

Aalborg Universitet

An Idiomatic Framework for Cognitive Robotics

Damgaard, Malte Rørmose

DOI (link to publication from Publisher):
10.54337/aau520799670

Publication date:
2022

Document Version
Publisher's PDF, also known as Version of record

Link to publication from Aalborg University

Citation for published version (APA):
Damgaard, M. R. (2022). An Idiomatic Framework for Cognitive Robotics. Aalborg Universitetsforlag. Ph.d.-
serien for Det Tekniske Fakultet for IT og Design, Aalborg Universitet https://doi.org/10.54337/aau520799670

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 - Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 - You may not further distribute the material or use it for any profit-making activity or commercial gain
 - You may freely distribute the URL identifying the publication in the public portal -
Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: September 08, 2023

https://doi.org/10.54337/aau520799670
https://vbn.aau.dk/en/publications/c276753c-3429-4f9c-bacf-7b996cd3fbce
https://doi.org/10.54337/aau520799670

M
a

lte R
ø

R
M

o
se D

a
M

g
a

a
R

D
a

n
 ID

Io
M

atIc
 FR

a
M

ew
o

R
k

 Fo
R

 c
o

g
n

ItIve R
o

b
o

tIc
s

an IDIoMatIc FRaMewoRk FoR
cognItIve RobotIcs

by
Malte RøRMose DaMgaaRD

Dissertation submitteD 2022

An Idiomatic Framework for
Cognitive Robotics

Ph.d. Dissertation
Malte Rørmose Damgaard

Dissertation submitted November, 2022

Dissertation submitted: November 2022

PhD supervisor: Prof. Thomas Bak
 Aalborg University

Assistant PhD supervisor: Asst. Prof. Rasmus Pedersen
 Aalborg University

PhD committee: Associate Professor Simon Bøgh (chairman)
 Aalborg University, Denmark

 Professor Richard J. Duro Fernández
 Universidade da Coruña, Spain

 Professor Volker Krueger
 Lund University, Sweden

PhD Series: Technical Faculty of IT and Design, Aalborg University

Department: Department of Electronic Systems

ISSN (online): 2446-1628
ISBN (online): 978-87-7573-781-9

Published by:
Aalborg University Press
Kroghstræde 3
DK – 9220 Aalborg Ø
Phone: +45 99407140
aauf@forlag.aau.dk
forlag.aau.dk

© Copyright: Malte Rørmose Damgaard

Printed in Denmark by Stibo Complete, 2023

Abstract
"I alone cannot change the world, but I can cast
a stone across the water to create many ripples."

- Mother Teresa

By increasingly taking over dull, dirty, and dangerous jobs, robots have
demonstrated that they have the potential to transfigure the world we live
in. However, the ability of robots to effectively deal with unpredictable and
dynamic environments by learning and reasoning from experience is still rel-
atively limited. This constitutes a major barrier to the development of robots
that can integrate fully and seamlessly into human societies. The objective of
this ph.d. study has been to aid roboticists in this development by designing
a framework providing unifying standards for implementing artificial cog-
nition for robots with characteristics of human cognition that can easily be
shared and reused.

The main contribution of this ph.d. study is a proposal of a design for
such a framework. The topic of this dissertation is the process undertaken
to reach the proposed design, which has been structured through the design
cycle. The properties of the framework are investigated in a series of papers
describing different empirical studies considering both simulation-based and
real-world single-case mechanism experiments. These empirical studies cover
concepts related to the framework, such as real-time computation, distributed
computations, multi-robot systems, low-level reactive attention mechanisms,
and appraisal-driven decision mechanisms.

The results of these empirical studies are generalized into a design the-
ory stating that the framework under given assumptions can provide im-
plementations of artificial cognition for robots related to decision-making.
The design theory further states several advantageous properties of using
the framework for such implementations.

In the end, it is concluded that with this study important steps have been
taken towards a framework providing unifying standards for implementing
artificial cognition for robots.

iii

Resumé
"Jeg kan ikke ændre verden alene, men jeg kan kaste en
sten gennem vandet for at skabe mange krusninger."

- Moder Teresa

Ved i stigende grad at overtage kedelige, beskidte og farlige arbejdsop-
gaver har robotter demonstreret, at de har potentialet til at forvandle verde-
nen, som vi kender den. Desværre er robotters evne til effektivt at håndtere
uforudsigelige og dynamiske miljøer ved at lære af og tage beslutninger,
på baggrund af erfaring, stadig relativt begrænset. Dette udgør en kæmpe
barriere for udviklingen af robotter, der gnidningsløst kan integreres ind i
menneskelige samfund. Formålet med dette ph.d.-projekt har været at gøre
denne opgave lettere ved at designe et sæt af retningslinjer, der foreskriver
standarder, som kan forene implementeringer af kunstig kognition til robot-
ter med karakteristika, der minder om menneskelig kognition samt gøre det
nemmere at dele og genbruge sådanne implementeringer.

Hovedbidraget fra dette ph.d.-projekt er et designforslag til sådanne et
sæt af retningslinjer. Emnet der adresseres i denne afhandling, er den de-
signproces, der blev udført for at nå frem til det foreslåede sæt af retningslin-
jer. Egenskaberne for det foreslåede sæt af retningslinjer er undersøgt igen-
nem en række videnskabelige artikler, der beskriver forskellige empiriske
studier omhandlende single-case mekanisme eksperimenter i simulering og
i den virkelige verden. Disse empiriske studier behandler fx emnerne re-
altidsberegning, distribuerede beregninger, systemer med mere end en robot,
reaktive opmærksomhedsmekanismer og beslutningsmekanismer drevet af
robottens interne vurdering af dens omstændigheder.

Resultaterne af disse empiriske studier generaliseres til en designteori,
der siger, at retningslinjerne under givne antagelser kan resultere i implan-
tationer af kunstig kognition til robotter relateret til beslutningstagen. Deru-
dover påpeger designteorien flere fordelagtige egenskaber, der kan opnås ved
at bruge retningslinjerne til sådanne implementeringer.

Til slut konkluderes det, at der med dette projekt er taget vigtige skridt
imod et sæt af retningslinjer, der foreskriver standarder, som kan forene im-
plementeringer af kunstig kognition til robotter.

v

Contents

Abstract iii

Resumé v

Preface ix

Part I Summary 1

1 Introduction 3
1.1 Motivation . 3
1.2 Research Objective and Methodology 4

2 Background and State-of-the-Art 9
2.1 Human-Robot Interaction . 9
2.2 Cognitive Architectures . 11
2.3 Requirements Specification . 15

3 Preview and Contributions 17
3.1 Paper A - Treatment Design . 17
3.2 Paper B - Treatment Validation 1 19
3.3 Paper C - Treatment Validation 2 21
3.4 Paper D - Treatment Validation 3 22
3.5 Software . 24
3.6 Design Theory . 24

4 Conclusion and Outlook 27
4.1 Conclusion . 27
4.2 Suggestions for Future Work . 28
References . 29

vii

Contents

Part II Papers 33

A Toward an Idiomatic Framework for Cognitive Robotics 35

B Study of Variational Inference for Flexible Distributed Probabilistic
Robotics 87

C A Probabilistic Programming Idiom for Active Knowledge Search 119

D Escaping Local Minima Via Appraisal Driven Responses 143

viii

Preface

This dissertation is submitted as a collection of papers in partial fulfillment
of the requirements for the degree of ph.d. at the Department of Electronic
Systems, Section of Automation and Control, Aalborg University, Denmark. The
study covered by this dissertation was carried out in the period from June
2019 to November 2022 as part of the strategic initiative of the Technical
Faculty of IT and Design at Aalborg University called "The Human-Robot
Interaction project".

The dissertation is structured in two parts. The first part serves as an
introduction to the study and the scientific methodology used within this
study since this usually cannot easily be conveyed within the scope of scien-
tific papers. This part is divided into four chapters. The first chapter gives
the motivation for the study together with an overview of the research ob-
jective and methodology. The second chapter summarizes the background
information and the State-of-the-Art review used for problem investigation
and requirement specification. The third chapter summarizes how each of
the papers published or submitted as part of this study has contributed to
the study and the design theory that has been formed from them. The fourth
chapter concludes the dissertation. The second part of the dissertation con-
sists of the four papers published or submitted as part of this study.

I would like to express my deepest gratitude for the proficient supervi-
sion carried out by my two supervisors Thomas Bak and Rasmus Pedersen.
Throughout my study and research, you have provided indispensable dis-
cussions and opinions keeping me on the right track despite my, at times,
excessive ambitions. Furthermore, I am grateful for the financial support
from "The Human-Robot Interaction project" giving me the freedom and op-
portunity to pursue research at and beyond the bleeding edge of robotics.

Malte Rørmose Damgaard
Aalborg University, November 30, 2022

ix

Preface

x

Part I

Summary

1

Chapter 1

Introduction

1.1 Motivation

For a long time, it has been prophesied that robots will have an immense im-
pact on human societies by taking over dull, dirty, and dangerous jobs. They
have been imagined to aid in tasks such as search-and-rescue, last-mile de-
livery, rehabilitation, housekeeping, eldercare, surveillance, and autonomous
space exploration. The list of possible application areas seems endless, and
already back in the 90s leading roboticists at the time concluded that

"time is ripe for the development of AI-based commercial service robots that assist
people in everyday life" [1].

Unfortunately, except for robot vacuum cleaners and lawnmowers, robots
have only truly had a breakthrough in the industry. What might be the reason
for this mismatch between what was thought to be possible 40 years ago, and
what has been shown to be possible?

When compared to traditional industrial environments, the biggest reason
for the missing breakthrough of robotic technology in environments such as
commercial and home spaces is probably that these spaces are notoriously
unstructured and dynamic environments1. This is to a large extent due to
the required interaction with humans, since humans not only are "dynamic
and non-deterministic, but also perceive(s) the robot, adapt(s) their own plans and
actions" [2]. A fact that was also pointed out in [3]. Combining this with the
statement

"it is impossible to pre-program robots with every needed skill or even to predict all
use cases. As a result, robots need the ability to learn new skills after they are

deployed" [2],

1Why Indoor Robots for Commercial Spaces Are the Next Big Thing in Robotics

3

https://spectrum.ieee.org/automaton/robotics/robotics-hardware/indoor-robots-for-commercial-spaces?fbclid=IwAR32K1lPDksPGi3gQOnQUTvDkE8yrkMyHE5zqXCSWqcujIWDWzT1J0g16Hs

Chapter 1. Introduction

gives a hint to one possible reason why robots have not yet conquered these
environments and fulfilled the 40-year-old prophecy. Today’s state-of-the-
art algorithms in robotics can indeed be combined to construct functional
robots performing specific structured tasks in static environments. However,
compositions of such highly specialized algorithms usually require hand-
tuning, rigid interfaces between algorithms, and prior knowledge about all
the possible situations to which the robot might be exposed. Consequently,
such robotic systems will inherently lack the ability to evolve with and adapt
to their environment, making them unsuitable for highly dynamic environ-
ments perfused by uncertainty due to required interaction with humans. This
is in contrast to human’s cognitive ability to generalize prior knowledge to
overcome impasses and thereby robustly adapt to changing environments
and new problems. On the other hand, the growing amount of robot ap-
plications that have shown to be successful during the last decade can pre-
sumably be attributed exactly to the possibility of easily sharing and reusing
state-of-the-art algorithms across the entire robotic community as nurtured
by idiomatic standardizations such as the meta-operating systems ROS and
ROS2. This yields quite a conundrum: how is it possible to reap the benefits
of idiomatic standardization while being able to develop robot cognition that
can evolve with and adapt to unstructured, dynamic, and uncertain environ-
ments?

1.2 Research Objective and Methodology

Motivated by the considerations set forward in Section 1.1, this project takes
its outset on the hypothesis that

Hypothesis:

A framework providing unifying standards for implementing artificial robot
cognition with characteristics of human cognition that can easily be shared and

reused will finally allow roboticists to develop robots that can conquer unstructured
and dynamic environments perfused by uncertainty from human interaction.

This hypothesis cannot be verified without such a framework for imple-
menting parts of artificial robot cognition, and therefore it naturally gives rise
to the following technical research problem.

Technical Research Problem:

How to design a framework providing unifying standards for implementing
artificial robot cognition with characteristics of human cognition that can easily be

shared and reused so that roboticists can develop robots for unstructured and
dynamic environments perfused by uncertainty from human interaction?

4

1.2. Research Objective and Methodology

Examination of all aspects of the main hypothesis or the related technical
research problem is outside the scope of a single ph.d. study. However, this
should not stop a curious and aspiring researcher from pursuing answers.
Therefore, the research objective of this ph.d. study has been to get as good
an answer as possible to the technical research problem within the limited
period of the study. As a result, this study has been carried out as curiosity-
driven exploratory research conducted to get a better understanding of the
technical research problem.

According to [4] the goal of any technical research problem is to design
a treatment for solving some problem so that stakeholders can achieve their
goal in a specific problem context. Such treatment not only consists of a de-
signed artifact but also the desired interaction between that artifact and the
problem context. It is not the designed artifact itself that solves the prob-
lem, but rather the interaction between the designed artifact and a problem
context. In the above technical research problem, the artifact that needs to
be designed is the "framework", the stakeholders are "roboticists", the goal
of the stakeholders is to "develop robots", and the problem context is "un-
structured and dynamic environments perfused by uncertainty from human
interaction". The above technical research problem also specifies some re-
quirements that the artifact should satisfy, namely that it should provide
"unifying standards for implementing artificial robot cognition with charac-
teristics of human cognition that can easily be shared and reused". According
to [4] the design of such treatment is usually carried out as iterations of the
design cycle comprised of the following task:

• problem investigation,

• treatment design,

• and treatment validation.

Usually, the problem context, the stakeholders, and the goals of the stake-
holders are not clear at an early stage of a project. Therefore, the purpose
of the problem investigation is to get a better understanding of all elements
of the problem to be treated. Based on the problem investigation, it should
be possible to derive a set of requirements based on which a treatment can
be designed. When the treatment has been designed, it can be validated in
models of the problem context. Based on the validation of the treatment, a de-
sign theory can be formed, constituting reasonably justified generalizations
about the effects of the designed artifact and its interaction with the actual
problem context. If the design theory does indicate that the treatment is in-
sufficient, it usually leads to further iterations of the design cycle. Otherwise,
the treatment can be tried out in the actual problem context, via treatment
implementation and validation. Whenever something is unclear and new
knowledge is needed for one of the tasks in the design cycle, a knowledge

5

Chapter 1. Introduction

Treatment
Implementation

Problem
Investigation

Treatment
Validation

Treatment
Design

Implementation
Evaluation

Design
Cycle

Engineering
Cycle

Fig. 1.1: Illustration of the three tasks of the Design Cycle as an inner loop of the Engineering
Cycle. The treatment validation task should result in a Design Theory, based on which a de-
cision can be made whether to take additional iterations of the Design Cycle or to proceed to
implementation. In this ph.d. study, a single iteration of the design cycle has been completed as
indicated by the solid blue line in the figure.

question is posed, that can aid in progressing the task. Opposite to technical
research problems that ask for a change in the world and for which multi-
ple solutions might exist, knowledge questions ask for knowledge about the
past and present world. By nature, knowledge questions assume that there is
only one correct answer. However, one needs to be aware that most answers
to knowledge questions, especially empirical ones, might be subject to falli-
bilism. Nevertheless, the "facts" provided by these answers are indispensable
e.g. to make the reasonably justified generalizations constituting the design
theory.

As indicated by the blue solid arrow in Fig. 1.1, this study has been struc-
tured as a single iteration of the design cycle [4]. For each of the tasks in this
iteration, one or more related knowledge questions have been formulated and
answered. Within this ph.d. study, the purpose of the problem investigation
and the treatment design was to either propose improvements for existing
frameworks or to propose an entirely new framework. Again, since the tech-
nical research problem cannot reasonably be fully addressed, the ultimate
goal of the treatment validation has been to develop a design theory predict-
ing the advantages and disadvantages of using the proposed framework for
implementing, sharing, and reusing parts of artificial robot cognition within
the problem context of unstructured, dynamic, and uncertain environments.

To further focus the scope of this ph.d. study, models of the problem con-
text have been developed with special emphasis on navigation and motion

6

1.2. Research Objective and Methodology

planning for mobile robots since it is believed that mobile robots covering
large workspaces are especially prone to unstructured, dynamic and uncer-
tain environments, and since there have already been proposed many great
robot applications in human environments that require a mobile platform
with these skills e.g. robotic-sales man, robot parcel delivery, robotic wait-
ress, etc.

The remainder of Part I is devoted to giving a summary of how the dif-
ferent tasks in the decision cycle have been carried out and pointing out how
the papers published and submitted during the study have contributed to the
overall research objective of answering the technical research problem.

7

Chapter 1. Introduction

8

Chapter 2

Background and
State-of-the-Art

2.1 Human-Robot Interaction

Since the required interaction with humans is deemed one of the main causes
making it hard to develop robotic systems for environments outside of the
traditional industrial environments, it is natural to ask the following knowl-
edge question as part of the problem investigation.

Knowledge Question 1:

Which methodologies have previously been used to make robots interact with
humans, and why have these methodologies not had more success?

In this study, this knowledge question has been sought answered through
a literature review with the main findings summarized within this section.

The interaction between robots and humans is the topic of the rapidly
growing research area of human-robot interaction (HRI) within the broader
robotics community. As the name implies HRI is the study of interactions
between humans and robots. Despite not being fully up to date [2] gives a
good overview of the broadness of this area of research. According to [2] the
research in this area can be divided into "foundations" and "high-level com-
petencies", which can be further divided into subcategories. As the name
implies "foundations" are basic capabilities and modalities that are precur-
sors to high-level competencies and successful interaction with humans. The
high-level competencies are not independent, and some may depend on oth-
ers; e.g. navigation and Human-aware motion planning depends on the
intentional action competencies "theory of mind" and "communicating in-
tent". Naturally, safety should be one of the main objectives when designing

9

Chapter 2. Background and State-of-the-Art

Environment

Emergent
Symbol System

Organization
Constraint

(semantics, syntax,
pragmatics, etc.)

Physical
Interaction

Semiotic
Communication

Internal

Representation

System

Semiotic
Communication

Internal

Representation

System

Physical
Interaction

Fig. 2.1: Illustration of how an emergent symbol system emerges and evolves as the result of
semiotic communication between cognitive agents in an environment. Through physical in-
teraction with the environment, each agent can freely form an internal representation of that
environment. However, if the agents want to communicate they must organize how things in
the environment should be represented, at least for communication, by which the emergent
symbol system emerges via consensus. If a strong consensus already exists in a society, then
newcomers have to adapt to the already established emergent symbol system, and thus it puts
some constraints on the newcomers’ internal representation system. On the other hand, if the
consensus is not strong, the emergent symbol system might drift.

a system for HRI. Therefore, different methods for safe HRI have been sur-
veyed in [5]. [3] summarizes the insights that the researchers at the interAct
laboratory at UC Berkeley "have gained in integrating computational cognitive
models of people into robotics planning and control" using rational models of hu-
man behavior in a game-theoretical approach. Finally, methods and topics
related to Human/social-aware navigation have been extensively surveyed
in [6] and [7]. In [7] they conclude that

"a pluralism of algorithms with different starting points emerged, which rapidly
enriches the respective literature. Even though important steps have been made, the

effectiveness of (the) those works need to be further improved and
standardize(d) in order for robots to be accepted and co-exist in human populated

environments in a daily fashion".

What is evident from studying the above surveys is that the dominating
methodology within HRI is to take a top-down approach in which robot ap-
plications are broken into ever smaller problems that are sought to be solved

10

2.2. Cognitive Architectures

by incrementally changing highly specialized and non-standardized algo-
rithms to produce small advancements without much regard for the overall
system architecture.

In recent years, it has been pointed out by researchers within the newly
formed research field of symbol emergence in robotics (SER) [8, 9], that such a
top-down methodology is inappropriate for developing robots for real-world
environments requiring interactions with humans. This is argued from the
viewpoint that, whenever a robot is deployed into an environment with other
cognitive agents it becomes a part of a dynamical system referred to as the
emergent symbol system as illustrated in Fig. 2.1. The term emergent symbol
system refers to the standardization of the way cognitive agents communicate
within a certain society, i.e., the set of "rules" governing semiotic communi-
cation. If a robot does not understand and follow these "rules" it cannot
communicate with the other cognitive agents in the environment. This set
of "rules" is not given a priori but rather emerges and evolves dynamically
through social interaction. Therefore, robots need to be able to adapt to and
evolve with this emergent symbol system to efficiently and sustainably in-
teract with humans in the long term. It is further argued that this can only
be achieved using a bottom-up methodology and by architectures "using gen-
eral, not specifically tailored, mechanisms that provide an overarching framework for
cognitive development" [9].

In conclusion to knowledge question 1, a top-down methodology is com-
monly used for research in human-robot interaction and has provided many
great results for well-defined and bounded application areas. However, this
top-down methodology results in systems having limited learning and adap-
tive capabilities. As a consequence, robotic systems for unstructured and
dynamic environments requiring efficient interaction with humans should
predominantly be built in a bottom-up fashion from architectures providing
general mechanisms. Furthermore, it has been pointed out that work within
this field needs to be standardized.

2.2 Cognitive Architectures

Based on the conclusion reached through the literature review summarized
in Section 2.1, the next pressing question is:

Knowledge Question 2:

What efforts have previously been done to construct architectures with general
mechanisms for cognitive development?

To answer this knowledge question a literature review of the research field
of cognitive architectures was found highly relevant. The research in cogni-
tive architectures (CA) is centered around creating "a concrete implementable

11

Chapter 2. Background and State-of-the-Art

0

5

10

15

20

Ro
bo

tic
s A

pp
lic

at
io

ns

Fig. 2.2: Wordcloud based on data for the 84 cognitive architectures surveyed in [10]. Size
indicates the total number of applications that each cognitive architecture has been used for. The
color indicates the number of robotics-related applications that each Architecture has been used
for.

model of the fixed structure that defines a mind" [11] with much of the research ef-
fort put in "the core cognitive abilities, such as perception, attention mechanisms, ac-
tion selection, memory, learning, reasoning, and meta reasoning" [12]. The research
in cognitive architectures dates back to the beginning of the 1970s, and it is
estimated that there currently exist approximately three hundred different
architectures with the most prominent being [12]: ACT-R [13], Soar [14, 15],
CLARION [16], ICARUS [17], EPIC [18], and LIDA [19]. The practical ap-
plication of the different cognitive architectures varies greatly from psycho-
logical experiments to robotics. Despite this, only a few architectures have
put substantial efforts into applications to robotics as illustrated by Fig. 2.2.
Nevertheless, as argued in [20] and [21] the general ideas behind cognitive
architectures still potentially allow for complex autonomous robotic behav-
ior. This is demonstrated e.g. by a fully Autonomous robotic salesman [22],
a mobile robot assisting physicians in making geriatric assessments [23], and
a robot performing advanced pick-and-place actions [24].

The structural organization and methods used to model core cognitive
abilities vary just as much as the application areas. According to [12] architec-
tures can roughly be categorized as either emergent (connectionist), symbolic
(cognitivist) or hybrid hereof. In [12] it was further concluded that "most of
the newly developed architectures are hybrid", and that this category is "showing

12

2.2. Cognitive Architectures

the tendency to grow even more". In [25] a short introduction to the structure
and functioning of 26 different cognitive architectures is given.

In conclusion to knowledge question 2, a lot of effort has been put into
developing cognitive architectures, and it seems that hybrid approaches com-
bining both emergent and symbolic approaches are gaining traction. As such
cognitive architectures seem to be a good source of inspiration for artificial
robot cognition. However, even though a few studies have shown promising
results from utilizing cognitive architectures for robotics, cognitive architec-
tures still do not seem to be widely utilized within the robotics community.
As we elaborate upon in Paper A, this might again be due to a lack of stan-
dardization of the way models are implemented. This concluded the main
problem investigation of this project, and the treatment design was initiated
with the next knowledge question.

Knowledge Question 3:
What attempts have previously been made towards a unifying and standardized

framework for implementing, sharing and reusing parts of artificial (robot)
cognition?

In [26] the two foundational and prominent cognitive architectures ACT-R
and Soar, and a relatively new cognitive architecture called Sigma [27] "based
partly on lessons learned from the two others" are compared, and a standard
model trying to capture a community consensus is proposed. In support of
the observation made in [12], this standard model advocates the need for
a hybrid combination of symbolic and statistical processing. Even though
some consensus about the structure and functioning of human-like minds
might exist, "the Standard Model of the Mind" is not complete, and strong
consensus does not exist for all aspects of it as expatiated on in [11]. But
more importantly, it does not advocate any practical way of implementing
computationally feasible models, nor does it specify how parts of models can
easily be shared and reused. Furthermore, most architectures such as ACT-R
and Soar are based on a diverse set of specialized modules without an un-
derlying theoretical coherent substrate. As a result, these architectures lack
functional elegance making it hard to understand, use, reuse, maintain, and
establish theoretical claims about them. The lack of functional elegance in
other architectures is one of the main motivations behind the cognitive archi-
tecture Sigma, which also defines grand unification, generic cognition, and
sufficient efficiency as desiderates. As we elaborate in Paper A, these desider-
ates are also highly relevant for a unifying and standardized framework for
robot artificial cognition. Despite the ambitious desiderates of Sigma, the
current implementation of the architecture does only support learning to a
limited extent, does not efficiently represent continuous signals, and does not
scale well. Similarly, it was also pointed out in [9] that the adaptability and
developmental nature of many types of cognitive architectures, e.g., ACT-R,

13

Chapter 2. Background and State-of-the-Art

C
og

ni
ti

ve
C

ap
ab

ili
ti

es
∼1950 Introduction of

an Interface Layers

Humans

Robots

Humans

Robots

Required

Fig. 2.3: Illustration of the possible benefits of introducing an interface layer for developing
cognitive capabilities for robots. Before the introduction of a prober interface layer, the improve-
ments to cognitive capabilities happen at one rate. If progress continues at this rate it might
take several decades before the cognitive capabilities of robots reach the level required for un-
structured, dynamic, and uncertain environments (the green area). With the introduction of an
interface layer, the rate of progress would possibly increase immensely, and the required level of
cognitive capabilities can be reached much earlier.

SOAR, and Clarion, are so limited that they would not allow robots to func-
tion as part of an emergent symbol system. As a remedy for this the authors
further conclude that:

"Finding an appropriate way to integrate probabilistic generative models and
neuro-dynamics models is crucial for developing computational cognitive

architecture modeling symbol emergence in cognitive developmental systems" [9].

Some work has already been done in this direction by the SERKET [28]
and Neuro-SERKET [29] frameworks. However, as we argue in Paper A these
are not suitable for the unifying and standardized framework that is sought
in this study. Mainly because other researchers advocate for the combina-
tions of first-order logic and probabilistic graphical models [30], which is
not supported by the two SERKET frameworks. At this point, one might
question the necessity of combining both probabilistic, logical, and neuro-
dynamics-inspired models. However, each type of model has its advantages.
Logical models are usually easier for humans to understand, neuro-dynamics
inspired models are great for correcting epistemic uncertainties, i.e., model
errors, via their learning capabilities, while probabilistic models are great
for modeling aleatoric uncertainties, i.e., the type of uncertainty that can-
not simply be removed by incorporating more information into a model. As
such, none of these types of models seems indispensable for the unifying and
standardized framework sought in this study. Another cardinal conclusion
from [9], is that

"developing an architecture that is decomposable and comprehensible while
providing consistent learning results is important" [9].

This is concluded simply from the observation that artificial cognition is
usually constructed from many components that need to be integrated into a

14

2.3. Requirements Specification

conjoint architecture capable of system-wide learning. Although not pointed
out in [9], decomposable and comprehensible architectures would provide
the additional benefit of inherently making cooperation easier because they
allow researchers and practitioners to share and reuse components rather
than full architectures.

In addition to the above, the authors of [30] firmly argue that the over-
arching research field of artificial intelligence would benefit immensely from
the introduction of one or more widely accepted interface layers. This is be-
cause anecdotal evidence has shown that such interface layers have triggered
a period of rapid progress after their introduction in other subfields of com-
puter science. It is argued that rapid progress is enabled because "an interface
layer separates innovation above and below it, while allowing each to benefit from
the other". By deduction, with such interface layers, robotic systems based on
cognitive architectures will be more likely to soon reach the level of cognitive
capabilities required for unstructured, dynamic, and uncertain environments
as illustrated in Fig. 2.3.

In conclusion to knowledge question 3, even though important steps have
been done towards defining unifying frameworks from different combina-
tions of probabilistic, logical, and neuro-dynamics models, all these attempts
lack some of the components that are argued to be highly important by other
researchers.

2.3 Requirements Specification

From the preceding analysis, a series of requirements for a framework pro-
viding unifying standards for implementing artificial robot cognition was
derived and chosen. These requirements together with their contributing
arguments are given below.

Treatment Requirements:
R1 Should embrace emergent (connectionist), symbolic (cognitivist) and

hybrid approaches.
• If the framework cannot embrace emergent, symbolic and hybrid

approaches, it will not be able to provide unifying standards for
implementing artificial robot cognition.

R2 Should accommodate the combination of probabilistic, logical, and neuro-
dynamics-inspired models.

• If the framework cannot accommodate the combination of prob-
abilistic, logical, and neuro-dynamics-inspired models, it will not
be suitable for the problem context of unstructured and dynamic
environments perfused by uncertainty from human interaction.

R3 Should promote grand unification.

15

Chapter 2. Background and State-of-the-Art

• If the framework cannot support grand unification, i.e., spanning
all of cognition, there would be parts of cognition that the frame-
work cannot support and thus it would not be able to provide
unifying standards for implementing artificial robot cognition.

R4 Should promote generic cognition.
• If the framework cannot support generic cognition, i.e., spanning

natural and artificial cognition, it will be harder to implement arti-
ficial robot cognition with characteristics of human cognition, since
inspiration cannot be taken from implementations of artificial nat-
ural cognition.

R5 Should promote functional elegance.
• If the framework cannot support functional elegance, it will not be

easy to share and reuse parts of artificial robot cognition because
these parts will not be developed from a common reference point
and thus harder to understand.

R6 Should promote sufficient efficiency.
• If the framework cannot support sufficient efficiency, it will not be

suitable for developing robots for real-world environments.

R7 Should have at least one interface layer.
• If the framework can provide at least one interface layer, it will

potentially speed up the development of artificial robot cognition
and make development and reuse easier.

R8 Should support the Standard Model of the Mind.
• If the framework cannot support the Standard Model of the Mind,

development within the scope of the framework will not be able to
benefit from the community consensus that has begun to emerge.

R9 Should support decomposable implementations of artificial cognition
allowing for system-wide learning.

• Decomposable implementations make cooperation easier because
they allow researchers and practitioners to share and reuse com-
ponents rather than full architectures.

None of the existing frameworks described in the preceding analysis fully
satisfies all these requirements. Therefore, with this specification of treatment
requirements, the design of a new framework was initiated. This is the topic
of the next Chapter.

16

Chapter 3

Preview and Contributions

With the outset in the requirements specification derived in Chapter 2, this
section presents how each of the papers composed as part of this ph.d. study
has contributed to the treatment design and treatment validation. For each
paper, a short summary is given highlighting their specific contributions to
state-of-the-art. The papers can be found in their full length in Part II.

3.1 Paper A - Treatment Design

Mini-Review

Paper A
M. R. Damgaard, R. Pedersen, and T. Bak, “Toward an idiomatic framework
for cognitive robotics,” Patterns, vol. 3, no. 7, p. 100533, 2022. [Online].
Available: https://doi.org/10.1016/j.patter.2022.100533

Paper A identifies a potential need for a unifying and standardized frame-
work for developing cognitive architectures aimed at cognitive robotics. There-
fore, the Generalized Cognitive Hourglass model centered around probabilis-
tic programs is proposed as such a framework. By dividing the development
of cognitive architectures into a series of layers the framework embraces the
same four desiderates as Sigma, and provides an interface layer between
models of cognition and the algorithms that implement them on physical
computational devices. By grounding the framework in probabilistic pro-
gramming, the proposed framework makes it possible to combine probabilis-
tic, logical, and neuro-dynamics-inspired models, thus embracing emergent,
symbolic and hybrid approaches. Besides proposing a novel framework,
Paper A also reviews topics essential for the proposed framework such as

17

https://doi.org/10.1016/j.patter.2022.100533

Chapter 3. Preview and Contributions

probabilistic programming and probabilistic programming languages. Fur-
thermore, Paper A formally introduces both a new graphical representation
entitled "Generative Flow Graphs" and the new inference approach entitled
"Stochastic message-passing". Finally, Paper A exemplifies key ideas of the
framework by summarizing its relation to two other studies.

Contribution to the Research Objective

As should be clear from the mini-review, Paper A is essential to the overall
research objective of this ph.d. study as it proposes a concrete design of an ar-
tifact for treating the problem context in the Technical Research Problem spec-
ified in Section 1.2 while satisfying the treatment requirements put forward
in Section 2.2. However, this design proposal cannot stand alone without a
validation of the treatment. Therefore, the remainder of this chapter is de-
voted to the last task in the design cycle, i.e., treatment validation. Treatment
validation is essentially the process of investigating the interaction between
a model of the problem context and a prototype of the proposed artifact to
justify that the treatment satisfies the specified requirements [4]. Within this
ph.d. study, any algorithm or system developed within the scope of the pro-
posed framework can be considered a prototypical usage of the proposed
artifact, i.e. the proposed framework. Papers A, B, C, and D each contribute
to the treatment validation by investigating different related knowledge ques-
tions.

First and foremost, Paper A contributes to the treatment validation via a
conceptual analysis justifying the proposed framework, which is backed by
a discussion of how the two SERKET frameworks, the cognitive architectures
Sigma, and the system called Alchemy can all be viewed as special cases
of the framework. Paper A furthermore empirically considers the following
knowledge questions related to requirements R5 and R7.

Knowledge Question 4:

Can probabilistic programs provide an appropriate interface layer and foundation for
functional elegance?

In Section A.8 of Paper A, knowledge question 4 is approached empiri-
cally through analysis of the experience of implementing two specific robot
applications utilizing the same probabilistic programming idiom. Based on
this analysis it is concluded that "it is possible to develop generally applicable
models of cognition that can easily be adapted and/or extended to new use cases"
and "we do not need to re-implement the idiom itself to accommodate this(another)
inference algorithm". These conclusions, further substantiate that probabilistic
programs can indeed provide an appropriate interface layer and foundation
for functional elegance.

18

3.2. Paper B - Treatment Validation 1

3.2 Paper B - Treatment Validation 1

Mini-Review

Paper B
M. R. Damgaard, R. Pedersen, and T. Bak, “Study of variational inference for
flexible distributed probabilistic robotics,” Robotics, vol. 11, no. 2, pp. 38:1–
38:19, 2022, article in a periodical. [Online]. Available: https://doi.org/10.
3390/robotics11020038

Paper B summarizes three major approaches to solving probabilistic in-
ference problems from which it is concluded that variational inference can
be viewed as a compromise between computational efficiency and flexibil-
ity. Paper B then proposes the combined usage of stochastic variational in-
ference and message-passing as a flexible tool for solving inference prob-
lems in probabilistic robotics in a distributed manner. The approach can be
seen as a precursor to the inference approach entitled "Stochastic message-
passing" in Paper A. In Paper B, the approach is exemplified by deriving
an algorithm for multi-robot navigation with cooperative avoidance under
uncertainty. Through simulations of the multi-robot navigation problem, it
is shown that the approach can outperform the problem-specific algorithm
called B-UAVC. Finally, a real-world single-case mechanism experiment with
two robots validates that the approach can be computationally tractable for
online implementation.

Contribution to the Research Objective

Although it may not be immediately clear from Paper B, the underlying pur-
pose of the presented study within the overarching ph.d. study is to get an
initial answer to the following knowledge question related to the validation
of requirement R6.

Knowledge Question 5:

Can artificial robot cognition be developed within the scope of the proposed
framework provide sufficient efficiency for real-world robotics applications in

unstructured, dynamic, and uncertain environments?

Paper B approaches this knowledge question empirically from one simula-
tion-based and one real-world single-case mechanism experiment. At a prin-
cipal level knowledge question 5 boils down to the possibility of providing
artificial robot cognition that is computationally tractable for online imple-
mentation based on inference in probabilistic programs. To investigate this,
the problem of navigation with cooperative avoidance under uncertainty was
chosen as a model of the problem context, i.e., unstructured, dynamic, and

19

https://doi.org/10.3390/robotics11020038
https://doi.org/10.3390/robotics11020038

Chapter 3. Preview and Contributions

uncertain environments, and a relatively simple probabilistic program was
implemented, acting as a prototype for the type of models developed within
the scope of the proposed framework. Based on these experiments it is con-
cluded: "that sufficient computational efficiency is possible on standard hardware".
From this, it cannot be concluded that the framework provides sufficient ef-
ficiency in all situations, however, it indicates plausibility of it. Paper B also
addresses the following interesting and relevant knowledge questions.

Knowledge Question 6:

How do algorithms developed within the scope of the proposed framework perform in
unstructured, dynamic, and uncertain environments compared to problem-specific

algorithms?

This question is of interest because it appends to the justification of the pro-
posed framework. In other words, if the methods prescribed by the frame-
work cannot provide performance comparable to other methods, then the
framework should perhaps be reconsidered. In Paper B, this knowledge
question is also addressed empirically via the simulation-based single-case
mechanism experiment. From this, it is concluded that a specific algorithm
developed within the scope of the proposed framework "performs as well as,
if not better than, B-UAVC specifically made for the problem of multi-robot collision
avoidance". Based on this, there does not seem to be a reason to reconsider the
framework or the methods prescribed by it. Finally, Paper B also investigates
knowledge question 7 which is related to requirement R9.

Knowledge Question 7:

Can the proposed framework support decomposable implementations of artificial
cognition?

Both experiments presented in Paper B demonstrate that inference within
probabilistic programs cannot only support decomposable implementations
but also distributed and decentralized implementations via the combina-
tion of stochastic variational inference and message-passing. Since inference
within probabilistic programs has been chosen to be at the heart of the pro-
posed framework, it can thus be concluded that the proposed framework
supports decomposable implementations to the extent that models of artifi-
cial cognition can be decomposed into variational inference sub-problems.

20

3.3. Paper C - Treatment Validation 2

3.3 Paper C - Treatment Validation 2

Mini-Review

Paper C
M. R. Damgaard, R. Pedersen, and T. Bak, “A probabilistic programming
idiom for active knowledge search,” in 2022 International Joint Conference on
Neural Networks (IJCNN), July 2022, pp. 1–9. [Online]. Available: https:
//www.doi.org/10.1109/IJCNN55064.2022.9892094

Paper C proposes a probabilistic programming idiom for active knowl-
edge search based on the memory structure of the Standard Model of the
Mind. The probabilistic programming idiom defines a decision model that
somewhat resembles other decision models such as the Partially observable
Markov decision process. However, the proposed idiom uses special general-
purpose decision variables to guide action selection. To exemplify the usage
of the proposed idiom, an algorithm for active mapping and robot explo-
ration is derived from the idiom. To evaluate the qualities of the derived
algorithm an extensive simulation study is presented utilizing the House-
Expo dataset within a modified version of the PseudoSLAM simulator. From
this simulation study, it is concluded that the idiom works as expected, but
also that it would benefit from additional functionality.

Contribution to the Research Objective

Within the scope of the overarching ph.d. study, the purpose of Paper C is to
provide empirical evidence for evaluating the following knowledge question
related to requirement R8.

Knowledge Question 8:

Can the proposed framework support the Standard Model of the Mind?

To obtain this empirical evidence it was once again decided to do a simulation-
based single-case mechanism experiment. For this experiment, it was decided
to concentrate on the "unstructured" and "uncertain" parts of the problem
context to keep things as simple as possible. Therefore, the model of the en-
vironment was kept static. Furthermore, since a strong consensus does not
exist for all aspects of the Standard Model of the Mind, it was decided to
concentrate on a part of the Standard Model of the Mind backed by strong
consensus. Therefore, the prototype used for this experiment took the out-
set in the memory structure advocated by the Standard Model of the Mind.
Based on the results of the simulation-based single-case mechanism exper-
iment it can be concluded that the proposed framework at least allows the

21

https://www.doi.org/10.1109/IJCNN55064.2022.9892094
https://www.doi.org/10.1109/IJCNN55064.2022.9892094

Chapter 3. Preview and Contributions

incorporation of the memory structure of the Standard Model into a simple
decision model.

3.4 Paper D - Treatment Validation 3

Mini-Review

Paper D
M. R. Damgaard, R. Pedersen, and T. Bak, “Escaping local minima via ap-
praisal driven responses,” Preprints, 2022110511, 2022. [Online]. Available:
https://doi.org/10.20944/preprints202211.0511.v1

Paper D takes the outset in the limitations identified for the probabilis-
tic programming idiom proposed in Paper C. By taking inspiration from
the reflective and deliberative control mechanisms used in cognitive archi-
tectures such as SOAR and Sigma, Paper D proposes an alternative decision
mechanism driven by architectural appraisals. This decision mechanism is
implemented as generally applicable probabilistic programming idioms ex-
tending upon the probabilistic programming idiom proposed in Paper C.
By providing automatic context-dependent switching between exploration-
oriented, goal-oriented, and backtracking behavior, the proposed probabilis-
tic programming idiom enables robots to overcome some types of impasses.
To test the effectiveness of the proposed probabilistic programming idiom
two simulations studies were performed focusing on the exploration-oriented
and the goal-oriented capabilities, respectively. From the simulation studies
focusing on the exploration-oriented capabilities, it is concluded that the new
decision mechanism indeed performs better than the one proposed in Paper
C. From the simulation studies focusing on goal-oriented capabilities, it is
furthermore concluded that the new decision mechanism in some cases can
outperform State-of-the-art goal-oriented algorithms derived from problem-
specific knowledge. Finally, Paper D offers a detailed discussion of the com-
putational time of the proposed probabilistic programming idiom. From this
discussion, it is concluded that optimizations of the implementation might
be necessary.

Contribution to the Research Objective

As Paper D builds upon concepts from both Papers B and C, the main pur-
pose of it was to further substantiate some of the conclusions that have al-
ready been reached. However, this time based on a more complicated pro-
totypical usage of the framework. As in Papers B and C, the empirical ev-
idence in Paper D was also obtained through simulation-based single-case

22

https://doi.org/10.20944/preprints202211.0511.v1

3.4. Paper D - Treatment Validation 3

mechanism experiments. This was primarily done to obtain results that can
be compared to our previous research in Paper C as well as research on
problem-specific methods. From these experiments, Knowledge Question 6
can be revised. Even though the proposed decision mechanism does not
use any problem-specific knowledge, the second simulation study within Pa-
per D shows that the proposed decision mechanism in many situations per-
forms as well as and even better than state-of-the-art methods incorporating
problem-specific knowledge. As a result, based on the application metric this
experiment neither indicates any reason to reconsider the framework nor the
methods prescribed by it.

As the approach proposed in Paper D is implemented as a series of prob-
abilistic programming idioms mostly building on top of each other hier-
archically, Paper D also demonstrates how decomposable implementations
of artificial cognition can be implemented within the proposed framework.
Thereby, providing additional evidence to substantiate the previous answer
to knowledge question 7 related to requirement R9. Related to knowledge
Question 4 and requirement R5, the success of the simulations in Paper D
also provides positive evidence that probabilistic programs can be used as a
foundation for functional elegance since all of the idioms were implemented
as probabilistic programs.

Furthermore, as the decision mechanism proposed in Paper D builds on
the decision mechanism proposed in Paper C, the success of the simula-
tions in Paper D provides additional positive evidence that the proposed
framework allows the incorporation of the memory structure of the Standard
Model into decision models. Thereby, substantiating the previous answer to
Knowledge Question 8 related to requirement R8.

Finally, with the discussion of the computational time of the decision
mechanism, Paper D also provides evidence for answering Knowledge Ques-
tion 5 related to requirement R6. This evidence is however a bit more am-
biguous. On one hand, it is concluded that the current implementation of
the decision mechanism does not match the time scales at which humans can
deliver similar responses. This could of course be seen as negative evidence
for the possibility of providing sufficient efficiency within the framework.
On the other hand, it is also argued in Paper D that further optimization of
the implementation and additional functionality might make up for the ob-
served incongruity. In addition to this, it might not be necessary to achieve
human-level performance to support the anticipated uses in real-time. As
such, the results are neither enough to discard the possibility that the frame-
work can provide sufficient efficiency for more complex implementations of
decision-making. Thus, for now, this yields a conditional result concerning
the general possibility of achieving sufficient efficiency for more complex im-
plementations of decision-making within the proposed framework.

23

Chapter 3. Preview and Contributions

3.5 Software

For Papers B, C and D software had to be implemented before the simulation-
based and real-world single-case mechanism experiments could be conducted.
Following the approach prescribed by the proposed framework, the main
functionalities used in each of these papers have been implemented as gen-
erally applicable probabilistic programming idioms in the form of abstract
python classes. By inheriting from these abstract classes and implementing a
few abstract methods, it should in principle be easy for other researchers and
practitioners to reuse the main functionalities developed as part of this study.
All of these functionalities together with each of the simulations have been
collected into a GitHub repository available at [31]. The specific versions of
this repository used for each paper can be found at

• [32] for Paper B,

• [33] for Paper C,

• and [34] for Paper D.

For the real-world single-case mechanism experiments in Paper B, a ROS2
package was developed to make communication between multiple robots
possible. This package can be found at [35]. The repository at [31] provides
evidence for Knowledge Question 9 related to requirements R5, R7 and R9

Knowledge Question 9:
Can the proposed framework support reusable implementations of artificial

cognition?

In the version of the repository availeable at the time that this disseration
was written [34], all of the simulations conducted in Papers B, C and D have
been implemented with a basis in the same limited number of abstract python
classes. Thus, this repository demonstrates how implementations of artifi-
cial cognition developed within the scope of the proposed framework can
be reused for different applications. The repository thereby provides positive
evidence for knowledge question 9. However, it cannot be concluded how easy
it is for others to reuse such implementations because a proper judgment of
this would require other researchers and practitioners to actually reuse the
functionalities and provide feedback on this process, which at the time of
writing has not been the case.

3.6 Design Theory

In summary of the treatment validation described in previous sections, Pa-
pers A through D have provided empirical evidence that the framework can

24

3.6. Design Theory

support functional elegance (R5), can yield sufficient efficiency for simple
models of decision (R6), provides a useful interface layer (R7), at least to
some extent supports the Standard Model of the Mind (R8), and does allow
decomposable implementations of artificial cognition (R9). These properties
have been validated for cognitive functionalities related to decision-making in
models of the problem context that are unstructured, dynamic and uncertain
due to the following assumptions.

Environments Assumptions:

• Unstructured since no problem-specific information is allowed to/can
be exploited.

• Dynamic due to other robots moving around that communicate their
intentions explicitly.

• Uncertain since Sensor measurements are noisy and motion models are
imperfect.

Besides the conceptual analysis provided in Paper A, the presented treat-
ment validation does not touch upon requirements R1 through R4, and as
such is only partial. However, some valuable knowledge can still be extracted
about the properties of the proposed framework. More specifically, based on
the treatment validation the following theory can be formed.

Design Theory:
A framework designed like the one proposed in Paper A utilized in relation to envi-
ronments that are unstructured, dynamic and uncertain due to the reasons given by
the above Environments Assumptions can provide implementations of artificial robot
cognition related to decision-making. Implementations like these

• can be decomposable and reused,

• can utilize distributed and decentralized computations,

• can support the memory structure of the Standard Model of the Mind,

• can yield sufficient efficiency for simple models of decision similar to those used
in Paper B, and presumably for more complex models as well,

• shows that probabilistic programs provide a useful interface layer,

• and shows that probabilistic programs provide a foundation for functional ele-
gance.

The above design theory gives a lot of useful insights, however, it is also
limited to some extent. The design theory is limited in the sense that it only
considers implementations of decision-making and no other parts of artifi-
cial robot cognition. It is also relatively limited in the types of environments
that it considers. However, these limitations are only a result of a limited
treatment validation from which no broader generalization can reasonably

25

Chapter 3. Preview and Contributions

be made, and it is especially noteworthy that no major deficiencies that could
rule out the proposed framework design have been identified. In conclusion,
this design theory is not mature enough to predict the outcome of using the
proposed framework to develop full artificial robot cognition for use in un-
structured and dynamic environments perfused by uncertainty from human
interaction. Further treatment validation will have to be done, to mature the
design theory to the required extent.

26

Chapter 4

Conclusion and Outlook

4.1 Conclusion

This ph.d. study took its outset in a hypothesis that naturally led to the
technical research problem in Section 1.2. By structuring the study via the
Design Cycle, the main contribution of this study, as given below, has been
achieved.

Main Contribution:

The main contribution of this study has been the proposal of a design of a
new framework that could potentially provide unifying standards for
implementing artificial robot cognition with characteristics of human

cognition that can easily be shared and reused.

With the design theory formed in Section 3.6, important steps toward an-
swering the technical research problem have been taken. The design theory
furthermore shows that the proposed framework offers many great proper-
ties. The design theory, however, also has some limitations that can only be
ameliorated via further treatment validation. In addition to the main contri-
bution, this study has also resulted in other noteworthy derivative contribu-
tions, e.g.,

Derivative Contributions:

1. a novel graphical representation of probabilistic programs called "gen-
erative flow graphs" that can ease the dissemination of new models of
parts of cognition developed within the proposed framework (Paper A),

2. a novel approach for combining message-passing and stochastic varia-
tional inference called "Stochastic Message-Passing" (Paper A and Paper
B),

27

Chapter 4. Conclusion and Outlook

3. an algorithm for multi-robot navigation with cooperative avoidance un-
der uncertainty utilizing "Stochastic Message-Passing" that can perform
as well as, if not better than, a state-of-the-art algorithm (Paper B),

4. a probabilistic programming idiom for the problem of acquiring new
knowledge about an environment (Paper C),

5. an algorithm for the specific problem of active mapping and robot ex-
ploration based on this idiom (Paper C),

6. and a novel decision mechanism driven by architectural appraisals that
provide automatic context-dependent switching between exploration-
oriented, goal-oriented, and backtracking behavior, allowing a robot to
overcome impasses (Paper D).

So, is the time ripe for developing commercial service robots that assist
people in everyday life? In the author’s opinion, a lot of work still has to be
done to unify the way artificial robot cognition is implemented before roboti-
cists can overcome the immense task of developing robots that can conquer
unstructured and dynamic environments perfused by uncertainty from hu-
man interaction. The hope is that the proposed framework will be the stone
that creates sufficient ripples allowing researchers and practitioners to over-
come this immense task.

4.2 Suggestions for Future Work

As stated in Section 3.6, the treatment validation carried out in this study
has been limited to decision-making and with respect to the types of envi-
ronments considered. To obtain a design theory with a broader scope, it will
be necessary to carry out treatment validation with a focus on other parts
of artificial cognition such as perception, general learning capabilities, the
formation of knowledge and memories, comprehension and production of
language, and general problem-solving. Further treatment validation would
also have to consider robots that not only are capable of moving around in
their environments but also are capable of physically manipulating their en-
vironment, e.g., via end effectors mounted on arms. Similarly, further treat-
ment validation would also have to consider environments that are dynamic
due to the interaction with humans, rather than other robots simply moving
around. Especially it is important to consider cases where other cognitive
agents do not communicate their intention or in any other way do not collab-
orate with the robots. All of the above will make it possible to broaden the
scope of the design theory, and possibly expose limitations of the proposed
framework that is currently unknown.

28

References

References

[1] W. Burgard, A. Cremers, D. Fox, D. Hähnel, G. Lakemeyer, D. Schulz, W. Steiner,
and S. Thrun, “The interactive museum tour-guide robot,” 01 1998, pp. 11–18.

[2] A. Thomaz, G. Hoffman, and M. Cakmak, Computational Human-Robot Interaction.
now, 2016. [Online]. Available: https://ieeexplore.ieee.org/document/8186865

[3] A. D. Dragan, “Robot planning with mathematical models of human
state and action,” CoRR, vol. abs/1705.04226, 2017. [Online]. Available:
http://arxiv.org/abs/1705.04226

[4] R. J. Wieringa, Design Science Methodology for Information Systems and Software
Engineering. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. [Online].
Available: https://doi.org/10.1007/978-3-662-43839-8_10

[5] P. A. Lasota, T. Song, and J. A. Shah, A Survey of Methods for
Safe Human-Robot Interaction. now, 2017. [Online]. Available: https:
//ieeexplore.ieee.org/document/8186877

[6] J. Rios-Martinez, A. Spalanzani, and C. Laugier, “From proxemics theory
to socially-aware navigation: A survey,” International Journal of Social
Robotics, vol. 7, no. 2, pp. 137–153, Apr 2015. [Online]. Available:
https://doi.org/10.1007/s12369-014-0251-1

[7] K. Charalampous, I. Kostavelis, and A. Gasteratos, “Recent trends in social
aware robot navigation: A survey,” Robotics and Autonomous Systems, vol. 93,
pp. 85 – 104, 2017. [Online]. Available: http://www.sciencedirect.com/science/
article/pii/S0921889016302287

[8] T. Taniguchi, T. Nagai, T. Nakamura, N. Iwahashi, T. Ogata, and H. Asoh,
“Symbol emergence in robotics: a survey,” Advanced Robotics, vol. 30, no. 11-12,
pp. 706–728, 2016. [Online]. Available: https://doi.org/10.1080/01691864.2016.
1164622

[9] T. Taniguchi, E. Ugur, M. Hoffmann, L. Jamone, T. Nagai, B. Rosman, T. Mat-
suka, N. Iwahashi, E. Oztop, J. Piater, and F. Wörgötter, “Symbol emergence in
cognitive developmental systems: A survey,” IEEE Transactions on Cognitive and
Developmental Systems, vol. 11, no. 4, pp. 494–516, 2019.

[10] I. Kotseruba and J. K. Tsotsos, “40 years of cognitive architectures: core
cognitive abilities and practical applications,” Artificial Intelligence Review,
vol. 53, no. 1, pp. 17–94, 2020, article in a periodical. [Online]. Available:
https://doi.org/10.1007/s10462-018-9646-y

[11] P. S. Rosenbloom, “Lessons from mapping sigma onto the standard model of the
mind: Self-monitoring, memory/learning, and symbols,” in AAAI Fall Symposia,
2017. [Online]. Available: http://bcf.usc.edu/~rosenblo/Pubs/SM%20Symp%
20Sigma%202017%20Revised%20D.pdf

[12] I. Kotseruba and J. K. Tsotsos, “40 years of cognitive architectures: core
cognitive abilities and practical applications,” Artificial Intelligence Review, Jul
2018. [Online]. Available: https://doi.org/10.1007/s10462-018-9646-y

29

https://ieeexplore.ieee.org/document/8186865
http://arxiv.org/abs/1705.04226
https://doi.org/10.1007/978-3-662-43839-8_10
https://ieeexplore.ieee.org/document/8186877
https://ieeexplore.ieee.org/document/8186877
https://doi.org/10.1007/s12369-014-0251-1
http://www.sciencedirect.com/science/article/pii/S0921889016302287
http://www.sciencedirect.com/science/article/pii/S0921889016302287
https://doi.org/10.1080/01691864.2016.1164622
https://doi.org/10.1080/01691864.2016.1164622
https://doi.org/10.1007/s10462-018-9646-y
http://bcf.usc.edu/~rosenblo/Pubs/SM%20Symp%20Sigma%202017%20Revised%20D.pdf
http://bcf.usc.edu/~rosenblo/Pubs/SM%20Symp%20Sigma%202017%20Revised%20D.pdf
https://doi.org/10.1007/s10462-018-9646-y

References

[13] F. E. Ritter, F. Tehranchi, and J. D. Oury, “Act-r: A cognitive architecture for
modeling cognition,” Wiley Interdisciplinary Reviews: Cognitive Science, vol. 10,
no. 3, p. e1488, 2019.

[14] J. E. Laird, A. Newell, and P. S. Rosenbloom, “Soar: An architecture
for general intelligence,” Artificial Intelligence, vol. 33, no. 1, pp. 1 – 64,
1987. [Online]. Available: http://www.sciencedirect.com/science/article/pii/
0004370287900506

[15] J. E. Laird, The Soar Cognitive Architecture. The MIT Press, 2012.

[16] R. Sun, The CLARION Cognitive Architecture: Extending Cognitive Modeling to Social
Simulation. Cambridge University Press, 2005, p. 79–100.

[17] D. Choi and P. Langley, “Evolution of the icarus cognitive architecture,”
Cognitive Systems Research, vol. 48, pp. 25 – 38, 2018. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1389041716302182

[18] D. E. Kieras and D. E. Meyer, “An overview of the epic architecture for
cognition and performance with application to human-computer interaction,”
Human–Computer Interaction, vol. 12, no. 4, pp. 391–438, 1997. [Online]. Available:
https://doi.org/10.1207/s15327051hci1204_4

[19] S. Franklin, T. Madl, S. Strain, U. Faghihi, D. Dong, S. Kugele, J. Snaider,
P. Agrawal, and S. Chen, “A lida cognitive model tutorial,” Biologically
Inspired Cognitive Architectures, vol. 16, pp. 105 – 130, 2016. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S2212683X16300196

[20] T. D. Kelley and C. Lebiere, “From cognitive modeling to robotics: How research
on human cognition and computational cognitive architectures can be applied
to robotics problems,” in Advances in Human Factors in Simulation and Modeling,
D. N. Cassenti, Ed. Cham: Springer International Publishing, 2019, pp. 273–279.

[21] M. Scheutz, J. Harris, and P. Schermerhorn, “Systematic integration of cognitive
and robotic architectures,” Advances in Cognitive Systems, vol. 2, pp. 277–296,
2013.

[22] A. Romero-Garcés, L. V. Calderita, J. Martínez-Gómez, J. P. Bandera, R. Marfil,
L. J. Manso, A. Bandera, and P. Bustos, “Testing a fully autonomous robotic
salesman in real scenarios,” in 2015 IEEE International Conference on Autonomous
Robot Systems and Competitions, April 2015, pp. 124–130.

[23] A. Bandera, J. P. Bandera, P. Bustos, L. V. Calderita, A. Duenas, F. Fernández,
R. Fuentetaja, A. Garcıa-Olaya, F. J. Garcıa-Polo, J. C. González et al., “Clarc:
a robotic architecture for comprehensive geriatric assessment,” in Workshop on
Physical Agents, vol. 1, 2016, pp. 1–8.

[24] J. R. Wilson, E. Krause, M. Scheutz, and M. Rivers, “Analogical generalization
of actions from single exemplars in a robotic architecture,” in Proceedings of
the 2016 International Conference on Autonomous Agents & Multiagent Systems,
ser. AAMAS ’16. Richland, SC: International Foundation for Autonomous
Agents and Multiagent Systems, 2016, pp. 1015–1023. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2937029.2937073

30

http://www.sciencedirect.com/science/article/pii/0004370287900506
http://www.sciencedirect.com/science/article/pii/0004370287900506
http://www.sciencedirect.com/science/article/pii/S1389041716302182
https://doi.org/10.1207/s15327051hci1204_4
http://www.sciencedirect.com/science/article/pii/S2212683X16300196
http://dl.acm.org/citation.cfm?id=2937029.2937073

References

[25] A. V. Samsonovich, “Toward a unified catalog of implemented cognitive
architectures,” in Proceedings of the 2010 Conference on Biologically Inspired
Cognitive Architectures 2010: Proceedings of the First Annual Meeting of the BICA
Society. Amsterdam, The Netherlands, The Netherlands: IOS Press, 2010,
pp. 195–244. [Online]. Available: http://dl.acm.org/citation.cfm?id=1893313.
1893352

[26] J. Laird, C. Lebiere, and P. Rosenbloom, “A standard model of the mind: Toward
a common computational framework across artificial intelligence, cognitive sci-
ence, neuroscience, and robotics,” AI Magazine, vol. 38, p. 13, 12 2017.

[27] P. S. Rosenbloom, A. Demski, and V. Ustun, “The sigma cognitive architecture
and system: Towards functionally elegant grand unification,” Journal of Artificial
General Intelligence, vol. 7, no. 1, pp. 1–103, 2017, article in a periodical. [Online].
Available: https://doi.org/10.1515/jagi-2016-0001

[28] T. Nakamura, T. Nagai, and T. Taniguchi, “Serket: An architecture for
connecting stochastic models to realize a large-scale cognitive model,” Frontiers
in Neurorobotics, vol. 12, pp. 25:1–25:16, 2018, article in a periodical. [Online].
Available: https://www.frontiersin.org/article/10.3389/fnbot.2018.00025

[29] T. Taniguchi, T. Nakamura, M. Suzuki, R. Kuniyasu, K. Hayashi, A. Taniguchi,
T. Horii, and T. Nagai, “Neuro-serket: Development of integrative cognitive
system through the composition of deep probabilistic generative models,” New
Gen. Comput., vol. 38, no. 1, p. 23–48, Mar. 2020, article in a periodical. [Online].
Available: https://doi.org/10.1007/s00354-019-00084-w

[30] P. Domingos and D. Lowd, Markov Logic: An Interface Layer for Artificial Intelli-
gence, 1st ed. Morgan and Claypool Publishers, 2009, an entire book.

[31] M. R. Damgaard, “ProbMind,” GitHub repository, https://github.com/
damgaardmr/probMind, 2022, software available online.

[32] ——, “probmind - version used for paper b,” 2022.
[Online]. Available: https://github.com/damgaardmr/probMind/tree/
d0ba27687b373ff04eb790ef38b21ca8572d8c8a/

[33] ——, “probmind - version used for paper c,” 2022. [Online]. Available:
https://github.com/damgaardmr/probMind/tree/paper_release

[34] ——, “probmind - version used for paper d,” 2022.
[Online]. Available: https://github.com/damgaardmr/probMind/tree/
ec996e295575c384879b3d72cfc7e64b8085b9a5

[35] ——, “Variational inference navigation,” https://github.com/damgaardmr/VI_
Nav/tree/8af532f5e6618d46f3498460af6459e57261fc91, 2021.

31

http://dl.acm.org/citation.cfm?id=1893313.1893352
http://dl.acm.org/citation.cfm?id=1893313.1893352
https://doi.org/10.1515/jagi-2016-0001
https://www.frontiersin.org/article/10.3389/fnbot.2018.00025
https://doi.org/10.1007/s00354-019-00084-w
https://github.com/damgaardmr/probMind
https://github.com/damgaardmr/probMind
https://github.com/damgaardmr/probMind/tree/d0ba27687b373ff04eb790ef38b21ca8572d8c8a/
https://github.com/damgaardmr/probMind/tree/d0ba27687b373ff04eb790ef38b21ca8572d8c8a/
https://github.com/damgaardmr/probMind/tree/paper_release
https://github.com/damgaardmr/probMind/tree/ec996e295575c384879b3d72cfc7e64b8085b9a5
https://github.com/damgaardmr/probMind/tree/ec996e295575c384879b3d72cfc7e64b8085b9a5
https://github.com/damgaardmr/VI_Nav/tree/8af532f5e6618d46f3498460af6459e57261fc91
https://github.com/damgaardmr/VI_Nav/tree/8af532f5e6618d46f3498460af6459e57261fc91

References

32

Part II

Papers

33

Paper A

Toward an Idiomatic Framework for Cognitive
Robotics

Malte Rørmose Damgaard, Rasmus Pedersen, and Thomas Bak

The paper has been published in
Patterns Volume 3, Issue 7, 100533, 2022.

https://doi.org/10.1016/j.patter.2022.100533

https://doi.org/10.1016/j.patter.2022.100533

© 2022 The Author(s)
The layout has been revised.

A.1. Introduction

Bigger Picture

For many decades robots have been expected to transfigure the world we
live in, and in many ways, they already have by increasingly taking over
dull, dirty, and dangerous jobs. However, for robots to integrate fully and
seamlessly into human societies, robots need to be able to learn and reason
from experience and effectively deal with unpredictable and dynamic envi-
ronments. Developing robotic systems with such intelligence is a tremen-
dous and non-trivial task, which has led to the foundation of the new multi-
disciplinary scientific field called Cognitive Robotics, merging research in
adaptive robotics, cognitive science, and artificial intelligence. To ease the
merge of research from these scientific fields, we propose a general frame-
work for developing intelligent robotic systems based on recent advance-
ments in the machine learning community. Hopefully, this framework will
aid researchers and practitioners in bringing even more helpful robots into
our societies.

Abstract

Inspired by the "Cognitive Hourglass" model presented by the researchers behind the
cognitive architecture called Sigma [1], we propose a framework for developing cog-
nitive architectures for cognitive robotics. The purpose of the proposed framework is
foremost to ease the development of cognitive architectures by encouraging coopera-
tion and re-use of existing results. This is done by proposing a framework dividing
the development of cognitive architectures into a series of layers that can be consid-
ered partly in isolation, and some of which directly relate to other research fields.
Finally, we give introductions to and review some topics essential to the proposed
framework. The paper also outlines a set of applications.

A.1 Introduction

Research in cognitive robotics originates from a need to perform and auto-
mate tasks in dynamic environments and in close or direct interaction with
humans. Uncertainty about the environment and complexity of the tasks
require robots with the ability to reason and plan while being reactive to
changes in their environment. To achieve such behavior, robots cannot rely
on predefined rules of behavior [2] and inspiration is taken from cognitive
architectures.

Cognitive architectures provide a model for information processing that
can capture robot functionalities. In combination with acquired sensory data,
they can potentially generate intelligent autonomous behavior [3]. Cognitive

37

Paper A.

architectures dates back to the 1950s [4] with a grand goal of implementing a
full working cognitive system [1]. From this considerable challenge, an abun-
dance of architectures have evolved, and a recent survey suggests that the
number of existing architectures has reached several hundred [4]. Some are
aimed towards robotics application, e.g., Robo-Soar [5], CARACaS [6], and
RoboCog [7]. Unfortunately, most of these architectures take wildly different
approaches to model cognition and are implemented in different program-
ming languages. Furthermore, most of these architectures are constructed
from a diverse set of specialized modules, making it non-trivial to expand
upon, combine, and re-use parts of these architectures. In fact, this could
be one of the contributing reasons for the abundance of architectures. The
authors of a recent study of cognitive architectures related to the iCub robot
explain their decision to start from scratch rather than relying on existing
architectures was: "this decision was made in order to gain more freedom
for future expansions of the architecture" [8]. In other words, despite the
abundance of architectures, existing architectures were not deemed flexible
enough to build upon. Following the arguments for developing an interface
layer for artificial intelligence put forward by other researches [9], we argue
that a unifying and standardized framework for developing new cognitive ar-
chitectures aimed at cognitive robotics could potentially remedy these issues
and ease the development of cognitive robotics.

In recent years a community consensus has emerged about a standard
model of humanlike minds, i.e., computational entities whose structures and
processes are substantially similar to those found in human cognition [10].
While this "Standard Model of the Mind" spans key aspects of structure and
processing, memory and content, learning, and perception and motor, it is
agnostic to the best practice for modeling and implementing these things [10].

In line with the idea proposed by the researchers behind the cognitive ar-
chitecture Sigma [1], we argue that the evolution of the scientific field of cog-
nitive robotics could benefit from anchoring new implementations around a
common theoretical elegant base separating a specific model of a part of cog-
nition from the algorithm that implements it. Furthermore, this theoretical
base could allow new functionalities to evolve hierarchically just like software
libraries build on top of each other. Thereby, allowing the discussions and
development to flourish at different levels of abstractions, and allow synergy
with other research fields.

To explain the cognitive architecture Sigma [1], the authors present a Cog-
nitive Hourglass model based on the following four desiderata:

• Grand Unification, spanning all of cognition,

• Generic Cognition, spanning both natural and artificial cognition,

• Functional Elegance, achieving generically cognitive grand unification

38

A.1. Introduction

with simplicity and theoretical elegance,

• Sufficient Efficiency, efficient enough to support the anticipated uses in
real-time.

While Grand Unification and Sufficient Efficiency aligns well with the
needs of cognitive robotics, the need for Generic Cognition and Functional
Elegance is subtle for cognitive robotics. Although the end goal of cogni-
tive robotics might only be functional artificial intelligence, building upon
something that potentially is also able to model natural intelligence would
allow artificial intelligence to more easily benefit from insights obtained by
the modeling of natural intelligence and vice versa. Similarly, Functional
Elegance is not a goal of cognitive robotics per se. Still, it could allow re-
searchers and practitioners working on different levels of cognition to obtain
a common reference point and understanding at a basic level, potentially
easing co-operation and re-use of results and innovative ideas.

In an attempt to obtain all four of these desiderata, the so-called "graphical
architecture" based on inference over probabilistic graphical models is placed
at the waist of Sigma’s Cognitive Hourglass model glueing everything to-
gether just like the Internet Protocol (IP) in the Internet-hourglass model [11].
Functional elegance is obtained by recognizing and developing general archi-
tectural fragments, and based on these defining idioms that can be re-used
in modelling different parts of cognition. Having defined sufficiently general
idioms, the hope is to be able to develop full models of cognition from a lim-
ited set of such idioms and thereby achieve functional elegance, while at the
same time achieving the three other desiderata [1]. With roots in the given
desiderata, Sigma’s Cognitive Hourglass model, in many ways, could consti-
tute a unifying and standardized framework for cognitive robotics. However,
as we will elaborate on in Section A.2 the model commits to specific architec-
tural decisions, which hinders the utilization of new technology and ideas.
E.g., their commitment to the sum-product algorithm prevents the use of
new algorithms for efficient probabilistic inference. The benefits of utilizing
probabilistic graphical models specifically for cognitive robotics have recently
been corroborated in a lot of studies. For example, learning and representing
the hierarchical structure of concepts [12], simultaneous lexical and spatial
concept acquisition [13], navigation utilizing the learned concepts [14], and
the interaction between multiple probabilistic graphical models [15] has been
studied. This research has led to two frameworks called SERKET [16] and
its extension Neuro-SERKET [17] with the goal of connecting multiple prob-
abilistic graphical models on a large scale to construct cognitive architectures
for robotics. Being based solely on probabilistic graphical models, SERKET
and Neuro-SERKET currently do not seem to incorporate logic, making it
non-trivial to implement symbolic approaches in these frameworks. In fact,
researchers behind the work related to Markov Logic and the system called

39

Paper A.

Alchemy have argued that the combination of logic, especially first-order, and
pure probabilistic graphical models, are necessary to compose a sufficiently
general interface layer between artificial intelligence and the algorithms that
implement it [9]. Similar to Sigma, models of cognition are implicitly tied to
specific inference algorithms in both Alchemy and the SERKET frameworks.
Thus these cannot either be considered suitable as a generalized frameworks.

Based on the observation that the layers of Sigma’s Cognitive Hourglass
model conceptually can be divided into more generalized layers, we pro-
pose a generalized Cognitive Hourglass model based on recent advancements
within machine learning that makes no such commitments. More specifically,
the main contribution of this paper is a framework for developing cognitive
architectures for robotics centered around probabilistic programs that

• separates a specific model of cognition from the algorithm that imple-
ments it,

• allows the combination of logic and probabilistic models,

• is not tied to specific inference algorithms,

• provides a structure dividing the development of cognitive architec-
tures into layers,

• and embraces the same four desiderata as Sigma.

The presented Generalized Cognitive Hourglass model constitutes a flex-
ible framework for guiding and discussing the future development of cogni-
tive robotics. As such, with this paper we do not intend to construct a new
specific cognitive architecture our-self. Our framework should be viewed as
a space of systems subsuming Sigma, Alchemy and the SERKET frameworks
among others, and our intend with this framework and manuscript is

1. to provide a framework for other researchers to expand upon,

2. to ease the development of cognitive architectures for robotics by en-
couraging and mitigating cooperation and re-use of existing results,

3. and finally to highlight some of the current state-of-the-art technology
available to progress this research field.

In Section A.2 we briefly introduce Sigma’s Cognitive Hourglass model in
more detail. Based on this, we present our Generalized Cognitive Hourglass
model as a framework for developing new cognitive architectures aimed at
cognitive robotics in Section A.3. In Section A.5 we give a brief introduc-
tion to probabilistic programs since the presented framework is built around

40

A.2. Sigma’s Cognitive Hourglass Model

them. Explaining the functionality of probabilistic programs with conven-
tional methods can be difficult, therefore in Section A.5.1 we present a graph-
ical representation of probabilistic programs which we call "generative flow
graphs". We do so in the hope that it will ease the dissemination of new mod-
els of parts of cognition developed within the proposed framework. Being
fundamental to achieving functional elegance within the proposed frame-
work, we formally introduce the concept of probabilistic programming id-
ioms in Section A.5.2 and explain how "generative flow graphs" can aid the
identification of such idioms. In Section A.6 we discuss the intrinsic problem
of performing approximate inference in complex probabilistic programs and
present some modern algorithms to tackle this problem for cognitive robotics.
As probabilistic programming languages form the foundation of the present
framework, we give a brief survey of probabilistic programming languages
relevant to the framework in Section A.7. Finally, in Section A.8 we shortly
present some preliminary work to support the framework presented.

A.2 Sigma’s Cognitive Hourglass Model

Fig. A.1 illustrates how the dimensions of Sigma’s Cognitive Hourglass Model
relate to the four desiderata. The top layer of the hourglass represents all the
knowledge and skills implemented by the cognitive system. This includes
high level cognitive capabilities such as reasoning, decision making, and meta
cognition, as well as low level cognitive capabilities such as perception, at-
tention, and the formation of knowledge and memory that could potentially
be inspired by human cognition. But it also includes artificial cognitive ca-
pabilities such as, e.g., the creation of a grid-maps common in robotics. As
such, the extend of this layer corresponds to the achievable extend of Grand
Unification and Generic Cognition.

The "cognitive architecture" layer defines central architectural decisions
such as the utilization of the cognitive cycle and tri-level control structure for
information processing, and the division of memory into a perceptual buffer,
working memory and long-term memory. But also defines other architec-
tural concepts such as "functions", "structures", "affect/emotion", "surprise",
and "attention". Thereby, the cognitive architecture induces what can be con-
sidered an "cognitive programming language" in which all of the knowledge
and skills in the top layer can be embodied and learned. As an intermediate
layer, cognitive idioms provide design patterns, libraries, and services that
ease the implementation of knowledge and skills.

Below the Cognitive architecture and at the waist of the model, they have
the graphical architecture constituting a small elegant core of functionality.
Functional elegance is thereby obtained by compilation of knowledge and skills
through a series of layers into a common representation in the graphical ar-

41

Paper A.

chitecture. This graphical architecture primarily consists of probabilistic in-
ference over graphical models, more specifically factor graphs, utilizing the
sum-product algorithm [18] plus the following extensions:

1. each variable node is allowed to correspond to one or more function
variables,

2. special purpose factor nodes,

3. and the possibility of limiting the direction of influence along a link in
the graph.

Of these extensions, the two first are merely special-purpose optimizations
for the inference algorithm, i.e., a part of the implementation layer in Fig. A.1.
According to the authors the third extension has "a less clear status concern-
ing factor graph semantics" [1]. Finally, the graphical architecture is imple-
mented in the programming language LISP. In this model, sufficient efficiency
is achieved as the cumulative efficiency of all layers. I.e., an efficient imple-
mentation in LISP is futile if models of knowledge and skills are inefficient
for a given task.

To summarize, the model shown in Fig. A.1 commits to multiple more
or less restrictive decisions such as the utilization of factor graphs and the
sum-product algorithm at its core, the "cognitive cycle", the tri-level control
structure, and LISP as the exclusive implementation language. While these
commitments may be suitable for the specific cognitive architecture Sigma
mainly targeted human-like intelligence, they would hinder the exploration
of new ideas and the utilization of new technologies, making this model less
suitable as a general framework.

A.3 Generalized Cognitive Hourglass Model

While Sigma’s Cognitive Hourglass model has an advantageous structure
with roots in highly appropriate desiderata, it is not suitable as a general
framework, due to some exclusive structural commitments. We argue that
these structural commitments are mostly artefacts of the limited expressibility
of factor graphs and the sum-product algorithm.

Consider, for instance, the "cognitive cycle" dividing processing into an
elaboration and adaption phase. The elaboration phase performs inference
over the factor graph, while the adaption phase modifies the factor graph
before further inference. We argue that this two-phase division of processing
is caused by the need for the sum-product algorithm to operate on a static
factor graph. This cognitive cycle makes the tri-level control structure neces-
sary to make cognitive branching and recursion possible. Similarly, we argue

42

A.3. Generalized Cognitive Hourglass Model

S
u
ffi

ci
en

t
E

ffi
ci

en
cy

G
en

er
ic

C
og

ni
tio

n

Grand Unification

F
u
n
ct

io
n
al

E
le

ga
n
ce

Cognitive Idioms

Knowledge & Skills

Cognitive
Architecture

Graphical
Architecture

Implementation

LISP

Fig. A.1: Sigma’s Cognitive Hourglass Model
Loose re-drawing of figures of the cognitive hourglass model presented in [1]. Layers with
dashed borders are not recognized as distinguishable layers by the authors of [1].

that the third extension of the factor graph semantics employed in the cogni-
tive architecture Sigma is nothing more than a simple control flow construct
over the information flow in the graphical model and inference algorithm.
It is straightforward to imagine how other control flow constructs such as
recursion, loops, and conditionals could also be advantageous in modeling
cognition.

Basically, we believe that special-purpose implementations of architec-
tural constructs such as the two-phase "cognitive cycle" employed by Sigma
and similar cognitive architectures have previously been necessary due to
the limitations of the available modeling tools. The flexibility of probabilistic
programs provided by the possibility of incorporating I/O operations, loops,
branching, and recursion into a probabilistic model should permit represent-
ing such constructs as either Probabilistic Programming or Cognitive Idioms
instead.

In Fig. A.2 we present our proposal for a more general cognitive hourglass
model having probabilistic programs at its waist as the theoretical modeling
base. Just like the model in Section A.2, our model is composed of a series of
layers that expands away from the waist of the hourglass. On top of the pure
probabilistic program, we might be able to recognize program fragments that
are sufficiently general to be considered idioms. From these idioms, it might
be possible to construct dedicated programming languages for expressing

43

Paper A.

S
u
ffi

ci
en

t
E

ffi
ci

en
cy

G
en

er
ic

C
og

ni
tio

n

Grand Unification

A CB
Parameterized
Probabilistic

Program

F
u
n
ct

io
n
al

E
le

ga
n
ce

V
ia

C
om

p
il
at

io
n

E
m

b
ed

d
in

g
S
u
b
st

ra
te

M
o
d
el

o
f

C
og

n
it

io
n

Knowledge & Skills

(SVI/msg-passing)

Inference Algorithms

Probabilistic

Programming Languages

Deterministic

Programming Languages

Hardware

(CPU/GPU/Special Purpose)

Cognitive Programming
Languages

Probabilistic
Programming Idioms

Cognitive Idioms

Fig. A.2: The Generalized Cognitive Hourglass Model
Our proposal for a generalized cognitive hourglass model. Dashed borders indicates layers that
are not necessarily recognized as distinguishable layers, but could help in the development of
the other layers.

cognitive behavior, knowledge, and skills, such as the "Cognitive Language"
employed in the cognitive architecture Sigma [1]. In this framework, func-
tional elegance above the probabilistic program is obtained via compilation of
knowledge and skills through appropriate cognitive programming languages
into probabilistic programs. Below the probabilistic program’s different in-
ference algorithms can carry out the necessary inference in the probabilistic
program. Different versions of these inference algorithms can potentially be
implemented in different probabilistic languages. Both the probabilistic pro-
gram and probabilistic programming language can be situated in standard
deterministic programming languages. Furthermore, one needs not even use
the same deterministic programming language for both [19], thereby sepa-
rating the development of models of cognition from the development of the
algorithms that implements them. Finally, the deterministic programming
languages allow us to execute a model of cognition on different types of
hardware doing the actual computations. When comparing Sigma’s Hour-
glass model to the Generalized Hourglass model the complexity might seem
to have increased. However, this is not the case. The Generalized Hourglass
model simply highlights some of the components implicit in Sigma’s Hour-

44

A.3. Generalized Cognitive Hourglass Model

glass model.
We expect that this model is sufficiently general to be considered a frame-

work for research in and development of cognitive robotics, and as stated in
Section A.1 the presented model should be considered a space of systems
subsuming others. Our model subsumes Sigma, which limits the Proba-
bilistic programs at the waist of our model to factor graphs, and limits in-
ference to the sum-product algorithm. As another example, consider the
SERKET frameworks. In both frameworks, exact message-passing is used
to perform inference on probabilistic graphical models with discrete and fi-
nite variables, and otherwise, sampling importance resampling is used. Both
of these frameworks can also be considered special cases of our framework,
with "modules" and their connections somehow resembling what we have
chosen to call "probabilistic programming idioms". The "modules" in SER-
KET and Neuro-SERKET are supposed to be fully defined and self-contained.
In contrast, our definition of "probabilistic programming idioms" allows for
nesting and e.g. class definitions with abstract methods as we will exemplify
in Section A.8. As a third example, Alchemy may also be considered one
instance of our framework, limiting the probabilistic programs at the waist
to Markov logic, and utilizing a combination of Markov chain Monte Carlo
and lifted belief propagation for inference [9]. In fact, as probabilistic pro-
grams can be considered an extension of deterministic programs, it should
even be possible to situate both emergent, symbolic, and hybrid approaches
to cognitive architectures in this framework, thereby covering the full taxon-
omy considered in [4]. In our framework constructs such as the cognitive
cycle and tri-level control structure could potentially be expressed as prob-
abilistic programming idioms rather than special-purpose architectural im-
plementations. Similarly, incorporation of results from other research areas
such as deep learning is only limited to the extent that a given probabilistic
programming language and corresponding inference algorithms can incorpo-
rate essential tools used in these research areas, i.e., automatic differentiation
for deep learning. Furthermore, this framework gives a satisfying view on
the foundational hypothesis in artificial intelligence about substrate indepen-
dence [10], by cleanly separating the model of cognition, i.e. the probabilistic
program and everything above it, from the organic or inorganic substrate that
it exists on, i.e., everything below the probabilistic program.

While the above might sound promising, the choice of probabilistic pro-
grams as a focal point also has important ramifications. In general, we cannot
guarantee the existence of an analytic solution for all models, and even if a so-
lution exists it might be computationally intractable [19]. Therefore, we have
to endure approximate solutions. Though this might sound restrictive, this
is also the case for most other complex real-world problems. In fact, it can
be considered a form of bounded rationality consistent with the concept of
"satisficing" stating that an organism confronted with multiple goals does not

45

Paper A.

have the senses nor the wits to infer an "optimal" or perfect solution, and thus
will settle for the first solution permitting satisfaction at some specified level
of all of its needs [20]. The second important ramification is that the model
with its roots in probabilistic and deterministic programming languages is
only applicable to the extent to which the hypothesis that artificial cognition
can be grounded in such programming languages is valid. However, this is
currently a widely accepted hypothesis.

It is important to stress that the layers of the proposed framework are not
independent. On the contrary, as the technological possibilities and commu-
nity knowledge evolves, changes in one layer might open new possibilities
in the layers above. Similarly, the need for new features in one layer might
guide the research directions and development of the layers below. However,
this structure is exactly what would allow further discussions and develop-
ment in cognitive robotics to evolve at different levels of abstractions, and
benefit from other research fields related to the layers below probabilistic
programs. In the layers above probabilistic programs, the development and
identification of both probabilistic programming idioms, cognitive program-
ming languages, and cognitive idioms mitigate cooperation and re-use of
existing results. The framework thus minimizes the burden of developing
new cognitive architectures by allowing researchers to focus their energy on
specific layers, or parts thereof, in the hourglass model rather than dealing
with all the details of a cognitive architecture. The extent to which the bur-
den of development is reduced thus depends upon the technology available
in each of the layers of the hourglass.

A.4 Preliminaries

In this paper, we do not distinguish between probability density functions
and probability mass functions, and jointly denote them as probability func-
tions. The symbol

∫
is used to denote both integrals and summations de-

pending on the context. In general, we use z to denote latent random vari-
ables, x to denote observed random variables, p(...) to denote "true" probabil-
ity functions, q(...) to denote approximations to "true" probability functions,
θ to denote parameters of "true" probability functions, p(...), and φ to denote
parameters of approximations to "true" probability functions, q(...). When a
probability function directly depends on a parameter we write the parameter
in a subscript before the parenteses, e.g., pθ(...) and qφ(...). We use line over
a value, parameter, or random variable to denote that it is equal to a specific
value, e.g., z = 1, 432. We use a breve over a parameter or random variable
to denote that it should be considered a fixed parameter or random variable
within that equation, e.g., θ̆ or z̆. For parameters this means that they attain
a specific value, θ, i.e., θ̆ means that θ = θ. For random variables it means

46

A.5. Probabilistic Programs

that the probability functions that this variable is associated with is consid-
ered fixed within a given equation. We use capital letters to denote sets, e.g.,
A = {1, ..., n}. We use a superscript with curly brackets to denote indexes.
E.g. z{i} would denote the i’th latent random variable. Similarly, we use a
superscript with curly brackets and two numbers separated by a semicolon to
denote a set of indexes values, i.e., z{1;n} = z{A} =

{
z{1}, ..., z{n}

}
. We use a

backslash, \, after a set followed by a value, random variable, or parameter to
denote the exclusion of that value, random variable, or parameter from that
set, i.e., z{A} \ z{n} =

{
z{1}, ..., z{n−1}

}
. We use capital C to denote a collec-

tion of latent random variables, observed random variables, and parameters.
Furthermore, we will specify such a collection by enclosing variables and pa-
rameters with curly brackets around and with a semi-colon separating latent
random variables, observed random variables, and parameters in that order,
e.g., C = {Z; X; Θ}. We will use Pa, Ch, An, and De as abbreviations for
parent, child, ancestors, and descendants, respectively, and use, e.g., PaΘ(C)
to denote the set of parameters parent to the collection C, and ChX(Z) to
denote the set of observed variables that are children of the latent random
variable Z.

A.5 Probabilistic Programs

At the heart of our framework, we have chosen to place probabilistic pro-
grams. One definition of probabilistic programs is as follows:

“Probabilistic programs are usual functional or imperative programs with two
added constructs: (1) the ability to draw values at random from distributions, and
(2) the ability to condition values of variables in a program via observations.” [21]

With these two constructs, any functional or imperative program can be
turned into a simultaneous representation of a joint distribution, pΘ(Z, X),
and conditional distribution, pΘ(X|Z), where X represent the conditioned/
observed random variables, Z the unconditioned/latent random variables,
and Θ represents other parameters in the program that are not given a proba-
bilistic treatment. Thereby allowing us to integrate classical control constructs
familiar to any programmer such as if/else statement, loops, and recursions
into probabilistic models. As such probabilistic programs can express exactly
the same functionality as any deterministic programs can and even more.
These two constructs are usually provided as extensions to a given program-
ming language through special sample and observe functions or keywords [19].
Thus it would be natural to represent such probabilistic programs by pseudo-
code. However, based on experiences it can be hard to follow the generative

47

Paper A.

z{0}a

z{1}s

x
{1}
O

z{0}s

z{1}a

z{2}s

x
{2}
O

z{t−1}a

z{t}s

x
{t}
O

z{i}m

(a)

z{t}a

z{t+1}
s

x
{t+1}
O

z{t}s

z{t+1}
a

z{t+2}
s

x
{t+2}
O

z{T−1}a

z{T}s

x
{T}
O

(b)

Fig. A.3: Graphical Models With Same Structure
Examples of two directed graphical models developed in different research areas. (a) Graph
idiom for the classical simultaneous localization and mapping (SLAM) problem [23]. z{t}s is the
state at time t, z{t}a is the action at time t, z{i}map is the i’th pixel in a grid map, and x{t}p is the

perceived information at time t. (b) Graph idiom for a Markov Decision Process [24]. z{t}s is the
state at time t, z{t}a is the action at time t, and x{t}O is a "observed" optimality variable at time t.

flow of random variables in such pseudo-code. Alternatively, such generative
flows have classically been represented by directed graphical models [22].
Unfortunately, we have also found that the semantics of classical directed
graphical models neither provide an appropriate presentation.

A.5.1 Generative Flow Graphs

We have found that combining the semantics of classical directed graphical
models with the semantics of flowcharts into a hybrid representation is a
good visual representation. Directed graphical models represent the condi-
tional dependency structure of a model and flowcharts represent the steps in
an algorithm or workflow. The hybrid representation illustrates the order in
which samples of random variables in a probabilistic program are generated
and how these samples influence the distributions used to generate other
samples. For this reason, we denote this hybrid representation by the name
Generative Flow Graph.

To exemplify the utility of the Generative Flow Graph representation con-
sider the graphical model for a classical Markov Decision Process and the si-
multaneous localization and mapping (SLAM) problem depicted in Fig. A.3.
With the classical semantics of directed graphical models, it is often the case
that size limitations of figures coerce authors to remove some variables from

48

A.5. Probabilistic Programs

the figure and represent them indirectly by, e.g., dashed arrows as the case
in both Fig. A.3a and Fig. A.3b. Similarly, the classical semantics of directed
graphical models does not represent the influence from other parameters or
variables that are not given a probabilistic treatment, even though such vari-
ables and parameters might have equal importance for a model. This is es-
pecially true if they are not fixed and have to be learned, e.g., if one wants to
incorporate artificial neural networks into a model. The classical semantics of
directed graphical models also cannot represent dependency structures de-
pending on conditionals giving the illusion that a variable always depends
on all of its possible parents, and that all variables in the graph are relevant in
all situations. Furthermore, while the semantics of directed graphical models
allows us to represent the structure of the joint distribution, p(Z, X), its abil-
ity to explicitly express the structure of the posterior distribution, p(Z|X), is
limited. Finally, there is no standardized ways of representing a fragment of
a graphical model, which hinders discussions at different levels of abstrac-
tion. Probabilistic programs easily allow us to incorporate the above in our
models and thus a more appropriate representation is needed. The semantics
of generative flow graphs shown in Table A.1 in Appendix A.1 alleviate these
problems. Utilizing these semantics we can redraw the directed graphical
model in Fig. A.3a in multiple ways with different levels of information as in
Fig. A.4. Notice, that the choice of node collections is not unique.

One advantage of the semantics of directed graphical models is that for
graphs with no cycles [22] such models represents a specific factorization of
the joint probability of all the random variables in the model of the form:

p(x{1;n}, z{1;m}) =
n

∏
n=1

p(x{n}|PaZ(x{n}))
m

∏
m=1

p(z{m}|PaZ(z{m})) (A.1)

where x{n} and z{m} are the n’th observed and the m’th latent random vari-
able in the model, respectively. This is in principle also true for the generative
flow graph representation if it neither contains any cycles, just with the ad-
ditional explicit representation of dependency on parameters. For generative
flow graphs, we can similarly to Eq. (A.1) write up a factorization by includ-
ing a factor of the form

pPaθ(z{m})(z
{m}|PaZ(z{m}))

for each latent random variable node, z{m}, in the graph, and a factor of the
form

pPaθ(x{n})(x{n}|PaZ(x{n}))

for each observed random variable node, x{n}, in the graph, and finally a

49

Paper A.

z{τ−1}a

z{τ}s

z{0}s

τ = t

F

τ ∈ {1, ..., t}

z{i}m

x{τ}p

i ∈ {1, ..., I}

T

z{t}s

z{τ−1}s

(a)

z{0}s

τ = t

F

τ ∈ {1, ..., t}

z{i}m

x{τ}p

z
{τ}
s z

{τ−1}
a

T

z{t}s

{
z{τ}s , z{τ−1}a ; ;

}

i ∈ {1, ..., I}

(b)

z{0}s

τ ∈ {1, ..., t}

z{i}m

i ∈ {1, ..., I}

z{t}s

{
z{τ}s , z{τ−1}a ;x{τ}p ;

}

(c)

Fig. A.4: Generative Flow Graphs for SLAM
Three semantically equivalent generative flow graphs with different levels of abstractions corre-
sponding to the directed graphical model in Fig. A.3a.

factor of the form

pΘ,PaΘ(C{k})(Z, X|PaZ(C{k})) (A.2)

for each node collection, C{k} = {Z; X; Θ}. If a parent node of y is a node
collection {Z; X; Θ} then PaZ(y) = Z and Paθ(y) = Θ unless a subset of the
variables or parameters in the node collection is explicitly specified next to
the parent link. If the internal structure of a node collection is known from
somewhere else, the factor in Eq. (A.2) can of course be replaced by the cor-
responding factorization. The catch, however, is that a probabilistic program,
and thus also generative flow graphs, potentially can denote models with
an unbounded number of random variables and parameters making it im-
possible to write up the full factorization explicitly. On the other hand, this
just emphasizes the need for alternative ways of representing probabilistic
programs other than pseudo-code.

Besides the possibility of expressing a factorization of the joint prior dis-
tribution, the detached link allows us to express additional structure for the
posterior distribution, p(z|x). Consider the two generative flow graphs in
Fig. A.5. By applying standard manipulations we can obtain the factoriza-

50

A.5. Probabilistic Programs

za zb

xa xb

θa θb

(a)

za zb

xa xb

θa θb

(b)

Fig. A.5: Generative Flow Graphs with/-out Detached link
Two generative flow graphs representations of a simple model with two parameters, two latent
variables, and two observed variables. In both graphs θa and za are needed to generate zb,
however, in (b) we have explicitly constrained the inference of zb to not influence the learning of
θa and inference of za. Thus, the evidence provided by xb neither is allowed to have an influence
on θa and za. Thereby, the model represented by the nodes on the left-hand side of the dashed
line in (b) can be seen as an independent problem.

tion in Eq. (A.3) for the graph in Fig. A.5a.

pθa ,θb(za, zb|xa, xb) = pθa ,θb(zb|za, xa, xb)pθa ,θb(za|xa, xb)

= pθa ,θb(zb|za, xb)pθa ,θb(za|xa, xb) (A.3)

wheres from the definition of the detached link we can write the factorization
in Eq. (A.4) for the graph in Fig. A.5b.

pθa ,θb(za, zb|xa, xb) = pθ̆a ,θb
(zb|z̆a, x̆a, xb)pθa(za|xa)

= pθ̆a ,θb
(zb|z̆a, xb)pθa(za|xa) (A.4)

The main difference between these two factorizations is the distribution over
the latent variable za. In Eq. (A.3) the distribution over the latent variable
za depends on the evidence provided by both observations xa and xb, and is
influenced by both parameters θa and θb. In Eq. (A.4) the distribution over za
depends only on the evidence provided by the observations xa, and is only
influenced by the parameter θa. As such the inference problem of obtaining
the posterior distribution over za is independent of the inference problem of
obtaining the posterior distribution over zb, but not conversely. In general, for

model consisting of a node collections, C(a) =
{

Z(a); X(a); Θ(a)
}

, connected

51

Paper A.

only by detached links we can write the factorization of the posterior as

pΘ(Z|X) =
a

∏
a=1

pΘ{a} ,PaΘ̆(C{a})

(
Z{a}|PaZ̆

(
C{a}

)
, X{a}

)
(A.5)

where the breves are used to emphasize that the variables and parameters are
related through a detached link. The possible benefit of being able to express
such structure will become clear in Section A.6.

Another added benefit of the generative flow graph representation is to
express models by different levels of abstraction. As an example consider the
three different factorization of the simultaneous localisation and mapping
problem given in Eq. (A.6), Eq. (A.7), and Eq. (A.8).

p
(

z{0;t}
s , z{0;t−1}

a , x{1;t}
p , z{0;I}

m

)

= p
(

z{0;t}
s , z{0;t−1}

a , x{1;t}
p |z{0}s , z{0;I}

m

)
p
(

z{0}s

) I

∏
i=1

p
(

z{i}m

)
(A.6)

= p
(

z{0}s

) I

∏
i=1

p
(

z{i}m

) t

∏
τ=1

p

(
x{τ}p |z{τ}s , z{τ−1}

a , z{0;I}
m

)

·p
(

z{τ}s , z{τ−1}
a |z{τ−1}

s

)

 (A.7)

= p
(

z{0}s

) I

∏
i=1

p
(

z{i}m

) t

∏
τ=1

p

(
x{τ}p |z{τ}s , z{τ−1}

a , z{0;I}
m

)

·p
(

z{τ}s |z{τ−1}
a , z{τ−1}

s

)
p
(

z{τ−1}
a

)

(A.8)

The generative flow graphs in Fig. A.4a, Fig. A.4b, and Fig. A.4c cor-
responds directly to the factorization in Eq. (A.8), Eq. (A.7), and Eq. (A.6),
respectively. Thereby, they represents different levels of abstractions for the
same model. As such generative flow graphs simply yield better expressibil-
ity over their directed graphical model counterparts.

A.5.2 Probabilistic Programming Idioms

We have already discussed how probabilistic programming idioms can be
seen as a means to achieve functional elegance. In this section, we describe
how such idioms can be discovered by inspecting generative flow graphs. We
define probabilistic programming idioms as follows:

“Probabilistic programming idioms are reusable code fragments of probabilistic
programs sharing an equivalent semantic role in their enclosing probabilistic pro-
grams.”

52

A.5. Probabilistic Programs

z{τ−1}a

z{τ}s

x
{τ}
O

z{t}s

τ = T
F

τ ∈ {t+1, ..., T}

(a)

{
z{τ}s , z{τ−1}a ; ;

}

x
{τ}
O

z{t}s

τ = T
F

τ ∈ {t+1, ..., T}

z
{τ}
s z

{τ−1}
a

(b)

Fig. A.6: Generative Flow Graphs for a Markov Decision Process
Two semantically equivalent generative flow graphs corresponding to the directed graphical
model in Fig. A.3b.

To identify such probabilistic programming idioms, we can look for node
collections containing the same nodes and with the same internal structure in
at least two different probabilistic programs. Consider for example the node

collection
{

z{τ}s , z{τ−1}
a ; ;

}
highlighted with a green border in the generative

flow graph for both the simultaneous localization and mapping problem and
Markov Decision Process depicted in Fig. A.4 and Fig. A.6, respectively. From
Fig. A.4a and Fig. A.6a it is clear that the internal structure of this node
collection is identical in both graphs, and that it represents the factorization

p
(

z{τ}s |z{τ−1}
s , z{τ−1}

a

)
p
(

z{τ−1}
a

)
.

Assuming that the distributions p
(

z{τ}s |z{τ−1}
s , z{τ−1}

a

)
and p

(
z{τ−1}

a

)
are

the same in both models, we could possible create a probabilistic program
for this node collection once, and then reuse it in both models. This proba-
bilistic program should then take a sample z{τ−1}

s as input. From this input
the program could sample both z{τ}s and z{τ−1}

a from "hard-coded" distri-

butions p
(

z{τ}s |z{τ−1}
s , z{τ−1}

a

)
and p

(
z{τ−1}

a

)
using the sample function or

keyword of the probabilistic programming language. Finally, the program
should return both of these samples. While this approach might work per-

fectly for some applications, the two distributions p
(

z{τ−1}
s |z{τ−1}

s , z{τ−1}
a

)

53

Paper A.

z0s

τ ∈ {1, ..., t}

zm,i

{
z(τ)s , z(τ−1)a ;x(τ)

p ;
}

zts

i ∈ 1, ..., I

{
z(τ)s , z(τ−1)a ;x

(τ)
O ;
}

τ ∈ {t+ 1, ..., T}

SLAM

MDP

Fig. A.7: Composition of Generative Flow Graphs
A combination of the generative flow graphs for the simultaneous localization and mapping
problem and the Markov Decision Process shown in Fig. A.4 and Fig. A.6, respectively, could
potentially constitute an end-to-end navigation behavior for a mobile robot.

and p
(

z{τ−1}
a

)
are usually application specific, limiting the usability for an

idiom in which they are "hard-coded". A far more general approach would
be to allow the probabilistic program to instead take the two distributions
as input or having these distributions as free variables, allowing us to re-
use the code fragment even for problems where these distributions are not
necessarily the same. Rather than fully defining a model of a part of cog-
nition, such a probabilistic program would constitute a template method for
the generative flow of that part of cognition. Specific utilization of the model
could then be done via a function closure specifying the free distributions.
While the benefits of the above example arguably might be limited since the
internal structure of the node collection is relatively simple, it is not hard to
imagine more complex structures. Consider for instance the node collection
highlighted with a blue border in Fig. A.6. By constructing an appropriate
probabilistic program for this node collection we have defined a probabilis-
tic programming idiom constituting the foundation for optimal control and
reinforcement learning.

When we have developed such probabilistic programming idioms it em-
powers us to mix and match them to construct higher-level intelligence with-
out worrying about all details of the underlying models. E.g. Fig. A.7 implies
that the output of a specific model for the simultaneous localization and map-
ping problem is used as the input to a Markov decision process, but leaves
out details about their internal structures.

54

A.6. Inference Algorithms

A.6 Inference Algorithms

As stated in Section A.5 a probabilistic program is a simultaneous representa-
tion of a joint distribution, pΘ(Z, X), and a conditional distribution, pΘ(X|Z).
Having defined a model as such distributions we are usually interested in an-
swering queries about the unconditioned/latent random variables, Z, given
information about the conditioned/observed random variables, X = X. In
the combined navigation problem illustrated in Fig. A.7 we are interested in
determining which action to take, z{τ}a , given prior perceived information,
x{τ}p for τ ∈ 1, ..., t, and future optimality variables, x{τ}O for τ ∈ t + 1, ..., T.
Often queries of interest are statistics such as the posterior mean and vari-
ance of specific random variables, or the posterior probability of a random
variable being within a given set. Still, it could also simply be to sample from
the posterior, pΘ

(
Z|X = X

)
. All of these queries are somehow related to the

posterior distribution given by

pΘ
(
Z|X = X

)
=

pΘ
(
X = X, Z

)

pΘ
(
X = X

)

=
pΘ
(
X = X, Z

)
∫

pΘ
(
X = X, Z

)
dZ

. (A.9)

The marginalization by the integral in the denominator of Eq. (A.9) in
general does not have an analytical solution or is intractable to compute in
most realistic problems and approximate inference is therefore necessary [25].
Through time, an abundance of algorithms has been developed to find an
approximation to the posterior in specific problems. Unfortunately, many of
these algorithms cannot be applied to general probabilistic programs mainly
due to the possible unbounded number of random variables [19]. Possible
applicable inference algorithms can roughly be divided into Monte Carlo
based algorithms such as Sequential Monte Carlo, Metropolis-Hastings, and
Hamiltonian Monte Carlo, and the optimization based Variational Inference
algorithms such as Stochastic Variational inference. As the size and complex-
ity of models of cognition increase, the computational efficiency of inference
algorithms becomes a paramount necessity to achieve sufficient efficiency of
the framework presented in Section A.3. While Monte Carlo methods often
converge to the true posterior in the limit, convergence can be slow. Con-
versely, Variational Inference algorithms are often faster even though they
can suffer from simplified posterior approximations [25]. Also, as Variational
Inference methods are based on optimization they provide a natural synergy
with data-driven discriminative techniques such as deep learning. By accept-
ing that robots are not necessarily supposed to behave optimally, but rather
should behave as agents with bounded rationality, the above characteristic

55

Paper A.

makes Variational Inference algorithms an especially interesting choice for
cognitive robotics. Therefore, Section A.6.1 is devoted to giving the reader an
introduction to the overall concept of Variational Inference. Section A.6.2 and
A.6.3 present two specific solution approaches commonly used in variational
inference, namely Message-passing algorithms and stochastic variational in-
ference, respectively. Both approaches have their weaknesses. Therefore,
in Section A.6.4 we outline a way of combining these two approaches to
overcome their weaknesses. The idea of combining Message-passing with
stochastic variational inference, we have presented before [26], however, here
we generalizes the idea to generative flow graphs.

A.6.1 Variational inference

Variational inference is an optimization based approach to approximate one
distribution, p (Z), by another simpler distribution, q (Z). q (Z) is usually
called the variational distribution. In general, variational inference is not only
used to approximate conditional distribution, p

(
Z|X = X

)
, as in Eq. (A.9).

However, with the presented framework in mind we will limit our presenta-
tion to this case, and focus on variational inference problems on the form

q∗ (Z) = arg min
q(Z)∈Q

D
(

pΘ
(
Z|X = X

)
||q (Z)

)
(A.10)

where D is a measure of the similarity between p and q often called a diver-
gence measure, and Q is the family of variational distributions from which
the approximation should be found. The notation D(p||q) denotes a diver-
gence measure and that the order of the arguments, p and q, matters. The
choice the family of variational distributions, Q, is a compromise between
computational efficiency and precise an approximation one wants. Further-
more, Q should be chosen such that we can easily answer given queries. It
is important to stress that any variational inference method is more or less
biased via the choice of the family of variational distributions, Q. As a conse-
quence we cannot view the original model in isolation, and have to consider
the variational distribution, q (Z), as an implicit part of the cognitive model.
Besides the family of variational distributions, the choice of the divergence
measure, D, can substantially impact the properties of the approximation.
However, empirical results suggest that for the family of α-divergences, sub-
suming the commonly used Kullback–Leibler divergence, all choices will give
similar results as long as the approximating family, Q, is a good fit to the true
posterior distribution [27].

A.6.2 Message-Passing

Message-passing algorithms solves a possible complicated variational infer-
ence problem as defined by Eq. (A.10) by it down into a series of more

56

A.6. Inference Algorithms

1: Initialize q{a}∗(Z) for all a ∈ A
2: repeat
3: Pick a factor a ∈ A
4: Solve Eq. (A.15) to find q{a}∗(Z)
5: until q{a}∗(Z) converges for all a ∈ A

Algorithm A.1: Generic Message-Passing Algorithm
Pseudocode for the Generic Message-Passing Algorithm. The loop in line 2 can potentially be
run in parallel and in a distributed fashion.

tractable sub-problems [27]. The methods are known as message-passing
algorithms due to the way that the solution to one sub-problem is distributed
to the other sub-problems. Message-passing algorithms assumes that the
model of a problem, p(Z|X), can be factorized into a product of probability
distributions

p(Z|X) = ∏
a∈A

p{a}(Z|X). (A.11)

This factorization need not be unique and each factor, p{a}(Z|X), can depend
on any number of the variables of p(Z|X). The variational distribution, q (Z),
should furthermore be chosen such that it factorizes into a similar form

q (Z) = ∏
a∈A

q{a}(Z). (A.12)

With these assumptions, define the product of all other than the a’th factor of
q (Z) and p(Z|X), respectively as

q\a (Z) = ∏
b∈A\a

q{b}(Z), (A.13)

p\a (Z|X) = ∏
b∈A\a

p{b}(Z|X). (A.14)

With these definitions it is possible to rewrite the problem in Eq. (A.10) into
a series of approximate sub-problems on the form

q{a}∗(Z) ≈ arg min
q{a}∈Q{a}

D
[

p{a}(Z|X)q\a (Z)||q{a}(Z)q\a (Z)
]

(A.15)

where q\a (Z) is assumed to be a good approximation and thus is kept fixed.
If the factor families, Q{a}, from which q{a} can be chosen, have been cho-
sen sensible, the problem in Eq. (A.15) can be more tractable than the origi-
nal problem, and an approximate solution to the original problem can then
be obtain by iterating over these coupled sub-problems as shown in Algo-
rithm A.1. In principle, we can even use different divergence measures for

57

Paper A.

each sub-problem to do mismatched message-passing, which could make
some of the sub-problems easier to solve as described in [27]

In general, the approach is not guaranteed to converge, and Eq. (A.15)
might still be a hard problem to solve. In the past, this has limited the
approach to relatively simple problems such as fully discrete or Gaussian
problems for which Eq. (A.15) can be solved analytically [27]. Therefore, the
true power of the method is the principle way in which it allows for solving
problems in a distributed and parallel fashion, which can be a huge benefit
for large models. Furthermore, if the sub-problems are sparsely connected,
meaning that sub-problems does not depend on the solution to all of the
other sub-problems, the amount of communication needed can be signifi-
cantly reduced.

A.6.3 Stochastic Variational inference

The approach taken by Stochastic Variational inference (SVI) is to reformulate
a variational inference problem, e.g., Eq. (A.10) or Eq. (A.15), to a dual maxi-
mization problem with an objective, L, that that can be solved with stochastic
optimization [28]. Stochastic Variational inference assumes that the varia-
tional distribution, q, is parameterized by some parameters, Φ. To obtain
the dual problem and the objective function, L, of the resulting maximization
problem of course the steps and assumptions needed depends on whether
we have chosen the use the Kullback–Leibler divergence [28], [29], [30] or the
α-divergences [31]. Nevertheless, the resulting problem ends up being on the
form

Φ∗ = arg max
Φ

L
(

pΘ
(
Z, X = X

)
, qΦ (Z)

)
︸ ︷︷ ︸

EZ∼qΦ(Z) [l(Z,Θ,Φ)]

. (A.16)

This dual objective function, L, does not depend on the posterior, pΘ
(
Z|X = X

)
,

but only the variational distribution, qΦ (Z) and the unconditional distribu-
tion pΘ

(
Z, X = X

)
making the problem much easier to work with. Besides

being dual to Eq. (A.10) it turns out that for the family of alpha-divergences
with α > 0, L is also an lower bound on the log evidence, log (pΘ (Z)) [31].
Since the log evidence is a measure of how well a model fits the data, we can
instead consider the optimization problem [32]

Θ∗, Φ∗ = arg max
Θ,Φ

L
(

pΘ
(
Z, X = X

)
, qΦ (Z)

)
︸ ︷︷ ︸

EZ∼qΦ(Z) [l(Z,Θ,Φ)]

. (A.17)

that allows us to simultaneously fit the posterior approximation, qΦ, and
model parameters, Θ, to the data, X. An unbiased estimate of the gradient,
∇W L, of this dual objective L where W = {Θ, Φ}, can be obtained by utilizing
the REINFORCE-gradient [33] or the reparameterization trick [32], [34], [35].

58

A.6. Inference Algorithms

The objective can then iteratively be optimized by stochastic gradient ascent
via the the update equation

W{l} = W{l−1} + ρ{l−1}∇W L{l}
(

W{l−1}
)

(A.18)

where superscript {l} is used to denote the l’th iteration. Stochastic gradient
ascent converges to a maximum of the objective function L if the sequence of
learning rates, ρ{l−1}, follows the Robbins-Monro conditions given by

∞

∑
l=1

ρ{l} = ∞,
∞

∑
l=1

(
ρ{l}

)2
< ∞. (A.19)

Since Eq. (A.17) is dual to the original minimization problem, this maximum
also provides a solution to the original problem. Although Robbins-Monro
conditions are satisfied it is often necessary to apply variance reduction meth-
ods to obtain unbiased gradient estimators with sufficiently low variance.
Fortunately, reduction methods can often be applied automatically by prob-
abilistic programming libraries/languages such as Pyro [36]. One benefit of
solving variational inference problems with stochastic optimization is that
noisy gradient estimates are often relatively cheap to compute due to, e.g.,
subsampling of data. Another benefit is that the use of noisy gradient esti-
mates can cause algorithms to escape shallow local optima of complex objec-
tive functions [28]. The downside of Stochastic variational inference is that it
is inherently serial and that it requires the parameters to fit in the memory
of a single processor [37]. This could potentially be a problem for cognitive
robotics where large models with lots of variables and parameters presum-
ably are necessary to obtain a high level of intelligence, and where queries
have to be answered within different time scales. I.e. signals to motors have
to be updated frequently while high-level decisions can be allowed to take a
longer time.

A.6.4 Stochastic Message-Passing

To summarize the previous sections Message-passing algorithms exploits
the dependency structure of a given variational inference problem to de-
compose the overall problem into a series of simpler variational inference
sub-problems, that can be solved in a distributed fashion [27]. Message-
passing algorithms do not give specific directions on how to solve these sub-
problems, and thus classically required tedious analytical derivations, that
effectively limited the usability of the method. On the other hand, modern
Stochastic variational inference methods directly solve such variational infer-
ence problems utilizing stochastic optimization while simultaneously learn-
ing model parameters. By fusion of these two approaches, we could poten-
tially overcome the serial nature of Stochastic variational inference to solve

59

Paper A.

large-scale complex problems in a parallel and distributed fashion. However,
to do so we need to find an appropriate factorization of a given problem.
Again we can make use of the semantics of generative flow graphs. Assum-
ing that we can divide all the nodes of a given generative flow graph into a
set, C{A}, of node collections C{a} =

{
Z{a}; X{a}; Θ{a}

}
and a set of "global"

observed variable nodes, XG, having more than one node collection as parent,
we can write the posterior factorization

pΘ(Z|X) = pΘ(Z{A}|X{A}, XG)

=
1

p(XG|X{A})
pΘ(Z{A}, XG|X{A})

=
p(XG|Z{A}, X{A})

pΘ(XG|X{A})
pΘ(Z{A}|X{A})

=
p(XG|Z{A})

pΘ(XG|X{A})
pΘ(Z{A}|X{A}) (A.20)

=
p(XG|Z{A})

pΘ(XG|X{A}) ∏
a∈A

pΘ{a} ,PaΘ̆(C{a})

(
Z{a}|PaZ̆

(
C{a}

)
, X{a}

)

(A.21)

where Eq. (A.20) follows from conditional independence between XG and
X{A} given Z{A}, and Eq. (A.21) follows from Eq. (A.5). Following the proce-
dure of message-passing we choose a variational distribution that factorizes
as

qΦ(Z) = ∏
a∈A

qΦ{a}

(
Z{a}

)
(A.22)

Notice, that in Eq. (A.22) we have exactly one factor for each node collection
and that this factor only contains the latent variables of that node collection.
This is unlike Eq. (A.12) where a latent variable could be present in multiple
factors. By combining Eq. (A.21) and Eq. (A.22) we can write an approximate
posterior distribution related to the a’th node collection p(Z|X) ≈ p̃{a}(Z|X)
where

p̃{a}
Θ{a}

(Z|X) =

pΘ{a} ,PaΘ̆(C{a})

(
Z{a}|PaZ̆

(
C{a}

)
, X{a}

) p(XG|Z{A})
p̃{a}(XG|X{a}) ∏

b∈A\a
qΦ̆{b}

(
Z{b}

)

Where p̃{a}(XG|X{a}) is defined in Eq. (A.26) in Appendix A.2. Based on
Eq. (A.15) we can then define approximate sub-problems as

min
Φ{a}

D
[
qΦ{a}(Z)|| p̃{a}

Θ{a}
(Z|X)

]
(A.23)

60

A.6. Inference Algorithms

Each of these sub-problems can then be solved successively or in parallel po-
tentially on distributed compute instances as outlined in Algorithm A.1 and
utilizing Stochastic variational inference as described in Section A.6.3. To
see how this choice of factorization affects the posterior approximations and
the learning of model parameters, Θ, consider the KL-divergence as diver-
gence measure. Considering the KL-divergence we can rewrite the objective
in Eq. (A.23) as shown in Eq. (A.27) through Eq. (A.28) in Appendix A.2 to
obtain the following local dual objective for stochastic variational inference

L{a}KL

(
Θ{a}, Φ{a}

)
= (A.24)

E
Z∼q̃{a}

PaZ̆

[
LogEvd{a}

XG , X{a}

(
Θ{a}

)]
− DKL

[
qΦ{a}(Z)|| p̃{a}

Θ{a}
(Z|X)

]
− C

Where C is a constant with respect to Θ{a} and Φ{a}, and LogEvd{a}
(

XG, X{a}
)

is the joint log-evidence over global observed variables, XG, and observed
variables, X{a}, local to the a’th node collection. Since the first term on the
right-hand side is constant with respect to Φ{a}, maximizing this local dual
objective with respect to Φ{a} will minimize the KL-divergence. Furthermore,
since DKL

[
qΦ{a}(Z)|| p̃{a}

Θ{a}
(Z|X)

]
≥ 0 by definition it follows from Eq. (A.24)

that

E
Z∼q̃{a}

PaZ̆

[
LogEvd{a}

(
XG, X{a}

)]
− C ≥ L{a}KL

(
Θ{a}, Φ{a}

)

Therefore, by maximizing the local dual objective, L{a}KL

(
Θ{a}, Φ{a}

)
, with

respect to the local model parameters, Θ{a}, we will push the expected joint
log-evidence over the global, XG, and the local, X{a}, observed variables
higher, where the expectation is taken with respect to the joint variational
distribution over latent variables parent to the a’th node collection. In sum-
mary, this means that we can simultaneously fit our local model parameters,
Θ{a}, to the evidence and obtain an approximate local posterior distribution,
qΦ{a}(z

{a}). While the above derivations were made for the KL-divergence,
similar derivations can be done for the more general family of α-divergences.

To evaluate this local dual objective, we only need information related to
the local node collection, its parents, and other node collections having the
same global observed variables as children. Thereby providing substantially
computational speedups for generative flow graphs with sparsely connected
node collections and global observed variables. To use this procedure with
a standard probabilistic programming language, we would have to create a
probabilistic program fragment for each node collection, their corresponding
variational distribution, and the global observed variables. These fragments
would then have to be composed together to form the local objectives poten-
tially in an automated fashion.

61

Paper A.

So far within this section, we have assumed that all sub-problems are
solved through a variational problem as in Eq. (A.23). However, there are
in principle no reasons why we could not use estimates of sub-posteriors,
q(z{b}), obtained through other means in Eq. (A.23), as long as we can sample
from these sub-posteriors. Thus, making the outlined method very flexible to
combine with other methods, albeit analysis of the results obtained through
the combined inference becomes more difficult. It is also important to stress
that the factorization used above is not unique. It would be interesting to
investigate if other factorizations could be employed, and for which problems
these factorizations could be useful.

In summary, if we can divide a generative flow graph representing an
overall model of cognition into node collections and global observed vari-
ables, then we can utilize the combination of Message-Passing and Stochastic
Variational inference presented within this section, to distribute the compu-
tational burden of performing inference within this model. At the same time,
we can learn local model parameters. Thus, yielding a very flexible tool al-
lowing us to fully specify the part of a model that we are certain about, and
potentially learn the rest.

A.7 Probabilistic Programming Languages

So far, our focus has been on the representation of models defined by proba-
bilistic programs, and on how to answer queries related to these models via
modern probabilistic inference. However, we have not considered how this is
made possible by probabilistic programming languages and their relation to
deterministic programming languages. Here we will not give a detailed in-
troduction to probabilistic programming and refer interested readers to other
sources [19], [38], [39]. Instead, we will give a short overview of languages
relevant to modeling cognition.

As already mentioned in Section A.5 the main characteristics of a prob-
abilistic program is a construct for sampling randomly from distributions
and another construct for condition values of variables in the program. The
purpose of probabilistic programming languages is to provide these two con-
structs and to handle the underlying machinery for implementing inference
algorithms and performing inference from these constructs. As with any
other programming language, design decisions are not universally applica-
ble or desirable, and different trade-offs are purposefully made to achieve
different goals. This fact combined with theoretical advancements has re-
sulted in several different probabilistic programming languages. For an ex-
tensive list see [19]. Some of these are domain-specific aimed at performing
inference in a restricted class of probabilistic programs, such as STAN [40].
These restrictions are usually employed to obtain more efficient inference.

62

A.8. Application Examples

More interesting for the framework presented in Section A.3, however, are
languages self-identifying as universal or general-purpose, such as Pyro [36]
and Venture [41], [42]. These languages aim at performing inference in ar-
bitrary probabilistic programs. Thus maximizing the flexibility for modeling
cognition.

A recent trend has been to build probabilistic programming languages on
top of deep-learning libraries such as PyTorch [43] and TensorFlow [44]. This
is done both to use the efficient tensor math, automatic differentiation, and
hardware acceleration that these libraries provide and to get tighter integra-
tion of deep-learning models within probabilistic models. Examples of such
languages are Pyro [36] and ProbTorch [45] build upon PyTorch, and Ed-
ward [46] build upon TensorFlow. Again, when considering the use within
the framework presented in Section A.3, the languages based on PyTorch or
TensorFlow 2.0 could potentially have the edge over others due to the dy-
namic approach to constructing computation graphs. This is because the
dynamic computation graphs, more easily allow us to define dynamic mod-
els which include recursion and unbounded numbers of random choices [19].
Constructs potentially being indispensable for models of higher-level cogni-
tion supposed to evolve.

Python as the high-level general-purpose programming language it is
makes modeling effortless in these languages. However, being based on
python the computational efficiency of these languages is potentially limited
by the need for interpretation. For this reason the relatively recent project
called NumPyro [47] is under active development. NumPyro provides a
backend to Pyro based on NumPy [48] and JAX [49] which enables just-
in-time compilation, and thus potentially could provide much better compu-
tational efficiency, which again is essential for any practical robotic system.

To summarize, the choice of which probabilistic programming language
to use depends on the flexibility needed to model cognition. However, uni-
versal or general-purpose languages based on deep-learning libraries possi-
bly with just-in-time compilation and hardware acceleration seem promising
for general modeling of cognition, and especially for cognitive robotics.

A.8 Application Examples

To demonstrate the concepts presented within this paper and the utility of
the framework we have begun an initiative to implement some general appli-
cable probabilistic programming idioms with basis in the "Standard Model of
the Mind" [10] which is available as a GitHub repository [50]. The repository
currently contain one such idiom called "__WM_planning_model(...)" imple-
mented within the "Planning" class. The purpose of this idiom is to provide
basic functionality to plan future actions of a robot based on cognitive con-

63

Paper A.

z
{τ−1}
Mb

z{τ}s

x
{τ}
A

z{t}s

τ = T

F

τ ∈ {t+1, ..., T}

z{τ}p z
{τ}
i z{τ}c

z{τ−1}s

Fig. A.8: Generative Flow Graph for Planning
Excerpt of the generative flow graph representation of the idiom used in the abstract class "Plan-
ning" [50]. The red, green and blue colors relates node collections to the methods of the UML
class diagram in Fig. A.9. The variables z{τ}p , z{τ}i , and z{τ}c represents progress, information

gain, and constraints respectively. z{τ}s represents the robots internal state representation at time
τ. z{τ}Mb represents the actions of the robot at time τ contained in the "motor buffer" (Mb). Finally,

x{τ}A quantifies the amount of attention that the robot should give to a given state, z{τ}s , through
a weighting of the progress, information gain, and constraint variables.

cepts of desirability, progress, information gain, and constraints. Fig. A.8
illustrates an excerpt of the generative flow graph representation of the id-
iom. For an in dept presentation of the inner workings of the idiom we refer
the reader to our other paper [51]. As seen from Fig. A.8, the idiom can
be divided into a hierarchical structure of node collections, in which the red
node collection internally depends on the blue node collection, that in turn
depends on the green node collection and recursively on itself. Rather than
implementing the idiom as one large probabilistic program this hierarchical
structure allows us to implement the idiom as multiple smaller probabilistic
programs. To keep the idiom generally applicable it is implemented within
an abstract python class with a method for each of the node collections shown
in Fig. A.8, that depends on some abstract methods that needs to be specified
on a per application basis. Fig. A.9 shows a simplified UML class diagram of
the main methods of the class. The method for each of the node collections in
the idiom contains the main structure and functionality of the idiom. How-
ever, without the implementation of the abstract methods it is inoperative,
and it is the implementation of e.g. the probabilistic program for the state
transition, "p_z_s_tau(...)", that makes it application specific.

64

A.8. Application Examples

Planning

makePlan(p z s t : PP, N : int=1, ...) : z{t:t+T},{1,N}Mb

WM planning model(...)
WM planning step model(z{τ−1}s , ...)
WM planning logic(z{τ}s , ...)

p z MB tau(z{τ−1}s ,...) : z{τ−1}Mb

p z s tau(z{τ−1}s , z
{τ−1}
Mb , ...) : z{τ}s

...

Fig. A.9: UML Class Diagram for "Planning"
Excerpt of the UML class diagram for the abstract class "Planning" [50]. For simplicity we
have only included the methods relevant for the discussion within this manuscript. Italic text
designates abstract classes and methods, "+" designates public methods, "PP" designates an
argument of the type probabilistic program, and the red, green and blue color designates the
methods implementing the node collections with corresponding colors in Fig. A.8.

In the simplest use-case the user can use the idiom simply by creating
a child class that inherits the "Planning" class and implements the abstract
methods. The user can then call the public method "makePlan(...)", which
performs stochastic variational inference on the idiom and returns N samples
from the approximate posterior

z{t:t+T},{n}
Mb ∼ q

(
z{t:t+T}

Mb

)
≈ p

(
z{t:t+T}

Mb |x{t:t+T}
A

)
(A.25)

constituting an optimal plan of future actions according to the idioms no-
tion of progress, information gain, and constraints. The abstract methods
that needs to be implemented are rather non-restrictive and most are only as-
sumed to be probabilistic programs developed in Pyro [36] making the idiom
very versatile. Besides the "Planning" class containing the idiom, the repos-
itory also contains applications examples for robot exploration and multi-
robot navigation demonstrating different use-cases of idiom.

A.8.1 Robot Exploration

The purpose of this use-case is to demonstrate high-level robot motion plan-
ning with the goal of exploring an environment represented by a grid map in
the long-term memory with a lidar mounted on a robot [51]. In this particular
case the model of cognition aligned perfectly with the "__WM_planning_model(...)"
idiom. Thus, the application where implemented simply as a child class
implementing the abstract methods inherited from the abstract parent class
"Planning" as illustrated in Fig. A.10. Thereby, the implementation for this
application was greatly simplified.

In the related paper [51], the approach was tested on 35,126 2D floor
plans available in the HouseExpo dataset utilising a modified version of the

65

Paper A.

Planning

RobotPlanning

p z MB tau(z{τ−1}s ,...) : z{τ−1}Mb

p z s tau(z{τ−1}s , z
{τ−1}
Mb ,...) : z{τ}s

...

Fig. A.10: UML Class Diagram for "robotPlanning"
Excerpt of the UML class diagram for the class "RobotPlanning" used for robot exploration [51].
The model for robot exploration aligned well with the idiom in Fig. A.8 and could thus be
implemented as a child class inheriting from the abstract "Planning" class.

accompanying PseudoSLAM simulator [52]. Figure A.11 shows a snapshot
of one of the simulations.

0 2 4 6 8 10 12
0

2

4

6

8

10

Timestep t: 108
Map ID: 7fb9c9203cb8c4404f4af1781f1c6999

Z
{0:t}
s Z

{t}+,{ia}
s E

p
≥
Z

{t}
s

¥
h
Z

{t}
s

i
Z

{t}+,§
s Lidar Range at Z

{t}+,§
s

Fig. A.11: Robot Exploration Simulation
Results of a simulation of high-level robot motion planning with the goal of exploring an un-
known environment with a lidar as the perceptual input. Gray indicate unexplored parts of the
environment, white indicate unoccupied areas, black indicates obstacles, the green circle with a
black boarder shows the current location of the robot, the green dashed line shows the robots
past path, the solid green lines shows samples from the future optimal path distribution, the
black stars shows the mean of these samples, and the transparent blue circles illustrates the li-
dars range at these positions.

From this extensive simulation study it was demonstrated that the method
was indeed capable of planning actions to guide a robot towards new knowl-
edge, thereby exploring a large part of most of the floor plans. During these
simulations only 0, 25 ‰ of actions taken based on the "__WM_planning_model(...)"
idiom resulted in collisions, thereby demonstrating the ability of the ap-

66

A.8. Application Examples

proach to avoide constraints. Currently, the implementation for this applica-
tion uses down to approximately 1 s on planning depending on the settings.
This is deemed sufficient for high-level planning in robotics applications and
thus this simulation study also hints towards Sufficient Efficiency of the frame-
work, which will only be corroborated by further code optimization.

A.8.2 Multi-robot Navigation

Fig. A.12: Multi-robot Navigation Simulation
Snapshot of a simulation with 12 robots utilizing the "Planning" idiom to plan actions towards
their goal while avoiding collision with each other. Colored circles with a black boarder indicates
the current location of the robots, solid colored lines indicates samples of their future planned
path distribution, colored circles indicates their current goals, and transparent colored circles
indicates their last goal.

The second application example relies heavily on the Stochastic Message-
Passing approach described in Section A.6.4 to implement a simplistic form
of communication between robots [26]. In this application N uni-cycle type
robots has to plan low-level actions towards their goals while avoiding colli-
sions with the other robots given knowledge about the other robots expected
future path as illustrated in Fig. A.12. Figure A.13 shows a generative flow
graph of the model derived for this problem [26].

By comparing Fig. A.13 with Fig. A.8, it is clear that the models are
not exactly the same. However, the differences are encapsulated within
the node collections marked by a green boarder in both diagrams. Thus,
by creating a child class inheriting the "Planning" class, but overwriting the
"__WM_planning_logic(...)" method it was possible to re-use a large part of the
"__WM_planning_model(...)" idiom. Thereby, once more greatly simplifying
the implementation process. Figure A.14 illustrates an excerpt of the UML
class diagram used for this application. Notice here, that since the robots in

67

Paper A.

z
{τ−1}
Mb

z{τ}s

z{t}s

τ = T

F

τ ∈ {t+1, ..., T}

x{τ},{n}c x
{τ}
O

z{τ−1}s

zg

n ∈ {1, ..., N − 1}

Fig. A.13: Generative Flow Graph for Multi-robot Navigation
Generative flow graph of the model derived for each of the robots in a multi-robot navigation
problem [26]. z{τ}s represents the robots internal representation of its own state as well as the
state of the other robots at time τ. z{τ}Mb represents the actions of the robot it self as well as

the communicated planned actions of the other robots at time τ. x{τ}O quantifies how "optimal"

the robots own state is in regards to getting closer to its own goal state, zg. Finally, x{τ},{n}c
represents the global constraints of avoiding collision with each of the N − 1 other robots, i.e.
XG from Section A.6.4.

this application had to plan low level actions as well as keeping track of the
state of the other robots the implementations of abstract methods like e.g.
"p_z_MB_tau(...)" and "p_z_s_tau(...)" also had to be different from the ones
used in the robot exploration application.

In the paper [26] related to this use-case, the approach used have been
verified both through an extensive simulation study and a real-world ex-
periment. From simulations of 2-32 robots it was concluded that the ap-
proach performs as well as, if not better than, the state-of-the-art algorithm
B-UAVC [53] made exclusively for the problem of multi-robot collision avoid-
ance. This was despite the fact that the above approach required way less ana-
lytical analysis, since only a relatively simple model of the problem had to be
derived before the general concepts for performing inference in such a model
presented within this paper could be applied. The approach was also tested
in a real-world experiment with two TurtleBot3 Burger robots equipped with

68

A.8. Application Examples

Planning

UniCycleRobotPlanning

WM planning logic(z{τ}s ,...)
p z MB tau(z{τ−1}s ,...) : z{τ−1}Mb

p z s tau(z{τ−1}s , z
{τ−1}
Mb ,...) : z{τ}s

...

Fig. A.14: UML Class Diagram for "UniCycleRobotPlanning"
Excerpt of the UML class diagram for the class "UniCycleRobotPlanning" used for multi-robot
navigation [26]. A large part of the model for multi-robot navigation aligned with the idiom in
Fig. A.8 and could thus be implemented as a child class inheriting from the abstract "Planning"
class overwriting the parts of the model that did not align.

an Intel NUC10FNK each for performing the necessary computations. The
success of this real-world experiment demonstrated that sufficient computa-
tional efficiency is possible on standard hardware, as well as the real-world
applicability of concepts presented within this paper.

A.8.3 Application Discussion

The point of the above examples is NOT that the method necessarily performs
better than any other method or that the applications could not have been
implemented in another way. The point is that by following the concepts of
the framework presented in this manuscript it is possible to develop generally
applicable models of cognition, that can easily be adapted and/or extended
to new use-cases. Thereby, mitigating the complexity and burden of creating
cognitive architectures for robotics application.

Although the repository currently do not contain a broad range of cog-
nitive capabilities, the two examples demonstrates most of the concepts pre-
sented in Section A.5 through Section A.7. Specifically, the examples demon-
strates the combined usage of probabilistic programming, inference in proba-
bilistic programs, generative flow graphs, probabilistic programming idioms,
and Stochastic message-passing for two real-world robotics applications.

Besides the present features of the idiom and "Planning" class, based on
experiences from solving the multi-robot navigation problem the "__WM_pla-
nning_model(...)" idiom is currently being extended with a desirability variable
for reaching goal states and detection of impasse. Currently, the "Planning"
class makes use of stochastic variational inference. However, if we in the
future want to use another algorithm for inference, we can simply inherit the
"Planning" class and overwrite the "makePlan(...)" method to accommodate

69

Paper A.

this inference algorithm. Since the idiom is implemented via the probabilistic
programming language Pyro we do not need to re-implement the idiom it
self to accommodate this inference algorithm. All of this together with the
fact that the two vastly different applications are implemented from the same
probabilistic programming idiom demonstrates how models developed in the
proposed framework can encourage cooperation, re-use of existing results,
and inspire new work.

A.9 Discussion

A.9.1 Conclusion

Inspired by Sigma’s Cognitive Hourglass Model [1], we have outlined a frame-
work for developing cognitive architectures for cognitive robotics. With prob-
abilistic programs at the center, this framework is sufficiently general to span
the full spectrum of emergent, symbolic, and hybrid architectures. By di-
viding cognitive architectures into a series of layers this framework provides
levels of abstractions between models of cognition and the algorithms that
implement them on computational devices. Some of these layers also directly
relate to other fields of research, thereby encouraging better cooperation.

We also presented a graphical representation of probabilistic programs
which we call generative flow graphs. We showed how such generative
flow graphs can help identify important universal fragments of probabilis-
tic programs and models. Fragments that could potentially be re-used in the
development of other cognitive architectures. Thereby, again encouraging
cooperation and easier re-use of existing results.

Furthermore, we introduced the problem of inference within probabilistic
programs. We briefly reviewed possible approaches and argued that varia-
tional inference approaches seems interesting for cognitive robotics. We intro-
duced two commonly used approaches called Message-Passing and Stochas-
tic Variational Inference. We also outline the weaknesses of each approach
and proposed a combined approach that we call Stochastic Message-Passing.
The proposed approach provides a principle way of distributing the compu-
tational burden of inference and parameter learning.

To support implementations within the framework we reviewed existing
probabilistic programming languages providing the necessary machinery to
implement inference algorithms for and perform inference in probabilistic
programs.

Finally, we provided a brief introduction to a initiative that both pro-
vide evidence for the applicability of the framework and concepts presented
within this paper, but also functions as a starting point and a tool for re-
searchers who wants to work within the framework.

70

A.10. Experimental Procedures

The main topics within this paper have been the framework itself, the
representation of cognitive models, and the computational burden. These
topics are indeed essential ingredients of the framework and pose interesting
research directions by themselves.

A.9.2 Limitations of the Study

The study presented within Section A.8 is limited to action selection through
planning and control, and to fully demonstrate the flexibility of the proposed
framework, applications to other cognitive tasks remain to be demonstrated.
We, however, see no reasons why the same principles could not be applied
to other aspects of cognition such as perception, attention, memory, social
interaction, metacognition and even emotion.

A.10 Experimental Procedures

A.10.1 Resource Availability

Lead Contact

Requests for further information can be directed to the lead contact Malte
Rørmose Damgaard at mrd@es.aau.dk

Materials Availability

This study did not generate new unique materials.

Data and Code Availability

This study did not generate new data or code. However, the data and code
related to the two studies presented and discussed within Section A.8 are
available online as a GitHub repository [50]. More specifically the data and
code related to the robot exploration study presented in Section A.8.1 is avail-
able via Zenodo [54]. Similarely, the data and code related to the multi-robot
exploration study presented in Section A.8.2 is available at the repository
branch [55].

A.11 Author Contributions

Conceptualization, M.R.D., R.P., and T.B.; Investigation, M.R.D.; Methodol-
ogy, M.R.D.; Formal Analysis, M.R.D.; Visualization, M.R.D.; Writing – Orig-

71

References

inal Draft, M.R.D.; Writing – Review & Editing, M.R.D., R.P., and T.B.; Super-
vision, R.P., and T.B.

A.12 Declaration of interests

The authors declare no competing interests.

References

[1] P. S. Rosenbloom, A. Demski, and V. Ustun, “The sigma cog-
nitive architecture and system: Towards functionally elegant
grand unification,” Journal of Artificial General Intelligence, vol. 7,
no. 1, pp. 1–103, 2017, article in a periodical. [Online]. Available:
https://doi.org/10.1515/jagi-2016-0001

[2] P. Haazebroek, S. van Dantzig, and B. Hommel, “A computational
model of perception and action for cognitive robotics,” Cognitive
Processing, vol. 12, no. 4, p. 355–365, 2011, article in a periodical.
[Online]. Available: https://doi.org/10.1007/s10339-011-0408-x

[3] J. Zhong, C. Ling, A. Cangelosi, A. Lotfi, and X. Liu, “On the gap
between domestic robotic applications and computational intelligence,”
Electronics, vol. 10, no. 7, pp. 793:1–793:31, 2021, article in a periodical.
[Online]. Available: https://www.mdpi.com/2079-9292/10/7/793

[4] I. Kotseruba and J. K. Tsotsos, “40 years of cognitive architectures:
core cognitive abilities and practical applications,” Artificial Intelligence
Review, vol. 53, no. 1, pp. 17–94, 2020, article in a periodical. [Online].
Available: https://doi.org/10.1007/s10462-018-9646-y

[5] J. E. Laird, E. S. Yager, M. Hucka, and C. M. Tuck, “Robo-
soar: An integration of external interaction, planning, and learning
using soar,” Robotics and Autonomous Systems, vol. 8, no. 1,
pp. 113–129, 1991, article in a periodical. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/092188909190017F

[6] T. Huntsberger, “Envisioning cognitive robots for future space explo-
ration,” in Proceedings of SPIE - The International Society for Optical Engi-
neering, vol. 7710, Apr. 2010, article in proceedings.

[7] P. Bustos, J. Martínez-Gómez, I. García-Varea, L. Rodríguez-Ruiz,
P. Bachiller, L. Calderita, L. Manso, A. Sánchez, A. Bandera, and J. Ban-
dera, “Multimodal interaction with loki,” in Proceedings of Workshop of
Physical Agents, Sep. 2013, pp. 53–60, article in proceedings.

72

https://doi.org/10.1515/jagi-2016-0001
https://doi.org/10.1007/s10339-011-0408-x
https://www.mdpi.com/2079-9292/10/7/793
https://doi.org/10.1007/s10462-018-9646-y
https://www.sciencedirect.com/science/article/pii/092188909190017F

References

[8] A. Tanevska, F. Rea, G. Sandini, L. Cañamero, and A. Sciutti, “A
socially adaptable framework for human-robot interaction,” Frontiers in
Robotics and AI, vol. 7, pp. 126:1–126:16, 2020, article in a periodical.
[Online]. Available: https://www.frontiersin.org/article/10.3389/frobt.
2020.00121

[9] P. Domingos and D. Lowd, Markov Logic: An Interface Layer for Artificial
Intelligence, 1st ed. Morgan and Claypool Publishers, 2009, an entire
book.

[10] J. E. Laird, C. Lebiere, and P. S. Rosenbloom, “A standard model of
the mind: Toward a common computational framework across artificial
intelligence, cognitive science, neuroscience, and robotics,” AI Magazine,
vol. 38, no. 4, pp. 13–26, Dec. 2017, article in a periodical. [Online].
Available: https://ojs.aaai.org/index.php/aimagazine/article/view/
2744

[11] Steve Deering, “Watching the waist of the protocol hourglass,” Keynote
at ICNP ’98, https://ant.isi.edu/csci551/images/3/32/Deering98a.pdf,
Oct. 1998, keynote.

[12] M. Fadlil, K. Ikeda, K. Abe, T. Nakamura, and T. Nagai, “Integrated con-
cept of objects and human motions based on multi-layered multimodal
lda,” in 2013 IEEE/RSJ International Conference on Intelligent Robots and
Systems, 2013, pp. 2256–2263, article in proceedings.

[13] A. Taniguchi, Y. Hagiwara, T. Taniguchi, and T. Inamura, “Improved
and scalable online learning of spatial concepts and language
models with mapping,” Autonomous Robots, vol. 44, pp. 927–
946, Jul. 2020, article in a periodical. [Online]. Available: https:
//doi.org/10.1007/s10514-020-09905-0

[14] ——, “Spatial concept-based navigation with human speech instructions
via probabilistic inference on bayesian generative model,” Advanced
Robotics, vol. 34, no. 19, pp. 1213–1228, 2020, article in a periodical.
[Online]. Available: https://doi.org/10.1080/01691864.2020.1817777

[15] K. Miyazawa, T. Horii, T. Aoki, and T. Nagai, “Integrated cognitive
architecture for robot learning of action and language,” Frontiers
in Robotics and AI, vol. 6, pp. 1–20, 2019, article in a periodical.
[Online]. Available: https://www.frontiersin.org/article/10.3389/frobt.
2019.00131

[16] T. Nakamura, T. Nagai, and T. Taniguchi, “Serket: An architecture for
connecting stochastic models to realize a large-scale cognitive model,”
Frontiers in Neurorobotics, vol. 12, pp. 25:1–25:16, 2018, article in a

73

https://www.frontiersin.org/article/10.3389/frobt.2020.00121
https://www.frontiersin.org/article/10.3389/frobt.2020.00121
https://ojs.aaai.org/index.php/aimagazine/article/view/2744
https://ojs.aaai.org/index.php/aimagazine/article/view/2744
https://ant.isi.edu/csci551/images/3/32/Deering98a.pdf
https://doi.org/10.1007/s10514-020-09905-0
https://doi.org/10.1007/s10514-020-09905-0
https://doi.org/10.1080/01691864.2020.1817777
https://www.frontiersin.org/article/10.3389/frobt.2019.00131
https://www.frontiersin.org/article/10.3389/frobt.2019.00131

References

periodical. [Online]. Available: https://www.frontiersin.org/article/10.
3389/fnbot.2018.00025

[17] T. Taniguchi, T. Nakamura, M. Suzuki, R. Kuniyasu, K. Hayashi,
A. Taniguchi, T. Horii, and T. Nagai, “Neuro-serket: Development
of integrative cognitive system through the composition of deep
probabilistic generative models,” New Gen. Comput., vol. 38, no. 1,
p. 23–48, Mar. 2020, article in a periodical. [Online]. Available:
https://doi.org/10.1007/s00354-019-00084-w

[18] F. Kschischang, B. Frey, and H.-A. Loeliger, “Factor graphs and the
sum-product algorithm,” IEEE Transactions on Information Theory, vol. 47,
no. 2, pp. 498–519, 2001, article in a periodical.

[19] J.-W. van de Meent, B. Paige, H. Yang, and F. Wood, “An introduction to
probabilistic programming,” Preprint at arXiv, 2018, article on a preprint
server or other repository.

[20] H. A. Simon, “Rational choice and the structure of the environment,”
Psychological review, vol. 63, no. 2, pp. 129–138, 1956, article in a periodi-
cal.

[21] A. D. Gordon, T. A. Henzinger, A. V. Nori, and S. K. Rajamani,
“Probabilistic programming,” ser. FOSE 2014, vol. 1. Association
for Computing Machinery, 2014, pp. 167–181, article in proceedings.
[Online]. Available: https://doi.org/10.1145/2593882.2593900

[22] D. Koller and N. Friedman, Probabilistic Graphical Models: Principles and
Techniques - Adaptive Computation and Machine Learning. The MIT Press,
2009, an entire book.

[23] H. Durrant-Whyte and T. Bailey, “Simultaneous localization and map-
ping: part i,” IEEE Robotics Automation Magazine, vol. 13, no. 2, pp. 99–
110, 2006, article in a periodical.

[24] S. Levine, “Reinforcement learning and control as probabilistic
inference: Tutorial and review,” Preprint at arXiv, 2018, article
on a preprint server or other repository. [Online]. Available:
http://arxiv.org/abs/1805.00909

[25] C. Zhang, J. Bütepage, H. Kjellström, and S. Mandt, “Advances in varia-
tional inference,” IEEE Transactions on Pattern Analysis and Machine Intel-
ligence, vol. 41, no. 8, pp. 2008–2026, 2019, article in a periodical.

[26] M. R. Damgaard, R. Pedersen, and T. Bak, “Study of variational
inference for flexible distributed probabilistic robotics,” Robotics, vol. 11,
no. 2, pp. 38:1–38:19, 2022, article in a periodical. [Online]. Available:
https://www.mdpi.com/2218-6581/11/2/38

74

https://www.frontiersin.org/article/10.3389/fnbot.2018.00025
https://www.frontiersin.org/article/10.3389/fnbot.2018.00025
https://doi.org/10.1007/s00354-019-00084-w
https://doi.org/10.1145/2593882.2593900
http://arxiv.org/abs/1805.00909
https://www.mdpi.com/2218-6581/11/2/38

References

[27] T. Minka, “Divergence measures and message
passing,” https://www.microsoft.com/en-us/research/publication/
divergence-measures-and-message-passing/, Microsoft, Tech.
Rep. MSR-TR-2005-173, Jan. 2005. [Online]. Avail-
able: https://www.microsoft.com/en-us/research/publication/
divergence-measures-and-message-passing/

[28] M. D. Hoffman, D. M. Blei, C. Wang, and J. Paisley, “Stochastic
variational inference,” Journal of Machine Learning Research, vol. 14,
no. 4, pp. 1303–1347, 2013, article in a periodical. [Online]. Available:
http://jmlr.org/papers/v14/hoffman13a.html

[29] R. Ranganath, S. Gerrish, and D. Blei, “Black Box Variational Inference,”
in Proceedings of the Seventeenth International Conference on Artificial
Intelligence and Statistics, ser. Proceedings of Machine Learning Research,
S. Kaski and J. Corander, Eds., vol. 33. Reykjavik, Iceland: PMLR,
Apr. 2014, pp. 814–822, article in proceedings. [Online]. Available:
http://proceedings.mlr.press/v33/ranganath14.html

[30] A. Kucukelbir, D. Tran, R. Ranganath, A. Gelman, and D. M. Blei,
“Automatic differentiation variational inference,” Journal of Machine
Learning Research, vol. 18, no. 14, pp. 1–45, 2017, article in a periodical.
[Online]. Available: http://jmlr.org/papers/v18/16-107.html

[31] Y. Li and R. E. Turner, “Rényi divergence variational inference,”
in Advances in Neural Information Processing Systems, D. Lee,
M. Sugiyama, U. Luxburg, I. Guyon, and R. Garnett, Eds., vol. 29.
Curran Associates, Inc., 2016, pp. 1–9, article in proceedings.
[Online]. Available: https://proceedings.neurips.cc/paper/2016/file/
7750ca3559e5b8e1f44210283368fc16-Paper.pdf

[32] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” in
2nd International Conference on Learning Representations, Conference Track
Proceedings, Y. Bengio and Y. LeCun, Eds., Apr. 2014, pp. 1–14, article in
proceedings. [Online]. Available: http://arxiv.org/abs/1312.6114

[33] R. J. Williams, “Simple statistical gradient-following algorithms
for connectionist reinforcement learning,” Machine Learning, vol. 8,
no. 3, pp. 229–256, 1992, article in a periodical. [Online]. Available:
https://doi.org/10.1007/BF00992696

[34] T. Salimans and D. A. Knowles, “Fixed-form variational posterior
approximation through stochastic linear regression,” Bayesian Analysis,
vol. 8, no. 4, p. 837–882, Dec. 2013, article in a periodical. [Online].
Available: http://dx.doi.org/10.1214/13-BA858

75

https://www.microsoft.com/en-us/research/publication/divergence-measures-and-message-passing/
https://www.microsoft.com/en-us/research/publication/divergence-measures-and-message-passing/
https://www.microsoft.com/en-us/research/publication/divergence-measures-and-message-passing/
https://www.microsoft.com/en-us/research/publication/divergence-measures-and-message-passing/
http://jmlr.org/papers/v14/hoffman13a.html
http://proceedings.mlr.press/v33/ranganath14.html
http://jmlr.org/papers/v18/16-107.html
https://proceedings.neurips.cc/paper/2016/file/7750ca3559e5b8e1f44210283368fc16-Paper.pdf
https://proceedings.neurips.cc/paper/2016/file/7750ca3559e5b8e1f44210283368fc16-Paper.pdf
http://arxiv.org/abs/1312.6114
https://doi.org/10.1007/BF00992696
http://dx.doi.org/10.1214/13-BA858

References

[35] D. J. Rezende, S. Mohamed, and D. Wierstra, “Stochastic backpropaga-
tion and approximate inference in deep generative models,” in Proceed-
ings of the 31st International Conference on International Conference on Ma-
chine Learning - Volume 32, ser. ICML’14. JMLR.org, 2014, pp. II–1278–
II–1286, article in proceedings.

[36] E. Bingham, J. P. Chen, M. Jankowiak, F. Obermeyer, N. Pradhan,
T. Karaletsos, R. Singh, P. A. Szerlip, P. Horsfall, and N. D. Goodman,
“Pyro: Deep universal probabilistic programming,” J. Mach. Learn. Res.,
vol. 20, pp. 28:1–28:6, 2019, article in a periodical. [Online]. Available:
http://jmlr.org/papers/v20/18-403.html

[37] J. Zhang, P. Raman, S. Ji, H.-F. Yu, S. Vishwanathan, and I. Dhillon,
“Extreme stochastic variational inference: Distributed inference for large
scale mixture models,” in Proceedings of the Twenty-Second International
Conference on Artificial Intelligence and Statistics, ser. Proceedings of
Machine Learning Research, K. Chaudhuri and M. Sugiyama, Eds.,
vol. 89. PMLR, Apr. 2019, pp. 935–943, article in proceedings. [Online].
Available: https://proceedings.mlr.press/v89/zhang19c.html

[38] C. Davidson-Pilon, Bayesian Methods for Hackers: Probabilistic Program-
ming and Bayesian Inference, 1st ed. Addison-Wesley Professional, 2015,
an entire book.

[39] A. Pfeffer, Practical Probabilistic Programming, 1st ed. USA: Manning
Publications Co., 2016, an entire book.

[40] B. Carpenter, A. Gelman, M. D. Hoffman, D. Lee, B. Goodrich,
M. Betancourt, M. Brubaker, J. Guo, P. Li, and A. Riddell, “Stan:
A probabilistic programming language,” Journal of Statistical Software,
vol. 76, no. 1, p. 1–32, 2017, article in a periodical. [Online]. Available:
https://www.jstatsoft.org/index.php/jss/article/view/v076i01

[41] V. Mansinghka, D. Selsam, and Y. Perov, “Venture: a higher-order proba-
bilistic programming platform with programmable inference,” Preprint
at arXiv, 2014, article on a preprint server or other repository.

[42] V. K. Mansinghka, U. Schaechtle, S. Handa, A. Radul, Y. Chen, and
M. Rinard, “Probabilistic programming with programmable inference,”
SIGPLAN Not., vol. 53, no. 4, p. 603–616, Jun. 2018, article in a periodical.
[Online]. Available: https://doi.org/10.1145/3296979.3192409

[43] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison,
A. Köpf, E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy,
B. Steiner, L. Fang, J. Bai, and S. Chintala, “Pytorch: An imperative

76

http://jmlr.org/papers/v20/18-403.html
https://proceedings.mlr.press/v89/zhang19c.html
https://www.jstatsoft.org/index.php/jss/article/view/v076i01
https://doi.org/10.1145/3296979.3192409

References

style, high-performance deep learning library.” in NeurIPS, H. M.
Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché Buc, E. B. Fox,
and R. Garnett, Eds., 2019, pp. 8024–8035, article in proceedings.
[Online]. Available: http://dblp.uni-trier.de/db/conf/nips/nips2019.
html#PaszkeGMLBCKLGA19

[44] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,
S. Ghemawat, G. Irving, M. Isard, M. Kudlur, J. Levenberg, R. Monga,
S. Moore, D. G. Murray, B. Steiner, P. Tucker, V. Vasudevan,
P. Warden, M. Wicke, Y. Yu, and X. Zheng, “TensorFlow: A system
for Large-Scale machine learning,” in 12th USENIX Symposium on
Operating Systems Design and Implementation (OSDI 16). Savannah,
GA: USENIX Association, Nov. 2016, pp. 265–283, article in
proceedings. [Online]. Available: https://www.usenix.org/conference/
osdi16/technical-sessions/presentation/abadi

[45] N. Siddharth, B. Paige, J.-W. van de Meent, A. Desmaison, N. D. Good-
man, P. Kohli, F. Wood, and P. H. Torr, “Learning disentangled represen-
tations with semi-supervised deep generative models,” in Proceedings of
the 31st International Conference on Neural Information Processing Systems,
ser. NIPS’17. Red Hook, NY, USA: Curran Associates Inc., 2017, pp.
5927–5937, article in proceedings.

[46] D. Tran, M. D. Hoffman, R. A. Saurous, E. Brevdo, K. Murphy, and
D. M. Blei, “Deep probabilistic programming,” Preprint at arXiv, 2017,
article on a preprint server or other repository. [Online]. Available:
https://arxiv.org/abs/1701.03757

[47] D. Phan, N. Pradhan, and M. Jankowiak, “Composable effects for
flexible and accelerated probabilistic programming in numpyro,” CoRR,
vol. abs/1912.11554, pp. 1–10, 2019, article in a periodical. [Online].
Available: http://arxiv.org/abs/1912.11554

[48] C. R. Harris, K. J. Millman, S. J. van der Walt, R. Gommers,
P. Virtanen, D. Cournapeau, E. Wieser, J. Taylor, S. Berg, N. J.
Smith, R. Kern, M. Picus, S. Hoyer, M. H. van Kerkwijk, M. Brett,
A. Haldane, J. F. del Río, M. Wiebe, P. Peterson, P. Gérard-Marchant,
K. Sheppard, T. Reddy, W. Weckesser, H. Abbasi, C. Gohlke, and T. E.
Oliphant, “Array programming with NumPy,” Nature, vol. 585, no.
7825, pp. 357–362, Sep. 2020, article in a periodical. [Online]. Available:
https://doi.org/10.1038/s41586-020-2649-2

[49] R. Frostig, M. J. Johnson, and C. Leary, “Compiling machine learning
programs via high-level tracing,” Systems for Machine Learning, pp. 23–
24, 2018, article in a periodical.

77

http://dblp.uni-trier.de/db/conf/nips/nips2019.html#PaszkeGMLBCKLGA19
http://dblp.uni-trier.de/db/conf/nips/nips2019.html#PaszkeGMLBCKLGA19
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/abadi
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/abadi
https://arxiv.org/abs/1701.03757
http://arxiv.org/abs/1912.11554
https://doi.org/10.1038/s41586-020-2649-2

References

[50] M. R. Damgaard, “ProbMind,” GitHub repository, https://github.com/
damgaardmr/probMind, 2022, software available online.

[51] M. R. Damgaard, R. Pedersen, and T. Bak, “A probabilistic programming
idiom for active knowledge search,” Preprint at arXiv, 2022, article on a
preprint server or other repository.

[52] T. Li, D. Ho, C. Li, D. Zhu, C. Wang, and M. Q.-H. Meng, “Houseexpo:
A large-scale 2d indoor layout dataset for learning-based algorithms on
mobile robots,” in 2020 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), 2020, pp. 5839–5846, article in proceedings.

[53] H. Zhu, B. Brito, and J. Alonso-Mora, “Decentralized probabilistic multi-
robot collision avoidance using buffered uncertainty-aware voronoi
cells,” Autonomous Robots, vol. 46, pp. 401–420, 2022, article in a peri-
odical.

[54] M. R. Damgaard, “probmind release for "a probabilistic programming
idiom for active knowledge search",” Zenodo Archive, https:
//doi.org/10.5281/zenodo.5841292, Jan. 2022, software available
online. [Online]. Available: https://doi.org/10.5281/zenodo.5841292

[55] ——, “Multi robot planning simulation,” GitHub repos-
itory, https://github.com/damgaardmr/probMind/tree/
d0ba27687b373ff04eb790ef38b21ca8572d8c8a/examples/
multiRobotPlanning, Jan. 2022, software available online.

78

https://github.com/damgaardmr/probMind
https://github.com/damgaardmr/probMind
https://doi.org/10.5281/zenodo.5841292
https://doi.org/10.5281/zenodo.5841292
https://doi.org/10.5281/zenodo.5841292
https://github.com/damgaardmr/probMind/tree/d0ba27687b373ff04eb790ef38b21ca8572d8c8a/examples/multiRobotPlanning
https://github.com/damgaardmr/probMind/tree/d0ba27687b373ff04eb790ef38b21ca8572d8c8a/examples/multiRobotPlanning
https://github.com/damgaardmr/probMind/tree/d0ba27687b373ff04eb790ef38b21ca8572d8c8a/examples/multiRobotPlanning

Appendix A. Supplemental Experimental Procedures

Appendix A Supplemental Experimental Procedures

Appendix A.1 Generative Flow Graphs

Table A.1: Semantics of the Generative Flow Graph representation of probabilistic programs.

Symbol Description Meaning

z
Circle without col-
ored background

A node symbolizing a probabilistic vari-
able, corresponding to a "sample" function
or keyword in the probabilistic program.
We denote this as a "Latent Variable Node".

x Circle with colored
background

A node symbolizing an observed proba-
bilistic variable, corresponding to a "ob-
serve" function or keyword in the proba-
bilistic program. We denote this as an "Ob-
served Variable Node".

θ
Square without
colored back-
ground

A node symbolizing learn-able parame-
ters in the probabilistic program. That is
model parameters that can change at run-
time. We denote this as a "Variable Parame-
ter Node"

θ̆ Square with col-
ored background

A node symbolizing fixed parameters
in the probabilistic program. Use-full
for representing parameters that cannot
change at run-time such as tuning param-
eters. We denote this as a "Fixed parameter
node"

simple arrow

Link showing the generative path in a
Probabilistic Program. The arrow can start
in Latent Variable Nodes and Parameter
nodes, and only point towards latent vari-
able nodes and observed variable nodes. In
large graphs or in cases where the origin
of a link can be uncertain the readability
can be improved by adding the name of
the node from which the link originates
next to the link. We denote this as a "Gen-
erative Link"

79

References

Half circle on ar-
row

Symbolizing that operations downstream
of this link in the probabilistic program
should not influence nodes upstream to
this link in the generative path. I.e. in-
formation such as accumulated gradients
in a backward pass of automatic differ-
entiation should not be propagated back
through this link, corresponding to a ".de-
tach()" and ".stop_gradient" call in Py-
Torch and TensorFlow, respectively. We
denote this as a "Detached Link". A "vari-
able parameter node" having only a de-
tached link, can be considered a "fixed pa-
rameter node" or vice versa.

Simple arrow
pointing towards
another simple
arrow

Depending on the context, samples from
different latent variable nodes may be used
to generate the next sample. The gener-
ative link from the most recent sampled
latent variable node in the generative path is
the new active link. Used, e.g., to repre-
sent for loops.

80

Appendix A. Supplemental Experimental Procedures

{z; x1, x2; θ} Polygon with
rounded corners

Collection of nodes with internal depen-
dency structure. The full structure of links
between nodes can be shown inside the
polygon. Alternatively, the names of the
nodes can be written between curly brack-
ets, {z; x; θ}, with a semi-colon separating
variables nodes, z, observed nodes, x, and
parameter nodes, θ, in that order. Finally,
a node collection can also simply be de-
fined somewhere else, C = {z; x; θ}, and
referred to by, e.g., a single letter, in which
case we encourage the use of capital let-
ters to emphasize the difference from the
other types of nodes. In cases where one
or more types of nodes are not present
in a collection, both semi-colons should
still be there. E.g., {; x1, x2; } for a col-
lection the two observed nodes x1 and x2.
Such a collection of nodes directly corre-
sponds to the factor pθ(x1, x2|z) in a fac-
torization of the joint distribution over all
variables in a model. We denote this as a
"Node Collection". A node is only allowed
to be within one node collection unless
it is within a node collection fully nested
within another.

81

References

{z(n)
; x

(n)
; θ

(n)}
n ∈ N

Index specification
in one corner of
a polygon with
rounded corners

Collection of nodes with indexed names.
When the index is used to name nodes it is
good practice to use the index in a super-
script and encapsulate it in round brack-
ets to emphasize that it is an index. We
denote such a node collection an "Indexed
Node Collection". The valid index should be
clear from the context. E.g., in the case of a
loop around the indexed collection, the in-
dex is incremented each time the loop en-
ters the indexed node collection. When no
such loops exist around the indexed node
collection that could potentially cause am-
biguity, it can be used instead of writing
all the variables in a node collection with
the curly brackets. For an example see
Fig. A.4c

{z(n)
; x

(n)
; θ

(n)}
n ∈ N

Stacked polygons
with rounded cor-
ners

Explicitly representation of multiple iden-
tical collections of nodes conditionally in-
dependent given their parents or simply
independent if there are no parents. Here
the one index is used for each of the inde-
pendent collections.

Dashed arrow

A link symbolizing an indirect relation
between nodes. Such a link is non-
generative, meaning that it is not directly
used as a parameter in the generation
of other samples, but only influences the
generative path of other samples. We de-
note this as an "Influence Link"

82

Appendix A. Supplemental Experimental Procedures

condition
True

False

A Polygon with
generative links
connected at ver-
tices, influence
links towards the
polygon connected
at edges, and
conditional values
nearby generative
links pointing
away from the
polygon

Node representing a condition changing
the "direction" of the generative flow in a
probabilistic program. We denote this as
"conditioned generative branching".

condition
True

False

A Polygon with
generative links
connected at ver-
tices, influence
links towards
the polygon con-
nected at edges,
and conditional
values nearby
generative links
pointing towards
the polygon

Node representing a condition selecting
one out of two or more possible genera-
tive flows from parent nodes. We denote
this as "conditioned generative selection".

83

References

Appendix A.2 Rewriting KL-divergence for Stochastic Message-
Passing

In this section, we will derive the dual objective for the combination of
message-passing and stochastic variational inference presented in Section A.6.4.
Start by considering

pΘ(XG|X{A}) =
∫

pΘ(XG, Z{A}|X{A})dZ

=
∫

p(XG|Z{A}, X{A})pΘ(Z{A}|X{A})dZ

=
∫

p(XG|Z{A})pΘ(Z{A}|X{A})dZ

=
∫

p(XG|Z{A}) ∏
a∈A

pΘ{a} ,PaΘ̆(C{a})

(
Z{a}|PaZ̆

(
C{a}

)
, X{a}

)
dZ

By replacing pΘ{b} ,PaΘ̆(C{b})

(
Z{b}|PaZ̆

(
C{b}

)
, X{b}

)
with their correspond-

ing variational distributions qΦ̆{b}

(
Z{b}

)
for b ∈ A \ a we obtain

p̃{a}(XG|X{a}) = (A.26)
∫

p(XG|Z{A})pΘ{a} ,PaΘ̆(C{a})

(
Z{a}|PaZ̆

(
C{a}

)
, X{a}

)
∏

b∈A\a
qΦ̆{b}

(
Z{b}

)
dZ

where we have used p̃{a}(XG|X{a}) instead of p̃{a}(XG|X{A}) to empha-
size the conditional independence between XG and X{b} given Z{b} for b ∈
A \ a implicitly assumed by the approximation. Furthermore, also notice that
we can rewrite the distribution, p(XG|Z{A}), as follows

p(XG|Z{A}) = p(ChXG

(
Z{a}

)
|Z{A})p(XG \ChXG

(
Z{a}

)
|Z{A})

= p
(

ChXG

(
Z{a}

)
|PaZ

(
ChXG

(
Z{a}

)))

· p
(

XG \ChXG

(
Z{a}

)
|Z{A} \ Z{a}

)

by separating the global observed variables, XG, into those who are direct
children of Z{a}, and those who are not. With the definition above and the
ones given in Section A.6.4, we can rewrite the KL-divergence as follows:

DKL

[
qΦ{a}(Z)|| p̃{a}

Θ{a}
(Z|X)

]
(A.27)

84

Appendix A. Supplemental Experimental Procedures

=
∫

Z
qΦ{a}(Z) log

 qΦ{a}(Z)

p̃{a}
Θ{a}

(Z|X)

 dZ

=
∫

Z
qΦ{a}(Z) log

q
Φ{a}(Z{a})∏b∈A\a q

Φ̆{b}(Z{b})

p(XG |Z{A})
p̃{a}(XG |X{a}) ∏b∈A\a qΦ̆{b}

(
Z{b}

)

·pΘ{a} ,PaΘ̆(C{a})

(
Z{a}|PaZ̆

(
C{a}

)
, X{a}

)

 dZ

=
∫

Z
qΦ{a}(Z) log

q
Φ{a}(Z{a})

p(XG |Z{A})
p̃{a}(XG |X{a})
·pΘ{a} ,PaΘ̆(C{a})

(
Z{a}|PaZ̆

(
C{a}

)
, X{a}

)

 dZ

=
∫

Z
qΦ{a}(Z) log

qΦ{a}

(
Z{a}

)

p(XG |Z{A})
p̃{a}(XG |X{a})

p
Θ{a} ,PaΘ̆(C{a})(

Z{a} ,X{a} |PaZ̆(C{a}))

p
Θ{a} ,PaΘ̆(C{a})(

X{a} |PaZ̆(C{a}))

dZ

=
∫

Z
qΦ{a}(Z) log

q
Φ{a}(Z{a})

p(ChXG(Z{a})|PaZ(ChXG(Z{a})))

·p
(

XG \ChXG

(
Z{a}

)
|Z{A} \ Z{a}

)

p̃{a}(XG |X{a})

·
p

Θ{a} ,PaΘ̆(C{a})(
Z{a} ,X{a} |PaZ̆(C{a}))

p
Θ{a} ,PaΘ̆(C{a})(

X{a} |PaZ̆(C{a}))

dZ

=
∫

Z
qΦ{a}(Z) log

q
Φ{a}(Z{a})

p
(

ChXG

(
Z{a}

)
|PaZ

(
ChXG

(
Z{a}

)))

·pΘ{a} ,PaΘ̆(C{a})

(
Z{a}, X{a}|PaZ̆

(
C{a}

))

 dZ

+
∫

Z
qΦ{a}(Z) log

(
p̃{a}(XG|X{a})
·pΘ{a} ,PaΘ̆(C{a})

(
X{a}|PaZ̆

(
C{a}

))
)

dZ

−
∫

Z
qΦ{a}(Z) log

(
p
(

XG \ChXG

(
Z{a}

)
|Z{A} \ Z{a}

))
dZ

= E
Z∼q̃{a}

Φ{a}

log

qΦ{a}

(
Z{a}

)

p
(

ChXG

(
Z{a}

)
|PaZ

(
ChXG

(
Z{a}

)))

·pΘ{a} ,PaΘ̆(C{a})

(
Z{a}, X{a}|PaZ̆

(
C{a}

))

︸ ︷︷ ︸
−L{a}KL (Θ{a} ,Φ{a})

85

References

+ E
Z∼q̃{a}

PaZ̆

log
(

p̃{a}(XG|X{a})pΘ{a} ,PaΘ̆(C{a})

(
X{a}|PaZ̆

(
C{a}

)))

︸ ︷︷ ︸
LogEvd{a}

XG , X{a}(
Θ{a})

(A.28)

− EZ∼∏b∈A\a q
Φ̆{b}(Z{b})

[
log
(

p
(

XG \ChXG

(
Z{a}

)
|Z{A} \ Z{a}

))]

︸ ︷︷ ︸
C

where

q̃{a}
Φ{a}

= qΦ{a}

(
Z{a}

)
∏

Z{b}∈PaZ̆(C{a})∪PaZ̆(ChXG(Z{a}))\Z{a}
qΦ̆{b}

(
Z{b}

)

is the joint variational distribution over the latent variables, Z{a}, local
to the a’th node collection, and the latent variables parent to the a’th node
collection, PaZ̆

(
C{a}

)
, or having the same child global observed variables as

the a’th node collection, Z{b} ∈ PaZ̆
(

ChXG

(
Z{a}

))
\ Z{a}. Furthermore,

q̃{a}
PaZ̆

= ∏
Z{b}∈PaZ̆(C{a})

qΦ̆{b}

(
Z{b}

)

is the joint variational distribution over the latent variables parent to the a’th
node collection, PaZ̆

(
C{a}

)
. Finally, LogEvd{a}

XG , X{a}

(
Θ{a}

)
denotes the joint

log-evidence for XG and X{a}, and C is constant with respect to Θ{a}, Φ{a} .
By simple rearranging terms we obtain the dual objective

L{a}KL

(
Θ{a}, Φ{a}

)
=E

Z∼q̃{a}
PaZ̆

[
LogEvd{a}

XG , X{a}

(
Θ{a}

)]

− DKL

[
qΦ{a}(Z)|| p̃{a}

Θ{a}
(Z|X)

]
− C

86

Paper B

Study of Variational Inference for Flexible
Distributed Probabilistic Robotics

Malte Rørmose Damgaard, Rasmus Pedersen, and Thomas Bak

The paper has been published in
Robotics Volume 11, Issue 2, 38, 2022.

https://doi.org/10.3390/robotics11020038

https://doi.org/10.3390/robotics11020038

© 2022 by the authors
The layout has been revised.

B.1. Introduction

Abstract

By combining stochastic variational inference with message passing algorithms, we
show how to solve the highly complex problem of navigation and avoidance in dis-
tributed multi-robot systems in a computationally tractable manner, allowing online
implementation. Subsequently, the proposed variational method lends itself to more
flexible solutions than prior methodologies. Furthermore, the derived method is ver-
ified both through simulations with multiple mobile robots and a real world experi-
ment with two mobile robots. In both cases, the robots share the operating space and
need to cross each other’s paths multiple times without colliding.

B.1 Introduction

Uncertainty is an inherent part of robotics that must be dealt with explic-
itly through the robust design of sensors, mechanics, and algorithms. Unlike
many other engineering research areas that also have to deal with uncertain-
ties, robotics problems usually also consist of a heterogeneous set of intercon-
nected sub-problems and have strict real-time requirements, making it even
harder to deal with uncertainty in an appropriate manner [1].

A common approach to model uncertainties in robotics is to employ
probability mass functions and/or probability density functions, hereinafter
jointly referred to as probability distributions, over model variables. One
can then represent many classical robotics problems as a joint distribution,
p (x, z), over observable variables, x, and latent variables, z. Given the knowl-
edge that the observable variables, x, can be assigned specific values x, solv-
ing the problem then boils down to solving the posterior inference problem
given by the conditional distribution

p (z|x = x) =
p (x = x, z)
p (x = x)

(B.1)

=
p (x = x, z)∫
p (x = x, z) dz

. (B.2)

Unfortunately, the marginalization by the integral in the denominator of
Equation (B.2) is, in general, intractable to compute in most realistic prob-
lems, and thereby the reason why one often has to resort to approximate
inference [2].

The classical solution to this problem has been to simplify the model of a
problem, p, sufficiently to obtain an approximate problem definition, q ≈ p,
for which one can derive or use analytical solutions such as the Kalman fil-
ter [3], henceforth referred to as the "model simplification method". Typi-
cally, it is only possible to derive analytical solutions for a very limited set

89

Paper B.

of probability distributions. Thereby, it may be necessary to apply crude
approximations to obtain a solution, making it a rather inflexible method.
However, such solutions tend to be computationally efficient, which is why
they were commonly used in the early days of probabilistic robotics where
computational resources were limited. One good example of this is Kalman
filter-based simultaneous localization and mapping (SLAM). It is well known
that in many cases the true posterior, p, is multi-modal, e.g., due to ambi-
guities and changes in the environment [4]. However, Kalman filter-based
SLAM implicitly assumes a uni-modal Gaussian posterior, q, which in some
cases can lead to poor solutions.

Another possibility is to use Monte Carlo methods such as particle filters.
These methods have the benefit that they usually do not enforce any restric-
tions on the model, p, making these methods highly flexible. Furthermore,
with these methods, it is often possible to obtain any degree of accuracy
at the cost of losing computational efficiency. The computational complexity
usually makes these methods unsuitable for solving complex robotics prob-
lems in real-time. An example of the use of Monte Carlo methods in robotics
is the particle filter-based SLAM algorithm called FastSLAM [5], which only
utilizes a particle filter to estimate the posterior of the robots pose and settles
for Kalman filters for estimating the pose of landmarks.

The third set of methods, that have gained increasing interest in the last
decade due to the advancement in stochastic optimization and increase in
computational resources, is the optimization-based method called variational
inference. In variational inference, optimization is used to approximate the
distribution, p (z), that we are interested in finding, by another simpler dis-
tribution q (z), called the variational distribution. Like analytical solutions,
variational inference assumes an approximation model, q, and thereby in-
troduces a bias into the solution. The set of possible models that can be
employed in modern variational inference is wide, making the method very
flexible for modelling robotics problems. This optimization-based approach
also makes the distinction between the model of the real problem, p, and the
model used to find an approximate solution, q, very explicit and gives a mea-
sure of the applicability of the approximate model, q. Furthermore, the use
of an approximate model, q, usually allows this set of methods to be more
computationally efficient than Monte Carlo methods. As such, variational
inference can be viewed as a compromise between the computational effi-
ciency of the model simplification method and the flexibility of Monte Carlo
methods. This makes variational inference especially interesting for robotics
applications.

Initial efforts on applying variational inference for robot applications have
shown promising results in various problems. In [6] variational inference is
used to solve several tasks related to navigation in spatial environments for
a single robot. In [7] variational inference is used to learn low-level dynam-

90

B.1. Introduction

ics as well as meta-dynamics of a system, which is subsequently used to
plan actions at multiple temporal resolutions. In a similar fashion, it is also
demonstrated in [8] how variational inference can be used to learn both low-
level and high-level action policies from demonstrations. In [9], variational
inference with a mixture model as the variational distribution is used to find
approximate solutions to robot configurations satisfying multiple objectives.
Variational inference has also been used in some distributed settings. In [10],
they perform centralised training with decentralised execution for coopera-
tive deep multi-agent reinforcement learning, where a variational distribution
is used in the approximation of a shared global mutual information objective
common for all the agents. In [11], variational inference is used to learn a
latent variable model that infers the role and index assignments for a set of
demonstration trajectories, before these demonstrations are passed to another
algorithm that than learns the optimal policy for each agent in a coordinated
multi-Agent problem. Common for [10, 11] is that variational inference is
used to learn global parameters in a centralized fashion. In [12], a more de-
centralized approach is taken. Here, variational inference is used locally on
each robot in a swarm to estimates a Bayesian Hilbert Map. These locally
estimated maps are subsequently merged through a method called Confla-
tion. A method applicable due to an assumption about normal distributed
random variables. While others have successfully used variational inference
for robotics applications even in distributed settings, the use of a combina-
tion of stochastic variational inference and message-passing for decentralized
distributed robotic problems has been an untouched topic to date.

In the present effort, we unite these two major solution approaches in
variational inference to outline a flexible framework for solving probabilistic
robotics problems in a distributed way. The main contribution of this paper
is:

• A demonstration of the feasibility of combining stochastic variational
inference with message-passing for distributed robotic applications by
deriving an algorithm for multi-robot navigation with cooperative avoid-
ance under uncertainty. We validate this through simulations and a
real-world experiment with two robots.

In Section B.2, we formally present the basics of variational inference,
message-passing, and stochastic variational inference. In Section B.3, we in-
troduce the problem of and derive the algorithm for multi-robot navigation
with cooperative avoidance under uncertainty. In Section B.4, we present the
results of simulations and a real-world experiment. Finally, in Sections B.5
and B.6, we conclude upon the obtained results and discuss the potential use
cases of the proposed approach.

91

Paper B.

B.2 Variational Inference

Variational inference uses optimization to approximate one distribution p (z)
by another, simpler distribution q (z) called the variational distribution. No-
tice that, in general, p (z) does not need to be a conditional distribution,
p (z|x = x), as in Equation (B.2). However, for the sake of the topic in this
paper, we will focus on the conditional distribution case. Thus, we will con-
centrate on solving a variational inference problem on the form

q∗ (z) = arg min
q(z)∈Q

D (p (z|x = x)||q (z)), (B.3)

where D is a so-called divergence measure, measuring the similarity between
p and q, and Q is the family of variational distributions from which we want
to find our approximation. The notation D(x||y) denotes that we are dealing
with a divergence measure and that the order of arguments, x and y, mat-
ters. The family of variational distributions, Q, is usually selected as a com-
promise between how good an approximation one wants and computational
efficiency. The divergence measure, D, can have a rather large impact on
the approximation. However, experiments have shown that for the family of
α-divergences, subsuming the commonly used Kullback–Leibler divergence,
all choices will give similar results as long as the approximating family, Q, is
a good fit to the true distribution [13].

Sections B.2.1 and B.2.2 present two solution approaches commonly used
in variational inference, namely message-passing algorithms and stochastic
variational inference. Message-passing algorithms exploit the dependency
structure of a given variational inference problem to decompose the over-
all problem into a series of simpler variational inference sub-problems, that
can be solved in a distributed fashion [13]. Message-passing algorithms do
not give specific directions on how to solve these sub-problems, and thus
classically required tedious analytical derivations, that effectively limited the
usability of the method. On the other hand, modern stochastic variational in-
ference methods directly solve such variational inference problems utilizing
stochastic optimization that inherently permits the incorporation of modern
machine learning models, such as artificial neural networks, into the prob-
lem definition [14, 15]. As such, the fusion of these two approaches can
potentially result in a transparent and flexible framework in which complex
problems can be solved distributively, making it a perfect fit for a broad inter-
disciplinary research area such as robotics, inherently accommodating recent
trends in research fields such as deep learning, cloud robotics and multi-robot
systems.

92

B.2. Variational Inference

B.2.1 Message-Passing

The overall idea behind message-passing algorithms is to take a possible com-
plicated problem as defined by Equation (B.3) and break it down into a series
of more tractable problems that depend on the solution of the other prob-
lems [13, 16]. This way of solving a variational inference problem is known
as message-passing because the solution of each sub-problem can be inter-
preted as a message sent to the other sub-problems. This is achieved by
assuming that the model of our problem, p(z|x), naturally factorizes into a
product of probability distributions

p(z|x) = ∏
a∈A

p(a)(z|x), (B.4)

where superscript (a) is used to denote the index of the a’th factor. No-
tice that the factorization need not be unique and that each probability dis-
tribution, p(a)(z|x), can depend on any number of the variables of p(z|x).
The choice is up to us. Similarly, we can choose a variational distribution,
q (z), that factorizes into a similar form

q (z) = ∏
a∈A

q(a)(z). (B.5)

Now by defining the product of all other than the a’th factor of q (z) and
p(z|x), respectively as

q\a (z) = ∏
b∈A\a

q(b)(z), (B.6)

p\a (z|x) = ∏
b∈A\a

p(b)(z|x), (B.7)

and by further assuming that q\a∗ (z) ≈ p\a (z|x) is in fact a good approxima-
tion, it is possible to rewrite our full problem in Equation (B.3) into a series
of approximate sub-problems on the form

q(a)∗(z) ≈ arg min
q(a)∈Q(a)

D
[

p(a)(z|x)q\a (z)||q(a)(z)q\a (z)
]
. (B.8)

Assuming a sensible choice of factor families, Q(a), from which q(a) can be
chosen, the problem in Equation (B.8) can be more tractable than the original
problem, and by iterating over these coupled sub-problems as shown in Al-
gorithm B.1, we can obtain an approximate solution to our original problem.

93

Paper B.

1: Initialize q(a)∗(z) for all a ∈ A
2: repeat
3: Pick a factor a ∈ A
4: Solve Equation (B.8) to find q(a)∗(z)
5: until q(a)∗(z) converges for all a ∈ A

Algorithm B.1: The generic message-passing algorithm.

The approach is not guaranteed to converge for general problems. Fur-
thermore, Equation (B.8) might still be a hard problem to solve, thus pre-
viously in practice, the approach has been limited to problems for which
Equation (B.8) can be solved analytically such as fully discrete or Gaussian
problems [13]. However, besides breaking the original problem into a series
of more tractable sub-problems, this solution approach also gives a principle
way of solving the original problem in a distributed fashion, which can be
a huge benefit in robotics applications. Furthermore, depending on the de-
pendency structure of the problem, a sub-problem might only depend on the
solution of some of the other sub-problems, which can significantly reduce
the amount of communication needed due to sparsely connected networks.

B.2.2 Stochastic Variational Inference

Stochastic Variational Inference (SVI) reformulates the minimization prob-
lem of a variational inference problem, e.g., Equation (B.3) or Equation (B.8),
into a dual maximization problem with an objective, L, that is suited for
stochastic optimization. To use stochastic optimization, we need to assume
that the variational distribution, q, is parameterized by some parameters, φ.
We will denote the parameterized variational distribution by qφ. The steps
and assumptions taken to obtain this dual problem and the objective func-
tion, L, of the resulting maximization problem of course depends on whether
we have chosen the Kullback–Leibler divergence [17–19], α-divergences [20],
or another divergence measure [21]. However, the resulting maximization
problem ends up being on the form

φ∗ = arg max
φ

L
(

p (z, x = x), qφ (z)
)

︸ ︷︷ ︸
Ez∼qφ(z)

[l(z,φ)]

. (B.9)

This dual objective function, L, does not depend on the posterior, p (z|x = x),
but only the variational distribution, qφ (z) and the unconditional distribution
p (z, x = x) making the problem much easier to work with. Furthermore,
by, for example, utilizing the reparameterization trick or the REINFORCE-
gradient, it is possible to obtain an unbiased estimate of the gradient, ∇φL,

94

B.2. Variational Inference

of the dual objective L. Stochastic gradient ascent can then be used to itera-
tively optimize the objective through the updated equation

φl = φl−1 + ρl−1∇φLl
(

φl−1
)

, (B.10)

where superscript l is used to denote the l’th iteration. If the sequence of
learning rates, ρl−1, follows the Robbins–Monro conditions,

∞

∑
l=1

ρ(l) = ∞,
∞

∑
l=1

(
ρ(l)
)2

< ∞, (B.11)

then stochastic gradient ascent converges to a maximum of the objective func-
tion L, and Equation (B.9) is dual to the original minimization problem, thus
providing a solution to the original problem.

An unbiased gradient estimator with low variance is pivotal for this method,
and variance reduction methods are often necessary. However, a discussion
of this subject is outside the scope of this paper and can often be achieved au-
tomatically by probabilistic programming libraries/languages such as Pyro [14].
Besides providing the basic algorithms for stochastic variational inference,
such modern probabilistic programming languages also provide ways of
defining a wide variety of probability distributions and extensions to stochas-
tic variational inference that permits incorporating and learning of parame-
terized functions, such as neural networks, into the unconditional distribu-
tion p (z, x = x), thereby making the approach very versatile. The benefit of
solving variational inference problems with stochastic optimization is that
noisy estimates of the gradient are often relatively cheap to compute due to,
e.g., subsampling of data. Furthermore, the use of noisy gradient estimates
can cause algorithms to escape shallow local optima of complex objective
functions [19].

To summarize, if we want to distribute a complex inference problem, one
potential solution is to first find variational inference sub-problems via the
message-passing method, and then use stochastic variational inference to
solve these sub-problems. This procedure is illustrated in Figure B.1, and
the next section explains the usage of our method for a distributed multi-
robot system.

95

Paper B.

messages

messages

messages

messages

messages

messagesStochastic Variational Inference
Problem

Stochastic Variational Inference
Problem

Stochastic Variational Inference
Problem

Variational Inference Problem

Variational Inference Problem

Variational Inference Problem

Variational Inference Problem

General
Message-Passing

Our
Approach

Fig. B.1: We propose to solve complicated robotics problems explicitly, taking uncertainty into
account by utilising variational inference as seen in the single blue box. To distribute the nec-
essary computations, we propose to utilise the concept of message-passing algorithms to divide
the overall problem into a set of sub-problems that can potentially be sparsely connected, as il-
lustrated in the green box with blue boxes inside. To make these sub-problems computationally
tractable, we furthermore propose to solve them utilizing stochastic variational inference as seen
in the green box with yellow boxes inside.

B.3 Navigation with Cooperative Avoidance under
Uncertainty

Multi-robot collision avoidance is the problem of multiple robots navigating
a shared environment to fulfil their respective objective without colliding. It
is a problem that arises in many situations such as warehouse management
and transportation, collaborative material transfer and construction [22], en-
tertainment [23], search and rescue missions [24], and connected autonomous
vehicles [25]. Due to its importance in these and other applications, multi-
robot collision avoidance has been extensively studied in the literature. In
non-cooperative collision avoidance, each robot assumes that other robots
do not actively take actions to avoid collisions, i.e., a worst case scenario.
A common approach to non-cooperative collision avoidance is velocity obsta-
cles [26–28]. Velocity obstacles geometrically characterize the set of velocities
for the robot that result in a collision at some future time, assuming that the
other robots maintains the observed velocity. By only allowing robots to take
actions that keep them outside of this set, they avoid collisions. However,
non-cooperative approaches are conservative by nature as they neglect the
fact that other robots, in most cases, will also try to avoid collisions. Co-
operative collision avoidance alleviates this conservatism by assuming that
the responsibility of avoiding collisions is shared between the robots. Such
approaches include the extensions to velocity obstacles referred to as recip-
rocal collision avoidance [29–32], but also includes approaches relying on
centralized computations of actions, and decentralized approaches in which
robots communicate their intentions to each other. For both non- and co-

96

B.3. Navigation with Cooperative Avoidance under Uncertainty

operative collision avoidance, action decision is commonly based on a de-
terministic optimization/model predictive control formulations [28, 33–35].
However, optimal control [36], Lyapunov theory [37, 38], and even machine
learning approaches [39] have also been used.

Despite many claims of guaranteed safety in the literature, uncertainty
is often totally neglected, treated in an inapt way, or only to a limited ex-
tent. An inapt but common approach to handle uncertainties is to derive
deterministic algorithms assuming no uncertainties, and afterwards artifi-
cially increase the size of robots used in the algorithm by an arbitrary num-
ber, as in [28, 30]. For example, in [30], uncertainties are handled by arti-
ficially increasing the radii of robots with 33%. Despite being stated other-
wise in the paper, it is clear from the accompanying video material (https:
//youtu.be/s9lvMvFcuCE?t=144 Accessed on 23 Marts 2022) that this is not
sufficient to avoid contact between robots during a real-world experiment.
When uncertainty is treated in an appropriate way, it is usually only ex-
amined for a single source of uncertainty, e.g., position estimation error as
in [27, 35, 38], presumably due to the difficulties of other methods mentioned
in Section B.1, such as deriving analytical solutions or computing solutions
in real-time, which is only further complicated by the need for distributed
solutions.

Within this section, we illustrate how the approach outlined in Section B.2
can be utilized to solve the multi-robot collision avoidance problem in a co-
operative and distributed way that appropriately treats multiple sources of
uncertainty. Section B.3.1 introduces the problem dealt with in this paper,
in Section B.3.2 the algorithm is derived and explained, and finally, in Sec-
tion B.4, the result of simulations and a real-world experiment is presented,
validating the approach.

B.3.1 Problem Definition and Modelling

Consider N uni-cycle robots placed in the same environment. Each of them
have to navigate to a goal location, zg,n =

[
zx,g,n, zy,g,n

]T , by controlling their
translational and rotational velocities while communicating with the other
robots to avoid collision. We will consider the two-dimensional case where
the robots can obtain a mean and covariance estimate of their own current
pose at time t, zt

q,n =
[
zt

x,n, zt
y,n, zt

ψ,n

]T
, e.g., from a standard localization al-

gorithm such as Adaptive Monte Carlo Localization (AMCL) from the Nav2
ROS2 package [40]. Therefore, we model the current pose of the n’th robot
as the following normal distribution

p(zt
q,n) = N(µzt

q,n
, σzt

q,n
). (B.12)

We do not consider the dynamics of the robots but settle for a standard

97

https://youtu.be/s9lvMvFcuCE?t=144
https://youtu.be/s9lvMvFcuCE?t=144

Paper B.

discrete kinematic motion model of a uni-cycle robot given by

zτ+1
q,n = zτ

q,n +

cos
(

zτ
ψ,n

)
0

sin
(

zτ
ψ,n

)
0

0 1

 A

(
zτ

a,n
)

∆T

︸ ︷︷ ︸
f (zτ

q,n ,zτ
a,n)

, (B.13)

where zτ
a,n =

[
zτ

a1,n, zτ
a2,n

]T
, zτ

a1,n and zτ
a2,n are the translational and rota-

tional velocities of the n’th robot at time τ normalized to the range
[
0, 1
]
,

respectively, A is a linear scaling of the velocity to be in the range
[
zτ

a,n, zτ
a,n

]

corresponding to the minimum and maximum velocities of the n’th robot,
and ∆T is the temporal difference between τ and τ + 1. As Equation (B.13),
among other things, does not consider the dynamics of the motion, an esti-
mate based on this will yield an error. To model this error, we employ an
uniform distribution and define

p
(

zτ+1
q,n |zτ

q,n, zτ
a,n

)
= U

(
f
(

zτ
q,n, zτ

a,n

)
−M, f

(
zτ

q,n, zτ
a,n

)
+ M

)
, (B.14)

where M is a constant vector that captures the magnitude of the model error.
As Equation (B.13) is obtained through the use of the forward Euler method,
M could potentially be obtained as an upper bound by analysing the local
truncation error. However, this would probably be too conservative. Instead,
we consider M as a tuning parameter. The robots do not naturally have
any preference for selecting specific translational and rotational velocities,
thus, we also model the prior over the normalized velocities as a uniform
distribution. That is

p
(
zτ

a,n
)
= U (0, 1) . (B.15)

So far, we have modelled everything we need to describe the uncertainty
in the motion of each of the robots. Now, we turn to the problem of mod-
elling optimality and constraints. The only criteria of optimality that we will
consider are that the robots grow closer to their respective goal locations, zg,n.
To do so, we define the following simple reward function

r
(

zτ
q,n

)
=

√(
zg,n − zτ

p,n

)2
, (B.16)

where

zτ
p,n =

[
1 0 0
0 1 0

]
zτ

q,n.

98

B.3. Navigation with Cooperative Avoidance under Uncertainty

To include the optimality into the probabilistic model, we use a trick com-
monly utilized in probabilistic Reinforcement Learning and Control [41]. We
start by defining a set of binary optimality variables, xτ

O,n, for which xτ
O,n = 1

denotes that time step τ is optimal for the n’th robot, and conversely xτ
O,n = 0

denotes that time step τ is not optimal. We now define the distribution of
this optimality variable at time τ, xτ

O,n, conditioned on the pose of the robot
at time τ, zτ

q,n, as

p
(

xτ
O,n|zτ

q,n

)
= Bernoulli

(
e−c1·r(zτ

q,n)
)

, (B.17)

where c1 is a tuning constant. Notice that, as r
(

zτ
q,n

)
≥ 0, it follows that

e−c1·r(zτ
q,n) ∈

[
0, 1
]
. The intuition behind Equation (B.17) is that the state with

the highest reward has the highest probability and states with lower reward
have exponentially lower probability.

As stated, the robots should avoid colliding with each other. Therefore,
we would like to impose a constraint on the minimum distance, dmin, that the
n’th and m’tn robots should keep. To do so we define

c
(

zτ
q,n, zτ

q,m

)
=

{
0 ; dτ

n,m ≤ dmin

dτ
n,m − dmin ; dτ

n,m > dmin
, (B.18)

where dτ
n,m =

√(
zτ

p,n − zτ
p,m

)2
. Similarly, as we modeled optimality we can

now also define binary constraint variables, xτ
C,n,m, for which xτ

C,n,m = 1 de-
notes that the minimum distance constraint between the n’th and m’tn robot
is violated at time τ, and model the constraint by the distribution given by

p
(

xτ
C,n,m|zτ

q,n, zτ
q,m

)
= Bernoulli

(
e−c2·c(zτ

q,n ,zτ
q,m)
)

, (B.19)

where c2 is a tuning constant. Again, when the distance between two robots
becomes larger, it has an exponentially lower probability of violating the dis-
tance constraint. With the above variable definitions, we can now formulate
a solution to the navigation problem at time t as the following conditional
probability distribution

p
(
zt

a,1, . . . , zt
a,N |Xt

O = 1, Xt
C = 0

)
=
∫

Zt\{zt
a,1,...,zt

a,N}
p
(
Zt|Xt

O = 1, Xt
C = 0

)
,

(B.20)

99

Paper B.

where

Xt
O =

{
Xt

O,1, . . . , Xt
O,N

}
,

Xt
O,n =

{
xt+1

O,n , . . . , xk·t
O,n

}
,

Zt =
{

Zt
1, . . . , Zt

N
}

,

Zt
n =

{
zt

q,n, zt
a,n, zt+1

q,n . . . , zk·t−1
a,n , zk·t

q,n

}
,

Xt
C =

{
xt+1

C,1,2, . . . , xt+1
C,N−1,N , . . . , xk·t

C,1,2, . . . , xk·t
C,N−1,N

}
.

To capitalize, Equation (B.20) states that we are interested in finding the
distribution over the next action, zt

a,n, that each robot should take condi-
tioned on that it should be optimal, specified by the "observations" xt

O = 1,
and should not result in violation of the constraints, specified by the "obser-
vations" xt

C = 0. Furthermore, it states that we can obtain this distribution
as the marginal to the conditional distribution on the right-hand side of the
equal sign. If we can evaluate this problem efficiently in real-time, it will act
as probabilistic model predictive control, taking the next k time-steps into ac-
count. However, as discussed in the introduction, solving such a problem is,
in general, intractable. Therefore, the next section will derive an approximate
solution based on message-passing and Stochastic Variational Inference.

B.3.2 Algorithm Derivation

Instead of solving Equation (B.20), in this section we will show how to find an
approximate solution based on variational inference. The derived algorithm
is shown in Algorithm B.2. At each time step, t, we want to approximate
Equation (B.20) by solving the following problem

min
q(Zt)

D
[
p
(
Zt|Xt

O = 1, Xt
C = 0

)
||q
(
Zt)] , (B.21)

while making sure that it is easy to obtain the marginals for the variables
of interest, zt

a,1, . . . , zt
a,N , from this approximation. To utilize the idea of

message-passing, we need to find a natural factorization of the model of
the problem. By applying the definition of conditional probability together
with the chain rule, and by considering the dependency structure of the
model, the conditional probability distribution on the right-hand side of
Equation (B.20) can be rewritten as

p
(
Zt|Xt

O = 1, Xt
C = 0

)
=

p
(
Xt

C = 0|Zt)

p
(
Xt

C = 0
) ∏

n∈[1,N]

p
(
Zt

n|Xt
O,n = 1

)
. (B.22)

From Equation (B.22), it is seen that the model naturally factorizes into a
fraction related to the constraints and N factors related to the pose, actions,

100

B.3. Navigation with Cooperative Avoidance under Uncertainty

and optimality variables of each of the N robots. Thus, it is natural to choose
a variational distribution that factorizes as

q
(
Zt) = ∏

n∈[1,N]

q
(
Zt

n
)

. (B.23)

Now considering Equation (B.8) we can distribute the computations by
letting the n’th robot solve a problem on the form

q∗
(
Zt

n
)
= arg min

q(Zt
n)

D

p(Xt
C=0|Zt)

p(Xt
C=0)

p
(

Zt
n|Xt

O,n = 1
)

·∏m∈[1,N]\n q
(
Zt

m
)

∣∣∣∣∣∣

∣∣∣∣∣∣ ∏
n∈[1,N]

q
(
Zt

n
)

 , (B.24)

and broadcast the result, q∗
(
Zt

n
)
, to the rest of the vehicles. This could be

repeated until convergence, or simply until a solution for the next time step,
t + 1, has to be found. However, Equation (B.24) still includes the unknown
term p

(
Xt

C = 0
)
. To overcome this hurdle, we utilize stochastic variational

inference, for which we can work with the unconditional distribution given
by Equation (B.25) instead.

p̃(n)
(
Zt, Xt

O,n = 1, Xt
C = 0

)
= (B.25)

p
(
Xt

C = 0|Zt) p
(
Xt

O,n = 1|Zt
n
)

p
(
Zt

n
)

∏
m∈[1,N]\n

q
(
Zt

m
)

,

where

p
(
Xt

C = 0|Zt) =
kt

∏
τ=t+1

N−1

∏
n=1

N

∏
m=n+1

p
(

xτ
C,n,m = 0|zτ

q,n, zτ
q,m

)
,

p
(
Xt

O,n = 1|Zt
n
)
=

kt

∏
τ=t+1

p
(

xτ
O,n = 1|zτ

q,n

)
,

p
(
Zt

n
)
= p(zt

q,n)
kt−1

∏
τ=t

p
(

zτ+1
q,n |zτ

q,n, zτ
a,n

)
p(zτ

a,n). (B.26)

101

Paper B.

1: On each of the n robots
2: repeat
3: t← t + 1
4: Get µzt

q,n
, σzt

q,n
from localization algorithm

5: Initialize φt,∗
n =

{
αt

n, βt
n, . . . , αkt−1

n , βkt−1
n

}

6: repeat
7: if messages available for m ∈ [1, N]\n then
8: Store µzt

q,m
, σzt

q,m
and φt,∗

m

9: end if
10: Solve Equation (B.29) to find φt,∗

n
11: Broadcast µzt

q,n
, σzt

q,n
and φt,∗

n

12: until φt,∗
n converges or time is up.

13: until Suitable stop criteria; e.g., goal reached.

Algorithm B.2: Navigation with Cooperative Avoidance under Uncertainty

All terms in Equation (B.25) except for the variational distribution, q
(
Zt

m
)
,

were defined in Section B.3.1. To choose an appropriate variational distribu-
tion, q

(
Zt

m
)
, consider Equation (B.26) describing the motion of the robot.

The only distribution in Equation (B.26) that can actually be directly con-
trolled is p(zτ

a,n), as p(zt
q,n) is the current best estimate of the n’th robots’

current location provided by a localization algorithm, and p
(

zτ+1
q,n |zτ

q,n, zτ
a,n

)

is derived from the kinematics of the robots. Therefore, an appropriate choice
of variational distribution is

q
(
Zt

n
)
= p(zt

q,n)
kt−1

∏
τ=t

p
(

zτ+1
q,n |zτ

q,n, zτ
a,n

)
q(zτ

a,n), (B.27)

leaving only the distribution q(zτ
a,n) left to be chosen. q(zτ

a,n) has a direct
connection to p

(
zt

a,n
)

in Equation (B.15), and thus it is natural to choose a
distribution that shares some of the same properties such as the support.
Therefore, we have chosen

q(zτ
a,n) = Beta (ατ

n, βτ
n) , (B.28)

which has the exact same support as and even subsumes p
(
zt

a,n
)
. To summa-

rize, at each time-step, t, each robot, n, has to iteratively solve a sub-problem
through stochastic variational inference represented by

arg max
φt

n

L
(

p̃(n)
(
Zt, Xt

O,n = 1, Xt
C = 0

)
, q
(
Zt)) , (B.29)

where φt
n =

{
αt

n, βt
n, . . . , αkt−1

n , βkt−1
n

}
, and broadcast the result φt,∗

n to the
other vehicles as illustrated in Figure B.2. In practice, to ease the compu-
tational burden, some of the terms can be removed from Equation (B.29),

102

B.4. Validation

as only the evaluation of the constraints involving the n’th robot is non-
constant. Overall we have divided the original approximation problem in
Equation (B.21) into a series of less computationally demanding sub-problems
that can be solved distributively by each of the robots. The next section
presents a simulation study and a real world experiment utilizing this algo-
rithm to make multiple robots safely navigate the same environment, and we
will refer to it as "Stochastic Variational Message-passing for Multi-robot
Navigation" (SVMMN).

arg max
φt

1

L
(

p̃(1)
(
Zt, Xt

O,1 = 1, Xt
C = 0

)
, q
(
Zt)) arg max

φt
2

L
(

p̃(2)
(
Zt, Xt

O,2 = 1, Xt
C = 0

)
, q
(
Zt))

µzt
p,2

, σzt
p,2

, φt,∗
2

µzt
p,1

, σzt
p,1

, φt,∗
1

p(zt
p,1)

p(zt
p,2)

zg,1zg,2

q∗
(
Zt

n
)

q∗
(

zt+1
p,n

) q∗
(

zt+2
p,n

)
q∗
(

zt+3
p,n

)

Fig. B.2: The derived algorithm for cooperative navigation under uncertainty of multiple uni-
cycle type robots works by letting each robot solve a sub-problem with stochastic variational
inference and broadcast the solution to the other robots. Based on the broadcasted solution,
a robot implicitly derives a distribution over the other robot’s future positions, q∗

(
zτ

p,n

)
; τ > t,

and uses the information in its sub-problem.

B.4 Validation

To validate SVMMN described in Section B.3, we performed both a simu-
lation study and a real-world experiment, described in Sections B.4.1 and
B.4.2, respectively. In both cases, the models described in Section B.3.1 were
implemented utilizing the probabilistic programming language Pyro [14],
and Pyro’s build-in stochastic variational inference solver was used. For solver
options, we chose "Trace_ELBO", thus implicitly using the Kullback–Leibler
divergence, and the commonly used "Adam" stochastic optimization solver
with 10 epochs/iterations per sent message.

B.4.1 Simulations

To evaluate the stochastic properties of SVMMN, we implemented a sim-
ple simulation environment for simulating N uni-cycle robots in parallel and
in an asynchronous fashion. For ease of future comparison of algorithms,
the environment was created according to the OpenAI Gym API [42]. Cur-

103

Paper B.

rently, the environment implements multiple scenarios commonly used to
evaluate multi-robot collision avoidance algorithms: the antipodal goal cir-
cle scenario with both evenly distributed initialisation and with random ini-
tialisation used in, e.g., [29, 32, 34, 37], and the antipodal circle swapping
scenario used in, e.g., [27–35, 38, 39]. Both scenarios are illustrated in Fig-
ure B.3. For each of the robots in these scenarios, two goal zones with a
radius, Rgoal , are generated evenly on the circumference of a circle with ra-
dius, Renv. When the simulation starts, each of the robots are initialized with
a position in the centre of one of their respective goal zones. The goal of the
robots is then to drive either one time or as many times as possible between
the two goal zones without colliding with the robots during the simulated
time. While both scenarios cause unnaturally crowded environments, the an-
tipodal circle swapping scenario is specifically designed to provoke reciprocal
dances [43] and deadlocks, whereas running the antipodal goal circle scenario
with random initialisation for longer durations seems to cause more natural
and diverse interactions. Results of simulations for both of these scenarios
are summarized in the following sections. The environment, together with
the code, data, and an accompanying video for each of the simulations, are
available at [44]. Table B.1 in Appendix B summarizes the parameters cho-
sen for the model, environment, and simulations. During the simulations,
the real-time factor was adjusted to allow the robots to send approximately
3–4 messages per time-step, imitating the capabilities of the hardware used
in the real world experiment.

Rgoal

Renv

goal zones

robots

(a)

Renv

(b)

Fig. B.3: Illustration of the simulated environment with N = 4. (a) Shows the antipodal goal cir-
cle scenario and (b) shows the antipodal circle swapping scenario. Two goal zones are generated
for each of the robots, and the robot is initialized in the center of one of these goal zones.

104

B.4. Validation

The Antipodal Goal Circle Scenario

A series of 50 simulations of the antipodal goal circle scenario with 12 robots,
and a simulated duration of 300 s were conducted. The simulations were
performed with robots having physical properties similar to the robots used
in the real world experiment. To quantify the ability of SVMMN to avoid
collisions, we utilize the minimum separating distance (MSD) metric also
used in [45]. We calculate the MSD of the i’th simulation as the minimum
distance between any of the robots during the whole simulation:

MSD(i) = min
t∈[0,300]

SSD(t, i),

where

SSD(t, i) = min
n ∈ [1, N − 1]
m ∈ [n + 1, N]

Dist
(

St,i
n , St,i

m

)
(B.30)

= min
n ∈ [1, N − 1]
m ∈ [n + 1, N]

||zt,i
p,n − zt,i

p,m|| − Rn − Rm, (B.31)

St,i
n is the geometrical set describing the shape and position of the n’th

robots at time t, zt,i
p,n is the position of the n’th robot at time t in the i’th

simulation, Ri
n is the radius of the n’th robot, and the last equality in Equa-

tion (B.31) assumes that a disk can describe the robots. The MSD metric
has the natural interpretation that a value strictly greater than 0 implies no
collisions. Figure B.4 shows the smallest separating distance (SSD) between
any of the robots during all of the simulation, together with the mean of the
MSD of the 50 simulations, and the smallest MSD recorded in any of the
simulations. As seen from Figure B.4, the MSD is strictly greater than 0 at
any time, thus 0 collisions occurred. Figure B.5 shows how many times the
robots reached a goal zone during the simulations. These plots indicate that
no deadlock occurred during the simulations. From these simulations, it can
be concluded that SVMMN successfully manages to guide the robots towards
their goals while still avoiding collisions.

105

Paper B.

0 50 100 150 200 250 300
0

0.2

0.4

Time [s]

D
is

ta
nc

e
[m

]

MSD Collision MSD Mean MSD Minimum

Fig. B.4: The smallest separating distance between any of the 12 robots during each of the
50 simulations.

0 1 2 3 4 5 6 7 8
0

100

200

Number of Times a Goal was Reached [1]

C
ou

nt
[1

]

Fig. B.5: Histogram of the number of times the robots reached their goal zones during the sim-
ulations.

The Antipodal Circle Swapping Scenario

A series of 10 simulations of the antipodal goal circle scenario with 4, 8,
16, and 32 robots were conducted. The simulations were stopped when all
robots had reached their first goal. To make the results comparable with
the B-UAVC algorithm [35], we adjusted the simulated radius of the robots
together with the noise parameters to fit those used for simulations in [35].
Figure B.6 presents the results of the simulation. As we do not use the same
maximum velocities as in [35], we have normalized the travel distance and
the travel time, with the minimum possible travel distance and time, respec-
tively. As indicated by the MSD in Figure B.6 zero collisions occurred during
these simulations as well. Comparing SVMMN to B-UAVC, SVMMN gen-
erally seems to take a shorter path. For a small number of robots in the
environment, B-UAVC has the smallest travel time despite SVMMN taking
the shortest path. Data from the simulations reveal that the maximum trans-
lational velocity reference generated by SVMMN during the simulations with
two robots was only 85.9% of the possible translational velocity. This is de-
spite there being nothing to avoid most of the time, indicating that our ap-
proach generally picks velocities conservatively. This conservatism could be
explained by the use of the Kullback–Leibler divergence, which tends to make
the variational distribution, q(z), cover a larger part of the true distribution,

106

B.4. Validation

p(z|x), rather then the most probable mode [13]. However, for a large number
of robots, SVMMN still seems superior. Thus, from these simulations it can
be concluded that SVMMN performs as well as, if not better than, B-UAVC
specifically made for the problem of multi-robot collision avoidance.

2 4 8 16 32
1

1.2
1.4
1.6
1.8

Number of Robots [1]

N
TD

[m
]

2 4 8 16 32
1

2

3

Number of Robots [1]

N
TT

[s
]

2 4 8 16 32
0

0.2

0.4

0.6

Number of Robots [1]

M
SD

[m
]

Theoretical Minimum B-UAVC SVMMN

Fig. B.6: Comparison of our algorithm called, "Stochastic Variational Message-passing for Multi-
robot Navigation" (SVMMN), based on the combination of message-passing and stochastic vari-
ational inference, with B-UAVC [35] made specifically for the problem of multi-robot collision
avoidance. The left, middle, and right plot shows the mean and standard deviations of the nor-
malized travel distance (NTD), the normalized travel time (NTT), and the minimum separating
distance (MSD) during the simulations, respectively. Notice that the data for B-UAVC are man-
ually obtained from Figure 5 in [35].

B.4.2 Real-Wold Experiment

The real-wold experiment was performed with two TurtleBot3 Burger robots,
each equipped with the standard lidar and an Intel NUC10FNK as the on-
board processing unit. The parameters chosen for the model are summarized
in Table B.1 in Appendix B. To facilitate communication between the robots
as needed for message-passing as described in Section B.3.2, the meta op-
erating system ROS2 was utilized. As the communication medium, 5 Ghz
Wi-Fi provided by an Asus rt-ax92u router was used. As in the simulations,
the robots were programmed to utilize alternating goal locations, zg,n, each
time they reached within 20cm of their current goal locations. To provide the
estimate of the robots current pose distribution, p(zt

q,n), we utilized AMCL
from the Nav2 ROS2 package [40]. The implemented algorithm is available
at [46].

The results of the experiments are shown in Figures B.7–B.9. On average,
the robots managed to solve their sub-problem and sent a solution to the
other robot 3.01 times per time-step. Figure B.7 shows the full path taken by
the robots during the 388 s long experiment. Robot 0 and Robot 1 travelled
approximately 37.5 m and 34.8 m, respectively, while reaching their goals 17
times each giving plenty of opportunities for collisions.

Figure B.8 shows the distance between the robots and their respective
goal together with the SSD between the two robots themselves during the

107

Paper B.

experiments, and the MSD for the whole test. In this test, the MSD was 7.8
cm. From the plot, it is clear to see that the robots manage to reach their goal
several times, while keeping a distance larger than dmin from each other.

Figure B.9 illustrates in more detail how SVMMN behaves in one of the
situations where the robots were close to each other. To avoid a collision,
at time t = 33 robot 2 waits for robot 1 to pass. At the time t = 34, robot
1 has passed and robot 2 begins planning a trajectory towards its goal and
drives towards the goal at t > 34. At time t = 39, robot 1 has reached one
of its goals and starts planning a trajectory towards its other goal. However,
for t > 39 robot 2 is blocking robots 1’s path, and therefore robot 1 does not
drive that far.

Overall, the experiment illustrates how SVMMN successfully manages to
make the robots drive to their goals while avoiding collisions despite the un-
certainty in the localization from AMCL and uncertainty in the future move-
ment of the other vehicle.

0 0.5 1 1.5 2

0

0.5

1

1.5

2

2.5

x [m]

y
[m

]

||zg,1 − o|| < 0.2
||zg,2 − o|| < 0.2
µzτ

p,1
; τ ∈ [0, 388]

µz0
p,1

µzτ
p,2

; τ ∈ [0, 388]
µz0

p,2

Fig. B.7: Traces of the two robots mean positions, µzt
p,n

, during the experiment, together with the
mean of their initial positions distribution, µz0

p,n
, and goal areas defined as a circle with a radius

of 20 cm around their goal locations, zg,n. The plots show how the robots sometimes deviate
from the most direct path between their goal locations to avoid collision with each other.

108

B.4. Validation

0 50 100 150 200 250 300 350
0

1

2

Time [s]

D
is

ta
nc

e
[m

]
||µzt

p,0
− zt

g,0||
||µzt

p,1
− zt

g,1||
SSD
MSD
Collision

Fig. B.8: Each of the robots’ distances to their respective current goals, together with the dis-
tance between the two robots for the first 100 s of the experiment, and the minimum distance
conservatively calculated as two times the length of the TurtleBot3 Burger platform, 2× 138 mm.
The jumps in the plots of the robots’ distances to their goals are due to change in goal location.
The plots show that the robots manage to reach their goal several times without violating a safe
distance, dmin, from each other.

0.5 1

0.5

1

t = 33

0.5 1

0.5

1

t = 34

0.5 1

0.5

1

t = 35

0.5 1

0.5

1

t = 36

0.5 1

0.5

1

t = 37

0.5 1

0.5

1

t = 38

0.5 1

0.5

1

t = 39

0.5 1

0.5

1

t = 40

0.5 1

0.5

1

t = 41

0.5 1

0.5

1

t = 42

0.5 1

0.5

1

t = 43

0.5 1

0.5

1

t = 44

p(ztp,1)/q
∗(ztp,1); τ > t p(ztp,2)/q

∗(ztp,2); τ > t µzτ
p,n

; τ > t µzt
p,n

µzτ
p,1

; τ < t µzτ
p,2

; τ < t

Fig. B.9: Kernel density estimate plots of the robots final predicted positions, zτ
p,n; τ > t, together

with kernel density estimate plot of the robots initial positions, z0
p,n, the mean of the samples

used to generate each plot, µzτ
p,n

; τ > t and µzτ
p,n

, and finally the traces of their traversed paths,
µzτ

p,n
; τ < t, for each t ∈ [33, 45]. The plots clearly illustrate how the robots manage to negotiate

trajectories that avoid a collision while taking the relevant uncertainties into account.

109

Paper B.

B.5 Conclusions

In this paper, we have discussed how variational inference can be a tractable
way of solving robotics problems with non-neglectable uncertainties. More
specifically, we have shown how two main solution approaches to variational
inference, message-passing algorithms, and stochastic variational inference,
relate. We outline how these two approaches can be potentially combined to
flexibly solve problems with uncertainty in a distributed manner. By deriv-
ing and implementing an algorithm for navigation of multiple robots with
cooperative avoidance under uncertainty, we furthermore demonstrate the
feasibility of the proposed approach. Through simulations, we show that the
derived algorithm works with multiple robots, and performs as well as, if not
better than, the state of the art algorithm B-UAVC. Finally, we demonstrate
that the derived algorithm works in a real-world experiment with two mobile
robots.

B.6 Discussion

Many algorithms in robotics are already based on and derived directly from
probabilistic models. The wide set of possible models that can be employed
in stochastic variational inference should make it straightforward to apply
the approach proposed in this paper to many of these probabilistic models,
thereby resulting in new and interesting algorithms. Furthermore, due to the
separation into sub-problems, the approach could potentially lead the way
for offloading more computations to the cloud. As variational inference can
incorporate neural networks, the approach also allows for the combination of
classical modelling based methods and modern purely learning-based meth-
ods.

Author Contributions: Conceptualization, M.D., R.P., and T.B.; Methodol-
ogy, M.D.; Software, M.D.; Validation, M.D.; Formal Analysis, M.D.; Inves-
tigation, M.D.; Writing—Original Draft, M.D.; Writing—Review & Editing,
M.D., R.P., and T.B.; Visualization, M.D.; and Supervision, R.P., and T.B. All
authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

110

References

Data Availability Statement: The software code used for the simulations
and the experiment is available at [44, 46], respectively. Ref. [44] also con-
tains all the data recorded during the simulations together with an .mp4 file
animation of each of the simulations.

Conflicts of Interest: The authors declare no conflict of interest.

References

[1] S. Thrun, W. Burgard, and D. Fox, Probabilistic robotics., ser. Intelligent
robotics and autonomous agents. MIT Press, 2005.

[2] C. Zhang, J. Bütepage, H. Kjellström, and S. Mandt, “Advances in varia-
tional inference,” IEEE Transactions on Pattern Analysis and Machine Intel-
ligence, vol. 41, no. 8, pp. 2008–2026, 2019, article in a periodical.

[3] R. E. Kalman, “A new approach to linear filtering and prediction prob-
lems,” Transactions of the ASME–Journal of Basic Engineering, vol. 82, no.
Series D, pp. 35–45, 1960.

[4] M. Pfingsthorn and A. Birk, “Simultaneous localization and mapping
with multimodal probability distributions,” The International Journal of
Robotics Research, vol. 32, no. 2, pp. 143–171, 2013. [Online]. Available:
https://doi.org/10.1177/0278364912461540

[5] M. Montemerlo, S. Thrun, D. Koller, and B. Wegbreit, “Fastslam: A fac-
tored solution to the simultaneous localization and mapping problem,”
in Eighteenth National Conference on Artificial Intelligence. USA: American
Association for Artificial Intelligence, 2002, p. 593–598.

[6] A. Mirchev, B. Kayalibay, M. Soelch, P. van der Smagt, and J. Bayer,
“Approximate bayesian inference in spatial environments,” 2019.

[7] K. Fang, Y. Zhu, A. Garg, S. Savarese, and L. Fei-Fei, “Dynamics learning
with cascaded variational inference for multi-step manipulation,” in
Proceedings of the Conference on Robot Learning, ser. Proceedings of
Machine Learning Research, L. P. Kaelbling, D. Kragic, and K. Sugiura,
Eds., vol. 100. PMLR, 30 Oct–01 Nov 2020, pp. 42–52. [Online].
Available: http://proceedings.mlr.press/v100/fang20a.html

[8] T. Shankar and A. Gupta, “Learning robot skills with temporal
variational inference,” in Proceedings of the 37th International Conference
on Machine Learning, ser. Proceedings of Machine Learning Research,
H. D. III and A. Singh, Eds., vol. 119. PMLR, 13–18 Jul 2020,

111

https://doi.org/10.1177/0278364912461540
http://proceedings.mlr.press/v100/fang20a.html

References

pp. 8624–8633. [Online]. Available: http://proceedings.mlr.press/v119/
shankar20b.html

[9] E. Pignat, T. Lembono, and S. Calinon, “Variational inference with mix-
ture model approximation for applications in robotics,” in 2020 IEEE In-
ternational Conference on Robotics and Automation (ICRA), 2020, pp. 3395–
3401.

[10] A. Mahajan, T. Rashid, M. Samvelyan, and S. Whiteson, “Maven:
Multi-agent variational exploration,” in Advances in Neural Information
Processing Systems, H. Wallach, H. Larochelle, A. Beygelzimer,
F. d'Alché-Buc, E. Fox, and R. Garnett, Eds., vol. 32. Curran Associates,
Inc., 2019. [Online]. Available: https://proceedings.neurips.cc/paper/
2019/file/f816dc0acface7498e10496222e9db10-Paper.pdf

[11] H. M. Le, Y. Yue, P. Carr, and P. Lucey, “Coordinated multi-agent
imitation learning,” in Proceedings of the 34th International Conference
on Machine Learning, ser. Proceedings of Machine Learning Research,
D. Precup and Y. W. Teh, Eds., vol. 70. PMLR, 06–11 Aug 2017,
pp. 1995–2003. [Online]. Available: https://proceedings.mlr.press/v70/
le17a.html

[12] W. Zhi, L. Ott, R. Senanayake, and F. Ramos, “Continuous occupancy
map fusion with fast bayesian hilbert maps,” in 2019 International Con-
ference on Robotics and Automation (ICRA), 2019, pp. 4111–4117.

[13] T. Minka, “Divergence measures and message
passing,” https://www.microsoft.com/en-us/research/publication/
divergence-measures-and-message-passing/, Microsoft, Tech.
Rep. MSR-TR-2005-173, Jan. 2005. [Online]. Avail-
able: https://www.microsoft.com/en-us/research/publication/
divergence-measures-and-message-passing/

[14] E. Bingham, J. P. Chen, M. Jankowiak, F. Obermeyer, N. Pradhan,
T. Karaletsos, R. Singh, P. A. Szerlip, P. Horsfall, and N. D. Goodman,
“Pyro: Deep universal probabilistic programming,” J. Mach. Learn. Res.,
vol. 20, pp. 28:1–28:6, 2019, article in a periodical. [Online]. Available:
http://jmlr.org/papers/v20/18-403.html

[15] R. G. Krishnan, U. Shalit, and D. Sontag, “Structured inference networks
for nonlinear state space models,” in Proceedings of the Thirty-First AAAI
Conference on Artificial Intelligence, ser. AAAI’17. AAAI Press, 2017, p.
2101–2109.

[16] J. Winn and C. M. Bishop, “Variational message passing,” Journal of
Machine Learning Research, vol. 6, no. 23, pp. 661–694, 2005. [Online].
Available: http://jmlr.org/papers/v6/winn05a.html

112

http://proceedings.mlr.press/v119/shankar20b.html
http://proceedings.mlr.press/v119/shankar20b.html
https://proceedings.neurips.cc/paper/2019/file/f816dc0acface7498e10496222e9db10-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/f816dc0acface7498e10496222e9db10-Paper.pdf
https://proceedings.mlr.press/v70/le17a.html
https://proceedings.mlr.press/v70/le17a.html
https://www.microsoft.com/en-us/research/publication/divergence-measures-and-message-passing/
https://www.microsoft.com/en-us/research/publication/divergence-measures-and-message-passing/
https://www.microsoft.com/en-us/research/publication/divergence-measures-and-message-passing/
https://www.microsoft.com/en-us/research/publication/divergence-measures-and-message-passing/
http://jmlr.org/papers/v20/18-403.html
http://jmlr.org/papers/v6/winn05a.html

References

[17] R. Ranganath, S. Gerrish, and D. Blei, “Black Box Variational Inference,”
in Proceedings of the Seventeenth International Conference on Artificial
Intelligence and Statistics, ser. Proceedings of Machine Learning Research,
S. Kaski and J. Corander, Eds., vol. 33. Reykjavik, Iceland: PMLR,
Apr. 2014, pp. 814–822, article in proceedings. [Online]. Available:
http://proceedings.mlr.press/v33/ranganath14.html

[18] A. Kucukelbir, D. Tran, R. Ranganath, A. Gelman, and D. M. Blei,
“Automatic differentiation variational inference,” Journal of Machine
Learning Research, vol. 18, no. 14, pp. 1–45, 2017, article in a periodical.
[Online]. Available: http://jmlr.org/papers/v18/16-107.html

[19] M. D. Hoffman, D. M. Blei, C. Wang, and J. Paisley, “Stochastic
variational inference,” Journal of Machine Learning Research, vol. 14,
no. 4, pp. 1303–1347, 2013, article in a periodical. [Online]. Available:
http://jmlr.org/papers/v14/hoffman13a.html

[20] Y. Li and R. E. Turner, “Rényi divergence variational inference,”
in Advances in Neural Information Processing Systems, D. Lee,
M. Sugiyama, U. Luxburg, I. Guyon, and R. Garnett, Eds., vol. 29.
Curran Associates, Inc., 2016, pp. 1–9, article in proceedings.
[Online]. Available: https://proceedings.neurips.cc/paper/2016/file/
7750ca3559e5b8e1f44210283368fc16-Paper.pdf

[21] D. Wang, H. Liu, and Q. Liu, “Variational inference with tail-adaptive
f-divergence,” in Advances in Neural Information Processing Systems,
S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi,
and R. Garnett, Eds., vol. 31. Curran Associates, Inc., 2018.
[Online]. Available: https://proceedings.neurips.cc/paper/2018/file/
1cd138d0499a68f4bb72bee04bbec2d7-Paper.pdf

[22] F. Augugliaro, S. Lupashin, M. Hamer, C. Male, M. Hehn, M. W. Mueller,
J. S. Willmann, F. Gramazio, M. Kohler, and R. D’Andrea, “The flight as-
sembled architecture installation: Cooperative construction with flying
machines,” IEEE Control Systems Magazine, vol. 34, no. 4, pp. 46–64, 2014.

[23] F. Augugliaro, A. P. Schoellig, and R. D’Andrea, “Dance of the flying
machines: Methods for designing and executing an aerial dance chore-
ography,” IEEE Robotics Automation Magazine, vol. 20, no. 4, pp. 96–104,
2013.

[24] J. P. Queralta, J. Taipalmaa, B. Can Pullinen, V. K. Sarker, T. Nguyen Gia,
H. Tenhunen, M. Gabbouj, J. Raitoharju, and T. Westerlund, “Collabora-
tive multi-robot search and rescue: Planning, coordination, perception,
and active vision,” IEEE Access, vol. 8, pp. 191 617–191 643, 2020.

113

http://proceedings.mlr.press/v33/ranganath14.html
http://jmlr.org/papers/v18/16-107.html
http://jmlr.org/papers/v14/hoffman13a.html
https://proceedings.neurips.cc/paper/2016/file/7750ca3559e5b8e1f44210283368fc16-Paper.pdf
https://proceedings.neurips.cc/paper/2016/file/7750ca3559e5b8e1f44210283368fc16-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/1cd138d0499a68f4bb72bee04bbec2d7-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/1cd138d0499a68f4bb72bee04bbec2d7-Paper.pdf

References

[25] S. W. Loke, “Cooperative automated vehicles: A review of opportunities
and challenges in socially intelligent vehicles beyond networking,” IEEE
Transactions on Intelligent Vehicles, vol. 4, no. 4, pp. 509–518, 2019.

[26] P. Fiorini and Z. Shiller, “Motion planning in dynamic environments
using velocity obstacles,” The International Journal of Robotics Research,
vol. 17, no. 7, pp. 760–772, 1998. [Online]. Available: https:
//doi.org/10.1177/027836499801700706

[27] D. Claes, D. Hennes, K. Tuyls, and W. Meeussen, “Collision avoidance
under bounded localization uncertainty,” in 2012 IEEE/RSJ International
Conference on Intelligent Robots and Systems, 2012, pp. 1192–1198.

[28] J. Alonso-Mora, M. Rufli, R. Siegwart, and P. Beardsley, “Collision avoid-
ance for multiple agents with joint utility maximization,” in 2013 IEEE
International Conference on Robotics and Automation, 2013, pp. 2833–2838.

[29] J. Snape, J. van den Berg, S. J. Guy, and D. Manocha, “Smooth and
collision-free navigation for multiple robots under differential-drive con-
straints,” in 2010 IEEE/RSJ International Conference on Intelligent Robots
and Systems, 2010, pp. 4584–4589.

[30] J. Alonso-Mora, A. Breitenmoser, M. Rufli, P. Beardsley, and R. Siegwart,
Optimal Reciprocal Collision Avoidance for Multiple Non-Holonomic Robots.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2013, pp. 203–216.
[Online]. Available: https://doi.org/10.1007/978-3-642-32723-0_15

[31] M. Rufli, J. Alonso-Mora, and R. Siegwart, “Reciprocal collision avoid-
ance with motion continuity constraints,” IEEE Transactions on Robotics,
vol. 29, no. 4, pp. 899–912, 2013.

[32] D. Bareiss and J. van den Berg, “Generalized reciprocal collision
avoidance,” The International Journal of Robotics Research, vol. 34, no. 12,
pp. 1501–1514, 2015. [Online]. Available: https://doi.org/10.1177/
0278364915576234

[33] J. Alonso-Mora, P. Beardsley, and R. Siegwart, “Cooperative collision
avoidance for nonholonomic robots,” IEEE Transactions on Robotics,
vol. 34, no. 2, pp. 404–420, 2018.

[34] L. Wang, A. D. Ames, and M. Egerstedt, “Safety barrier certificates for
collisions-free multirobot systems,” IEEE Transactions on Robotics, vol. 33,
no. 3, pp. 661–674, 2017.

[35] H. Zhu, B. Brito, and J. Alonso-Mora, “Decentralized probabilistic multi-
robot collision avoidance using buffered uncertainty-aware voronoi
cells,” Autonomous Robots, vol. 46, pp. 401–420, 2022, article in a peri-
odical.

114

https://doi.org/10.1177/027836499801700706
https://doi.org/10.1177/027836499801700706
https://doi.org/10.1007/978-3-642-32723-0_15
https://doi.org/10.1177/0278364915576234
https://doi.org/10.1177/0278364915576234

References

[36] G. M. Hoffmann and C. J. Tomlin, “Decentralized cooperative collision
avoidance for acceleration constrained vehicles,” in 2008 47th IEEE Con-
ference on Decision and Control, 2008, pp. 4357–4363.

[37] M. Shahriari and M. Biglarbegian, “A novel predictive safety criteria for
robust collision avoidance of autonomous robots,” IEEE/ASME Transac-
tions on Mechatronics, pp. 1–11, 2021.

[38] E. J. Rodríguez-Seda, D. M. Stipanović, and M. W. Spong,
“Guaranteed collision avoidance for autonomous systems with
acceleration constraints and sensing uncertainties,” J. Optim. Theory
Appl., vol. 168, no. 3, p. 1014–1038, mar 2016. [Online]. Available:
https://doi.org/10.1007/s10957-015-0824-7

[39] K. Sivanathan, B. K. Vinayagam, T. Samak, and C. Samak, “Decentral-
ized motion planning for multi-robot navigation using deep reinforce-
ment learning,” in 2020 3rd International Conference on Intelligent Sustain-
able Systems (ICISS), 2020, pp. 709–716.

[40] S. Macenski, F. Martin, R. White, and J. Ginés Clavero, “The marathon
2: A navigation system,” in 2020 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), 2020.

[41] S. Levine, “Reinforcement learning and control as probabilistic
inference: Tutorial and review,” Preprint at arXiv, 2018, article
on a preprint server or other repository. [Online]. Available:
http://arxiv.org/abs/1805.00909

[42] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman,
J. Tang, and W. Zaremba, “Openai gym,” 2016.

[43] J. K. Johnson, “The colliding reciprocal dance problem: A
mitigation strategy with application to automotive active safety
systems,” CoRR, vol. abs/1909.09224, 2019. [Online]. Available:
http://arxiv.org/abs/1909.09224

[44] M. R. Damgaard, “Multi robot planning simula-
tion,” https://github.com/damgaardmr/probMind/tree/
d0ba27687b373ff04eb790ef38b21ca8572d8c8a/examples/
multiRobotPlanning, 2022.

[45] H. Nishimura, N. Mehr, A. Gaidon, and M. Schwager, “Rat
ilqr: A risk auto-tuning controller to optimally account for
stochastic model mismatch,” IEEE Robotics and Automation Letters,
vol. 6, no. 2, p. 763–770, Apr 2021. [Online]. Available: http:
//dx.doi.org/10.1109/LRA.2020.3048660

115

https://doi.org/10.1007/s10957-015-0824-7
http://arxiv.org/abs/1805.00909
http://arxiv.org/abs/1909.09224
https://github.com/damgaardmr/probMind/tree/d0ba27687b373ff04eb790ef38b21ca8572d8c8a/examples/multiRobotPlanning
https://github.com/damgaardmr/probMind/tree/d0ba27687b373ff04eb790ef38b21ca8572d8c8a/examples/multiRobotPlanning
https://github.com/damgaardmr/probMind/tree/d0ba27687b373ff04eb790ef38b21ca8572d8c8a/examples/multiRobotPlanning
http://dx.doi.org/10.1109/LRA.2020.3048660
http://dx.doi.org/10.1109/LRA.2020.3048660

References

[46] M. R. Damgaard, “Variational inference naviga-
tion,” https://github.com/damgaardmr/VI_Nav/tree/
8af532f5e6618d46f3498460af6459e57261fc91, 2021.

116

https://github.com/damgaardmr/VI_Nav/tree/8af532f5e6618d46f3498460af6459e57261fc91
https://github.com/damgaardmr/VI_Nav/tree/8af532f5e6618d46f3498460af6459e57261fc91

Appendix B. Appendix A

Appendix B

Table B.1 summarizes the parameters used during the simulations and the
real-world experiment.

Table B.1: Parameters used during the simulations and the real-world experiment.

Parameter General
zt

a,n, zt
a,n [−0.22,−2.84], [0.22, 2.84]

M [0.05, 0.05, 0.10]
∆T 1 s
k 4
dmin Rn + Rm

Real-world Experiment
Robot 1 Robot 2

Rn 138 mm
Rgoal 0.2 m

zg,n
[0.00, 0.00]T ,
[2.00, 1.00]T

[0.50, 0.13]T ,
[1.50, 1.87]T

c1, c2 3, 25
Antipodal Goal Circle

N 12
Rn 138 mm ±20%
Renv, Rgoal 2 m, 0.25 m
c1, c2 3, 5

σzt
q,n

Diag
(

0.05 m
3 , 0.05 m

3 , 2.5◦
3

)2

Antipodal Circle Swapping
N 2, 4, 8, 16, 32
Rn 200 mm
Renv, Rgoal 4 m, 0.1 m
c1, c2 2, 5

σzt
q,n

Diag
(

0.12m
3 , 0.12m

3 , 2.5◦
3

)2

117

References

118

Paper C

A Probabilistic Programming Idiom for Active
Knowledge Search

Malte Rørmose Damgaard, Rasmus Pedersen, and Thomas Bak

The paper has been published in the
Proceedings of 2022 International Joint Conference on Neural Networks (IJCNN)

Padua, pp. 1–9, 2022.
https://www.doi.org/10.1109/IJCNN55064.2022.9892094

https://www.doi.org/10.1109/IJCNN55064.2022.9892094

© 2022 IEEE
The layout has been revised.

C.1. Introduction

Abstract

In this paper, we derive and implement a probabilistic programming idiom for the
problem of acquiring new knowledge about an environment. The idiom is imple-
mented utilizing a modern probabilistic programming language. We demonstrate the
utility of this idiom by implementing an algorithm for the specific problem of active
mapping and robot exploration. Finally, we evaluate the functionality of the imple-
mentation through an extensive simulation study utilizing the HouseExpo dataset.

C.1 Introduction

Making decisions under uncertainty to obtain new knowledge about an en-
vironment is a recurring problem within robotics. To efficiently solve this
problem, the robot needs to continuously learn about its environment while
keeping track of the uncertainty about current knowledge. The decision-
making is further complicated if an extrinsic reward signal cannot guide the
robot and if predefined constraints should be satisfied. The most well-known
and studied problem of this type within robotics is probably active mapping
and robot exploration [1]. Most solutions to active mapping and robot explo-
ration heavily exploit the structure of the stored knowledge, i.e., the map, to
derive efficient algorithms. E.g. for grid map representations, it is common to
apply frontier exploration [2–4]. These methods exploit the property, that it is
possible to identify frontiers between the knowledge represented by grid cells
in a grid map, that the robot is currently certain about, and the knowledge for
which it is uncertain. Actions are chosen to guide the robots towards these
frontiers, by which the map is explored. While such approaches exploiting
problem-specific properties can result in efficient solutions, they do not easily
generalize to other types of knowledge. E.g. because such exploration fron-
tiers cannot easily be defined for other types of knowledge. Other solutions
to active mapping and robot exploration take a deep-learning approach, to
learn an efficient policy for acquiring new knowledge. E.g., in [5] they feed
the current knowledge, again in the form of a grid map, into an artificial neu-
ral network and let the output of the network control the actions of the robot.
They then train the network with a reward equal to the newly discovered
area at each time-step, by which they obtain a policy for exploration. While
such an approach can be very efficient at specific tasks, end-to-end learning
often limits the generalizability of the solution due to a lack of structural
transferability. In many cases, the artificial neural network would have to
be re-trained to work for other problems requiring other inputs and out-
puts. Opposite to the problem-specific approaches already mentioned, the
goal of cognitive architectures is to create computational entities with gen-
eral problem-solving capabilities, that should function across a multitude of

121

Paper C.

tasks. In recent years a community consensus about the overall structure
and components of cognitive architectures has begun to emerge, called the
Standard Model of the Mind [6]. Especially, the realization of the need for
an efficient combination of symbolic and statistical processing is a massive
change compared to early research in cognitive architectures. In [7] we pre-
sented a generalized framework for developing such cognitive architectures
for robotics applications. This was done in an effort to standardize work and
promote better cooperation. One of the main ideas of the framework is to de-
velop and identify general and reusable fragments of probabilistic programs,
i.e., probabilistic programming idioms, for which inference could be done
efficiently utilizing variational inference methods. Inspired by some of the
main concepts of the Standard Model of the Mind, the goal of the presented
efforts is to develop such a general and reusable probabilistic programming
idiom for the problem of making decisions under uncertainty in order to ob-
tain new knowledge about an environment. The main contributions of this
paper are:

1. Derivation and implementation of the said probabilistic programming
idiom,

2. and validation of the said idiom used in an active mapping and robot
exploration context through simulations on a large dataset.

We choose to validate the idiom based on the active mapping and robot ex-
ploration problem because it is a well-studied problem with a relatively sim-
ple problem formulation for which results are easily interpretable via visual
inspection of the robot’s trajectory. Still, the problem is sufficiently hard due
to the non-convex constraints implied by objects in the environment. Sec-
tion C.2 presents preliminaries necessary to understand the content of the
following sections. In Section C.3 the derivation of the probabilistic pro-
gramming idiom is presented. In Section C.4 the application of the idiom
for the active mapping and robot exploration problem is presented, together
with the results of an extensive simulation study. Finally, in Section C.5 we
conclude upon the presented work, and hint to future lines of research.

C.2 Preliminaries

Within this paper Z is used to denote latent variables, X is used to denote
observed variables, and C is used to denote a collection of both types of
variables. We use a superscript in curly brackets to indicate the index of a
variable. Specially, for time indexes, we indicate the set of indexes of future
variables as {t}+ =

{
t + 1, ..., t + T

}
. Similarly, we indicate the set of indexes

of past variables as {t}− = {t− T, ..., t}. We develop our model primarily

122

C.2. Preliminaries

for approximate inference with stochastic variational inference. In general,
variational inference refer to methods that approximates one conditional dis-
tribution, p(z|x = x) with another unconditional distribution, q(z), through
an optimization problem of the form

min
q(z)∈Q

D[p(z|x = x)||q(z)]

where Q is the family of distributions from which q can be picked, and D
is a divergence measure quantifying the difference between p and q. In
stochastic variational inference, q is assumed to be parameterised by a set
of parameters φ, and stochastic gradient ascent is used to solve a tractable
dual-problem [8]. To solve this dual-problem, we do not need to know the
conditional distribution, p(z|x = x), but only need to specify the uncondi-
tional model, p(z, x = x), making it a lot easier to work with. However,
to use stochastic variational inference we need to ensure that our uncondi-
tional model, p(z, x = x), preserves the differentiability of the dual-problem.
Within this paper, we will make use of divergence measures from the family
of f-divergences, defined by

D f [p(z)||q(z)] =
∫

z
q(z) f

(
p(z)
q(z)

)
= Eq(z)

[
f
(

p(z)
q(z)

)]

where f is an arbitrary convex function [9]. Based on f-divergence we can
define the f-information measure as

I f [z, y] = D f [p(z)p(y)||p(z, y)]

= Ep(y)[D f [p(z)||p(z|y)]].

The commonly used KL-divergence, DKL, and mutual information is defined
by f (u) = −log(u) such that

DKL[p(z)||q(z)] = Eq(z)[log(q(z))− log(p(z))].

Similarly, the inverse-KL-divergence, DKL, and Lautum information, IL, is de-
fined by f (u) = u · log(u), from which we can obtain the conditional Lautum
information measure

IL[z, y|x] = Ep(y|x)[DKL[p(z|x)||p(z|y, x)]] (C.1)

= Ep(y|x)

[
log(Ep(z|x)[p(y|z, x)])
−Ep(z|x)[log(p(y|z, x))]

]
. (C.2)

For more information about these measures and their properties, we refer the
reader to [9] and [10]. Within this paper, we will also be using the following

123

Paper C.

Declarative

Long-term

Memory

Working
Memory

Perception Motor

Perceptual
Buffer

Motor
Buffer

Declarative
Buffer

Procedural

Long-term

Memory

(a)

Long-term Memory

Working
Memory

Perception Motor

Perceptual
Buffer

Motor
Buffer

ZLTM

CWM

=
{

CWM\b, ZPb, CMb

}

ZPb CMb

(b)

Fig. C.1: (a) The conceptual memory structure of the Standard Model [6]. The red, blue, brown,
green, and yellow colourse are related to declarative long-term memory, procedural long-term
memory, working memory, perception component, and motor component, respectively. Here
we have used rectangles with rounded corners to symbolise pure memory, and sharp corners
to indicate a relation to external signals. (b) The conceptual memory structure used within
this paper is without the distinction between procedural and declarative long-term memory, and
without the declarative buffer. The figure also indicates the symbols used for each type of memory.

approximate ”probabilistic logic”

p(z ∈ z ∨ y ∈ y) def
= p(z ∈ z) + p(y ∈ y)− p(z ∈ z)p(y ∈ y)

p(z ∈ z ∧ y ∈ y) def
= p(z ∈ z) · p(y ∈ y)

p

(
I∧

i=1

z{i} ∈ z{i}
)

def
=

I

∏
i=1

p
(

z{i} ∈ z{i}
)

where we have used ∨ and ∧ to denote the approximate or and the and op-
eration, respectively. These approximate ”probabilistic logic” rules simply
constitute a probabilistic union and intersection with an implied indepen-
dence assumption, respectively.

124

C.3. Decision model

C.3 Decision model

According to [6] it is commonly agreed that the memory structure of mind
like architectures at a top-level conceptually can be divided into working
memory and long-term memory each of which constitutes relations over sym-
bols supplemented by quantitative metadata to provide a hybrid symbolic-
subsymbolic representation. Besides the two main types of memory, it is also
agreed that there exists an architectural component denoted perception for
converting external signals into appropriate memory representations. Sim-
ilarly, there exists an architectural component denoted motor for translating
internal memory representations into external signals. The relations between
each of the aforementioned are illustrated in Fig. C.1a. Long-term memory is
responsible for the storage of information over extended periods. The work-
ing memory includes temporary information necessary for behavior produc-
tion and problem-solving, such as information about goals, but also contains
different buffers for temporarily storing information from the perception com-
ponent, the motor component, and some types of long-term memory. As
such working memory acts as a linkage between the other components. It is
customary to sub-divide long-term memory further into specialized types of
memories. However, since we in this paper are focusing on decision making
to acquire new knowledge, that is updating all types of long-term memory,
we will not make such distinctions, as illustrated in Fig. C.1b. Neither will
we make a distinction between the declarative buffer and general long-term
memory, and jointly refer to them as long-term memory. Furthermore, to
keep our presentation relatively concise, we will not consider the relation be-
tween working memory, and the perception and motor components. Instead
we will assume that appropriate perception and motor components are present.
To accommodate the need for a hybrid symbolic-subsymbolic representation
as suggested by the standard model, we will derive a probabilistic model
of decision making. Based on the division of memory and the symbol def-
initions indicated in Fig. C.1b we make the following definition of the joint
probability distribution

p
(

CWM\b, CMb, ZPb, ZLTM

)

= p
(

Z{t}
−

WM\b, C{t}
+

WM\b, X{t−1}−
Mb , Z{t−1}+

Mb , Z{t}
−

Pb , Z{t}
+

Pb , ZLTM

)

125

Paper C.

def
= p

(
C{t}

+

WM\b, Z{t−1}+
Mb , Z{t}

+

Pb |Z̆
{t}−
WM\b, Z̆LTM

)

︸ ︷︷ ︸
Planning/Decision Making

(C.3)

· p
(

Z{t}
−

WM\b, X{t−1}−
Mb , Z{t}

−

Pb , ZLTM

)

︸ ︷︷ ︸
Learning/Reasoning

where we have used sub-script "WM\b" to denote the set of variables rep-
resenting the working memory except of the set of variables representing
the two buffers, i.e., CMb and ZPb. In Eq. (C.3) we have assumed that the

distribution of future variables, C{t}
+

WM\b, Z{t−1}+
Mb , and Z{t}

+

Pb are conditional

independent of previous information in the perceptual buffer, Z{t}
−

Pb , and

motor buffer, X{t−1}−
Mb , given the previous variables in the rest of the work-

ing memory, Z{t}
−

WM\b, and the long-term memory, ZLTM. The last fraction of
Eq. (C.3) deals with inference over variables internal to an agent based on

past experience in the form of the variables of the perceptual buffer, Z{t}
−

Pb ,

and the motor buffer, Z{t−1}−
Mb , related to the past. As such this fraction cor-

responds to reasoning and learning. Similarly, the first factor of Eq. (C.3)
only deals with future variables based on what have already been learned
from past experiences. Since it is assumed that the working memory in-
cludes information necessary for behavior production this fraction is respon-
sible for decision making and planning guided by preferences contained in
the working memory. By the nature of the problem, the probabilistic cau-
sation between learning and planning should only be one way, from learning
to planning. In other words, we can consider inference over the variables in
the learning part in isolation, and when performing inference in the planning
part we should keep the learning distribution fixed. To emphasize this, we

have used breves over the variables Z{t}
−

WM\b and ZLTM in the first fraction of
Eq. (C.3). The proposed model effectively divides the cognitive tasks of an
agent into learning and planning. Assuming that we have access to the learn-
ing distribution, this allows us to focus the rest of the paper on the planning
part. For the purpose of decision making, and to make our model resemble
the classical Markov decision process, we introduce the following variables
as a part of the working memory. State variables, Zs, representing the state
of the agent itself and the environment. Decision variables, CD, explicitly

represent preferences such as goals and constraints. That is, Z{t}
−

s ∈ C{t}
−

WM\b

and {Z{t}
+

s , C{t}
+

D } ∈ C{t}
+

WM\b. Furthermore, adopting the Markov property
between state variables also used in the Markov decision process we define

126

C.3. Decision model

the planning distribution from Eq. (C.3) as

p
(

C{t}
+

WM\b, Z{t−1}+
Mb , Z{t}

+

Pb |Z̆
{t}−
WM\b, Z̆LTM

)

de f
=

t+T

∏
τ=t+2

 p

(
C{τ}D |Z{τ}s , Z̆{t}

−

WM\b, Z̆LTM

)

·p
(

Z{τ}s |Z{τ−1}
s , Z{τ−1}

Mb

)
p
(

Z{τ−1}
Mb

)

· p
(

C{t+1}
D |Z{t+1}

s , Z̆{t}
−

WM\b, Z̆LTM

)
(C.4)

· p
(

Z{t+1}
s |Z̆{t}s , Z{t}Mb

)
p
(

Z{t}Mb

)
.

The causality structure of Eq. (C.4) goes as follows. The current possible
content of the motor buffer, Z{τ}MB , together with the belief over the state at

that time instance, Z{τ}s , determines the belief over the next possible states,
Z{τ+1}

s . The next possible states, Z{τ+1}
s , together with the variables in the

long-term memory, ZLTM, and all variables related to the past in the working

memory except the buffers, Z{t}
−

WM\b, potentially contributes to the current be-

lief over the decision variables, Z{τ}D . Except for the decision variables and the
explicit inclusion of the long-term memory variables, most parts of Eq. (C.4)
resembles elements known from other decision models such as the Partially
observable Markov decision process. As stated earlier, the decision variables
are meant to guide the decision process, and as such might be problem-
dependent. For the purpose of making decisions to obtain new knowledge,
and inspired by [11] we choose to include and combine the following general-
purpose decision variables: progress, zp, information gain, zi, constraint, zc,

and attention, xA. From these we define C{τ}D = {x{τ}A , z{τ}p , z{τ}i , z{τ}c }. The
meaning of these variables are described in the following sections. For refer-
ence the structure of the combined model is indicated in Fig. C.2.

C.3.1 Progress

The progress variable is meant to quantify how different a given state, Z{τ}s ,

is from the past states, Z{τ}
−

s . To quantify the progress while taking uncer-
tainty into account we can make use of the divergence measures described in
Section C.2. However, calculating such divergence measures inside a proba-
bilistic program amounts to a form of nested inference which potentially can
cause problems. E.g. when we want to use stochastic variational inference
as the main inference algorithm we have to make sure that we can calculate
the gradient of the nested inference performed. Here we choose to use the

127

Paper C.

following one-point estimate of the KL-divergence as a measure of progress

DKL

[
p
(

Z{t−l}
s

)
||p
(

Z{τ}s |Z{τ−1}
s , Z{τ−1}

Mb

)]

= E
Ẑ{τ}s

log

p
(

Z{τ}s = Ẑ{τ}s |Z{τ−1}
s , Z{τ−1}

Mb

)

p
(

Z{t−l}
s = Ẑ{τ}s

)

≈ 1
I

I

∑
i=1

 log

(
p
(

Z{t−l}
s = Ẑ{τ},{i}s

))

−log
(

p
(

Z{τ}s = Ẑ{τ},{i}s |Z{τ−1}
s , Z{τ−1}

Mb

))

≈ ReLu

 log

(
p
(

Z{t−l}
s = Ẑ{τ}s

))

−log
(

p
(

Z{τ}s = Ẑ{τ}s |Z{τ−1}
s , Z{τ−1}

Mb

))

def
= P{t−l}

(
Ẑ{τ}s

)
(C.5)

where p
(

Z{t−l}
s

)
is a marginal of the learning distribution in Eq. (C.3),

Ẑ{τ}s ∼ p
(

Z{τ}s |Z{τ−1}
s , Z{τ−1}

Mb

)
and Ẑ{τ},{j}

s ∼ p
(

Z{τ}s |Z{τ−1}
s , Z{τ−1}

Mb

)
, and

we have used the ReLu function in our approximation since log
(

p1

p2

)
� 0

in general but DKL[p1||p2] ≥ 0. The gradient of the log-probability function
can be calculated for many commonly used distributions and probabilistic
programs composed of these, and thereby also for this approximation. From
this approximation we define the distribution over the progress variable for
a given state, Z{τ}s , relative to a single of the past states, Z{t−l}

s , as

p
(

z{τ},{l}p |Z{τ}s = Ẑ{τ}s

)
= Bernoulli

(
λ
{l}
p ·

[
1− e−σp ·P{t−l}

(
Ẑ{τ}s

)])
(C.6)

where

λ
{l}
p = 1− (1− λp,min)(L− 1− l)

L− 1
;

L > 1
L 6 T

is a decay variable used to put more emphasis on the oldest states considered,
L is the number of old states considered, and σp is simply a scaling parameter.
Here we have used a trick commonly utilised in probabilistic Reinforcement
Learning and Control [12], where a given reward is converted to a pseudo

probability by exponentiation of that reward. Since, P{t−l}
(

Ẑ{τ}s

)
≥ 0 it fol-

lows that e−σp ·P{t−l}
(

Ẑ{τ}s

)
∈ [0, 1] and thus it can be used as a pseudo proba-

bility. Eq. (C.6) thus state that a state, Z{τ}s , yielding a higher approximated
divergence, P{t−l}

(
Ẑ{τ}s

)
, has an exponentially higher probability of yield-

ing progress. From Eq. (C.6) we define the total progress as the combined

128

C.3. Decision model

progress relative to all of the last L ≤ t− T past states

p
(

z{τ}p |Z{τ}s = Ẑ{τ}s

)
= Bernoulli

(
p

(
L−1∧

l=0

z{τ},{l}p = 1

∣∣∣∣∣ Z{τ}s = Ẑ{τ}s

))
.

(C.7)

The approximation in Eq. (C.5) might seem very coarse; however, when used
as nested inference inside a stochastic variational inference algorithm, it is
evaluated multiple times during inference of the main problem. The effect is
thus effectively similar to a mean approximation using many samples.

C.3.2 Information Gain

As the name implies, the information gain variable, zi, is meant to quantify
the amount of information that can potentially be gained from being in a
specific state, Z{τ}s , perceiving the environment and thereby obtaining new
information through the perceptual buffer. The perceptual buffer might con-
tain information from multiple independent perceptual modalities, which we
will denote as Z{τ},{j}

Pb . Each of these perceptual modalities might only relate

to a specific part of the long-term memory which we will denote Z{j}
LTM. To

quantify the expected amount of information obtained by being in a spe-
cific state, Z{τ}s , we use the Lautum information in Eq. (C.1). Based on the
Lautum information we represent the pseudo probability that the perceptual
modality, Z{τ},{j}

Pb , will yield new knowledge as the distribution

p
(

z{τ},{j}
i |Z{τ}s = Ẑ{τ}s

)
= Bernoulli

(
1− e−σI ·IL

[
Z{j}

LTM,Z{τ},{j}
Pb |Z{τ}s =Ẑ{τ}s

])

(C.8)

where σI is a scaling parameter. Maximising the information obtained by
each of the perceptual modalities might require wildly different changes to
the state, Z{τ}s . Therefore, we focus the attention on the modality providing
the most information and define

p
(

z{τ}i |Z
{τ}
s = Ẑ{τ}s

)
= Bernoulli

(
max
j∈[1,J]

p
(

z{τ},{j}
i = 1|Z{τ}s = Ẑ{τ}s

))
.

Calculating the Lautum information inside a probabilistic program also amounts
to nested inference. To make the calculation of Lautum information compat-
ible with the use of stochastic variational inference for the main problem, we

129

Paper C.

Le
ar

ni
ng

Pl
an

ni
ng

Z{τ}
s

Ẑ
{t}
s

τ
if
= T

F

τ ∈ {t}+

Z
{τ−1}
Mb

Ẑ
{h},{g}
LTM

{
X

{t−1}−

Mb , Z
{t}−

Pb , Z
{t}−

WM\b, ZLTM; ;
}

Ẑ
{τ−1}
s

X
{τ}
A

z
{τ},{j}
i

z{τ}p

z{τ}c

Z
{τ},{j}
Pb

Ẑ
{τ}
s

Ẑ
{τ

},
{j

},
{m

}
P

b

h ∈ 1, ..., H

Ẑ
{τ},{h},{g}
Pb

Z
{τ},{h}
Pb

Ẑ
{j},{n}
LTM

Z
{τ},{j}
Pb

j ∈ 1, ..., J

z{τ},{l}p

l ∈ 0, ..., L − 1

z
{τ}
i

z{τ},{h}c
Ẑ

{h},{g}
LTM

Constraints

Progress

Information gain

p
Ä
Z

{t−l}
s

ä

Fig. C.2: Illustration of the generative flow of the proposed exploration idiom. Rectangles with
rounded corners represent a collection of variables. Two stacked rectangles with rounded corners
represent conditional independent collections of variables. Circles indicate a distribution over
the variable inside the circle. They thereby constitute potential samples sites in the probabilistic
program. Solid arrows indicate samples passed around in the probabilistic program, sampled
from the distribution represented by the circle at the origin of the arrow. Wavy arrows indicate
an evaluation at a specific point of the parent distribution represented by the circle at the origin
of the arrow. Gray-colored circles indicate "observed" variables, while other colors are used
to indicate a relation to the different types of memories. The rectangles with dotted borders
indicate the variables associated with the three different decision variables.

130

C.3. Decision model

again make use of the following sample mean estimate

IL[x, y|z = ẑ] = Eŷ

[
log(Ex̂[p(y = ŷ|x = x̂, z = ẑ)])
−Ex̂[log(p(y = ŷ|x = x̂, z = ẑ))]

]

≈ 1
M

M

∑
m=1

log
(

1
N

N
∑

n=1
p
(

y = ŷ{m}|x = x̂, z = ẑ
))

− 1
N

N
∑

n=1
log
(

p
(

y = ŷ{m}|x = x̂{n}, z = ẑ
))

=
1
M

M

∑
m=1

log
(

N
∑

n=1
elog(p(y=ŷ{m} |x= x̂{n} ,z=ẑ))

)

−log(N)

− 1
N

N
∑

n=1
log
(

p
(

y = ŷ{m}|x = x̂{n}, z = ẑ
))

where x̂ ∼ p(x|z = ẑ) and ŷ ∼ p(y|z = ẑ), ŷ{m} ∼ p(y|z = ẑ) and x̂{n} ∼
p(x|z = ẑ). To use the approximation in Eq. (C.8), we only need to be able to
evaluate

log

(
p

(
Z{τ},{j}

Pb = Ẑ{τ},{j},{m}
Pb

∣∣∣∣∣
Z{τ}s = Ẑ{τ}s ,

Z{j}
LTM = Ẑ{j},{n}

LTM

))

with
Ẑ{j},{n}

LTM ∼ p
(

Z{j}
LTM

)

Ẑ{τ},{j},{m}
Pb ∼ p

(
Z{τ},{j}

Pb |Z{τ}s = Ẑ{τ}s

)

where we have assumed that p
(

Z{j}
LTM|Z

{τ}
s

)
= p

(
Z{j}

LTM

)
.

C.3.3 Constraints

The constraint variable, z{τ}c , is meant to quantify states, Z{τ}s , that should be
avoided taking perceived information, Z{τ}PB , and knowledge stored in long-
term memory, ZLTM, into account. Often such constraints can be defined by
a set, A{τ},{h}, that the state, Z{τ}s , should be within. As this set might de-
pend on knowledge stored in the long-term memory, ZLTM, and the expected
content of the perceptual buffer, Z{τ}Pb , we assume a set definition of the form

A{τ},{h} =
{

Z{τ}s , Z{τ}Pb , ZLTM | 1
{τ},{h}
A

(
Z{τ}s , Z{τ}Pb , ZLTM

)}

where 1
{τ},{h}
A is the indicator function of the set A{τ},{h}. Given that Z{τ}s =

Ẑs the probability that the constraint defined by the set A{τ},{h} is satiesfied

131

Paper C.

can then be expressed as

P
(

Z{τ}s = Ẑ{τ}s , Z{τ}Pb , ZLTM ∈ A{τ},{h}
)

(C.9)

= E
Ẑ{τ}Pb ,ẐLTM

[
1
{τ},{h}
A

(
Ẑ{τ}s , Ẑ{τ}Pb , ẐLTM

)]

where Ẑ{τ}Pb ∼ p
(

Z{τ}Pb |Ẑ
{τ}
s = Ẑ{τ}s , ẐLTM = ẐLTM

)
and ẐLTM ∼ p(ZLTM).

Based on this we define the distribution over the constraint variable for the
h’th constraint at time τ as

p
(

z{τ},{h}c |Z{τ}s = Ẑ{τ}s

)
=

Bernoulli
(

P
(

Z{τ}s = Ẑ{τ}s , Z{τ}Pb , ZLTM ∈ A{τ},{h}
))

and the distribution over the combined constraint variable at time τ as

p
(

z{τ}c |Z{τ}s = Ẑ{τ}s

)
= Bernoulli

(
p

(
H∧

h=1

z{τ},{h}c = 1

∣∣∣∣∣ Z{τ}s = Ẑ{τ}s

))

where H is the number of constraints. Calculating the probability in Eq. (C.9)
again amounts to nested inference, but the discontinuity of the indicator func-
tion for the set definition, 1

{τ},{h}
A , also present a problem for calculating the

gradients needed for stochastic variational inference. To overcome this, we
assume that the indicator function can be specified as

1
{τ},{h}
A

(
Z{τ}s , Z{τ}Pb , ZLTM

)
=

{
1 d{τ},{h}

(
Z{τ}s , Z{τ}Pb , ZLTM

)
> 0

0 else

and make the approximation

1
{τ},{h}
A

(
Z{τ}s

)
≈ 1̃

{τ},{h}
A

(
d{τ},{h}

(
Z{τ}s , Z{τ}Pb , ZLTM

))

where 1̃
{τ},{h}
A (x) ∈ [0, 1] is a smooth monotonically increasing function sym-

metric around 1̃
{τ},{h}
A (0) = 0.5, e.g., a scaled sigmoid function. From this we

use the sample mean approximation to obtain the following approximation
to the probability in Eq. (C.9)

P
(

Z{τ}s = Ẑ{τ}s , Z{τ}Pb , ZLTM ∈ A{τ},{h}
)

≈ 1
G

G

∑
g=1

1
{τ},{h}
A

(
Ẑ{τ}s , Ẑ{τ},{g}Pb , Ẑ{g}LTM

)

≈ 1
G

G

∑
g=1

1̃
{τ},{h}
A

(
d{τ},{h}

(
Ẑ{τ}s , Ẑ{τ},{g}Pb , Ẑ{g}LTM

))

where Ẑ{τ},{g}Pb ∼ p
(

Z{τ}Pb |Ẑ
{τ}
s , ẐLTM

)
and Ẑ{g}LTM ∼ p(ZLTM).

132

C.3. Decision model

C.3.4 Attention

Finally, the attention variable is meant to summarise the other decision vari-
ables and symbolises which states the agent should focus its attention on.
Based on the approximate "probabilistic logic" presented in Section C.2 we
define

p
(

xτ
A|Z

{τ}
s = Ẑ{τ}s

)
= Bernoulli

p

[
z{τ}p = 1
∨z{τ}i = 1

]

∧z{τ}c = 1

∣∣∣∣∣∣∣
Z{τ}s = Ẑ{τ}s

 .

(C.10)

Basically, Eq. (C.10) states that an agent should focus its attention on states
that either yields progress, or yield new knowledge, and also satisfies the
given constraints.

C.3.5 Variational distribution

As stated in Section C.2, a parameterized unconditional variational distribu-

tion, q
(

Z{t}
+

WM

)
, needs to be specified to utilize stochastic variational inference

for approximate inference. Most of the factors in Eq. (C.4) are assumed to be
known and thus fixed. Therefore, only the distribution over the variables in
the motor buffer can be considered a free distribution, and thus we define

q
(

Z{t}
+

WM

)
= q

(
Z{t}

+

WM\b, Z{t−1}+
Mb

)

de f
= p

(
Z{t+1}

s |Z̆{t}s , Z{t}Mb

)
q

φ
{t}
Mb

(
Z{t}Mb|Z

{t}
s

)

·
t+T

∏
τ=t+2

p
(

Z{τ}s |Z{τ−1}
s , Z{τ−1}

Mb

)

·q
φ
{τ−1}
Mb

(
Z{τ−1}

Mb |Z{τ−1}
s

)

where φ
{τ}
Mb are the parameters that need to be found by stochastic variational

inference.

C.3.6 Summery

So far, general functionality that could potentially be utilised for multiple
problems has been described and thus could be considered an idiom. This
idiom is implemented as an abstract class utilising the probabilistic program-
ming language Pyro [13] developed on top of PyTorch and python. The class
contains the following abstract methods that need to be implemented

133

Paper C.

q
φ
{τ−1}
Mb

(
Z{τ−1}

Mb |Z{τ−1}
s

)
p
(

Z{τ},{j}
Pb |Z{τ}s , Z{j}

LTM

)

p
(

Z{τ−1}
Mb |Z{τ−1}

s

)
d{τ},{h}

(
Z{τ}s , Z{τ}Pb , ZLTM

)

p
(

Z{τ}s |Z{τ−1}
s , Z{τ−1}

Mb

)
1̃
{τ},{h}
A (d)

p
(

Z{τ},{j}
Pb |Z{τ}s

)
p
(

Z{j}
LTM

)

The abstract methods representing probability functions need to be im-
plemented as compatible probabilistic programs utilising Pyro. Besides the

abstract methods users also need to provide p
(

Z{t}s

)
as a probabilistic pro-

gram. Besides the above necessary methods, the class also specifies two addi-
tional methods that can be used to control the sub-sampling of the long-term
memory and perceptual buffer for use in the calculation of information gain
and constraint violations. With these methods implemented users can call the
class method "makePlan(...)" which via stochastic variational inference finds
an approximate optimal set of parameters, q

φ
{τ},∗
Mb

to the variational inference

problem

min
φ
{t}+
WM

D

p

(
Z{t}

+

WM

∣∣∣∣∣
Z̆{t}s , Z̆LTM,

x{t}
+

A = 1

)

·p
(

Z{t}
−

WM , ZLTM

)

∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣

q
φ
{t}+
WM

(
Z{t}

+

WM

∣∣∣∣∣
Z̆{t}s ,
Z̆LTM

)

·p
(

Z{t}
−

WM , ZLTM

)

where the user can specify the divergence measure and optimiser used. The
optimal set of parameters is used to draw samples of the future motor buffer

Z{τ}Mb ∼ q
φ
{τ},∗
Mb

(
Z{τ}Mb |Z

{τ}
s

)
; τ ∈ {t, ..., T − 1}.

These samples constitute potential future optimal actions needed to optimise
information gain or progress while satisfying constraints. Finally, the "make-
Plan(...)" method either returns these samples or a sample mean hereof. The
code is available through [14].

C.4 Autonomous Robot Exploration

To exemplify the utility of the proposed idiom, we have used it to implement
an algorithm for autonomous robot exploration. The code for this can be
found through [14]. The goal of the implementation is for a robot to explore
an environment represented by a grid map autonomously. We consider the
problem at a high level, and define the state to be the current position in the

134

C.4. Autonomous Robot Exploration

0 10
0

5

10

9.81%, t = 0

0 10
0

5

10

17.84%, t = 27

0 10
0

5

10

41.30%, t = 54

0 10
0

5

10

46.56%, t = 81

0 10
0

5

10

54.56%, t = 108

0 10
0

5

10

82.00%, t = 135

0 10
0

5

10

94.97%, t = 162

0 10
0

5

10

95.08%, t = 189

Lidar Range at Z
{t}+,∗
s Z

{0:t}
s Z

{t}+,{ia}
s E

p
Ä
Z

{t}
s
ä
î
Z

{t}
s
ó

Z
{t}+,∗
s

Fig. C.3: The progress of a simulation for the map with ID "7fb9c9203cb8c4404f4af1781f1c6999"
after each of the timesteps t = {0, 27, 54, 81, 108, 135, 162, 189}. For each timestep the previous
positions, Z{0:t}

s , is shown by a green dashed line, the mean of the current position, Z{t}s , is

shown by a black dot, samples of future positions, Z{τ}
+ ,{ia}

s , is shown by solid green lines, and

the mean of these samples corresponding to the optimal future positions based on Z{t}
+ ,∗

a are
shown by black asterisks. The simulation where terminated after t = 189 since the exploration
percentage where above 95%.

XY-plane, Z{τ}s =
[
z{τ}x , z{τ}y

]T
, and use the simple transition model as

p
(

Z{τ+1}
s |Z{τ}s , Z{τ}Mb

)
= N

(
Z{τ}s + A

(
Z{τ}Mb

)
, σa

)

where Z{τ}Mb is the relative position scaled to be in the interval [0, 1], A(...) is a
linear scaling of the relative position to be in the range

[
∆Za, ∆Za

]
, and σa is

the covariance of the error allowed in the movement. Since the robot should
have no prior preference of its movement we define

p
(

Z{τ}Mb |Z
{τ}
s

)
= U

([
0
0

]
,
[

1
1

])
. (C.11)

q
φ
{τ}
Mb

(
Z{τ}Mb |Z

{τ}
s

)
should have the same support as Eq. (C.11), but should also

be flexible enough to represent preferences in the relative position. Thus, we
define

q
φ
{τ}
Mb

(
Z{τ}Mb |Z

{τ}
s

)
= Beta

(
α
{τ}
a , β

{τ}
a

)

135

Paper C.

since the beta distribution subsumes the uniform distribution, but also can
represent a single mode. Thus, we have φ

{τ}
Mb =

{
α
{τ}
a , β

{τ}
a

}
. We consider the

grid map to be the long-term memory. That is, ZLTM =
{

z{1}m , ..., z{Im}
m

}
where

z{im}m is each of the cells in the grid map, and make the common assumption
that

p(ZLTM) =
I

∏
im=1

p
(

z{im}m

)

where
p
(

z{im}m

)
= Bernoulli

(
P{im}m

)

and P{im}m is the probability of the im’th grid cell being occupied. We assume
that the environment is perceived through a lidar with 360◦ field of view and
evenly spaced lidar beams with 1◦ spacing, and define

p
(

Z{τ}Pb |Z
{τ}
s , ZLTM

)
=

360

∏
1=ir

p
(

z{τ},{ir}r,d |Z{τ}s , Z{τ},{ir}LTM

)

where z{τ},{ir}r,d is the distance measured by the ir’th laser beam at time τ given
the current position and grid map,

Z{τ},{ir}LTM =
{

z{im}m ∈ ZLTM|ray ir intersects cell im
}

are the cells in the grid map that the ir’th laser beam intersects. We obtain the

set, Z{τ},{ir}LTM , through ray-tracing. The distribution p
(

z{τ},{ir}r,d |Z{τ}s , Z{τ},{ir}LTM

)

is implemented according to the laser beam model in [15]. Without taking
the map into consideration the robot have no prior knowledge on the distance
measured by the lidar, and thus we define

p
(

z{τ},{ir}r,d |Z{τ}s

)
= U

(
0, zr,d

)

where zr,d is the max range of the lidar beams. We furthermore want the
robot to keep a minimum distance, dmin, to occupied cells in the map and
thus define the constraints via the logistic function

1̃
{τ},{h}
A

(
d{τ},{h}

(
Z{τ}s , Z{τ}Pb , ZLTM

))
=

1

1 + e−σc ·
(

z{τ},{h}r,d −dmin

)

where σc determines the steepness of the logistic function. With the above
definitions, we have J = H = 360. Calculating the information gain and con-
straint violation based on all 360 lidar beams is computationally intractable in

136

C.4. Autonomous Robot Exploration

the current implementation. Therefore, for each timestep, τ, we sub-sample
the number of lidar beams taken into account by randomly picking J̃ � 360
and H̃ � 360 lidar beams for calculating the information gain and constraint
violation, respectively. In our implementation, we have furthermore chosen
to use Pyro’s build-in "ClippedAdam" optimizer with the standard DKL di-
vergence measure. Finally, the next action that the robot should take, Z{t},∗a ,
is calculated as the sample mean of optimal actions

Z{t},∗a =
1
Ia

Ia

∑
ia=1

A
(

Z{t},{ia}
Mb

)
(C.12)

where Z{τ},{ia}
Mb ∼ q

φ
{τ},∗
Mb

(
Z{t}Mb|Z

{τ}
s

)
. The calculated Z{t},∗a is considered

the optimal action for the robot to take in order to maximize progress or the
information obtained.

C.4.1 Simulation

To test the algorithm implemented for autonomous robot exploration, we
performed simulations on the 35,126 2D floor plans available in the House-
Expo dataset utilising a modified version of the accompanying PseudoSLAM
simulator [5]. The PseudoSLAM simulator is made to efficiently generate oc-
cupancy grid maps directly from 2D floor plans, without the computational
burden of running a real SLAM algorithm. The simulator also calculates the
percentage of the map that has been explored and keeps a count of the num-
ber of crashes. Thereby, the simulator is suitable for large-scale simulation
studies. Unfortunately, the original PseudoSLAM simulator only allowed for
the three fixed discrete movements: turn θ degrees to the left, turn θ degrees
to the right, and move X meters forward, where θ and X are fixed variables.
Thus, the original simulator was not suitable for the continuous movements
calculated by Eq. (C.12). Therefore, modifications were made to allow for
such continuous movements in the simulator. Furthermore, it was found that
the function "measure_ratio()" build into the PseudoSLAM simulator, meant to
quantify the percentage of the map explored, counter-intuitively could return
values greater than 1. Thus, we also modified this function. The modified
PseudoSLAM simulator is available through [14]. For our simulations, we
adopted the simulation procedure used in [5]. One simulation with a ran-
dom initial position was performed for each of the 35,126 2D floor plans.
The simulations were limited to 200 time-steps. They were terminated if the
"measure_ratio()" function returned more than 0.95, corresponding to more
than 95% of the map had been explored. As an example, the result of one
of the simulations is illustrated in Fig. C.3. From Fig. C.4 it is seen that for
the smallest floor plans in the data set, the robot manages to explore most
of its environment. As the size of the floor plans increases, a smaller per-
centage of the environment is explored on average. This is expected behavior

137

Paper C.

0 5 10 15 20 25 30 35

·103

0
50
100
150
200
250
300
350
400
450

Map Index [n]

M
ap

Si
ze

[m
2
]

Area Explored
Smoothed
True Area

Fig. C.4: The area explored for each of the 35126 simulations performed with the indices sorted
in ascending order by the true area of the map. The red curve shows a moving average with a
windows size of 20.

0 10 20 30 40 50 60 70

0.0

0.2

0.4

0.6

0.8

1.0

Map Size [Number of Rooms]

A
re

a
Ex

pl
or

ed
[%

] Samples
Mean
±1σ

Fig. C.5: The percentage of area explored in each of the 35126 simulations performed compared
to the number of rooms in each of the maps.

since there is a limit to how much of a map the robot can explore in a fixed
amount of time steps. However, Fig. C.5 might reveal another cause. From
Fig. C.5 there seems to be a clear relationship between the number of rooms
in the environment, and the percentage of the environment that the robot
manages to explore. A possible cause of this could be that for the robot to
explore multiple rooms it often has to pass through narrow doorways. Pass-
ing through narrow doorways presents a high risk of constraint violation. In
many situations, there will be alternative paths away from doorways that still
yield progress. Therefore, if the paths going through the doorway does not

138

C.4. Autonomous Robot Exploration

6 8 10 12 14 16
3

4

5

6

7

8

Collision Lidar Range at Z
{t}+,∗
s

Z
{0:t}
s Z

{t}+,{ia}
s

E
p
Ä
Z

{t}
s
ä
î
Z

{t}
s
ó

Z
{t}+,∗
s

Fig. C.6: The progress of a simulation for the map with ID "23e99dac3228ee2d371c5a627c49e415"
after 200 time-steps. In this simulation, the robot spends a lot of time-steps driving around in
the same room without getting out of it even though it is fully explored. The figure also shows
an example of a collision in a doorway.

yield a high probability of information gain, the presented idiom will prefer
actions away from such doorways. This means that the robot could spend
more time-steps than necessary in rooms that are fully explored. As an ex-
ample consider the simulation illustrated in Fig. C.6. In this simulation, the
robot starts in "room 1" and passes through a doorway to "room 2" already
after a few time-steps. After passing through the doorway, the robot quickly
explores the entire "room 2". However, since the area in "room 1" in close
vicinity to the doorway is already explored, the probability of information
gain for paths passing back through the doorway is low due to the limited

lidar range used to define p
(

Z{τ}Pb |Z
{τ}
s , ZLTM

)
. Therefore, the robots keep

driving around in "room 2" driven purely by progress. Overcoming this be-
havior would require some kind of memory about from which of the previous
states the robot could obtain more knowledge, and some additional decision
variables to guide the robot back to these states. Besides guiding an agent
towards new knowledge the idiom is also supposed to avoid constraints. In
the implemented robot exploration algorithm, the only constraint is to pre-
vent collisions with the robots surrounding. A total of 1617 unique collisions
were recorded in 1253 different maps during the 6469065 time-steps simu-
lated in all of the 35126 2D floor plans. Thus, only 0, 25 ‰ of the time-steps
resulted in collisions. Nearly all of these collisions were registered near cor-

139

References

ners or doorways, like the collision shown in Fig. C.6. Given that the idiom
currently only supports checking constraints at discrete states, such behav-
ior is to be expected, since the constraint can be satisfied at two consecutive
states but not in between. Furthermore, for the specific application of robot
exploration, this small probability of collision would probably be deemed tol-
erable, since in many cases would have to be a low-level collision avoidance
system anyway. If this cannot be tolerated, the idiom would have to modified
to include checking of constraint in between the discrete states.

Everything considered the ability of the idiom to guide an agent towards
new knowledge while avoiding constraints seems to be as should be ex-
pected.

C.5 Discussion

In this paper, we have shown how to develop a generally applicable proba-
bilistic programming idiom for the problem of making decisions under un-
certainty to obtain new knowledge about an environment. We based our
idiom on the memory structure of the Standard model of mind, and other
ideas from research in cognitive architectures. We furthermore show how
this idiom can be used for the specific problem of active mapping and robot
exploration. Based on an extensive simulation study of this problem, it is
concluded that the idiom works as could be expected. The simulation also
indicated that the idiom probably would benefit from additional memory of
old states in which more knowledge can be obtained. Furthermore, the sim-
ulation also indicated that the idiom for some application could benefit from
checking constraints in between states.

References

[1] I. Lluvia, E. Lazkano, and A. Ansuategi, “Active mapping and robot
exploration: A survey,” Sensors, vol. 21, no. 7, 2021. [Online]. Available:
https://www.mdpi.com/1424-8220/21/7/2445

[2] A. Topiwala, P. Inani, and A. Kathpal, “Frontier based exploration for
autonomous robot,” 2018.

[3] E. Uslu, F. Çakmak, M. Balcılar, A. Akıncı, M. F. Amasyalı, and S. Yavuz,
“Implementation of frontier-based exploration algorithm for an au-
tonomous robot,” in 2015 International Symposium on Innovations in In-
telligent SysTems and Applications (INISTA), 2015, pp. 1–7.

[4] D. A. Perkasa and J. Santoso, “Improved frontier exploration strategy for
active mapping with mobile robot,” in 2020 7th International Conference

140

https://www.mdpi.com/1424-8220/21/7/2445

References

on Advance Informatics: Concepts, Theory and Applications (ICAICTA), 2020,
pp. 1–6.

[5] T. Li, D. Ho, C. Li, D. Zhu, C. Wang, and M. Q.-H. Meng, “Houseexpo:
A large-scale 2d indoor layout dataset for learning-based algorithms on
mobile robots,” in 2020 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), 2020, pp. 5839–5846, article in proceedings.

[6] J. E. Laird, C. Lebiere, and P. S. Rosenbloom, “A standard model of
the mind: Toward a common computational framework across artificial
intelligence, cognitive science, neuroscience, and robotics,” AI Magazine,
vol. 38, no. 4, pp. 13–26, Dec. 2017, article in a periodical. [Online].
Available: https://ojs.aaai.org/index.php/aimagazine/article/view/
2744

[7] M. R. Damgaard, R. Pedersen, and T. Bak, “Toward an idiomatic frame-
work for cognitive robotics,” 2021.

[8] M. D. Hoffman, D. M. Blei, C. Wang, and J. Paisley, “Stochastic
variational inference,” Journal of Machine Learning Research, vol. 14,
no. 4, pp. 1303–1347, 2013, article in a periodical. [Online]. Available:
http://jmlr.org/papers/v14/hoffman13a.html

[9] D. Palomar and S. Verdu, “Lautum information,” in 2006 IEEE Informa-
tion Theory Workshop - ITW ’06 Punta del Este, vol. 54, no. 3, 2006, pp. 964
– 975.

[10] T. Minka, “Divergence measures and message
passing,” https://www.microsoft.com/en-us/research/publication/
divergence-measures-and-message-passing/, Microsoft, Tech.
Rep. MSR-TR-2005-173, Jan. 2005. [Online]. Avail-
able: https://www.microsoft.com/en-us/research/publication/
divergence-measures-and-message-passing/

[11] P. S. Rosenbloom, J. Gratch, and V. Ustun, “Towards emotion in
sigma: From appraisal to attention,” in Artificial General Intelligence,
J. Bieger, B. Goertzel, and A. Potapov, Eds. Cham: Springer
International Publishing, 2015, pp. 142–151. [Online]. Available:
https://doi.org/10.1007%2F978-3-319-21365-1_15

[12] S. Levine, “Reinforcement learning and control as probabilistic
inference: Tutorial and review,” Preprint at arXiv, 2018, article
on a preprint server or other repository. [Online]. Available:
http://arxiv.org/abs/1805.00909

141

https://ojs.aaai.org/index.php/aimagazine/article/view/2744
https://ojs.aaai.org/index.php/aimagazine/article/view/2744
http://jmlr.org/papers/v14/hoffman13a.html
https://www.microsoft.com/en-us/research/publication/divergence-measures-and-message-passing/
https://www.microsoft.com/en-us/research/publication/divergence-measures-and-message-passing/
https://www.microsoft.com/en-us/research/publication/divergence-measures-and-message-passing/
https://www.microsoft.com/en-us/research/publication/divergence-measures-and-message-passing/
https://doi.org/10.1007%2F978-3-319-21365-1_15
http://arxiv.org/abs/1805.00909

References

[13] E. Bingham, J. P. Chen, M. Jankowiak, F. Obermeyer, N. Pradhan,
T. Karaletsos, R. Singh, P. A. Szerlip, P. Horsfall, and N. D. Goodman,
“Pyro: Deep universal probabilistic programming,” J. Mach. Learn. Res.,
vol. 20, pp. 28:1–28:6, 2019, article in a periodical. [Online]. Available:
http://jmlr.org/papers/v20/18-403.html

[14] M. R. Damgaard, “probmind,” Jan. 2022. [Online]. Available:
https://doi.org/10.5281/zenodo.5841292

[15] S. Thrun, W. Burgard, and D. Fox, Probabilistic robotics., ser. Intelligent
robotics and autonomous agents. MIT Press, 2005.

142

http://jmlr.org/papers/v20/18-403.html
https://doi.org/10.5281/zenodo.5841292

Paper D

Escaping Local Minima Via Appraisal Driven
Responses

Malte Rørmose Damgaard, Rasmus Pedersen, and Thomas Bak

The paper has been submitted for journal publication and has been
published as a preprint in

Preprints, no. 2022110511, 2022.
https://doi.org/10.20944/preprints202211.0511.v1

https://doi.org/10.20944/preprints202211.0511.v1

© 2022 by the authors
The layout has been revised.

D.1. Introduction

Abstract

Inspired by the reflective and deliberative control mechanisms used in cognitive ar-
chitectures such as SOAR and Sigma, we propose an alternative decision mechanism
driven by architectural appraisals allowing robots to overcome impasses. The pre-
sented work builds on and improves on our previous work on a generally applicable
decision mechanism with roots in the Standard Model of the Mind and the Gen-
eralized Cognitive Hour-glass Model. The proposed decision mechanism provides
automatic context-dependent switching between exploration-oriented, goal-oriented,
and backtracking behavior, allowing a robot to overcome impasses. A simulation
study of two applications utilizing the proposed decision mechanism is presented
demonstrating the applicability of the proposed decision mechanism.

D.1 Introduction

Robotic technology has immense potential to change our daily life. In the in-
dustry, human-robot co-working is envisioned to play a key role in the next
industrial revolution known as Industry 5.0 [1]. In healthcare robots also see
increasing usage e.g. in personalized healthcare for providing assistance to
patients, and the elderly [2, 3], and during the COVID-19 pandemic, robots
were deployed to disinfect common spaces, such as supermarkets and hospi-
tals [4]. Common to the above is the increased need for autonomous robots
that can safely and naturally interact with humans while solving different
abstractly and/or vaguely defined tasks. Due to the uncertainties in such
problems, pure goal-driven problem-solving architectures will often end up
in local minima in the problem formulation also known as impasses. I.e.,
situations where the information or action selection strategy currently avail-
able to the robot is insufficient to solve the task. Thus, one core faculty of
such robotic systems should be the ability to reflect on the current situation
to timely deviate from one action selection strategy to try out other strategies
or to retrieve new information about the task.

The next generation of cognitive architectures, based on modern machine
learning techniques, has the potential to revolutionize robotics by allowing
roboticists to develop such autonomous systems easily. In previous work,
we proposed the Generalized Cognitive Hour-glass Model constituting a
framework for developing cognitive architectures by composing them from
generally applicable probabilistic programming idioms over which power-
ful general algorithms can perform inference [5]. The idiomatic approach to
composing cognitive architectures, encouraged by this framework, allows re-
searchers and practitioners to more easily cooperate by mixing and matching
probabilistic programming idioms developed by others while being able to
handcraft parts of a system for which current solutions do not suffice.

145

Paper D.

In another work, we proposed one such probabilistic programming id-
iom based on the "standard model of the mind" [6] for the task of Active
Knowledge Search (AKS) in unknown environments [7]. This idiom defines
a probabilistic decision process that encourages a robot to take actions to dis-
cover, i.e. obtain information about, its environment based purely on notions
of progress and information gain while avoiding constraint violations. Sim-
ulations applying this idiom to the specific problem of active mapping and
robot exploration showed promising results. However, limitations were also
identified. The main limitation was that in specific situations the simulated
robot would get "stuck" taking repetitive actions yielding no new information
about the environment, thus hindering full exploration of the environment.
As we will discuss in more detail in Section D.4, this is essentially caused by
the fixed strategy for action selection employed by the previous solution.

In the literature related to robot navigation, similar phenomena are com-
monly known as "the local minima issue" [8], "deadlocks" [9], "limit cy-
cles" [10], "infinite loops" [11], "dead ends", "cyclic dead ends", or "trap-
situations" [12]. Like the problem mentioned above, all of these terms refer
to situations in which a fixed strategy for action selection results in no mean-
ingful progress towards a goal state or compared to a measure of optimality.
To resolve these situations solutions proposed by researchers within robotics
usually rely on problem-specific information, e.g. geometric properties, to
detect and/or resolve the impasse. As an example consider the approach
used in [13] where a grid map is defined over the workspace with a counter
attached to each of the cells keeping track of the number of times a given
cell has been visited. Whenever this counter reaches a predefined threshold,
it is registered as a limit cycle. When a limit cycle is detected a temporary
way-point is generated, guiding the robot out of the enclosure causing the
limit cycle. Finally, when the robot gets outside the enclosure, a virtual wall
is generated, ensuring that the robot does not enter the problematic enclosure
again. As another example consider the approach used in [14] where dead-
lock loops are detected based on the periodicity of the distance to the goal.
Whenever a deadlock loop is detected, the distance to the goal is stored, and
a wall-following behavior is initiated until an escape condition has been met.
Similarly, in [15], deadlocks are detected based on a preferred velocity mag-
nitude, the actual velocity magnitude, and the unsigned distance between
robots. Whenever a deadlock is detected a deadlock resolution strategy is
initiated. While the solutions suggested above might work for specific prob-
lems, they do not easily generalize to other problems.

In the literature related to cognitive architectures, similar phenomena in
which an agent is unable to make progress with the information that is cur-
rently available are often referred to as impasses [16, 17]. As we will elaborate
upon in Section D.2 research in cognitive architectures is focused on gen-
erally applicable solutions opposite to the problem-specific solutions com-

146

D.2. Impasses in SOAR and Sigma

monly proposed in the robotics literature. Nevertheless, solutions seem to
follow the same pattern as those proposed by researchers in robotics. First,
systems are made able to detect impasses. Secondly, systems are induced
with some sort of reflective mechanism that based on the detected impasse
can choose appropriate temporary decision strategies until the impasse has
been resolved. However, as we will also elaborate upon in Section D.2 the
approaches taken by some of the most prominent cognitive architectures,
SOAR [16] and Sigma [17], usually requires that controls are abstracted to
symbolic representations that have to be decoded by an extra module exter-
nal to the decision process. Thus, the fine level of control needed within
robotics cannot be accounted for as an intrinsic part of the decision process.

For these reasons, our intention with this paper is to present our recent ef-
forts toward implementing general reflective mechanisms similar to the ones
found in cognitive architectures within the scope of the framework proposed
in [5] in a way that is suitable for robotic applications. The main contributions
of this paper are:

• A description and implementation of a control structure grounded in
stochastic variational inference that is capable of deliberate and reflec-
tive control based on architectural appraisals.

• A demonstration of how such a control structure overcomes the lim-
itations of the probabilistic programming idiom previously proposed
in [7].

• A demonstration of how such general control structure compares to
problem-specific approaches commonly used in robotics.

• A discussion of the time complexity of the proposed control structure.

This paper is organized as follows: Section D.2 reviews how some of
the most prominent cognitive architectures have tackled impasse phenom-
ena. Section D.3 introduces the notation used within this paper. Section D.4
shortly describes the previously proposed probabilistic programming idiom
in more detail together with the impasse phenomenon observed. Modifi-
cations and extensions to the previously proposed idiom are presented in
Section D.5 and Section D.6. Simulation results utilizing the modifications
are provided in Section Section D.7. Section D.8 concludes the paper, and
potential future directions are given in this section.

D.2 Impasses in SOAR and Sigma

Two of the most prominent cognitive architectures, SOAR [16] and Sigma
[17], are both based on the problem space computational model [18], sug-
gesting that problem spaces can be specified in terms of sets of states, S, and

147

Paper D.

O2

O1

O
3

S{0} O2R
ea

ct
iv

e
C

on
tr

ol
D

el
ib

er
at

e
C

on
tr

ol
R

efl
ec

ti
ve

C
on

tr
ol

S{3}

S{2}+

S{2}S{1}

Tie

S{1}
E[O2]

E[O
1]

E[O
3]

O2

O1

O
3

Tie

S{2}
E[O2]

E[O
1]

E[O
3]

O4No-Change

Fig. D.1: Illustration of the tri-level control structure employed by the two cognitive architectures
SOAR [16] and Sigma [17]. For the state at time t = 0, S0, only a single operator is relevant and
a reactive control mechanism thus chooses to effectuate this operator which leads to a new state,
S1. In this new state, S1, multiple operators, O1, O2, O3, are proposed by the reactive control
mechanism. Since no preference exists for these operators a tie impasse is detected, and the
deliberate control mechanism simulates the expected outcome, E (Oi), from effectuating each of
the operators. In this state, S1, the deliberate control mechanism is able to select an operator, O2,
based on preferences for the expected outcome, leading to a new state S2. In S2 a tie impasse
also occurs, however, this time the expected result of applying any of the proposed operators,
O1, O2, O3, results in the next state, S3, being similar to the current state, i.e. S3 = S2. Therefore,
a no-change impasse is detected, and a reflective control mechanism is activated which changes
the current state in a way such that a new operator, O4, can be proposed.

operators, O, and that goals can be reached by knowledge search in such
problem spaces. However, both architectures acknowledge that direct knowl-
edge search might not always be possible e.g., due to insufficient or ambigu-
ous knowledge. Therefore, these architectures implement a nested tri-level
control structure with higher levels activated by the detection of impasses as
illustrated in Fig. D.1 [17]. At the base level, a reactive control mechanism pro-
poses operators relevant to the current state based on available knowledge.
If only one relevant operator is proposed this operator is effectuated. If mul-
tiple relevant operators, O1, ..., Oi are proposed it is detected as a tie impasse
and the deliberative control mechanism can evaluate the expected outcome re-
sulting from applying each of the proposed operators to the current state.
Based on these outcomes the deliberative control mechanism might be able
to settle on one of the relevant operators to effectuate. By controlling how
the expected outcome influences the decision making the deliberative control
mechanism can form sequential, knowledge-driven, or algorithmic behavior.
Finally, whenever the deliberative control mechanism cannot pick a unique op-
erator other types of impasses are detected. The impasses detected depend

148

D.2. Impasses in SOAR and Sigma

on the reason why no operator could be picked. Based on these impasses a
reflective control mechanism can take additional actions in order to solve the
impasse. The actions taken by the reflective control mechanism depend on the
specific impasse detected and can include the generation of alternative sub-
goals, the inclusion of additional information into the problem space, or even
the generation of additional and entirely different problem spaces e.g., to per-
form meta-reasoning. Table D.1 summarizes the different types of impasses
detected by the two cognitive architectures SOAR and Sigma.

Table D.1: Overview of the different types of impasses detected by the two cognitive architecture
SOAR and Sigma.

Impasse SOAR [16] Impasse Sigma [19]

Operator
Tie

Occurs when multiple
operators are proposed
without any preference
being able to select
between them

Tie Occurs when there are
multiple candidate
operators, but available
knowledge is
insufficient to choose
among them.

Operator
Conflict

Occurs when
preferences for two
proposed operators, O1
and O2, indicates that
O1 � O2 and O2 � O1

No-
Change1

Occurs when an
operator is selected but
no state change results.

Operator
No-
Change

An operator remains
selected for consecutive
decision cycles

None Occurs when there are
no candidate operators
for selection.

State
No-
Change

No acceptable
preferences or every
candidate operator also
has a reject preference

1 According to the description given in [19], however, in [17] it is stated that a no-change impasse

occurs "when an operator remains selected for more than one cycle".

To summarize, in these tri-level control structures the reflective control
mechanism uses the deliberative control mechanism as its inner loop which
in turn uses the reactive control mechanism as its own inner loop. This ap-
proach assumes that there a priori exists a discrete/symbolic set of opera-
tors that re-actively can be either sorted out or proposed for further eval-
uation, thereby making detection of the impasses straightforward without
any problem-specific knowledge. This approach has some clear benefits with

149

Paper D.

respect to attention, i.e., the effective allocation of limited (computational)
resources. Since each of the layers focuses computations on the information
actually needed to solve a given problem in a specific context/state a lot of
computations are saved. This is especially true when the approach is cou-
pled with Appraisal Theory [20, 21], such that the evaluations of operators
initiated by the deliberative control mechanism are grounded in a limited set
of appraisals variables. However, the approach also raises some difficulties
in robotics, where a lot of the low-level control is more naturally described
by means of continuous variables. As an example, consider the position con-
trol of a robot. In SOAR and Sigma, such controls are usually abstracted to
symbolic representations such as "walk towards target object", "run towards
target object", "pick up target object" or "walk towards random object" [17].
These symbolic representations then have to be decoded by an extra module
external to the decision process, called the motor buffer, before they can be
manifested in the environment. This layer of abstraction makes it hard to
incorporate uncertainties resulting from low-level control into the decision
process, which in the end will result in less optimal responses being picked.

D.3 Preliminaries

As in paper [7] we use the following notation. X is used to denote observed
variables, Z is used to denote latent variables, and C is used to denote a
collection of both types of variables. A superscript in curly brackets is used
to indicate the index of a variable. For time indexes, the set of indexes of
future variables is indicated as {t}+ =

{
t + 1, ..., t + T

}
. Similarly, the set of

indexes of past variables is indicated as {t}− = {t− T, ..., t}. Furthermore,
within this paper the following approximate ”probabilistic logic”

p(z ∈ z ∨ y ∈ y) def
= p(z ∈ z) + p(y ∈ y)− p(z ∈ z)p(y ∈ y)

p(z ∈ z ∧ y ∈ y) def
= p(z ∈ z) · p(y ∈ y)

p

(
I∧

i=1

z{i} ∈ z{i}
)

def
=

I

∏
i=1

p
(

z{i} ∈ z{i}
)

is used, where ∧ and ∨ denotes an approximate and and or operation,
respectively. These approximate ”probabilistic logic” rules constitute a prob-
abilistic intersection and union with an independence assumption implied,
respectively.

150

D.4. Problem elaboration

D.4 Problem elaboration

As stated in Section D.1, the probabilistic programming idiom proposed in [7]
defines a probabilistic decision process for Active Knowledge Search in un-
known environments, based on the "standard model of the mind" [6]. This
was done by first defining a probabilistic model relating the previous con-

tent of working memory, Z{t}
−

WM , with the future content, C{t}
+

WM , while taking
variables stored in the long-term memory, ZLTM, into account. In [7], the
working memory was further sub-divided into variables relating to motoric
actions i.e., the motor buffer, ZMb, variables related to the perceptual buffer, ZPb,
State variables, Zs, representing the state of the agent itself, the environment,

and decision variables C{t}
+

D . From this a probabilistic decision model with the
factorization

p
(

C{t}
+

WM\b, Z{t−1}+
Mb , Z{t}

+

Pb |Z
{t}−
WM\b, ZLTM

)
(D.1)

de f
=

[
t+T

∏
τ=t+2

p
(

C{τ}D |Z{τ}s , Z{t}
−

WM\b, ZLTM

)
p
(

Z{τ}s |Z{τ−1}
s , Z{τ−1}

Mb

)
p
(

Z{τ−1}
Mb

)]

· p
(

C{t+1}
D |Z{t+1}

s , Z{t}
−

WM\b, ZLTM

)
p
(

Z{t+1}
s |Z{t}s , Z{t}Mb

)
p
(

Z{t}Mb

)

were derived, where ZWM\b = ZWM\ {ZMb, ZPb}. Inspired by the work on
emotions in [22], a subset of the decision variables, xA, was denoted attention
variables. The purpose of these attention variables is to control how the decision
process is influenced by the other decision variables: progress, zp, information
gain, zi, and constraints, zc, hereafter referred to as appraisal variables. In [7]
this was done via the fixed relation

p
(

x{τ}A |Z
{τ}
s , Z{t}

−

WM\b, ZLTM

)
(D.2)

= Bernoulli
(

p
([

z{τ}p = 1∨ z{τ}i = 1
]
∧ z{τ}c = 1

∣∣∣ Z{τ}s , Z{t}
−

WM\b, ZLTM

))

which basically states that during the decision process attention should be
given to future states that yield progress or new information and does not
violate constraints. Having defined the model in Eq. (D.1) and the relation
in Eq. (D.2), Stochastic Variational Inference was used to approximate the
posterior over optimal future motoric actions given the attention variables,
i.e.,

q
φ
{t−1}+ ,∗
Mb

(
Z{t−1}+

Mb

)
≈ p

(
Z{t−1}+

Mb |x{t}
+

A = 1
)

(D.3)

The above was implemented as an abstract class utilizing the probabilistic
programming language Pyro [23], thereby ensuring that the probabilistic pro-
gramming idiom can be reused in multiple applications by implementing a
few abstract methods defined by the abstract class.

151

Paper D.

5 6 7 8 9 10 11 12
6

7

8

9

10

11

Lidar Range at Z{t}
+ ,∗

s Z{0:t}
s Z{t}

+ ,{ia}
s E

p
(

Z{t}s

)
[

Z{t}s

]
Z{t}

+ ,∗
s

Fig. D.2: A simulated trajectory of using the method presented in [7] for the floor plan with
ID "0a1b29dba355df2ab02630133187bfab" from the HouseExpo dataset [24]. The robot keeps
driving around in the same room, without exploring the rest of its environment.

To investigate the performance of the idiom, it was used to implement an
algorithm for autonomous robot exploration which was simulated on the full
HouseExpo dataset [24], containing 35126 different floor plans. From these
simulations, one of the observations was that the robot sometimes would end
up taking repetitive actions purely driven by the progress appraisal variable.
Whereby, the robot would not fully explore its environment as illustrated in
Fig. D.2. In other words, the robot ended up at an impasse. It was further
concluded that an alternative to the fixed decision strategy given by Eq. (D.2)
would be needed to overcome this problem.

D.5 Overall Idea

Even though both SOAR and Sigma are said to implement a tri-level con-
trol structure, the distinction between the deliberative control and the reflective
control mechanisms seems architectural rather than conceptual. By that, we
mean that they both simply comprise a specific architectural response to sim-
ilar architectural stimuli, i.e., the detection of impasses. When we further
consider the statement:

"Work in Sigma on appraisal, and its relationship to attention, has led to the
conclusion that the detection of impasses should itself be considered as a form of

appraisal" [17].

It hints toward the possibility that similar functionality might be obtained
from an architecturally simpler control structure. Based on this, and to over-

152

D.5. Overall Idea

Deliberate
Attention Evaluations

Z{t}s

q{2}φ

(
Z{t}Mb

)q
{1}

φ

(
Z
{t}

Mb

)

q {3}φ
(
Z {t}Mb

)

Z{t+1}
s

q{
2}

φ

(
Z
{t+1}
Mb

)

A
ff

ec
ti

ve
R

es
po

ns
es

D
el

ib
er

at
e

A
tt

en
ti

on
Pr

op
os

al

Infer the motor
buffer posterior:

q{i}φ

(
Z{t−1}+

Mb

)
≈

p
(

Z{t−1}+
Mb |x{i}A = 1

)

Evaluate the
Expected Appraisals:
E

CD∼p
(

CD|Z{t−1}+
Mb

)
q{i}φ

(
Z{t−1}+

Mb

)[CD]

Distal Access
p
(

Z{j}
LTM

)

p
(

Z{τ},{j}
Pb |Z{τ}s

)
p
(

Z{τ−1}
Mb |Z{τ−1}

s

)

p
(

Z{τ},{j}
Pb |Z{τ}s , Z{j}

LTM

)

p
(

Z{τ}s |Z{τ−1}
s , Z{τ−1}

Mb

)

El
em

en
ta

ry
C

og
ni

ti
ve

O
pe

ra
ti

on
s
∼
∼

1s

D
is

ta
lA

cc
es

s
∼
∼

10
m

s

Z{t+1}
s+

q {3}
φ

(
Z {t+1}

Mb

)
)

q{1}φ

(
Z{t+1}

Mb

)

Fig. D.3: Illustration of the proposed approach with an indication of where we consider each
element of the approach to fit into the approximate timescales at which humans make decisions
set forward by Allen Newell in [25].

come the limitations of the approach described in Section D.2, we propose an
alternative approach centered around appraisals. As illustrated in Fig. D.3,
our proposal is to have a control structure consisting of a single architectural
layer with decisions being the result of three main steps:

153

Paper D.

• Deliberate Attention Proposal

• Deliberate Attention Evaluations

• Affective Responses

Considering the tri-level control structure described in Section D.2 this re-
sembles a combination of the deliberate and reflective mechanism. The main
difference is that here attention mechanisms for choosing motoric actions
similar to Eq. (D.2) are proposed for evaluation rather than operators for
which the outcome is known a priori. Each of the proposed deliberate atten-
tion mechanisms might consider a subset of and/or special combinations and
weightings of the appraisal variables available to the robot. Thereby, promot-
ing different behaviors. The posterior distributions describing the specific
motoric actions corresponding to these proposed deliberate attention mech-
anisms first become available to the decision process as part of the Deliberate
Attention Evaluations step. To obtain the posterior over motoric actions the
Deliberate Attention Evaluations step follows the same steps described in Sec-
tion D.4 for each of the attention mechanisms proposed by the Deliberate
Attention Proposal step. Besides inferring the motoric action posterior the De-
liberate Attention Evaluations step also evaluates what the expected appraisals
would be from effectuating each of them. Based on the expected appraisals
of each of the motoric action posteriors the last step in the decision process
can initiate different affective responses, such as effectuating one of the action
posteriors or proposing additional attention mechanisms to evaluate. Thus,
instead of treating the detection of and responses to impasses as distinctive
architectural mechanisms, we propose that this is treated as affective responses
to appraisals evaluated during the Deliberate Attention Evaluations step. While
the proposed approach conceptually does support deliberate and reflective
responses via the affective responses, it does not currently have support for
reactive responses, since all motoric actions have to be inferred from the de-
liberate attention mechanisms. However, in Section D.8 we will discuss how
we imagine that reactive responses could be incorporated into the control
structure. Furthermore, modern probabilistic programs such as Pyro [23]
can combine stochastic variational inference with enumeration to infer the
motoric action posterior. Thereby, making it possible to combine operators
represented by both discrete/symbolic and continuous variables in the pro-
posed control structure.

D.6 Idiom Modifications and Extensions

To test the approach proposed in Section D.5 several modifications and ex-
tensions were made to the probabilistic programming idiom proposed in [7].

154

D.6. Idiom Modifications and Extensions

This includes additional appraisal variables, the possibility of adding and
using additional deliberate attention mechanisms, together with an imple-
mentation of simple mechanisms for deliberate attention proposal and affective
responses. In order to make the implementation reusable in the spirit of the
framework presented in [5], all of this is implemented as a series of abstract
python classes each constituting a probabilistic programming idiom available
at [26].

D.6.1 Additional Appraisal Variables

Besides the progress, zp, information gain, zi, and constraints, zc, appraisal vari-
ables defined in [7], a couple of new appraisal variables has been imple-
mented. The first was the accummulated constraints appraisal,

p
(

zAc = 1
∣∣∣Z{t+1:T}

s , Z{t}
−

WM\b, ZLTM

)
(D.4)

= Bernoulli

p

T∧

τ=t+1

z{τ}c = 1

∣∣∣∣∣∣
Z{t+1:T}

s , Z{t}
−

WM\b, ZLTM

 ,

which was implemented due to a need to check constraint violations of a full
state trajectory rather than at a single state. The second originated from a
need to be able to define desirable/goal states that a robot should seek to
attain. First, we approximate the KL-divergence between a desirable state,
Z∗s , and the state, Z{τ}s , after effectuating the motoric action, Z{τ−1}

Mb , as

DKL

[
p (Z∗s) ||p

(
Z{τ}s |Z{τ−1}

s , Z{τ−1}
Mb

)]

= E
Ẑ{τ}s

log

p
(

Z{τ}s = Ẑ{τ}s |Z{τ−1}
s , Z{τ−1}

Mb

)

p
(

Z∗s = Ẑ{τ}s

)

≈ 1
I

I

∑
i=1

log

(
p
(

Z∗s = Ẑ{τ},{i}s

))

−log
(

p
(

Z{τ}s = Ẑ{τ},{i}s |Z{τ−1}
s , Z{τ−1}

Mb

))

 (D.5)

≈ ReLu
(

log
(

p
(

Z∗s = Ẑ{τ}s

))
− log

(
p
(

Z{τ}s = Ẑ{τ}s |Z{τ−1}
s , Z{τ−1}

Mb

)))

def
= DZ∗s

(
Ẑ{τ}s

)
.

Inspired by the optimality variable defined in [27] we then define the desir-
ability appraisal, z{τ}d,Z∗s

, as

p
(

z{τ}d,Z∗s
= 1

∣∣∣Z{t+1:T}
s = Ẑ{t+1:T}

s , Z{t}
−

WM\b, ZLTM

)
(D.6)

155

Paper D.

=

0, 0 ; if p

zAc = 1

∣∣∣∣∣∣
Z{t+1:T}

s ,

Z{t}
−

WM\b, ZLTM

 < 1

Bernoulli
(
−e−σd ·DZ∗s

(
Ẑ{τ}s

))
; else

where the subscript Z∗s in z{τ}d,Z∗s
is used to denote the dependency on p (Z∗s),

and σd is a scaling factor. Equation (D.6) defines a pseudo probability for
which states most similar to the desirable state, Z∗s , has the highest proba-
bility, and states that are less similar have an exponentially lower probabil-
ity, while states resulting from trajectories that violate constraints have zero
probability. The dependency on the accummulated constraint appraisal was
introduced to aid in overcoming a small probability of constraint violation
observed in [7]. For the same reason the progress, zp, and information gain, zi,
appraisals has also been modified as follows

p
(

z{τ}i = 1
∣∣∣Z{t+1:T}

s , Z{t}
−

WM\b, ZLTM

)

=

0, 0 ; if p

zAc = 1

∣∣∣∣∣∣
Z{t+1:T}

s ,

Z{t}
−

WM\b, ZLTM

 < 1

p

z{τ}

ĩ
= 1

∣∣∣∣∣∣
Z{t+1:T}

s ,

Z{t}
−

WM\b, ZLTM

 ; else

p
(

z{τ}p = 1
∣∣∣Z{t+1:T}

s = Ẑ{t+1:T}
s , Z{t}

−

WM\b, ZLTM

)

=

0, 0 ; if p

zAc = 1

∣∣∣∣∣∣
Z{t+1:T}

s ,

Z{t}
−

WM\b, ZLTM

 < 1

p

z{τ}p̃ = 1

∣∣∣∣∣∣
Z{t+1:T}

s ,

Z{t}
−

WM\b, ZLTM

 ; else

where z p̃ and zĩ are the progress, zp, and information gain, zi, appraisals as
defined in [7].

D.6.2 Deliberate Attention mechanisms

Based on the appraisals defined in Section D.6.1 five different deliberate at-
tention mechanisms have been implemented. All these can be defined as

p
(

x{τ}A |Z
{t+1:T}
s , Z{t}

−

WM\b, ZLTM

)

= Bernoulli
(

p
(

Φ(τ)
∣∣∣Z{t+1:T}

s , Z{t}
−

WM\b, ZLTM

))

156

D.6. Idiom Modifications and Extensions

where Φ(τ) defines the logic for combining appraisals as in Table D.2. Each
of these deliberate attention mechanisms promotes different behaviors.

Table D.2: Definitions of Φ(τ) used for each of the implemented deliberate attention mecha-
nisms.

Deliberate Attention
Mechanism Φ(τ) for

τ ∈
[t + 1; T − 1]

Φ(T) for τ = T

ConstraintAvoidance
- CA

zAc = 1 zAc = 1

StateReach - SR(Z∗s) zAc = 1

zAc = 1 ; P(zAc = 1) < 1

z{T}d,Z∗s
= 1 ; else

StateReachWithProgress
- SRP(Z∗s)

zAc = 1

zAc = 1 ; P(zAc = 1) < 1

z{T}d,Z∗s
= 1∧ z{T}p = 1 ; else

StateReachWithExplore
- SRE(Z∗s)

zAc = 1

zAc = 1 ; P(zAc = 1) < 1

z{T}d,Z∗s
= 1∧ z{T}i = 1 ; else

Explore - E zAc = 1

{
zAc = 1 ; P(zAc = 1) < 1

z{T}i = 1 ; else

ExploreWithProgress
- EP

zAc = 1

{
zAc = 1 ; P(zAc = 1) < 1

z{T}i = 1∧ z{T}p = 1 ; else

D.6.3 Deliberate Attention Proposal And Affective Responses

Based on the deliberate attention mechanisms defined in Section D.6.2, an affec-
tive response mechanism has been implemented with the purpose of making
a robot effectively explore its environment and possibly navigate towards a
goal state, Z∗s , if defined. This affective response mechanism can be sub-divided
into three parts responsible for different types of behaviors with pseudo-code
given in Algorithm D.1, Algorithm D.2, and Algorithm D.3. Algorithm D.1
yields behavior that strives for the goal state. Algorithm D.2 yields behav-
ior that strives to obtain new information about the environment. Finally,
Algorithm D.3 yields behavior that strives to backtrack. The combined affec-
tive response only depends on the appraisals defined in Section D.6.1 and [7]
which requires no problem-specific information, thereby, making this affec-

157

Paper D.

Algorithm D.1:
"Go-to-Goal"

Algorithm D.2:
"Explore"

Algorithm D.3:
"Backtrack"

No-Change Impasse
No-Change Impasse

or No-Infomation

StateReach yields a
significant amount of

information

New information can
be obtained

DAM{t−1}

=E∨ EP

=SR(Z̃s) for Z̃s ∈ PBT=SR (Z∗s) ∨ SRP (Z∗s) ∨ SRE (Z∗s)

Fig. D.4: Overview of the implemented affective response mechanism sub-divided into 3 algo-
rithms. Dotted lines indicate what algorithm is activated based on the which deliberate attention
mechanism, DAM{t−1}, resulted in the effectuation of a motoric action in the last time step. Solid
lines indicate a reflective response resulting in a direct transition between the algorithms. Each
direct transition requires a new deliberate attention proposal and deliberate attention evaluation. A
dashed line indicates an indirect transition between the algorithms which takes effect in the next
decision cycle. Z∗s denotes a goal state, and PBT denotes a path of previous states to backtrack.

tive response mechanism general and reusable. As illustrated in Fig. D.4,
each part of the affective response mechanism is activated either as a reflective
response to another part of the affective response mechanism or based on the
deliberate attention mechanism that caused a motoric action to be effectuated in
the last decision cycle. E.g. if the deliberate attention mechanism "Explore (E)"

caused the effectuation of q{E}φ

(
Z{t−1}

Mb

)
at time t − 1, then Algorithm D.2

will be activated first at time t. In cases where the motoric action was caused
by the deliberate attention mechanism "ConstraintAvoidance (CA)", the same
algorithm is simply activated again. The intuition behind this affective re-
sponse mechanism is as follows. If a goal state is known and if it is possible
to attain it with the current knowledge directly, this should have first prior-
ity. If this is not possible new information should be sought after until the
goal state can be attained. Finally, if in a state where new information can-
not be obtained, the system should be able to bring itself back to a previous
state in which new information can be obtained via backtracking. To support
this affective response mechanism a deliberate attention proposal mechanism has
been implemented that simply proposes the deliberate attention mechanisms re-
quired for each part of the affective response mechanism. When combined this
exemplifies how both deliberate and reflective responses can be implemented
grounded in the appraisals defined in Section D.6.2. In particular, notice that
something similar to the "no-change" impasse in SOAR and Sigma is ob-

158

D.7. Results

tained on the basis of the "Progress" appraisal in both Algorithm D.1 and
Algorithm D.2.

D.7 Results

To test the effectiveness of the proposed approach two different simulation
studies were performed. Both of these were done utilizing the Pseudo-SLAM
simulator [24], and using the same implementation of abstract methods for
the probabilistic programming idiom that was used in [7]. The exact pa-
rameters used for each of these simulations can be found at [26], which also
contains scripts to replicate each of the experiments.

D.7.1 Pure Exploration

0 100 200 300 400 500 600 700 800

0

50

100

150

200

250

Map Index [n]

A
re

a
Ex

pl
or

ed
[m

2]

AKS not done
AR not done
AR small not done
True
95% True
AKS smoothed
AR smoothed
AR small smoothed

Fig. D.5: The area that the robot explored in each of the simulations. The indices of the 784
floorplans have been sorted by the true area of the map in ascending order. "AKS" shows results
from using the method presented in [7]. "AR" shows results from using the affective response
mechanism from Section D.6.3. The "smoothed" curves show a moving average with a window
size of 100 and shifted 50 indexes. The "not done" scatter shows the exact area explored by the
simulations in which the robot did not manage to explore 95% of the map or more.

The first simulation study was done in order to compare with results
from [7]. In [7] we tested the exploration capability of the proposed algo-
rithm by simulating it in 35126 floor plans from the HouseExpo dataset [24].
However, (1) many of these were so small that they were fully discovered in
a few iterations, and (2) on the other end of the spectrum some of the floor

159

Paper D.

plans were simply too big to be fully discovered within the maximum of 200
time-steps that was allowed in each simulation. Furthermore, (3) the prob-
lems of the previous solution discussed in Section D.4 are only noticeable
in floor plans with more than one room. Additionally, (4) it was found that
for some of the floor plans openings between the rooms were physically too
small for the robot to squeeze through. Thus, for the purpose of efficiently
testing the approach proposed in this paper we selected a smaller subset of
the HouseExpo dataset satisfying the following criteria.

1. The floor plans should have a bounding box larger than 100 m2 to avoid
spending time on simulations redundant due to (1).

2. The floor plans should be fully discovered in the experiment from [7],
in order to minimize the influence from (2) and (4).

3. The floor plans should contain more than 3 rooms in order to provoke
(3).

Based on this, a subset of the HouseExpo dataset consisting of 784 floor plans
where selected. Fig. D.5 and Table D.3 show the results of simulating our old
approach, "AKS", again as well as the approach proposed within this paper,
"AR". The simulations were performed with the same environmental and
robot settings used in [7]. As no goal state was specified, only Algorithm D.2
and Algorithm D.3 were effectively used to drive the behavior of the "AR"
method in these simulations. For each floor plan a random initial position
where selected, and this initial position were utilized for both simulations.
Notice, that even though one of the criteria for the selection of the subset
of floor plans was that it should be fully explored by "AKS" in the experi-
ment in [7], Fig. D.5 indicates that not all floor plans where fully explored by
"AKS" in this new round of simulations. This is simply due to a difference
in initial positions between simulations and illustrates a lack of robustness of
"AKS". From Fig. D.5 it might seem that "AR" does not perform better than
"AKS" for small floor plans. By visual inspection of the simulation trajecto-
ries, it was found that the reason for "AR" not being able to explore some
floor plans fully was due to a lesser willingness to violate constraints com-
pared to "AKS". This can be verified from the row "Collision pr. Timesteps"
in Table D.3. This is especially pronounced in small floor plans, where the
openings between rooms tend to be smaller. To further verify that the lack of
exploration by "AR" is indeed due to its unwillingness to violate constraints,
the third series of simulations denoted "AR small" was performed. In these
simulations, the size of the robot, the uncertainty in its initial position, and
the assumed motion uncertainty was decreased. By changing these parame-
ters, it becomes easier for the robot to take actions through narrow openings
without constraint violations. From Fig. D.5 it is seen that "AR small" fully
explores nearly all of the small floor plans, and performs similarly to "AR"

160

D.7. Results

Table D.3: Comparison of our approach with results for 6 different methods presented in [8].

Metric AKS RGS RGS small

Maps Not Fully Explored 484 331 314

Mean Exploration
Percentage

84,9% 87,3% 90,7%

Mean percentage
explored for unfinished

maps

78,6% 76,7% 84,4%

Maps with Collisions 18 0 0

Collisions 19 0 0

Collision pr. Timesteps 0,14‰ 0,00‰ 0,00‰

for all other maps as expected. As the floor plans get bigger, the ability of
all three methods to fully explore the floor plans to a greater extent depends
on initial conditions, rather than the ability of the methods to escape local
minima. As a result, from Fig. D.5 it is observed that as the floor plans get
larger all methods perform very similarly. Nevertheless, from Table D.3 it is
evident that "AR" is indeed better for overcoming local minima and making
the robot efficiently explore its environment.

D.7.2 Goal Seeking

The second series of simulations were performed in order to compare the pro-
posed approach with more problem-specific approaches from [8]. To do so
three of the test environments from [8] were recreated in the Pseudo-SLAM
simulator as illustrated in Fig. D.6. These three environments are designed
specifically with the purpose of causing local minima, and as such are perfect
for testing the proposed approach. Since the approach proposed in this paper
is based on probabilistic methods, some degree of variations in results should
be expected. Therefore, 100 simulations were performed for each of these en-
vironments with the same initial conditions and goal state as in [8]. Since
a goal state where specified for these simulations, the full capabilities of the
affective response mechanism described in Section D.6.3 were effectively in use.
Table D.4 summarizes the results from these simulations and compares them
to the results from [8]. In all of the simulations, the robot managed to reach
the goal state, thereby substantiating the ability of the proposed approach to
escaping local minima. From Table D.4 it is furthermore seen that the "AR"
method is better than any of the problem-specific methods in all three envi-
ronments when only considering the minimum traveled distance. However,

161

Paper D.

Table D.4: The traveled distance in 3 different environments utilizing our approach, AR, com-
pared with results for 6 other methods presented in [8]. As AR is based on probabilistic methods
we ran 100 simulations and present the mean of the results together with the minimum and max-
imum values for each of the environments. The best result for each environment is highlighted
with bold text.

Environment C-shaped Double
U-shaped

V-shaped Average

Random1 55 97 38 63,33

Reflected
Virtual
Target1

45 88 27 53,33

Global Path
Backtracking1

59 100 29 62,67

Half Path
Backtracking1

101 110 31 80,67

Local Path
Backtracking1

59 96 28 61

Wall-
Following1

1915 466 111 830,67

AR 45,34
[39,38-73,97]

47,51
[28,07-72,56]

52,91
[22,91-114,98]

48,59

1 Results from Table 2 in [8].

when considering the average distance for the "V-shape" environment it is
nearly twice that of the best method from [8], i.e., "Reflected Virtual Target".
Considering the first column of Fig. D.6 it is clear that the robot generally
can take the two paths indicated with green and yellow colors. We suspect
that the better average performance of the "Reflected Virtual Target" method
in the "V-shape" environment is caused by an initial condition that makes the
problem-specific methods favor paths similar to the one marked with yellow
in Fig. D.6. The better performance achieved by such preference would not
necessarily lead to better performance in general environments/problems,
and a more reasonable comparison would probably be obtained by some
variations in the initial conditions and/or goal state. As such we do not
consider this an inauspicious characteristic of the "AR" approach.

162

D.7. Results

0 10 20
0

5

10

y-
co

or
di

na
te

[m
]

V shape

0 10 20
0

5

10

C shape

0 10 20
0

5

10

t
∈

[0
;3

0]

double U Shape

0 10 20
0

5

10

y-
co

or
di

na
te

[m
]

0 10 20
0

5

10

0 10 20
0

5

10

t
∈

[1
0;

60
]

0 10 20
0

5

10

y-
co

or
di

na
te

[m
]

0 10 20
0

5

10

0 10 20
0

5

10

t
∈

[5
0;

10
0]

0 10 20
0

5

10

x-coordinate [m]

y-
co

or
di

na
te

[m
]

0 10 20
0

5

10

x-coordinate [m]
0 10 20

0

5

10

x-coordinate [m]

t
∈

[T
m

ax
−

50
;T

m
ax

]

20 40 60 80 100
0

5

10

15

Travelled Distance[m]

C
ou

nt
[n

]

40 50 60 70
0

10

20

30

40

Travelled Distance[m]
40 60

0

5

10

15

Travelled Distance[m]

Trajectories Goal Zone Initial Position

Fig. D.6: The robot trajectories in each of the 100 simulations for each of the three environments:
"V shape", "C shape", and "double U shape". Each of the trajectories is color-coded according to
the length of the trajectory. Tmax = 308, Tmax = 191, and Tmax = 208 for "V shape", "C shape",
and "double U shape", respectively.

163

Paper D.

D.7.3 Timings

A
ff

ec
ti

ve
R

es
po

ns
es

D
el

ib
er

at
e

A
tt

en
ti

on
Pr

op
os

al

[160; 178] ns[6; 11] ms

[0, 52; 1, 26] s [432; 582] ms

[1, 70; 1, 78] s

(a) Apple M1

A
ff

ec
ti

ve
R

es
po

ns
es

D
el

ib
er

at
e

A
tt

en
ti

on
Pr

op
os

al

[86; 190] ns[6; 11] ms

[0, 57; 1, 54] s [451; 641] ms

[1, 96; 2, 16] s

(b) Intel 12600k@5.1GHz

Fig. D.7: Timings for the main steps of the proposed solution running on two different CPUs,
for the deliberate attention mechanism and the affective response mechanism presented in Sec-
tion D.6.2 and Section D.6.3, respectively, and for the abstract method implementations specifi-
cally used for the simulations in Section D.7.1 and Section D.7.2.

One of the most critical features of any robotics system is the satisfaction
of the real-time constraint, i.e., the ability of the system to make decisions on
time scales appropriate to the expected behavior of the system. To investi-
gate the computational time required for the proposed approach the average
computation times were measured on two different CPUs. The results can
be seen in Fig. D.7. Notice, that these timings are based on a relatively slow
python implementation and are uniquely tied to the specific use-case pre-
sented in Section D.7.1 and Section D.7.2. As such, they should not be seen
as the definitive timings that can be obtained utilizing the method, but rather
as indicative of roughly what can be expected by the approach. Neverthe-
less, the timings given in Fig. D.7 would probably be too slow or jerky for
most real-world robot applications. As should be clear from Fig. D.7 the
most time-consuming part of the approach with the current implementation
is the inference part of the deliberate attention evaluations step. As such, further
optimization of this step would be needed to make the approach usable.

D.8 Discussion

The intention of the presented efforts was to implement general reflective
mechanisms suitable for robotic applications with an outset in previous work.
In Section D.7.1 and Section D.7.2 we demonstrate that the proposed method
functionally improves upon our previous proposed probabilistic program-
ming idiom and that it at least can perform as well as, if not better than,
problem-specific methods. However, in Section D.7.3 it was concluded that

164

D.8. Discussion

the current implementation would probably be too slow and jerky for real-
world robot applications. The approach presented within this paper is sup-
posed to be generally applicable and reusable, making it hard to assess how
much the current implementation should be improved to be applicable to
real-world robot applications since this would of course depend on each spe-
cific use case. One way to asses this anyway could be by comparing it to
Allan Newell’s analysis of the time scales of human cognition [25]. This is
reasonable because the ultimate end goal of our efforts is to make robots as
capable as humans.

In a single cycle of deliberate attention proposal, deliberate attention evaluation
and affective response, access to parts of cognition distal to the decision process
have to have occurred multiple times in order to infer the motor buffer pos-
teriors. This places the proposed approach somewhere above the "biological
band" of Newell’s analysis said to be on the order of ∼ 10 ms. The next step
up in Newell’s analysis is to the "cognitive band" starting at the level of delib-
erate acts in the order of ∼ 100 ms. However, the proposed approach does not
merely comprise deliberation, i.e., choosing one known operation over other
known operators by bringing available knowledge to bear, since operators are
constructed for the to-be-produced response based on the proposed deliber-
ate attention mechanisms. Therefore, the proposed approach also belongs
somewhere above the time scales of deliberate acts. At the other end of the
"cognitive band", we have unit tasks in the order of ∼ 10 s. At the time scale of
unit tasks, operations should be composed to deal with tasks. By design, the
specific affective response presented in Section D.6.3 can only deliver simple
responses in one decision cycle and not a plan of responses to solve complete
tasks. This leaves us at the time scales of elementary cognitive operations or
immediate external cognitive behavior at ∼ 1 s. According to Newell’s analysis,
such elementary reactions often take ∼ 2− 3 s, however, with learning from
experience, simplification, preparation, and carefully shaped anticipation, it
can take less than ∼ 0, 5 s. By design, the specific affective response presented
in Section D.6.3 can deliver simple responses within 1 to 3 full cycles of delib-
erate attention proposal, deliberate attention evaluation and affective response. With
the timings in Fig. D.7a a response thus takes anywhere from ∼ 1.7 s up to
at most ∼ 5.34 s in the case of two impasses. Thus, to arrive at the upper end
of elementary reactions, the computational times of the current implemen-
tation would have to be improved with a factor of ∼ 2− 3. Obtaining such
improvements does not seem implausible via code optimizations, however,
it brings us nowhere near the lower end of ∼ 0, 5 s. This begs the question:
can the proposed approach support the necessary machinery to learn from
experience in order to deliver responses at the lower end of ∼ 0, 5 s?

In Section D.4 and Section D.5 we described the use of stochastic varia-
tional inference, as the basis for inferring a parametric approximation of the

165

Paper D.

posterior over the motor buffer, q{i}φ

(
Z{t−1}+

Mb

)
. It was assumed that this in-

ference process would have to be done from scratch in each decision cycle.
However, this need not necessarily be the case. Instead, we could make use
of amortized variational inference [28–31]. Thus, instead of making use of
a variational distribution with free parameters, φ, we would make use of a
variational distribution with parameters determined by a parametric func-

tion, φ = f {i}φ

(
Z{t}

−

WM\b, ZLTM

)
, e.g., a neural network. When new situations

are encountered we would not necessarily gain much by doing so, however,
over time this would in principle allow the system to generate proper re-
sponses to situations similar to those that the system has previously encoun-
tered, without performing any inference. Thereby, removing the need for the
most time-consuming step in the decision cycle. Again, when considering the
timings in Fig. D.7a, reducing the inference step to near zero, would bring
the total time of a single decision cycle down to around ∼ 500 ms with the
current implementation. Now if it is possible to improve the other steps with
a factor of ∼ 2− 3 via code optimizations, it would indeed seem plausible to
achieve immediate external cognitive behavior in around ∼ 0, 5 s after an initial
learning period.

Further optimization might be achieved by considering when to stop the
underlying inference algorithm. In the current implementation, the under-
lying inference algorithm uses a fixed number of iterations that has to be
pre-defined. It might not be necessary with the same number of iterations in
all situations, and thus time could be saved if a more clever mechanism for
deciding the number of iterations could be implemented.

With these additions and optimizations of the approach and its imple-
mentation, we believe that the approach will be applicable to real-world robot
applications, and thereby contribute to the goal of constructing autonomous
robots that can safely and naturally interact with humans while solving dif-
ferent abstractly and/or vaguely defined tasks. As such, these optimizations
will be the focus of our future work.

Author Contributions: Conceptualization, M.R.D.; Methodology, M.R.D.;
Software, M.R.D.; Validation, M.R.D.; Formal Analysis, M.R.D.; Investiga-
tion, M.R.D.; Writing – Original Draft, M.R.D.; Writing – Review & Editing,
M.R.D., R.P., and T.B.; Visualization, M.R.D.; Supervision, R.P., and T.B.

Funding: This research received no external funding

Data Availability Statement: The software used for the simulations is avail-
able at [26]. The Github repository also contains configuration files with the

166

References

specific parameters and settings used for the experiments, as well as scripts
to reproduce the two simulation experiments presented in this paper.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations The following abbreviations are used in this manuscript:
AKS Active Knowledge Search
RGS Reflective Goal Search

References

[1] K. A. Demir, G. Döven, and B. Sezen, “Industry 5.0 and
human-robot co-working,” Procedia Computer Science, vol. 158,
pp. 688–695, 2019, 3rd WORLD CONFERENCE ON TECHNOL-
OGY, INNOVATION AND ENTREPRENEURSHIP"INDUSTRY 4.0
FOCUSED INNOVATION, TECHNOLOGY, ENTREPRENEURSHIP
AND MANUFACTURE" June 21-23, 2019. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S1877050919312748

[2] B. Fang, X. Guo, Z. Wang, Y. Li, M. Elhoseny, and X. Yuan,
“Collaborative task assignment of interconnected, affective robots
towards autonomous healthcare assistant,” Future Generation Computer
Systems, vol. 92, pp. 241–251, 2019. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S0167739X18316844

[3] F. Farid, M. Elkhodr, F. Sabrina, F. Ahamed, and E. Gide, “A smart
biometric identity management framework for personalised iot and
cloud computing-based healthcare services,” Sensors, vol. 21, no. 2, 2021.
[Online]. Available: https://www.mdpi.com/1424-8220/21/2/552

[4] M. S. Kaiser, S. Al Mamun, M. Mahmud, and M. H. Tania, Healthcare
Robots to Combat COVID-19. Singapore: Springer Singapore, 2021, pp.
83–97. [Online]. Available: https://doi.org/10.1007/978-981-15-9682-7_
10

[5] M. R. Damgaard, R. Pedersen, and T. Bak, “Toward an idiomatic
framework for cognitive robotics,” Patterns, vol. 3, no. 7, p. 100533, 2022.
[Online]. Available: https://www.sciencedirect.com/science/article/
pii/S2666389922001301

[6] J. E. Laird, C. Lebiere, and P. S. Rosenbloom, “A standard model of
the mind: Toward a common computational framework across artificial
intelligence, cognitive science, neuroscience, and robotics,” AI Magazine,
vol. 38, no. 4, pp. 13–26, Dec. 2017, article in a periodical. [Online].

167

https://www.sciencedirect.com/science/article/pii/S1877050919312748
https://www.sciencedirect.com/science/article/pii/S1877050919312748
https://www.sciencedirect.com/science/article/pii/S0167739X18316844
https://www.sciencedirect.com/science/article/pii/S0167739X18316844
https://www.mdpi.com/1424-8220/21/2/552
https://doi.org/10.1007/978-981-15-9682-7_10
https://doi.org/10.1007/978-981-15-9682-7_10
https://www.sciencedirect.com/science/article/pii/S2666389922001301
https://www.sciencedirect.com/science/article/pii/S2666389922001301

References

Available: https://ojs.aaai.org/index.php/aimagazine/article/view/
2744

[7] M. R. Damgaard, R. Pedersen, and T. Bak, “A probabilistic programming
idiom for active knowledge search,” in 2022 International Joint Conference
on Neural Networks (IJCNN), July 2022, pp. 1–9.

[8] Y. Tashtoush, I. Haj-Mahmoud, O. Darwish, M. Maabreh, B. Alsinglawi,
M. Elkhodr, and N. Alsaedi, “Enhancing robots navigation in internet
of things indoor systems,” Computers, vol. 10, no. 11, 2021. [Online].
Available: https://www.mdpi.com/2073-431X/10/11/153

[9] J. S. Grover, C. Liu, and K. Sycara, “Deadlock analysis and resolution
for multi-robot systems,” in Algorithmic Foundations of Robotics XIV,
S. M. LaValle, M. Lin, T. Ojala, D. Shell, and J. Yu, Eds. Cham: Springer
International Publishing, 2021, pp. 294–312. [Online]. Available:
https://doi.org/10.1007/978-3-030-66723-8_18

[10] M. Boldrer, M. Andreetto, S. Divan, L. Palopoli, and D. Fontanelli,
“Socially-aware reactive obstacle avoidance strategy based on limit
cycle,” IEEE Robotics and Automation Letters, vol. 5, no. 2, pp. 3251–3258,
2020. [Online]. Available: https://doi.org/10.1109/LRA.2020.2976302

[11] K. M. Krishna and P. K. Kalra, “Solving the local minima
problem for a mobile robot by classification of spatio-
temporal sensory sequences,” Journal of Robotic Systems,
vol. 17, no. 10, pp. 549–564, 2000. [Online]. Available: https:
//onlinelibrary.wiley.com/doi/abs/10.1002/1097-4563%28200010%
2917%3A10%3C549%3A%3AAID-ROB3%3E3.0.CO%3B2-%23

[12] P. K. Mohanty, A. A. Kodapurath, and R. K. Singh, “A hybrid
artificial immune system for mobile robot navigation in unknown
environments,” Iranian Journal of Science and Technology, Transactions of
Electrical Engineering, vol. 44, no. 4, pp. 1619–1631, Dec 2020. [Online].
Available: https://doi.org/10.1007/s40998-020-00314-8

[13] C. Ordonez, E. G. Collins, M. F. Selekwa, and D. D. Dunlap, “The virtual
wall approach to limit cycle avoidance for unmanned ground vehicles,”
Robotics and Autonomous Systems, vol. 56, no. 8, pp. 645–657, 2008.
[Online]. Available: https://www.sciencedirect.com/science/article/
pii/S0921889007001741

[14] G. M. Sanchez and L. L. Giovanini, “Autonomous navigation with dead-
lock detection and avoidance,” Inteligencia Artificial, vol. 17, no. 53 SPEC.
ISS., p. 13 – 23, 2014.

168

https://ojs.aaai.org/index.php/aimagazine/article/view/2744
https://ojs.aaai.org/index.php/aimagazine/article/view/2744
https://www.mdpi.com/2073-431X/10/11/153
https://doi.org/10.1007/978-3-030-66723-8_18
https://doi.org/10.1109/LRA.2020.2976302
https://onlinelibrary.wiley.com/doi/abs/10.1002/1097-4563%28200010%2917%3A10%3C549%3A%3AAID-ROB3%3E3.0.CO%3B2-%23
https://onlinelibrary.wiley.com/doi/abs/10.1002/1097-4563%28200010%2917%3A10%3C549%3A%3AAID-ROB3%3E3.0.CO%3B2-%23
https://onlinelibrary.wiley.com/doi/abs/10.1002/1097-4563%28200010%2917%3A10%3C549%3A%3AAID-ROB3%3E3.0.CO%3B2-%23
https://doi.org/10.1007/s40998-020-00314-8
https://www.sciencedirect.com/science/article/pii/S0921889007001741
https://www.sciencedirect.com/science/article/pii/S0921889007001741

References

[15] J. Alonso-Mora, J. A. DeCastro, V. Raman, D. Rus, and H. Kress-Gazit,
“Reactive mission and motion planning with deadlock resolution
avoiding dynamic obstacles,” Autonomous Robots, vol. 42, no. 4,
pp. 801–824, Apr 2018. [Online]. Available: https://doi.org/10.1007/
s10514-017-9665-6

[16] J. E. Laird, The Soar Cognitive Architecture. The MIT Press, 2012.

[17] P. S. Rosenbloom, A. Demski, and V. Ustun, “The sigma cog-
nitive architecture and system: Towards functionally elegant
grand unification,” Journal of Artificial General Intelligence, vol. 7,
no. 1, pp. 1–103, 2017, article in a periodical. [Online]. Available:
https://doi.org/10.1515/jagi-2016-0001

[18] A. Newell, G. R. Yost, J. E. Laird, P. S. Rosenbloom, and E. G. Altmann,
“Formulating the problem space computational model,” Carnegie Mellon
Computer Science : A 25-Year Commemorative, pp. 255–293, 1991.

[19] D. V. Pynadath, P. S. Rosenbloom, S. C. Marsella, and L. Li, “Modeling
two-player games in the sigma graphical cognitive architecture,” in Ar-
tificial General Intelligence, K.-U. Kühnberger, S. Rudolph, and P. Wang,
Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013, pp. 98–108.

[20] K. Scherer, A. Schorr, and T. Johnstone, Appraisal Processes in Emotion:
Theory, Methods, Research. Oup Usa, 2001.

[21] C. A. Smith and L. D. Kirby, “Putting appraisal in context:
Toward a relational model of appraisal and emotion,” Cognition and
Emotion, vol. 23, no. 7, pp. 1352–1372, 2009. [Online]. Available:
https://doi.org/10.1080/02699930902860386

[22] P. S. Rosenbloom, J. Gratch, and V. Ustun, “Towards emotion in
sigma: From appraisal to attention,” in Artificial General Intelligence,
J. Bieger, B. Goertzel, and A. Potapov, Eds. Cham: Springer
International Publishing, 2015, pp. 142–151. [Online]. Available:
https://doi.org/10.1007%2F978-3-319-21365-1_15

[23] E. Bingham, J. P. Chen, M. Jankowiak, F. Obermeyer, N. Pradhan,
T. Karaletsos, R. Singh, P. A. Szerlip, P. Horsfall, and N. D. Goodman,
“Pyro: Deep universal probabilistic programming,” J. Mach. Learn. Res.,
vol. 20, pp. 28:1–28:6, 2019, article in a periodical. [Online]. Available:
http://jmlr.org/papers/v20/18-403.html

[24] T. Li, D. Ho, C. Li, D. Zhu, C. Wang, and M. Q.-H. Meng, “Houseexpo:
A large-scale 2d indoor layout dataset for learning-based algorithms on
mobile robots,” in 2020 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), 2020, pp. 5839–5846, article in proceedings.

169

https://doi.org/10.1007/s10514-017-9665-6
https://doi.org/10.1007/s10514-017-9665-6
https://doi.org/10.1515/jagi-2016-0001
https://doi.org/10.1080/02699930902860386
https://doi.org/10.1007%2F978-3-319-21365-1_15
http://jmlr.org/papers/v20/18-403.html

References

[25] A. Newell, Unified Theories of Cognition. Harvard University Press, 1990.

[26] M. R. Damgaard, “Probmind,” https://github.com/damgaardmr/
probMind/tree/ec996e295575c384879b3d72cfc7e64b8085b9a5 (Accessed
on 3. November 2022), 2022.

[27] M. R. Damgaard, R. Pedersen, and T. Bak, “Study of variational inference
for flexible distributed probabilistic robotics,” Robotics, vol. 11, no. 2,
2022. [Online]. Available: https://www.mdpi.com/2218-6581/11/2/38

[28] C. Zhang, J. Butepage, H. Kjellstrom, and S. Mandt, “Advances in
variational inference,” 2017. [Online]. Available: https://arxiv.org/abs/
1711.05597

[29] D. J. Rezende, S. Mohamed, and D. Wierstra, “Stochastic backprop-
agation and approximate inference in deep generative models,” in
Proceedings of the 31st International Conference on Machine Learning, ser.
Proceedings of Machine Learning Research, E. P. Xing and T. Jebara,
Eds., vol. 32, no. 2. Bejing, China: PMLR, 22–24 Jun 2014, pp. 1278–1286.
[Online]. Available: https://proceedings.mlr.press/v32/rezende14.html

[30] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” in
2nd International Conference on Learning Representations, Conference Track
Proceedings, Y. Bengio and Y. LeCun, Eds., Apr. 2014, pp. 1–14, article in
proceedings. [Online]. Available: http://arxiv.org/abs/1312.6114

[31] R. Shu, H. H. Bui, S. Zhao, M. J. Kochenderfer, and S. Ermon,
“Amortized inference regularization,” in Advances in Neural Information
Processing Systems, S. Bengio, H. Wallach, H. Larochelle, K. Grauman,
N. Cesa-Bianchi, and R. Garnett, Eds., vol. 31. Curran Associates, Inc.,
2018. [Online]. Available: https://proceedings.neurips.cc/paper/2018/
file/1819932ff5cf474f4f19e7c7024640c2-Paper.pdf

170

https://github.com/damgaardmr/probMind/tree/ec996e295575c384879b3d72cfc7e64b8085b9a5
https://github.com/damgaardmr/probMind/tree/ec996e295575c384879b3d72cfc7e64b8085b9a5
https://www.mdpi.com/2218-6581/11/2/38
https://arxiv.org/abs/1711.05597
https://arxiv.org/abs/1711.05597
https://proceedings.mlr.press/v32/rezende14.html
http://arxiv.org/abs/1312.6114
https://proceedings.neurips.cc/paper/2018/file/1819932ff5cf474f4f19e7c7024640c2-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/1819932ff5cf474f4f19e7c7024640c2-Paper.pdf

Appendix D. Affective Responses

Appendix D Affective Responses

Require: Deliberate Attention Evaluations of CA, SR (Z∗s), SRP (Z∗s), and SRE (Z∗s)
1: DAMS← {SR (Z∗s) , SRP (Z∗s) , SRE (Z∗s)}
2: if @DAM ∈ DAMS : p

(
z{DAM}

p = 1
)
> Pzp ,lim then # No-change impasse

3: Run Algorithm D.2 # Reflective Response
4: else
5: repeat
6: DAM*← arg max

DAM∈DAMS
p
(

z{DAM}
d = 1

)
pick the most desirable DAM

7: if p
(

z{DAM*}
d = 1

)
≥ p

(
z{SR}

d = 1
)

then
8: # Only pick DAM* if it is more desirable than SR to avoid motoric
9: # actions driven mainly by the progress or information gain appraisals

10: if p
(

z{DAM*}
Ac = 1

)
≥ Pzc ,lim or p

(
z{DAM*}

Ac = 1
)
≥ p

(
z{CA}

Ac = 1
)

then

11: effectuate q{DAM∗}
φ

(
Z{t}Mb

)

12: end if
13: end if
14: DAMS← DAMS\DAM*
15: until DAMS = ∅
16: effectuate q{CA}

φ

(
Z{t}Mb

)
pick the constraint avoidance

strategy as a backup
17: end if

Algorithm D.1: Affective response for State reach

171

References

Require: Deliberate Attention Evaluations of CA, E, EP, and SR (Z∗s) if Z∗s 6= None
1: DAMS← {E, EP}
2: DAM*← arg max

DAM∈DAMS
p
(

z{DAM}
i = 1

)
pick the DAM yielding most

infomation

3: if @DAM ∈ DAMS : p
(

z{DAM}
p = 1

)
> Pzp ,lim # No-change impasse

or p
(

z{DAM*}
i = 1

)
≤ Pzi ,lim then # No information gain possible

4: PBT ← set_path_to_backtrack() # Generate the path to backtrack,
PBT, from the state tree

5: Run Algorithm D.3 # Reflective Response
6: else
7: repeat
8: DAM*← arg max

DAM∈DAMS
p
(

z{DAM}
d = 1

)
pick the most desirable DAM

9: if Z∗s 6= None

and
p
(

z{SR(Z∗s)}
i = 1

)
≥

p

(
z
{DAM∗}

i = 1

)
· (1− Pzi ,∆)

StateReach gives nearly as much
information

and p
(

z{SR(Z∗s)}
p = 1

)
> Pzp ,lim then # and sufficient progress

10: DAM*← SR (Z∗s) # If SR does not violate constraints
it will be effectuated and Algo-
rithm D.1 will be used in the next
iteration.

11: end if
12: if p

(
z{DAM*}

Ac = 1
)
≥ Pzc ,lim

or p
(

z{DAM*}
Ac = 1

)
≥ p

(
z{CA}

Ac = 1
)

then # No constraint violation?

13: effectuate q{DAM∗}
φ

(
Z{t}Mb

)

14: else
15: DAMS← DAMS\DAM*
16: end if
17: until DAMS 6= ∅
18: effectuate q{CA}

φ

(
Z{t}Mb

)
pick the constraint avoidance

strategy as a backup
19: end if

Algorithm D.2: Affective response for explore

172

Appendix D. Affective Responses

Require: Deliberate Attention Evaluations of CA, E, EP, and SR(PBT[τ]) for τ ∈ [1, ..., TBT]

1: DAM*← arg max
DAM∈{E,EP}

p
(

z{DAM}
i = 1

)
pick the DAM yielding most

information

2: if p
(

z{DAM*}
i = 1

)
> Pzi ,lim

and p
(

z{DAM*}
p = 1

)
> Pzp ,lim then # new information can be obtained

3: create_new_state_branch() # add branch to state tree
4: else
5: DAMS← ∅

6: for DAM* ∈
TBT⋃

τ=0
{SR(P[TBT − τ])} do # SR for the first TBT states in PBT

7: DAMS← DAM*∪DAMS
8: if p

(
z{DAM*}

d = 1
)
> PBT,min then # state can be reached

9: if p
(

z{DAM*}
Ac = 1

)
≥ Pzc ,lim # without collision

or p
(

z{DAM*}
Ac = 1

)
≥ p

(
z{CA}

Ac = 1
)

then

10: PBT ← PBT\DAMS # remove the reachable states
from the path currently being
backtracked

11: if PBT = ∅ then # end of path has been reached
12: PBT ← set_path_to_backtrack() # generate new path to backtrack
13: end if
14: effectuate q{DAM∗}

φ

(
Z{t}Mb

)

15: end if
16: end if
17: end for
18: end if
19: if p

(
z{DAM*}

Ac = 1
)
≥ Pzc ,lim

or p
(

z{DAM*}
Ac = 1

)
≥ p

(
z{CA}

Ac = 1
)

then # DAM* is less risky

20: effectuate q{DAM∗}
φ

(
Z{t}Mb

)
than collision avoidance

21: else
22: effectuate q{CA}

φ

(
Z{t}Mb

)

23: end if

Algorithm D.3: Affective response for backtracking

173

M
a

lte R
ø

R
M

o
se D

a
M

g
a

a
R

D
a

n
 ID

Io
M

atIc
 FR

a
M

ew
o

R
k

 Fo
R

 c
o

g
n

ItIve R
o

b
o

tIc
s

ISSN (online): 2446-1628
ISBN (online): 978-87-7573-781-9

	Omslag_MRD.pdf
	PHD_MRD_TRYK.pdf
	Kolofon_MRD.pdf
	dissertation_uploaded.pdf
	Front page
	Abstract
	Resumé
	Contents
	Preface
	Part I Summary
	1 Introduction
	2 Background and State-of-the-Art
	3 Preview and Contributions
	4 Conclusion and Outlook

	Part II Papers
	A Toward an Idiomatic Framework for Cognitive Robotics
	B Study of Variational Inference for Flexible Distributed Probabilistic Robotics
	C A Probabilistic Programming Idiom for Active Knowledge Search
	D Escaping Local Minima Via Appraisal Driven Responses

	Omslag_MRD
	Blank Page
	Blank Page

