 [0.02, 0.44] (0.06, 0.18) 0.0001
P(f 5)AP 0.20 [0.07, 0.34] 0.09 [0.01, 0.21] (0.08, 0.15) <0.0001
P(f 6)AP 0.10 [0.01, 0.36] 0.04 [0.00, 0.22] (0.01, 0.09) 0.003

ML axis

P(f 1)ML 0.08 [0.01, 0.15] 0.06 [0.00, 0.13] (−0.01, 0.04) 0.2
P(f 2)ML 0.12 [0.02, 0.26] 0.07 [0.02, 0.17] (0.03, 0.08) 0.003
P(f 3)ML 0.09 [0.03, 0.15] 0.04 [0.00, 0.09] (0.03, 0.07) 0.0002
P(f 4)ML 0.07 [0.00, 0.20] 0.05 [0.00, 0.17] (−0.01, 0.04) 0.3
P(f 5)ML 0.06 [0.02, 0.22] 0.02 [0.00, 0.07] (0.01, 0.05) 0.005
P(f 6)ML 0.08 [0.00, 0.28] 0.03 [0.00, 0.15] (0.03, 0.06) 0.0001

1 The fundamental angular stride frequency.
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3.3. Frequency Content Feature Selection

Figure 3 shows the shrinkage in the estimate of the coefficients for different values of
the penalty parameter (λ) in the logistic LASSO regression model. We could demonstrate
that 13 out of 22 coefficients (including age, sex,ω, and certain signal frequency powers)
vanished with λ less than 10−8. Increasing λ beyond λmin led to excluding four other
coefficients, among others, BMI. At λ1se, five variables remained in the model, out of
which the power of the sixth frequency in the ML axis was close to zero and nullified soon
afterward. Overall, four coefficients lasted in the model longest, i.e., the most determining
features in distinguishing between the gait acceleration signals of osteoarthritic and non-
osteoarthritis knees. These four features included the power of the second, fifth, and sixth
frequencies of the CC axis and the power of the fifth frequency in the AP axis. The 95% CI
and p-values for the coefficients at λ1se demonstrated similar results (Table 4).

Table 4. The coefficients of the logistic LASSO regression at λ = λ 1se.

Variable Coefficient [95% CI] p-Value

Sex - -

Age - -

BMI - -

ω - -

CC axis

P(f 1)CC - -
P(f 2)CC −0.66 [−0.81, −0.50] <0.0001
P(f 3)CC - -
P(f 4)CC - -
P(f 5)CC −0.62 [−0.96, −0.39] <0.0001
P(f 6)CC −0.34 [−0.46, −0.21] <0.0001

AP axis

P(f 1)AP - -
P(f 2)AP - -
P(f 3)AP - -
P(f 4)AP - -
P(f 5)AP −0.41 [−0.62, −0.22] <0.0001
P(f 6)AP - -

ML axis

P(f 1)ML - -
P(f 2)ML - -
P(f 3)ML - -
P(f 4)ML - -
P(f 5)ML - -
P(f 6)ML −0.08 [−0.13, 0.07] 0.1
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3.4. Classification of Gait Accelerations

The mean [95% CI] for the accuracy and Kappa of the logistic LASSO regression in
classifying the gait acceleration signals into participants with and without knee OA were
0.91 [0.90, 0.92] and 0.72 [0.69, 074], respectively. The mean [95% CI] for the accuracy and
Kappa of the model, containing only age, BMI, andω as features, was 0.73 [0.72, 0.75] and
0.30 [0.27, 032], respectively. Figure 4 illustrates the distribution of the patients and controls
based on the three most determining coefficients in the final model.

Sensors 2023, 23, x FOR PEER REVIEW 10 of 16 
 

 

 

Figure 4. The cluster of the patients and controls based on the three most determining coefficients 

of the model: the power of the second and fifth frequency in the CC axis and the power of the fifth 

frequency in the AP axis. 

3.5. Selected Features vs. Severity of Knee OA 

Figure 5 demonstrates the distribution of the selected features of the logistic LASSO 

regression model in three groups of participants with different severity of knee OA based 

on KOOS and KL classification (G0, G1, and G2). The features differed significantly be-

tween G0 and G1 groups and G0 and G2 groups divided by KOOS subscales and KL clas-

sification. However, in comparison between G1 and G2 groups (participants with moder-

ate and severe knee OA), only the power of the sixth frequencies of the CC axis was sta-

tistically different between groups demarcated by KOOS-Symptoms. 

Figure 4. The cluster of the patients and controls based on the three most determining coefficients
of the model: the power of the second and fifth frequency in the CC axis and the power of the fifth
frequency in the AP axis.

3.5. Selected Features vs. Severity of Knee OA

Figure 5 demonstrates the distribution of the selected features of the logistic LASSO
regression model in three groups of participants with different severity of knee OA based on
KOOS and KL classification (G0, G1, and G2). The features differed significantly between
G0 and G1 groups and G0 and G2 groups divided by KOOS subscales and KL classification.
However, in comparison between G1 and G2 groups (participants with moderate and
severe knee OA), only the power of the sixth frequencies of the CC axis was statistically
different between groups demarcated by KOOS-Symptoms.
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4. Discussion

This study aimed to determine the ability of simple and low-sampling frequency
IMUs to differentiate between individuals with and without knee OA. Using the signals’
frequency contents, we could distinguish between these individuals with high accuracy
(0.91 ± 0.01). In addition, we could demonstrate differences in the distribution of the
frequency domain features between individuals with different severity of knee OA.

We found the most significant differences in the acceleration frequency contents in the
CC axis. The significance of the CC axis acceleration can be justified biomechanically by
its direct relationship with stance phase knee joint compression forces, to which patients
with knee OA or pre-OA are likely to be sensitive. In another study, Hung et al. observed
higher tibial vertical acceleration in medial knee OA patients than age-matched controls,
suggesting a more considerable ground impact on the knee joint [34]. They also observed
significantly higher vertical acceleration differences between the tibia and femur in the
patients compared to the control group, indicating a more significant kinetic moment
between the segments, parallel to the clinical observation of the lateral thrust gait [34].
However, lower trunk-foot acceleration attenuation along the CC axis was observed in
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another study on an elderly female population without knee OA [35]. Levinger et al. also
explored the frequency content of tibia acceleration signals [36]. They reported greater
components in higher frequencies (>5 Hz) of the CC axis for the knee OA subjects than
the healthy group. They attributed this finding to instability and altered attenuation of the
impact during walking in patients with knee OA [36].

We also found different values for the selected features between patients with different
severity of knee OA. However, the differences between the patients with moderate and
severe knee OA were insignificant. We should emphasize that the KOOS performs best in
measuring the changes in outcomes of the patients over time rather comparing different
subjects [21]. Radiographic assessment is also an imprecise marker of pain or disability
due to knee OA [37]. Nevertheless, inspecting the distribution of the selected features
demonstrated that the values in the G1 group (moderate knee OA) were lower than the
values in G0 (no/mild knee OA) and higher than in G2 (severe knee OA) groups divided by
KOOS-Pain and KOOS-symptom. This pattern was also observed to a less degree in groups
divided by KOOS-ADL and KL classification. Pain and symptom subscales, based on the
International Classification of Functioning, Disability, and Health (ICF) framework, repre-
sent the body function (the anatomical and physiological level) [38]. While ADL shows
activity (the personal level), and the sport and recreational and QoL subscales demonstrate
participation (the level to which the person interacts with society) [38]. Different distribu-
tion of the selected features in patients with different knee OA severity creates the prospect
of creating a gait deviation score based on frequency-domain features in these patients.
Other studies evaluating the discriminating capacity of IMU data in knee OA severity
assessed the time domain of the data [9,10] or employed more computationally complex
approaches to extract the spatiotemporal parameters [6].

In the gait analysis application of machine learning, several methods have been
described for extracting and selecting the features [39]. In this study, we employed logistic
LASSO regression for feature selection and discriminating between the subjects with and
without knee OA. As a logistic regression, this method can be used as a classification
algorithm to distinguish between individuals with and without knee OA. LASSO can also
perform feature selection by shrinking the features with little correlation with the response
variable (i.e., the presence of knee OA in our study) toward zero. Logistic LASSO regression
can handle the within-data correlation in gait data. Furthermore, logistic regression allows
adjusting for the confounders [40]. Confounding variables, such as sex, age, and BMI, can
affect gait characteristics [41–43], and researchers have applied different methods to control
for the confounders in gait analysis [44]. We did not match the case and control groups for
the confounding variables in this study. However, employing the LASSO regression, we
could demonstrate that the confounders (sex, age, and BMI) were less effective than the
frequency powers in the signal, and the effect of BMI (as the most influential confounder)
was nullified before several frequency powers. Walking speed can also challenge gait
analysis in knee OA [45]. In this study, we did not directly measure the gait velocity;
however, ω, which correlates with the walking speed, was significantly higher in the
controls compared with the patients. Nonetheless, the coefficient corresponding toω was
considerably lower than most of the frequency powers in the signal. The effect ofωwas
omitted by employing penalty values (λ) much smaller than the value we used in the final
model in LASSO regression. Additionally, the inferior performance of a LASSO relying only
on potential confounders (age, BMI, and ω), compared to the full LASSO model, signified
the importance of the power of the frequencies in classifying the gait acceleration signals.

To our knowledge, this was the first study evaluating the frequency domain of IMU
data to assess the presence and severity of knee OA and the first study employing a shrink-
age technique for feature selection in gait analysis. Using LASSO regression, we identified
the association between the frequency contents of the lower limb linear accelerations and
ipsilateral knee OA. However, this study undeniably has several limitations. Firstly, conven-
tional gait analysis was not performed as a ground truth to distinguish between the patients
and controls. Nonetheless, the KOOS demonstrated significantly lower values, indicating
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walking problems in the patients. The correlation between KOOS and the severity of knee
OA has been demonstrated [46]. Likewise, we could not compare the patients and the
control group based on the radiographic features of the knee OA since the radiographic
evaluation, for ethical reasons, was not performed in the control group. Therefore, the
diagnosis of knee OA was overruled based on the absence of signs and symptoms [47]. An
important limitation of not only this study but the frequency analysis is its non-intuitive
nature compared to time-continuous analysis, complicating the interpretation of the fre-
quency domain features. Relatedly, we must acknowledge that, based on the Nyquist
theorem [48], the low-sampling frequency sensors provide us with limited bandwidth
for data analysis. However, there is a trade between the sensor’s sampling rate and the
length of available frequency bandwidth for analysis. Still, we believe finding differences
in a limited bandwidth is impressive. Finally, we recorded gait data using standardized
protocols in the hospital rather than at patients’ homes; however, we attempted to simplify
the data collection protocol as much as possible to be reproducible in real-life environments.

Long-term monitoring of patients requires simple devices with long battery life. The
IMU we utilized in this study was a single low-sampling accelerometer affixed by band-
aid-like skin adhesion supplemented with a cloud connection for data transfer. The low-
sampling accelerometers, as passive electronic components, have a long battery life of
up to three months, which makes these devices an appropriate choice for the remote
monitoring of patients. Despite the limitations, the Fourier coefficients of signals recorded
by such sensors demonstrated a high discriminative capacity in knee OA. The method
suggested in this study facilitates the automatic extraction of valuable parameters from
IMU’s raw data for clinicians to use gait analysis in regular consultation. The IMU-derived
parameters can help identify patients with knee OA and evaluate the response to treatments
and interventions. In addition, these locomotion parameters provide an opportunity to
automatically monitor the recovery process after surgery and intelligently individualize
the rehabilitation programs beyond the limits of the clinics in real-life conditions.

However, before bringing this approach into patients’ homes, the correlation between
the changes in the frequency contents of acceleration signals and the disease’s severity
must be investigated. Before applying this method to remote monitoring of the patients,
the responsiveness to changes in the signals’ frequency contents needs to be evaluated. The
study outlines this vision that IMUs may provide practical information on the diagnosis
and assessment of knee OA, consequently reducing the number of referrals to secondary
healthcare and decreasing the cost and burden of diagnostic procedures. For instance,
considering the location of the used sensors close to pants pockets, where most people carry
their mobile phones, future studies can demonstrate the possibility of using smartphones
equipped with inertial sensors instead of additional devices for diagnostic and investigative
purposes in patients with knee OA.

5. Conclusions

The frequency contents of the lower limbs’ linear accelerations derived from the
Fourier series of the signals can accurately differentiate between individuals with and
without knee OA. However, despite the distribution of the frequency powers in patients
with different severity of knee OA, further studies are required to clarify the correlation
between the frequencies of IMU signals and the severity of knee OA.
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