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Abstract 

The main function of the electrical power system is to deliver the demanded power to 
the end customers in a reliable and economic way. As a result, the reliability is an 
important requirement in all power systems, since any interruption in the supply of 
electricity can have large socio-economic consequences. At the same time, the power 
systems are undergoing a substantial transition, by gradually retiring the conventional 
synchronous generators and integrating many renewable generation and storage units. 
Notably, all these units have power electronic converters as a key element, which 
enables processing power and grid integration. Therefore, the modern power systems 
will be Power Electronic-based Power Systems (PEPS). On the other hand, there are 
some reports of noticeable failure rate of power converters in the field. Further, these 
failure rates increase over time, due to wear-out and aging of components, which 
aggravates the situation, as predicted in reports by some Transmission System 
Operators (TSOs). Thus, the large integration of power converters into the grid have 
raised concerns in terms of the log-term system-level reliability of PEPSs.  

To address these concerns, the first step is to be able to assess the PEPS reliability 
quantitatively. In other words, a method must be developed to enable calculating the 
system-level reliability of PEPSs. Nevertheless, to achieve this, there are research 
gaps and challenges that must be investigated and addressed. In this regard, 
conventional power system reliability assessment methodologies cannot be used 
directly for PEPSs, due to their oversimplifications and inherent mathematical 
limitations. For example, they use a purely statistical approach to extract a constant 
failure rate for modeling the synchronous generator outages, which neglects the aging 
of units. On the other hand, outage of power electronic converters is a function of their 
mission profiles, lifetime models, control strategy, and design parameters. The power 
converter outages can be modeled by considering these factors together with the 
physics of failure, which results in non-constant failure rates that reflect the power 
converters aging. However, well-known mathematical methods used for power 
system reliability assessment (such as Markov method) are unable to be used with 
these considerations. Therefore, new mathematical methods must be developed to 
comply with the new consideration introduced in PEPS. Also, various sources of 
uncertainties in the system, including, generation, mission profiles, and component-
to-component variations, must be considered and modeled. 

Hence, in this PhD thesis, a comprehensive framework has been proposed to 
address the above challenges and enable calculating the stem-level reliability of 
PEPSs with realistic considerations. Further, the thesis gives a good understanding of 
“power electronic” and “power system” reliability modeling and assessment fields, by 
highlighting their differences, similarities, assumptions, and limitations. 
Subsequently, guidelines are proposed to merge the gaps between these field and 
achieve the system-level framework for PEPSs. The proposed framework is consisting 
of several blocks, including availability modeling, scenario generation, power system 
modeling, state enumeration, and index calculation, where the functions and details 
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of each block have been explained. Moreover, the system-level reliability of several 
case study PEPSs, have been assessed and analyzed to provide insights and 
demonstrate the capabilities of the proposed framework. 

Notably, the outcome of the PhD project is a model-based framework developed 
based on a V-shaped approach, where the effect of parameters from the component-
level up to the converter-level are reflected on the system-level indices, and 
contrariwise. Furthermore, the models that are based on physics of failure are mission 
profile-dependent. Also, the developed methods are computationally efficient, which 
is critical for analyzing larger system with more power electronic units. Moreover, the 
framework is developed according to a hybrid “time-based” and “probability-based” 
approach, by presenting time-dependent PDFs (Probability Density Functions) for 
reliability indices. The time-dependent term enables muti-timescale analysis of the 
reliability indices – e.g., investigating the impact of converter aging on the yearly 
reliability index, or the impact of generation uncertainty on the monthly variation of 
the reliability indices. The PDFs also represent various sources of uncertainties that 
exist in the system. Also, the maintenance and change failures are considered in the 
developed methodologies.  

Therefore, the proposed framework provides a tool for system operators to 
evaluate their system reliability quantitatively. By doing so, they can benchmark the 
system and ensure whether it meets their long-term goals or if corrective measures 
must be taken. Also, it will be helpful to system designers, as it enables not only 
assessing the current status of the system, but also predicting the future performance 
of the system. Thus, different design scenarios can be evaluated and benchmarked in 
terms of long-term reliability. Furthermore, the Design for Reliability approach can 
be realized at the system-level, since a quantitative methodology exists, which enable 
calculating the proper design margins. In this regards, the system-level reliability 
indices of several case studies are calculated and analyzed by using the developed 
method. The impact of power converter aging on the system availability and outage 
duration and severity are quantified and analyzed. Furthermore, the influence of 
uncertainty and temporal patterns of mission profiles on the system-level reliability 
are investigated by providing time-dependent PDFs for the indices. By analyzing the 
system-level reliability indices, it was shown how the method can be used for 
benchmarking the system, design, and ensuring the long-term reliability of PEPSs. 
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Dansk Resumé 

El-systemets hovedfunktion er at levere den efterspurgte energi til slutforbrugerne på 
den mest pålidelige og samtidig mest økonomiske måde. Som følge heraf er 
pålideligheden et vigtigt element i alle el-systemer, da enhver afbrydelse af el-
forsyningen kan have store samfundsøkonomiske konsekvenser. Samtidig gennemgår 
el-systemerne i dag en væsentlig omstilling, ved gradvist at udfase de konventionelle 
store kraftværker, som har synkrongeneratorer, med mange vedvarende produktions- 
og el-lagrings-enheder som gør problemstillingen mere kompleks. Disse produktions-
enheder har alle  effektelektroniske omformere (imellem energi-kilde og net) som en 
nøgle-komponent og som muliggør en udnyttelse af processorkraft (intelligens) i dem 
med henblik på bedre at styre el-nettet. Moderne el-net vil være Power Electronic-
based Power Systems (PEPS). Samtidig er der drifts-rapporter om noter-bare fejlrater 
for effekt-omformerne. Disse fejl-rater stiger over tid på grund af udslidning og 
ældning af komponenterne i effektomformerne og det vil forværre situationen 
omkring el-systemets pålidelighed, hvilket også har været forudsagt i rapporter fra 
nogle af el-transmissionssystem-operatørerne (TSO'er). Den store integration af 
effektomformere i el-nettet har således givet anledning til bekymring med hensyn 
pålideligheden af PEPS for fremtiden. 

For at imødekomme disse bekymringer er det første skridt at være bedre i stand 
til at kunne vurdere PEPS-pålideligheden kvantitativt og kvalitativt. For at kunne gøre 
dette er det nødvendigt at udvikle et værktøj, der gør det muligt at beregne 
pålideligheden af PEPS på el-systemniveau. Dette er i dag ikke er muligt, idet 
konventionelle energisystemers pålidelighedsvurderingsmetoder ikke kan overføres 
direkte til PEPS på grund af oversimplifikationer og model begrænsninger. For 
eksempel bruges i dag en ren statistisk tilgang til at bestemme fejlraten (som antages 
konstant) til modellering af synkrongeneratorernes udfald, som negligerer 
betydningen af ældningen af enhederne. PEPS komponenternes udfald/fejl er en 
funktion af deres belastninger (missions-profile), komponenternes levetidsmodeller, 
de benyttede kontrolstrategier og deres design. Effektomformernes udfald kan 
modelleres ved at inkludere disse faktorer sammen med fysikken bagved fejlene, 
hvilket resulterer i ikke-konstante fejl-rater på komponenterne og som afspejler bedre 
effektkonverternes reelle ældning. Endvidere kan de velkendte matematiske metoder, 
der anvendes til vurdering af energisystemers pålidelighed (såsom Markov-modeller), 
ikke direkte anvendes ved sådanne karakteristikker. Derfor skal der udvikles nye 
matematiske metoder til at kunne beregne pålideligheden af fremtidens PEPS. Her 
skal forskellige kilder til usikkerhederne i systemet også tages i betragtning, herunder 
effekt-genereringen, belastnings-profilen og komponent-til-komponent variationerne. 

Derfor omhandler denne ph.d.-afhandling en ny og detaljeret modellerings-
metode til at imødegå ovenstående udfordringer og muliggøre beregning af PEPS 
pålidelighed under realistiske forhold. Yderligere giver afhandlingen en god forståelse 
af effektelektronikkens og el-systemets pålidelighedsmodelleringsmetoder ved at 
fremhæve deres forskelle, ligheder, antagelser og begrænsninger. Der foreslås nye 
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metoder til at integrere disse fag-felter og opnå en samlet vurdering af pålideligheden 
for PEPS på systemniveau. Den foreslåede metode består af flere modelleringsblokke, 
herunder modellering af tilgængelighed for effektten, generering af scenarier, 
modellering af el-systemet og indeksberegninger, hvor hver metodes funktioner bliver 
forklaret i detaljer. Desuden kan pålideligheden på systemniveau af adskillige PEPS 
også vurderes og analyseres for at give indsigt i og demonstrere mulighederne i den 
foreslåede modellerings-metode. 

Resultatet af ph.d.-projektet et modelbaseret koncept, som er baseret på en V-
formet tilgang, hvor effekten af parametrene på komponent-niveau bruges op til 
omformer-niveau og som endelig afspejles på systemniveau (PEPS), og også modsat 
rettet i forbindelse med den initiale analyse af PEPS. Desuden er de anvendte modeller 
baseret på reelle fysiske modeller af fejl og den belastning komponenterne ser over 
tid. De udviklede metoder er samtidig beregningseffektive, hvilket er afgørende for at 
kunne analysere større og komplekse systemer med mange effektelektroniske 
enheder. Desuden er model-strukturen udviklet med en hybrid "tidsbaseret" og 
"sandsynlighedsbaseret" tilgang ved at anvende tidsafhængige PDF'er (Probability 
Density Functions) som er pålideligheds-indekser i analyse-apparatet. Det 
tidsafhængige udtryk muliggør også multi-tidsskala-analyse af 
pålidelighedsindekserne – for eksempel ved at undersøge påvirkningen af 
effktomformerens aldring på det årlige beregnede pålidelighedsindeks eller 
påvirkningen af usikkerheden for effektgenereringen på den månedlige variation af 
pålidelighedsindeksene. PDF'erne repræsenterer også forskellige kilder til 
usikkerheder, der findes i systemet. Desuden kan vedligeholdelsen og udbedringen af 
fejlene også tages i betragtning i de foreslåede metoder. 

Derfor giver den foreslåede modellerings-metode et værktøj for el-
systemoperatører til at kunne vurdere pålideligheden af deres el-system kvantitativt, 
når der er mange effektelektroniske enheder tilsluttet el-nettet. Ved at gøre dette kan 
de benchmarke deres el-system og sikre at de lever op til deres langsigtede mål – hvis 
ikke kan der træffes beslutninger om at forbedre det. Det vil også være nyttigt for el-
systemdesignere, da det ikke kun gør det muligt at vurdere systemets nuværende 
status, men også kunne forudsige el-systemets fremtidige ydeevne. Dermed kan 
forskellige design-scenarier for el-systemet evalueres og benchmarkes med hensyn til 
dets langsigtede pålidelighed. Desuden kan en ”Design for Reliability” tilgang 
benyttes på systemniveau, da der nu findes en kvantitativ analyse-metode, som gør 
det muligt at beregne el-systemets pålidelighed langt mere præcis. Reliabilitets 
indekserne på systemniveau for flere casestudier beregnes og analyseres ved hjælp af 
den udviklede metode. Effekten af strømkonverterens aldring på systemets 
tilgængelighed og udfaldsvarighed og alvorlighed kvantificeres og analyseres. 
Ydermere undersøges indflydelsen af usikkerhed og tidsmæssige mønstre af 
missionsprofiler på pålideligheden på systemniveau ved at levere tidsafhængige 
PDF'er til indeksene. Ved at analysere pålidelighedsindekserne på systemniveau blev 
det vist, hvordan metoden kan bruges til at benchmarke systemet, designe og sikre 
den langsigtede pålidelighed af PEPS. 
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Chapter 1    
Introduction 
 
 
1.1. Background 
The electrical power system is the largest and most complex system ever created by 
humankind [1]. It provides us with an immense amount of energy (e.g., 23900 TWh 
in 2019 [2]), and our economic system, daily life, and a lot of critical activities directly 
depend on its successful and reliable operation. As a result, it is vital that the electrical 
power system function reliably all the time forever – i.e., without any interruptions in 
the supply of electricity. 

However, in reality, failures occur in the electrical power systems worldwide, 
which could lead to large socio-economic consequences. For example, the US 
Department of Energy (DoE) has estimated the cost of power outages for the US 
economy around $150 billion annually [3]. In a similar report by European 
Commission, which covered 28 EU member states, it was estimated that each year, 
between 600 to 850 GWh of electricity is not supplied to the end customers due to 
power outages, which results in an economic loss up to €25 billion  per year [4]. 
Likewise, in a study done by the World Bank on low- and middle-income countries, 
which covers 78% of the world population, it was found that power outages cause an 
economic loss of around $82 billion per year [5] for these countries. Also, the Swedish 
Royal Academy of Engineering Sciences estimated the cost of power outages in 
Sweden in 2015 around SEK1 billion [6]. In [7], the Institute of Energy Economics in 
Cologne estimated the cost of a blackout in Germany to be around €430 – 750 million 
per hour. Apart from these overall reports, there are records of significant power 
outage incidents, which influenced many people and brought about large economic 
losses. As a recent example, three wind farm operators had to pay £10.5 million  as a 
penalty for not staying connected to the UK grid, which caused a major outage in 
August 2019 [8]. Also, in 2003, separate blackouts occurred in the US and 
Italy/Switzerland, which led to an economic loss of $8.2 billion  and €1.18 billion, 
respectively [9], [10].  

On the other hand, the power system is undergoing the most significant transition 
in its history. To achieve the goal of reaching net zero carbon emission by 2050, fifty 
countries, including the EU member states, have pledged to add 500 GW of solar 
PhotoVoltaic (PV) and wind to the grid annually by 2030 [11]. In addition, 3 TWh of 
battery storage capacity must be integrated into the system by 2050 [11]. Furthermore, 
according to the U.S. Energy Information Administration (EIA), the renewables will 
account for 49% of world electricity generation by 2050, as shown in Fig. 1.1.  
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Fig. 1.1. Contribution of different energy resources in the world’s net electricity 

generation: historical data and projections [12]. 
 
This large amount of energy needs to be processed through power electronic 

converters, which highlights the role of power electronics in this historic transition. In 
addition to power generation and storage, power electronic converters will be used 
increasingly in the transmission and distribution grids. For example, technologies that 
use power electronic converters as their core, such as HVDC (High Voltage DC), 
MVDC (Medium Voltage DC), FACTS (Flexible AC Transmission Systems), SST 
(Solid State Transformers), active filters, EV (Electric Vehicle) chargers, and motor 
drives, will be used widely in modern transmission and distribution grids. This 
ongoing transition has been illustrated in Fig. 1.2, where the configuration of 
conventional and modern power grids has been compared [13]. From Fig. 1.2, the 
changes in the electric power grid can be further categorized as follows. The 
generation resources would be inverter-based, rather than synchronous-machine 
based. The generation capacity will be variable and uncertain at different timescales. 
The supply of electricity will become more decentralized compared to the 
conventional grids. New demand resources will be introduced by intensive 
electrification in all sectors and integration of energy storage units. Each of these 
changes can cause challenges for the system reliability and resiliency  in terms of 
resource adequacy, transmission and distribution infrastructure adequacy, grid 
balancing and flexibility, and grid stability [14]. To transition successfully towards a 
net zero carbon future, it is important to assess its implications on the system 
reliability and resiliency. As a result, this PhD thesis will focus on one of these 
reliability implications (system adequacy) that are caused by power electronic 
failures, which will be discussed in depth. 
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Fig. 1.2. Illustration of the ongoing transition in the electric power grid, showing how 

moden grids will look like compared to the conventional [13]. 
 

1.1.1. Power Electronic-based Power Systems and Challenges 

As explained before, the modern power systems will be Power Electronic-based 
Power Systems (PEPS). However, the abundance of power converters in the modern 
grid raises some concerns in terms of PEPS reliability, due to the failure-prone nature 
of components. In other words, the failure of power electronic components and 
converter aging can cause challenges for the long-term reliability of the system and 
jeopardize energy security. In this regard, there are studies and reports indicating how 
power converter failures can be problematic in terms of reliability and economic loss 
due to downtime and maintenance costs. For example, as stated in a study based on 
field data in [15], the inverter constituted between 43% to70% of service requests in 
PV power plants under study. Similarly, in a study by a PV plant operator, it has been 
shown that inverter failures have resulted in the loss of 2.3 GWh over a 27-month 
period, which accounted for 36% of total energy losses in the plant [16]. Also, an 
analysis of 15 PV plants in Spain and Italy revealed that roughly 28% of energy loss 
in these plants was because to inverter failures [17]. In a field study by Sandia National 
Laboratory on four PV plants, the inverter failures accounted for between 50% to 89% 
of all electrical failures [18]. Additionally, in a field study done on 100000 PV systems 
[19], the inverter was identified as the most common source of hardware failure in PV 
systems. Similarly, in a recent study on a fleet of 75 Wind Turbines (WTs) in Spain 
[20], 10% of the downtime happened as a result of converter hardware failures. Also, 
the power converter was ranked the second in terms of failure rate and downtime in a 
study by Reliawind on a fleet of 373 WTs [21]. Likewise, after investigating 5800 
failure events in a wind farm in China, it was found out that the power converter was 
the component with the highest failure rate [22]. In a recent study on 1045 offshore 
WTs in [23], the power converter ranked as the fourth source of failure, with an 
average failure rate of 1.3 Failures per year per turbine.  

These field experiences indicate that the power electronic failures may cause 
problems for the long-term reliability of the PEPS, if not carefully taken into account. 
Therefore, it is necessary to come up with models and frameworks to quantify the 
system-level reliability of the PEPS, particularly considering power electronic 
failures. These models and frameworks should enable the system designer and 



 

6 
 

decision-makers to ensure that the PEPS will meet its long-term reliability goals, 
identify the weakest link of the system, and provide insights on how to improve and 
maintain a desired level of system reliability. However, there are important challenges 
that must be dealt with when developing such models and frameworks, which will be 
discussed here. 

Aging and wear-out of power electronic components: First, power electronic 
components are susceptible to aging, meaning that their failure rate increases with 
time. Consequently, the system-level reliability of the PEPS will degrade over time if 
corrective measures are not taken or if a proper margin is not considered in the design 
phase of the system. In this regard, in a report published by the Danish TSO, 
Energinet, it has been predicted that the average annual outage duration per customer 
will increase from 20 minutes in 2020 to 65 minutes in 2030 [24], where the grid aging 
has been identified as the main reason for this considerable decrease of reliability. In 
line with this, [25] investigates how the increasing failure rate of power converters 
due to aging can lead to increased unavailability in the power system over time. As 
mentioned above, power electronic components are exposed to aging, and many 
research works have been dedicated to explaining their aging mechanisms. For 
example, in [26], the aging mechanisms for two of the widely used capacitors in power 
electronic (i.e., metalized film and electrolytic capacitors) has been investigated, 
where the effects of electrical, thermal, and mechanical stressors have been expressed 
in the form of capacitor lifetime models. Similarly, [27] discusses how the aging of 
power capacitors in DC-link application leads to a drastic increase in the failure rate 
of the power electronic converters. Likewise, [28] investigates the aging mechanisms 
of Insulated-Gate Bipolar Transistors (IGBTs) – a widely used component in power 
electronic converters – due to power cycling, where the results have been verified 
experimentally. In [29], the effect of thermomechanical stresses on the aging 
mechanisms of a Gallium Nitride transistor – a cutting-edge semiconductor for power 
electronic application – has been explored. 

Many factors affect converter reliability: Another challenge is that the converters’ 
reliability is a function of many different factors, which makes the system-level 
modeling more complex, considering that numerous converters exist in a PEPS. A key 
factor in the reliability of power electronic converters is mission profiles and 
operational conditions. In other words, the power converter that is being used under 
severe stress condition is more susceptible to failure, and its reliability is expected to 
be lower than a converter that is being used under normal stress condition. An example 
of this can be found in [30], where the effect of mission profiles on the reliability of a 
PV inverter has been explored. Also, converter-level design parameters, such as 
switching frequency and DC-link voltage – play a key role in the converter reliability. 
For instance, [31] studies the effect of switching frequency on the MMC reliability, 
where an optimal switching frequency is then calculated by comprising between the 
reliability and total harmonic distortion. In [32], the influence of the DC-link voltage 
value on the IGBT lifetime in three-phase inverters has been investigated. 
Additionally, modulation schemes can affect the converter reliability. In this regard, 
in [33], a new PWM method has been proposed for a multi-level converter, where the 
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converter reliability improvement has been proved quantitatively. Another important 
factor that must be considered when calculating the reliability at the system level is 
the interactions between power converters and the power sharing among them. In this 
regard, [34], [35] have proposed methods for power sharing among converters in AC 
and DC microgrids, respectively, to distribute the stress among converters and 
increase the overall reliability. Thermal management can also influence the reliability 
of power converters, since the temperature and its cycles are important stressors 
causing failures in power electronic components over time [36]. In [37], [38], passive 
and active thermal management methods have been discussed, and their relationship 
with the converter reliability has been elaborated. A desirable reliability assessment 
framework must be able to incorporate all the above considerations to produce 
realistic results, while making simplifications to lower the computational burden. 

Uncertainties: Another challenge when moving towards the PEPS is the increased 
uncertainties, which must be considered when developing a comprehensive reliability 
framework. For example, mission profiles (such as wind speed or solar irradiance 
profile) are sources of uncertainty, because they cannot be predicted accurately over 
long-term periods. In other words, in larger time scales (e.g., several years for power 
system planning application), it is hard or impossible to predict exactly under what 
conditions the converters in the PEPS will be working. On the other hand, the mission 
profiles determine not only the generation capacity of the renewable-based resources 
but also the wear-out failures of the power electronic converters. Wear-out failures of 
power converters can be predicted thanks to the lifetime model of components, their 
design and mission profiles, and the stress-strength analysis [39]. However, it is 
important to note that these predictions also come with some uncertainties for several 
reasons - such as lifetime model parameters uncertainty due to lifetime test limitations 
or component-to-component variations caused in the manufacturing process. Apart 
from the wear-out failures, power converters can fail because of chance failures – that 
is, from external factors and overstresses. These occurrences often happen randomly, 
and they are either impossible or impractical to model physically, which again 
introduces more uncertainty to the system. Therefore, a good reliability assessment 
framework must incorporate these uncertainties and provide solutions to handle them 
and considered in the outcomes. 

1.1.2. Reliability Modeling in Power Electronics and Power Systems 

There are valuable methods for reliability prediction in power electronics. Similarly, 
there are well-established methods for reliability assessment in power systems. 
However, when it comes to the PEPS, these methods cannot be used directly in their 
current form due to their limitations and deficiencies. Some of these limitations and 
shortcomings are shown in Fig. 1.3, which illustrates the research gaps that must be 
bridged in order to assess the PEPS reliability. Also, it is important to note that the 
experts in the power system reliability and power electronics reliability have different 
mindsets and speak different “languages,” because their concerns are different, and 
their definitions and usage of reliability are different. So, first, it is important to 
understand these differences to be able to translate these two “languages” into each 
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other. In other words, in order to achieve a reliability assessment framework for the 
PEPS, it is necessary to bridge the gap between the research on the power electronics 
reliability and on the power system reliability. 

Since reliability is a general term and its meaning might slightly differ in various 
research areas, it is necessary to discuss its definition and specify what we mean by 
reliability in this PhD thesis. A widely accepted and general definition of reliability 
can be quoted as [40]:  
“Reliability is the probability of a device performing its purpose adequately for the 
period of time intended under the operating conditions encountered.” 

In the power electronics domain, reliability often refers to the probability of the 
survival of a component or converter until some point in time, under given mission 
profiles. However, the meaning of reliability in this PhD thesis is more toward system-
level – that is, it includes this definition but is not limited to it, which will be further 
explained hereafter. As shown in Fig 1.4, in power system studies, reliability can be 
divided into security and adequacy. Security typically deals with the short-term 
dynamics of the system, such as stability against transients. In other words, security 
is defined as the ability of a power system to respond to sudden disturbances and 
abnormal events [41]. Therefore, the security is typically used in the power system 
operation phase. On the other hand, adequacy deals with the long-term performance 
of the system and aims to guarantee that enough generation capacity exists at any time 
to supply the demand [42]. Thus, adequacy is usually associated with the long-term 
system design and planning phase of the power systems [43]. In most power system 
research papers, the terms adequacy and reliability are used interchangeably, which 
would be the case in this PhD thesis too. The adequacy evaluation is typically 
performed in all the power system hierarchies – i.e., generation, transmission, and 
distribution levels. Also, it is often described with probabilistic indices, which account 
for the frequency and duration of outages and the amount of energy that is expected 
to be lost, which will be discussed in detail. 
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Comparison of shortcomings in the state-of-the-art reliability research

Power Electronics Reliability (literature) Power Systems Reliability (literature)

Non-repairable system assumption; 
ignoring the corrective and preventive 
maintenance

Considering only wear-out failures; 
neglecting chance failures induced 
by external causes

Modeling process includes time-
consuming steps for electro-thermal 
modeling and Monte Carlo 
simulations; it needs simplification to 
accelerate the process.

Available generation and storage 
capacity and its simultaneity with the 
failures are not considered.

Constant failure rate assumption for 
components; ignoring converter 
aging and wear-out failures.

Only considering chance failures; 
ignoring the physics of failure and 
wear-out modeling.

Impact of Mission Profiles on the 
reliability is not considered.

Constant reliability indices; ignoring 
the dynamic behavior of reliability 
indices over time.

 

Fig 1.3. Comparison of the assumptions and shortcomings in reliability research of power 
electronic systems and power systems, i.e., which challenges must be addressed in order to 

bridge the gap between these technical domains and achieve a unified approach. 
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Fig 1.4. Classification of reliability in the planning and operation of conventional power 
systems (HL x: Hierarchical Level x) [43], where the focus of this PhD project is on 

adequacy. 
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There are certain shortcomings in power electronic reliability research, which 
must be addressed before incorporating them into the PEPS reliability assessment 
framework. 

Mission profiles are important factors to consider when developing a system-level 
reliability assessment framework. Power electronic converters can be subject to 
different mission profiles (due to different environmental and operation conditions), 
which exposes them to different stress levels, leading to a different probability of 
failures. Therefore, it is necessary to use mission profile-based reliability assessment 
approaches as described in [39]. This approach aims to investigate the physics of 
failure, and accordingly develop mathematical models to describe the lifetime of 
components. Then, by combining these models with the mission profile of converters, 
the reliability is predicted. Nevertheless, there is another popular but controversial 
approach for power electronic reliability assessment based on handbooks (such as 
MIL-HDBK [44], IEC-61709 [45], FIDES [46]). For example, in [47], the reliability 
of modular multilevel converter has been evaluated using the MIL-HDBK. This 
approach must be used with extra caution for the following reasons:  

 These handbooks are old (e.g., 1995 for MIL-HDBK), and their data 
might be outdated for the new generation of technologies used in power 
electronic components.  

 Also, the failure rates in these handbooks are the statistical average of 
field experiences, without considering the application, technology, 
cause, and physics of failure.  

 Moreover, the outcomes of these handbooks are constant failure rates 
that do not change with time, meaning that they neglect the aging of 
component.  

 Besides, the uncertainties are not considered in the handbooks. So, they 
do not provide a solid physical interpretation and can be misleading if 
used for reliability modeling purpose of the PEPS. 

Although the model-based and mission profile-based reliability assessment 
approach provides a realistic and accurate estimation of the converter reliability, they 
often suffer from a high computational burden, as they use time-consuming steps such 
as Monte Carlo simulation, rainflow counting algorithm, and detailed electro-thermal 
models of components [39]. The computation time might be acceptable for one power 
converter. Nonetheless, when it comes to the PEPS and since the PEPS has several 
power converters, the computation time might be too high, making these approaches 
impractical or impossible to be used in their current form. Therefore, in order for these 
methods to be used for the PEPS, they must be simplified, while keeping an 
appropriate level of accuracy to make them computationally efficient and accelerate 
the converter reliability prediction process. Thus, it is vital to find an appropriate level 
of detail for the models to avoid oversimplification, while reducing the computation 
time. For example, for electrical modeling and loss calculations, it should be decided 
whether to use detailed electrical simulations with small timesteps or to use analytical 
equations. Likewise, for thermal modeling, whether it is necessary to use finite 
element simulations or use thermal networks and lookup tables are enough. 
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Another shortcoming is that, typically, repair and replacement are ignored in the 
power electronics reliability literature. This assumption might be reasonable for 
mission-based systems such as aerospace applications, where the system has a certain 
lifetime, and its mission ends at some point. However, the power system is not a 
mission-based system and is supposed to work all the time forever. In such a system, 
repair, replacement, and maintenance of subsystems are vital to keep the system 
running successfully. Since the PEPS has repairable or replaceable subsystems, to 
calculate its reliability at the system level, measures must be taken to incorporate 
repair and maintenance (both corrective and preventive) into the existing methods for 
converter reliability estimation. 

Moreover, power electronic reliability research mostly focuses on modeling the 
failures originating from internal causes such as wear-out failures due to bond wire 
lift-off [48] or solder layer failure [49]. However, a power electronic converter may 
also fail due to external causes, i.e., chance failures, such as an overvoltage due to a 
lightning strike. From a system-level point of view, it is essential to also consider this 
category of failures in our model. Although it is difficult or cumbersome to develop 
physical models for all external causes of failure, they can be modeled by using a 
statistical approach. 

From a system-level point of view, apart from the wear-out and chance failures 
of power converters that can occur at any random time, the available generation 
capacity must be considered as well when assessing the PEPS reliability. In other 
words, if at any given time, adequate generation capacity is available, the failures 
cause unreliability and loss of energy. Similarly, if at any given time, adequate 
generation capacity is not available, unreliability will be inevitable, even though there 
is no failure in power converters. Further, unreliability can happen due to the lack of 
generation capacity and the converter failure occur simultaneously. So, the generation 
capacity and its simultaneity with failures also influence the overall system reliability. 
However, in contrast to conventional generators that could be controlled and follow 
the generation set points, the generation capacity in the PEPS, particularly in PV and 
wind systems, is directly dependent on climate conditions. This generation uncertainty 
acts as another source of uncertainty, besides the aforementioned ones. Therefore, it 
is vital to consider this and model the generation uncertainty and its simultaneity with 
converter failures. 

A typical failure rate description of a power electronic component, also known as 
the bathtub curve [50], is shown in Fig. 1.5. During the first stage of its life, i.e., the 
burn-in period, the failure rate decreases due to infant mortalities and early failures. 
The early failures are usually caused by flaws in the design, production, 
transportation, and installation [51]. However, it is typically assumed that this type of 
failure is identified, corrected, and prevented in the final product, thanks to the 
detective and corrective actions. So, it is justified to neglect this type of failure in the 
PEPS reliability assessment. Afterward, during the useful lifetime period, the 
component’s failure rate is almost constant over time, which is caused by chance 
failures. Then, when the wear-out period begins, the failure rate of the component 
increases, due to the accumulated damage over time and eventually wear-out failures. 
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In the power system reliability literature, only chance failures are considered, and 
wear-out failures are neglected. As a result, a constant failure rate is assumed for the 
subsystems, and the system-level reliability indices are calculated accordingly. This 
simplification might be acceptable as long as the subsystems are within their useful 
lifetime period. However, when they enter the wear-out period, the failure rate 
increases as shown in Fig. 1.5. Therefore, using the common assumption in the power 
system reliability literature (i.e., constant failure rate) will lead to ignoring the aging 
of power converters, which can result in considerable errors. Also, the adopted 
constant failure rate is often derived from statistical analysis of field data, regardless 
of the application and operational conditions. Therefore, the physics of failure and the 
effect of mission profiles are not reflected in those numbers, introducing more errors. 
Moreover, using this approach will result in a time-independent value for the system-
level reliability indices. In reality, nevertheless, the system-level indices are not 
constant and change over time with regard to aging and maintenance. Hence, this 
approach will ignore the dynamics of the reliability indices, which leads to an 
overestimation of the indices in the short term or an underestimation of the indices in 
the long term. 
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Fig. 1.5. Failure rate of a power electronic component as a function of time (bathtub curve) 
[52]. 

 
So, using non-constant failure rates, reflecting both wear-out and chance failures, 

is crucial for the PEPS reliability assessment. On the other hand, powerful analytical 
tools that are conventionally used for power system reliability assessment, e.g., 
Markov methods [53], only work with constant rates. So, alternative methods, such as 
Monte Carlo simulation, are to be used. However, this method suffers from a high 
computational burden and might not be practical when the number of converters in 
the PEPS increases [25]. Alternatively, approximations such as the method of device 
of stages [54] can be used to simplify the problem and enable using the Markov 
methods. Nevertheless, this approach can result in significant errors due to 
oversimplifications and make it extremely inaccurate to be used for the PEPS 
reliability assessment. Thus, new methods must be developed to leverage the power 
of conventional methods and make them compatible with the non-constant failure 
rates to achieve accurate results with an acceptable computational burden. 
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1.2. Thesis Motivation and Research Tasks 
As discussed above, the reliability of the power system is of great importance, and 
any failure can have severe consequences. However, with regards to the increasing 
use of the power electronic converters in the grid, the reliability of such PEPSs is 
under question due to the failure-prone nature of power electronic components. To 
benchmark the system and check whether the PEPSs will meet their reliability targets, 
it is necessary to be able to assess their reliability quantitatively. On the other hand, 
due to the prevalence of power converters and renewables in the PEPS, new 
considerations must be taken into account when assessing reliability. For example, 
non-constant failure rates must be adopted to reflect the converter aging. These failure 
rates must be modeled based on the physics of failures and mission profiles. Also, 
various uncertainties, including the generation capacity and chance failures, must not 
be ignored. Nevertheless, conventional reliability assessment methods cannot be 
employed either because they are oversimplified and lead to unrealistic results or 
because of their inherent mathematical limitations. Therefore, this PhD project aims 
to develop methods and models that can take these considerations into account and 
finally come up with a comprehensive framework that makes the quantitative 
reliability assessment of PEPSs possible.  

In light of the complexity and the large scale of the PEPS, appropriate 
simplification of the models is necessary to achieve accurate and realistic results while 
keeping the framework computationally light. Such a model-based framework for the 
PEPS reliability assessment can be of help for the system-level designers and 
decision-makers in many aspects. The first outcome is that benchmarking the system 
and ensuring that it fulfills the reliability requirements can be done. Furthermore, 
since the framework is based on physical and statistical models, not only is it possible 
to assess the current metrics of the system, but also it would be possible to predict the 
future performance of the system given the mission profiles. Additionally, it would 
be possible to analyze the impact of converter-level design parameters (e.g., switching 
frequency and DC-link voltage) on the system-level reliability indices, since the 
electrical and thermal models of the converters are embedded into the framework. 
Such a possibility will enable the identification of the weak points in the system and 
provide insights on how to improve the converter design for better system-level 
reliability. Also, the outcomes of the framework can be used to schedule the 
maintenance and replacement of converters to guarantee that the system-level 
reliability would always remain in an acceptable range, even though the converters 
degrade over time. Moreover, the framework will act as a design tool for the system-
level designers and decision makers to analyze the indices, perform the design for 
reliability, optimize the system in terms of reliability and other parameters, and select 
the best option among the available options for system expansion planning. In this 
regard, the overall activities and research tasks in this PhD project are summarized 
and shown in Fig. 1.6. 
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Model-based framework for system-level reliability 
assessment in power electronic-based power systems

Modeling and assessment of PEPS system-level reliability

Understand principles of component and converter reliability 
modeling in power electronics

Understand the fundamentals of power system reliability 
assessment

Implement the modeling methods for reliability assessment of 
power electronic-based power systems (i.e., photovoltaic, wind 
turbine, and battery converters) in a computationally-efficient 
manner

Develop new mathematical methods for fast and accurate 
calculation of availability considering chance failures, 
corrective maintenance, and wear-out reliability

Model the generation capacity and address its uncertainty

Implement the performance model of the power system, 
including a simplified load flow analysis and performance 
modeling of photovoltaic, wind turbine, and battery storage 
units

Provide a comprehensive framework on how to calculate the 
system-level reliability indices in power electronic-based 
power systems given required considerations

Mission profiles Physics of failure Non-constant 
failure rates

Model simplification 
for large-scalability

Uncertainty handling
Time-dependent 

system-level indices

Reliable Power Electronic-based Power Systems

Applying the framework for benchmarking the system and 
design verification in terms of system-level reliability

 

Fig. 1.6. Research tasks and activities of this PhD thesis. 
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1.2.1. Research Questions and Objectives 

The main objective of this PhD study is to develop a comprehensive framework that 
will make the quantitative reliability assessment possible in power electronic-
dominated power grids. So, the main research question of the project can be 
formulated as follows: 

How can the system-level reliability indices be calculated for power 
electronic-dominated power grids, accurately and computationally light? 

To answer this question, several previously discussed research gaps must be 
addressed, which can be formulated as some sub-questions.  
Develop a comprehensive framework for reliability assessment of the PEPS: 
To reach a comprehensive framework at the system level, the reliability in lower 
hierarchies, i.e., component and converter levels, must be modeled meticulously, as 
demonstrated in Fig. 1.7. To this end, first, it is necessary to realistically predict the 
PE component’s reliability by using physics-based models. To realistically model the 
component reliability, the stress-strength analysis method must be applied with 
regards to the physics of failure and mission profiles. On the other hand, typically, the 
stress-strength analysis method includes several time-consuming steps, e.g., electrical 
and thermal model of the components, rainflow counting and Monte Carlo simulation. 
Since a PEPS consists of many converters with numerous components, this process 
must be done many times to acquire the reliability metrics of all the converters in the 
PEPS. Therefore, the computation time for component reliability evaluation 
algorithms is a key factor in making the system-level analysis computationally 
feasible. As a result, the models and the process must be simplified to reduce the 
computation time, while oversimplification must be avoided. To this end, the 
appropriate level of details for the models must be found and justified. 

Accordingly, the following sub-questions must be answered. 
 What models and methods can be used for accurate modeling of power 

electronics components reliability? 
 What is the right level of detail that must be considered for component 

reliability modeling to achieve a low computation time, while avoiding 
oversimplification?  

Then, it is necessary to aggregate these component-level models and to build up the 
converter-level availability and reliability metrics. As discussed before, it is important 
to adopt non-constant failure rates extracted from models. At the same time, it is 
necessary to consider the repair and maintenance to obtain the converter availability. 
Nevertheless, conventional availability modeling methods are unable (or have 
impractically long computation time) to consider both factors simultaneously. So, new 
mathematical methods must be developed to overcome this challenge. Accordingly, 
the following sub-question must be answered. 

 What mathematical methods can be helpful to map the component-level 
reliability into the converter-level reliability? 

Provided the model-based reliability, statistics-based chance failure rates, and 
availability for each converter, they should be combined and translated into the 
system-level reliability indices. Apart from the failures and repairs, generation 
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capacity plays a key role here, which in the PEPS case has a considerable uncertainty 
associated with the intermittent nature of renewables. To consider the available 
generation capacity at any given time, the power system performance must be 
modeled by simple implementation of load flow and modeling the performance of PV, 
WT, and storage units. Also, to avoid over- or underestimating the reliability and study 
the effect of converter aging, the dynamic behavior of the reliability indices must be 
calculated rather than using the conventional steady-state values. Accordingly, the 
following sub-questions must be answered. 

 What are the key inputs determining the system-level reliability indices? What 
are the main considerations in order to achieve realistic results? 

 How can the considerable uncertainty of generation capacity in the PEPS be 
modeled and incorporated into the final indices? 

 How can both probabilistic and dynamic behavior of reliability indices be 
modeled at the same time?  

 What is the impact of converter aging, chance failures, and maintenance 
schemes on the system-level reliability indices? 
 

 

 

Fig. 1.7. Hierarchies for reliability assessment of power electronic-based power systems [55] 
(LOLE: Loss Of Load Expectation, EENS: Expected Energy Not Supplied, F: failure 

probability, , failure rate, Nf: number of cycles to failure for semiconductors, Lo: time to 
failure for capacitors). 

 
 
Demonstrate the applications of the proposed framework in benchmarking the 
system and reliability assessment: 
Once the above questions have been answered and the comprehensive framework has 
been reached, it can be used by system planners for expansion planning and system 
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decision makers to guarantee a reliable system-level design. By using iterative designs 
and optimization techniques, design for reliability can be realized at a system level. 
Therefore, system-level designers can benchmark the PEPS and evaluate whether the 
current design will remain reliable over time or not. Since the framework is model-
based, it can reveal the weak points of the system and provide insights on how to 
mitigate their impact on the overall reliability by using preventive measures, 
redundant design, or power sharing schemes. Therefore, this question can be further 
divided into the following sub-questions. 

 How can the outcomes of the framework be used to benchmark the system 
and ensure its long-term system-level reliability? 

 How to increase the system-level reliability and maintain it over time to 
mitigate the effect of converter aging? 

To find an answer to the above questions, several considerations must be kept in mind, 
and many steps must be taken. These considerations and steps are shown in Fig. 1.8, 
which provides a roadmap to realize an assessment tool for PEPS reliability and use 
it for its reliability enhancement. 
 

Component wear-out modeling 
using stress-strength analysis

Converter reliability modeling 
using reliability block diagram

Model simplifications

Reliability modeling 
of subsystems

Generation, storage, and power 
system performance modeling

Model renewable generation 
resources and their uncertainty

Model battery storage and its 
power management system

Power system performance 
modeling and simplified DC 
load flow analysis

Availability 
modeling

Chance failures

Corrective maintenance

Non-constant failure rates

Framework for system-level 
reliability assessment in PEPSOptimization

Application of the proposed framework in 
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Fig. 1.8. Roadmap and steps that must be taken to achieve a reliability assessment framework 
and applying it to Power Electronic-based Power Systems (PEPSs). 
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1.2.2. Project Limitations 

Certain assumptions and simplifications have been made during this PhD project that 
result in certain limitations, which are as follows. 

 Only the reliabilities of power semiconductors and capacitors have been 
modeled in power electronic systems and used for system-level reliability 
evaluations. This simplification has been done, since these are the reliability-
critical components in most power electronic converters and account for a 
large proportion of failures [56]. Other components of power electronic 
systems, e.g., PCB, magnetics, connectors, and sensors, can also fail, which 
can be considered for more accuracy. However, their failure mechanisms 
have not been investigated properly, and the lack of widely-accepted models 
is a problem. 

 Only thermal-induced stresses have been considered to model component 
reliability. This has been done because that is the dominant stressor and cause 
of failure in power semiconductors and capacitors, according to the literature 
and lifetime models [48]. However, there are other stress factors that are not 
considered in this study, such as humidity and cosmic rays, which may 
trigger different failure mechanisms. Also, it should be noted that the 
respected lifetime models have been adopted from manufacturer data or the 
literature, and not all of them have been verified by power cycling tests.  

 Only the steady state values have been considered to model generation and 
storage resources, and the dynamics of the controllers have been ignored. 
This is because adequacy deals with the static values of the generation and 
demand on very large timescales and investigating the effect of dynamics 
and transients on the outages lies in the category of stability rather than 
adequacy. 

 Experimental validation has not been done, since the focus of this PhD 
project is the system-level performance. To verify this experimentally, it 
requires that a real system (e.g., microgrid) be under operation for an 
extended period of time (e.g., ten years), where all the data must be gathered. 
Then, the data over this period must be analyzed in order to calculate the 
system-level reliability indices and compare them with what has been 
predicted based on this PhD project. 

 DC power flow method has been used to model the performance of the power 
system to accelerate the overall reliability assessment procedure, since this 
is a non-iterative and absolutely convergent method. However, the accuracy 
is lower than that of AC load flow, since only active power has been 
considered. Also, the electrical models of the lines and their limits have not 
been considered in the power system performance modeling since the 
transmission lines have not been the focus of this PhD project, and it has 
been done to simplify the process. 

 Failure of components is assumed to be independent – that is, common-mode 
failures and cascading failures have not been considered. 
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 Early failures and infant mortality are assumed to be negligible and have not 
been considered in this study. 
 

1.3. Thesis Outline 
The outcomes of the PhD project are summarized in this thesis based on the published 
and written papers during the study. The thesis consists of two parts: a report and 
selected publications. In Fig. 1.9, the structure of the thesis is illustrated, where the 
relevance of each chapter to selected publications is pointed out. The thesis includes 
six chapters, where Chapters 2 and 3 address the modeling and assessment task, and 
Chapter 4 and 5 provide guidelines and examples for evaluation of the PEPSs in terms 
of system-level reliability based on the models. The rest of the thesis is organized as 
follows. In Chapter 2, the fundamentals of power system reliability are presented, 
explaining the system-level indices and conventional methods for calculating them. 
In Chapter 3, the process for modeling the wear-out of power electronic components, 
including electro-thermal modeling, rainflow counting, and Monte Carlo simulations, 
is explained. Also, it is discussed how to translate the component-level wear-out 
reliability into the converter-level reliability metrics. Then, in Chapter 4, the details 
of the comprehensive framework for reliability assessment of the PEPS are presented, 
where all the steps to calculate the system-level reliability in the PEPS are elaborated 
upon (e.g., availability modeling, generation, storage, and power system performance 
modeling, convolution of load and generation). Chapter 5 demonstrates the 
applications of the PEPS reliability assessment framework in benchmarking and 
design of a system to ensure the long-term reliability, by providing several practical 
examples. Finally, the conclusions are presented in Chapter 6, where the main 
contributions are highlighted, and future research possibilities are outlined. 
 



 

20 
 

Report Selected publations

Modeling and assessment tasks

Ch. 2
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Fig. 1.9. Report structure and demonstration of how selected publications fulfill the specified 
research tasks. 

 
 

1.4. List of Publications 
The outcomes of the project have been disseminated in various forms, also as journal 
and conference papers and book chapters. The selected publications are shown in Fig. 
1.9, related to the thesis, and the full list can be seen below. 
 
Publication in refereed journals: 

[J1] A. Davoodi, S. Peyghami, Y. Yang, T. Dragicevic, and F. Blaabjerg, "Fast 
and Accurate Modeling of Power Converter Availability for Adequacy 
Assessment," in IEEE Trans. Power Delivery, vol. 36, no. 6, pp. 3992-3995, 
Dec. 2021. 

 
Publications in refereed conferences: 

[C1] A. Davoodi, S. Peyghami, Y. Yang, T. Dragicevic and F. Blaabjerg, 
"Modelling and Analysis of the Reliability of a PhotoVoltaic (PV) 
Inverter," in Proc. IEEE PEDG, Dubrovnik, Croatia, 2020, pp. 297-303. 
 

[C2] A. Davoodi, S. Peyghami, Y. Yang, T. Dragicevic and F. Blaabjerg, 
"Employing the Generative Adversarial Networks (GAN) for Reliability 
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Assessment of Converters," in Proc. IEEE ECCE, Vancouver, Canada, 
2021, pp. 3623-3629. 
 

[C3] A. Davoodi, Y. Yang, T. Dragicevic and F. Blaabjerg, "System-Level 
Reliability Analysis of a Repairable Power Electronic-Based Power System 
Considering Non-Constant Failure Rates," in Proc. IEEE EPE, Lyon, 
France, 2020, pp. 1-10. 
 

 A. Davoodi, S. Peyghami, Y. Yang, T. Dragicevic and F. Blaabjerg, "A 
Preventive Maintenance Planning Approach for Wind Converters," in Proc. 
IEEE eGrid, Aachen, Germany, pp. 1-8. 
 

 A. Davoodi, S. Peyghami, Y. Yang, T. Dragicevic and F. Blaabjerg, "A 
Preventive Maintenance Planning Approach for Wind Converters," in Proc. 
IEEE eGrid, Aachen, Germany, pp. 1-8. 
 

 M. Sandelic, A. Davoodi, A. Sangwongwanich, S. Peyghami and F. 
Blaabjerg, "Multi-Converter System Modelling in Cost for Reliability 
Studies," in Proc. IEEE COMPEL, Cartagena, Colombia, 2021, pp. 1-8. 

 
Book chapter: 

 A. Davoodi, S. Peyghami, C. Wu, and F. Blaabjerg, " Power Electronics for 
Smart Grids," in Reference Module in Materials Science and Materials 
Engineering, Elsevier, 2022. 
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Chapter 2    
Power System Reliability Assessment 

 
 
2.1. Background 
To develop a reliability assessment framework for Power Electronic-based Power 
System (PEPS), first, it is important to take a look at the conventional Power System 
(PS) methods. By doing so, the shortcomings of these methods will be analyzed, 
which will pave the way for modifying them and adapting them for PEPS reliability 
assessment. Hence, this chapter illustrates a big picture of the main research question 
of the PhD project from a power system point of view. In this regard, important 
reliability indices will be discussed here, and the methods and assumptions for 
calculating them will be presented. In other words, the reliability indices in 
conventional power systems and the details on how to calculate them will be given (in 
this chapter) based on analytical and numerical methods. These methods include 
probability convolution methods, Markov method, state enumeration technique, and 
Monte Carlo simulation, and Capacity Outage Probability Table (COPT). Also, it will 
be explained that not only the power electronic failures, but also the outage of other 
units can influence the system reliability. This will be demonstrated by providing an 
example of the outage modeling of wind turbine circuit breakers. 
 

2.2. Context of Power System Reliability and Its Assumptions 
As shown in Fig. 2.1, systems can be categorized as mission-oriented and 
continuously operated [57]. In the PE reliability literature, the assumption is that the 
converter or PE systems are mission-oriented and non-repairable, while in PS 
reliability studies, the system is considered as continuously operated, where repair is 
a must [55]. In spite of such a fundamental difference, a way must be found to input 
PE reliability results into the PS reliability studies. This gap can be bridged by 
adopting the concept of availability, which will be explained further in Chapter 4. 
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Mission-oriented

Must continue to function 
without failures within the 

defined mission time period

Continuously operated 

Transits between up 
and down states 
(failure-repair)

Types of systems

Repairable

Failed component is 
repaired or replaced

Non-repairable

Repair is not possible 
during the mission

 
Fig. 2.1. Different types of systems in terms of repairability and operation in power system 

reliability analysis. 
 

There is another notable difference in the assumptions of PE and PS reliability. 
In PE reliability, the assumption is that the wear-out of converter and components 
begins the first moment they are put into operation [58]. In other words, reliability 
modeling in PE literature revolves around wear-out failure modeling. On the other 
hand, the assumption in PS is that the wear-out failures are negligible, because the 
converter operates within its useful lifetime period (before the wear-out phase begins). 
Therefore, in PS reliability studies, chance failures are considered dominant, while 
wear-out failures are negligible [53]. When it comes to PEPS, both wear-out and 
chance failure are equally important and must be modeled, which will be discussed in 
Chapter 4, where wear-out will be dominant over time.  

Power system reliability assessment can be categorized into adequacy and 
security. Security pertains to system’s response to dynamics and transient 
disturbances and usually deals with smaller time scales. Adequacy is the system’s 
ability to satisfy consumer demand, i.e., having enough generation and storage 
capacity considering the system constraints, and usually deals with larger time frames. 
Notably, the focus of this project is on adequacy evaluation. Also, in PS literature, it 
is common to use “adequacy” and “reliability” interchangeably, which will be the case 
here too. 

From another point of view, power system reliability studies can be classified into 
qualitative and quantitative. The qualitative approach is according to engineering 
judgment and based on the experiences of experts. The quantitative approach provides 
a better way for benchmarking, standardization, and comparison of system reliability. 
The goal of the quantitative study is to create and calculate indices that can represent 
the system's risk and reliability. A good index must reflect both the probability and 
consequence of unwanted events, i.e., the likelihood of the event and its severity. 

Since modern power systems are very large, interconnected, and complex, for 
reliability evaluation purpose, they are divided into separate subsystems and 
functional areas that can be analyzed separately [59]. These functional areas are 
shown in Fig. 2.2, where three Hierarchical Levels (HLs) are defined: HL I, HL II, 
and HL III. 
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Fig. 2.2. Hierarchical Levels (HLs) in power system reliability assessment. 
 
The first hierarchical level, HL I, represents the generation system. The main goal 

of reliability studies at HLI is to evaluate the total ability of generation facilities to 
supply the demand requirement. As a result, when performing reliability assessment 
in HL I, it is assumed that transmission and distribution equipment are fully reliable 
and able to transmit and distribute the generated power to the bulk load points. A 
simple way of reliability assessment in HL I is to develop models for generation 
capacity and load. Then, the load model and generation capacity model should be 
convolved to calculate the reliability indices. According to the conventional PS, only 
the generator’s chance failures can influence the generation capacity. In PEPS, 
however, not only converter chance failures, but also the converter wear-out failures, 
plus the intermittent nature of renewables, contribute to the generation capacity 
model. It is worth reminding that the main focus of this PhD project is on the HL I. 

The second hierarchical level, HL II, is usually called the composite generation 
and transmission system. In other words, not only the failures of generators are 
considered, but also the power line constraints and their failures are taken into 
account. HL III comprises the entire power system (generation, transmission, and 
distribution). Due to the size and complexity of PSs, the reliability studies at HL III is 
only feasible for small systems. As a result, sometimes, the reliability of the 
distribution system is evaluated alone – that is, the results from HL II are input to the 
reliability evaluation of the distribution system. However, by so doing, the impact of 
distribution system reliability on the HL II is neglected. 

 

2.3. Reliability Indices in Power Systems 
Reliability indices in PS are categorized as deterministic and probabilistic indices 
[60]. Deterministic indices, such as Reserve Margin (RM) and Largest Unit (LU), do 
not consider the stochastic nature of the load and generation, and they are used as a 
simple and intuitive means of reliability comparison between two systems. 
Probabilistic indices, on the other hand, consider the stochastic characteristics of the 
system, including uncertainties in load and generation. As shown in Fig. 2.3, both 
deterministic and probabilistic indices have different applications in static capacity 
and operating reserve assessment of the PS. 
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Reliability assessment

Operating reserveStatic capacity

Probabilistic Deterministic Probabilistic Deterministic  
Fig. 2.3. Application of probabilistic and deterministic indices in power system reliability 

assessment. 
 

For example, deterministic indices can be used for planning generation, operation, 
and network capacity. 

Some of the deterministic indices for reserve capacity determination are as 
follows: 

 Largest Unit (LU): this index indicates that the reserve capacity must be 
equal to the capacity of the largest or sum of a given number of largest units 
in the system – also known as (N-1) or (N-x) criteria. 

 Fixed capacity margin: this index indicates that the reserve capacity must be 
a certain fixed value above the peak demand. 

 Percentage of system peak demand: this index indicates that the reserve 
capacity must be equal to a percentage of the system peak load. 

However, typically, probabilistic indices are preferable to the deterministic ones 
for the following reasons. First, the underlying cause of the PS risks and unreliability 
is its probabilistic behavior. In other words, the stochastic nature of events, which 
introduces a great deal of uncertainty to the system, plays a key role in the system's 
reliability. Some of these aspects in the conventional PS are as follows: chance failure 
of system equipment, load uncertainty, and uncertainty in energy export and import 
due to a volatile market. Therefore, deterministic indices are unable to represent these 
events, hence the need for probabilistic criteria. For example, the forced outage rate 
of generating units depends on their size and type, which cannot be incorporated by 
considering a fixed percentage reserve. As a result, probabilistic indices are widely 
used to evaluate the system risk and report its reliability. 

The outcomes of PS reliability studies can be described in terms of various 
indices. The appropriate index must be selected for the study, depending on the 
hierarchical level and the purpose and application of the study. LOLP, LOLE, and 
EENS are some of the main reliability indices at HL I and HL II. LOLP, or the Loss 
Of Load Probability, indicates the probability that the load shedding happens in the 
system. LOLE, or the Loss Of Load Expectation, indicates the expected amount of 
time when an outage or load shedding event is experienced annually. This index is 
usually reported in the form of a unit of time per year. Typically, certain targets for 
LOLE are defined by the policymakers to ensure that the customers experience a 
standard level of reliability. For example, for Denmark, the target LOLE is equal to 
35 [minutes/yr] [24]. For some European countries, the value of LOLE targets varies 
from 4 to 8 [hours/yr] [55]. For the US, the target LOLE revolves around 0.1 [days/yr] 
[61]. EENS, or Expected Energy Not Supplied, indicates the amount of energy that is 
expected to be lost annually. This index is especially desirable for economic studies 
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and evaluating the cost of unreliability in the system, as it can be monetized by using 
the value of the lost energy. It is also worth mentioning that these indices can be 
reported either as the delivery point or system indices. Delivery point indices are 
calculated based on what is seen from a specific load point of view, while for system 
indices, one value is calculated for the entire system, representing all the load points’ 
unreliability. In this PhD project, all the calculated indices are system indices. 
Furthermore, as mentioned before, an ideal reliability index must reflect both 
probability and consequence of unreliability events. Therefore, here, the focus will be 
on calculating LOLE and EENS as they hold this characteristic. Also, in HL III and 
for distribution systems, many different reliability indices (e.g., SAIFI, SAIDI, 
CAIDI, average outage time [62]) exist, which will not be explained here as they are 
not the focus of this project. 

The basic steps to calculate the reliability in HL I are shown in Fig. 2.4. 
 

Derive probabilistic generation model

Select load model

Convolve generation and load model
 

Fig. 2.4. Fundamental steps to calculate the power system reliability indices in HL I. 
 

For the conventional power system, only the chance failures of generators are 
assumed to influence and contribute to the generation model at HL I. The generation 
capacity and load can be modeled probabilistically or by using time series. The above 
principle has been illustrated in Fig. 2.5, for a simple system, where one load and one 
generating unit exists, and the generation and load are modeled by individual PDFs. 

G L
Generator Load

L
G

Pr
ob

ab
ili

ty

Power

Inadequacy
(Expected demand not supplied)  

Fig. 2.5. Probabilistic modeling of Load (L) and Generation (G) and convolving them to 
calculate the reliability indices. 

 
When more generating units and load points exist in the system, they can be 

merged to form one equivalent generation unit and one equivalent load, as shown in 
Fig. 2.6. Then, by convolving the equivalent load and generation model, the reliability 
indices can be calculated [41]. 
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Fig. 2.6. Developing equivalent load and generation model of the power system to obtain 

system-level reliability indices (G: Generation, L: Load). 
 

Instead of a probabilistic approach (which was illustrated in Fig 2.5), a time series 
approach can also be adopted to model the load and generation, if such data are 
available. 

So far, the principles of calculating reliability indices in PS have been discussed. 
Now the mathematical details will be explained. The overall procedure to calculate 
the reliability indices in PS is shown in Fig. 2.7. 
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Determine the component outage model

Constant failure rate from historical data
Repair rate from service reports
Engineering judgement

Select system states and calculate their probability

Probability convolution method
Markov method
State enumeration technique
Monte Carlo simulation

Evaluate the consequences of selected states

Power flow and optimal power flow
Contingency analysis
Connectivity identification

Capacity Outage Probability Table (COPT)
Computer programming

Calculate the reliability index based on the 
obtained probability and consequences

 
Fig. 2.7. The steps to calculate the reliability indices for a power system. 

 

2.4. Outage Models and Calculating State Probabilities 
Since the generation model in conventional PS is a function of generator failures, it is 
necessary to know the outage models of these units. The presumption in power system 
studies is that the units are working within their useful lifetime period (as shown in 
Fig. 2.8), where chance failures are dominant, and wear-out failures are ignored. As a 
result of this assumption, a constant failure rate, , is used to model generator outages. 
These constant failure rates are often extracted based on historical statistics and field 
failure reports, although in some cases, the engineering judgment is used to estimate 
them (e.g., when historical data is not available). Also, it is assumed that the 
generating unit is restored to its initial condition after each failure, with a repair rate 
of μ. This repair rate depends on the type of failure, distance, the number of the 
maintenance crew, and their experience, as well as available spare units. 
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Fig. 2.8. Comparison of the assumptions for the operating range of the units in power system 

versus power electronic reliability studies. 
 

The methods for calculating the state probabilities can be categorized into 
analytical and numerical methods. Both analytical and numerical methods have merits 
and shortcomings. Analytical methods aim to model the system by using 
mathematical equations and find the state probabilities by solving them. Probability 
Convolution Method (PCM), State Enumeration Technique (SET), and Markov 
approach are among the analytical methods. Typically, when the number of severe 
events is small, or operating conditions are not too complex, SET and Markov 
approach are more efficient. For a single-generator single-load system, PCM is 
applicable. Also, if the failure probabilities of the units are relatively small, the SET 
is preferable. On the other hand, numerical methods aim to model the random 
behavior of the system through simulation, based on physical and statistical 
relationships. The most common numerical method is the Monte Carlo Simulation 
(MCS), which can be useful when the system has complex operating conditions or the 
number of severe events is large, although it will have a high computation time. 

  

2.5. Probability Convolution Method 
This method is straightforward and applicable to calculate both EENS and LOLE for 
systems with one equivalent generation unit and one equivalent load. To realize this 
method, the following steps must be taken: 

 Find the probability distribution of generation capacity 
 Find the probability distribution of the load 
 Convolve two distributions 

 
If G and L are random variables, respectively representing generating unit and 

load with the following discrete PDFs [41]: 
( )          ( 1,..., )j jP G G p j n  (2.1) 
( )          ( 1,..., )i iP L L p i m  (2.2) 

The EENS and LOLE can be calculated as 

1 1
max(0, ). . .

n m

i j i j
j i

EENS L G p p T  (2.3) 
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1 1

max(0, )
. . .

n m
i j

i j
j i i j

L G
LOLE p p T

L G
 (2.4) 

where T is the time length of study, typically one year or 8760 hours. 
 

2.6. Markov Method 
For systems with a few generating units, where finding an equivalent generating unit 
is not simple, the Markov method can be helpful. Markov method is also called the 
state-space approach since it is based on a state-space diagram, which provides a 
graphical way to illustrate various states and the transitions among them. For a system 
with four generating units, the state space diagram in the Markov approach is shown 
in Fig. 2.9. 
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Fig. 2.9. State-space representation of a power system with four generating units (S: State, G: 

Generator). 
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For a system with N generating units, the number of states in the state space 

diagram will be 2N. Therefore, for systems with a large number of generators (large 
N), the Markov method is not practical. It should also be pointed out that the Markov 
method will provide us with the probability of each state, while the consequence of 
each state must be known by analyzing the system by using power flow or other 
methods shown in Fig. 2.7. 

After drawing the state-space diagram, a differential equation can be written in 
terms of failure and repair rates for each state. By considering the initial conditions 
and solving the set of differential equations for all states (also known as Chapman-
Kolmogorov equations), the probability distribution of residing in each of the states 
can be calculated. A typical state and its neighboring states are shown in Fig. 2.10, 
where the possible transitions among them due to failures ( ) and repairs (μ) are 
depicted. 

 

State i

State j

State k

State m

State nμk,j

k,m

μn,k

i,k

 
Fig. 2.10. A certain state in the state-space representation of the power systems, used to write 

the Markov equations accordingly. 
 
From Fig. 2.10 and Chapman-Kolmogorov equations, the time derivative of Pk(t), 

which is the probability of residing in state k, can be written as [63]: 

, , , ,( )k
i k i n k n k j k n k

i n j n

dP
P P P

dt
 (2.5) 

When the above equation is written for all states, a set of differential equations 
can be solved given the initial conditions for Pk(t). As a result, Pk(t),the probability of 
residing in each state k will be revealed. 

 

2.7. State Enumeration Technique 
In this technique, the availability, Ai, and unavailability, Ui, of unit i is approximated 
by: 

i
i

i i

A  (2.6) 

i
i

i i

U  (2.7) 

where μi and i are the repair rate and chance failure rate for unit i. 
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It is worth mentioning that this approach is only valid when constant failure rates 
are used, as it is the case for conventional PS. When non-constant failure rates are to 
be used, as it is the case in PEPSs, this approximation is not valid, and new approaches 
must be used to model the availability. A solution has been proposed for this problem 
in [J1], where the details will be discussed in Chapter 4. 

For a system with N generating units, the probability of the occurrence of state S, 
in which Nd units are down (failed) can be written as [53]: 

1 1

( ) .
d dN N N

i i
i i

P S U A  (2.8) 

where Ui and Ai can be calculated from (2.6) and (2.7). It should be noted that a major 
drawback of this method is that it only presents the steady-state values of probabilities. 
In other words, the time-dependent behavior of the probability cannot be calculated 
by using this, while it could be studied by using the Markov method. 
 

2.8. Monte Carlo Simulation in Power System Reliability Analysis 
As explained before, when the number of states increases or complex operating 
conditions exist, numerical methods, e.g., the MCS, can be employed. Although the 
principle of this MCS is similar to what is used for PE reliability modeling, its purpose 
and implementation details are substantially different. This method is very versatile 
and allows for modeling aging and reliability in repairable, non constant failure rates, 
and complex systems. However, this versatility comes at the cost of increased 
computation time. The flowchart to implement the MCS for a system with two 
generating units is shown in Fig. 2.11. 

Given that the PDF of time to repair and time to failure are known, two random 
numbers are generated for each unit at each iteration of MCS. These random numbers 
are then plugged into the inverse of these PDFs, resulting in a random value for time 
to failure (ttf) and time to repair (ttr). As shown in Fig. 2.12, the unit is up during the 
ttf and down during the ttr. This process is continued so that the unit status is known 
for the entire study period, T. With a similar approach, the status (up or down) of all 
units is sampled for the given study time frame. This process is repeated as long as 
certain stopping criteria are not met. Once the stopping criteria are met, the outcomes 
of different iterations are averaged, where the probability of occurrence of any state 
can be calculated based on the simulated results. 
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Calculate and store ttf (time to failure) from the inverse of 
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t = t + ttf + ttr
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While t < T

j = Ng

Start

Get the failure and repair rate of all generators
Get Ns, the total number of simulations according to a stopping criteria
Get Ng, the total number of Generators
Get T, the study time frame
i =1, iteration initialization

Generate a uniformly distributed random number

t = 0

True

False

j = j + 1

j = 1

i = Ns

False

True

False

i = i + 1

Probability of state = (Number of occurrences of the state)/Ns

 
Fig. 2.11. Flowchart to implement the Monte Carlo simulation for power system reliability 

assessment. 
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Fig. 2.12. Graphical representation of the Monte Carlo simulation for calculating the state 

probabilities and power system reliability assessment. 
 

2.9. Capacity Outage Probability Table (COPT) 
COPT characterizes the power system by providing a probabilistic model of its 
generating units. In COPT, all the available generating capacity states that the system 
can experience are listed, where their respective probabilities of occurrence are also 
provided. The probability of these states can be calculated by using one of the 
analytical or numerical methods explained above. A simplified demonstration of 
COPT can be seen in Table 2.1, where individual probabilities, pj, and they can be 
calculated by one of the methods explained above, and available capacity, Gj, can be 
calculated by power flow analysis or contingency analysis. 
 

Table 2.1. General form of the Capacity Outage Probability Table (COPT) 

j 
Available 
capacity 

(Gk) 

Capacity 
outage 

Individual 
probability 

(pk) 

Cumulative 
probability 

1 G1 0 p1 
1

COPTN

k
k

p  

2 G2 G1-G2 p2 
2

COPTN

k
k

p  

… … … … … 
NCOPT GNcopt G1- GNcopt pNcopt pNcopt 
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The concept of COPT is the same for both small and large systems. For systems 

with few generating units, writing the COPT is possible manually. However, for larger 
systems, the concept of COPT must be realized through computer programming. 

Since the COPT presents a probabilistic model of generating capacity, the 
reliability indices can be calculated if the load model is known too. In this regard, 
various load models can be used for power system studies, such as the constant load 
model, hourly load model, daily peak load model, Load Duration Curve (LDC), and 
Daily Peak Load Variation Curve (DPLVC). The hourly load model and daily peak 
load model describe the load chronologically, which are suitable when time series of 
generating capacity is available. Therefore, they are usually used to evaluate the past 
performance of the system rather than predicting its long-term future performance. 
An example of the hourly load model for the RBTS (Roy Billinton Test System) is 
shown in Fig. 2.13. 

 

 
Fig. 2.13. Hourly load model, time series of the load model used in Roy Billinton Test System 

(RBTS). 
 

If a constant load model is used, the LOLE and EENS can be calculated as: 

1

max(0, )
. .

COPTN
j

j
j j

L G
LOLE p T

L G
 (2.9) 

1
max(0, ). .

COPTN

j j
j

EENS L G p T  (2.10) 

where j is the number of rows in COPT, T is the time length of the study, pj and Gj are 
the individual probability and the available capacity at row j of COPT, respectively, 
and L is the constant load value. 

If an LDC or DPLVC is used to model the load, the indices can be calculated 
similarly. The difference between LDC and DPLVC is that the LDC uses hourly peak 
load (or peak load in smaller time frames), while DPLVDC uses daily peak loads. 
Then, as shown in Fig. 2.14, these load levels are sorted in descending order, and the 
amount of time that load level has occurred is calculated, which can be translated into 
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the probability of the occurrence of the load level, where the probability of each load 
level can be calculated from pi = Ti / T. 

 

T time

Power

Li

Ti  
Fig. 2.14. Simplified graphical illustration of the Load Duration Curve (LDC). 

 
The LDC for the RBTS is shown in Fig. 2.15, where it is obtained by translating 

the hourly load model (shown in Fig. 2.13) to an LDC. 
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Fig. 2.15. Load Duration Curve (LDC) of the load model used in Roy Billinton Test System 
(RBTS). 

 
If an LDC is used to model the load, the reliability indices can be calculated as: 

0     
1     

i j
ij

i j

L G
l

L G
 (2.11) 

1 1
. . .

COPT LDCN N

i j ij
j i

LOLE p p l T  (2.12) 

1 1
. .max(0, ).

COPT LDCN N

i j i j
j i

EENS p p L G T  (2.13) 
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where Li is the ith  load level in the LDC, pi is the probability of the ith load level, NLDC 
is the number of load levels, NCOPT is the number of rows in COPT, pj is the individual 
probability in the jth  row of LDC, Gj is the available capacity in the jth row of COPT, 
and T is the study time frame. 
 

2.10. Impact of Non-Power Electronic Failures on Power System Reliability 

Another major difference between PS and PE reliability studies is that in PS, many 
components play a role – not only generators or power converters. Since the physical 
failure models provide better insight and accuracy, they are preferred over statistical 
models. If the physical models for the outage of a specific component exist, they will 
be incorporated into the calculations. However, such models do not exist for all PS 
components, in spite of their considerable role in the system reliability. For example, 
Wind Turbines (WTs) are used in large quantities in PEPSs. One of the key factors in 
their reliability is the converter failures, which has been studied extensively. However, 
other WT components also influence its reliability, such as its internal Circuit Breaker 
(CB) [64]. CB has a relatively large failure rate and has a noticeable impact on the 
WT reliability, and therefore, the system-level reliability. However, a mission profile-
based and physical model-based method to assess its reliability is missing. Since, at 
the system level, the objective is to include the model-based reliability for as many 
components as possible, developing such a methodology to assess the WTCB can be 
of interest.  

The application of CB in WT structure is shown in Fig. 2.16. Also, the steps to 
model its reliability are shown in Fig. 2.17, where the CB’s main stressor must be 
found first. So, various stressors, such as the number of activations, current, 
temperature, humidity, and harmonics, were analyzed [65]–[67]. As a result, the 
number of activations and current were identified as the main stressors that determine 
the mechanical and electrical endurance of the CB [64]. Considering this, the lifetime 
model of the CB can be described in terms of its endurance curve, as shown in Fig. 
2.18.  
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Fig. 2.16. Application of the circuit breaker in the PMSG-based wind turbine with full-scale 

power converter. 
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Fig. 2.17. Procedure to develop a reliability model for the circuit breaker based on physics of 

failure. 
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Fig. 2.18. Endurance curve of the circuit breaker: representing mechanical and electrical 

endurance. 
 

For the CB in WT application, the electrical endurance exceeds the mechanical 
endurance. Accordingly, the lifetime model of the CB can be written as: 

( 1)

exp[ ( ) ]f f
mf

N N
 (2.14) 

where  and  are the Weibull scale and shape parameters from the endurance test, 
and Nf is the number of cycles to failure.  

Next, the mission profiles must be identified, and models must be developed to 
translate them into the CB stressor. From analyzing the CB performance, it was shown 
that the wind speed, requested reactive power, and safety alarms are the main 
contributing factors to the CB activations. Thus, models were developed to translate 
these mission profiles into the number of activations. By employing an approach 
similar to the stress-strength analysis in PE literature, a method was developed to 
model CB reliability in the WT. The schematics of the developed method are 
illustrated in Fig. 2.19, where the overall block diagram can be seen. 

The reliability of a case study was evaluated by using the developed approach. 
The mission profiles used for this case study are shown in Fig. 2.20, and other 
parameters are presented in Table. 2.2. 
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Fig. 2.19. Block diagram of the proposed reliability modeling method for wind turbine 

circuit breaker (Vw: wind speed, Qref: grid reactive power set-point, D: Damage, Nf: number of 
cycles to failure,  and : scale and shape parameter of the Weibull for lifetime model, μ and 

: mean and standard deviation of Nalarms (the annual number of alarms)). 
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(b) 

Fig. 2.20. Wind turbine-level mission profiles (MP1): (a) yearly profile of wind speed and (b) 
yearly profile of reactive power requested by the grid. 
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Table 2.2. Parameters used for the case study wind turbine  

Parameter Value 
Vo [m/s] 3 
Vc [m/s] 3.5 

Td [minutes] 120 
Qr [kVAr] 330 

TPN 7 
Number of turbines in park 7 

 
Given the above mission profiles and parameters, the damage distribution for the 

CB under study was extracted, as shown in Fig. 2.21. Accordingly, its reliability was 
calculated, which is shown in Fig. 2.22. 
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Fig. 2.21. Distribution of the accumulated damage to the circuit breaker. 
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Fig. 2.22. Reliability of the circuit breaker as a function of time. 
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The main advantage of the developed method is that it is mission profile-based. 
For example, a new set of mission profiles was considered for the same case study. 
When the reliability of the case study was evaluated with respect to the new MPs, new 
results were obtained for the reliability, as shown in Fig. 2.23. Therefore, the 
developed method provides a tool to study the effect of MPs on the CB reliability and 
compare the performance of the CB under different MPs. 
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Fig. 2.23. Comparison of the reliability curves under two different mission profiles. 

 
Another advantage of the developed method is that it is model-based. For 

example, several parameters play a role in the CB control strategy, all of which are 
modeled here. Td is one of the control parameters, which is modeled in the production 
controller unit, as shown in Fig. 2.19. By using the developed method, one can 
investigate how the variation of this parameter affects the number of activations, 
which is the main CB stressor. In this regard, a Nactivations-Td curve is obtained by 
performing a sensitivity analysis, which shows that the CB stress decreases as Td 
increases, as shown in Fig. 2.24. Also, to study the effect of Td on the CB reliability, 
three cases were defined, i.e., Td = 120 [minutes], Td = 180 [minutes], and Td = 240 
[minutes]. The reliability of the CB in these three cases was calculated and compared 
with each other, as shown in Fig. 2.25. As Fig. 2.25 suggests, increasing Td leads to 
an increase in reliability too. However, increasing Td also causes other problems, such 
as stressing the converter. Furthermore, the developed method enables the quantitative 
evaluation of the CB reliability given specific model parameters. For example, for t = 
30 [years], the unreliability of the CB in the above three cases of Td were obtained 
U(t)= 7.8%, U(t) = 3.1% and U(t) = 1.7%, respectively. 
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Fig. 2.24. Nactivations-Td curve, showing the variation of Nactivations (number of circuit breaker 

activations as Td (one of the control parameters) varies. 
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Fig. 2.25. Comparing the reliability of the circuit breaker under three different values for Td to 

investigate the effect of control parameters on its reliability. 
 

2.11. Summary 
In this chapter, the reliability assessment of conventional power systems was studied, 
where all the steps and methods to implement them were discussed. Particularly, 
analytical and numerical methods for calculating state probabilities, such as the 
probability convolution method, Markov method, state enumeration technique, and 
Monte Carlo simulation were explained in detail. Moreover, different load models as 
well as the mathematical equations to calculate the reliability indices in conventional 
power systems by using the above methods were presented. Also, since in the PS, the 
outage model of all components matters, the developed reliability model for a wind 
turbine CB was demonstrated as an example. As a result, in this chapter, a larger 
picture of the PEPS reliability assessment was illustrated from a PS perspective. 
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Chapter 3    
Reliability Modeling in Power Electronics 
 
 

3.1. Background 
The key to the PEPS reliability assessment is to bridge the gap between the Power 
Electronics (PE) reliability models and Power System (PS) reliability assessment 
methods. In the previous chapter, a basic understanding of the PS reliability 
assessment, including the concepts and methodologies, was provided. Since the power 
electronic converters are the backbone of the PEPSs, it is imperative to know the 
proper way of reliability modeling of their components and implement them in a 
computationally efficient way. As a result, this chapter will cover the modeling of 
reliability for power electronic converters. This includes efficient implementation of 
several steps, such as electro-thermal modeling, damage calculation using lifetime 
models, Monte Carlo simulation for variation analysis, and reliability block diagram 
technique. The implementation details of these methods will also be presented in this 
chapter by a case study of a PhotoVoltaic (PV) system. Also, the uncertainty of 
mission profiles and a proposed solution to model that will be discussed. 
 

3.2. Wear-Out Failure Modeling 
Despite many flaws, using reliability handbooks is still one of the popular methods 
for reliability modeling in power electronics, due to their simplicity and 
straightforwardness. Among these handbooks MIL-HDBK-217F [44] has been 
widely used. However, there are serious flaws in using this handbook, namely, 
outdated data, ignoring the physics of failure in components, and ignoring the 
application and operating conditions. Similar to this handbook, some companies have 
provided their own reliability guidelines, e.g., Siemens SN29500, RDF-2000, and 
Telcordia SR-322 [39]. Despite the improvements they provide (such as being 
application-based and incorporating newer technologies), they share the rest of the 
shortcomings with MIL-HDBK-217F. To improve these, International 
Electrotechnical Commission published IEC TR-62380 [68], which considers 
Mission Profiles (MPs). Nevertheless, this handbook was substituted with IEC 61709 
[45] to update the data and incorporate modeling of failure mechanisms. Since the 
failure mechanisms in these handbooks are not modeled physically and still are based 
on statistics, FIDES [46] was published to address this challenge and incorporate the 
physics of failure into reliability modeling. In spite of these efforts, the final outcomes 
of FIDES and the other handbooks are constant failure rates, which means that the 
aging of power converters will not be considered. In other words, it is assumed that 
the components do not enter a wear-out phase, while the wear-out modeling is a main 
concern for the reliability modeling of PE for PEPS application [43]. For the above 
reasons, in this PhD project, the reliability modeling based on handbooks was not 
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used. Instead, mission-profile-based and model-based reliability evaluation method, 
also known as stress-strength analysis, was adopted. The procedure for stress-strength 
analysis and modeling the reliability from component-level up to converter-level is 
shown in Fig. 3.1. It is worth mentioning that the focus of this method is on the wear-
out failure modeling of components, while the chance failure modeling was presented 
in the Chapter 2. 
 

Electrical Model

Thermal Model

Counting 
Algorithm

Lifetime 
Model

Miner’s 
Rule

Monte Carlo Simulation

Reliability Block Diagram 

Power Loss

Mission Profiles Converter Reliability

Temperature Damage

Component Distribution of Time-to-Failure

El
ec

tro
-T

he
rm

al
 

M
od

el
in

g

Damage Calculation

 
Fig. 3.1. Basic reliability modeling process of power electronic converters [C1]. 

 

3.3. Electro-Thermal Modeling 
The stress-strength analysis begins with electro-thermal modeling, also known as 
mission profile translation. There are various stressors, such as temperature, humidity, 
and voltage, which trigger different failure mechanisms in PE components and 
influence their lifetime. Among these stressors, temperature and its swings are the 
main ones for the reliability-critical components – i.e., power semiconductors and 
capacitors. Hence, in this PhD project, only the thermal-induced stresses have been 
modeled and explained. Therefore, to calculate the reliability of a component, first, its 
temperature must be known. So, the process of electro-thermal modeling aims to 
translate the mission profiles into the temperature of the reliability-critical 
components by means of thermal and electrical models. Mission profiles are the 
operating conditions to which the PE converter is subjected, which determine the 
temperature of the reliability critical components. For a PhotoVoltaic (PV) converter, 
typically, a yearly profile of solar irradiance and ambient temperature is considered. 
For a wind converter, typically, yearly profiles of wind speed and ambient temperature 
are considered.  

Often, this step is done by performing computer simulations of the converter 
system in the electrical and thermal domains. Nevertheless, this approach will make 
the electro-thermal modeling and the entire reliability modeling process time-
consuming [69]. Considering that many converters must be modeled in a PEPS, this 
approach may result in unrealistically large computation times at the system level. To 
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accelerate the electro-thermal modeling, detailed analytical models can be adopted. In 
this regard, in [C1], the details of reliability modeling of a PV inverter at the converter 
level have been presented, where an analytical approach has been adopted for electro-
thermal modeling. In this case, first, the PV panels must be modeled in order to know 
the input power and voltage to the inverter. The power and voltage characteristics of 
a PV panel for several solar irradiance levels are shown in Fig. 3.2 [70]. The 
assumption is that the maximum power will be extracted from the panel at any solar 
irradiance level by using the Maximum Power Point Tracking (MPPT) algorithm. One 
approach to model this is to simulate the panel in the computer environment. 
However, apart from being time-consuming, this is not a model-based approach, and 
the process needs to be repeated whenever a new panel is used. Instead, the single-
diode model of the panel (shown in Fig. 3.3) has been used, which enables fast 
analytical translation of solar irradiance to output power and voltage with a few 
parameters that are available in the PV panel datasheet. These analytical expressions 
have been presented in [C1]. 
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Fig. 3.2. An example of Power-Voltage characteristic curve of a PV panel at different solar 

irradiance levels at a fixed ambient temperature (SI: Solar Irradiance, MPP: Maximum Power 
Point) [70]. 
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Fig. 3.3. Electrical equivalent of a PV cell according to the single-diode model [C1]. 

 
Similarly, for a wind power converter, the wind speed must be translated into the 

converter input power. To do so, the turbine power curve must be utilized, which 
relates the output power of the generator to the wind speed. The turbine power curve 
is provided to the wind turbine operator by the manufacturer. An example of the 
turbine power curve for a two-Megawatt wind turbine is shown in Fig 3.4 [52]. 
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Fig. 3.4. Turbine power curve for a two-Megawatt wind turbine (Vc: cut-in speed, Vr: rated 

speed, Vf: cut-out speed) [52]. 
 

Notably, the turbine power curve is characterized by four parameters. Vc is the 
cut-in speed, the speed at which the blades start rotating and the power production 
begins. Vr is the rated turbine speed. When the turbine reaches Vr, it produces the rated 
power Pr. For the speeds above Vr and below Vf, the turbine power remains constant 
and equal to Pr. Vf is called cut-out speed, where the turbine blades are faded out at 
the wind to prevent the stress on the rotor due to high wind speed. If the turbine power 
curve is not available from the manufacturer, the following equation can be used to 
describe it [71]. 

2 2

2 2

0              or    

( ) .          
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P v P V v V
V V
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 (3.1) 

where v is the wind speed, Vc, Vr, Vf, and Pr are cut-in, rate, cut-out speeds, and Pr is 
the rated power of the turbine. 

The temperatures of semiconductors and capacitors are driven by their power 
losses and ambient temperature. Ambient temperature is available from the yearly 
mission profiles. For a typical three-phase voltage source inverter shown in Fig 3.5, 
the conduction (PC) and switching losses (PS) of IGBTs can be calculated from [72]: 

 
2

0 1 1
1 cos 1 cos( ) ( )

2 8 8 3C CE CE
m mP V I r I  (3.2) 

1( ) ( ) (1 ( ))V

SW

KDC
S sw on off E j ref

ref ref

VI
P f E E T T

I V
 (3.3) 

where m is the modulation index,  is power factor angle, fsw is the switching 
frequency, I1 is the fundamental harmonic of inverter output current, Esw, is the 
switching losses temperature coefficient, Vref, Iref, and Tref are the reference values for 
voltage, current, and temperature in the datasheet of IGBT , and Eon and Eoff are turn-
on and turn-off energy losses per pulse.  
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As can be seen in (3.2) and (3.3), to calculate the losses, the m and cos  must be 
known. To know them, the grid and output filter must also be modeled. Grid and filter 
models are shown in Fig. 3.6, where the detailed equations are presented in [C1]. 
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Fig. 3.5.  Circuit diagram of an IGBT-based three phase voltage source inverter. 
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Fig. 3.6. Equivalent circuit of the grid and LCL filter [C1]. 

 
Once the losses are calculated, they must be translated into the temperature. To 

do so, two approaches are possible: simulation with the Finite Element Method (FEM) 
and thermal equivalent circuits. The former is more accurate but time-consuming. 
Therefore, the latter approach has been used, which is fast and provides acceptable 
accuracy. To realize the analytical modeling for the semiconductor, a Foster network 
has been used, as shown in Fig. 3.7, where in this case, n = 5. 
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Fig. 3.7. N-th order Foster network (equivalent thermal circuit) for thermal modeling of 

IGBTs [C1]. 
 

As shown in Fig. 3.8, the IGBT temperature fluctuation has two components, Tjm 
variations, or slow variations due to solar irradiance and ambient temperature changes, 
and Tjm, line-frequency variations. The detailed equations to calculate both of these 
components given the above Foster network have been presented in [C1]. Similarly, 
the DC-link capacitor temperature is driven by its ESR (Equivalent Series Resistant) 
losses, which is a function of the current. The capacitor currents can be formulated as 
[73]: 

2
, 1

3 3 9[ cos ( )]
4 16C rmsI I m m  (3.4) 

where m is the modulation index,  is the power factor angle, and I1 is the fundamental 
harmonic of inverter output current. Accordingly, the hotspot temperature of the 
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capacitor can be calculated. Also, in [C1], the dependency of ESR on the frequency, 
as illustrated in Fig. 3.9, has been considered. 

Tjm1

Tjm2

Tj2

 
Fig. 3.8. The junction temperature of an IGBT consisting of slow variations in Tjm and line-

frequency variations, Tj [C1]. 
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Fig. 3.9. Dependency of capacitor ESR on the frequency [C1]. 

 
The above modeling has been implemented in [C1], where, for a case study PV 

inverter, the mission profiles have been translated into Tj and Tj for IGBTs, and Th 
for capacitors. Fig. 3.10 shows the case study system, and the detailed parameters can 
be found in Table 3.1 and Table 3.2 and [C1]. 
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Fig. 3.10. Schematics of a PV system for a case study, including PV arrays, boost converter, 

PV inverter, LCL filter, and grid model [C1]. 
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Table 3.1. Inverter parameters for the case study in Fig. 3.10 [C1] 
Parameter Value 
Vdc 800 (V) 
fsw 2500 (Hz) 
Lf1  3.5 (mH) 
Lf2 0.5 (mH) 
Cf 22 (μF) 

 
Table 3.2. Grid parameters for the case study [C1] 
Parameter Value 
Vg  230 (V) 
fg 50 (Hz) 
Rg 0.5 ( ) 
Lg 1 (mH) 

 
 
The used mission profiles are shown in Fig. 3.11, which includes the yearly 

profiles of solar irradiance and ambient temperature in Aalborg, with a time resolution 
of five minutes. 
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Fig. 3.11. Mission profile of Aalborg used in this case study: (a) solar irradiance and (b) 

ambient temperature [C1]. 
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By using the above analytical modeling method, the Tj, Tj, and Th have been 
calculated and shown in Fig. 3.12. 
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Fig. 3.12. IGBT and capacitor temperature profiles: Tj (red) and Tj (black) for IGBT, and Th 

(blue) for capacitors using the mission profiles in Fig. 3.11 [C1]. 
 

Apart from the analytical modeling, a detailed simulation model has also been 
implemented in PLECS. To verify the accuracy of the analytical results, they are 
compared to simulation results, as shown in Fig. 3.13 and Fig. 3.14. 
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Fig. 3.13. Comparison of analytical and simulation modeling results: IGBT junction 

temperature for different irradiations [C1]. 
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Fig. 3.14. Comparison of analytical and simulation modeling results: capacitor hotspot 

temperature for different irradiations [C1]. 
 

As Fig. 3.13 and Fig. 3.14 show, there is a good match between the detailed 
simulation results and the results derived from analytical models. It should be noted 
that at the design phase of the converter and before prototyping, only detailed 
simulation models exist for analysis. However, the analytical models outperform the 
simulation models in terms of computational efficiency, since they provide a 
comparable accuracy with shorter computation times. 

 

3.4. Damage Calculation Using Lifetime Models 
Lifetime models: From Fig. 3.1, when the electro-thermal modeling is finished, the 
damage calculation using lifetime models must be done. Lifetime models are 
mathematical expressions based on the physics of failure describing the lifetime of a 
component in terms of time or number of cycles to failure. For semiconductors, the 
lifetime model is in terms of the number of cycles to failure, Nf, and can be described 
as 

31 2

max

exp( )( )
273 1.5

on
f j

j

t
N A T

T
 (3.5) 

where Tj and Tjmax are the range and maximum of the junction temperature in the 
cycle, respectively, and ton is the on-time of the cycle. A, 1, 2, and 3 are lifetime 
parameters that can be obtained from the curves provided by the manufacturer or from 
accelerated tests. An example of such curves is shown in Fig. 3.15 [74], which shows 
the number of cycles to failures for the IGBT used in this case study in terms of its 
junction temperature fluctuations. 
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Fig. 3.15. Number of cycles to failure versus the junction temperature of an IGBT, 

obtained from power cycling test [74]. 
 

For capacitors, the lifetime model is in terms of time to failure at a given 
temperature (Th) and voltage (V), and can be described as  

,

1 2.2 .( )
h ref hT T

n n
ref

ref

VL L
V

 (3.6) 

where Th,ref is the reference hotspot temperature, Lref is the rated lifetime of the 
capacitor under the reference hotspot temperature, Vref is the reference voltage, and n1 
and n2 are parameters provided by the manufacturer. The lifetime model parameters 
for the IGBT and capacitors used for this study are presented in Table 3.3 and Table 
3.4. 
 

Table 3.3. Parameters of the lifetime model for the IGBTs [C1] 
Lifetime parameter Value 
A 8.325514 

1 -7.01 
2 2553 
3 -0.3 

 
Table 3.4. Parameters of the lifetime model for capacitors [C1] 

Lifetime parameter Value 
Lref 7000 (hours) 
Tref 105 C 
n1 10 
n2 2.5 

 
Damage calculation: Accumulated damage, D, indicates the proportion of the device 
lifetime that is consumed annually under a certain mission profile. When a rainflow 
counting algorithm is used on the IGBT junction temperature profile, it classifies the 
profile into k different cycles and provides a Tj, Tjm and ton associated with each. It 
also counts the number of times that the cycle is repeated (n). Since the line frequency 
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is fixed, the temperature variations and the number of cycles are known for the line-
frequency fluctuations. According to Miner’s rule, the accumulated damage to the 
IGBT can be written as: 

1

K
i

IGBT
i fi

n
D

N
 (3.7) 

where Nfi is the number of cycles to failure from the lifetime model, ni is the number 
of occurrences of each cycle obtained from the rainflow counting algorithm. 

For the capacitor, Th profiled is categorized into M temperature levels by using a 
histogram, where for each temperature level i, ti is the time period of its occurrence. 
According to the Miner’s rule, the accumulated damage to the capacitors can be 
calculated from: 

1

M
i

cap
i i

t
D

L
 (3.8) 

where Li is the capacitor time to failure at temperature level i (derived from the 
lifetime model of the capacitor), and ti comes from the histogram as explained. 
 
 

3.5. Monte Carlo Simulation (MCS) and Converter-Level 
Reliability 
The above calculated damage is a constant value, and therefore it is also known as 
static damage. However, there are different sources of uncertainties during the 
calculation procedure, which must be considered. Some of these sources of 
uncertainty are as follows; lifetime model parameters uncertainties due to a limited 
number of samples during the accelerated lifetime test, component-to-component 
variations due to manufacturing processes, and smaller errors in the electro-thermal 
models. To handle these uncertainties, a type of Monte Carlo simulation is adopted as 
shown in Fig. 3.16. In the above calculations, a static value was considered for all 
input parameters, and a static damage was resulted. By using the MCS, however, a 
Probability Density Function (PDF) can be obtained for each input parameter, where 
random samples of them will be taken to find the PDF of the output parameter. 
Therefore, a PDF will be obtained for the accumulated damage, rather than a static 
value. 
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Fig. 3.16. Schematic of the Monte Carlo simulation used to calculate the damage distribution 

for a power electronic component. 
 
 

For the above-mentioned case study, the PDF of the damage for IGBT and 
capacitors are calculated by using the MCS, as shown in Fig. 3.17 and Fig. 3.18. 

 

IGBT

 
Fig. 3.17. Distribution of Damage to IGBTs [C1]. 

 

Capacitor

 
Fig. 3.18. Distribution of Damage to the capacitor [C1]. 

 
Next, the time to failure, ttf, of each component must be calculated, which can be 

done by using ttf  = 1/D. Since the PDF of D is known from the MCS, the PDF of ttf, 
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f(t), can also be calculated easily. By knowing f(t), the reliability of the component 
can be found from: 

0

( ) 1 ( )
t

R t f d  (3.9) 

Then, the component-level reliabilities must be translated into the converter-level 
reliability by using the Reliability Block Diagram (RBD) [75] approach. Typically, 
the entire converter stops working when only one of its reliability-critical components 
fails. In RBD, this means that all reliability-critical components are in series, as shown 
in Fig. 3.19. It should be noted that this diagram could be different for other systems. 

S1 S2 SNs... C1 C2 CNc...
Switches Capacitors

 
Fig. 3.19. Representation of the converter structure by using the Reliability Block Diagram 

(RBD) approach. 
 

Therefore, for a converter with NS switches and NC capacitors, the converter-level 
reliability can be calculated according to 

( ) ( ). ( )S CN N
inv S CR t R t R t  (3.10) 

where RC and RS are the capacitor and switch reliability. Accordingly, the converter-
level reliability for the case study is calculated and shown in Fig 3.20. 

By applying distribution fitting methods to the converter reliability curve, it can 
be approximated with a Weibull distribution with shape and scale parameters of  and 
. By knowing  and , MTTF and BX lifetime can also be calculated for the converter 

from the following equations.  
1ln( )

1 /100XB
X

 (3.11) 

1(1 )MTTF  (3.12) 

MTTF is the average time to failure and BX lifetime is the lifetime at which more 
than X% of the population has failed. In this regard, , , MTTF, and B10 for the above 
case study are as presented in Table 3.5. 
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Fig. 3.20. Reliability of the complete inverter over time [C1]. 

 
Table 3.5. Calculated reliability metrics for the case study inverter [C1] 

Reliability metric Value 
(  , ) (8.5 , 13.9) 
B1 8.1 years 
B10 10.7 years 
MTTF 13.14 years 

 
Since all the above procedures are model-based, the execution time would be fast. 

Furthermore, these parameters have a physical meaning. Therefore, if any parameter 
changes in the future, such as DC-link voltage, switching frequency, PV panel 
parameters, or grid impedance, the new results can be obtained simply by changing 
the corresponding parameter in the model. For example, the impact of switching 
frequency on the B10 lifetime of the case study inverter is shown in Fig. 3.21 by 
performing a sensitivity analysis. 

 
Fig. 3.21. Impact of the switching frequency on the converter B10 lifetime. 

 

3.6. Mission Profile Uncertainty 
As discussed in Chapter 1, a key challenge that must be dealt with in this project is 
modeling the uncertainties. By using the MCS, some sources of uncertainty were 
considered that could be statistically modeled, such as component-to-component 
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variation, tolerance of values, and model errors. However, variation of mission profile 
from year to year is another source of uncertainty, which can introduce large errors 
and cannot be modeled with the MCS. For example, Fig. 3.22 shows the solar 
irradiance profile for three different years for Las Vegas, NV [76]. As it can be seen 
from Fig. 3.22, the variations can be substantial, even at the same period of the year, 
resulting in different stress levels in different years. 
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Fig. 3.22. Comparison of solar irradiance profiles of years 2007, 2009, and 2014 at week #30 

[76]. 
 

Given the above MPs shown in Fig 3.22, the reliability of the case study is 
calculated and shown in Fig. 3.23, considering only the IGBT failures. As it can be 
seen from Fig. 3.23, the calculated reliability is greatly dependent on the selected MP 
year. This is reasonable because some years induce a higher stress on the components 
and consume more lifetime, and vice versa. 

 

10 years

 
Fig. 3.23. Comparison of the converter reliability by using three different mission profiles – 

2007, 2009, and 2014 [C2]. 
 

To overcome this challenge, the Generative Adversarial Networks (GANs) [77], 
[78] can be used to do the scenario generation for the MPs. In other words, the GAN 
can be trained based on existing MPs to generate a larger number of scenarios 
representing all the MPs that the inverter might experience in the future. The structure 
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of the GAN is shown in Fig 3.24, while all the mathematical details on how to train 
and utilize it for scenario generation have been explained in section III of [C2]. 

 

...

...
...

...
...

...

...

... ...

...
...

...
...

...Input 
Noise Generated 

Profile

Real
Profile

Generator

Discriminator

Output prediction 
(real or generated)

Update 
coefficients  

Fig. 3.24. Overall structure of the Generative Adversarial Networks (GAN) and its training 
process used for mission profile generation [C2]. 

 
By implementing the GAN using Python, it was trained based on real MPs. 

Accordingly, 150 years of MP were generated. One of these generated profiles is 
shown in Fig. 3.25. 

 

 
Fig. 3.25. Comparison of the real and GAN-generated solar irradiance profiles at week #30 

[C2]. 
 

These GAN-generated profiles were compared with realistic profiles in terms of 
their Cumulative Distribution Function (CDF), monthly average, and Power Spectral 
Density (PSD). The results of this comparison are shown in Fig. 3.26 to Fig. 3.28. 
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(a) 
December

 
(b) 

Fig. 3.26. Comparison of the historical and GAN-generated profiles in term of the CDF 
(Cumulative Distribution Function) of the daytime solar irradiance: (a) July and (b) December 

[C2]. 
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Fig. 3.27. Comparison of the historical and GAN-generated profiles in terms of average solar 

irradiance in different months [C2]. 
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Fig. 3.28. Comparison of the historical and GAN-generated profiles in terms of PSD (Power 

Spectral Density) of the daytime solar irradiance [C2]. 
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From Fig. 3.26 to Fig. 3.28, it can be seen that the GAN-generated profiles 
approximately hold the same statistical and temporal properties of the real profile. 
However, they are not identical neither to each other, nor to the real profile, which is 
suitable for emulating MPs. Finally, to study whether the GAN-generated profiles can 
help in reducing the errors due to mission profile uncertainty, three cases were 
considered. The reliability of the above-mentioned case study was evaluated by using 
the stress-strength analysis and compared to each other. As shown in Fig. 3.29, Case 
I (blue curve in Fig. 3.29) is where only the MP of the year 2007 was considered, Case 
II (red curve in Fig. 3.29) is where 14 years of MP from 2007-2020 were considered, 
and Case III (yellow curve in Fig. 3.29) is where 150 GAN-generated scenarios were 
considered. 
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Fig. 3.29. Comparison of the inverter reliability based on GAN-generated profiles and 

historical profiles [C2]. 
 

As it can be seen from Fig. 3.29, by using the GAN-generated profiles, the 
estimated reliability matches the average of many years of MPs (comparing Case III 
and Case II). However, if only one year of MP was selected (which is typically the 
case in the literature), the reliability prediction will have a large error (compare Case 
I and Case II). In other words, by using the GAN, many scenarios are generated based 
on a limited number of real profiles, which reduces the sensitivity of the reliability 
estimation on the selected year of MP, and thereby reducing the errors. Therefore, 
when limited real data is available for MPs, using the GAN can help increase the 
reliability estimation accuracy by mitigating the effect of the mission profile 
uncertainty. 

 

3.7. Summary 
In this chapter, the methods for modeling power electronics reliability were presented, 
and their implementation details were discussed. In this regard, first, the details of 
reliability modeling of a PV inverter were presented, where all steps, including 
electrothermal modeling, lifetime models, damage calculation, Monte Carlo 
simulation, and RBD, were elaborated upon. Next, the mission profile uncertainty 
issue was discussed, where it was proposed to use GAN for MP scenario generation 
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and model its uncertainty. It was shown that by using this approach, the sensitivity of 
the estimated reliability to the mission profile is reduced.  
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Chapter 4    
A Comprehensive Framework for System-
Level Reliability Assessment of Power 
Electronic-based Power Systems 
 
 

4.1. Background 
In reliability assessment of Power Electronic-based Power System (PEPS), certain 
concerns must be addressed to avoid large errors and achieve realistic results. First, 
the mission profiles, converter wear-out models, and the physics of failures must be 
considered. These concerns were discussed in Chapter 3 by explaining the PE 
reliability modeling methods. The outcome of these methods are non-constant failure 
rates, neglecting the repair and chance failures. On the other hand, while PS reliability 
assessment methods (as explained in chapter 2) consider repair and chance failures, 
they are unable to incorporate non-constant failure rates. This chapter aims to bridge 
the gap between Chapter 2 and 3 to propose a reliability assessment method for the 
PEPSs. In this regard, a new availability modeling method for power converters in the 
PEPS will be discussed in this chapter. Another factor that significantly influences the 
PEPS reliability is the generation uncertainty. Due to the strong temporal patterns in 
PhotoVoltaic (PV) generation units, and since storage units are highly dependent on 
the dynamics of the power flow in the system, purely probabilistic methods cannot be 
used to model generation uncertainty. As a result, scenario generation based on 
Generative Adversarial Networks (GANs) is adopted and will be explained here. By 
doing so, both temporal and probabilistic aspects of generation capacity will be 
considered through emulating the mission profiles that mimic the future experience 
of the system. Also, to model the consequence of outage of units, the power system 
performance models for PV, Wind Turbine (WT), and Battery (BT) units must be 
considered, which will also be discussed in this chapter. Finally, it will be explained 
how to aggregate the data from the above models to calculate the reliability indices 
for a PEPS. 
 

4.2. Description of the Methodology 
A simplified schematic of a PEPS is shown in Fig. 4.1. As discussed in Chapter 1, due 
to the abundance of power electronics and renewables in such as system, new 
considerations must be taken into account when assessing its reliability. As a result, 
existing approaches might not be directly usable for PEPS reliability assessment, and 
hence we need to develop new methods or modify the existing ones. Therefore, a 
comprehensive framework is developed here and will be elaborated in this part, which 
enables the system-level reliability assessment of PEPSs. As shown in Fig. 4.2, the 
proposed framework for the PEPS reliability assessment has several blocks, each of 
them aims to address one of the discussed considerations. The main blocks of the 
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framework are as follows: Converter availability modeling, power system model, 
scenario generation, state enumeration, and index calculation.  

Converter availability model: One of the main considerations in the PEPS 
reliability assessment is to model and study the impact of power electronic failures 
and converter aging on the system-level reliability. In this block, such consideration 
will be addressed by adopting the wear-out models, which are developed based on 
mission profiles and physics of failure. To make it comprehensive, the effect of 
externally-caused failures is taken into account by incorporating chance failures into 
the model. Furthermore, the repair and corrective maintenance of the units are 
modeled. 

Power system model: In order to model the reliability, the consequence of each 
failure in the system in terms of lost energy and downtime must be known. 
Conventional generation units in Power Systems (PSs) could follow a certain setpoint 
as long as it was within their active and reactive power capability limits. As a result, 
it was simple to model the consequence of failure in that generating unit, as its output 
power would have become zero in that case. However, as it can be seen in Fig. 4.1, in 
a PEPS, the generating units are renewable-based, which are dependent on climate 
conditions and need to be modeled efficiently in the system. Moreover, storage units 
are a key contributor to the system reliability, whose output power and the State-Of-
Charge (SOC) depend on the load-generation balance, which require accurate and 
efficient modeling. Therefore, this block aims to provide efficient models of the 
generation and storage units in the PEPS to enable calculating the available power to 
the load at any time. 

Generative Adversarial Networks for scenario generation: Apart from power 
electronics failure, generation uncertainty can be an important cause of unreliability 
in the system. For example, when storage units are empty, and no wind and sunlight 
are available, the customers can experience outages even though no power electronic 
failures have happened. Since PV (because of its temporal patterns) and BT (because 
energy is a function of time and not only the power) are used in the PEPS, the 
dynamics of the generation are of great importance, and this problem cannot be 
modeled with purely probabilistic approaches such as Markov method. Therefore, 
Generative Adversarial Networks (GANs) are used to generate realistic mission 
profile scenarios, which emulates the wind and solar resources and enables modeling 
the generation uncertainty. 

State enumeration and index calculation: The fundamental principle of 
calculating reliability indices in any PSs is to know the probability and the 
consequence of unreliability events. In this regard, this block provides a systematic 
way to consider all the unreliability events that are caused by the failures or the lack 
of generation and storage power. In other words, it ensures that no unreliability event 
is ignored. Furthermore, not only the probabilistic but also the time-dependent 
behavior of reliability indices can be studied, thanks to providing time-varying PDFs 
for any index, rather than a static value. 
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Fig. 4.1. Representation of a power electronic-based power system (generation-demand 
model, SST: Solid-State Transformer, NPV, NWT, and NBT: number of photovoltaic, wind 

turbine, and battery units, respectively). 
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Fig. 4.2. Block diagram of the proposed framework for system-level reliability assessment of 
power electronic-based power systems (SCn,i: nth scenario (yearly profile of wind speed or 

solar irradiance) for the ith converter, Sj: bit array for system state j, Ay,i: availability of the ith 
converter at age y, Pi,j,n: the output power of the ith converter at state j for scenario n, PL: 

aggregated load profile, Prj:  probability of the occurrence of the system state j, Cj,n: 
consequence of state j in scenario n, PDF: Probability Density Function). 
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Start

Enter Nscenarios, the total number of scenarios, according to the stopping 
criterion in (4.38)
Enter Nconverters, the number of power electronic converters in the system
Enter Nstates, the total number of states, either from a predefined number of 
desired states or equal to 2Nconverters

Get y, the age of the system, at which the indices must be calculated
n = 1, iteration initialization

i = Nconverters

j = Nstates

n = Nscenarios

n = n + 1

j = j + 1i = i + 1

j = 1

i =  1

Generate Sj, the bit array for system state j, 
from “state enumeration” block in Fig. 4.2, and using (4.32)

Calculate Ay,i, the availability of converter i,
from “availability modeling” block in Fig. 4.2, and using Fig. 4.11

Calculate Probi,j, the probability of the occurrence of state j for converter i 
from (4.33)

Calculate Prj, the probability of system being in state j, 
from “state probability calculator” block in Fig. 4.2, and using (4.34)

Calculate and save LOLn from (4.40)
Calculate and save ENSn from (4.37)

Calculate the PDF of LOL
Calculate the PDF of ENS

End

Generate SCn,i, the scenario n for converter i,
from the “generative adversarial network” block in Fig. 4.2 and According 

to  Algorithm1

Calculate Pi,j,n, the output power of converter i at state j and scenario n,
from “power system modeling” block in Fig. 4.2, and using (4.17), (4.19), 

(4.25), and (4.27)

Calculate Cj,n, the consequence of state j for scenario n,
 from “convolution of time series” block in Fig. 4.2, and using (4.36) and 

(4.39)

 

Fig. 4.3. Flowchart of the proposed framework for system-level reliability assessment of the Power 
Electronic-based Power Systems (PEPSs). 
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To calculate reliability indices, the probability and consequence of each failure 
event must be known. In this regard, the probability of system states is calculated in 
the “converter availability modeling” block and the “state probability calculator” 
block. Also, the consequence of the failure event is evaluated by using the “GANs” 
block (i.e., scenario generation block) and the “power system model” block. Then, in 
the “index calculation” block, the probability and consequences for all states 
generated by “state enumeration” block are combined to acquire the LOL (Loss Of 
Load) and ENS (Energy Not Supplied). 

The flowchart of the developed framework can be seen in Fig. 4.3. First, a 
scenario, SC1,i, is generated for converter i, by using the GAN, which include a yearly 
profile of solar irradiance or wind speed. Next, the “state enumeration” block 
generates the first state to be evaluated, S1. According to S1 and based on the 
availability results at the desired age of y from the “converter availability modeling” 
block, the state probability is calculated in “state probability calculator” block. Then, 
S1 and generated scenarios are input to the “power system model” block. Accordingly, 
this block calculates the available generation capacity from the PV and WT units, and 
available power and the SOC of battery storage units, for the given scenario at S1. 
Next, the “state enumeration” block will generate the next desirable state, S2, where 
the probability and consequences of this state will be evaluated in a similar manner. 
This process will be repeated for all possible (or desirable) system states, Nstates 
(generated by “state enumeration” block), where the probability and severity of all 
states will be evaluated. With respect to the probability and severity of all states, the 
ENS and LOL will be calculated for the first scenario for all converters, SC1,i, 1  i  
Nconverters, in the “index calculation” block. Then, a new scenario will be generated by 
the GAN, SC2,i, 1  i  Nconverters, where a value of ENS and LOL will be calculated for 
it by repeating the same process explained for SC1,i. Totally, Nscenarios scenarios will 
be generated, where a value of LOL and ENS will be calculated for each according to 
Fig. 4.3. Nscenarios can be determined by defining a stopping criterion, which will be 
explained later. Based on the frequency of the occurrence of the obtained LOLs and 
ENSs, a Probability Density Function (PDF) can be extracted for each, which shows 
the probability distribution of the reliability index at age y. This PDF can further be 
fitted with a Normal distribution, where it can be represented by two parameters, N(μ 
, ). For different ages of y, N(μ , ) will change accordingly, which can be calculated 
by using the above framework. As a result, by using the above model-based 
framework, the effect of power electronic failures, component aging, generation 
uncertainty, and penetration of renewables on the system-level reliability can be 
studied quantitatively. 

 
4.3. Availability Modeling 
As Fig. 4.4 shows, outages in a PEPS can happen due to wear-out failures and chance 
failures. It is assumed that the early failures and infant mortality are negligible 
compared to wear-out and chance failures. Wear-out failures happen because of 
accumulated damage inside the Power Electronic (PE) component over time [39]. For 
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example, failure of Insulated-Gate Bipolar Transistors (IGBTs) due to bond-wire lift 
off can be categorized as wear-out failures. The process of modeling these types of 
failures for power electronic converters considering the physics of failure and was 
explained previously in chapter 3. Typically, wear-out failures are reported in the form 
of Weibull distributions, where the reliability can be found according to 

( )
( ) e

t

R t  (4.1) 

where  and  are shape and scale parameters from the Stress-Strength Analysis (SSA) 
explained in Chapter 3. 

On the other hand, chance failures have their root-causes outside the PE 
components, such as external overstresses. For example, the catastrophic failure of a 
power converter due to overvoltage, overcurrent, human error, or lightning can be 
categorized due to chance failures. Since many factors influence these types of 
failures, it is impossible to develop comprehensive physical models that can consider 
all of them. Alternatively, chance failures are modeled statistically with a constant 
failure rate of , which is extracted from filed failure data. In the PS literature, 
exponential distribution is used to describe chance failures, whose reliability can be 
written as: 

( ) e tR t  (4.2) 
where  is the constant failure rate due to chance failures. 
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Fig. 4.4. Classification of root-causes of outages in a power electronic-based power system.  

 
The failure rate of Weibull distribution is increasing over time, while the failure 

rate of chance failures is constant over time. Therefore, the overall failure rate of a 
power converter will be as shown in Fig. 4.5, and it can be written as: 

1( ) ( )A
tt  (4.3) 

where A(t) is the actual failure rate of the power converter,  is the constant failure 
rate due to chance failures, and  and  are shape and scale parameter from the SSA. 
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Fig. 4.5. Actual failure rate of the converters in a power electronic-based power system, 
considering that wear-out and chance failures are dominant. 

 
On the other hand, unlike in the PE literature, all power converters must be 

modeled as repairable units in a PEPS (since a PS is a continuously-operated system). 
The state-space diagram of a repairable and a non-repairable system is shown and 
compared with each other in Fig. 4.6. 

State 1
Healthy

State 2
Faulty

μ

State 1
Healthy

State 2
Faulty

Repairable Non-repairable

(a) (b)  

Fig. 4.6. State-space diagram of (a) a repairable unit compared to (b) a non-repairable system, 
where  is the failure rate and μ is the repair rate of the unit. 

 
As Fig. 4.6 shows, in a repairable system, when the system goes to the down state 

with a rate of , it can also return to the up state with the rate of μ. For such systems, 
the concept of availability (which is similar but not identical to reliability) is defined, 
which characterizes the probability of finding the system in the up state. In 
conventional power systems, the availability of a unit can be found by using the 
Markov method, according to the state-space diagram shown in Fig. 4.6 (a). Often, in 
the PS reliability studies, the dynamics of the availability is ignored and the steady-
state value of the availability is used, which can be written as: 

A  (4.4) 

where A is the constant (steady-state) availability of the unit, and μ as well as  are 
the unit’s repair rate and failure rate, respectively.  

However, this method and other alternative availability calculation methods in PS 
are valid only for constant failure rates. In other words, if they are used with a non-
constant failure rate, as it is the case in PEPS, they will lead to wrong results. To solve 
this problem, other methods such as, Monte Carlo Simulation (MCS) [75], Semi-
Markov Approach (SMA) [79], Method of Device of Stages (MDS) [57], and 
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PieceWise Approach (PWA) [80] can be used. However, these methods have certain 
limitations, which makes them unsuitable for availability modeling in PEPS. For 
example, PWA and MDS have some approximations and simplifications of the real 
problems, which can sometimes result in noticeable errors. Similarly, SMA and MCS 
suffer from a significant computational burden [25], [75]. These methods and their 
performance have been discussed in [J1], where more details in terms of accuracy and 
computational burden are presented. 

Therefore, in this PhD project, a new method is proposed to calculate an 
Equivalent Failure Rate (EFR). This EFR can then be used with conventional PS 
methods such as Markov to calculate the transient and steady-state availability, as 
illustrated in Fig. 4.7. 
 

Converter 
Wear-out 
Failure 

Modeling

Mission profiles

Lifetime models

Physics of failure

EFR 
calculator

 

  

Historical data of failure

Markov++
EFR

μ

Maintenance data

Availability

 

Fig. 4.7. Block diagram of the proposed availability modeling method for power converters 
(EFR: Equivalent Failure Rate, : shape parameter of the Weibull distribution from the stress-

strength wear-out modeling, : scale parameter of the Weibull distribution from the stress-
strength wear-out modeling, : chance failure rate, μ: repair rate). 

 
Concept of Equivalent Failure Rate (EFR): 
The time-dependent term of the failure rate is shown in Fig. 4.8, given that no failures 
happen before t. 
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Fig. 4.8. Wear-out failure rate, provided that no failure has happened before t. 

 

where it can be written according to the time-dependent term of (4.3). If, before t, only 
one failure had happened at the random time of  (  < t), and the converter is restored 
to the initial conditions immediately after that, the failure rate will be as shown in Fig. 
4.9. 
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Fig. 4.9. Wear-out failure rate, provided that only one failure has happened before t, and the 
converter has been repaired. 

As 0   < t, the EFR at t can be written as [C3]: 
( ) ( ) ( * )( )eq W W Wt f t f f t  (4.5) 

0

( * )( ) ( ) ( )
t

W W W Wf f t f f t d  (4.6) 

( )
( ) ( ) e

t

W
tf t

t
 (4.7) 

where  and  are shape and scale parameter of Weibull distribution. 
In theory, an infinite number of failures and repairs could have happened before t at 
different instants of time as shown in Fig. 4.10. 
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Fig. 4.10. Wear-out failure rate, provided that n failures have happened before t (and the 
converter has been repaired every time), where n can be infinite in theory. 

Therefore, the EFR, eq(t) in this case can be written as: 
( ) ( ) ( ) ( ) ( ) ( ) ( ) ...eq W W W W W Wt f t f t f t f t f t f t  (4.8) 

1
( ) ( ) n

eq W
n

t f t  (4.9) 

where (*) denotes the convolution operator as (4.6) and fW(t) is the PDF of the Weibull 
distribution as (4.7). Since (4.9) does not have a closed-form solution, a different 
approach will be used to find the EFR usable for availability calculation, which is 
explained in detail in [J1]. 
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The actual failure rate of a PE system was shown in Fig. 4.5 and (4.3). 
Accordingly, the PDF of the time-to-failure can be calculated as: 

0

( ) ( ).exp( ( ) )
t

f t t d  (4.10) 

where (.) can be calculated from (4.3). 
From [J1], the EFR can be calculated from: 

0

( ) 1 ( ) ( )
t

t f t d  (4.11) 

( )( )eq
d tt

dt
 (4.12) 

where f(.) can be obtained from eq (4.10). 
Then, this EFR can be used in Markov method, according to the Fig. 4.7, and the 

time-dependent availability A(t) can be written as: 
( ) ( ( )) ( )eq

dA t t A t
dt

 (4.13) 

where μ is the repair rate and eq(t) is the EFR. μ, the repair rate which is typically 
extracted from service and maintenance reports and is a function of accessibility, 
maintenance crews experience, and available spare units. To find A, availability, these 
equations (4.11)-(4.13) can be solved numerically according to Fig. 4.11. 
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Fig. 4.11. Flowchart of the proposed availability modeling method for power electronic 
converters [J1]. 

 
In Fig. 4.11, Ts is the study time horizon, t is the time step, Nt is the number of 

steps such that t = Ts / Nt . Also, t(i) = i t , where i  + and 1  i  Nt. The 
assumption is further that the converter starts at the healthy state, and hence A(1) = 1. 
 

4.4. Power System Modeling 
A substantial part of reliability assessment is to calculate the consequence of failure 
events. To do so, the available generation and storage power in the system must be 
known at any given time, with respect to the healthy or faulty status of the units. As 
shown in Fig. 4.1, the generation capacity in PEPS is determined by PV and WT units, 
which are dependent on the solar irradiance and wind speed. The output power of 
these units must be modeled with regards to the failures and the respective mission 
profiles. Also, the available power and the SOC of the BT units must be modeled, 
which is determined by the load-generation balance in the system. It is worth 
mentioning that, in Fig. 4.1, to make the system fully power electronic-based, an SST 
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(Solid-State Transformer) is used, which is responsible for exporting and importing 
power from neighboring grid in case of excess and shortage of the power. Since the 
focus of this project is on the reliability assessment in hierarchical level I, the line 
limits are ignored, and a DC power flow has been considered. Therefore, the main 
objective of the Power System Modeling (PSM) block is to provide the power flow in 
the system by translating the mission profiles into the available power by the 
generation, storage, and transmission facilities, given their faulty or healthy status. 
Therefore, without losing generality, the modeling of PV, WT, BT, and SST, as 
common building blocks of modern PEPSs will be discussed here. It should be noted 
that the above modeling must be done such that it minimizes the computation time, 
while presenting sufficient accuracy. The overall schematic of the PSM block is 
shown in Fig. 4.12. 
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Fig. 4.12. Overall representation of the power system modeling block in Fig. 4.2. 
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Photovoltaic units (PV):  
PV units are one of the main sources of power generation in modern PEPS. Therefore, 
the appropriate modeling of these units is crucial to translate the Solar Irradiance (SI) 
to output power, given the converter health status.  
Typically, a PV unit model is comprised of PV panels, PE interface, filter, and the 
grid. Many topologies and structures might be used in different parts of a PE unit. 
However, it is essential to achieve a general solution for modeling the PV units to 
satisfy the above-mentioned goal of the PSM efficiently. There are various methods, 
e.g., single-diode equivalent circuit, to interpret the relationship between the 
production of a panel a solar irradiance [81]. Also, often, it is assumed that the PV 
unit operates at the maximum power point. Given this assumption, it can be 
approximated that the output power of the PV panels changes linearly with SI. 
Moreover, For a PV system, Rs, the sizing ratio can be defined as the ratio of the PV 
panels rated power at the standard test condition, PPV,rated, to the PE interface rated 
power PPE,rated according to [82] 

, 

, 

PV rated
s

PE rated

P
R

P
. (4.14) 

Typically, since the cost of PV panels per unit of power is lower than that of the 
PE interface, and therefore Rs  1, that is, the rate power of panels is larger than that 
of the PE interface. In this situation, the rated power of the PV unit is limited by the 
rate power of the PE interface. Considering the linear relationship of the output power 
with SI and the limit from the PE interface, the PV unit production can be 
characterized as shown in Fig. 4.13. In Fig. 4.13, at the beginning, as the SI increases, 
the production increases approximately linearly. The increase continues until the rated 
power limit of the unit, Pr, is reached, where typically Pr = PPE,rated. 

I

P

Pr

Ir

Rs  

Fig. 4.13. Output power (P) of the photovoltaic units as a function of solar irradiance (I), 
where Pr is the rated power of the unit, Ir is solar irradiance at standard test condition in the 

panel datasheet, and Rs is the sizing ratio of panels to the power converter. 
 

The above characteristics can be presented with the following formula 
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  ,  
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 (4.15) 

where P is the output power of the unit, and I is the solar irradiance, and Pr is the rated 
power of the unit. Also, G can be obtained from the PV panel and PE interface 
datasheet or more accurately from the simulation or experimental modeling. 
Otherwise, it can be calculated form the following equation  

r
S

r

P
G R

I
 (4.16) 

where Ir is the solar irradiance at the standard test condition (typically 1000 [W/m2]), 
and the Rs is known from (4.14). 
Subsequently, at the jth state, the output power of the ith converter unit (if it is a PV 
unit) can be obtained from 

, , ,( ) ( )i j n j n iP S i P I  (4.17) 
where Sj(i) is the ith bit of the system state bit array, Sj (which comes from the state 
enumeration block in Fig 4.2), In,i is the solar irradiance (based on the nth scenario for 
the ith converter from the GAN block in Fig. 4.2, i.e., SCn,i) and P(.) can be calculated 
from (4.15) and (4.16). 
Wind turbine units (WT): 
In a modern PEPS, a large proportion of generated power can come from the WT 
units. Therefore, to evaluate the system-level reliability accurately, it is vital to model 
the WT units properly. The PSM for WT aims to translate the Wind speed (WS) to 
the output power of the WT, given the health status of the converter.  

Also, it should be noted that there are countless variations of WT in terms of 
generator, converter, and their structure as reviewed in [83]. Hence, the appropriate 
PSM must be comprehensive to be applicable to all of them, accurate enough, and 
computationally efficient. To do so, the turbine power curve, can be used, which 
shows the relationship between the WS and output power, as it was explained in 
Chapter 3. A general form of the turbine power curve can be seen in Fig. 4.14. If not 
available from the manufacturer, the turbine power curve can be approximated with 
[71] 

2 2

2 2

0              or    

( ) .          

                       

c f

c
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r r f
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P V P V V V
V V

P V V V

 (4.18) 

where P is the WT output power, V is the wind speed, and Vc, Vr, Vf, and Pr are cut-
in, rated, cut-out speeds of the turbine. 
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Vr VfVc  

Fig. 4.14. Output power (P) of the wind turbine units as a function of wind speed (V), where 
Pr is the rated power of the unit, and Vc, Vr, and Vf are cut-in, rated, and cut-out speeds of the 

turbine. 
 

Subsequently, at the jth state (from state enumeration) the output power of the ith 
unit can be obtained from 

, , ,( ) ( )i j n j n iP S i P V  (4.19) 
where Sj(i) is the ith bit of the system state bit array, Sj (which comes from the state 
enumeration block in Fig 4.2), Vn,i is the wind speed (based on the nth scenario for the 
ith converter from the GAN block in Fig. 4.2, i.e., SCn,i) and P(.) can be calculated 
from (4.18). 
Battery energy storage units (BT):  
Due to the intermittent nature of renewable energies, energy storage units have a 
pivotal role in modern PEPS. Among various types of energy storage units, BTs are 
widely used and have a promising future. The objective of the PSM for the BT is to 
obtain the output power and the SOC of the battery units and their converters given 
the available input power and the converter state of health considering the battery and 
converter limits.  

The overall process for modeling the BT in the PSM (i.e., to calculate the output 
power and SOC of battery units given their healthy and faulty condition) is illustrated 
in Fig. 4.15. The power sharing among several battery units can be considered 
according to Fig. 4.15 (b), where ki are the droop gains for power sharing among BTs 
and ki = 1. By doing so, in normal condition, when the converters of all battery units 
are healthy, the power is shared according to the ki coefficients. However, in case of 
failures, which is the focus of this paper, the battery units with a healthy converter can 
take over the amount of power which was not consumed or provided by the failed 
ones. Also, the Battery Unit Model (BUM) block in Fig. 4.15 (b) is the model for one 
battery unit, which is shown in Fig. 4.15 (a). 
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Fig. 4.15. (a) Overall block diagram for modeling the output power and State Of Charge 
(SOC) of a battery unit, (b) Schematic of the energy management system to model the power 

sharing among batteries. 
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Now, the mathematical equations behind the above models will be discussed. The 
available power to the storage units at state j for scenario n is given from: 

, , , , , , , , ,
1 1 1

PV WT LoadN N N

available j n i j n PV i j n WT i load
i i i

P P P P  (4.20) 

where NPV, NWT, and NLoad are the number of PV and WT units and load points, 
respectively. Pi,Load is the demanded power at the ith  load point from the load mission 
profiles. Also, Pi,j,n,PV and Pi,j,n,WT are the output power of the PV and WT converter 
units, which can be obtained from (4.17) and (4.19), respectively. 
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i
i

k  (4.22) 

where ki is the power sharing droop gain for BT unit i, NBT is the number of BT units, 
and Pavailable,j,n can be calculated from (4.20). 
Various battery technologies have different maximum values for charging and 
discharging current. At the system level, this can be taken into account by the 
following equations 

,max ,max

, , , , , , ,max , , , ,max

,max ,max

                          
          
                                 

dch in dch

bat i j n in i j n dch in i j n ch

ch in ch

P P P
P P P P P

P P P
 (4.23) 

where Pin,i,j,n is given from (4.21) and (4.22), Pch,max is the maximum charging power 
of the battery, and Pdch,max is the maximum discharging power of the battery.  
From the Coulomb counting, the battery SOC can be calculated by 

, ,
, , , ,

( )
( ) ( ) i j n

i j n i j n
bat

P t
SOC t dt SOC t dt

E
 (4.24) 

where Ebat is the battery capacity, SOC(t) is the battery unit’s state of charge at 
instant t, and dt is the time step of the mission profile. Furthermore, Pi,j,n is the 
effective output power of the BT unit, which can be obtained from 
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Where SOCmax and SOCmin are the maximum and minimum allowed SOC for the BT 
unit, respectively. Such limits are use for the battery units to extend their lifetime by 
decreasing the depth of discharge (DOD). Also, Pavailable,,j,n and Pbat,i,j,n were explained 
before and can be calculated from (4.20) and (4.23), respectively. Sj(i) is the ith bit of 
the system state bit array, Sj (which comes from the state enumeration block in Fig 
4.2). SOC(t) is the current state-of-charge of the BT unit, which can be calculated 
from (4.24) and sgn(.) is the sign function. 
Solid-state transformer (SST):  
The generation and storage units at the LV (Low Voltage) are connected to the upper 
MV (Medium Voltage) network through a transformer. In a full power electronic-
based grid, an SST can be used to link the LV and MV networks. In this case, to 
determine the reliability, the exchanged power through the SST must be known. It 
should be noted that the power through the SST is bidirectional. In other words, not 
only can the existing LV network receive power from the MV network, but it can also 
send the excess amount of power to it.  

In this case, the exchanged power through SST at instant t can be obtained from 

, , , , , , , , , , , ,
1 1 1 1

( ) ( ) ( ) ( ) ( )
Load PV WT BTN N N N

sst j n load i PV i j n WT i j n BT i j n
i i i i

P t P t P t P t P t  (4.26) 

, , , , , , ,min( , ).sgn( )i j n i j n r SST i j nP P P P  (4.27) 

where Pload,i(t) is the load demand at instant t at the ith  load point from the mission 
profiles. PPV,i,j,n(t), PWT,i,j,n(t) , and PBT,i,j,n(t)  are, respectively, the output power of the 
ith PV, WT, and BT unit at instant t for scenario n at state j, which can be calculated 
from (4.17), (4.19), and (4.25). Also, NPV, NWT, NBT, and NLoad are the number of PV, 
WT, and BT units as well as load points, respectively. 
 

4.5. Scenario Generation 
As explained before, the basic principle of reliability assessment in power system is 
to check whether enough generation capacity exist to meet the load demand or not. 
One factor that could influence the generation capacity in PEPSs is the failure of units, 
which was discussed before. In conventional generation units, this was the main factor 
determining the generation capacity as the units could follow any generation set points 
as long as it was within their operational limits. On the other hand, in the PEPS, 
another factor that determines the generation capacity is the intermittent nature of 
renewable resources. For example, in a PEPS without storage units, when no wind 
and sunlight are available, the customer will experience outages, even though no 
power electronic failure has happened. Thus, it is vital to model generation capacity 
in the PEPS.  

Since the renewable resources have a stochastic nature, one approach to model 
them is to use probabilistic methods such as Markov method or Monte Carlo 
simulation. However, by using probabilistic methods, the dynamic behavior of 
generation capacity is ignored. In contrast, the generation capacity of PV units follows 
strong diurnal and seasonal patterns. Hence, the generating capacity of PV units 



 

83 
 

cannot be modeled by using purely probabilistic approaches as those patterns are 
important but will be neglected. Moreover, BT units work based on the energy, which 
is a product of time and power. As a result, in modeling BT units not only the power 
flow itself, but also the dynamics of the power flow must be considered. In other 
words, the chronology of the power balance between load and generation determines 
the BT unit’s output power and SOC. Therefore, the BT unit cannot be modeled with 
purely probabilistic approaches. Also, the coincidence factor between load and 
generation will be ignored by using purely probabilistic approaches and ignoring the 
dynamics of the generation capacity. In other words, the load and generation might 
have the same probabilistic model, while the timing of load and generation determines 
whether the unreliability happens or not.  

To address the above challenges, time series methods can be used to model the 
generation capacity. In addition to the time-dependent nature, the renewable resources 
also have a stochastic nature. Therefore, the generation capacity varies from year to 
year. So, an uncertainty is associated with the generation capacity, which must be 
modeled by considering many years of mission profiles. Typically, there are few years 
of mission profiles available, which cannot represent enough diversity to model the 
generation uncertainty. In this case, realistic scenarios can be generated based on these 
few mission profiles to regenerate enough diversity to model the uncertainty of 
generation capacity. To do the scenario generation, the GANs are used in this project, 
since it is model-free, and due to its superior performance over the popular 
Autoregressive Moving Average (ARMA) [84]. It should be noted that ARMA is 
prone to overfitting and misidentification of temporal patterns [78]. Also, it requires 
a large number of historical data to achieve an acceptable diversity in generated 
scenarios by ARMA, which is not available in all cases.  As it was shown in chapter 
2, The generated mission profile scenarios by GAN had the same statistical and 
temporal properties of the real profiles. In other words, the GAN is used to generate 
scenarios because it models not only the stochastic nature of the generation capacity 
but also its dynamic behavior. 

By using the GAN, mission profile scenarios can be generated for both load and 
generation. Nevertheless, in this thesis, it has been used only to model the generation 
capacity. Since, in the PEPS, the main mission profiles are solar irradiance and wind 
speed, the GAN is used to generated yearly profiles of these parameters. As Fig. 4.16 
shows, real mission profiles are used to train the GAN first, which will take some 
time. Once the training is done, the trained GAN can be used to generate new mission 
profiles fast. The process of generating new mission profiles can be continued as long 
as a certain stopping criterion is not met (which will be discussed later). By doing so, 
the generated mission profiles will cover most of the possible scenarios that will 
happen in the future, and thereby emulating the generation capacity and its 
uncertainty.  For each scenario, the performance of the system can be evaluated in 
terms of reliability indices according to the Fig. 4.2 and Fig. 4.3. 
 



 

84 
 

GANHistorical 
scenario

Generated 
scenario

Update 
coefficients

Trained 
GAN Scenarios

(a) (b)

During training After training

 

Fig. 4.16. Simplified illustration of how the GAN (Generative Adversarial Networks) is used 
for scenario generation in the proposed framework. 

 
The architecture of the GAN was presented in Fig. 3.24 in Chapter 3. Further, in 

Chapter 3, the generated profiles were shown, where they were also compared with 
real profiles in terms of the Cumulative Density Function (CDF), Power Spectral 
Density (PSD), and monthly average values. It was shown that the generated scenarios 
have the same visual, temporal, and probabilistic characteristics of the historical 
profiles and capture their intrinsic properties. Now, the usage of GAN for scenario 
generation for the PEPS will be explained here in details.  

GAN is a data-driven approach and does not require a physical model to generate 
scenarios. As it was shown in Fig 3.24 in Chapter 3, the GAN incorporates two Deep 
Neural Networks (DNNs) in its structure – the generator and the discriminator. The 
generator is in charge of reproducing the complex and nonlinear relationships existing 
in the historical data. The discriminator, on the other hand, tries to classify the 
historical and generated data. The operation of the GAN is based on a game between 
the generator and the discriminator, where the former aims to generate realistic 
scenarios which cannot be distinguished from historical scenarios by the 
discriminator. Accordingly, at every training epoch, the coefficients of two DNNs are 
updated. Notably, it will be a minmax two-player game, where, according to the game 
theory, at its Nash equilibrium point, the generator is the winner of the game [78]. In 
other words, at that point, the generator can reproduce the distribution of the real data 
and capture all its temporal and probabilistic properties, such that the discriminator 
cannot differentiate between the generated and real data. At each training epoch, 
according to the output of the discriminator, the loss functions are defined and used 
to update the coefficients of both the generator and the discriminator. 

Now, the problem and the objectives of using GAN for scenario generation will 
be formulated, the loss functions are defined, and the training procedure will be 
explained. Assume that the real data is a time series indexed as t = 1, 2, …, T – i.e., xt 
such that t  T denotes each point in the time series. In addition, it is assumed that the 
real data are distributed according to the PX distribution, which is unknown and to be 
reconstructed. Moreover, z represents the input noise vector following a Gaussian 
distribution PZ such that Z ~ PZ. The objective of the scenario generation part is to 
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train the GAN such that any random sample z from PZ to follow PX at the output of 
the generator. Consider that G( . ; (G) ) represents the generator function, G, with the 
coefficients of (G), and similarly,  Similarly, D( . ; (D) ) represents the discriminator 
function, D, with the coefficients of (D). The output of the generator, that is G( z ; (G) 

) can be considered as a new random variable with the PG distribution, provided that 
Z is a random variable with PZ  distribution. The output of the discriminator, preal, can 
be written as 

( )( ; )D
realp D x  (4.28) 

where x can be sampled from Pdata or PZ. Notably, preal indicates how much the inputs 
of the discriminator (historical and generated samples) follow the PX distribution. 

In the GAN, two DNNs should be trained at the same time. To do so, the loss 
functions for the Generator and the Discriminator, LG and LD, should be formulated. 
In addition, a game value function V(G, D) should be defined. The loss function for 
the generator can be formulated as [77] 

E [ ( ( ))]G ZL D G Z  (4.29) 
where Z is the random noise input, G(.) is the generator function, D(.) is the 
discriminator function, and E[.] is the operator of expected value. Moreover, in order 
for the discriminator to distinguish Px from PG, E[D(X)]-E[D(G(Z))] must be 
maximized. Therefore, the loss function for the discriminator can be formulated as 
[77] 

E [ ( )] E [ ( ( ))]D X ZL D X D G Z  (4.30) 

where X is the historical data, Z is the random noise input, G(.) is the generator 
function, D(.) is the discriminator function, and E[.] is the operator of expected value. 
Then, a minmax two-player game can be set between the generator and the 
discriminator by combining the aforementioned loss functions and forming a game 
value function V(G, D) according to [78] 

( ) ( )
min max ( , ) E [ ( )] E [ ( ( ))]

G D X ZV G D D X D G Z . (4.31) 

When starting the training process, since the generated samples poorly follow the 
PX, LD has a small value, while the values for LG and V(G, D) are large. As the training 
process goes on, LD increases and LG decreases until the optimal solution for the 
coefficients of two DNNs are found, when the generated data will not be differentiated 
form historical data. It should be noted that typical training methods can be used to 
train both generator and the discriminator DNNs. The algorithm to train the DNNs 
and update their coefficients based on the gradient descent method with the RMSProp, 
which is presented in Algorithm 4.1 as follows [77], [78], [85]. 
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Algorithm 4.1. Gradient descent training of the GAN for scenario generation [77], 
[78], [85] 

Input:  batch size m, number of discriminator iterations for each generator iteration 
ndiscri, learning rate , clipping parameter, c, (G) initial coefficients of generator, (D) 
initial coefficients of discriminator. 

While (D) has not converged do 

For t = 0, …, ndiscri do 

Sample a batch from historical data: 
( )

1
  

mi
Xi

x from P  

Sample a batch from the input noise: 
( )

1
  

mi
Zi

z from P  

Update the discriminator coefficients using the gradient descent method: 

( ) ( )

( )

( ) ( )

1 1

( ) ( ) ( )

( )

1 ( ( )) ( )

. ( , )

( , , )

D D

D

m m
i i

i i

D D D

D

g D G z D x
m

RMSProp g

clip w c c

 

End for 

Update the generator coefficients using the gradient descent method: 

( ) ( )

( )

( )

1
( ) ( ) ( )

1 ( ( ))

. ( , )

G G

G

m
i

i
G G G

g D G z
m

RMSProp g
 

End while 

 
4.6. State Enumeration and Index Calculation 
In this part, the state enumeration and how to calculate the reliability indices based on 
the above information will be discussed. 

State enumeration: 

The system can be in various states depending on whether the converters are the faulty 
or healthy status. In this case, considering that the overall number of power converters 
in the system is Nconverters = NPV + NWT + NBT + NSST, the number of possible states are 
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Nstates = 2Nconverters. To calculate reliability indices the probability and consequence of 
each state must be known. To accelerate the process, it is possible to define a subset 
of all states as the desired states to be considered for the study, e.g., the states that 
maximum two failures have occurred in the system simultaneously. To ensure that all 
the possible states or all the desired states are covered, a new state enumeration 
technique is proposed here based on binary coding. In other words, it is a systematic 
way to make sure no state is overlooked, which can also be implemented by computer 
programming. As shown in Fig. 4.17, in the proposed approach, at the state j, the 
system is represented by a bit array, Sj,  where each of the bits represent the status of 
each converter. In other words, in a system with Nconverters converters, at the state j, Sj 
is a bit array with the length of Nconverters, and each of the bits can be either 0 or 1. In 
other words, Sj(i) = 1, when the ith converter is up, Sj(i) = 0, when the ith converter is 
down, where 0  i  (Nconverters – 1). Therefore, the Sj can be given from 

DBC( 1)    ,    1j statesS j j N  (4.32) 
where DBC is the Decimal to Binary Converter, and Nstates = 2Nconverters if no desired 
states is defined. 

 

Sj =
i = 1

...

NBT

... ...

i = Nconverters

... ... ...

NWT NPVSST

Each bit can be 0 or 1, depending on whether the corresponding converter is faulty or healthy

Fig. 4.17. Bit array representation of the system states, proposed for performing a systematic state 
enumeration. 

Index calculation: 

For each state j, the probability of the state Prj can be calculated from 

, ,( ) ( ). [1 ( )][1 ]j j y i j y iProb i S i A S i A  (4.33) 

1
( )

convertersN

j j
i

Pr Prob i  (4.34) 

where Ay,i is the availability of the ith converter at age y, calculated from the “converter 
availability modeling” block in Fig. 4.2. Sj(i) is the ith bit of the system state bit array, 
Sj (which comes from the “state enumeration” block in Fig 4.2). Also, Nconverters = NPV 
+ NWT + NBT + NSST is the number of power converters in the system. 
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Therefore, the probability of state j can be obtained from (4.33) and (4.34). The 
consequence of the state j for scenario n can be defined depending on the reliability 
index that is to be calculated. In this chapter, the consequence for the widely used 
indices of LOLE and EENS will be introduced. It is worth noting that other indices 
such as EIR, EDNS, LOLP can be calculated from LOLE and EENS [53]. Similarly, 
the consequence for other indices can be defined simply based on the same principles. 

Notably, in the literatures LOLE and EENS are constant values. However, the 
outcomes of the proposed framework will be LOL and ENS, which are PDFs and not 
just constant values. It should be noted that the conventional indices can also be 
calculated based on the outcomes of the proposed framework, as the LOLE is the 
expected value of the PDF of LOL, and EENS is the expected value of the PDF of 
ENS.  

EENS indicates the amount of load energy which is expected not to be supplied 
annually and is reported in terms of unit of energy per year. Therefore, to calculate 
the ENS and EENS, the amount of energy not served to the load must be defined and 
calculated as the consequence of each state j for each scenario n. To do so, the output 
power of converter must be known. In other words, once a scenario is generated by 
the GAN, i.e. SCn,i in Fig. 4.2,  it must be input to the PSM – that is the scenario must 
be translated to the output power of converters based on (4.17), (4.19), (4.25), and 
(4.27). Accordingly, CENS,j,n(t), the consequence of state j for scenario n at instant t, in 
terms of Energy Not Supplied (ENS), can be expressed as 

, , , , ,
1 1

, , , , , , , ,
1 1

( ) ( ) ( )

                            ( ) ( ) ( )

Load PV

WT BT

N N

j n load i PV i j n
i i

N N

WT i j n BT i j n SST j n
i i

DNS t P t P t

P t P t P t
 (4.35) 

, ,
, ,

( ) ( )
( )

2
j n j n

ENS j n

DNS t DNS t
C t  (4.36) 

where DNSj,n(t) is the Demand Not Supplied at the state j for scenario n in instant t. 
Pload,i(t) is the load demand at instant t at the ith  load point from the mission profiles. 
PPV,i,j,n(t), PWT,i,j,n(t) , PBT,i,j,n(t), and PSST,j,n(t)  are, respectively, the output power of the 
ith PV, WT, BT, and SST unit at instant t for scenario n at state j, which can be 
calculated from (4.17), (4.19), (4.25) and (4.27). Also, NPV, NWT, NBT, and NLoad are 
the number of PV, WT, and BT units as well as load points, respectively. 

Since all the terms in the right side of (4.35) and (4.36) are time series, the 
consequence of state j, CENS,j(t), will also be a time series. As a result, the ENSn (the 
ENS for the nth scenario) can be obtained by convolving the probability and 
consequence of each state as 
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, ,
1 1

. ( ).
statesN

n j ENS j n
j year

ENS Pr C t dt  (4.37) 

 

where Prj is the probability at state j from (4.34) CENS,j,n(t) is the consequence of state 
j for scenario n at instant t, in terms of energy not supplied from (4.36). Nstates is the 
number of desirable states. As shown in Fig. 4.2 and Fig. 4.3, when the ENSn for a 
given scenario n is obtained, the process must be repeated by generating new 
scenarios, and calculating their corresponding values for ENS. This process is repeated 
as long as the required number of scenarios Nscenarios is not reached. Notably, Nscenarios 
can be determined based on the following stopping criterion [86]. 

1 (1 )
2scenarioN  (4.38) 

where  and μ are the standard deviation and mean of the obtained outputs, 
respectively.  and  are relative error and confidence interval that are required for the 
results, and -1 is the inverse CDF of normal distribution. So, from (4.38), Nscenarios 
can be calculated. When ENSn was calculated for 1  n  Nscenarios, a PDF can be 
obtained for the ENS, which will be the final output of the proposed framework as the 
PDF of a reliability index. 

LOLE is another well-known system-level reliability index, which is used to 
benchmark the system performance and check whether it meets the standards. It 
indicates the aggregated time that the load will experience the outage and is reported 
in terms of [h/yr] or [days/yr]. Considering the meaning of LOLE and LOL, the 
consequence  of state j for scenario n at instant t (in terms of outage duration) can be 
formulated as  

, ,
, ,

, ,

1    , ( ) 0
( )

0    ,  ( ) 0
ENS j n

LOL j n
ENS j n

C t
C t

C t
 (4.39) 

where CENS,j,n(t), was explained in (4.36). As a result, the LOLn, the LOL for the 
scenario n, can be obtained by convolving the probability and consequence of each 
state as 

, ,
1 1

. ( ).
statesN

n j LOL j n
j year

LOL Pr C t dt  (4.40) 

where Prj is the probability at state j from (4.34) CLOL,j,n(t) is the consequence of state 
j for scenario n at instant t, in terms of outage duration from (4.39). Also, Nstates is the 
number of desirable states. 
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By performing the above steps, the value of LOLn for scenario n can be obtained. 
Other indices can be calculated by adopting the same approach only by changing the 
definition of the consequence in (4.36) and (4.39). This process is repeated as long as 
the required number of scenarios Nscenarios is not reached – that is as long as the 
stopping criteria, (4.38), is not met.  

Therefore, once the stopping criteria is met, LOLn and ENSn will be available for 
1  n  Nscenarios. Accordingly, a PDF can be extracted for LOL and ENS, 
demonstrating their distribution.  

This is one of the main advantages of the proposed frameworks over the existing 
approaches. By using the proposed framework, one can obtain the probability 
distribution of ENS and LOL, which incorporates both generation uncertainty and 
converter outages. In contrast, existing approaches only provide a constant number as 
EENS or LOLE (and not a distribution), which typically neglects not only the power 
electronic failures but also generation uncertainty. It is worth mentioning that the 
PDFs obtained from the proposed framework can also be easily translated into the 
static values of the EENS and LOLE by calculating the first moment of the PDFs of 
ENS and LOL according to 

0

E[ ] ( )ENSEENS ENS xf x dx  (4.41) 

0

E[ ] ( )LOLLOLE LOL xf x dx  (4.42) 

where E[.] denotes the expected value operator, and fENS(x) and fLOL(x) are the PDF of 
ENS and LOL extracted as the outcomes of the proposed framework. Therefore, not 
only the conventional indices can be calculated but also other insights regarding the 
uncertainty of the indices can be gained, which will be discussed in the next chapters. 

 

4.7. Summary 
In this chapter, the implementation details of the proposed framework for reliability 
assessment of PEPS were explained. An overall block diagram was presented, where 
the interconnection between the blocks and the role of each block was highlighted. 
These blocks are as follows: converter availability model, power system performance 
model, scenario generation, state enumeration, and index calculation. In the converter 
availability modeling block, the proposed method for calculating the availability of 
power converts in PEPS was presented, in addition to its mathematical equations for 
implementation. This would enable considering non-constant wear-out failure rates, 
corrective maintenance, and chance failures in a computationally efficient manner. In 
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the power system modeling block, it was explained how to obtain the power balance 
in the system by translating the mission profiles into the generation capacity and by 
modeling the generation and storage units. The goal of this block was to model the 
output power of all the converters in the system, which would pave the way for 
calculating the consequences of converter failures in terms of lost energy and outage 
duration at any given instant. In the scenario generation block, the details of adopting 
and training the GAN for generating mission profiles scenarios was discussed. This 
was done to accommodate the considerable generation uncertainty existing in the 
renewable-based PEPS. Finally, at the state enumeration and index calculation block, 
the application of the outputs of previous blocks for calculating the system-level 
reliability indices were explained. 
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Chapter 5    
Application of the proposed framework and 
analysis of the system-level reliability results 
 
 

5.1. Background 
In this chapter, the applications and advantages of the proposed reliability assessment 
framework will be demonstrated by analyzing of the system-level reliability in several 
case studies. First, it will be shown that how using constant failure rates can introduce 
significant errors to the system-level reliability assessment. Next, the performance of 
the proposed availability modeling method (explained in the previous chapter) will be 
compared with existing approaches in terms of accuracy and computational burden. 
Moreover, the system-level reliability indices for a case study will be calculated by 
using the proposed framework. Further, the results will be analyzed to showcase the 
superiority of the proposed framework in quantifying reliability for benchmarking the 
PEPSs and assisting the system-level design. It will be shown that the time-dependent 
and probabilistic outcomes of the framework are more informative and accurate, 
which consider mission profiles, converter wear-out failures, chance failures, repairs, 
generation uncertainty, penetration level of renewables. The case studies have been 
selected based on the systems used in [C3] and [J1]. Furthermore, another case study 
has been introduced, incorporating larger numbers of power electronic units, which 
allows performing a more thorough analysis and demonstrating the applications of the 
proposed framework. 

 

5.2. Using Constant Versus Non-Constant Failure Rates (Case 
Study I) 

In the first case study, which was also presented in [C3], the effect of using constant 
failure rates (as it is the common assumption in PS reliability studies) on the reliability 
assessment of the PEPS is investigated. Fig. 5.1. shows the schematics of the case 
study and the Load Duration Curve (LDC) used for it. Also, the generation uncertainty 
is not modeled here as the focus of the [C3] has been on modeling the effect of 
converter wear-out failure on the system-level reliability indices. As a result, it is 
assumed that the converter output power is constant. Also, the chance failures are 
ignored, and only wear-out failures are considered, which are described by a Weibull 
distribution with the shape and scale parameter of  and . The converter rated power 
as well as  and , and μ, the repair rates used in this case study are presented in Table 
5.1. 
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Fig. 5.1. (a) Representation of the case study I, a power electronic-based power system including 
two photovoltaic converters and two wind turbine converters (b) Probabilistic load modeling as a 

Load Duration Curve (LDC) [C3]. 

 
Table 5.1. Rated power, Weibull parameters for wear-out failures, and repair rate of the 

converters used in the case study I (Fig. 5.1 (a)) [C3] 

 
Rated Power 

(kW) 

Weibull parameters Repair Rate 
[r/y]   [y] 

Converter 1 5 3 8.5 150 
Converter 2 5 3 8.5 150 
Converter 3 4 3.3 10.9 100 
Converter 4 4 3.3 10.9 100 

 

 

As a special case of Weibull distribution with shape and scale parameter of  and 
, When  = 1, the Weibull distribution becomes an exponential distribution, where 

the failure rate is equal 1/ . The EENS (Expected Energy Not Supplied) index of the 
above system is calculated and shown in Fig. 5.2, once considering a Weibull 
distribution with the parameters in Table 5.1 and once using the constant failure rate 
of 1/ . Also, the results have been validated by comparing them with the Monte Carlo 
simulation result, where the details have been presented in [C3]. 
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Overestimation

Underestimation

 

Fig. 5.2. Comparing the EENS (Expected Energy Not Supplied) index of the case study I (Fig. 
5.1) considering constant and non-constant failure rates for the case study shown in Fig. 5.1 

[C3]. 

As Fig. 5.2 shows, the EENS in the non-constant failure rate case reaches its 
steady-state limit very fast and remains constant afterwards. When non-constant 
failure rates are used, the value is small at the beginning, while it gradually increases 
as the time passes. This is reasonable considering that the converter wear-out failure 
rates increase over time due to the aging. From Fig. 5.2, it can be concluded that using 
non-constant failure rates results in the overestimation of the reliability in the short 
term. Also, it leads to the underestimation of the reliability in the long run. 

 

5.3. Availability Modeling of Power Converters Considering Non-
Constant Failure Rates (Case Study II) 
As discussed before, there are several methods for availability modeling for systems 
with aging and non-constant failure rates. These methods are as follows: PieceWise 
Approach (PWA), Method of Device of Stages (MDS), Semi Markov Approach 
(SMA), and Monte Carlo Simulation (MCS). Each of these methods have limitations 
in terms of accuracy and computation time. As a result, in this part, the accuracy and 
computation time of these methods will be compared with the proposed availability 
modeling method. To do so, the time-dependent EENS of a case study will be 
calculated and compared by using the above methods. The case study is a modified 
version of the Roy Billinton Test System (RBTS), which is a popular test system for 
reliability studies [55], [87]. Fig. 5.3 shows the schematics of the case study 
incorporating a wind farm and three HVDC connections. The capacity factor of the 
wind farm is 0.49 and other parameters are presented in Table 5.2. Moreover, failure 
and repair data, including the shape and scale parameter of Weibull, chance failure 
rate, and repair rates, are listed in Table 5.2 [88], [89]. 
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Fig. 5.3. Diagram of the case study II, a power electronic-based power system used for 
benchmarking the converter availability modeling methods [55], [87], [J1]. 

 
 
Table 5.2. Capacity of units as well as the failure and repair data for the case study II (shown 

in Fig. 5.3) [55], [88], [89], [J1] 

Unit 
converters 

Capacity 
[MW] 

Wear-out failures 
(Weibull 

distribution) 
Rate of 
chance 
failures 
[f./yr] 

Repair 
time 
[hr] 

Shape 
factor 

Scale 
factor 
[yr] 

HVDC 1 50 3 8 0.04 163 

HVDC 2 60 3 10 0.08 151 

HVDC 3 50 2.6 7 0.08 123 

Wind farm 160 3 12 0.18 57 
 

Based on the above information, the EENS is calculated for the case study by 
using six different methods as shown in Fig. 5.4. Furthermore, the computational 
burden and the accuracy of these methods are compared with each other in Table 5.3, 
where computation time, steady-state error, and Root Mean Square Error (RMSE) of 
the EENS are compared. The details of obtaining these results have been explained in 
detail in [J1]. 
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Fig. 5.4. The EENS (Expected Energy Not Supplied) index of the case study II (Fig. 5.3) as a 
function of time – comparison of the results calculated from six different approaches 

(including the proposed, MCS: Monte Carlo Simulation, SMA: Semi-Markov Approach, 
MDS: Method of Device of Stages, CMP: Continuous Markov Process, PWS: PieceWise 

Approach) [J1]. 
 
 
Table 5.3. Comparison of the proposed method with the state-of-the-art methods in terms of 

computation time and error [J1] 
 

Method Computation 
time [s] 

Steady-state 
error [%] 

RMSE 
[MWh/yr] 

SMA 5220 0.37 0 

MCS 273 0.74 0.6697 

MDS 0.3 19.12 8.6806 

CMP 0.9 27.75 22.1234 

PWA 0.2 > 100 > 150 

Proposed 3.6 0.07 0.1913 

 

From Fig. 5.4 and Table 5.3, it can be seen that, for small time frames, e.g., t < 4 
[y], the PWA has good accuracy, while offering a low computation time. However, 
for longer time frames, it results in large errors as it diverges from the correct value. 
Form Table 5.3, it can be also seen that the MDS has a low computational burden, 
while it does not have an acceptable accuracy. This is reasonable because the MDS 
approximates the failure rate of a unit by a set of Exponential distributions. 
Nevertheless, for the PEPS, the failure rate is a combination of Weibull and 
Exponential distributions, which cannot be properly modeled with the assumption 
used in MDS. 
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From Fig. 5.4 and Table 5.3, the MCS and SMA offer the highest accuracy, 
similar to the proposed availability modeling method in [J1]. However, the 
computation time of the SMA is substantial, which makes it impractical for reliability 
assessment of larger systems. Also, the proposed method in [J1] excels the MCS in 
terms of computation time, while it offers a similar accuracy. Notable, the 
computation time of the proposed method, MCS, and SMA are 3.6, 273, and 5220 [s], 
respectively. 

 

5.4. Benchmarking the Power Electronic-based Grids and Analysis 
of the System-Level Reliability by Using the Proposed Framework 
(Case Study III) 
In this section, the proposed framework will be used to assess the system-level 
reliability of a PEPS. Moreover, the results will be analyzed to investigate the impact 
of several factors on the system-level reliability, including, converter failures, 
generation uncertainty, and the penetration level of renewables. 

5.4.1. Case Study Description 

The schematics of the case study is shown in Fig. 5.5. Also, the capacity and number 
of units in each power generation and storage plant are presented in Table 5.4. 
Converter topologies used in the case study for the photovoltaic systems, wind 
turbines, and battery storage units (e.g., in PV1, PV2, WT, BT1, and BT2 in Fig. 5.5) 
are shown in Fig. 5.6 to Fig. 5.8, respectively. The battery units, BT1 and BT2, are 
identical, where their capacity is equal to 350 [kWh] each, which is selected based on 
the guidelines provided in [90], [91]. In addition, the corresponding specifications and 
electrical parameters for the above-mentioned converter units and the grid are 
presented in Table 5.5 and Table 5.6. Furthermore, cut-in, rated, and cut-out speeds 
of wind turbines, and G for the PV system are given in Table 5.7 and Table 5.8. Since 
the purpose of the case study is to demonstrate the system-level framework, for wear-
out modeling, only the wear-out of IGBTs in PV, WT, and BT units are considered 
and modeled here, without the loss of generality. Besides, the repair rates and chance 
failure rates for the units used in this case study are presented in Table 5.9. 
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Fig .5.5. Overall schematic of the case study III, a power electronic-based power system, 
including photovoltaic (PV), wind turbine (WT), and battery storage converter units (BT), and 

a solid-state transformer (SST), inspired from the CIGRE low-Voltage benchmark network 
[92]. 

 
Table 5.4. Specification of the power system elements in the case study III shown in Fig. 5.5 

Power System Element Number of units 
Capacity of each unit 

[kW] 
PV1 10 4 
PV2 10 3 
WT 10 5.5 
BT1 1 25 
BT2 1 25 
SST 1 150 

Aggregated peak load - 47 
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Fig. 5.6. Diagram of the converter structure used in each unit of PV1 and PV2 plants in Case 
study III (Fig. 5.5). 
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Fig. 5.7. Diagram of the converter structure used in each unit of WT plant in Case study III 
(Fig. 5.5). 
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Fig. 5.8. Diagram of the converter structure used in BT1 and BT2 units in in Case study III 
(Fig. 5.5). 
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Table 5.5. Electrical parameters of the power electronic units used in the Case study III, 
according to the diagrams shown in Fig. 5.5 to Fig. 5.8 [93]–[95] 

Parameter Value for PV1 Value for PV2 Value for WT 
Value for BT1 

and BT2 
fsw [kHz] 5 10 10 10 
Vdc [V] 800 750 400 800 
Cdc [μF] 56 47 82 47 
Lf1 [mH] 5 7  4 1 
Lf2 [mH] 1 1.1 - - 
Cf [μF] 2.6 0.7 - - 

Selected 
IGBT 

F3L25R12W1T4_B27 F3L25R12W1T4_B27 FS20R06W1E3_B11 FF450R12KT4 

 

Table 5.6. Grid parameters at the point of interconnection of power converters in Fig. 5.5 to 
Fig. 5.8 

Parameter Value 
Lg [mH] 1 
Rg [ ] 0.5 
fg  [Hz] 50 

Vg,rms [V] 230 
 

Table 5.7. Specification of wind turbines used in the WT plant in Fig. 5.5 

Parameter Value 
Pr [kW] 5.5 
Vc [m/s] 3 
Vr [m/s] 12 
Vf [m/s] 25 

 

Table 5.8. Specification of photovoltaic units used in the PV1 and PV2 plants in Fig. 5.5 

Parameter 
Value for 

PV1 
Value for 

PV2 
Pr [kW] 4 3 
G [m2] 5 3.75 
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Table 5.9. Repair rates (μ) and chance failure rates ( ) of the units in case study III (Fig. 5.5) 
[19], [96]–[99] 

Units in the 
power system 

element 
 [f/y] μ [r/y] 

PV1 0.06 100 
PV2 0.06 100 
WT 0.15 100 
BT1 0.05 100 
BT2 0.05 100 
SST 0.01 25 

 

5.4.2. Mission Profiles Uncertainty 

The solar irradiance profile for years 2007, 2009, and 2014 at Las Vegas, NV at week 
#30 can be seen in Fig. 5.9 [76]. As Fig. 5.9 shows, although the daily profiles bear 
some temporal patterns, the exact value of solar irradiance is highly uncertain and 
varies from hour to hour and year to year. A similar argument holds for the wind speed 
profiles, although the temporal patterns might be stronger from season to season rather 
than daily. As a result, unlike the conventional power systems, where the generation 
capacity could be controlled as desired at any time, the generation profile in 
renewable-based power systems is uncertain and will vary from time to time. This fact 
complicates the reliability assessment of renewable- and PE-based PSs compared to 
the conventional ones. In other words, not only the probabilistic properties of the 
generation capacity and unit availabilities must be considered in the analysis, but also 
their temporal patterns must be incorporated. To consider all these factors 
simultaneously, a hybrid framework was proposed in Chapter 4, where the scenario 
generation by the Generative Adversarial Network (GAN) was done to handle the 
generation uncertainty in parallel with availability modeling of the converters to 
model the converter outages. Notably, the GAN was able to capture all the temporal 
and probabilistic properties of the real profiles – i.e., it could reconstruct the same 
time-probability distributions and emulate real generation profiles. Therefore, the 
GAN was implemented and trained, and subsequently, 200 unique solar irradiance 
and wind speed scenarios were generated by using it to model the generation 
uncertainties. It is worth mentioning that the number of scenarios meets the condition 
stated in (4.38). The GAN-generated mission profile scenarios were shown and 
evaluated in Chapter 3 in terms of the Cumulative Distribution Function (CDF), 
Power Spectral Density (PSD), and their first moment. From the comparison, it was 
shown that the GAN-generated profiles could successfully capture all the temporal 
and probabilistic properties of the real scenarios. Therefore, the GAN is used here as 
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well to generate diverse and realistic scenarios, emulating potential real scenarios, to 
assist the reliability assessment by taking the generation uncertainty into account. 
 

 

Fig. 5.9. Uncertainty of historical solar irradiance profiles, demonstrated at a specific week in 
three different years at Las Vegas, NV [C2]. 

 

5.4.3. Time-Dependency of the Reliability Indices 

In Fig. 5.10, the solar irradiance and wind speed profile for 2007 are shown [76]. 
Depending on the solar irradiance and wind speed and based on whether the 
converters are healthy or faulty, the system can be in various states in terms of 
generating capacity. The output power of PV1, PV2, WT, BT1, and BT2, in a given 
state of j = 31, which means that the SST is down, are shown in Fig. 5.11 to Fig. 5.14. 
Notably, in this state, the system will operate analogous to an islanded microgrid. It 
should be mentioned that when calculating the final reliability index, not only this 
state, but also all other possible unreliability events are considered. In Fig. 5.11 to Fig. 
5.14, the output power profile for the PV1 and PV2 plants are calculated based on 
(4.17) and Fig. 4.3 by using the mission profiles of Fig 5.10. Similarly, the output 
power of the wind turbine converters in WT is calculated according to (4.19) and Fig. 
4.3. Accordingly, the output power of the battery converters in BT1 and BT2 can be 
obtained from (5.25). 
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(a) 

 
(b) 

Fig. 5.10. Annal mission profiles used for demonstration of time series results for the 
system shown in Fig. 5.5: (a) solar irradiance, (b) wind speed. 
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(a)

(b)

(c)

(d)

(e)

Period I Period II Period III

 

Fig. 5.11. Time series of the Case study III (Fig. 5.5) obtained by using the proposed 
framework, showing the output power of different converter units at a given system state (i.e., 
j = 31) where the SST is down: (a) photovoltaic inverter units, aggregating PV1 and PV2, (b) 
wind converter units in WT, (c) battery units aggregating BT1 and BT2 (d) load profile time 
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series, (e) DNS (Demand Not Supplied), from (4.35), indicating the load power that cannot be 
supplied in this state. 

Period I

(a)

(b)
Fig. 5.12. Time series of the Case study III (shown in Fig. 5.5) in period I (shown in Fig. 

5.11): (a) the output power of PV1+PV2, WT, and BT1 = BT2 in Fig. 5.5, (b) DNS (Demand 
Not Supplied) indicating the load power that cannot be supplied from (4.35). 

 

 

 

Period II

(a)

(b)  



 

107 
 

Fig. 5.13. Time series of the Case study III (shown in Fig. 5.5) in period II (shown in Fig. 
5.11): (a) the output power of PV1+PV2, WT, and BT1 = BT2 in Fig. 5.5, (b) DNS (Demand 

Not Supplied) indicating the load power that cannot be supplied from (4.35). 

 

Period III

(a)

(b)
Fig. 5.14. Time series of the Case study III (shown in Fig. 5.5) in period III (shown in Fig. 

5.11): (a) the output power of PV1+PV2, WT, and BT1 = BT2 in Fig. 5.5, (b) DNS (Demand 
Not Supplied) indicating the load power that cannot be supplied from (4.35). 

By obtaining the converter availabilities and knowing the converter output 
profiles, the system-level reliability indices such as ENS and LOL can be calculated 
based on Fig. 4.3 and from (4.37) and (4.40). Notably, the ENS can be calculated 
based on the DNS according to (4.35), and thereby acquiring the EENS from (4.41). 
It is worth pointing out that, in Fig. 5.11 to Fig. 5.14, the DNS indicates the 
“consequence” of the above-mentioned state (j = 31, which can be translated into the 
failure of SST), in terms of energy lost. 

In this regard, one of the main advantages of the proposed framework is 
employing the factor of “time” besides the “probability” – not only in the modeling 
but also in providing the output results. In other words, from the results of the 
framework, it can be known that, at which periods of the year, more severe outages 
are expected, and more preventive measures should be taken. For instance, Fig. 5.15 
shows that the EENS is considerably higher throughout December and November 
compared to other months, while this number is zero for June, July, and August. In 
contrast, in the conventional methods, the value of the EENS would be the same for 
all months of the year, as they are based on purely probabilistic approaches and cannot 
distinguish time-related properties. Therefore, conventional reliability indices (which 
provide only a static number for the entire year) do not reveal such insightful 
information when compared to the results of the proposed framework. 
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Fig. 5.15. Comparing the variation of the monthly EENS (Expected Energy Not Supplied) 
index for different months within one year. 

 

5.4.4. Generation Uncertainty and Mission Profile-Dependency of the Reliability 
Indices 

The above analyses were done, given that the converters are new – that is, when the 
system age = 1 [y]. When the converters age, their reliability metrics, and 
subsequently their availabilities are worsened. Therefore, it is expected that the system 
reliability indices follow the same trend. Thus, when the system age = 20 [y], the same 
analysis can be repeated with regards to changes in the converter availabilities. As a 
result, a new value for the reliability indices can be obtained. In Table 5.10, for the 
historical mission profiles happened in 2007, the value of the EENS and LOLE have 
been presented for two different system ages that is age = 1 [y] and age = [20] years. 
A similar analysis has been performed given the historical mission profiles of 2015, 
and the results for the EENS and LOLE are reported in Table 5.10. 
 

Table 5.10. Comparison of the EENS (Expected Energy Not Supplied) and LOLE (Loss Of 
Load Expectation) for two different system ages, and when two different years of mission 

profiles (same location) are used 

 
EENS [kWh/y]  
at age = 1 [y] 

EENS [kWh/y]  
at age = 20 [y] 

LOLE [h/y]  
at age = 1 [y] 

LOLE [h/y]  
at age = 20 [y] 

2007 mission 
profile 

41.10 117.41 1.55 4.44 

2015 mission 
profile 

50.08 142.96 1.91 5.46 
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According to Table 5.10, for the system age =1 [y], the value of EENS would be 
22% larger if the mission profile of 2015 is used instead of the 2007. This considerable 
difference is justifiable with respect to the intermittent nature of renewables and the 
uncertainty in the generation profiles. Therefore, by using different years of mission 
profiles, a different number will be obtained for the EENS. Thus, the calculated 
reliability index is highly sensitive to the year of the mission profile, which is available 
for the study, and thereby introducing significant errors. As a result, due to various 
uncertainties, the reliability index will follow a probability distribution, as opposed to 
a static number (which is considered in the conventional reliability assessment 
methodologies).  

For the above reason, the proposed framework suggests using the PDF of the 
reliability index as an output result, which can provide more practical information 
compared to a static value. To reconstruct the distribution of the reliability indices, 
the GAN is trained and used to generate 200 (according to Algorithm 4.1) realistic 
mission profile scenarios to account for the generation uncertainties. Other 
uncertainties were already handled in the reliability and availability modeling blocks 
as elaborated in Chapter 3 and Chapter 4. Although unique and distinct, the GAN-
generated profiles capture the probabilistic and temporal properties of the real 
profiles. Therefore, they can represent the potential scenarios that the system will be 
exposed to in terms of generation capacity. For each scenario n, SCn the procedure 
depicted in Fig. 4.3 is done and a value is calculated for the indices such as ENSn and 
LOLn. When the process is repeated for all scenarios, and ENSn and LOLn are 
calculated for 1  n  Nscenarios, the PDF of the indices can be calculated. 

Moreover, the value of the EENS and LOLE by using different years of mission 
profiles are shown in Fig. 5.16 and Fig. 5.17. As Fig. 5.16 and Fig. 5.17 show, the 
obtained values for the EENS and LOLE can be noticeably different for various years. 
Furthermore, Fig. 5.18 and Fig. 5.19 show the PDF of the ENS and the LOL for the 
Case study III in Fig 5.5 with the parameters in Table 5.4 to Table 5.9. In addition, 
the values of the ENS, provided that only the profile of 2007 or only the profile of 
2015 are used, are pointed out in the Fig. 5.18 and Fig. 5.19. As it can be seen in Fig. 
5.18 and Fig. 5.19, the obtained values for the reliability indices can be different, such 
that the obtained value for the LOL and ENS considering the 2007 profile would be 
23% and 22% larger when the 2015 profile is used. Hence, using the GAN-generated 
profiles, and subsequently extracting the PDF of the ENS and LOL, will be more 
realistic and provide a better understanding of the distribution and uncertainties of the 
indices.  

For a better comparability of the results, the acquired PDFs can be characterized 
by approximating them with a Normal distribution considering the mean ( ) and 
standard deviation ( ), i.e., N( , ), as provided in Fig. 5.18 and Fig. 5.19. It is worth 
pointing out that  can be used as an indicator for the expected value of the index, 
while  can be an indicator for the uncertainty of the index. 
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Fig. 5.16. Comparison of the EENS (Expected Energy Not Supplied) for Case study III, when 
only one year of mission profile is used, demonstrating that the generation uncertainty can 

lead to a noticeable error in calculating the reliability indices. 

 

 

Fig. 5.17. Comparison of the LOLE (Loss Of Load Expectation) for Case study III, when only 
one year of mission profile is used, demonstrating that the generation uncertainty can lead to a 

noticeable error in calculating the reliability indices. 
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ENS at 2015

ENS at 2007

  μ = 46.46
   = 2.27

 

Fig. 5.18. Probability Density Function (PDF) of ENS (Energy Not Supplied) index for Case 
study III, indicating the distribution of outage severity in terms of lost energy, where 

generation uncertainty is demonstrated by pointing out the results of historical data from 2007 
and 2015. 

 

LOL at 2007

LOL at 2015

μ = 1.69
 = 0.09

 

Fig. 5.19. Probability Density Function (PDF) of LOL (Loss Of Load) index for Case study 
III, indicating the distribution of overall outage duration, where generation uncertainty is 

demonstrated by pointing out the results of historical data from 2007 and 2015. 
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5.4.5. Impact of Power Electronic Components Aging on the System-Level 
Reliability 

Another advantage of the developed framework is that not only the current 
performance of the system can be evaluated, but also the future performance can be 
predicted. The previous analysis was for the case where the converters were new – 
that is, the system age = 1 [y]. When the converters age, their failure rate increases 
due to wear-out failures, and thereby decreasing the reliability. Thus, in this part, the 
effect of converter aging on the system-level indices will be investigated. To do so, 
the PDF of the LOL and ENS are obtained for different system ages by using the 
proposed framework. Notably, for three different system ages – namely, age = 1 [y], 
age = 10 [y], and age = 20 [y] – the PDFs are shown in Fig. 5.20 for LOL, and in Fig. 
5.21 for ENS. Moreover, for these three cases, the PDFs are approximated by a Normal 
distribution, N( , ), whose parameters are also shown in Fig. 5.20 and Fig. 5.21. As 
it can be seen from Fig. 5.20 and Fig. 5.21, as the converter age increases, both  and 
 increase. In other words, both the expected value ( ) and the uncertainty ( ) of the 

reliability indices increase when the converter age increases. Hence, by using the 
proposed framework, the effect of converter aging on the system-level reliability 
indices can be studied quantitatively, as illustrated in Fig. 5.22. 

Moreover, the variation of EENS in terms of the system age is shown in Fig. 5.23 
in the form of a box plot, where the median, max, min as well as the first and third 
quartile are depicted. It is worth reminding that in the conventional methods, only one 
number will be reported as EENS for all system ages. Also, the EENS itself has some 
uncertainties, which cannot be reflected in one number, while it can be quantified by 
using the proposed framework as shown in Fig. 5.23. 

 

μ = 1.69
 = 0.09

Age = 1 [y]

μ = 3.31
 = 0.18Age = 5 [y]

μ = 4.82
 = 0.27Age = 20 [y]

 

Fig. 5.20. Comparison of the PDFs of LOL for three different system ages (i.e., y = 1, 5, and 
20 [years]), demonstrating how the converter aging and wear-out failures affects the system-

level reliability indices in terms of outage durations. 
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 μ = 46.46
  = 2.28

Age = 1 [y]

 μ = 91.12
  = 4.56

Age = 5 [y]
 μ = 132.66
  = 6.47

Age = 20 [y]

 

Fig. 5.21. Comparison of the PDFs of ENS for three different system ages (i.e., y = 1, 5, and 
20 [years]), demonstrating how the converter aging and wear-out failures affects the system-

level reliability indices in terms of the energy not supplied. 

 

 

 

Fig. 5.22. Variation of the system ENS index (Energy Not Supplied) as a function of system 
age (which can be interpreted as an illustration of how the system-level strength of a power 

electronic-based power system degrades with converter aging). 
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Fig. 5.23. Variation of the system ENS index (Energy Not Supplied) and its uncertainty as a 
function of system age. 

 

Since, in the proposed framework, the wear-out failures are modeled accurately 
considering the mission profiles and physics of failure (refer to Fig. 3.1 and Fig. 4.7 
flow chart of reliability modeling), the effect of aging on the EENS is evident as can 
be seen from Fig 5.23. However, in the conventional system-level reliability 
assessment methodologies, wear-out failures are neglected, and the failure rate of 
converters are approximated with a constant value, which is time-independent. 
Therefore, this oversimplification results in a constant value over time for the 
reliability indices (e.g., EENS), while the actual value of the index increases over time 
due to converter aging. Accordingly, considering the constant failure rates for 
converters and neglecting wear-out failures can introduce error to the estimated 
reliability, which can, in turn, lead to an unreliable or overdesigned system. 
 

5.4.6. System-Level Design for Reliability and Benchmarking 

In this part, the proposed framework will be used to benchmark the Case study III and 
ensure that it will meet its short- and long-term reliability targets. The parameters of 
the case study were already presented in Table 5.4 to Table 5.9. Accordingly, the PDF 
of LOL is calculated for two different cases with age = 1 [y] and age = 20 [y] and 
shown in Fig. 5.24. As discussed before, for the LOL, a target value is set for the 
system designers, where it is required that the overall value of the LOL must not 
exceed this limit. For some European countries, the value of this target is between 
LOLtarget = 4 to 8 [h/y]. As it can be seen in Fig. 5.24, the system passes the above 
requirement when age = 1 [y], given that the LOLtarget = 4 [h/y]. However, when the 
converters age, i.e., age = 20 [y], the PDF of LOL exceeds the limits, indicating that 
the system will fail to meet its target LOL over time. Many approaches can be adopted 
to tackle this problem, e.g., changing the converter-level designs and maintenance. 



 

115 
 

Another approach, which will be used here, is to consider a larger design margin at 
the system-level, by incorporating more generation resources at the beginning. By 
doing so, the loss of generation due to power electronics degradation and failures will 
be covered by having more generatio capacity in the system. To demonstrate this, 
PV3, a 30-kW power plant (with identical specifications as PV2 in Table 5.4 to Table 
5.9 and Fig. 5.5 and Fig. 5.9) was added to the system. 

Subsequently, the PDF of LOL at age = 20 [y] was calculated in two cases – before 
and after adding the PV3. The PDF of LOL in these tow cases as well as the LOLtarget 
are shown in Fig. 5.25. As it can be seen in Fig. 5.25, after adding the PV3, the system 
will meet its LOLtarget requirement, even though the converters failure rates have 
increased over time. As a result, with such an analysis, the system designers have a 
quantitative tool to benchmark their designs and assess the viability of different 
options, to make sure that they meet the reliability requirements. 

Target LOL

Pass Fail

Age = 1 [y]

Age = 20 [y]

 

Fig. 5.24. Illustration of the design requirement of LOLtarget = 4 [h/y] as well as the PDF of 
LOL for two different system ages, where the system fulfills the requirement when its age = 1 

[y], while it fails to meet the requirement when the age = 20 [y]. 
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Pass Fail

Age = 20 [y]

After adding a 
30 [kW] PV plant 

to the system

Before adding a 
30 [kW] PV plant 

to the system

 

Fig. 5.25. PDF of LOL at age = 20 [y] before and after adding a 30-kW photovoltaic plant, 
illustrating how increasing the generation capacity influences the system-level indices and 

ensures that the reliability requirements are met even in the long run. 

 

5.4.7. Impact of Renewable Penetration Level 

In this part, the effect of increasing the renewables on the system-level reliability 
indices will be investigated. To study the impact of penetration of renewables, another 
version of the case study with 10% penetration of renewables are considered. It is 
worth mentioning that the definition of penetration level used here indicates the 
percentage of the load energy that is supplied from the renewable-generated power 
[100]. The capacity and number of units for this version of the case study can be seen 
in Table 5.11. Also, it should be noted that the penetration level for the first version 
of the case study, which was presented in Table 5.4 was 80%. 

Table 5.11. Specification of the power system elements in a modified version of the Case 
study III (Fig. 5.5), where the renewables penetration level is 10%  

Power System Element Number of units 
Capacity of each unit 

[kW] 
PV1 1 4 
PV2 1 3 
WT 1 5.5 
BT1 1 25 
BT2 1 25 
SST 1 150 

Aggregated peak load 1 47 
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On the one hand, when more renewables are integrated into the grid, some 
converters, e.g., battery converters, experience higher loading and longer operating 
times. The resulted overstress leads to the decrease of reliability at the converter level, 
which will be demonstrated here for battery units by comparing the converter-level 
reliability for two cases of high- and low-penetration levels of renewables. On the 
other hand, by adding more renewables to the grid, the generation capacity increases, 
which can potentially increase the system-level reliability. Considering these two 
factors, it cannot be easily predicted that whether the overall system reliability 
decreases or increases. Therefore, to study the effect of renewable penetration, the 
system-level reliability indices are calculated, by using the proposed framework, for 
two different versions of the case study with 80% and 10% renewable penetration 
(refer to Table 5.4 and Table 5.11), so that a quantitative comparison is possible. Also, 
the rating of SST is the same in both cases. 

Converter-level reliability: 

Acquiring the converter-level reliability metrics was explained in Chapter 3. Also, it 
was noted that the mission profiles play a key role in the reliability of converters. In 
this regard, the output power profile for the battery converters for two version of the 
case study is shown in Fig. 5.26 to Fig. 5.29. Furthermore, the failure rate and 
availability of the battery converters in those two cases are shown in Fig. 5.30 and 
Fig. 5.31, respectively. Since, the batteries are charged from the renewable-generated 
power, in the case study with higher penetration of renewables, the battery converter 
experiences a higher power profile as can be seen in Fig. 5.26 to Fig. 5.29. Generally, 
higher power profile means that the converters components undergo a higher thermal 
stress, which can be translated into a lower expected lifetime and subsequently a lower 
reliability. The curves shown in Fig. 5.30 represent the failure rate due to wear-out of 
the components of the converters. Accordingly, the converter availability can be 
calculated by considering the chance failures (failures which have their root-causes in 
external factors) and the maintenance (i.e., repair rate). As a result, the converter 
availability for two versions of the case study (10% (Table. 5.11) and 80% (Table 5.4) 
energy-based penetration level) are shown in Fig. 5.31. Moreover, it should be noted 
that, due to the aging of components, the availability of converters decreases over time 
for any given mission profile as Fig 5.31 shows. Hence, it is expected that the 
reliability indices at the system-level will be aggravated as the time passes. 
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Fig. 5.26. Time series of the output power of the battery units (BT1 = BT2) in Fig. 5.5: (a) 
10% penetration level of renewables with Table 5.11 parameters, (b) 80% penetration level of 

renewables with Table 5.4 parameters, 
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Fig. 5.27. Time series of the output power of the battery units (BT1 = BT2 in Fig. 5.5), for 
period I (shown in Fig. 5.26), considering two cases with 10% and 80% penetration level of 

renewables, demonstrating how the increase of the renewables penetration level increases the 
stress on the battery converters in the case study. 
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Fig. 5.28. Time series of the output power of the battery units (BT1 = BT2 in Fig. 5.5), for 
period II (shown in Fig. 5.26), considering two cases with 10% and 80% penetration level of 
renewables, demonstrating how the increase of the renewables penetration level increases the 

stress on the battery converters in the case study. 
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Fig. 5.29. Time series of the output power of the battery units (BT1 = BT2 in Fig. 5.5), for 
period III (shown in Fig. 5.26), considering two cases with 10% and 80% penetration level of 
renewables, demonstrating how the increase of the renewables penetration level increases the 

stress on the battery converters in the case study. 

 

 

 

80% penetration level of renewables
10% penetration level of renewables

 

Fig. 5.30. Comparison of the failure rate of the battery converter units (BT1 and BT2 in Fig. 
5.5) over time, for two cases of 10% (blue) and 80% (red) penetration level of renewables. 
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80% penetration level of renewables
10% penetration level of renewables

 

Fig. 5.31. Comparison of the availability of the battery converter units (BT1 and BT2 in Fig. 
5.5) over time, for two cases of 10% (blue) and 80% (red) penetration level of renewables. 

System-level reliability:  

The PDF of ENS is shown in Fig 5.32, for 80% and 10% penetration level cases. 
As it can be seen in Fig 5.32, increasing the generation capacity by adding more 
renewables to the grid was helpful in increasing the system-level reliability, even 
though it put stress on some converters and increased their failure rate (Fig. 5.30).  
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Fig. 5.32. Comparison of the PDF of LOL index for two cases of 10% and 80% penetration 
level of renewables, where μ decreases and  increases as the penetration level increases. 
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Also, from the analysis, it was found out that the ENS is affected more 
significantly in contrast to the LOL. This can be interpreted such that the overall 
duration of outages is not influenced considerably when the penetration level of 
renewables changes. However, the decrease of ENS suggests that the severity of the 
outages is much less when more renewables added to the system generation units. 
Also, μ and  of the PDFs are given in Fig 5.32. In this regard, when the penetration 
level increases, μ of the ENS decreases, indicating that the system experiences less 
severe outages, while  increases, which is reasonable due to the more uncertainty 
introduced by the renewable generation. 

 

5.5. Summary 

In this chapter, the merits of the proposed framework as a system-level quantitative 
reliability assessment tool were demonstrated by using it for assessing the reliability 
of several case studies. In these case studies, the errors introduced by using the 
constant failure rates were discussed. Also, the proposed availability modeling 
method was explained by comparing its results with conventional methods in terms 
of computational efficiency. Further, the effect of several factors (i.e., mission 
profiles, wear-out failure and aging of power converters, generation uncertainty, 
temporal patterns of renewable resources as well as their penetration level) on the 
system-level reliability of a PEPS was investigated, where the results were analyzed 
and discussed. The above results are some examples of how using the developed 
framework can assist the system level reliability assessment used for planning of the 
PEPS. There are more potentials, which are not shown here. Furthermore, since the 
framework is model-based, the effect of many parameters on the system-level 
reliability could be studied. For example, any changes in the converter-level design, 
could be modeled, where the wear-out failure rate would change accordingly -  and 
the impact on the system can be seen immediately. 
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Chapter 6    

Conclusion 
 
 

In this chapter, the conclusions and key findings of this PhD project will be 
summarized. Furthermore, the main contributions will be highlighted, and the 
potentials future works will be discussed. 

 
6.1. Summary 
As discussed before, the main objective of this PhD project was to develop a 
methodology to enable the system-level reliability assessment of modern power 
systems considering the power electronics failures. This incorporation caused several 
challenges, which resulted in the introduction of new concerns when assessing the 
reliability of a Power Electronic-based Power System (PEPS). On the other hand, 
conventional power system reliability assessment methodologies were unable to 
consider and model these new considerations. Therefore, new methodologies must 
have been developed to tackle these challenges and incorporate those considerations. 

Thus, in Chapter 1, these research gaps were analyzed and explained in detail. 
Given these shortcomings, the motivation of this PhD project was discussed, where 
several research tasks were defined accordingly to tackle the existing challenges. 
Based on these research tasks, the research questions and project objectives were 
formulated, and a roadmap to address them was presented. Also, the limitations and 
assumptions of this project were clarified.  

In Chapter 2, the fundamentals of reliability assessment in power systems were 
discussed to provide a better understating of the concepts, including the hierarchical 
levels, different system classifications, and application of probabilistic and 
deterministic methods. Then, the reliability indices in power systems were discussed, 
where famous indices were explained and the principles of calculating them were 
demonstrated. There, it was explained that the “probability” and “consequence” of 
failure events are the main information needed to calculate any reliability index in the 
power systems. Next, the conventional approach for outage modeling of synchronous 
generators was discussed. Subsequently, the main mathematical methods (that are 
frequently used in power system reliability studies) for calculating the state 
probabilities were elaborated upon. These methods included Portability Convolution 
method, Markov method, State Enumeration technique, and Monte Carlo simulation. 
Notably, the mathematical details for implementation of these methods, as well as the 
merits and demerits of them, and when to use each method were also discussed. 
Further, the Capacity Outage Probability Table (COPT) was explained, aggregating 
the probability and consequence of failure states. Accordingly, it was demonstrated 
how to form the COPT and Load Duration Curve (LDC), and subsequently, how to 
use its information to calculate the reliability indices. Finally, the impact of non-power 
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electronic failures on the power system reliability was discussed by providing an 
example of outage modeling of a wind turbine circuit breaker. 

In Chapter 3, the fundamentals of reliability modeling in power electronics, 
particularly wear-out failure modeling were highlighted. First, the conventional 
reliability analysis by handbooks were discussed, where the limitations of this 
approach were explained. Next, the overall reliability assessment process, from 
component-level up to the converter-level were presented, where all the necessary 
steps were explained. These steps included the electrothermal modeling, damage 
calculation using lifetime models, uncertainty handling using Monte Carlo simulation, 
and calculating converter reliability by using the reliability block diagrams, where 
they were demonstrated by implementing them on a PhotoVoltaic (PV) inverter 
example. Afterwards, the issue of mission profile uncertainty was investigated and 
demonstrated with detailed examples. Furthermore, the solution to this problem was 
presented, which included generating realistic mission profile scenarios by using the 
Generative Adversarial Networks (GANs). The GAN-generated scenarios were 
compared with historical scenarios in terms of PSD (Power Spectral Density), their 
first moment, and CDF (Cumulation Distribution Function). It was shown that the 
GAN-generated scenarios are analogous to historical profiles, which makes them 
suitable for mission profile scenario emulation. Further, it was shown that how using 
this approach can reduce the converter reliability estimation error, which were caused 
due to mission profile uncertainties. 

In Chapter 4, the proposed framework for the PEPS system-level reliability 
assessment was presented, where different blocks of the framework were explained in 
detail. This framework was model-based and considered various factors in the PEPS 
reliability assessment (e.g., mission profiles, physics of failures, were-out modeling, 
aging of power electronic converters, chance failures, maintenance, and generation 
uncertainty). The overall block diagram and interconnection between the blocks, as 
well as flowcharts for the computer implementation of the proposed framework were 
presented. In this regard, each block was introduced and their role in incorporating the 
above factors were clarified. These blocks included the converter availability 
modeling, power system modeling, scenario generation, state enumeration, and index 
calculation. Regarding the availability modeling block, the process to calculate the 
converter availability given the wear-out models, chance failures, and repair rates 
were provided. Since in PEPSs, non-constant failure rates must be used, conventional 
availability modeling methods, such as Markov process, could not be used. Therefore, 
a new method was presented, which could give a high accuracy while significantly 
lowering the computation time. Furthermore, the mathematical details for the 
computer implementation of the proposed method were presented. Concerning the 
power system modeling block, the main goal was to formulate the output power of all 
the converters in the PEPS. By doing so, it would be possible to evaluate the 
consequences of any failures of any converters. This included modeling the generating 
units (i.e., PV and Wind Turbine (WT) units), by translating the mission profiles into 
output power, which were discussed. Also, the output power of battery storage units 
considering their energy management scheme and the balance of energy between 



 

125 
 

demand and supply were modeled. Regarding the scenario generation block, the 
fundamentals of scenario generation by using the GANs were explained, where all the 
mathematical details for its computer implementation were also provided. In the state 
enumeration and index calculation blocks, the combination of data from previous 
blocks was discussed, where it was shown how to calculate the reliability indices 
accordingly. It was also pointed out that the outcomes of the proposed framework are 
time-dependent Probability Density Functions (PDFs), as opposed to static (time-
independent) values in conventional approaches. By doing so, the effect of power 
electronics wear-out failures on the system-level reliability indices could be studied. 
Furthermore, the uncertainty of the index itself is reflected in that PDF. 

In Chapter 5, the results obtained by using the above methods were applied on 
different systems and the results were analyzed. In other words, the reliability indices 
for several case studies were calculated by using the proposed approaches, and the 
effect of various factors on the system-level reliability were investigated to provide 
insights and demonstrate the superiority of the proposed methods.  

In the first part, it was shown that using constant failure rates could result in the 
underestimation of the reliability in the short term. Similarly, it was shown that it 
could result in the overestimation of the reliability in the long term. Hence, it was 
concluded that using the non-constant failure rates is a must for PEPS reliability 
assessment.  

Next, to use these non-constant failure rates, a new availability modeling method 
was used, where its performance in terms of computational efficiency was compared 
with the state-of-the-art approaches. These approaches included PWA (piecewise 
Approach), MDS (Method of Device of Stages), SMA (Semi Markov Approach), 
MCS (Monte Carlo Simulation), which were evaluated by applying them to calculate 
the reliability indices of a case study. It was shown that using the PWA and MDS can 
introduce significant errors to the system-level reliability indices, due to inaccurate 
modeling of the converter availability. On the other hand, the MCS and SMA 
demonstrated a high accuracy, while suffered from a high computation time. In 
contrast, the proposed availability modeling approach, had a high accuracy similar to 
that of SMA and MCS, while the computation time was significantly lower. Notably, 
the computation time of the proposed method, MCS, and SMA were 3.6, 273, and 
5220 [s], respectively. This is important because in larger PEPSs where the 
availability of many power converters must be modeled, the computation time of the 
availability modeling block determines whether the entire framework would be 
feasible or not.  

Moreover, the performance of the comprehensive framework for system-level 
reliability assessment was evaluated by using it for a new case study. First, the case 
study was described, where all necessary the system-level and converter-level 
specifications, as well as failure and repair data were presented.  

Further, by using the proposed framework, the LOL (Loss Of Load) and ENS 
(Energy Not Supplied) indices were calculated for the case study. It was demonstrated 
that the outcomes of the proposed framework are mission profile-dependent, where a 
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change in the converter mission profile led to a change in the converter failure rate 
and availability, which was consequently reflected on the system-level indices.  

Also, since the time series of the results were available in the proposed 
framework, more information were deductible from the results, which will be 
explained more here. From the analysis of the time series, it was shown that the ENS 
was zero in July, while it was the highest in December. This provides more useful 
information for the PEPSs with higher penetration of renewables (which are non-
dispatchable units and highly depend on climate conditions). Therefore, It helps the 
system planners and operator be aware of the vulnerabilities that changes in different 
time scales. Nevertheless, in the conventional PS studies, only one constant number 
is reported for an entire year for the ENS. Therefore, the above information was not 
possible to be deducted from a single yearly value provided in the conventional 
approaches. However, this was justifiable for conventional synchronous generators 
that were considered as dispatchable units. 

Furthermore, the effect of generation uncertainty on the system-level reliability 
indices was investigated by using the proposed framework. By using a few diagrams, 
it was shown that the reliability indices might change from year to year due to the 
volatile nature of renewables, such that the ENS could vary 23% from 2007 to 2015. 
Therefore, using purely probabilistic approaches or using only one year of mission 
profiles can cause noticeable error in the calculated reliability indices. The above 
behavior of the reliability indices was reasonable because they are caused not only by 
converter failures but also due to generation uncertainty. As a result, the outcomes of 
the proposed framework are PDFs, and not only a static value (like conventional 
approaches). By doing so, the uncertainty of the index itself can also be obtained and 
studied.  

Moreover, the effect of components wear-out failures and converter aging on the 
system-level reliability was studied quantitatively. Hence, time-dependent PDFs were 
calculated for reliability indices, where the PDFs’ characteristics change with time 
because of converter aging. In other words, since the converter availability and 
reliability degrade with time and they are modeled into the framework, it is 
automatically reflected on the system-level indices. For example, the LOLE changed 
form 1.7 [h/y] to 4.8 [h/y] for the presented case study, when the system age changed 
from 1 [y] to 20[y].  Therefore, it was possible to investigate the impact of converter 
aging on not only the average value of the reliability index, but also on its worst-case 
and best-case scenarios. It was also concluded that the proposed framework enables 
not only the evaluation of the current performance of the system, but also the 
prediction of its future performance. 

It was also demonstrated how the comprehensive framework can be used to 
benchmark the system and assist the design for reliability at the system level. In this 
regard, in a case study, it was shown that the system could meet its LOLtarget 
requirement when the system age = 1 [y], while it violated its LOLtarget requirement at 
age = 20 [y]. In other words, by using the proposed framework, the system was 
benchmarked to identify the unreliable design. Therefore, it can help the system 
designers to check their system-level designs and ensure that a specific design will 
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meet its reliability requirements in the long run. The above design problem was fixed 
by adding a new PV pant to the system (i.e., increasing the design margin) and 
recalculation of the reliability index. Subsequently, it was shown that that the new 
design will meet its LOLtarget requirements even in the long term. 

Also, the impact of the penetration level of the renewables on the system 
reliability was studied. Two case studies were compared where the energy-based 
penetration level was 10% and 80%, respectively. It was shown that the converter-
level reliability of battery inverters decreased as the penetration level of renewables 
increased. This was reasonable because the power profile of the battery converter 
increases due to more available power in the system, which means a higher stress on 
them, and therefore, a lower converter-level reliability. However, the system-level 
reliability improved when the penetration level increased. Given that the PDF of 
reliability indices are characterized by a normal distribution with mean and standard 
deviation of N(μ , ), it was shown that, as the penetration level increases, μ decreases, 
while  increases. When μ decreases, it means that the expected value of the 
unreliability decreases. This is reasonable because more generation capacity is added 
to the system, as more renewables are integrated into the grid. In contrast, an increase 
in  means that the uncertainty of the index has increased. This is also reasonable 
since, the volatile nature of renewables dominates the system as the penetration level 
increases. 
 

6.2. Main Contributions of the Thesis 

The key contributions of this PhD thesis are as follows. 

A comprehensive understanding of the power system reliability: The prerequisite of 
developing models for the PEPS reliability assessment is to understand the 
conventional power system reliability assessment methods and to be able to 
implement them. This has been done in chapter 2, where a comprehensive review of 
the methods has been presented, and relevant concepts and principles have been 
discussed in detail. 

Implementing a simplified way of converter-level reliability modeling: This has been 
done by leveraging the analytical equations for electrothermal mapping, which was 
explained in chapter 3. Further, the comparison of the results with accurate simulation 
models were presented for validation. 

A solution for mission profile uncertainty handling in converter-level reliability 
modeling: This has been done in chapter 3, where the usage of the machine learning 
concept of GAN was suggested to generate mission profiles. Furthermore, the idea 
was implemented and verified by providing several test results. Furthermore, the 
improvement of the reliability estimation results after using the GANs was 
demonstrated in chapter 3. 

A new availability modeling method with a high computational efficiency: Since the 
conventional method such as Markov were unable to model the availability with non-
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constant failure rates, a new method was proposed in chapter 4. Furthermore, in 
chapter 5, it was shown that, compared to complicated mathematical approaches, this 
method results in a high accuracy with a significantly lower computation time. 

A comprehensive framework for system-level reliability assessment of the PEPS: This 
model-based framework is developed according to the V-shaped modeling approach, 
which incorporates the system-level down to the converter-level and component-level 
reliability and vice versa. It provides a tool for system-level designers to check the 
reliability of the design options, benchmark them, and guarantee their long-term 
reliability, which has the following advantages. 

 This means that every factor that has a physical model (e.g., physics of 
failure) can be integrated into the framework, and its impact on the system-
level reliability can be investigated. Since it is a model-based approach, the 
consequences of any changes in the parameters at the component and 
converter levels can be studied on the system level reliability indices. 

  Moreover, the role of mission profiles is highlighted in the developed 
framework as they influence both converter failures and generation capacity.  

 Further, it is a hybrid “muti-timescale” and “probabilistic” approach, as it 
was explained. When doing electro-thermal modeling for component 
reliability modeling, very small timescales in the order of milliseconds are 
considered. To evaluate the consequence of converter failures, time series 
with the resolutions in the order of 1 to 5 minutes are used. In contrast, the 
availability of the converters varies with a 1-year time step. Finally, the 
overall study time horizon typically deals with cases in 10- to 30-year time 
frames.  

 The output of the proposed framework are time-dependent PDFs for each 
reliability index, as opposed to a constant (i.e., time-independent) value in 
traditional approaches. The characteristics of the PDFs change every year 
due to the converter aging and the increase of wear-out failures. As a result, 
the effect of converter aging on the system-level reliability indices can be 
studied quantitatively. In other words, the comprehensive frameworks enable 
the designers to not only evaluate the current performance of the system in 
terms of reliability, but also predict its future and long-term performance.  

 Furthermore, the PDF reflects the generation uncertainty, which is translated 
into the index uncertainty, where the designer can obtain a worst-case, best-
case, and average scenario for the reliability index and make better-informed 
decisions.  

 Also, chance failures and corrective maintenance are also considered in the 
developed framework.  

 All in all, it provides a tool for system designer to benchmark their system-
level design, ensure that it meets its long-term reliability goals, and compare 
various design options with each other in terms of reliability. 
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6.3. Future Works and Research Perspectives 

Although, in this PhD project, it was tried to address as many research gaps as 
possible, there are still numerous interesting challenges to be studied. Tackling these 
challenges in the future works will improve the outcomes of the current work and 
make the reliability assessment of the PEPS more mature, realistic, and efficient. 
Some of the areas that can be considered for future studies are as follows: 

 In this PhD project, only the failure of components due to the thermal-
induced stress was studied. Nevertheless, several recent research works have 
suggested the noticeable contribution of other factors such as humidity and 
cosmic rays. As a result, modeling these phenomena physically and 
statically, and incorporating them into the developed framework will 
enhance the accuracy of the outcomes. Further, it would be interesting to 
investigate how these factors influence the system-level reliability indices. 

 In this research work, DC power flow method was adopted to model the 
power balance in the system, as the focus was to develop the framework 
itself. Nevertheless, using this approach results in ignoring the reactive 
power. In the future works, more advance power flow methods can be 
adopted, to also consider the reactive power impact in the model. By doing 
so the contribution of active and reactive power on the system-level 
unreliability can be separated and investigated. 

 The reliability studies only targeted the hierarchical level I – that is, only 
generation and storage units were considered in the models. In other words, 
the transmission lines, their limits, their failures, and their impact on power 
balance in the system was ignored. Therefore, if these factors can also be 
integrated into the framework – that is the hierarchical level II analysis be 
added - more comprehensive results will be obtained. Further, the 
contribution of the generation and transmission facilities in the unreliability 
can be separated, which can shed light on the importance of each hierarchical 
level and help identifying the weakest links. 

 Only wear-out failures of power semiconductors and capacitors were 
modeled and used. Nevertheless, there are many other components in a 
power electronic converter that can fail. So, by adding failures models for 
other components, the accuracy of the results will improve. 

 The main focus of the project was to develop an assessment tool for the 
PEPS. It would be worthwhile to use the outcomes of this tool to realize the 
system-level design for reliability. In other words, a future work can be done 
to apply the developed framework in improving and maintaining the 
reliability of the PEPS in the long run. 

 In this PhD project, the wear-out and chance failures were modeled and 
considered for system-level assessment. It could be interesting to model and 
consider the early failures and infant mortalities by studying their impact on 
the system-level reliability indices.
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