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Abstract

We present work-optimal PRAM algorithms for Burrows-Wheeler compres-
sion and decompression of strings over a constant alphabet. For a string of
length n, the depth of the compression algorithm is O(log2 n), and the depth
of the the corresponding decompression algorithm is O(log n). These appear
to be the first polylogarithmic-time work-optimal parallel algorithms for any
standard lossless compression scheme.

The algorithms for the individual stages of compression and decompres-
sion may also be of independent interest: 1. a novel O(log n)-time, O(n)-work
PRAM algorithm for Huffman decoding; 2. original insights into the stages of
the BW compression and decompression problems, bringing out parallelism
that was not readily apparent, allowing them to be mapped to elementary
parallel routines that have O(log n)-time, O(n)-work solutions, such as: (i)
prefix-sums problems with an appropriately-defined associative binary opera-
tor for several stages, and (ii) list ranking for the final stage of decompression.

Keywords: parallel, PRAM, Burrows-Wheeler, compression

1. Introduction

A lossless compression function is an invertible function C(·) that accepts
as input a string S of length n over some alphabet Σ and returns a string
C(S) over some alphabet Σ′ such that, in some statistical model, fewer bits
are required to represent C(S) than S. A lossless compression algorithm for a
given lossless compression function is an algorithm that accepts S as input and
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produces C(S) as output; the corresponding lossless decompression algorithm
accepts C(S) for some S as input and produces S as output.

In their seminal paper [1], Burrows and Wheeler describe their eponymous
lossless compression algorithm and corresponding decompression algorithm;
its operation is reviewed in Section 2. The Burrows-Wheeler (BW) Compres-
sion problem is to compute the lossless compression function defined by the
algorithm of [1], and the Burrows-Wheeler (BW) Decompression problem is to
compute its inverse. The algorithms of [1] solve the BW Compression problem
in O(n log2 n) serial time and the BW Decompression problem in O(n) serial
time. Later work reduced a critical step of the compression algorithm to the
problem of computing the suffix array of S, for which linear-time algorithms
are known, so both problems can now be solved in O(n) serial time.

1.1. Contributions

The primary contributions of this paper are an O(log2 n)-time, O(n)-work
PRAM algorithm for solving the BW Compression problem and a O(log n)-
time, O(n)-work PRAM algorithm for solving the BW Decompression prob-
lem. These algorithms appear to be the first polylogarithmic-time work-
optimal parallel algorithms for any standard lossless compression scheme.
Also, the algorithms for the individual stages of compression and decompres-
sion may be of independent interest:

• We present a novel O(log n)-time, O(n)-work PRAM algorithm for Huff-
man decoding (Section 3.2.1).

• This paper also provides original insights into the BW compression and
decompression problems. The original serial algorithms for these prob-
lems were presented in such a way that their potential parallelism was
not readily apparent. Here, we reexamine them in a way that allows
them to be mapped to elementary parallel routines. Specifically:

– most of the compression and decompression stages can be cast
as prefix-sums problems with an appropriately-defined associative
binary operator,

– the final stage of decompression can be reduced to the problem of
list ranking.

– both of these problems have known O(log n)-time, O(n)-work so-
lutions.
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1.2. Related Work

It is common in practice to partition the input string into uniformly-sized
blocks and solve the BW Compression problem separately for each block using
a serial algorithm. Because the sub-problems of compressing the blocks are
independent of one another, they can be solved in parallel. However, this
does not solve the BW Compression problem for the original input and thus
is not a parallel algorithm for solving it. It is worth noting that our parallel-
algorithmic approach is orthogonal to the foregoing block-based approach; the
two approaches could conceivably be combined in applications that require
the input to be partitioned into blocks by applying our algorithm to each
block separately.

A commonly-used, serial implementation of the block-based approach
noted above is bzip2 [2]; the algorithm it applies to each block is based on
the original BW compression algorithm of [1]. Bzip2 allows changing the
block size (100-900 kB); larger blocks provide a smaller compressed output
at the expense of increased run time. There are also variants of bzip2, such
as pipeline bzip [3], that compress multiple blocks simultaneously. However,
these variants do not achieve speedup on single blocks while our approach
does. There exists at least one implementation of a linear time serial algo-
rithm for BW compression, bwtzip [4] However, bwtzip is a serial implemen-
tation that emphasizes modularity over performance, unlike the focus of this
paper.

There are applications where BW compression would be useful but is
not currently used because of performance. One such application is JPEG
image compression. JPEG compression consists of a lossy compression stage
followed by a lossless stage. The work [5] considered replacing the currently-
used lossless stage with the BW compression algorithm. For high-quality
compression of “real-world” images such as photographs, this yielded up to
a 10% improvement, and for the compression of “synthetic” images such as
company logos, the improvement was up to 30%. The author cites execution
time as the main deficiency of this approach.

The newer JPEG-2000 standard allows for lossless image compression.
Also, unlike JPEG, it employs wavelet compression, which analyzes the entire
image without dividing it into blocks. Because of this, it is possible that
BW compression would provide an even greater improvement for JPEG-2000
images, analogous to the improved compression of bzip2 with larger block
sizes; however, we are not aware of a study similar to the one for JPEG
mentioned above. The white paper [6] suggests that Motion JPEG-2000 is
a good format for archival of video, where lossless compression is desired in
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order to avoid introducing visual artifacts. In order to play such a video back
at its correct frame rate, the decoder must run fast enough to decode frames
in real time.

We are not aware of prior work on running BW compression or decom-
pression in parallel on general-purpose graphics processing units (GPGPU);
however the survey paper [7] explains some of the issues for compression; de-
compression is not discussed. The author gives an outline of an approach for
making some parts of the algorithm parallel and claims that the remaining
parts would not work well on GPUs due to exhibiting poor locality.

A parallel algorithm for Huffman decoding is given in [8]. However, the
algorithm is not analyzed therein as a PRAM algorithm, and its worst case run
time is O(n). Our PRAM algorithm for Huffman decoding runs in O(log n)
time.

The rest of the paper is organized as follows. Section 2 describes the
principles of BW compression and decompression. Section 3 describes our
parallel algorithms for the same along with their complexity analysis. Finally,
Section 4 concludes.

2. Preliminaries

We use ST to denote the concatenation of strings S and T , S[i] to denote
the ith character of the string S (0 ≤ i < |S|), and S[i, j] to denote the
substring S[i]...S[j] (0 ≤ i ≤ j < |S|); S[i, j] is the empty string when i > j.

In their original paper, Burrows and Wheeler [1] describe a lossless data
compression algorithm consisting of three stages in the following order:

• a reversible block-sorting transform (BST)1

• move-to-front (MTF) encoding

• Huffman encoding.

The compression algorithm is given as input a string S of length n over an
alphabet Σ, with |Σ| constant. S is provided as input to the first stage, the
output of each stage is provided as input to the next stage, and the output
of the final stage is the output of the overall compression algorithm. The
output SBW is a bit string (i.e., a string over the alphabet {0, 1}). The

1This transform is also referred to by some authors as the Burrows-Wheeler Transform
(BWT). We refrain from using this name to avoid confusion with the similarly-named
Burrows-Wheeler compression algorithm which employs it as a stage.
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corresponding decompression algorithm performs the inverses of these stages
in reverse order:

• Huffman decoding

• MTF decoding

• inverse BST (IBST)

See Figure 1. Here, we review the three compression stages.

S
SBST SMTF

SBW
Huffman
encoding

Block-Sorting
Transform
(BST)

Move-to-Front
(MTF)
encoding

S
SBST SMTF

SBW
Huffman
decoding

Inverse
Block-Sorting
Transform
(IBST)

Move-to-Front
(MTF)
decoding

Compression

Decompression

Figure 1: Stages of BW compression and decompression.

2.1. Block-Sorting Transform (BST)

Given a string S of length n as input, the BST produces as output SBST , a
permutation of S. We assume throughout that S ends with a special character
that does not appear anywhere else in S. This can be ensured by adding a
new character “$” to Σ and appending $ to the end of S before running the
algorithm. The permutation is computed as follows (see Figure 2).

1. List all possible rotations of S (each of which is a string of length n).
2. Sort the list of rotations lexicographically.
3. Output the last character of each rotation in the sorted list.

Motivation As explained by Burrows and Wheeler [1], the BST has two
properties that make it useful for lossless compression: (1) it has an inverse
and (2) its output tends to have many occurrences of any given character in
close proximity, even when its input does not. Property (1) ensures that the
later decompression stage can reconstruct S given only SBST . Property (2) is
exploited by the later compression stages to actually perform the compression.
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banana$
rotate−−−−→

banana$
anana$b
nana$ba
ana$ban
na$bana
a$banan
$banana

sort−−→

$banana
a$banan
ana$ban
anana$b
banana$
na$bana
nana$ba
︸ ︷︷ ︸

M

output−−−−→ annb$aa

Figure 2: BST of the string “banana$”. The sorted list labeled M can be viewed as a
matrix of characters.

2.1.1. Inverse of the BST (IBST)
We start by reviewing a proof that the BST is invertible. The input to

the inverse of the BST (IBST) is the output of the BST, SBST , which is
the rightmost column in matrix M (as denoted in Figure 2). This rightmost
column is replicated in Figure 3(a). For the proof, we first discuss a wasteful
way to derive the full matrix M used by the BST stage. This is done using
an inductive process. Following step i of the induction, we produce the first
i columns of M .

1. To obtain the first column of M , we sort the rows (characters) of SBST

(Figure 3(b)). This works because every column in M has the same
characters and the rows of M are sorted. If there are multiple occur-
rences of the same character, we maintain their relative order; this is
known as stable sorting.

2. To obtain the first two columns, we perform the following two steps:
(a) Insert SBST to the left of the first column (Figure 3(c)).
(b) Sort lexicographically the rows to obtain the first two columns of

M (Figure 3(d)). When comparing rows, there are two cases:

• If two rows begin with different characters, we order them
according to their first characters.

• If two rows begin with the same character, we do not need
to compare the second character. The tie of the first charac-
ter has already been broken by the previous round of sorting.
Therefore, we only need to maintain the relative order of these
two rows.

Same permutation observation: We will later make use of the fol-
lowing implied observation: the permutation in all steps i is iden-
tical.
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3. We repeat step 2 in order to obtain the first three columns (Figure
3(e,f)), the first four columns (Figure 3(g,h)), and so on until M is
entirely filled in.

We take the row of M for which $ is in the rightmost column to be the
output of the IBST since the rows of M are rotations of the input string
where the first row (the input string itself) was the one for which $ was the
last character.
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sort sort sort︷︸︸︷ ︷︸︸︷ ︷︸︸︷︷︸︸︷

(a) (b) (c) (d) (e) (f) (g) (h)

n a ann naan naanaanna

Figure 3: Reconstructing M from the BST of “banana$”. Each round of sorting reveals
one more column of M ; after k rounds, the first k columns of M are known. The first four
rounds are shown. Prior to each round, SBST (shown in bold italics) is inserted as the
leftmost column.

The linear time serial algorithm
Next, we economize the above construction to visit only O(n) of its entries,

providing an O(n) serial algorithm for unraveling enough of M to reproduce
the output; namely, the row of M for which $ is in the rightmost column.

First, we locate all instances of $ in M and augment this with the last
column of M (Figure 4(a)). Now, by rotating every row so that $ appears in
the rightmost column, it reveals in each column the corresponding character
of the input string, as shown in Figure 4(b).

The following pseudocode summarizes our description of the O(n)-time
serial algorithm (to compute the IBST of SBST ).

// Input: SBST = x1x2...xn.
// Output: S, the IBST of SBST .

1. Apply a stable integer sorting algorithm to sort the elements of x1x2...xn.
The output is a permutation storing the rank of the ith element xi into
T [i].

2. L[0] := 0 // L[j] is the row of $ in column j
3. for j := 0 to n− 2 do
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$ - - - - - a
- $ - - - - n
- - - $ - - n
- - - - - $ b
- - - - - - $
- - $ - - - a
- - - - $ - a

(a)

rotate−−−−→
rows

- - - - - a $
- - - - n - $
- - n - - - $
b - - - - - $
- - - - - - $
- - - a - - $
- a - - - - $

(b)

Figure 4: Reconstructing “banana$” from its BST given the last column of M and all
instances of $. After rotation, the character in row i of the last column moves to column
n− 2− j, where j is the column index of $ in row i.

3.1. L[j+1] = T [L[j]] // The location (i.e., row) of $ in column j+1
is determined by applying the permutation T to the location of $
in column j

3.2. S[n − 2 − j] := SBST [L[j]] // Every determination that a $
appears in row i and column j of M implies one character in the
output string S. This character is computed by a proper shift.

Note that we have written all characters of S except the last, which is
$. We skip this character because it is not part of the original input to the
compression algorithm.

In Section 3.2.3, we replace step 1 and step 3.1 of the above algorithm
with equivalent parallel steps. Step 3.2 is done later separately.

2.2. Move-to-Front (MTF) encoding

Given the output SBST of the preceding stage as input, MTF encoding
replaces each character with an integer indicating the number of different
characters (not the number of characters) between that character and its
previous occurrence. We follow the convention that all characters in Σ appear
in some order and precede SBST . This “assumed prefix” ensures that every
character in SBST has a previous occurrence and thus that the foregoing
definition is valid. MTF encoding produces as output a string SMTF over the
alphabet of integers [0, n− 1], with |SMTF | = |SBST |. See Figure 5.

Let Li be a list of the different characters in SBST [0, i− 1] in the order of
their last appearance, taking into account the assumed prefix. That is, com-
pact SBST [0, i− 1] by removing all but the last occurrence of every character
in Σ and reverse the order of the resulting string to produce Li. Specifically,
let L0 = (σ1, ..., σ|Σ|) be a listing of the characters of Σ in some predetermined
order.
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Σ = {$, a, b, n}
SBST = (a, n, n, b, $, a, a)

assumed prefix
︷ ︸︸ ︷

i 0 1 2 3 4 5 6 7 8 9 10
SBST [i] n b a $ a n n b $ a a
prev[i] - - - - 2 0 5 1 3 4 9
C[i] - - - - {$} {$,a,b} {} {$,a,n} {a,b,n} {$,b,n} {}
|C[i]| - - - - 1 3 0 3 3 3 0

SMTF = (1, 3, 0, 3, 3, 3, 0)

Figure 5: MTF of the string “annb$aa”. C[i] is the set of characters between SBST [i] and
its previous occurrence.

For i > 0, Li can be derived from Li−1 using the MTF encoding and
decoding algorithms described by Burrows and Wheeler [1], which serially
construct Li for all i, 0 ≤ i < n. The MTF encoding algorithm takes SBST

as input and produces SMTF as output (see Figure 6 and read from top to
bottom):

1. L := L0

2. for i := 0 to n− 1 do // At the beginning of iteration i, L = Li

2.1. Set j to the index of SBST [i] in L
2.2. SMTF [i] := j
2.3. Move L[j] to the front of L (i.e., remove the jth element of L, then

reinsert it at position 0, shifting elements to make room)

Observe during each iteration that j is the number of different characters be-
tween SBST [i] and its nearest preceding occurrence. See Figure 6 and observe
that SMTF is the same as in Figure 5.

The MTF decoding algorithm takes SMTF as input and produces SBST as
output (see Figure 6 and read from bottom to top):

1. L := L0

2. for i := 0 to n− 1 do // At the beginning of iteration i, L = Li

2.1. j := SMTF [i]
2.2. SBST [i] := L[j]
2.3. Move L[j] to the front of L

In Section 3, we construct Li for all i in parallel using the so-called parallel
prefix sums routine with appropriately-defined associative binary operators in
order to perform MTF encoding (Section 3.1.2) and decoding (Section 3.2.2).

9



Li

SMTF [i] 1 3 0

j L0[j]
0 $
1 a
2 b
3 n

j L1[j]
0 a
1 $
2 b
3 n

j L2[j]
0 n
1 a
2 $
3 b

j L3[j]
0 n
1 a
2 $
3 b

j L4[j]
0 b
1 n
2 a
3 $

j L5[j]
0 $
1 b
2 n
3 a

j L6[j]
0 a
1 $
2 b
3 n

3 3 3 0

i 0 1 2 43 5 6

SBST [i] a n n $b a a
en
co
d
e

d
ec
od

e

Figure 6: MTF encoding and decoding. Observe that SBST [i] = Li[SMTF [i]]. In both the
encoder and the decoder, the shaded elements are moved to the front of the list according
to the arrows. In the encoder, the shaded element is identified by searching the list Li for
the character SBST [i]. In the decoder, the shaded element is chosen to be the one whose
index is j = SMTF [i]; no searching is necessary.

Motivation The output of MTF encoding is such that two occurrences of
a given character that are close together in SBST are assigned low MTF codes
because there are few other characters in between. Because of property (2)
of the BST, this is likely to occur often, and so smaller integers occur more
frequently in SMTF than larger integers. This means that Huffman encoding
(or a similar encoding such as arithmetic encoding) may effectively compress
SMTF even if this is not the case for S itself. Because both the BST and
MTF encoding stages are reversible, S can be recovered from SMTF .

2.3. Huffman encoding

The input to the Huffman encoding stage is the string SMTF , and it pro-
duces as output (1) the string SBW , a bit string (recall: a string over the
alphabet {0, 1}) whose length is Θ(n) and (2) a coding table T , whose size
is constant given that |Σ| is constant. The goal of Huffman encoding is to
assign shorter codewords to characters that occur more frequently in SMTF ,
thus minimizing the average codeword length. Huffman encoding proceeds in
three steps.

1. Count the number of times each character of Σ occurs in SMTF to
produce a frequency table F

2. Use F to construct a coding table T such that, for any two characters
a, b ∈ Σ, if F (a) < F (b), then |T (a)| ≥ |T (b)|

3. Replace each character of SMTF with its corresponding codeword in T
to produce SBW .

The output SBW of the Huffman encoding stage is the output of the overall
compression algorithm. See Figure 7.
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T =
0 → 10
1 → 11
3 → 0

SMTF = (1, 3, 0, 3, 3, 3, 0)

SBW = 11 0 10 0 0 0 10

Figure 7: Huffman table and encoding of SMTF (spaces added for clarity). Recall that this
is, in fact, the compression of the original string “banana$”.

3. Parallel Algorithm

Given an input string of length n, the original decompression algorithm
[1] by Burrows and Wheeler runs in O(n) serial time, as do all stages of the
compression algorithm except the (forward) BST, which requires O(n log2 n)
serial time according to the analysis of [9]. More recently, linear-time serial
algorithms [10, 11] have been developed to compute suffix arrays, and the
problem of finding the BST of a string can be reduced to that of computing
its suffix array (see Section 3.1.1), so Burrows-Wheeler (BW) compression
and decompression can be performed in O(n) serial time. The linear-time
suffix array algorithms are relatively involved, so we refrain from describing
them here and instead refer interested readers to the cited papers.

The parallel BW compression and decompression algorithms follow the
same sequence of stages given in Section 2, but each stage is performed by
a PRAM algorithm rather than a serial one. There are notable differences
between the algorithms for compression and decompression, so we describe
them separately.

3.1. Compression

The input is a string S of length n over an alphabet Σ, where |Σ| is
constant. The overall PRAM compression algorithm consists of the following
three stages.

3.1.1. Block-Sorting Transform (BST)
The BST of a string S of length n can be computed as follows. Add a

character $ to the end of S that does not appear elsewhere in S. Sorting all
rotations of S is equivalent to sorting all suffixes of S, as $ never compares
equal to any other character in S. Such sorting is equivalent to computing
the suffix array of S, which can be derived from a depth-first search (DFS)
traversal of the suffix tree of S (see Figure 8). The suffix tree of S can
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be computed in O(log2 n) time and O(n) work using the algorithm of [12].
The order that leaves are visited in a DFS traversal of the suffix tree can
be computed using the Euler tour technique [13] within the same complexity
bounds, yielding the suffix array of S. Given the suffix array SA of S, we
derive SBST from S in O(1) time and O(n) work as follows:

SBST [i] = S[(SA[i]− 1) mod n], 0 ≤ i < n

Overall, computing the BST takes O(log2 n) time using O(n) work.

$
a

b
a
n
a
n
a
$$ na

$ na$

na

$ na$

0

1

2

3

4

5

6

i 0 1 2 3 4 5 6
S[i] b a n a n a $
SA[i] 6 5 3 1 0 4 2

S[SA[i]− 1] a n n b $ a a

Figure 8: Suffix tree and suffix array (SA) for the string S = “banana$”.

3.1.2. Move-to-Front (MTF) Encoding
Computing the MTF number for every character in the BST output SBST

amounts to finding Li for all i, 0 ≤ i < n, as defined in Section 2.2. We
accomplish this using prefix sums with an associative binary operator ⊕ as
follows. We first define the function MTF (X), which captures the local
contribution of the substring X to the lists Li. Then, we use ⊕ to merge this
local information pairwise, finally producing all the Li for the overall string
SBST .

Let MTF (X) be the listing of the different characters in X in the reverse
order of last occurrence in X; this is the empty list when X is the empty
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string. We refer to MTF (X) as the MTF list of X. For example, given
the string X =“banana”, the last occurrence of each character is underlined,
and reversing the order of these characters yields the list MTF (X) =(a, n,
b). The index of a character in MTF (X) is equal to the number of different
characters that follow its last occurrence in X. For example, in “banana”,
zero different characters follow the last “a”, one follows the last “n” (i.e.,
“a”), and two follow the last “b” (i.e., “n” and “a”). When X is a prefix of
SBST , this definition coincides with that of Li.

Denote by x⊕ y the list formed by concatenating to the end of y the list
formed by removing from x all elements that are contained in y. Note that
⊕ is an associative binary operator. Observe the following:

• For a string consisting of a single character c, MTF (c) = (c), the list
containing c as its only element.

• For any two strings X and Y , MTF (XY ) = MTF (X)⊕MTF (Y ).

Our goal is to compute all of the lists Li. This is equivalent to computing
the MTF lists of all the prefixes of SBST , taking into account the assumed
prefix. By the above observations, this amounts to a prefix sum computation
over the array A, where A[i] is initialized to the singleton list (SBST [i]). Be-
cause |Σ| is constant, and the lists produced by the ⊕ operator have no more
than |Σ| elements, the ⊕ operator can be computed in O(1) time and work.
Therefore, we can compute the prefix sums in O(log n) time and O(n) work
by the standard PRAM algorithm for computing all prefix sums with respect
to the operation ⊕.

The prefix sums algorithm works in two phases:

1. Adjacent pairs of MTF lists are combined using ⊕ in a balanced binary
tree approach until only one list remains (see Figure 9).

2. Working back down the tree, the prefix sums corresponding to the right-
most leaves of each subtree are computed using the lists computed in
phase 1 (see Figure 10).

3.1.3. Huffman Encoding
The PRAM algorithm for Huffman encoding follows readily from the de-

scription in Section 2.3.

1. Construct F using the integer sorting algorithm outlined in [14], which
sorts a list of n integers in the range [0, r− 1] in O(r+log n) time using
O(n) work. Because r = |Σ| is constant, this takes O(log n) time and
O(n) work.
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Figure 9: Phase 1 of prefix sums: Computing local MTF lists for “annb$aa” using the
operator ⊕. Each node in the tree is the ⊕-sum of its children. For example, the circled
node is (n, a) ⊕ (b, n).
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Figure 10: Computing the prefix sums of the output of the BST stage, “annb$aa”, with
respect to the associative binary operator ⊕. The top line of each node is copied from the
tree in Figure 9. The bottom line of a node V is the cumulative ⊕-sum of the leaf nodes
starting at the leftmost leaf in the entire tree and ending at the rightmost child of V (i.e.,
the prefix sum up to the rightmost leaf under V ). For example, the circled node contains
the sum of leaves corresponding to the prefix “nba$annb”. Observe the correspondence of
the labeled lists with Figure 6.
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2. Use the standard heap-based serial algorithm to compute the Huffman
code table T . Since |Σ| is constant, this takes O(1) time and work.

3. (a) Compute the prefix-sums of the code lengths |T (SMTF [i])| into the
array U (O(log n) time, O(n) work).

(b) In parallel for all i, 0 ≤ i < n, write T (SMTF [i]) to SBW starting
at position U [i] (O(1) time, O(n) work).

The overall Huffman encoding stage runs in O(log n) time using O(n)
work. The above presentation proves the following theorem:

Theorem 1. The algorithm of Section 3.1 solves the Burrows-Wheeler Com-
pression problem for a string of length n over a constant alphabet in O(log2 n)
time using O(n) work.

3.2. Decompression

The input is a string SBW produced by the compression algorithm of
Section 3.1. The decompression algorithm outputs the corresponding original
string S by applying the inverses of the stages of the compression algorithm
in reverse order as follows.

3.2.1. Huffman Decoding
The main obstacle to decoding SBW in parallel is that, because Huffman

codes are variable-length codes, we do not know where the boundaries between
codewords in SBW lie. We cannot simply begin decoding from any position, as
the result will be incorrect if we begin decoding in the middle of a codeword.
Thus, we must first identify a set of valid starting positions for decoding.
Then, we can trivially decode the substrings of SBW corresponding to those
starting positions in parallel.

Our algorithm for locating valid starting positions for Huffman decoding is
as follows. Let l be the length of the longest codeword in T , the Huffman table
used to produce SBW ; l is constant because |Σ| is. Without loss of generality,
we assume that |SBW | is divisible by l. Divide SBW into partitions of size l.
Our goal is to identify one bit in each partition as a valid starting position.
The computation will proceed in two steps: (1) initialization and (2) prefix
sums computation.

For the initialization stage, we consider every bit i, 0 ≤ i < |SBW |, in
SBW as if it were the first bit in a string to be decoded, henceforth SBW

i . In
parallel for all i, we decode SBW

i (using the standard serial algorithm) until
we cross a partition boundary, at which point we record a pointer from bit
i to the stopping point. Now, every bit i has a pointer i → j to a bit j in
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01 1 1 0 0 0 010

01 1 1 0 0 0 010

(a) Step 1: initialization.

01 1 1 0 0 0 010

(b) Step 2: prefix sums.

01 1 1 0 0 0 010

SBW 11 0 10 0 0 0 10
SMTF 1 3, 0 3 3, 3 0

(c) Pointers from bit 0, corresponding to valid staring positions in SBW (underlined).

Figure 11: Huffman decoding of SBW (from Figure 7).

the immediately following partition, and if i happens to be a valid starting
position, then so is j. See Figure 11(a).

For the prefix sums stage, we define the associative binary operator ⊕ to
be the merging of adjacent pointers (that is, ⊕ merges A → B and B → C to
produce A → C). See Figure 11(b). The result is that there are now pointers
from each bit in the first partition to a bit in every other partition. Finally,
we identify all bits with pointers from bit 0 as valid starting positions for
Huffman decoding (see Figure 11(c)); we refer to this set of positions as V .
All this takes O(log n) time and O(n) work.

The actual decoding is straightforward and proceeds as follows.

1. Employ |SBW |/l (which is O(n)) processors, assign each one a different
starting position from the set V , and have each processor run the serial
Huffman decoding algorithm until it reaches another position in V in
order to find the number of decoded characters. Do not actually write
the decoded output to memory yet. This takes O(1) time because the
partitions are of size O(1).

2. Use prefix sums to allocate space in SMTF for the output of each pro-
cessor. (O(log n) time, O(n) work)
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3. Repeat step (1) to actually write the output to SMTF . (O(1) time, O(n)
work)

These three steps, and thus the entire Huffman decoding algorithm, take
O(log n) time and O(n) work.

3.2.2. Move-to-Front (MTF) Decoding
The parallel MTF decoding algorithm is similar to the parallel MTF en-

coding algorithm but uses a different operator for the prefix sums step. MTF
decoding uses the characters of SMTF directly as indices into the MTF lists
Li; recall from Section 2.2 that Li is the listing of characters in backward
order of appearance relative to position i in SBST . Therefore, for every char-
acter in SMTF , we know the effect of the immediately preceding character on
the Li (see Figure 12(b)). We want to know, for every character in SMTF , the
cumulative effect of all the preceding characters as shown in Figure 12(d).

Formally, SMTF [i] defines a permutation function mapping Li to Li+1; this
function reproduces the effect of iteration i of the serial algorithm on Li (i.e.,
it moves Li[SMTF [i]] to the front of the list). Denote by Pi,j the permutation
function mapping Li to Lj. Given P0,1, P1,2, P2,3, etc., we want to find P0,1,
P0,2, P0,3, etc.. We can do this using prefix sums with function composition
as the associative binary operator (see Figure 12(c)). A permutation function
for a list of constant size can be represented by another list of constant size, so
composing two permutation functions takes O(1) time and work. Therefore,
the prefix sums computation, as well as the overall MTF decoding algorithm,
takes O(log n) time and O(n) work.

3.2.3. Inverse Block-Sorting Transform (IBST)
We derive our algorithm from the serial IBST algorithm given in Section

2.1.1. In step 1, we use the integer sorting algorithm of [14] to sort the
characters of SBST . Because |Σ| is constant, the characters have a constant
range, and so this step takes O(log n) time and O(n) work.

The key difference from the serial algorithm is step 3.1 (in the pseudo-
code). Recall that this step computes, for each column j of M , the row L[j]
containing $. In our parallel algorithm, we will be guided by the following
“inverse clue”: for the $ character of each row i of M , we figure out (all at
once—using list ranking) its column.

This is done by a reduction to the list ranking problem. The input to
the list ranking problem is a linked list represented by an array comprising
the elements of the list. Every entry i in the array points to another entry
containing its successor next(i) in the linked list. The list ranking problem
finds for each element its distance from the end of the list.
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(a) SMTF (from Figure 11).
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(b) Initialization: the permutation function defined by SMTF [i] moves element i to the
front of its input list.
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(c) (Left) Prefix sums: composition of permutation functions using a balanced binary tree
(here, we show the tree for the first four elements).

(Right) Computing the ⊕-sum of the leftmost two leaves of the tree. The result is the
parent of the two leaves.
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(d) Output of prefix sums: composed permutation functions.
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(e) Applying the composed permutation functions of (d) to L0 to produce L1, L2, etc.

Figure 12: MTF decoding of SMTF from Figure 11: construction of Li in parallel using
composed permutation functions. The last character of SMTF is not used in this construc-
tion because the corresponding list L7 is not needed. Observe the correspondence of the
labeled lists in (e) with Figure 6.
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In matrix M , every row and every column have a single occurrence of the
character $. Using the permutation T , the $ character in row i and column j
points to $ in some other row i1 = T [i] and column j +1. The $ of row i will
occupy entry i in the input array for our list ranking problem. The ranking
of the linked list will provide for each element its column. This will produce
the combinations of row and column for all the $ characters. We use the list
ranking algorithm of [15] to rank the linked list in O(log n) time and O(n)
work.

Overall, the IBST takes O(log n) time and O(n) work.
The above presentation proves the following theorem:

Theorem 2. The algorithm of Section 3.2 solves the Burrows-Wheeler De-
compression problem for a string of length n over a constant alphabet in
O(log n) time using O(n) work.

4. Conclusion

This paper presents the first fast optimal PRAM algorithms for the Burrows-
Wheeler Compression and Decompression problems. This is particularly sig-
nificant since PRAM parallelism has been all but absent from lossless com-
pression problems. In addition to this algorithmic complexity result, this
paper provides new insight into how BW compression works. It also suggests
that elementary parallel routines such as prefix-sums and list ranking may be
more powerful than meets the eye.
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