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This thesis studies mechanism design from an optimization perspective.

Our main contribution is to characterize fundamental structural properties of

optimization problems arising in mechanism design and to exploit them to design

general frameworks and techniques for efficiently solving the underlying problems.

Not only do our characterizations allow for efficient computation, they also reveal

qualitative characteristics of optimal mechanisms which are important even from a

non-computational standpoint. Furthermore, most of our techniques are widely appli-

cable to optimization problems outside of mechanism design such as online algorithms

or stochastic optimization.

Our frameworks can be summarized as follows. When the input to an optimization

problem (e.g., a mechanism design problem) comes from independent sources (e.g.,

independent agents), the complexity of the problem can be exponentially reduced by

(i) decomposing the problem into smaller subproblems, each one involving one input

source, (ii) simultaneously optimizing the subproblems subject to certain relaxation

of coupling constraints, and (iii) combining the solutions of the subproblems in a



certain way to obtain an (approximately) optimal solution for the original problem.

We use our proposed framework to construct optimal or approximately optimal

mechanisms for several settings previously considered in the literature and to improve

upon the best previously known results. We also present applications of our techniques

to non-mechanism design problems such as online stochastic generalized assignment

problem which itself captures online and stochastic versions of various other problems

such as resource allocation and job scheduling.
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Chapter 1

Introduction

1.1 Mechanism Design

Over the past decades, the growth of computer science has resulted in overlaps with

economics, operations research, and related fields. Many problems arising in such

fields can be posed as optimization problems, yet each field studies such problems

from a different perspective; for example economics focuses on studying qualitative

and structural properties of the solution, whereas computer science deals with the

computational aspects of finding the solution. In the past decade, the massive growth

of internet and computers has led to an increase in market mechanisms which are

controlled and run by computers, which has consequently heightened the importance

of considering the computational aspects of solving the corresponding optimization

problems. Online and dynamic pricing, electronic financial markets, and algorith-

mic trading are some of the most prominent examples of this trend. While the new

technology has allowed for far more complex market mechanisms, it has also accen-

tuated the computational issues pertaining to designing optimal mechanisms, finding

optimal strategies, and characterizing equilibria.

In solving optimization problems, we typically assume that the input to problem

is not affected by how we compute the output. However this assumption is not true

when the input comes from strategic agents that have their own preferences over

the possible outcomes of the optimization. For example, consider the problem of

matching a set of items to a set of agents. The problem can be cast as a weighted
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CHAPTER 1. INTRODUCTION

matching in a bipartite graph in which the weight of the edge from an agent to an

item represents the valuation of the agent for that item. The input to the problem

consists of the edge weights which are reported by the agents. However, a strategic

agent would try to manipulate the matching outcome by misreporting her valuations

in order to receive a better item (i.e., over reporting her value for the most preferred

item or under reporting her value for the less preferred items). It can be shown that

the weighted matching algorithm can be accompanied by a payment scheme that

would incentivize the agents to report truthfully. In this case the matching algorithm

together with the payment scheme comprise a truthful mechanism. A mechanism

design problem, in general, is an optimization problem where the input comes from

self interested and strategic agents who may misreport their information to manip-

ulate the outcome in their favor. Consequently, the optimality of a mechanism is

measured with respect to the true input and not the reported input. To design an

optimal mechanism, without loss of generality, one can restrict attention only to

truthful mechanisms, i.e., mechanisms that incentivize the agents to report truthful.

Unfortunately enforcing truthfulness largely increases the computational complexity

of designing optimal mechanisms, except for welfare maximizing mechanism (e.g.,

mechanisms whose objective is to maximize the total welfare of the agents). This

increased computational complexity is due to the requirement of truthfulness. En-

forcing truthfulness requires simultaneously optimizing the mechanism’s outcome for

all possible inputs and not just the reported input, however the number of possible

input profiles grows exponentially in the number of agents.

Truthful mechanisms. In mechanism design, we often restrict our attention to

truthful (a.k.a, incentive compatible) mechanisms. A truthful mechanism incentivizes

the agents to report truthfully. By revelation principle, restriction to truthful mech-

anisms is without loss of generality as any non-truthful mechanism that has a Nash

equilibrium can be converted to an equivalent truthful mechanism as follows. Pick

any set of equilibrium strategies for the agents and embed them into the mechanism;

in other words, the new mechanism collects the private information of the agents
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CHAPTER 1. INTRODUCTION

and simulates their equilibrium strategies on behalf of them. The resulting mecha-

nism is obviously truthful and leads to the same equilibrium outcome as the original

mechanism.

Mechanism design objectives. Welfare and revenue maximization are the two

most common objectives considered in mechanism design. Welfare maximization

aims to maximize the social welfare, i.e., the combined welfare of the society; whereas

revenue maximization aims to optimize the revenue of the principal running the mech-

anism (e.g., the auctioneer). Although welfare maximization is the most well studied

and well understood objective in mechanism design, it is the objective of interest

perhaps only for governments an non-profit organizations (e.g., spectrum auctions,

medicare auctions, natural resources, etc). On the other hand, revenue maximiza-

tion, despite being less well studied, is a more common objective of interest in today’s

markets (e.g., dynamic pricing, airline tickets, hotels, online retailers). This thesis

considers a general and abstract class of objectives that include both welfare and

revenue maximization. In particular, most of the results of this thesis apply to any

objective that can be linearly separated overt the set of agents; both welfare and

revenue objectives satisfy this requirement. There are however other less common

objectives which do not satisfy this requirement, such as minimizing make span in

job scheduling problems.

Mechanisms with/without money. Mechanisms can be divided in two classes

based on their dependence on money. Money can be defined as any common medium

for measuring or exchanging utility among agents in a system. Money plays a vital

role in mechanism design as it allows a mechanism to measure, to compare, and to

aggregate agents’ preferences while incentivizing the agents to report their preferences

truthfully. Mechanism design without money is quite limited as suggested by Arrow’s

impossibility theorem. . However, there are scenarios were a monetary transfer is

inappropriate or prohibited so a mechanism without money is required; such scenarios

include voting/election, resident–hospital matching, roommate assignment, kidney

exchange, etc.

4



CHAPTER 1. INTRODUCTION

Bayesian vs. prior free. The two general approaches to mechanism design,

based on prior assumption about agents’ preferences, are Bayesian and prior free. A

Bayesian mechanism makes use of the available stochastic information about agents’

preferences to optimize its average performance (i.e., to maximize the expected value

of an objective). On the other hand, a prior free mechanism guarantees a certain

level of performance for all possible realizations of agents’ preferences. For a large

class of welfare maximization problems, the VickreyClarkeGroves mechanism (VCG)

obtains the optimal outcome. However almost for any other objective, including

revenue maximization, any incentive compatible mechanism has to sacrifice its per-

formance under some realizations of agents’ preferences in order to maintain incentive

compatibility. In other words there is no incentive compatible mechanism that is op-

timal under all possible realizations of agents’ preferences. Sacrificing optimality is

inevitable in order to maintain incentive compatibility. A Bayesian mechanism, hav-

ing access to the distribution of preferences, optimizes for the most likely realizations

of preferences; whereas a prior free mechanism, not making any assumption about

the distribution of preferences, has to guarantee a certain level of performance for all

possible realizations of agents’ preferences. Consequently, Bayesian mechanisms are

typically far superior to prior free mechanism in terms of approximate optimality for

non-welfare objectives. The first half of this thesis discusses and develops techniques

for constructing optimal or approximately optimal Bayesian mechanisms. Most of

the techniques presented here can be applied to environments without money as well.

The second half of this thesis considers prior free mechanism design and is mostly

limited to two sided matching markets.

Theory vs. practice. Many of the results presented in this thesis may appear to

be more of theoretical interest and hard to apply literally in practice. For example,

optimal mechanisms often (a) randomize over outcomes, (b) discriminate against

agents based on their priors, or (c) require complex or unconventional interaction

between the mechanism and the agents. However, many of the theoretical results can

be translated into practical approaches by indirect means. Here are some examples:

(a) Online surveys often solicit participants by offering them to enter a lottery to
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CHAPTER 1. INTRODUCTION

win a prize; this can be considered as a mechanism with a randomized outcome.

(b) Retailers often provide discount coupons, holiday sales, or student pricing; all of

which can be considered as discrimination based on the prior (e.g., wealthy people

often don’t use any of these options due to the extra time and effort they will have to

spend). (c) Penny auctions implement an ascending form of all pay auctions. While

such mechanisms were hard, if not impossible, to implement in the past, the advent

of computers and internet has allowed for mechanisms with complex behavior.

1.2 Preliminaries

Common notation. The following general notations are used throughout this the-

sis. Capital letter and/or Sans Serif font indicate random variables (i.e., X or x). Bold

letters are used when multiple agents are involved whereas non-bold letters indicate a

single agent (e.g., t = (t1, . . . , tn) denotes a type profile of all agents where ti denotes

the type of agent i). For a vector (e.g., t) and an index (e.g., i) we subscript the

vector with minus the index (e.g., t−i) to denote the vector resulting from removing

the indexed entry. We use [n] to denote the set of integer numbers {1, . . . , n}.

Agent’s type. An agent’s type consist of any part of the agent’s information that

is relevant to the outcome of a mechanism. For example, in a single item auction,

an agent’s type may consist of her valuation for the item and possibly her budget.

We often represent the type of an agent i with ti ∈ Ti where Ti is her type space,

i.e., the space of all possible types for agent i. An agent’s type space can be either

discrete or continuous. A type profile of n agents is often denoted by t = (t1, . . . , tn).

We typically assume that an agent’s type is her private information, although in

designing Bayesian mechanisms we assume that the distribution of agent’s types is

publicly available.

Mechanism. A mechanism can be mathematically defined as a function that maps

type profiles to outcomes. For mechanisms with money, an outcome often consists of

an allocation and a payment for each agent. For example, in a single item auction,

6



CHAPTER 1. INTRODUCTION

an outcome specifies for each agent (a) whether the agent receives the item or not,

and (b) a payment. A deterministic mechanism maps each type profile to an out-

come; whereas a randomized mechanism maps each type profile to a distribution over

outcomes. A Bayesian mechanism optimizes its objective in expectation where the

expectation is taken over the randomness of the agents’ types, i.e., optimizing the av-

erage performance. Consequently, a Bayesian mechanism needs to make assumption

about the distributions of agents’ types. On the other hand, a prior free mechanism

optimizes its objective for all possible profiles of agents’ types, i.e., optimizing the

worst case performance.

Utility function. An agent’s utility function maps the types of the agents and

the possible outcomes to real valued utilities; hence, it allows comparing the agent’s

preferences over different outcomes. We often denote the utility function of an agent

i with ui(xi, pi) for allocation xi and payment pi. Agent i has quasilinear utility if

her utility function can be written as ui(xi, pi) = vi(xi) − pi in which vi(xi) denotes

the valuation of agent i for allocation xi. In an environment with a set J of items

where bundles of items are allocated to the agents, agent i is said to have submodular

valuations iff

vi(xi) + vi(x
′
i) ≥ vi(xi ∩ x′i) + vi(xi ∪ x′i), ∀xi, x′i ⊆ J

Incentive compatibility (IC). A mechanism is incentive compatible iff truthful

reporting is a (weakly) dominant strategy for each agent. The various classes of

incentive compatibility, which are often considered in the computer science literature,

are listed below in the decreasing order of their restrictiveness.

• Universally truthful (UT). Truthful reporting is a (weakly) dominant strat-

egy even if an agent knows the random choices of the mechanism.

• Truthful in expectation (TIE). Truthful reporting is a (weakly) dominant

strategy in expectation over the random choices of the mechanism.

7



CHAPTER 1. INTRODUCTION

• Dominant strategy incentive compatible (DSIC). Truthful reporting is

a (weakly) dominant strategy even if an agent knows the types of the other

agents. This is also referred to as ex post incentive compatible

• Bayesian incentive compatible (BIC). Truthful reporting is a (weakly)

dominant strategy in expectation over the types of the other agents. This is

also referred to as interim incentive compatible

Note that the above definitions are not completely disjoint. In particular, UT often

includes DSIC, and BIC often includes TIE, whereas DSIC may or may not include

TIE. Throughout this thesis, we assume that both BIC and DSIC indicate TIE.

Individual rationality (IR). A mechanism is individually rational if every agent,

regardless of her type, makes a non-negative utility by participating in the mechanism.

A mechanism is interim individually rational if the utility of each agent is non-negative

in expectation over the types of other agents. A mechanism is ex post individually

rational if the utility of each agent is non-negative under every profile of types.

Combinatorial Auctions. A combinatorial auction is any market mechanism for

allocating a set of heterogenous items (often indivisible) to a set of agents. In this

case, agents have valuations for bundles of items. Combinatorial auctions are among

the hardest mechanism design problems since even computing an optimal allocation

(i.e, an allocation that maximizes the total valuations of the agents) is NP-hard.

1.3 Mechanism Design as an Optimization Problem

We present an example of a Bayesian mechanism design problem in the form of an

optimization problem (e.g., a linear program). Consider the problem of allocating a

single indivisible item to one of n budget constrained agents with the objective of

maximizing revenue. For each agent i ∈ [n], Ti denotes her type space (discrete), ti ∈
Ti denotes her type (private), fi(ti) ∈ [0, 1] denotes the probability of her type being

ti, vi(ti) ∈ R+ denotes her valuation for the item conditioned on her type being ti, and

Bi ∈ R+ denotes her budget (public). Agents types are distributed independently.

8
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Also T = T1×· · ·×Tn denotes the space of type profiles, t = (t1, . . . , tn) ∈ T denotes

a type profile, and f(t) = f1(t1)×· · ·×fn(tn) denotes a joint probability mass function.

An optimal mechanism can be computed by the following linear program in which

the variables xi(ti) and pi(ti) denote respectively the probability of allocation and the

payment for agent i conditioned on reporting type ti and xi(t) denotes her probability

of allocation conditioned on the reported profile of types being t.

maximize
X
i

X
ti∈Ti

fi(ti)pi(ti)

subject to vi(ti)xi(ti)− pi(ti) ≥ vi(ti)xi(t
′
i)− pi(t′i),∀i ∈ [n] , ∀ti, t′i ∈ Ti (IC)

vi(ti)xi(ti)− pi(ti) ≥ 0, ∀i ∈ [n] , ∀ti ∈ Ti (IR)

pi(ti) ≤ Bi, ∀i ∈ [n] ,∀ti ∈ Ti (Budget)

xi(ti) =
X

t−i∈T−i
f−i(t−i)xi(ti, t−i), ∀i ∈ [n] ,∀ti ∈ Ti

X
i

xi(t) ≤ 1, ∀t ∈ T

x ∈ [0, 1] T×n

xi ∈ [0, 1] Ti , ∀i ∈ [n]

pi ∈ RTi
+ , ∀i ∈ [n]

An optimal assignment for the above LP yields an optimal mechanism as follows.

Given the reported profile of types t, allocate the item to agent i with probability

xi(t) and charge her pi(ti) for each i ∈ [n]. Note that an agent is charged regardless

of whether she wins the item or not. In other words, the mechanism collects the

payments first and then allocates the item at random. The resulting mechanism is

interim incentive compatible (i.e., BIC) and interim individual rational. Observe that

the size of the above LP grows exponentially in the number of agents because the

size of x is proportional to the size of T. In Part II of this thesis we present various

approaches to avoid this exponential blow up.

9



CHAPTER 1. INTRODUCTION

1.4 Outline

Part II of this thesis studies structural characteristics of optimization problems arising

in Bayesian mechanism design problems and proposes various approaches for solving

such problems efficiently. The size of such optimization problems usually grow expo-

nentially in the number of agents. chapter 2 and chapter 4 present two fundamental

approaches for solving such optimization problems. chapter 5 abstracts away some of

the main technical contributions of chapter 4 and present direct applications of them

to problems outside of mechanism design.

Part III of this thesis considers prior free mechanism design. chapter 6 studies

competitive equilibrium in matching markets with general (non-quasilinear) utilities.

1.4.1 Bibliographical Notes

Most of the results of chapter 2 have appeared in Alaei et al. (2012a). A preliminary

version of the results of chapter 4 have appeared in Alaei (2011). Some of the results

of chapter 5 have appeared in Alaei et al. (2012b) and Alaei (2011). A subset of

chapter 6 has appeared in Alaei et al. (2011).
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Chapter 2

Multi to Single Agent Reduction (Interim)

2.1 Introduction

The main challenge of Bayesian mechanism design arises from the fact that the corre-

sponding optimization problem has to consider all joint type profiles of agents simulta-

neously due to incentive compatibility constraints, and the number of such joint type

profiles grows exponentially in the number of agents. We aim to address this chal-

lenge by providing a general decomposition technique for mechanism design problems

where (i) the objective is linearly separable over the agents (e.g., welfare or revenue),

(ii) agents’ types are distributed independently, and (iii) inter agent constraints only

consist of allocation constraints (e.g., supply constraint).

Our decomposition approach relies on the assumption that the utility of each

agent only depends on her own type/outcome, and not the types/outcomes of other

agents. Every multi agent mechanism induces a single agent mechanism on each agent

which can be obtained by fixing one agent and simulating the other agents as follows:

draw the types of the other agents at random from their corresponding distribution;

run the multi agent mechanism on the designated agent and the simulated agents;

and ignore the outcomes for the simulated agents. The fundamental idea behind

the decomposition is to optimize over single agent mechanisms simultaneously, while

ensuring that the resulting single agent mechanisms can be combined into a feasible

multi agent mechanism.

The main challenge faced by such a decomposition approach is that the joint

12



CHAPTER 2. MULTI TO SINGLE AGENT REDUCTION (INTERIM)

feasibility constraints over the allocations introduce couplings in the outcome of the

optimal solution. The joint feasibility constraints are typically the supply constraints.

For example, when agents are independent, a revenue maximizing seller with unlim-

ited supply can decompose the problem over the agents and optimize for each agent

independently; however, in the presence of supply constraints, a direct decomposition

is not possible. Our decomposition approach is based on characterizing the space of

jointly feasibly allocation rules and simultaneously optimizing the single agent mech-

anisms subject to the feasibility of the joint allocation rule.

Related Work. Myerson (1981) characterized Bayesian optimal auctions in envi-

ronments with quasi-linear risk-neutral single-dimensional agent preferences. Bulow

and Roberts (1989) reinterpreted Myerson’s approach as reducing the multi-agent auc-

tion problem to a related single-agent problem. Our work generalize this reduction-

based approach to multi dimensional auction problems.

An important aspect of our approach is that it can be applied to multi-dimensional

agent preferences. Multi-dimensional preferences can arise as distinct values for differ-

ent goods or services or different configurations of a good or service being auctioned, in

specifying a private budget and a private value, or in specifying preferences over risk.

We briefly review related work for agent preferences with multiple values, budgets,

or risk parameters.

Multi-dimensional valuations are well known to be difficult. For example, Ro-

chet and Chone (1998), showed that, because bunching1 can not be ruled out easily,

the optimal auctions for multi-dimensional valuations are dramatically different from

those for single dimensional valuations. Because of this, most results are for cases

with special structure (e.g., Armstrong, 1996; Wilson, 1994; McAfee and McMillan,

1988) and often, by using such structures, reduce the problems to single-dimensional

ones (e.g., Spence, 1980; Roberts, 1979; Mirman and Sibley, 1980). Our framework

does not need any such structure.

A number of papers consider optimal auctions for agents with budgets (see, e.g.,

1Bunching refers to the situation in which a group of distinct types are treated the same way in
by the mechanism.
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Pai and Vohra, 2008; Che and Gale, 1995; Maskin, 2000). These papers rely on

budgets being public or the agents being symmetric; our technique allows for a non-

identical prior distribution and private budgets. Mechanism design with risk averse

agents was studied by Maskin and Riley (1984) and Matthews (1983). Both works

assume i.i.d. prior distributions and have additional assumptions on risk attitudes;

our reduction does not require these assumptions.

Characterization of interim feasibility plays a vital role in this work. For single-

item single-unit auctions, necessary and sufficient conditions for interim feasibility

were developed through a series of works (Maskin and Riley, 1984; Matthews, 1984;

Border, 1991, 2007; Mierendorff, 2011); this characterization has proved useful for de-

riving properties of mechanisms, Manelli and Vincent (2010) being a recent example.

Border (1991) characterized symmetric interim feasible auctions for single-item auc-

tions with identically distributed agent preferences. His characterization is based on

the definition of “hierarchical auctions.” He observes that the space of interim feasi-

ble mechanisms is given by a polytope, where vertices of this polytope corresponding

to hierarchical auctions, and interior points corresponding to convex combinations

of vertices. Mierendorff (2011) generalize Border’s approach and characterization

to asymmetric single-item auctions. Our work generalizes the characterization from

asymmetric single-unit auctions to asymmetric multi-unit and matroid auctions.

Our main result provides computational foundations to the interim feasibility

characterizations discussed above. We show that interim feasibility can be checked,

that interim feasible allocation rules can be optimized over, and that corresponding ex

post implementations can be found. Independently and contemporaneously Cai et al.

(2012) provided similar computational foundations for the single-unit auction problem

and multi-item auctions with agents with additive preferences. Their approach to the

single-unit auction problem is most comparable to our approach for the multi-unit

and matroid auction problems where the optimization problem is written as a convex

program which can be solved by the ellipsoid method; while these methods result in

strongly polynomial time algorithms they are not considered practical. In contrast,

our single-unit approach, when the single-agent problems can be solved by a linear

program, gives a single linear program which can be practically solved.
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2.2 Preliminaries

We begin by defining the model and some notation.

Model. There are n agents; each agent i ∈ [n] has a discrete type space Ti and a

private type ti ∈ Ti. The agents’ type profile t = (t1, . . . , tn) ∈ T1 × . . .× Tn = T is

distributed according to a publicly known distribution with probability mass function

f : T → [0, 1]; WLOG, assume that all types have non-zero probability mass. A

multi agent mechanism maps each type profile to a distribution over outcomes; an

outcome specifies the allocation as well as extra attributes (e.g., payment, etc) for

each agent. For each agent i, let Xi ⊂ Rm
+ and Wi denote the space of feasible

allocations and the space of feasible attributes respectively. The space of jointly

feasible allocations is denoted by X ⊆ X1× . . .×Xn. Also let W = W1× . . .×Wn. A

multi agent mechanism M : T→ ∆(X)×∆(W) maps type profiles to distributions

over allocations and attributes.Each agent i has a utility function ui : Ti×Xi×Wi → R
that maps the agent’s type and outcome to a real valued utility. Given a space of

feasible mechanisms2 M ⊂ [T → ∆(X) ×∆(W)], we are interested in computing a

mechanism in M that maximizes3 the expected value of a given objective function

Obj : T × X ×W → R; formally we want to compute M ∈ M that maximizes

Et∼f , (x,w)∼M (t)[Obj(t, x,w)].

Notation. A function æx : T→ ∆(X) that maps type profiles to distributions over

allocations is called an allocation rule; the space of feasible allocation rules is denoted

by èX = [T → ∆(X)] and çXi = [Ti → ∆(Xi)] for each agent i. Similarly, a functionçw : T → ∆(W) is called an attribute rule; the space of feasible attribute rules is

denoted by éW = [T → ∆(W)], and éWi = [Ti → ∆(Wi)] for each agent i. Any

pair of æx ∈ èX and çw ∈ éW define a multi agent mechanism which is specified as

M = (æx, çw); similarly any æxi ∈ çXi and çwi ∈ éWi define a single agent mechanism

2Note that additional constraints (e.g., incentive compatibility, budget, etc) can be incorporated
in M.

3All of our results can be applied to minimization problems by simply maximizing the negation
of the objective function.
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Mi = (æxi, çwi) for agent i. Note that every mechanism can be uniquely specified by its

allocation rule and attribute rule.

For notational convenience, we use xM (t) and wM (t) to denote the random vari-

ables corresponding to the allocations and attributes of a mechanism M for type

profile t (i.e., assuming M = (æx, çw), random variable xM (t) and wM (t) are drawn

from distributions æx(t) and çw(t) respectively.

The single agent mechanism induced on agent i by a multi agent mechanism

M ∈ èX×éW is denoted by [[M ]]i. Such a single agent mechanism can be obtained by

simulating the other agents according to their respective distributions4; furthermore

Mi ⊆ çXi ×éWi denotes the space of all feasible single agent mechanisms for agent i,

i.e., Mi = {[[M ]]i|M ∈M}.

Assumptions. We make the following assumptions.

(A1) Independence. The agents’ types must be distributed independently, i.e.,

f = f1 × . . . × fn where fi : Ti → [0, 1] is the probability mass function for ti.

Note that if agent i has multidimensional types, fi itself does not need to be a

product distribution.

(A2) Linear Separability of Objective. The objective function must be linearly

separable over the agents, i.e., Obj(t, x,w) =
P
iObji(ti, xi,wi) where ti, xi, and

wi respectively represent the type, the allocation, and the payment of agent i.

(A3) Linearity in Allocation. The utility functions of the agents, the objective

function, and the space of feasible mechanisms M must be linear in allocation,

as formally defined next. For any arbitrary mechanism M = (æx, çw) ∈ M and

any allocation rule æx′ ∈ èX whose expected allocation is the same as æx for each

type of each agent, the mechanism M ′ = (æx′, çw) must also be feasible (i.e.,

must be in M) and must yield the same expected objective value and the same

expected utilities as M ′ for each type of each agent.

4The single agent mechanism induced on agent i can be obtained by simulating all agents other
than i by drawing a random t−i from f−i and running M on agent i and the n− 1 simulated agents
with types t−i; note that this is a single agent mechanism because the simulated agents are just
part of the mechanism.
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We linearly extend ui and Obji to any allocation in the convex hall of Xi.

Throughout the rest of this note, we treat ui and Obji as the linear extensions

of the corresponding functions.

(A4) Convexity. The space of feasible mechanisms, M, must be convex. In other

words, for any two mechanisms M ,M ′ ∈M and any β ∈ [0, 1], the mechanism

M ′′ = βM +(1−β)M ′ must also be in M. M ′′ can be interpreted as a mechanism

which runes M with probability β and runs M ′ with probability 1− β.

(A5) Decomposability. The constraints imposed by the space of feasible mecha-

nisms, M, must be decomposable to allocation constraints which are dictated

by X and single agent constraints (e.g., incentive compatibility, budget, etc).

In other words, M must impose no inter agent constrains except for those im-

plied by X. Formally, the decomposability assumption requires that for any

mechanism M ∈ èX × éW, if [[M ]]i ∈ Mi (for all agents i), then it must be

M ∈M.

Multi agent problem. A multi agent mechanism for n agents induces n single

agent mechanisms, one per each agent. Furthermore, the expected objective value of

the mechanism and the expected utilities of the agents only depend on the induced

single agent mechanisms (this follows from assumption A2 and given that the utility

of each agent depends only on her own outcome). Consequently, one would hope to

obtain an optimal multi agent mechanism by combining optimal single agent mecha-

nisms; however, the resulting multi agent mechanism could yield infeasible allocations

due to the joint feasibility constraints imposed by X. To ensure joint feasibility of

allocations, one can simultaneously optimize the single agent mechanisms over the

space of feasible allocation rules. The multi agent optimization problem is captured

by the following program.
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maximize
X
i

X
ti∈Ti

Exi∼æxi(ti),wi∼æwi(ti) [Obji(ti, xi,wi)] (OPT )

subject to æxi(ti) =
X

t−i∈T−i
f−i(t−i)æxi(ti, t−i), ∀i ∈ [n] ,∀ti ∈ Ti

(æxi, çwi) ∈ Mi, ∀i ∈ [n]

æx ∈ çX
Theorem 1. Given an optimal assignment of æx and æxi and çwi (for all i) in pro-

gram (OPT ), an optimal multi agent mechanism is given by M = (æx, çw), in whichçw = çw1× · · ·× çwn (i.e., çw is a product distribution). Furthermore, the optimal value

of that program is equal to the expected objective value of M .

Proof. Consider a hypothetical optimal multi agent mechanism and let æx be its alloca-

tion rule and let (æxi, çwi) be the single agent mechanism induced on agent i for each i.

By A1 and A3, the contribution of agent i to the expected objective value of the opti-

mal mechanism is exactly the same as its contribution to the expected objective value

of the single agent mechanism (æxi, çwi) which is
P
ti∈Ti Exi∼æxi(ti),wi∼æwi(ti)[Obji(ti, xi,wi)].

Since æx, æxi and çwi form a feasible assignment for convex program (OPT ), the optimal

value of the convex program must be at least as much as the expected objective value

of the optimal mechanism. On the other hand, by A5, any feasible assignment ofæx and æxi and çwi for the convex program can be turned into a feasible multi agent

mechanism M = (æx, çw), in which çw = çw1×· · ·× çwn, therefore the optimal assignment

for the convex program must yield an optimal multi agent mechanism.

Unfortunately, the dimension of the space of feasible allocation rules, èX, is pro-

portional to the dimension of T (i.e., |T1| × · · · × |Tn|) which grows exponentially

in the number of agents. So the size of program (OPT ) is exponential in the size of

the input. However, because of assumption A3 on linearity in allocations, only the

expected allocation of each type is relevant from the perspective of the multi agent

optimization problem; in other words, two mechanisms that are identical except for
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their allocation rules, but have the same expected allocation for each type, are equiv-

alent in terms of feasibility, optimality (i.e., expected objective value), and expected

utility for each type. This observation is the key idea to the multi to singe agent

decomposition of the next section.

Interim allocation rule. For a mechanism M ∈ èX × éW, the interim allocation

rule specifies the expected allocation for every type of every agent normalized by the

probability of that type which can be formally defined as follows. WLOG, assume

that T1, . . . ,Tn are disjoint5 and let TN =
S
i Ti be the set of all types. The interim

allocation rule ex ∈ RTN×m
+ for a mechanism M = (æx, çw) is defined as follows.

ex(ti) = fi(ti) Et−i∼f−i
�
xMi (ti, t−i)

�
, ∀i ∈ [n] ,∀ti ∈ Ti (IA)

An interim allocation rule is subscripted by an agent (e.g., exi) to denote its restriction

to the types of that agent.

To avoid confusion we often refer to an allocation rule æx ∈ èX as an ex post

allocation rule. An ex post allocation rule æx implements an interim allocation rule ex
iff the following equation holds.

ex(ti) =
X

t−i∈T−i
f(ti, t−i)æxi(ti, t−i), ∀i ∈ [n] , ∀ti ∈ Ti (IA-XPA)

An interim allocation rule is feasible iff it can be implemented by a feasible ex post

allocation rule. Note that there could be many ex post allocation rules that implement

the same interim allocation rule. The space of feasible interim allocation rules is

denoted by fX.

2.3 Decomposition via Interim Allocation Rule

We show that an optimal multi agent mechanism can be computed by simultaneously

optimizing the single agent mechanisms over the space of feasible interim allocation

5If not, label all types of each agent with the name of that agent, i.e., for each i ∈ [n] replace Ti

with T′i = {(i, t)|t ∈ Ti} so that T′1, · · · ,T′n are disjoint.
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rules. Note that the dimension of the space of interim allocation rules is proportional

to the size of TN (i.e., |T1|+ · · ·+ |Tn|) which grows linearly in the number of agents.

Note that by assumption A3, the objective function, the utilities, and the space of

feasible mechanisms are linear in allocations and hence depend only on the expected

allocation of each type, i.e., the interim allocation rule. In other words, two ex post

allocation rules, which yield the same interim allocation rule, are equivalent in all

relevant aspects. Next, we define the single agent problem formally and then discuss

the multi to single agent decomposition.

Single agent problem. The single agent problem for agent i is to compute an

optimal single agent mechanism subject to a given interim allocation rule 6 exi, and

to compute its expected objective value which is denoted by Ri(exi). The single agent

problem is captured by the following program whose optimal value is equal to Ri(exi)
and whose optimal assignment for (æxi, çwi) gives an optimal single agent mechanism

subject to exi.

maximize
X
ti∈Ti

Exi∼æxi(ti),wi∼æwi(ti) [Obji(ti, xi,wi)] (OPTi)

subject to Exi∼æxi(ti) [xi] = exi(ti), ∀ti ∈ Ti

(æxi, çwi) ∈ Mi

We will refer to Ri as the optimal benchmark for agent i. If there are no feasible

single agent mechanisms for a given exi, Ri(exi) is defined as −∞.

Theorem 2. Ri(exi), the expected objective value of the optimal single agent mecha-

nism for agent i subject to an interim allocation rule exi, is concave in exi and has a

convex domain.

Proof. Consider any exi and ex′i in the domain of Ri and any β ∈ [0, 1]. We shall show

that ex′′i = βexi+(1−β)ex′i is in the domain of Ri and Ri(ex′′i ) ≥ βRi(exi)+(1−β)Ri(ex′i).
Let Mi and M ′

i denote optimal single agent mechanisms for agent i subject to exi and

6I.e., the expected allocation of the mechanism to type ti must be exi(ti).
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ex′i respectively. Define M ′′
i = βMi + (1 − β)M ′

i (i.e., M ′′
i runs Mi with probability

β and runs M ′
i with probability 1 − β). M ′′

i is feasible by assumption A4 and has

interim allocation rule ex′′i , so ex′′i is in the domain of Ri. Furthermore, the expected

objective value of the optimal single agent mechanism subject to ex′′i is at least as

much as the expected objective value of M ′′
i which is exactly Ri(exi) + (1− β)Ri(ex′i);

so Ri is concave.

Multi to single agent decomposition. The multi agent optimization problem

of program (OPT ) can be rephrased in terms of the interim allocation rule as the

following program.

maximize
X
i

Ri(exi) (OPTinterim)

subject to ex ∈ fX
Note that the above program is a convex program because Ri are concave (Theo-

rem 2) and fX is a convex space. Therefore an optimal assignment can be computed

efficiently (e.g., in polynomial time) assuming that Ri can be computed efficiently for

each i.

Theorem 3. Given an optimal assignment of ex in convex program (OPTinterim) and

an optimal single agent mechanism Mi = (æxi, çwi) subject to exi for each agent i, an

optimal multi agent mechanism is given by M = (æx, çw) in which æx is any ex post

allocation rule implementing ex and çw = çw1 × · · · × çwn (i.e., a product distribution).

Proof. Let æx be an ex post allocation rule corresponding to ex. Let æx′i denote the ex

post allocation rule induced by æx on agent i. Note that æxi and æx′i may not necessarily

be the same for each agent i, but they both produce the same interim allocation ruleex. By A3, (æx′i, çwi) is feasible mechanism for each agent i which is equivalent to (æx′i, çwi)
and is also an optimal assignment for the convex program. Observe that æx and æx′i andçwi (for all i) form an optimal assignment for convex program (OPT ); consequently

M = (æx, çw1 × · · · × çwn) in an optimal multi agent mechanism by Theorem 1.
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Convex program (OPTinterim) together with Theorem 3 provide a generic approach

for computing an optimal multi agent mechanism; however, in order for this approach

to be computationally efficient, each of the following steps must be computationally

efficient.

1. Computing Ri(exi).
2. Optimizing over fX; typically, this can be done using the Ellipsoid method to-

gether with a separation oracle or an explicit representation of fX (in the form

of a collection of linear constraints).

3. Computing an optimal single agent mechanism Mi = (æxi, çwi) ∈ Mi subject toexi, for each agent i.

4. Computing an ex post allocation rule æx that implements ex.

The second and fourth steps are discussed in §2.4. The first and the third steps

together form the single agent problem which can be computed for each agent i

typically in time polynomial in the size of Ti, as shown in the next example.

Example. There is one indivisible item which can be allocated to at most one of n

agents with the objective of maximizing revenue. The item can be painted with one of

c available colors. vi : Ti → Rc
+ denotes the valuations of each type of agent i for each

color. An outcome for agent i specifies an allocation (either 0 or 1) and an attribute

which specifies the color and payment; therefore Xi = {0, 1} and Wi = [c]× R. The

space of jointly feasible allocations is given by

X =

(
x ∈ {0, 1}n

�����X
i

xi ≤ 1

)

Let ex ∈ [0, 1]TN×1 be an interim allocation rule. Pick an arbitrary agent i. Recall

that exi ∈ [0, 1]Ti×1 denotes the restriction of ex to the types of agent i. An optimal

single agent mechanism for agent i, subject to exi, is computed by the following linear

program and Ri(exi) is given by the optimal value of this program as a function of exi.
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maximize
X
ti∈Ti

fi(ti)pi(ti)

subject to vi(ti) · yi(ti)− pi(ti) ≥ vi(ti) · yi(t′i)− pi(t′i), ∀ti, t′i ∈ Ti (IC)

vi(ti) · yi(ti)− pi(ti) ≥ 0, ∀ti ∈ Ti (IR)
cX
`=1

yi(ti, `) = exi(ti)/fi(ti), ∀ti ∈ Ti

yi ∈ [0, 1] Ti×c

pi ∈ RTi
+

For agent i, conditioned on having type ti, yi(ti, `) denotes the probability of

receiving the item painted with color `, and p(ti) denotes the corresponding payment.

Recall that a single agent mechanism maps each type of the agent to distributions

over allocations and attributes. In the above example, each type ti ∈ Ti is mapped

to the following distributions over allocations and attributes.

• xi is 1 with probability exi(ti)
fi(ti)

, and is 0 otherwise.

• wi is (`, pi(ti)) with probability yi(ti,`)exi(ti) fi(ti), for each ` ∈ [c].

2.4 Optimization and Implementation of Interim Allocation

Rules

We address the computational issues pertaining to (i) optimization over the space of

interim allocation rules, and (ii) ex post implementation of interim allocation rules.

We study fundamental characteristic of the space of interim allocation rules which

allow computationally tractable methods for both optimization and implementation

over this space; such characteristics are important even from a non-computational

stand point as they relate to qualitative characteristics of optimal multi agent mech-

anisms.

Optimization over fX requires either a separation oracle or an explicit represen-

tation of ÜX as a collection of linear constraints; however the latter approach is often
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not computationally efficient since it requires exponentially many linear constraints.

In the rest of this section, we develop solutions based on either of those approaches.

An ex post implementation of a feasible interim allocation rule can be obtained

without an explicit construction of a corresponding ex post allocation rule. Recall

that an ex post allocation rule æx maps every type profile t to a distribution æx(t) over

feasible allocations. Furthermore, to run a mechanism it is enough to sample fromæx(t). We show that the interim allocation rules corresponding to the vertices offX have

simple deterministic implementations, i.e., the corresponding æx(t) is deterministic

and efficiently computable for all t. Consequently, any ex ∈ fX can be implemented

by sampling a vertex ex′ of fX at random such that E[ex′] = ex and then choosing the

determinist allocation corresponding to an ex post implementation of ex′.
2.4.1 Single Unit Allocation Constraints

We consider the space of feasible allocations defined by single unit allocation con-

straints (i.e., at most one agent can be allocated to). For such space of feasible

allocations, we characterize feasibility of interim allocation rules as implementability

via a particular, simple stochastic sequential allocation rule whose dynamics can be

captured by O(|TN |2) linear equations. Consequently, we obtain a compact formula-

tion of the space of feasible interim allocation rules.

The space of feasible allocations defined by single unit allocation constrains can

be formulated as follows.

X =

(
x ∈ {0, 1}n

�����X
i

xi ≤ 1

)

Observe that the space of feasible allocations for each agent i is exactly Xi = {0, 1}.
A stochastic sequential allocation algorithm is parameterized by a stochastic tran-

sition table. Such a table specifies the probability by which an agent with a given

type can steal a token from a preceding agent with a given type. For simplicity

in describing the process we will assume the token starts under the possession of a

“dummy agent” indexed by 0; the agents are then considered in the arbitrary order

from 1 to n; and the agent with the token at the end of the process is the one that is
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allocated (or none are allocated if the dummy agent retains the token).

Definition 1 (stochastic sequential allocation algorithm). Parameterized by a stochas-

tic transition table π, the stochastic sequential allocation algorithm (SSA) computes

the allocations for a type profile t ∈ T as follows:

1. Give the token to the dummy agent 0 with dummy type t0.

2. For each agent i ∈ {1, . . . , n} (in order):

If agent i′ has the token, transfer the token to agent i with probability π(ti′ , ti).

3. Allocate to the agent who has the token (or none if the dummy agent has it).

First, we present a dynamic program, in the form of a collection of linear equations,

for calculating the interim allocation rule implemented by SSA for a given π. Let

y(ti′ , i) denote the ex-ante probability of the event that agent i′ has type ti′ and is

holding the token at the end of iteration i. Let z(ti′ , ti) denote the ex-ante probability

in iteration i of SSA that agent i has type ti and takes the token from agent i′ who

has type ti′ .

The following additional notation will be useful in this section. For any subset

of agents A ⊆ N = {1, . . . , n}, we define TA =
S
i∈A Ti (Recall that without loss of

generality agent type spaces are assumed to be disjoint.). The shorthand notation

ti ∈ S for S ⊆ TN will be used to quantify over all types in S and their corresponding

agents (i.e., ∀ti ∈ S is equivalent to ∀i ∈ N, ∀ti ∈ S ∩ Ti).

The interim allocation rule ex resulting from the SSA is exactly given by the

dynamic program specified by the following linear equations.

25



CHAPTER 2. MULTI TO SINGLE AGENT REDUCTION (INTERIM)

y(t0, 0) = 1, (S.1)

y(ti, i) =
X

ti′∈T{0,...,i−1}

z(ti′ , ti), ∀ti ∈ T{1,...,n} (S.2)

y(ti′ , i) = y(ti′ , i− 1)−
X
ti∈Ti

z(ti′ , ti), ∀i ∈ {1, . . . , n} ,∀ti′ ∈ T{0,...,i−1} (S.3)

z(ti′ , ti) = y(ti′ , i− 1)π(ti′ , ti)fi(ti), ∀ti ∈ T{1,...,n},∀ti′ ∈ T{0,...,i−1} (π)

y(ti, n) = ex(ti), ∀ti ∈ T{1,...,n}

Note that π is the only adjustable parameter in the SSA algorithm, so by relaxing the

equation (π) and replacing it with the following inequality we can specify all possible

dynamics of the SSA algorithm.

0 ≤ z(ti′ , ti) ≤ y(ti′ , i− 1)fi(ti), ∀ti ∈ T{1,...,n},∀ti′ ∈ T{0,...,i−1} (S.4)

Let S denote the convex polytope captured by the 4 sets of linear constraints (S.1)

through (S.4) above, i.e., (y, z) ∈ S iff y and z satisfy the aforementioned constraints.

Note that every (y, z) ∈ S corresponds to some stochastic transition table π by solving

equation (π) for π(ti, ti′). We show that S captures all feasible interim allocation rules;

in other words, the space of feasible interim allocation rules, fX, is the projection of

S through equation ex(·) = y(·, n).

Theorem 4. An interim allocation rule ex is feasible if and only if it can be imple-

mented by the SSA algorithm for some choice of stochastic transition table π. In other

words, ex ∈ fX iff there exists (y, z) ∈ S such that ex(ti) = y(ti, n) for all ti ∈ TN .

Corollary 1. fX can be compactly formulated by O(|TN |2) variables and linear con-

straints.

26



CHAPTER 2. MULTI TO SINGLE AGENT REDUCTION (INTERIM)

Corollary 2. The convex program (OPTinterim) can be rephrased as follows for com-

puting an optimal interim allocation rule ex.

maximize
X
i

Ri(exi)
subject to y(ti, n) = ex(ti), ∀ti ∈ TN

(y, z) ∈ S.

Furthermore, the resulting interim allocation rule can be implemented ex post by SSA

using the the stochastic transition table defined by:7

π(ti′ , ti) =
z(ti′ , ti)

y(ti′ , i− 1)fi(ti)
, ∀ti ∈ T{1,...,n},∀ti′ ∈ T{0,...,i−1}.

Next, we present a few definitions and lemmas that are used in the proof of

Theorem 4. Two transition tables π and π′ are considered equivalent if their induced

interim allocation rules for SSA are equal. Type ti is called degenerate for π if in the

execution of SSA the token is sometimes passed to type ti but it is always taken away

from ti later, i.e., if y(ti, i) > 0 but y(ti, n) = 0. The stochastic transition table π is

degenerate if there is a degenerate type. For π, type ti is augmentable if there exists

a π′ (with a corresponding y′) which is equivalent to π for all types expect ti and has

y(ti, n) > y′(ti, n).8

Lemma 1. For any stochastic transition table π there exists an equivalent π′ that is

non-degenerate.

Lemma 2. For any non-degenerate stochastic transition table π, any non-augmentable

type ti always wins against any augmentable type ti′. I.e.,

• if i′ < i and ti′ has non-zero probability of holding the token then π(ti′ , ti) = 1,

i.e., ti always takes the token away from ti′, and

7If the denominator is zero, i.e., y(ti, i
′ − 1) = 0, we can set π(ti, ti′) to an arbitrary value in

[0, 1].
8We define t0 to be augmentable unless the dummy agent never retains the token in which

case all agents are non-augmentable (and for technical reasons we declare the dummy agent to be
non-augmentable as well).
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• if i < i′ and ti has non-zero probability of holding the token then π(ti, ti′) = 0,

i.e., ti′ never takes the token away from ti.

It is possible to view the token passing in stochastic sequential allocation as a

network flow. From this perspective, the augmentable and non-augmentable types

form a minimum-cut and Lemma 2 states that the token must eventually flow from

the augmentable to non-augmentable types. We defer the proof of this lemma to §2.5

where the main difficulty in its proof is that the edges in the relevant flow problem

have dynamic(non-constant) capacities.

Proof of Theorem 4. Any interim allocation rule that can be implemented by the SSA

algorithm is obviously feasible, so we only need to prove the opposite direction. The

proof is by contradiction, i.e., given an interim allocation rule ex we show that if there

is no (y, z) ∈ S such that ex(·) = y(·, n), then ex must be infeasible. Consider the

following linear program for a given ex (i.e., ex is constant).

maximize
X

ti∈T{1,...,n}

y(ti, n)

subject to y(ti, n) ≤ ex(ti), ∀ti ∈ T{1,...,n}

(y, z) ∈ S.

Let (y, z) be an optimal assignment of this LP. If the first set of inequalities are all

tight (i.e., ex(·) = y(·, n)) then ex can be implemented by the SSA, so by contradiction

there must exists a type τ ∗ ∈ TN for which the inequality is not tight. Note that τ ∗

cannot be augmentable; otherwise, by the definition of augmentability, the objective

of the LP could be improved. Partition TN to augmentable types T+
N and non-

augmentable types T−N . Note that T−N is non-empty because τ ∗ ∈ T−N . Without loss

of generality, by Lemma 1 we may assume that (y, z) is non-degenerate.9

An agent wins if she holds the token at the end of the SSA algorithm. The ex ante

probability that some agent with non-augmentable type wins is
P
ti∈T−N

y(ti, n). On

the other hand, Lemma 2 implies that the first (in the order agents are considered by

9By Lemma 1, there exits an non-degenerate assignment with the same objective value.
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SSA) agent with non-augmentable type will take the token from her predecessors and,

while she may lose the token to another non-augmentable type, the token will not be

relinquished to any augmentable type. Therefore, the probability that an agent with

a non-augmentable type is the winner is exactly equal to the probability that at least

one such agent exists, therefore

Prt∼f
�
∃i : ti ∈ T−N

�
=

X
ti∈T−N

y(ti, n) <
X
ti∈T−N

ex(ti).

The second inequality follows from the assumption above that τ ∗ satisfies y(τ ∗, n) <ex(τ ∗). We conclude that ex requires an agent with non-augmentable type to win more

frequently than such an agent exists, which is a contradiction to interim feasibility ofex.

The contradiction that we derived in the proof of Theorem 4 yields a necessary

and sufficient condition, as formally stated in the following theorem for feasibility of

any given interim allocation rule.

Theorem 5. If the space of feasible allocations, æx, is defined by single unit allocation

constraints, an interim allocation rule ex is feasible iff

X
τ∈S

ex(τ) ≤ Prt∼f [∃i : ti ∈ S] , ∀S ⊆ TN (MRMB)

The necessity of condition (MRMB) was first discovered both by Maskin and Riley

(1984) and independently by Matthews (1984) and its sufficiency was first proved by

Border (1991, 2007). This condition implies that the space of feasible interim alloca-

tion rules, fX, can be specified by O(2|TN |) linear constraints on a |TN |-dimensional

space. An important consequence of Theorem 4 is that fX can equivalently be formu-

lated by only O(|TN |2) variables and O(|TN |2) linear constraints as a projection of S,

therefore any optimization problem over fX can equivalently be solved over S.
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2.4.2 General Allocation Constraints

In this section we consider environments where the set of feasible allocations X is

arbitrary, however we assume blackbox access to an algorithm for optimizing linear

objectives over X. We present computationally tractable algorithms both for opti-

mization over the space of interim allocation rules, and for ex post implementation of

interim allocation rules; however most of the details (including the actual algorithms

and the proofs) are deferred to chapter 3.

Flat allocation vector. A “flat allocation vector” x ∈ RTN×[m] specifies the al-

location for each type of each agent, i.e., x(τ) is the allocation of type τ ∈ TN .

Conditioned on type profile t ∈ T being reported, the space of feasible flat allocation

vectors is denoted by Xt which is defined as

Xt =
¦
x ∈ RTN×[m]

���(x(t1), . . . ,x(tn)) ∈ X and x(τ) = 0,∀τ ∈ TN \ t
©

where TN \ t denotes the set of all types minus t1, . . . , tn. Observe that x(τ) is forced

to be 0 for any type τ that is not among {t1, . . . , tn}.
For the rest of this section we assume all allocation vectors are flat in order to

simplify the exposition of our algorithms and proofs. For instance, x ∼ æx(t) will

denote an allocation vector drawn from æx(t) but represented as a flat allocation vector.

Observe that Xt has the same dimension as fX; furthermore, for any mechanism

M = (æx, çw) the interim allocation rule is now given by

ex = Et∼f
�
Ex∼æx(t) [x]

�
.

Observe that the implementation problem for an interim allocation rule ex ∈ fX is to

select an allocation vector from each Xt for each t ∈ T such that in expectation ex is

obtained.

chapter 3 studies the optimization and the implementation problem for fX in detail.

All of the theorems presented throughout the rest of this section are directly implied

by similar theorems in chapter 3 so the proofs are omitted here.
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Theorem 6. For any ε, δ > 0, the problems of computing and implementing an opti-

mal interim allocation rule can be solved with an error of less than δ with probability

at least 1−ε in time polynomial in δ, log 1
ε

and the size of the problem, assuming black

box access to an algorithm for optimizing linear objective over X.

We show that the interim allocation rules corresponding to the vertices of fX are

easy to implement.

Theorem 7. Consider any vertex ex ∈ fX and let w be the normal vector to a strictly

supporting hyperplane for ex (i.e., w · ex′ − w · ex < 0, for all ex′ ∈ fX \ {ex}). ex has

a deterministic implementation as follows: under each type profile t ∈ T, select the

allocation x = arg maxx∈Xt w · x.

In the above theorem, if we interpret w as a vector of virtual valuations, then ex
can be implemented by choosing for each t ∈ T the allocation x ∈ Xt that maxi-

mizes the virtual surplus. Note that that by linearity of expectation every interim

allocation rule which is not a vertex of fX can be implemented by randomizing over

the implementations of the vertices of fX.

2.4.3 Polymatroidal Allocation Constraints

For environments where for every t ∈ T the convex hall of Xt is a polymatroid, we

present a polymatroidal characterization of fX. Since our implementation algorithms

only choose allocations that are vertices of Xt, we can replace each Xt with its convex

hall without loss of generality. We assume that a non-decreasing submodular function

F t is given for each t ∈ T such that Xt is the polymatroid associated with F t.

Definition 2. Given a non-decreasing submodular function F : [d] → R+, the poly-

matroid associated with F is the convex polytope defined by

PF =
¦
x ∈ Rd

+

���x(S) ≤ F (S),∀S ⊆ [d]
©

where x(S) is a shorthand notation for
P
j∈S x(j).
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Example. Suppose there is one indivisible item to be allocated to at most one of

n agents; Let t ∈ T be the type profile reported by the agents. Then it is easy to see

that an allocation vector x ∈ RTN×[m] is feasible if and only if it satisfies the following

set of inequalities.

x(S) ≤ min(|S ∩ t|, 1), ∀S ⊆ TN

The above set of inequalities ensures that the item can be allocated to at most one of

the reported types and the allocations for all other types should be zero. Therefore Xt

is the polymatroid associated with the submodular function F t(S) = min(|S ∩ t|, 1).

Polymatroidal characterization of ex. Recall that an interim allocation rule ex
is feasible (i.e., ex ∈ ÜX) iff there exists an ex post allocation rule æx that implements it

(i.e., ex = Et∼f [Ex∼æx(t)[x]]). Note that every allocation vector in the support of æx(t)

must be in Xt therefore

x(S) ≤ F t(S), ∀t ∈ T,∀x ∈ æx(t),∀S ⊆ TN × [m] .

Taking the expectation over x ∼ æx(t) and then over t ∼ f we get

Et∼f
�
Ex∼æx(t) [x(S)]

�
≤ Et∼f

�
F t(S)

�
, ∀S ⊆ TN × [m] .

Observe that the left hand side of the above inequality is exactly ex and the right

hand side is itself a non-decreasing submodular function of S.10. Consequently, the

above inequality implies that ex ∈ PeF where ÜF is defined as follows.

Definition 3. ÜF : TN × [m]→ R+ is a non-decreasing submodular function given by

ÜF (S) = Et∼f
�
F t(S)

�
, S ⊆ TN × [m] .

The above discussion shows that if ex ∈ fX then ex ∈ PeF which implies fX ⊆ PeF ; we

will show that the two are in fact equal which implies that fX is itself a polymatroid.

10Because it is the expectation of (i.e., weighted sum of) non-decreasing submodular functions
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Theorem 8. fX is the polymatroid associated with ÜF (i.e., fX = PeF ).

The polymatroidal characterization of ex is important both because it relates to

qualitative characteristics of optimal mechanisms and because it leads to more efficient

algorithms for optimization and implementation of interim allocation rules.

Theorem 9. The problems of computing and implementing an optimal interim allo-

cation rule can be reduced in polynomial time to the problem of computing ÜF .

We also show that the interim allocation rules corresponding to the vertices of fX
have particularly easy implementations.

Proposition 1 (Polymatroid Vertices). Consider an arbitrary non-decreasing sub-

modular function F : [d]→ R+ and the associated polymatroid PF . Every ordered

subset π = (π1, π2, . . .) ⊆ [d] identifies a vertex x ∈ PF whose value at each coordi-

nate j ∈ [d] is given by

x(j) =

8><>:
F ({π1, . . . , πr})−F({π1, . . . , πr−1}) if j = πr for some r ∈ [|π|]

0 if j 6∈ π
.

Furthermore, every vertex of PF is identified by one or more such ordered subsets.

Theorem 10. Consider an arbitrary vertex ex ∈ fX and a corresponding ordered subset

π ⊆ TN × [m]. Then ex can be implemented by choosing, for each t ∈ T, the allocation

corresponding to the vertex of Xt associated with π.

Suppose there are m indivisible items so that each coordinate of the allocation

vector corresponds to a pair of type and item. Then the previous theorem implies that

for every interim allocation rule ex which is a vertex of fX there exists an ordering π

over a subset of pairs of types and items, such that ex can be implemented by greedily

allocating items to agents (types) according to the ordering specified by π subject to

the constraint imposed by Xt.

k-unit allocation constraint. Suppose there are k units of an indivisible item and

agents are unit demand. Therefore an allocation vector is feasible iff the the total
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number of allocated items is no more than k, each one of the reported types get at

most one unit, and types that are not reported have a zero allocation. It is easy to see

that an allocation vector x is feasible, conditioned on type profile t being reported,

iff

x(S) ≤ min(|S ∩ t|, k), ∀S ⊆ TN .

Therefore Xt = PFt where F t(S) = min(|S ∩ t|, k). Then by Theorem 8 we can

argue that ex is a feasible interim allocation rule iff

ex(S) ≤ Et∼f [min(|S ∩ t|, k)] , ∀S ⊆ TN .

Observe that the result of Border (1991, 2007) can be obtained from the above in-

equalities by setting k = 1.

Lemma 3. ÜF (S) = Et∼f [min(|S ∩ t|, k)] can be exactly computed in time O((n+ |S|) · k)

for any S ∈ TN using dynamic programming.

Proof. It can be computed using the following dynamic program in which Gi
j denotes

the probability of the event that min(|t ∩ S ∩ T{1,...,i}|, k) = j.

Et∼f [min(|S ∩ t|, k)] =
kX
j=1

j ·Gn
j

Gi
j =

8>>>>>><>>>>>>:

Gi−1
k + (

P
ti∈S∩Ti fi(ti)) ·G

i−1
k−1 1 ≤ i ≤ n, j = k

Gi−1
j + (

P
ti∈S∩Ti fi(ti)) · (G

i−1
j−1 −Gi−1

j ) 1 ≤ i ≤ n, 0 ≤ j < k

1 i = 0, j = 0

0 otherwise

The above lemma can be combined with Theorem 9 to yields the following theo-

rem.

34



CHAPTER 2. MULTI TO SINGLE AGENT REDUCTION (INTERIM)

Theorem 11. For an environment with k-unit allocation constraint, the problems of

computing and implementing an optimal interim allocation rule can be solved exactly,

in polynomial time.

Matroid allocation constraint. Suppose a subset of agents are to be selected to

receive some service. Suppose the set of all feasible subsets of agents is given by a

matroid M = (N, I), i.e., a subset A ⊆ N can be simultaneously allocated to (e.g.,

served) iff A ∈ I. Let rM denote the rank function of M. It is easy to see that an

allocation vector x is feasible, conditioned on type profile t being reported, iff

x(S) ≤ rM({i ∈ N |ti ∈ S}), ∀S ⊆ TN .

Therefore Xt = PFt where F t(S) = rM({i ∈ N |ti ∈ S}). Then by Theorem 8 we

can argue that ex is a feasible interim allocation rule iff

ex(S) ≤ Et∼f [rM({i ∈ N |ti ∈ S})] , ∀S ⊆ TN .

Observe that k-unit allocation constraint is a special case of matroid allocation con-

straint in which the matroid is k-uniform. In particular the characterization of interim

feasibility for k-unit allocation constraint can be obtained from the above inequalities

by setting rM(A) = min(|A|, k).

2.5 Omitted Proofs

We first describe a network flow formulation of S, which is used to prove Lemma 1

and Lemma 2.

A network flow formulation of S. We construct a network in which every feasible

flow corresponds to some (y, z) ∈ S. The network (see Figure 2.1) has a source

node 〈Src〉, a sink node 〈Snk〉, and n − i + 1 nodes for every ti ∈ TN labeled as

〈ti, i〉, . . . , 〈ti, n〉 where each node 〈ti′ , i〉 corresponds to the type ti′ at the time SSA

algorithm is visiting agent i. For each ti′ ∈ TN and for each i ∈ {i′, . . . , n− 1} there
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Figure 2.1: The flow network corresponding to the SSA algorithm 1.
. In this instance, there are three agents with type spaces T1 = {a, b}, T2 = {c, d},

and T3 = {e, g}. All nodes in the same row correspond to the same type. The
diagonal edges have dynamic capacity constraints while all other edges have no

capacity constraints. The flow going from 〈ti′ , i〉 to 〈ti, i〉 corresponds to the ex-ante
probability of ti taking the token away from ti′ . The flow going from 〈ti′ , i〉 to
〈ti′ , i+ 1〉 corresponds to the ex-ante probability of ti′ still holding the token after

agent i is visited.

36



CHAPTER 2. MULTI TO SINGLE AGENT REDUCTION (INTERIM)

is an edge (〈ti′ , i〉, 〈ti′ , i+ 1〉) with infinite capacity whose flow is equal to y(ti′ , i); we

refer to these edges as “horizontal edges”. For every ti′ and every ti where i′ < i

there is an edge (〈ti′ , i〉, 〈ti, i〉) whose flow is equal to z(ti′ , ti) and whose capacity is

equal to the total amount of flow that enters 〈ti′ , i〉 multiplied by fi(ti), i.e., it has

a dynamic capacity which is equal to y(ti′ , i − 1)fi(ti); we refer to these edges as

“diagonal edges”. There is an edge (〈Src〉, t0) through which the source node pushes

exactly one unit of flow. Finally, for every ti ∈ TN , there is an edge (〈ti, n〉, 〈Snk〉)
with unlimited capacity whose flow is equal to y(ti, n). To simplify the proofs we

sometimes use 〈t0, 0〉 as an alias for the source node 〈Src〉 and 〈ti, n+ 1〉 for i ∈ [n]

as aliases for the sink node 〈Snk〉. The network always has a feasible flow because

all the flow can be routed along the path 〈Src〉, 〈t0, 1〉, . . . , 〈t0, n〉, 〈Snk〉.
We define the residual capacity between two types ti′ , ti ∈ TN with respect to a

given (y, z) ∈ S as follows.

ResCapy,z(ti′ , ti) =

8>>><>>>:
y(ti′ , i− 1)fi(ti)− z(ti′ , ti) i > i′

z(ti, ti′) i < i′

0 otherwise

(ResCap)

Due to dynamic capacity constraints, it is not possible to augment a flow along a

path with positive residual capacity by simply changing the amount of the flow along

the edges of the path, because reducing the total flow entering a node also decreases

the capacity of the diagonal edges leaving that node, which could potentially violate

their capacity constraints. Therefore, we introduce an operator Reroute(ti′ , ti, ρ)

(algorithm 1 and Figure 2.2) which modifies an existing (y, z) ∈ S, while maintaining

its feasibility, to transfer a ρ-fraction of y(ti, n) to y(ti′ , n) by changing the flow along

the cycle

〈Snk〉, 〈ti′ , n〉, 〈ti′ , n− 1〉, . . . , 〈ti′ ,max(i′, i)〉, 〈ti,max(i′, i)〉, . . . , 〈ti, n− 1〉, 〈ti, n〉, 〈Snk〉

and adjusting the flow of the the diagonal edges which leave this cycle. More pre-

cisely, Reroute(ti′ , ti, ρ) takes out a ρ-fraction of the flow going through the subtree
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rooted at 〈ti′ ,max(i′, i)〉 11 and reassigns it to the subtree rooted at 〈ti,max(i′, i)〉
(see Figure 2.2).

Algorithm 1 Reroute(ti′ , ti, ρ).

Input: An existing (y, z) ∈ S given implicitly, a source type ti′ ∈ TN , a destination
type ti ∈ TN where i′ 6= i, and a fraction ρ ∈ [0, 1].
Output: Modify (y, z) to transfer a ρ-fraction of y(ti′ , n) to
y(ti, n) while ensuring that the modified assignment is still in
S.

1: if i′ < i then
2: Increase z(ti′ , ti) by ρ · y(ti′ , i).
3: else
4: Decrease z(ti, ti′) by ρ · y(ti′ , i

′).
5: end if
6: for i′′ = max(i′, i) to n do
7: Increase y(ti, i

′′) by ρ · y(ti′ , i
′′).

8: Decrease y(ti′ , i
′′) by ρ · y(ti′ , i

′′).
9: end for

10: for ti′′ ∈ T{max(i′,i)+1,...,n} do
11: Increase z(ti, ti′′) by ρ · z(ti′ , ti′′).
12: Decrease z(ti′ , ti′′) by ρ · z(ti′ , ti′′).
13: end for

Proof of Lemma 1. For any given (y, z) ∈ S we show that it is always possible to

modify y and z to obtain a non-degenerate feasible assignment with the same induced

interim allocation probabilities (i.e., the same y(·, n)). Let d denote the number of

degenerate types with respect to (y, z), i.e., define

d = #
¦
ti ∈ T{1,...,n}

���y(ti, n) = 0, y(ti, i) > 0
©

The proof is by induction on d. The base case is d = 0 which is trivial. We prove the

claim for d > 0 by modifying y and z, reducing the number of degenerate types to

d− 1, and then applying the induction hypothesis. Let ti be a degenerate type. For

each ti′ ∈ T{0,...,i−1}, we apply the operator Reroute(ti, ti′ ,
z(ti′ ,ti)
y(ti,i)

) unless y(ti, i) has

11This subtree consists of the path 〈ti′ ,max(i′, i)〉, . . . , 〈ti′ , n〉, 〈Snk〉 and all the diagonal edges
leaving this path.
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Figure 2.2: Changes made by applying Reroute(t0, b, ρ).
. A ρ-fraction of the red subtree rooted at t0 is take out and reassigned to the green

subtree rooted at b. The exact amount of change is indicated for each green and
each red edge. The flow along all other edges stay intact. The operator has the effect

of reassigning ρ-fraction of ex-ante probability of allocation for type t0 to type b.

already reached 0. Applying this operator to each type ti′ eliminates the flow from

〈ti′ , i〉 to 〈ti, i〉, so eventually y(ti, i) reaches 0 and ti is no longer degenerate and also

no new degenerate type is introduced, so the number of degenerate types is reduced

to d− 1. It is also easy to see that y(ti′ , n) is not modified because y(ti, n) = 0. That

completes the proof.

Proof of Lemma 2. To prove the lemma it is enough to show that for any augmentable

type ti′ and any non-augmentable type ti, ResCapy,z(ti′ , ti) = 0 which is equivalent

to the statement of the lemma (the equivalence follows from the definition of ResCap

and equation (π)). The proof is by contradiction. Suppose ti′ is augmentable and

ResCapy,z(ti′ , ti) = δ for some positive δ; we show that ti is also augmentable.

Since ti′ is augmentable, there exists a (y′, z′) ∈ S such that y′(τ, n) = y(τ, n) for all
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τ ∈ TN \ {t0, ti′} and y′(ti′ , n)− y(ti′ , n) = ε > 0. Define

(y′′, z′′) = (1− β) · (y, z) + β · (y′, z′)

where β ∈ [0, 1] is a parameter that we specify later. Note that in (y′′, z′′), ti′ is

augmented by βε, and ResCapy′′,z′′(ti′ , ti) ≥ (1 − β)δ, and (y′′, z′′) ∈ S because it

is a convex combination of (y, z) and (y′, z′). Consider applying Reroute(ti′ , ti, ρ)

to (y′′, z′′) for some parameter ρ ∈ [0, 1]. The idea is to choose β and ρ such that

the exact amount, by which ti′ was augmented, gets reassigned to ti, by applying

Reroute(ti′ , ti, ρ); so that eventually ti is augmented while every other type (except

t0) has the same allocation probabilities as they originally had in (y, z). It is easy to

verify that by setting

β =
y(ti′ , n)δ

2
ρ =

εδ

2 + εδ

we get a feasible assignment in which the allocation probability of ti is augmented by

βε while every other type (except t0) has the same allocation probabilities as in (y, z).

We still need to show that β > 0. The proof is again by contradiction. Suppose β = 0,

so it must be y(ti′ , n) = 0, which would imply that ti′ is a degenerate type because

y(ti′ , i
′) > 0 (because ResCapy,z(ti′ , ti) > 0), however (y, z) is a non-degenerate

assignment by the hypothesis of the lemma, which is a contradiction. That completes

the proof.
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Chapter 3

Optimizing Over A Stochastic Polytope

We consider the following abstract stochastic optimization problem: we would like

to select (possibly at random) a point x ∈ Rd so as to maximize the the value of

a concave objective function Obj(E[x]), i.e., the objective function depends only on

the expected value of x; the set of feasible choices for x depends on a random variable

t with known distribution D; for each realization of t, the set of feasible choices for

x, denoted by Xt, is a bounded subset of Rd. Formally, the problem is to identify a

“selection policy”, say æx, which maps each realization of t to a distribution over Xt,

with the objective of maximizing Obj(Et∼D[Ex∼æx(t)[x]]). Note that it is not required

to explicitly compute the optimal æx; it is enough that a point x can be efficiently

sampled from æx(t), for any given t. We present computationally efficient algorithms

(i.e., polynomial running time) for this problem, assuming we can efficiently sample

t from D and efficiently optimize any linear objective over Xt. In particular, the

running times of our proposed algorithms do not depend on the size of the support

of D.

Definition 4 (fX). A point ex ∈ Rd is “implementable” iff there exists a feasible se-

lection policy æx such that ex = Et∼D[Ex∼æx(t)[x]]; subsequently, we say æx “implements”ex. The set of all implementable points is denoted by . Conceptually, one can definefX = Et∼D[Xt].

Proposition 2. fX is convex.

Proof. Consider any ex, ex′ ∈ fX and β ∈ [0, 1]. We show that ex′′ = βex + (1−β)ex′ ∈ fX
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which proves that fX is convex. Let æx and æx′ be selection policies implementing ex andex′ respectively. Let æx′′ be the selection policy which with probability β selects accord-

ing to æx and otherwise selects according to æx′. It is easy to see that æx′′ implementsex′′.
Consider the following convex program.

maximize Obj(ex) (àOPT )

subject to ex ∈ fX
The problem can be broken down to two parts:

• Optimization problem. Compute an optimal assignment for program (àOPT ).

• Implementation problem. Given a point ex ∈ fX and given Xt (specified

by t), identify a selection polity æx that implements ex, and draw at random

x ∼ æx(t).

Main result. The main result of this chapter can be summarized in the following

informal theorem.

Theorem 12. For any ε, δ > 0, both the optimization problem and the implementation

problem can be solved within an absolute error less than δ (in terms of Euclidian

distance) with probability at least 1 − ε in time polynomial in δ, log 1
ε

and the size of

the problem, assuming black box access to polynomial time algorithms for sampling

t ∼ D and optimizing linear objectives over Xt.

Road map. Section §3.1 presents a characterization of the vertices of fX which

leads to a simple algorithm (based on sampling) for optimizing a linear objective

over fX; this characterization also yields a simple deterministic implementation for

the vertices of fX. Furthermore, any point in fX can be decomposed as a convex

combination of vertices of fX and therefore can be implemented by randomizing over

the implementations of those vertices. Section §3.2 presents a separation oracle for fX,

which can be used with the Ellipsoid method to optimize a concave objective over fX.
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The separation oracle itself makes use of the Ellipsoid method to reduce the separation

problem to the problem of optimizing a linear objective over fX. Section §3.3 presents

a polymatroidal characterization of fX assuming each Xt is itself a polymatroid. This

polymatroidal characterization yields more efficient algorithms for optimization and

implementation over fX.

3.1 Preliminaries

This section presents basic separating/supporting hyperplane theorems from convex

optimization and provides a simple characterization of the vertices of fX which yields

a simple algorithm for optimizing linear functions over fX and also yields a simple

determinist implementation for the vertices of fX.

Sampling and optimization over Xt. We assume blackbox access to algorithms

with polynomial running time for:

• Sampling t ∼ D.

• Computing arg†maxx∈Xt w · x for any given w ∈ Rd and Xt ⊂ Rd (specified by

t), where arg†max breaks ties in lexicographical order 1.

Separating/Supporting hyperplanes. fX is a closed convex polytope, therefore

for any point outside of fX there exists a separating hyperplane (i.e., a hyperplane

that separates that point from the polytope); also for any vertex of fX there exists

a strict supporting hyperplane (i.e., a hyperplane through that vertex such that the

rest of fX lies strictly on one side of the hyperplane).

Proposition 3 (Separating Hyperplane). Consider any ex ∈ Rd; ex is not in fX iff

there exists w ∈ Rd such that

w · ex′ −w · ex < 0, for all ex′ ∈ fX.
1The lexicographical tie breaking is not strictly necessary, but simplifies the exposition.
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Proposition 4 (Strict Supporting Hyperplane). Consider any ex ∈ fX; ex is a vertex

of fX iff there exists w ∈ Rd such that

w · ex′ −w · ex < 0, for all ex′ ∈ fX \ {ex}
Optimization of a linear objective over fX. Suppose the objective function

Obj(ex) is a linear function of ex, i.e., Obj(ex) = w · ex for some w ∈ Rd; then an

optimal assignment for program (àOPT ) is given by arg†maxex∈eX w · ex.

Lemma 4. For any w ∈ Rd,

arg†maxex∈eX w · ex = Et∼D
�
arg†maxx∈Xt w · x

�
.

Proof. Let ex = arg†maxex∈eX w · ex and let æx be a selection policy that implements ex.

The proof is by contradiction. Suppose the equation does not hold, so there must

be some t∗ ∈ D for which æx(t∗) 6= x∗ = arg†maxx∈Xt∗ x · x which implies that either

w · æx(t∗) < w · x∗ or w · æx(t∗) = w · x∗ and x∗ comes before æx(t∗) in lexicographical

order; in either case, we can obtain a new selection policy æx′ which is the same asæx everywhere except that æx′(t∗) = x∗; let ex′ ∈ fX be the point implemented by æx′;
it is easy to see that either w · ex < w · ex′ or w · ex = w · ex′ and ex′ comes before ex
in lexicographical order; in either case we have a contradiction which completes the

proof 2.

The previous lemma implies that the optimal along the direction of w can be

achieved in expectation by optimizing along the direction of w over every realization

of Xt; consequently, arg†maxex∈eX w · ex can be approximated to any degree of accuracy

2The proof implicitly assumes that every t ∈ D has a probability mass of non-zero measure; this
assumption is without loss of generality if t is a discrete random variable. Also, it is easy to extend
the proof to the case of t being a continuous random variable.
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with high probability by sampling and taking the average.

Definition 5. ApxSolve(w). Given w ∈ Rd and an implicit parameter σ ∈ N0,

compute and return an approximate solution for arg†maxex∈eX w · ex:

1. For each ` ∈ [σ]: sample t` ∼ D and compute x` = arg†maxx∈Xt` w · x.

2. Compute exAPX ←
�Pσ

`=1 x
`
�
/σ and return exAPX.

Definition 6. η is the length of the smallest hypercube which contains Xt for all

t ∈ D.

Theorem 13. For any ε, δ > 0 there exists σ ∈ N0 where σ = O(1
δ
dη
q

log d
ε
) such

that for any w ∈ Rd, if exOPT = arg†maxex∈eX w · ex and exAPX = ApxSolve(w), then

‖exAPX − exOPT‖ < δ with probability at least 1− ε.

Proof. Recall that exOPT = Et∼D[arg†maxx∈Xt w · x] by Lemma 4, therefore

Pr [‖exAPX − exOPT‖ < δ] ≥ Pr
h
|exAPX(j)− exOPT(j)| < δ/

√
d,∀j ∈ [d]

i
≥ 1−

dX
j=1

Pr
h
|exAPX(j)− exOPT(j)| ≥ δ/

√
d
i

≥ 1− 2d exp

�
−2δ2σ2

d2η2

�

where the last inequality follows from Hoeffding’s inequality (recall that ex1(j), . . . , exσ(j)

are i.i.d random variables with a support of length at most η). By choosing σ =
1

δ
√

2
dη
q

ln 2d
ε

we get Pr[‖exAPX − exOPT‖ < δ] ≥ 1− ε which completes the proof.

Corollary 3. Consider any algorithm that makes up to c ∈ N calls to ApxSolve.

For any ε, δ > 0, there exists σ ∈ N0 such that σ is polynomial in c, log 1
ε
, δ and such

that with probability 1− ε all calls to ApxSolve have errors less than δ.

Proof. By Theorem 13, there exists σ = O(1
δ
dη
q

log dc
ε

) such that a single call to

ApxSolve returns a point with an error of at most δ with probability at least 1−ε/σ
and consequently with probability 1− ε all calls have errors of at most δ.
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Implementation of vertices of fX. Another consequence of Lemma 4 is that every

vertex of fX has a simple implementation.

Proposition 5. Consider any vertex ex of fX and let w be the normal vector to a

strictly supporting hyperplane for ex (i.e., w · ex′ −w · ex < 0, for all ex′ ∈ fX \ {ex}). ex
has a deterministic implementation as follows: under each realization of t, select the

point x = arg†maxx∈Xt w · x.

Furthermore, every point in fX can be implemented by decomposing it as a convex

combination of vertices of fX and randomizing over the implementations of those

vertices. This observation is the basis of our algorithms for implementing arbitrary

points in fX.

Proposition 6. Every ex of fX has a randomized implementation as follows: roundex to a vertex ex∗ at random such that E[ex∗] = ex; then implement ex∗ (as in Proposi-

tion 5).

Proof. Since fX is a convex polytope, every ex ∈ fX can be written as ex =
P
` λ`ex∗`

where each ex∗` is a vertex of fX and
P
` λ` = 1. Consequently, ex can be implemented

by rounding it to ex∗` with probability λ` for each `, and then using the corresponding

deterministic implementation.

3.2 General Polytopes

For both the optimization problem and the implementation problem over fX, we

present polynomial time reductions to the linear optimization problem over fX; recall

that the linear optimization problem over fX can be approximated to any degree

of accuracy and with high probability via sampling in polynomial time. To avoid

complicating the exposition we omit the details related to preserving the sampling

error through the reduction.

Optimization over fX. Any concave optimization problem over fX can be solved by

the Ellipsoid method as long as a separation oracle for fX is available. Grötschel et al.

(1981) showed that, for any convex polytope, the separation problem and the linear
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optimization problem are equivalent, i.e., there exists a polynomial time reduction

between the two problems. Our approach is to reduce the separation problem for fX
to the linear optimization problem over fX which can then be solved via sampling as

explained in the previous section.

The separation problem for fX can be reduced to the linear optimization problem

over fX by using the Ellipsoid method itself. Recall that for any point ex 6∈ fX there

can be several hyperplanes separating ex from fX; each such separating hyperplane is

determined by its normal vector.

Definition 7 (Separating Witness). Consider any ex,w ∈ Rd. w is a separating

witness for ex iff

w · ex′ −w · ex < 0, for all ex′ ∈ fX.
The set of all separating witnesses for ex is

W(ex) =
¦
w ∈ Rd

���w · ex′ −w · ex < 0,∀ex′ ∈ fX© .
W(ex) is a convex cone consisting of all vectors that are normal to a separating

hyperplane for ex; in particular, W(ex) is empty for every ex ∈ fX.

The separation problem for fX can be reduced to linear optimization problem overfX as follows: given a query ex ∈ Rd, use the Ellipsoid method to verify whether W(ex)

is empty (hence ex ∈ fX), and if not, to find a w ∈W(ex); for every w ∈ Rd queried

by the Ellipsoid method, optimizing over fX along the direction of w either yields

a separating hyperplane for ex, or yields a separating hyperplane for w itself. The
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reduction is formally described in Definition 8 and Definition 9.

Definition 8. DualSep(ex,w). Given a query w ∈ Rd and ex ∈ Rd, either confirm

that w ∈W(ex), or find a hyperplane that separates w from W(ex):

1. Compute ex∗ = arg†maxex′∈eX w · ex′.
2. If w · (ex− ex∗) > 0, assert w ∈W(ex).

3. Otherwise, w can be separated from W(ex) by

w′ · (ex− ex∗) > 0, for all w′ ∈W(ex).

Definition 9. Sep(ex). Given a query ex ∈ Rd, either confirm that ex ∈ fX, or find a

hyperplane that separates ex from fX:

1. Find a w ∈W(ex) using the Ellipsoid method with separation oracle DualSep(ex, ·).

2. If the Ellipsoid method concludes that W(ex) is empty, assert ex ∈ fX.

3. Otherwise, ex can be separated from fX by

w · (ex′ − ex) < 0, for all ex′ ∈ fX.
Theorem 14. The separation problem over fX can be reduced to the linear optimiza-

tion problem over fX in polynomial time.

Proof. The claim follows from the algorithms of Definition 8 and Definition 9.

The linear optimization problems over fX can be approximated to any degree

of accuracy with high probability by sampling (Definition 5). By modifying the

above reduction to take the sampling error into account and then combining it with

Corollary 3 the following theorem can be proved.

Theorem 15. For any ε, δ > 0, there exists an algorithm for the separation problem

over fX, and consequently an algorithm for the concave optimization problem over fX,

with an error of less than δ with probability at least 1 − ε, and with running time

polynomial in d, η, δ, log 1
ε
.
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Implementation of points in fX. Recall that any ex ∈ fX can be implemented by

randomizing over the implementations of the vertices of fX. This can be done by (a)

finding a subset of vertices (of polynomial size) such that ex falls in their convex hall,

(b) decomposing ex as a convex combination of those vertices (i.e., by solving a linear

program), and (c) picking a vertex at random according to that convex combination

and then implementing that vertex. The only non-trivial step is (a). However, it turns

out the separation oracle Sep in fact does the step (a) implicitly! The algorithm is

sketched in Definition 11.

Definition 10. ImplementVertex(w,Xt). Given w ∈ Rd and Xt ⊂ Rd (specified

by t), select a vertex x ∈ Xt so as to implement the vertex ex = Et∼D[arg†maxx∈Xt w ·
x] ∈ fX in expectation:

1. Return arg†maxx∈Xt w · x.

Definition 11. Implement(ex,Xt). Given ex ∈ fX and Xt ⊂ Rd (specified by t),

select a vertex x ∈ Xt at random so as to implement ex in expectation:

1. Run the Ellipsoid method with separation oracle DualSep(ex, ·).

2. Let w1, . . . ,wc ∈ Rd denote the queries by the Ellipsoid method to DualSep;

also let ex∗1, . . . , ex∗c ∈ fX denote the corresponding points computed by DualSep

where, for each ` ∈ [c], w` is separated from W(ex) by

w′ · (ex− ex∗`) > 0, for all w′ ∈W(ex).

3. Compute λ1, . . . , λc ∈ [0, 1] such that
Pc
`=1 λ`ex∗` = ex and

Pc
`=1 λ` = 1 (i.e.,

using linear programming).

4. Pick ` ∈ [c] at random with probability λ`.

5. Return ImplementVertex(w`,X
t).

Observe that the first step of the algorithm Implement (Definition 11) is practi-

cally the same as invoking the separation oracle Sep on point ex. Given that ex ∈ fX,
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the Ellipsoid method will confirm W(ex) is empty after making polynomially many

calls to DualSep(ex, ·), so c is polynomially bounded. For each w` queried by the El-

lipsoid method, DualSep computes a vertex ex∗` which is optimal along the direction

of w`. It is easy to see that the Ellipsoid method concludes the emptiness of W(ex)

if and only if ex falls in the convex hall of ex∗1, . . . , ex∗c . Therefore, the first step of the

algorithm indeed finds polynomially many vertices of fX whose convex hall contain ex.

The algorithm picks ` ∈ [c] at random such that E`[ex∗` ] = ex and then implements ex∗` .
Theorem 16. For any point in fX, the implementation problem can be reduced to the

linear optimization problem over fX in polynomial time.

Proof. The claim follows from the algorithms of Definition 11.

Recall that the linear optimization problems over fX can be approximated to any

degree of accuracy with high probability by sampling (Definition 5). Consequently,

from Definition 11 and Corollary 3 the following theorem can be proved.

Theorem 17. For any ε, δ > 0, there exists an algorithm for the implementation

problem for any point in fX which has an error of less than δ with probability at least

1− ε, and with running time polynomial in d, η, δ, log 1
ε
.

50



CHAPTER 3. OPTIMIZING OVER A STOCHASTIC POLYTOPE

3.3 Polymatroids

In this section we consider problem instances where the convex hall of each Xt is

a polymatroid. We present a polymatroidal characterization of fX which also leads

to specialized algorithms for both optimization and implementation over fX. Since

our implementation algorithms only select points that are vertices of Xt, we can

replace each Xt with its convex hall without loss of generality. We assume that a

non-decreasing submodular function F t is given for each t ∈ D such that Xt is the

polymatroid associated with F t.

Definition 12. Given a non-decreasing submodular function F : [d] → R+, the

polymatroid associated with F is the convex polytope defined by

PF =
¦
x ∈ Rd

+

���x(S) ≤ F (S),∀S ⊆ [d]
©

where x(S) is a shorthand notation for
P
j∈S x(j).

Consider an arbitrary ex ∈ fX and a corresponding selection policy æx that imple-

ments ex, i.e., Et∼D[Ex∼æx(t)[x]] = ex. Recall that ex ∈ fX iff such a selection policy

exists. Observe that x must be selected form Xt therefore

x(S) ≤ F t(S), ∀t ∈ D,∀x ∈ æx(t),∀S ⊆ [d] .

Taking the expectation over x ∼ æx(t) and over t ∼ D we get

Et∼D
�
Ex∼æx(t) [x(S)]

�
≤ Et∼D

�
F t(S)

�
, ∀S ⊆ [d] .

Observe that the left hand side of the above inequality is exactly ex and the right

hand side is a non-decreasing submodular function of S.3. Consequently, the above

3Because it is the expectation of (i.e., weighted sum of) non-decreasing submodular functions
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inequality implies that ex ∈ PeF where ÜF is defined as follows.

Definition 13. ÜF : [d]→ R+ is a non-decreasing submodular function defined as

ÜF (S) = Et∼D
�
F t(S)

�
, S ⊆ [d]

So far we have shown that if ex ∈ fX then ex ∈ PeF which implies that fX is a subset

of PeF ; we will show that the two are in fact equal which implies that fX is itself a

polymatroid.

Theorem 18. fX is the polymatroid associated with ÜF (i.e., fX = PeF ).

The proof of the above theorem heavily relies on the following characterization of

the vertices of a polymatroid.

Proposition 7 (Polymatroid Vertices). Consider an arbitrary non-decreasing sub-

modular function F : [d]→ R+ and the associated polymatroid PF . Every ordered

subset π = (π1, π2, . . .) ⊆ [d] identifies a vertex x ∈ PF whose value at each coordi-

nate j ∈ [d] is given by

x(j) =

8><>:
F ({π1, . . . , πr})−F({π1, . . . , πr−1}) if j = πr for some r ∈ [|π|]

0 if j 6∈ π
.

Furthermore, every vertex of PF is identified by one or more such ordered subsets.

We now proceed to prove Theorem 18. Note that we have already shown fX ⊆ PeF ,

so we only need to show PeF ⊆ fX. Since both PeF and fX are convex polytopes it

is enough to show that every vertex of PeF is in fX. Consider an arbitrary vertexex ∈ PF and a corresponding ordered subset π = (π1, π2, . . .) ⊆ [d]; such a π exists

by Proposition 7. We explicitly present a selection policy that implements ex which

implies that ex ∈ fX. For each t ∈ D, we select the vertex xt ∈ Xt = PFt associated

with π. We show that Et∼D[xt] = ex. Observe that for each j ∈ [d]:
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• If j = πr for some r ∈ [|π|], then

ex(j) = ÜF ({π1, . . . , πr})− ÜF ({π1, . . . , πr−1})

= Et∼D
�
F t({π1, . . . , πr})−F t({π1, . . . , πr−1})

�
= Et∼D

�
xt(j)

�
.

• Otherwise j 6∈ π which implies that

ex(j) = 0 = Et∼D
�
xt(j)

�
.

Therefore Et∼D[xt] = ex which completes the proof. The above proof also implies the

following theorem.

Theorem 19. Consider an arbitrary vertex ex ∈ fX and a corresponding ordered subset

π ⊆ [d]. Then ex can be implemented by selecting, for each t ∈ D, the vertex of Xt

associated with π.

Optimization over fX. Recall that any concave optimization problem over fX can

be solved in polynomial time by the Ellipsoid method assuming a polynomial time

separation oracle is available. fX is a polymatroid which is defined by an exponential

number of linear inequalities, however the separation problem for any given ex ∈ Rd

can be solved in polynomial time as follows: find S∗ = arg minS⊆[d]
ÜF (S) − ex(S); ifex 6∈ fX, the inequality ex(S∗) ≤ ÜF (S∗) must be violated, and that yields a separating

hyperplane for ex. Note that ÜF (S) − ex(S) is itself submodular in S, so it can be

minimized in strong polynomial time. Consequently, optimization problems can be

solved over polymatroids in polynomial time. In some cases ÜF can be computed

exactly in strong polynomial time (e.g., using dynamic programming); otherwise it

can be approximated to any degree of accuracy with high probability via sampling in

polynomial time. In either case, the separation problem for fX can be solved without

relying on the the Ellipsoid method; that makes concave optimization over fX more

efficient than the general case.
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Implementation of points in fX. Recall that any ex ∈ fX can be implemented by

randomizing over the implementations of the vertices of fX. This can be done by (a)

iteratively making small changes to ex to arrive at a vertex while ensuring that the

expected change at each iteration is 0, and (b) implementing the vertex obtained in

the previous step. Recall that by Theorem 19 any vertex of fX can be implemented

as in Definition 15. Next we describe our approach for (a).

Definition 14 (Tight Sets). Consider an arbitrary non-decreasing submodular func-

tion F : [d]→ R+ where F (∅) = 0 and consider the associated polymatroid PF . A

subset S ⊆ [d] is tight with respect to a given x ∈ PF iff x(S) = F (S). A set Ψ =

{S0, S1, . . .} ⊂ 2[d] is called a nested family of tight sets with respect to x ∈ PF , if and

only the elements of Ψ can be ordered/relabeled such that ∅ = S0 ⊂ · · · ⊂ S|S|−1 ⊆ [d],

and such that Sr is tight with respect to x (for every r ∈ {0, . . . , |S|}).

Definition 16 sketches the algorithm ImplementVertexP for implementing anyex ∈ fX = PeF . The algorithm makes small changes to ex iteratively until a vertex is

reached. At each iteration `, it computes ex` ∈ PeF , and a nested family of tight sets

Ψ` (with respect to ex`) such that

• E[ex`|ex`−1] = ex`−1, and

• ex` is closer to a vertex in the sense that either the number of non-zero coordinate

values increases by one or the number of tight sets decreases by one.

Observe that the above process must stop after at most 2d iterations4. At the `-th

iteration of the rounding process, a vector ∆ ∈ Rd and δ, δ′ ∈ R+ are computed

such that both ex`−1 + δ∆ and ex`−1 − δ′∆ are still in PeF , but closer to a vertex.

The algorithm then chooses at random δ′′ ∈ {δ,−δ′} such that E[δ′′] = 0, and setsex` ← ex`−1 + δ′′∆.

Definition 15. ImplementVertexP(π,Xt). Given an ordered subset π ⊆ [d] and

Xt ⊂ Rd (specified by t), select a vertex x ∈ Xt so as to implement the vertex of fX
associated with π in expectation:

1. Return the vertex of x ∈ Xt associated with π (see Proposition 7).

4In fact we will show that it stops after at most d iterations.
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Definition 16 (ImplementP(ex,Xt)). Given ex ∈ fX and Xt ⊂ Rd (specified by t),

select at random a vertex x ∈ Xt so as to implement ex in expectation.

In the following, let 1j ∈ [0, 1]d be the vector whose value is 1 at coordinate j and 0

everywhere else.

1. Initialize Ψ ← {∅}. Ψ will maintain a nested family of tight sets with respect

to ex. Whenever Ψ is updated, order/relabel its element as Ψ = {S0, S1, . . .} so

that S0 ⊂ S1 ⊆ · · · .

2. Repeat each of the following steps until no longer applicable:

• If there exist distinct j, j′ ∈ Sr \ Sr−1 for some r ∈ [|Ψ| − 1]:

(a) Let ∆ ← 1j − 1j′ Compute δ, δ′ ∈ R+ such that ex + δ∆ has a new

tight set S and ex− δ′∆ has a new tight set S ′, i.e:

– Let S ← arg minSr−1+j⊆S⊆Sr−j′
ÜF (S)− ex(S),

and δ ← ÜF (S)− ex(S).

– Let S ′ ← arg minSr−1+j′⊆S′⊆Sr−j
ÜF (S ′)− ex(S ′),

and δ′ ← ÜF (S ′)− ex(S ′).

(b)

8><>:
with prob. δ

δ+δ′
: set ex← ex + δ∆, and add S to Ψ.

with prob. δ′

δ+δ′
: set ex← ex− δ′∆, and add S ′ to Ψ.

• If there exists j ∈ [d] \ S|S|−1 for which ex(j) > 0:

(a) Let ∆← 1j, and compute δ, δ′ ∈ R+ such that ex+ δ∆ has a new tight

set S and ex− δ′∆ has a zero at coordinate j, i.e:

– Let S ← arg minS⊇S|S|−1+j
ÜF (S)− ex(S), and δ ← ÜF (S)− ex(S).

– Let δ′ ← ex(j).

(b)

8><>:
with prob. δ

δ+δ′
: set ex← ex + δ∆, and add S to Ψ.

with prob. δ′

δ+δ′
: set ex← ex− δ′∆

3. Let π = (π1, . . . , π|Ψ|−1) ⊆ [d] be the ordered subset associated with Ψ where πr ∈
Sr \ Sr−1 for each r ∈ [|π|].

4. Return ImplementVertexP(π,Xt).
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Theorem 20. The implementation problem for any point ex ∈ fX = PeF can be reduced

to computing ÜF in polynomial time.

Proof. It follows from the algorithm of Definition 16.

56



Chapter 4

Multi to Single Agent Reduction (Ex ante)

4.1 Introduction

In this chapter, we present an alternative multi to single agent decomposition ap-

proach that leads to approximately optimal mechanisms, but is far more practical

compared to the approach presented in §2 in terms of both computation and appli-

cability. In §2, we presented a general decomposition technique to reduce a multi

agent mechanism design problem to single agent subproblems. The decomposition

technique allowed us avoid the exponential blow up (as a function of the number of

agents) in the size of the optimization problem. On the other hand, the proposed

techniques are more theoretical than practical as they heavily rely on the use of El-

lipsoid method where each query to the separation oracle involves solving a second

optimization problem.

The decomposition technique of the current chapter can be roughly described as

the following: (i) Construct a mechanism that satisfies the supply constraints only in

expectation (ex-ante); the optimization problem for constructing such a mechanism

can be fully decomposed over the set of agents. (ii) Convert the mechanism from

the previous step to another mechanism that satisfies the supply constraint at every

instance.

We restrict our discussion to Bayesian combinatorial auctions. We are interested

in mechanisms that allocate a set of heterogenous items with limited supply to a set of

agents in order to maximize the expected value of a certain objective function which
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is linearly separable over the agents (e.g., welfare, revenue, etc). The agents’ types

are assumed to be distributed independently according to publicly known priors. We

defer the formal statement of our assumptions to §4.2.

Our framework can be summarized as follows. We start by relaxing the supply

constraints, i.e., we consider the mechanisms for which only the ex-ante expected num-

ber of allocated units of each item is no more than the supply of that item. Note that

“ex-ante” means that the expectation taken over all possible inputs (i.e., all possible

types of the agents). We show that the optimal mechanism for the relaxed problem

can be constructed by independently running n single agent mechanisms, where each

single agent mechanism is subject to an ex-ante probabilistic supply constraint. In

particular, we show that if one can construct an α-approximate mechanism for each

single agent problem, then running these mechanisms simultaneously and indepen-

dently yields an α-approximate mechanism for the relaxed multiple agent problem.

We then present two methods for converting the mechanism for the relaxed problem

to a mechanism for the original problem while losing a small constant factor in the

approximation. We present two generic multi agent mechanisms that use the single

agent mechanisms from the previous step as blackboxes 1. In the first mechanism, we

serve agents sequentially by running, for each agent, the corresponding single agent

mechanism from the previous step. However, we sometimes randomly preclude some

of the items from the early agents in order to ensure that late agents get the same

chance of being offered with those items; we ensure that the ex-ante expected proba-

bility of preclusion is equalized over all agents, regardless of the order in which they

are served (i.e., we simultaneously minimize the preclusion probability for all agents).

In the second mechanism, we run all of the single agent mechanisms simultaneously

and then modify the outcomes by deallocating some units of the over-allocated items

at random while adjusting the payments respectively; we ensure that the ex-ante

probability of deallocation is equalized among all units of each item and therefore

simultaneously minimized for all agents.

We also introduce a toy problem, the magician’s problem, in §4.4, along with a

1Note that the single agent mechanisms can be different for different agents, e.g., to accommodate
different classes of agents.
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near optimal solution for it, which is used as the main ingredient of our multi agent

mechanisms. A more general variant of this toy problem is presented in §5 along with

other applications.

As applications of our framework, in §4.6, we present mechanisms with improved

approximation factor for several settings from the literature. For each setting we

present a single agent mechanism that satisfies the requirements of our framework,

and can be plugged in one of our generic multi agent mechanisms.

4.1.1 Related Work

In single dimensional settings, the related works form the CS literature are mostly

focused on approximating the VCG mechanism for welfare maximization and/or

approximating the Myerson’s mechanism Myerson (1981) for revenue maximization

(e.g., Bulow and Roberts (1989); Babaioff et al. (2006); Blumrosen and Holenstein

(2008); Hartline and Roughgarden (2009); Dhangwatnotai et al. (2010); Chakraborty

et al. (2010); Yan (2011)). Most of them consider mechanisms that have simple im-

plementation and are computationally efficient. For welfare maximization in single

dimensional settings, Hartline and Lucier (2010) gives a blackbox reduction from

mechanism design to algorithmic design.

In multidimensional setting, for welfare maximization, Hartline et al. (2011) presents

a blackbox reduction from mechanism design to algorithm design which subsumes the

earlier work of Hartline and Lucier (2010).

Our work is also related to a line of work on approximating the Bayesian optimal

mechanism. These works tend to look for simple mechanisms that give constant (e.g.,

two) approximations to the optimal mechanism. Chawla et al. (2007), Briest et al.

(2010), and Cai and Daskalakis (2011) consider item pricing and lottery pricing for

a single agent; the first two give constant approximations the last gives a (1 + ε)-

approximation for any ε. These problems are related to the single-agent problems

we consider. Chawla et al. (2010) and Bhattacharya et al. (2010) extend these ap-

proaches to multi-agent auction problems. For revenue maximization, Chawla et al.

(2010) presents several sequential posted pricing mechanisms for various settings and
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various types of matroid feasibility constraints. These mechanisms have simple imple-

mentation and approximate the revenue of the optimal mechanism. For unit demand

agents whose valuations’ for the items are distributed according to product distribu-

tions, Chawla et al. (2010) present a sequential posted pricing mechanism that ob-

tains in expectation at least 1
6.75

-fraction of the revenue of the optimal posted pricing

mechanism. In §4.6.2, we present an improved sequential posted pricing mechanism

for this setting with an approximation factor of 1
2
γk in which k is the number of

units available of each item, and γk is a constant which is at least 1 − 1√
k+3

. For

combinatorial auctions with additive/correlated valuations with budget and demand

constraints, Bhattacharya et al. (2010) presents all-pay 1
4
-approximate BIC mecha-

nisms for revenue maximization and a similar mechanism for welfare maximization.

In subsection 4.6.4, we present an improved mechanism for this setting with an ap-

proximation factor of γk. Note that γk is at least 1
2

and approaches 1 as k → ∞.

Bhattacharya et al. (2010) also presents sequential posted pricing mechanisms for the

same setting, obtaining O(1) approximation factors. For a similar setting, in §4.6.3,

we present an improved sequential posted pricing mechanism with an approximation

factor of (1− 1
e
)γk. Finally, Chawla et al. (2011) also considers various settings with

hard budget constraints.

4.2 Preliminaries

We present our framework for combinatorial auctions, but it can be readily applied

to Bayesian mechanism design in other contexts. We begin by defining the model and

some notation.

Model. We consider the problem of allocating m indivisible heterogenous items to

n agents where there are kj units of each item j ∈ [m]. All the relevant private

information of each agent i ∈ [n] is represented by her type ti ∈ Ti where Ti is the

type space of agent i. Let T = T1 × · · · × Tn be the space of all type profiles. The

agents’ type profile t ∈ T is distributed according to a publicly known prior D. We
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use xij(t) and pi(t) to denote the random variables2 respectively for the allocation of

item j to agent i and the payment of agent i, for type profile t. For a mechanism

M , the random variables for allocations and payments are denoted respectively by

xMij (t) and pMi (t). We are interested in computing a mechanism that (approximately)

maximizes3 the expected value of a given objective function Obj(t, x,p) where t, x,

and p respectively represent the types, the allocations, and the payments of all agents.

We are only interested in mechanisms which are within a given space M of feasible

mechanisms. Formally, we aim to compute a mechanism M ∈ M that (approximately)

maximizes Et∼D[Obj(t, xM (t),pM (t))].

Assumptions. We make the following assumptions.

(A1) Independence. The agents’ types must be distributed independently, i.e.,

D = D1 × . . .×Dn where Di is the distribution of types for agent i. Note that

if agent i has multidimensional types, Di itself does not need to be a product

distribution.

(A2) Linear Separability of Objective. The objective function must be linearly

separable over the agents, i.e., Obj(t, x,p) =
P
iObji(ti, xi, pi) where ti, xi, and

pi respectively represent the type, the allocations, and the payment of agent i.

(A3) Single–Unit Demands. No agent should ever need more than one unit of

each item, i.e., xij(t) ∈ {0, 1} for all t ∈ T. This assumption is not necessary

and is only to simplify the exposition; it can be removed as explained in §4.7.

(A4) Incentive Compatibility. M must be restricted to (Bayesian) incentive com-

patible mechanisms. By direct revelation principle this assumption is without

loss of generality4,

2Note that these random variables are often correlated. Furthermore, for a deterministic mecha-
nism, these variables take deterministic values as a function of t.

3All of the results can be applied to minimization problems by simply maximizing the negation
of the objective function.

4It is WLOG, given that we are only interested in mechanisms that have Bayes-Nash equilibria.
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(A5) Convexity. M must be a convex space. In other words, every convex combi-

nation of every two mechanisms from M must itself be a mechanism in M. A

convex combination of two mechanisms M ,M ′ ∈ M is another mechanism M ′′

which simply runs M with probability β and runs M ′ with probability 1−β, for

some β ∈ [0, 1]. In particular, if M is restricted to deterministic mechanisms,

it is not convex; however if M also includes mechanisms that randomize over

deterministic mechanisms, then it is convex 5.

(A6) Decomposability. The set of constraints specifying M must be decomposable

to supply constraints (i.e.,
P
i xij(t) ≤ kj, for all t and all items j) and single

agent constraints(e.g., incentive compatibility, budget, etc). We define this

assumption formally as follows. For any mechanism M , let [[M ]]i be the single

agent mechanism perceived by agent i, by simulating6 the other agents according

to their respective distributions D−i. Define Mi = {[[M ]]i|M ∈ M} to be the

space of all feasible single agent mechanisms for agent i. The decomposability

assumption requires that for any arbitrary mechanism M the following holds:

if M satisfies the supply constraints and also [[M ]]i ∈ Mi (for all agents i), then

it must be that M ∈ M.

We shall clarify the last assumption by giving an example. Suppose M is the space

of all agent specific item pricing mechanisms, then M satisfies the last assumption.

On the other hand, if M is the space of mechanisms that offer the same set of prices

to every agent, it does not satisfy the decomposability assumption, because there is

an implicit inter agent constraint that the same prices should be offered to different

agents.

Throughout the rest of this chapter, we often omit the range of the sums whenever

the range is clear from the context (e.g.,
P
i means

P
i∈[n], and

P
j means

P
j∈[m]).

5For an example of a randomized non-convex space of mechanisms, consider the space of mech-
anisms where the expected payment of every type must be either less than $2 or more than $4.

6The single agent mechanism induced on agent i can be obtained by simulating all agents other
than i by drawing a random t−i from D−i and running M on agent i and the n−1 simulated agents
with types t−i; note that this is a single agent mechanism because the simulated agents are just
part of the mechanism.
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Multi agent problem. Formally, the multi agent problem is to find a mechanism

M which is a solution to the following program.

maximize
X
i

Et∼D
�
Obji(ti, x

M
i (t), pMi (t))

�
(OPT )

subject to
X
i

xMij (t) ≤ kj, ∀t ∈ T,∀j ∈ [m]

[[M ]]i ∈ Mi, ∀i ∈ [n]

Observe that, in the absence of the first set of constraints, we could optimize the

mechanism for each agent independently. This observation is the key to our multi to

single agent decomposition, which allows us to approximately decompose/reduce the

multi agent problem to single agent problems. A mechanism M is an α-approximation

of the optimal mechanism if it is a feasible mechanism for the above program and

obtains at least α-fraction of the optimal objective value of the program.

Ex ante allocation rule. For a multi agent mechanism M , the ex ante allocation

rule is a vector x ∈ [0, 1]n×m in which xij = Et∼D[xMij (t)] is the expected probability of

allocating a unit of item j to agent i, where the expectation is taken over all possible

type profiles. Note that for any feasible mechanism M , by linearity of expectation,

the ex ante allocation rule satisfies
P
i xij ≤ kj, for every item j.

Single agent problem. The single agent problem, for agent i, is to compute an

optimal single agent mechanism and its expected objective value, subject to a given

upper bound xi ∈ [0, 1]m on the ex ante allocation rule; in other words, the single

agent mechanism may not allocate a unit of item j to agent i with an expected

probability of more than xi, where the expectation is taken over ti ∼ Di. Formally,

the single agent problem is to compute the optimal value of the following program

along with a corresponding solution (i.e., the optimal Mi), for a given xi.
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maximize Eti∼Di
�
Obji(ti, x

Mi
i (ti), p

Mi
i (ti))

�
(OPTi)

subject to Eti∼Di
�
xMi
ij (ti)

�
≤ xij, ∀j ∈ [m]

Mi ∈ Mi,

We typically denote an optimal single agent mechanism for agent i, subject to a given

xi, by Mi〈xi〉, and denote its expected objective value (i.e., the optimal value of the

above program as a function of xi) by Ri(xi). Later, we prove that Ri(xi), which

we refer to as the optimal benchmark for agent i, is a concave function of xi. In

the case of approximation, we say that a single agent mechanism Mi together with

a concave benchmark Ri provide an α-approximation of the optimal single agent

mechanism/optimal benchmark, if the expected objective value of Mi〈xi〉 is at least

αRi(xi) and if Ri(xi) is an upper bound on the optimal benchmark, for every xi.

To make the exposition more concrete, consider the following single agent problem

as an example. Suppose there is only one type of item (i.e., m = 1) and the objective

is to maximize the expected revenue7. Suppose agent i’s valuation is drawn from

a regular distribution with CDF, Fi. The optimal single agent mechanism for i,

subject to xi ∈ [0, 1], is a deterministic mechanism which offers the item at some

fixed price, while ensuring that the probability of sale (i.e., the probability of agent

i’s valuation being above the offered price) is no more than xi. In particular, the

optimal benchmark Ri(xi) is the optimal value of the following convex program as a

function of xi.

maximize xiF
−1
i (1− xi)

subject to xi ≤ xi

xi ∈ [0, 1]

Furthermore, the optimal single agent mechanism offers the item at the price F−1
i (1−

7The optimal multi agent mechanism for this setting is given by Myerson (1981); yet we consider
this setting to keep the example simple and intuitive.
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xi) where xi is the optimal assignment for the above convex program. Note that, for a

regular distribution, xiF
−1
i (1− xi) is concave in xi, so the above program is a convex

program.

4.3 Decomposition via Ex ante Allocation Rule

In this section we present general methods for approximately decomposing/reducing

the multi agent problem to single agent problems. Recall that a single agent problem

is to compute the optimal single agent mechanism Mi〈xi〉 and its expected objective

value Ri(xi) (i.e., the optimal benchmark), subject to an upper bound xi on the

ex ante allocation rule. We present two methods for constructing an approximately

optimal multi agent mechanism, using Mi and Ri as black box. Furthermore, we

show that if we can only compute an α-approximation of the optimal single agent

mechanism/optimal benchmark for each agent i, then the factor α simply carries over

to the approximation factor of the final multi agent mechanism.

Multi agent benchmark. We start by showing that the optimal value of the

following convex program gives an upper bound on the expected objective value of

the optimal multi agent mechanism.

maximize
X
i

Ri(xi) (OPT )

subject to
X
i

xij ≤ kj, ∀j ∈ [m]

xij ∈ [0, 1] ,

We first show that the above program is indeed a convex program.

Theorem 21. The optimal benchmarks Ri are always concave.

Proof. We prove this for an arbitrary agent i. Let Mi and Ri denote the optimal

single agent mechanism and the optimal benchmark for agent i. To show that Ri
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is concave, it is enough to show that for any xi, x
′
i ∈ [0, 1]m and any β ∈ [0, 1], the

following inequality holds.

Ri(βxi + (1− β)x′i) ≥ βRi(xi) + (1− β)Ri(x
′
i)

Consider the single agent mechanism M ′′ that works as follows: M ′′ runs Mi(xi) with

probability β and runs Mi(x
′
i) with probability 1 − β. Note that Mi is a convex

space (this follows from A5 and A6), therefore M ′′ ∈ Mi. Observe that by linearly of

expectation, the ex ante allocation rule of M ′′ is no more than βxi+(1−β)x′i and the

expected objective value of M ′′ is exactly βRi(xi) + (1 − β)Ri(x
′
i). So the expected

objective value of the optimal single agent mechanism, subject to βxi + (1 − β)x′i,

may only be higher. That implies Ri(βxi+(1−β)x′i) ≥ βRi(xi)+(1−β)Ri(x
′
i) which

proves the claim.

Theorem 22. The optimal value of the convex program (OPT ) is an upper bound

on the expected objective value of the optimal multi agent mechanism.

Proof. Let M ∗ be an optimal multi agent mechanism. Let x∗ denote the ex ante

allocation rule corresponding to M ∗, i.e., x∗ij = Et∼D[xM
∗

ij ]. Observe that x∗ is a

feasible assignment for the convex program and yields an objective value of
P
iRi(x

∗
i )

which is upper bounded by the optimal value of the convex program. So to prove the

theorem it is enough to show that the contribution of each agent i to the expected

objective value of M ∗ is upper bounded by Ri(x
∗
i ). Consider M ∗

i = [[M ∗]]i, i.e, the

single agent mechanism induced by M ∗ on agent i. M ∗
i can be obtained by simply

running M ∗ on agent i and simulating the other n − 1 agents with random types

t−i ∼ D−i; Observe that M ∗
i is a feasible single agent mechanism subject to x∗i

and obtains the same expected objective value as M ∗ from agent i, so the expected

objective value of the optimal single agent mechanism subject to x∗i could only be

higher.

Constructing multi agent mechanisms. Theorem 22 suggests that by comput-

ing an optimal assignment of x for the convex program (OPT ) and running the single

agent mechanism Mi〈xi〉 for each agent i, one might obtain a reasonable multi agent
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mechanism; however such a multi agent mechanism would only satisfy the supply

constraints in expectation; in other words, there is a good chance that some items are

over allocated with a non-zero probability. We present two generic multi agent mech-

anisms for combining the single agent mechanisms and resolving the conflicts in the

allocations in such a way that would ensure the supply constraints are met at every

instance and not just in expectation. In both approaches we first solve the convex

program (OPT ) to compute the optimal x. The high level idea of each mechanism is

explained below.

1. Pre-Rounding. This mechanism serves the agents sequentially (arbitrary or-

der); for each agent i, it selects a subset Si of available items and runs the single

agent mechanism Mi〈xi[Si]〉, where xi[Si] denotes the vector resulting from xi

by zeroing the entries corresponding to items not in Si. In particular, this

mechanism sometimes precludes some of the available items from early agents

to make them available to late agents. We show that if there are at least k units

of each item, then Si includes item j with probability at least 1− 1√
k+3

, for each

agent i and each item j.

2. Post-Rounding. This mechanism runs Mi〈xi〉 for all agents i simultaneously

and independently. It then modifies the outcomes by deallocating the over

allocated items at random in such a way that the probability of deallocation

observed by all agents are equal, and therefore minimized over all agents. The

payments are adjusted respectively. We show that if there are at least k units

of each item, every allocation is preserved with probability 1 − 1√
k+3

from the

perspective of the corresponding agent.

We will explain the above mechanisms in more detail in §4.5 and present some

technical assumptions that are sufficient to ensure that they retain at least 1− 1√
k+3

fraction of the expected objective value of each Mi〈xi〉.

Approximately optimal single agent mechanisms. Throughout the above dis-

cussion, we assumed that we can compute the optimal single agent mechanisms and
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the corresponding optimal benchmarks. However, it is likely that we can only com-

pute an approximation of them. Suppose for each agent i, Mi and Ri, instead of

being optimal, only provide an α-approximation of the optimal single agent mecha-

nism/optimal benchmark, and suppose Ri is concave; then we can still use Mi and Ri

in the above construction, but the final approximation factor will be multiplied by α.

Main result. The following informal theorem summarizes the main result of this

chapter. The formal statement of this result can be found in Theorem 26 and Theo-

rem 27.

Theorem 23 (Market Expansion). If for each agent i ∈ [n], an α-approximate single

agent mechanism Mi and a corresponding concave benchmark Ri can be constructed in

polynomial time, then, with some further assumptions (explained later), a multi agent

mechanism M ∈ M can be constructed in polynomial time by using Mi as building

blocks, such that M is γkα-approximation of the the optimal multi agent mechanism

in M, where k = minj kj and γk is a constant which is at least 1− 1√
k+3

.

In order to explain the construction of the multi agent mechanism, we shall first

describe the magician’s problem and its solution, which is used in both pre-rounding

and post-rounding for equalizing the expected probabilities of preclusion/deallocation

over all agents.

4.4 The Magician’s Problem

In this section, we present an abstract online stochastic toy problem and a near-

optimal solution for it which provides the main ingredient for combining single agent

mechanisms to form multi agent mechanisms. A generalization of this problem and

its solution is presented in §5.2.
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Definition 17 (The Magician’s Problem). A magician is presented with a series of

boxes one by one, in an online fashion. There is a prize hidden in one of the boxes.

The magician has k magic wands that can be used to open the boxes. If a wand is

used on box i, it opens, but with a probability of at most xi, which written on the box,

the wand breaks. The magician wishes to maximize the probability of obtaining the

prize, but unfortunately the sequence of boxes, the written probabilities, and the box

in which the prize is hidden are arranged by a villain, and the magician has no prior

information about them (not even the number of the boxes). However, it is guaranteed

that
P
i xi ≤ k, and that the villain has to prepare the sequence of boxes in advance

(i.e., cannot make any changes once the process has started).

The magician could fail to open a box either because (a) he might choose to skip

the box, or (b) he might run out of wands before getting to the box. Note that once

the magician fixes his strategy, the best strategy for the villain is to put the prize

in the box that has the lowest ex ante probability of being opened, based on the

magician’s strategy. Therefore, in order for the magician to obtain the prize with

a probability of at least γ, he has to devise a strategy that guarantees an ex ante

probability of at least γ for opening each box. Notice that allowing the prize to

be split among multiple boxes does not affect the problem. It is easy to show the

following strategy ensures an ex ante probability of at least 1
4

for opening each box:

for each box randomize and use a wand with probability 1
2
. But can we do better?

We present an algorithm parameterized by a probability γ ∈ [0, 1] which guarantees

a minimum ex-ante probability of γ for opening each box while trying to minimize

the number of wands broken. In Theorem 24, we show that for γ ≤ 1 − 1√
k+3

this
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algorithm never requires more than k wands.

Definition 18 (γ-Conservative Magician). The magician adaptively computes a se-

quence of thresholds θ1, θ2, . . . ∈ N0 and makes a decision about each box as follows:

let Wi denote the number of wands broken prior to seeing the ith box; the magician

makes a decision about box i by comparing Wi against θi; if Wi < θi, it opens the box;

if Wi > θi, it does not open the box; and if Wi = θi, it randomizes and opens the box

with some probability (to be defined). The magician chooses the smallest threshold

θi for which Pr[Wi ≤ θi] ≥ γ where the probability is computed ex ante (i.e., not

conditioned on past broken wands). Note that γ is a parameter that is given. Let

FWi
(`) = Pr[Wi ≤ `] denote the ex ante CDF of random variable Wi, and let Yi be

the indicator random variable which is 1 iff the magician opens the box i. Formally,

the probability with which the magician should open box i condition on Wi is computed

as follows.

Pr [Yi = 1|Wi] =

8>>><>>>:
1 Wi < θi

(γ − FWi
(θi − 1))/(FWi

(θi)− FWi
(θi − 1)) Wi = θi

0 Wi > θi

(y)

θi = min{`|FWi
(`) ≥ γ} (θ)

Observe that θi is in fact computed before seeing box i itself.

Define y`i = Pr[Yi = 1|Wi = `]; the CDF of Wi+1 can be computed from the CDF

of Wi and xi as follows (assume xi is the exact probability of breaking a wand for

box i).

FWi+1
(`) =

8>>><>>>:
y`ixiFWi

(`− 1) + (1− y`ixi)FWi
(`) i ≥ 1, ` ≥ 0

1 i = 0, ` ≥ 0

0 otherwise.

(FW)

Furthermore, if each xi is just an upper bound on the probability of breaking a wand

on box i, then the above definition of FWi
(·) stochastically dominates the actual CDF
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of Wi, and the magician opens each box with a probability of at least γ.

In order to prove that a γ-conservative magician does not fail for a given choice

of γ, we must show that the thresholds θi are no more than k − 1. The following

theorem states a condition on γ that is sufficient to guarantee that θi ≤ k − 1 for all

i.

Theorem 24 (γ-Conservative Magician). For any γ ≤ 1 − 1√
k+3

, a γ-conservative

magician with k wands opens each box with an ex ante probability of at least γ. Fur-

thermore, if xi is the exact probability (not just an upper bound) of breaking a wand

on box i for each i, then each box is opened with an ex ante probability exactly γ8

Proof. We defer the proof of this theorem to §5.2 where we present a more general

variant of the magician’s problem.

Definition 19 (γk). We define γk to be the largest probability such that for any k′ ≥ k

and any instance of the magician’s problem with k′ wands, the thresholds computed by

a γk-conservative magician are less than k′. In other words, γk is the optimal choice

of γ which works for all instances with k′ ≥ k wands. By Theorem 24, γk must be9

at least 1− 1√
k+3

.

Observe that γk is a non-decreasing function in k which is at least 1
2

(when k = 1)

and approaches 1 as k → ∞. The next theorem shows that the lower bound of

1− 1√
k+3

on γk cannot be far from the optimal.

Theorem 25 (Hardness of Magician’s Problem). For any ε > 0, it is not possible to

guarantee an ex ante probability of 1− kk

ekk!
+ ε for opening each box (i.e., no magician

can guarantee it). Note that 1− kk

ekk!
≈ 1− 1√

2πk
by Stirling’s approximation.

Proof. See §4.8.

8In particular the fact that the probability of the event of breaking a wand for the ith box is
exactly xi, conditioned on any sequence of prior events, implies that these events are independent
for different boxes.

9Because for any k′ ≥ k obviously 1− 1√
k+3
≤ 1− 1√

k′+3
.
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4.5 Generic Multi Agent Mechanisms

In this section, we present a formal description of the two generic multi agent mecha-

nisms outlined toward the end of §4.3. Throughout the rest of this section we assume

that for each agent i ∈ [n] we can compute a single agent mechanism Mi and a cor-

responding concave benchmark Ri, which together provide α-approximation of the

optimal single agent mechanism/optimal benchmark for agent i. We show that the

resulting multi agent mechanism will be γkα-approximation of the the optimal multi

agent mechanism in M, where k = minj kj and γk is the optimal magician parameter

which is at least 1− 1√
k+3

(Definition 19) .

4.5.1 Pre-Rounding

This mechanism serves the agents sequentially (arbitrary order); for each agent i, it

selects a subset Si of available items and runs the single agent mechanism Mi〈xi[Si]〉,
where xi is an optimal assignment for the benchmark convex program (OPT ), and

xi[Si] denotes the vector resulting from xi by zeroing the entries corresponding to

items not in Si. In particular, this mechanism sometimes precludes some items from

early agents to make them available to late agents. For each item, the mechanism tries

to minimize the probability of preclusion for each agent by equalizing it for all agents.

Note that, for any given pair of agent and item, we only care about the probability

of preclusion in expectation, where the expectation is taken over the types of other

agents and the random choices of the mechanism. The mechanism is explained in
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detail in Definition 20.

Definition 20 (γ-Pre-Rounding).

(I) Solve the convex program (OPT ) and let x be an optimal assignment.

(II) For each item j ∈ [m], create an instance of γ-conservative magician (Def-

inition 18) with kj wands (this will be referred to as the jth magician). We

will use these magicians through the rest of the mechanism. Note that γ is a

parameter that is given.

(III) For each agent i ∈ [n]:

(a) For each item j ∈ [m], write xij on a box and present it to the jth magician.

Let Si be the set of items where the corresponding magicians opened the

box.

(b) Run Mi〈xi[Si]〉 on agent i and use its outcome as the final outcome for

agent i.

(c) For each item j ∈ [m], if a unit of item j was allocated to agent i in the

previous step, break the wand of the jth magician.

Note that since x is a feasible assignment for convex program (OPT ), it must

satisfy
P
i xij ≤ kj, so by setting γ ← γk and by Theorem 24 and Definition 19 we

can argue that each Si includes each item j with probability at least γk where γk is

at least 1− 1√
k+3

.

In order for the above mechanism to retain at least a γ-fraction of the the expected

objective value of each Mi〈xi〉, further technical assumptions are needed in addition

to γ ≤ γk. We show that it is enough to assume each Ri has a budget-balanced and

cross monotonic cost sharing scheme.
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Definition 21 (Budget Balanced Cross Monotonic Cost Sharing Scheme). A function

R : [0, 1]m → R+ has a budget balanced cross monotonic cost sharing scheme iff there

exists a cost share function ξ : [m]× [0, 1]m → R+ with the following two properties:

(i) ξ must be budget balanced which means for all x ∈ [0, 1]m and S ⊆ [m],P
j∈S ξ(j, x[S]) = R(x[S]).

(ii) ξ must be cross monotonic which means for all x ∈ [0, 1]m, j ∈ [m] and S, S ′ ⊆
[m], ξ(j, x[S]) ≥ ξ(j, x[S ∪ S ′]).

Intuitively, a cost share function associates a fraction of the expected objective

value returned by the benchmark function R to each item; and ensures that the

fraction associated with each item does not decrease when other items are excluded.

In particular, the above assumption holds if R(x[S]) is a submodular function of S

(e.g., for welfare maximization, assuming that agents’ valuations are submodular10).

Note that it is enough to show that such a cost sharing function exists; however it is

never used in the mechanism and its computation is not required.

Theorem 26 (γ-Pre-Rounding). Suppose for each agent i, Mi is an α-approximate

incentive compatible single agent mechanism, and Ri is the corresponding concave

benchmark. Also suppose Ri has a budget balanced cross monotonic cost sharing

scheme. Then, for any γ ∈ [0, γk], the γ-pre-rounding mechanism (Definition 20) is

dominant strategy incentive compatible (DSIC) mechanism which is in M and is a

γα-approximation of the optimal mechanism in M.

Proof. See §4.8.

Remark 1. The γ-pre-rounding mechanism assumes no control and no prior informa-

tion about the order in which agents are visited. The order specified in the mechanism

is arbitrary and could be replaced by any other ordering which may be unknown in

advance. In particular, this mechanism can be adopted to online settings in which

agents are served in an unknown order.

10We conjecture that it holds in general for revenue maximization, when agents’ valuations are
submodular and M is restricted to mechanisms which use agent specific item pricing.
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Corollary 4. In any setting where Theorem 26 is applicable and when M includes

all feasible BIC mechanisms, the gap between the optimal DSIC mechanism and the

optimal BIC mechanism is at most 1/γk. This gap is at most 2 (for k = 1) and

vanishes as k →∞. That is because Definition 20 is always DSIC, yet it approximates

the optimal mechanism in M.

4.5.2 Post-Rounding

This mechanism runs Mi〈xi〉 simultaneously and independently for all agents i to

compute a tentative allocation/payment for each agent; it then deallocates some of

the items at random to ensure that the supply constraints are met at every instance;

it ensures that the probability of deallocation perceived by each agent (i.e., in ex-

pectation over the types of other agents and random choices of the mechanism) is

equalized and therefore simultaneously minimized for all agents. The payments are
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also adjusted respectively. The mechanism is explained in detail in Definition 22.

Definition 22 (γ-Post-Rounding).

(I) Solve the convex program (OPT ) and let x denote an optimal assignment.

(II) Run Mi〈xi〉 simultaneously and independently for all agents i ∈ [n], and let

x′i ⊆ [m] and p′i ∈ R+ denote respectively the allocation (subset of items) and

payment computed by Mi〈xi〉 for agent i.

(III) For each item j ∈ [m], create an instance of γ-conservative magician (Def-

inition 18) with kj wands (this will be referred to as the jth magician). We

will use these magicians through the rest of the mechanism. Note that γ is a

parameter that is given.

(IV) For each agent i ∈ [n]:

(a) For each item j ∈ [m], write x̂ij on a box and present it to the jth magician,

where x̂ij is the exact probability11 of Mi〈xi〉 allocating a unit of item j

to agent i; let Si be the set of items where the corresponding magicians

opened the box.

(b) Let xi ← Si ∩ x′i and pi ← γp′i. The final allocation and payment of agent

i is given by xi and pi respectively.

(c) For each item j ∈ xi, break the wand of the jth magician.

Note that
P
i x̂ij ≤

P
i xij ≤ kj; so by setting γ ← γk and by Theorem 24 and

Definition 19 we can argue that each Si includes each item j with probability at least

γk where γk is at least 1− 1√
k+3

. Consequently, any item that is in x′i will also be in

xi with probability exactly γ.

In order for γ-post-rounding to retain at least a γ-fraction of the the expected

objective value of each Mi〈xi〉 and preserve incentive compatibility, further technical

assumptions are needed in addition to γ ≤ γk; next, we present a set of assumptions

which is sufficient for this purpose12.

11Note that xij is only an upper bound on the probability of allocation, so x̂ij ≤ xij
12I.e., one might come up with other sets of assumptions that are also sufficient.

76



CHAPTER 4. MULTI TO SINGLE AGENT REDUCTION (EX ANTE)

(A′1) The exact ex ante allocation rule for each Mi〈xi〉 (i.e., x̂) must be available

(i.e., efficiently computable). Note that x is only an upper bound on the ex

ante allocation rule.

(A′2) The objective functions must be of the form Obji(ti, xi, pi) = Obji(ti, xi, 0) +

cipi in which ci ∈ R+ is an arbitrary fixed constant. Also, each Obji(ti, xi, 0)

must have cost sharing scheme in xi which is cross monotonic and budget

balanced.

(A′3) The resulting mechanism must be in M. In particular, that implies M may

not be restricted to any from of incentive compatibility stronger than Bayesian

incentive compatibility (BIC), because the γ-post-rounding is only BIC.

(A′4) The valuations of each agent must be in the form of a weighted rank function

of some matroid.

Observe thatA′2 obviously holds for revenue maximization (because Obji(ti, xi, pi) =

pi), and also for welfare maximization with quasilinear utilities and submodular val-

uations (because Obji(ti, xi, pi) = vi(ti, xi) where vi(ti, xi) is the valuation of agent i

for allocation xi
13). Next, we formally define A′4.

Definition 23 (Matroid Weighted Rank Valuation). A valuation function v : 2m →
R+ is a matroid weighted rank valuation iff there exists a matroid M = ([m], I), and

a weight function w : [m]→ R+ such that v(S) is equal to the weight of a maximum

weight independent subset of S, i.e,

v(S) = max
I∈I∩2S

X
j∈I

w(j), ∀S ⊆ [m]

Matroid weighted rank valuations include additive valuations with demand con-

straints, unit demand valuations, etc.

13Note that the payment terms cancel out because the utility of the auctioneer is counted toward
the social welfare of the mechanism
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Theorem 27 (γ-Post-Rounding). Suppose for each agent i, Mi is an α-approximate

incentive compatible single agent mechanism, and Ri is a corresponding concave

benchmark. Also suppose the assumptions A′1 through A′4 hold. Then, for any

γ ∈ [0, γk], the γ-post-rounding mechanism (Definition 22) is a Bayesian incentive

compatible (BIC) mechanism which is in M and is a γα-approximation of the optimal

mechanism in M.

Proof. See §4.8.

4.6 Single Agent Mechanisms

In this section, we present approximately optimal single agent mechanisms for several

common settings. Each one of the single agent mechanisms presented in this section

satisfies the requirements of one of the generic multi agent mechanisms of §4.5, so they

can be readily converted to a multi agent mechanisms. Except for §4.6.4, we restrict

the space of mechanisms to item pricing mechanisms with budget randomization as

defined next.

Definition 24 (Item Pricing with Budget Randomization (IPBR)). An item pricing

mechanism is a possibly randomized mechanism that offers a menu of prices to each

agent and allows each agent to choose their favorite bundle. The payment of an

agent is equal to the total price of the items in her purchased bundle. Note that

the prices offered to different agents do not need to be identical and agents can be

served sequentially. In the presence of budget constraints, an agent is allowed to pay

a fraction of the price of an item and receive the item with a probability equal to the

paid fraction14. A mechanism is considered an item pricing mechanism if its outcome

can be interpreted as such15.

Item pricing mechanisms are simple and practical as opposed to optimal BIC

14A utility maximizing agent, with submodular valuations and budget constraint, always pays the
full price for any item she purchases, except potentially for the last item purchased, for which she
must have run out of budget.

15I.e., an item pricing mechanism may collect all the reports and compute the final outcome along
with agent specific prices, such that the outcome of each agent would be the same as if each agent
purchased their favorite bundle according to her observed prices, and the prices observed by each
agent should be independent of her report.
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mechanisms which often involve lotteries. Also budget randomization allows us to

get around the hardness of the knapsack problem faced by the budgeted agents; in

particular, assuming that budgets are large compared to prices, budget randomization

can be safely ignored since the optimal integral solution of the knapsack problem

approaches its optimal fractional solution.

Table 4.1 lists several settings for which we obtain a multi agent mechanism with

an improved approximation factor compared to previous best known approximations.

For each setting, we present a single agent mechanism that satisfies the requirements

of one of the generic multi agent mechanisms of §4.5. The corresponding single

agent mechanisms are presented in detail throughout the rest of this section. Note

that the final approximation factor for each multi agent mechanism is equal to the

approximation factor of the corresponding single agent mechanism multiplied by γk;

recall that γk ≥ 1− 1√
k+3

which approaches 1 as k →∞.

Setting Approx Space of Mechanisms Ref
single item(multi unit), unit demand,
budget constraint, revenue maximiza-
tion

γk item pricing with budget randomization §4.6.1

multi item(heterogenous), unit demand,
product distribution, revenue maximiza-
tion

1
2γk deterministic §4.6.2

multi item(heterogenous), additive val-
uations, product distribution, budget
constraint, revenue maximization

(1− 1
e )γk item pricing with budget randomization §4.6.3

multi item(heterogenous), additive val-
uations, correlated distribution with
polynomial number of types, budget
constraint, matroid constrains, revenue
or welfare maximization

γk randomized (BIC) §4.6.4

Table 4.1: Summary of mechanisms obtained using the current framework.

For each single agent mechanism presented in this chapter, the single agent bench-

mark function R(x) is defined as the optimal value of some convex program of the

following general form, in which u is some concave function, gj(·) are some convex

functions, and Y is some convex polytope (in the rest of this section we only consider

a single agent, so we will omit the subscript i).
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maximize u(y) (OPT 1)

subject to gj(y) ≤ xj, ∀j ∈ [m]

y ∈ Y

Lemma 5. R(x) is concave, i.e., the optimal value of a convex program of the form

(OPT 1) is always concave in x.

Proof. See section 4.8.

Note that we can substitute each Ri(·) in the multi agent benchmark convex

program (OPT ) with the corresponding single agent benchmark convex program to

obtain a combined convex program which can be solved efficiently. If each Ri is

captured by a linear program, the combined multi agent program will also be a linear

program.

4.6.1 Single Item, Unit Demand, Budget Constraint

In this section, we consider a unit-demand agent with a publicly known budget B

and one type of item (i.e., m = 1). The only private information of the agent is

her valuation for the item, which is drawn from a publicly known distribution with

CDF F (·). To avoid complicating the proofs, we assume that F (·) is continuous

and strictly increasing in its domain16. We present a single agent mechanism which

is optimal among item pricing mechanisms with budget randomization (IPBR). We

start by defining the modified CDF function FB(·) as follows.

FB(v) =

8><>:
F (v) v ≤ B

1− (1− F (v))B
v

v ≥ B
(FB)

Intuitively, 1 − FB(p) is the probability of allocating the item to the agent if we

offer the item at price p. Note that the agent only buys if her valuation is more than p

16The proofs can be modified to work without this assumption.
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which happens with probability 1−F (p) ; if p > B, she will pay her whole budget and

only get the item with probability B
p

, otherwise she pays the full price and receives the

item with probability 1. Observe that if we want to allocate the item with probability

x we can offer a price of FB(−1)
(1 − x) which yields a revenue of xFB(−1)

(1 − x) in

expectation. Define R(x) = xFB(−1)
(1 − x) and let ÒR(x) denote its concave closure

(i.e., the smallest concave function that is an upper bound on R(x) for every x). We

will address the problem of efficiently computing ÒR(x) later in Lemma 6. Next, we

show that the optimal value of the following convex program is equal to the expected

revenue of the optimal single agent IPBR mechanism subject to x; therefore we will

define the single agent benchmark function R(x) to be equal to the optimal value of

this program as a function of x.

maximize ÒR(x) (Revsingle)

subject to x ≤ x

x ≥ 0

Theorem 28. The revenue of the optimal single agent IPBR mechanism, subject

to an upper bound of x on the ex ante allocation rule, is equal to the optimal value

of the convex program (Revsingle). Furthermore, assuming that x∗ is the optimal

assignment for the convex program, if ÒR(x∗) = R(x∗), then the optimal mechanism

uses a single price p = FB(−1)
(1 − x∗) otherwise, it randomized between two prices

p−, p+ with probabilities θ and 1− θ for some θ ∈ [0, 1] and p−, p+.

Proof. First, we prove that the expected revenue of the optimal single agent IPBR

mechanism, subject to x, is upper bounded by ÒR(x∗). We then construct a price

distribution that obtains this revenue. Note that any single agent IPBR mechanism

can be specified as a distribution over prices. Let P be the optimal price distribution.

So the optimal revenue is Ep∼P [p(1 − FB(p))]. Note that every price p corresponds

to an allocation probability x = 1 − FB(p). So any probability distribution over p

can be specified as a probability distribution over x. Let Q denote the probability
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distribution over x that corresponds to price distribution P , so we can write

optimal revenue = Ex∼Q

�
xFB(−1)

(1− x)
�

= Ex∼Q [R(x)]

≤ Ex∼Q
hÒR(x)

i
≤ ÒR(Ex∼Q [x]) By Jensen’s inequality

which means the optimal revenue is upper bounded by the value of the convex program

for x = Ex∼Q[x] 17; so the optimal revenue is upper bounded by the optimal value of

the convex program. That completes the first part of the proof.

Next, we construct an optimal price distribution. If ÒR(x∗) = R(x∗), the optimal

price distribution is just a single price p = FB(−1)
(1 − x∗); otherwise, by definition

of concave closure, there are two points x− and x+ and θ ∈ [0, 1] such that x∗ =

θx−+ (1− θ)x+ and ÒR(x∗) = θR(x−) + (1− θ)R(x+). In the latter case, the optimal

price distribution offers price p− = FB(−1)
(1−x−) with probability θ and offers price

p+ = FB(−1)
(1− x+) with probability 1− θ.

Formally, an optimal single agent IPBR mechanism can be constructed as follows.

Definition 25 (Mechanism).

• Define the single agent benchmark R(x) to be the optimal value of the convex

program (Revsingle) as a function of x.

• Given x, solve (Revsingle) and let x be an optimal assignment.

• If ÒR(x) = R(x), offer the single price p = FB(−1)
(1− x), otherwise randomize

between two prices p− and p+ as explained in the proof of Theorem 28.

Theorem 29. The mechanism of Definition 25 is the optimal revenue maximizing

single agent IPBR mechanism. Furthermore, this mechanism satisfies the require-

ments of γ-pre-rounding.

Proof. The proof of the optimality follows from Theorem 28. Furthermore, the bench-

mark function, R(x), is concave (this follows from Lemma 5) and it has a trivial budget

17Note that Ex∼Q[x] is exactly the probability of allocating the item by the price distribution P,
so it must be no more than x
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balanced cost sharing scheme (because there is only one item), therefore it meets the

requirements of γ-pre-rounding.

Next, we address the problem of efficiently computing ÒR(·).

Lemma 6. A (1 + ε)-approximation of ÒR(·), which we denote by ÒR1+ε(·), can be

constructed using a piece-wise linear function with ` = logL
log(1+ε)

pieces and in time

O(` log `) in which L is the ratio of the maximum valuation to minimum non-zero

valuation. Note that we need at least log2 L bits just to represent such valuations so

this construction is polynomial in the input size for any constant ε.

Proof. WLOG, assume that all possible non-zero valuations of the agent are in the

range of [1, L]. Let ` = b logL
log(1+ε)

c. For r = 0 · · · `, consider the prices pr = (1 + ε)`−r

and compute the corresponding xr = 1− FB(pr). Construct ÒR1+ε(·) by constructing

the convex hall of the points:

(0, 0), (x1, p1x1), (x2, p2x2), . . . , (x`, p`x`), (1, 0). This can be done in time O(` log `).

Note that FB(−1)
(1 − x) is a decreasing function of x so at every x ∈ [xr, xr+1], the

corresponding price is FB(−1)
(x) ∈ [pr+1, pr] but pr = (1 + ε)pr+1 therefore at every

x, R1+ε(x) ≤ ÒR(x) ≤ (1 + ε)R1+ε(x) which completes the proof.

Remark 2. In order to use R1+ε(·) in the single agent mechanism of Definition 25,

we need to substitute (1 + ε)ÒR1+ε(·) in the objective function of the convex program

(Revsingle) instead of ÒR(·) for computing the benchmark. Furthermore, the mecha-

nism will be a (1 − ε)-approximation of the optimal single agent IPBR mechanism.

Also notice that finding p− and p+ from R1+ε(·) is trivial.

4.6.2 Multi Item (Independent), Unit Demand

In this section, we consider a unit demand agent with private independent valuations

for m items. We assume that for each item j, the agent’s valuation is distributed inde-

pendently according to a publicly known distribution with CDF Fj(·). We present a

single agent mechanism which is a 1
2
-approximation of the optimal deterministic rev-

enue maximizing mechanism. To avoid complicating the proofs, we assume that each

Fj(·) is continuous and strictly increasing in its domain. Furthermore, we require the
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distributions to be regular. This mechanism can be used with γ-pre-rounding (Defini-

tion 20) to yield a 1
2
γk-approximate sequential posted pricing multi agent mechanism.

The previous best approximation mechanism for this setting was a 1
6.75

-approximate

sequential posted pricing mechanism by Chawla et al. (2010)18.

We start by defining Rj(x) = xF−1
j (1 − x) for each item j. Because Fj(·) is

corresponds to a regular distribution, Rj(·) is concave as shown in the following

lemma.

Lemma 7. If F (·) is the CDF of a regular distribution, the function R(x) = xF−1(1−
x) is concave.

Proof. It is enough to show that ∂
∂x
R(x) is non-increasing in x. Observe that ∂

∂x
R(x) =

F−1(1 − x) − x
f(F−1(1−x))

in which f(·) is the derivative of F (·). By substituting

x = 1 − F (p), it is enough to show that the resulting function is non-decreasing

in p because x is itself non-increasing in p. However, by this substitution we get
∂
∂x
R(x) = p− 1−F (p)

f(p)
which is non-decreasing in p by definition of regularity.

Note that any deterministic mechanism for a unit demand agent can be interpreted

as item pricing. Consequently, Rj(xj) is the maximum revenue that such a mechanism

can obtain if item j is allocated with probability xj. Next, we show that the following

convex program gives an upper bound the on the expected optimal revenue.

maximize
X
j

Rj(xj) (Revunit)

subject to xj ≤ xj, ∀j ∈ [m] (λj)X
j

xj ≤ 1 (τ)

xj ≥ 0, ∀j ∈ [m] (µj)

Theorem 30. The revenue of the optimal deterministic single agent mechanism,

subject to an upper bound of x on the ex ante allocation rule, is no more than the

18Note that the mechanism of Chawla et al. (2010) does not work for non-regular distributions
despite the authors’ claim.
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optimal value of the convex program (Revunit).

Proof. Let x∗ be the ex ante allocation rule of the optimal single agent deterministic

mechanism. So the expected revenue obtained from each item j is upper bounded by

Rj(x
∗
j) (proof of this claim is essentially the same as the proof of Theorem 28). Conse-

quently, the expected optimal revenue cannot be more that
P
j Rj(x

∗
j). Furthermore,

the optimal mechanism never allocates more than one item, so
P
j x
∗
j ≤ 1, and also

x∗j ≤ xj; therefore x∗ is a feasible solution for the convex program; so the expected

optimal revenue is upper bounded by the optimal value of the convex program.

Next, we present the single agent mechanism.

Definition 26 (Mechanism).

• Define the benchmark R(x) to be the optimal value of (Revunit) as a function

of x.

• Given x, solve (Revunit) and let x denote an optimal assignment.

• For each item j, assign the price pj = F−1
j (1− xj). WLOG, assume that items

are indexed in non-decreasing order of prices, i.e., p1 ≤ . . . ≤ pm.

• For each item j, define rj = max(xjpj + (1 − xj)rj+1, rj+1) and let rm+1 = 0.

Let S∗ be the subset of items defined as S∗ = {j|pj ≥ rj+1}.

• Only offer the items in S∗ at prices computed in the previous step (i.e., set the

price of other items to infinity).

Theorem 31. The mechanism of Definition 26 obtains at least 1
2

of the revenue of

the optimal deterministic single agent mechanism in expectation. Furthermore, it

satisfies the requirements of γ-pre-rounding.

Proof. First, we show that this mechanism obtains in expectation at least 1
2

of its

benchmark R(x), which by Theorem 30 is an upper bound on the optimal revenue.

Observe that R(x) =
P
j xjpj where xj is exactly the probability that the valuation of

the agent for item j is at least pj. Now consider an “adversary replica” who has the
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exact same valuations as the original agent, but always buys the item that has the

lowest price among all the items priced below her valuation. For any assignment of

prices, the revenue obtained from the adversary replica is a lower bound on the revenue

obtained from the original agent. So it is enough to show that the mechanism obtains

a revenue of at least 1
2

P
j xjpj from the adversary replica. Observe that rj is exactly

the expected revenue obtained from the adversary replica when offered the items in

S∗ ∩ {j, . . . ,m}. In particular, item j is included in S∗ if pj ≥ Rj+1, which implies

that the revenue obtained from the purchase of item j, conditioned on purchase, is

more than the lower bound on the expected revenue obtained from items {j, . . . ,m}.
Finally, observe that the expected revenue obtained from the adversary replica is

exactly r1. By Lemma 8 we can conclude that r1 ≥ 1
2

P
j xjpj which completes the

proof of the first claim.

Next, we show that this mechanism satisfies the requirements of γ-pre-rounding.

Observe that by Lemma 5, the optimal value of (Revunit) is a concave function of x;

so R(x) is concave. It only remains to show that R(·) has a budget balanced cross

monotonic cost sharing scheme. Let xj(x) denote the optimal assignment of variable

xj, in the convex program (Revunit), as a function of x. Define the cost share function

ξ(j, x) = Rj(xj(x)).

We shall show that ξ is budget balanced and cross monotonic (see Definition 21).

• Budget balance. We shall show that for any x ∈ [0, 1]m and any S ⊆ [m],

R(x[S]) =
P
j∈S ξ(j, x[S]). Note thatR(x[S]) =

P
j Rj(xj(x[S])) =

P
j∈S ξ(j, xj(x[S]))

which proved that ξ is budget balanced. Note that Rj(xj(x[S])) = 0, for any

j 6∈ S, because xj(x[S]) is forced to be 0.

• Cross monotonicity. We shall show that ξ(j, x[S]) ≥ ξ(j, x[S ∪ S ′]), for any

x ∈ [0, 1]m and any S, S ′ ⊆ [m]. Let the Lagrangian of (Revunit) be defined as

follows.

L(x, λ, τ, µ) = −
X
j

Rj(xj) +
X
j

λj (xj − xj) + τ (
X
j

xj − 1)−
X
j

µjxj
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The high level idea of the proof is as follows. We show that there is more

pressure on the constraint associated with τ when the set of available items is

S ∪ S ′ instead of S (i.e., τ is larger for S ∪ S ′); we then show that the optimal

xj can be determined from τ ; in particular, we show that, as the optimal τ

increases, the optimal xj decreases, and consequently ξ(j, x) (which is equal to

Rj(xj)) decreases as well, which proves ξ is cross monotonic. Next we present

the proof in detail.

By KKT stationarity conditions, at the optimal assignment the following holds.

∂

∂xj
L(x, λ, τ, µ) = − ∂

∂xj
Rj(xj) + λj + τ − µj = 0

First we show that the optimal xj, and consequently ξ(j, x), can be determined

from the optimal τ ; and they are both non-increasing in τ . Observe that (a)

all dual variables must be non-negative, (b) by complementary slackness λj

may be non-zero only if xj = xj, and (c) complementary slackness implies that

µj may be non-zero only if xj = 0; therefore, if the optimal τ is given, the

optimal assignment for xj is uniquely19 determined by the above equation and

the aforementioned complementarity slackness conditions. Let xj(τ) denote the

optimal assignment of xj as a function of τ . Due to the concavity of Rj(·), and

the above KKT condition, we can argue that xj(τ) is non-increasing in τ , which

also implies that ξ(j, x) is non-increasing in τ .

Next, we prove by contradiction that ξ is cross monotonic. Let τ(x) denote the

optimal assignment of τ as a function of x. By contradiction, suppose ξ is not

cross monotonic, i.e. ξ(j∗, x[S ∪ S ′]) > ξ(j∗, x[S]) for some item j∗; therefore

τ(x[S]) > τ(x[S ∪ S ′]) ≥ 0. Since τ(x[S]) > 0, the inequality associated with

τ must be tight (by complementary slackness), so
P
j xj(τ(x[S])) = 1. On the

other hand, for all j, xj(τ(x[S ∪ S ′])) ≥ xj(τ(x[S])), with the inequality being

strict for j = j∗, which means
P
j xj(τ(x[S ∪ S ′])) > 1, which is a contradiction.

19To avoid complicating the proof, we assume that the functions Rj(·) are strictly concave, however
this assumption is not necessary.
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Lemma 8. Let p1, . . . , pm and x1, . . . , xm be two sequences of non-negative real num-

bers and suppose
P
j xj ≤ 1. For each j ∈ [m], define rj = max(xjpj + (1 −

xj)rj+1, rj+1) and let rm+1 = 0. Then r1 ≥ 1
2

P
j xjpj.

Proof. See section 4.8.

4.6.3 Multi Item (Independent), Additive, Budget Constraint

In this section, we consider an agent with publicly known budget B who has private

independent and additive valuations for m items (i.e., her valuation for a bundle of

items is the sum of her valuations for individual items in the bundle). We assume the

agent’s valuation for each item j is distributed independently according to a publicly

known distribution with CDF Fj(·). To avoid complicating the proofs, we assume that

each Fj(·) is continuous and strictly increasing in its domain20. We present a single

agent mechanism which is a (1− 1
e
)-approximation of the optimal revenue maximizing

item pricing mechanism with budget randomization (IPBR). This mechanism can be

used with γ-pre-rounding (Definition 20) to yield a (1− 1
e
)γk-approximate sequential

posted pricing multi agent mechanism. The previous best approximation mechanism

for this setting was an O(1)-approximate21 sequential posted pricing mechanism by

Bhattacharya et al. (2010). We should note that the mechanism in Bhattacharya

et al. (2010) is more general as it allows the agents to have demand constraints as

well, and it does not allow for budget randomization.

As in §4.6.1, we start by defining the modified CDF function FB
j (·) for each item

j as follows.

FB
j (v) =

8><>:
Fj(v) v ≤ B

1− (1− Fj(v))B
v

v ≥ B
(FB

j )

Furthermore, for each item j, let Rj(x) = xFB
j
−1

(1 − x) and let ÒRj(·) be its

concave closure as define in §4.6.1. Also, for each j, define Rj(xj) to be the optimal

20The proofs can be modified to work without this assumption.
21 1
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value of the following convex program as a function of xj.

maximize Rj(xj) (Revadd)

subject to xj ≤ xj

xj ≥ 0

The next theorem provides an upper bound on the revenue of the optimal single

agent IPBR mechanism.

Theorem 32. The revenue of the optimal single agent item pricing mechanism with

budget randomization (IPBR), subject to an upper bound of x on the ex ante allocation

rule, is no more than min(
P
j Rj(xj), B), .

Proof. For any j, if we were only to sell the item j, by Theorem 28, the maximum

revenue we could obtain using an IPBR mechanism would be no more than Rj(xj).

Observe that if we compute the optimal price distribution for each item separately,

we might only get less revenue because the budget is shared among all items and the

agent might not be able to buy some of the items that she would otherwise buy if there

were no other items. That means the actually probability of allocating each item j

could be less than the optimal assignment of xj for the convex program (Revadd); so

the optimal joint price distribution might sell at lower prices; but the extra revenue

may only come from lower types which were originally excluded by the optimal single

item mechanism. Consequently, the overall revenue from each item j cannot be more

than Rj(xj). Finally, observe that the expected revenue of the mechanism cannot be

more that B, so it can be no more than min(
P
j Rj(xj), B).

Next, we present (1 − 1
e
)-approximate revenue maximizing single agent IPBR
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mechanism.

Definition 27 (Mechanism).

• Define the benchmark R(x) = min(
P
j Rj(xj), B).

• Given x, solve the convex program of (Revadd) for each item j, and let xj

denote an optimal assignment.

• For each item j, if ÒRj(xj) = Rj(xj), offer the single price pj = FB
j

(−1)
(1− xj),

otherwise randomize between two prices p−j and p+
j with probabilities θj and

1− θj, as explained in Theorem 28. Note that the randomization must be done

for each item independently.

Theorem 33. The mechanism of Definition 27 obtains at least 1− 1
e

of the revenue

of the optimal single agent IPBR mechanism. Furthermore, this mechanism satisfies

the requirements of γ-pre-rounding.

Proof. First, we show that the mechanism obtains at least 1 − 1
e

of its benchmark

R(x), which by Theorem 32 is an upper bound on the optimal revenue. Consider an

imaginary replica of the agent who has exactly the same valuations as the original

agent, but has a separate budget B for each item. We call this imaginary agent the

“super replica”. Furthermore, suppose that any payment received from the super

replica beyond B is lost (i.e., if the super replica pays Z , the mechanism receives only

min(Z , B)). Observe that for any assignment of prices, the payment received from

the original agent and the payment received from the super replica are exactly the

same because if the original agent has’t hit his budget limit then both the original

agent and the super replica will buy the same items and pay the exact same amount.

Otherwise, if the original agent hits his budget limit, the mechanism receives exactlyB

from both the original agent and the super replica; therefore we only need to show that

the revenue obtained by the mechanism from the super replica is at least (1− 1
e
)R(x).

Observe that from the view point of the super replica there is no connection between

different items, so he makes a decision for each item independently. Let Zj be the

random variable corresponding to the amount paid by the super replica for item
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j. By Theorem 28, we know that E[Zj] = Rj(xj) and the total revenue received

by the mechanism is Z = min(
P
j Zj, B). Notice that Z1, . . . ,Zm are independent

random variables in the range of [0, B]. By applying Lemma 9, we can argue that

E[min(
P
j Zj, B)] ≥ (1− 1

e
) min(

P
j E[Zj], B) = (1− 1

e
)R(x) which proves our claim.

Next, we show that the mechanism satisfies the requirements of γ-pre-rounding.

Observe that allRj(·) are concave, and so isR(x). Furthermore, R(x[S]) = min(
P
j∈S Rj(xj), B)

is submodular in S for any S ⊆ [m], and therefore it has a cross monotonic budget

balanced cost share scheme (see Definition 21), which completes the proof.

Lemma 9. Let B be an arbitrary positive number and let Z1, . . . ,Zm be independent

random variables such that Zj ∈ [0, B], for all j. Then the following inequality holds.

E

24min(
X
j

Zj, B)

35 ≥ (1− 1

e
(
P

j
E[Zj ])/B

)B ≥ (1− 1

e
) min(

X
j

E [Zj] , B)

Proof. See section 4.8.

4.6.4 Multi Item (Correlated), Additive, Budget and Ma-

troid Constraints

In this section, we consider an agent with publicly known budget B who has private

correlated additive valuations for m items; furthermore, a bundle of items can be

allocated to the agent only if it is an independent set of a matroid M = ([m], I),

where M is publicly known; equivalently, instead of treating M as a constraint on

the allocation, we may assume that the agent has matroid valuations, as defined in

Definition 23. We assume that the agent has a discrete type space T. Let vt ∈ Rm
+

denote the agent’s valuation vector corresponding to type t ∈ T, and let f(t) denote

its probability. We assume that f(·) is represented explicitly as a part of the input, i.e.,

by enumerating all types along with their respective probabilities. The only private

information of the agent is her type. We present an optimal single agent randomized

mechanism. This mechanism can be used with γ-post-rounding (Definition 22) to

yield a γk-approximate multi agent BIC mechanism. Recall that γk is at least 1
2
, and

approaches 1 as k →∞, which means the resulting multi agent mechanism approaches
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the optimal multi agent mechanism as k →∞. Prior to the preliminary version of this

work, the best approximation for this setting was a 1
4
-approximate BIC mechanism

by Bhattacharya et al. (2010)22. At the time of writing the current version, Henzinger

and Vidali (2011) has also presented a 1
2
-approximate BIC mechanism for the same

setting. Note that all of the aforementioned mechanisms (including the one presented

here) have running times polynomial only in |T|, which means their running time

may not be polynomial in the input size if |T| is of exponential size and f(·) has a

compact representation.

Consider the following linear program in which xt ∈ [0, 1]m represents the marginal

allocation probabilities for type t ∈ T, and pt represents the corresponding payment.

Also let rM : 2m → {0, . . . ,m} denote the rank function ofM. The optimal value of

this LP is obviously an upper bound on the optimal revenue.

maximize
X
t∈T

f(t)pt (Revcorr)

subject to
X
t∈T

f(t)xtj ≤ xj, ∀j ∈ [m]

X
j∈S

xtj ≤ rM(S), ∀t ∈ T,∀S ⊆ [m]

vt · xt − pt ≥ vt · xt′ − pt′ , ∀t, t′ ∈ T

xt ∈ [0, 1]m, ∀t ∈ T

pt ∈ [0, B] , ∀t ∈ T

Even though the above LP has exponentially many constraints, it can be solved in

polynomial time using the ellipsoid method23. Next, we present a mechanism whose

expected revenue is equal to the optimal value of the above LP, which also implies

22The mechanism in Bhattacharya et al. (2010) considers demand constraint, which is a special
case of matroid constraints.

23See Schrijver (2003) for optimization over matroid polytope.
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that it is optimal.

Definition 28 (Mechanism).

• Define the optimal benchmark R(x) to be the optimal value of (Revcorr) as a

function of x.

• Given x, solve the LP of (Revcorr) and let x an p be an optimal assignment.

• Let t be the agent’s reported type. Allocate a random subset x ⊆ [m] of items

such that x is an independent set of M and each item j ∈ [m] is included in x

with a marginal probability of exactly xtj. This can be archived by rounding xt

to a vertex of the matroid polytope using dependent randomized rounding (see

Chekuri et al. (2010) and the references therein). Also charge a payment of pt.

Theorem 34. The mechanism of Definition 28 is an optimal truthful in expectation

revenue maximizing single agent mechanism, subject to an upper bound of x on the

ex ante allocation rule. Furthermore, it satisfies all the requirements of the γ-post-

rounding.

Proof. The proof of truthfulness and optimality trivially follows from the linear pro-

gram of (Revcorr). So, we only focus on proving that this mechanism satisfies the

requirements of Theorem 27. First, observe that the benchmark function, R(x), is

concave (this follows from Lemma 5). Second, observe that the matroid constrains

can be interpreted as matroid valuations for the agent. Third, notice that the exact ex

ante allocation rule can be readily computed from the LP solution, i.e., x̂j =
P
t f(t)xtj

is the exact probability of allocating item j. Therefore, the mechanism satisfies the

requirements of γ-post-rounding.

Remark 3. Observe that by replacing the objective function of (Revcorr) with
P
t∈T f(t)vt·

xt, we get a truthful in expectation welfare maximizing single agent mechanism, which

can also be used with γ-post-rounding to obtain a γk-approximate welfare maximizing

BIC multiple agent mechanism.
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4.7 Multi Unit Demands

In this section, we show that the more general model, in which each agent may need

more than one unit but no more than 1
k

of all units of each item, can be reduced

to the simpler model in which there are at least k units of every item and no agent

demands more than 1 unit of each item.

Definition 29 (Multi Unit Demand Market Transformation). Let kj denote the num-

ber of units of item j. Define cj = bkj
k
c and divide the units of item j almost equally

into cj bins (i.e., each bin will contain either cj or cj + 1 units). Create a new item

type for each bin (i.e., units from the same bin has the same type, but units from

different bins are treated as different types of item).

Theorem 35. Let M be the space of feasible mechanisms, in the original (multi

unit demand) market, which do not allocate more than 1
k

of all units of each item

to any single agent. Similarly, let M(1) be the space of feasible mechanisms, in the

transformed market, which do not allocate more than one unit of each item to any

single agent. Any mechanism in M can be interpreted as a mechanism in M(1) and

vice-versa with the same allocations/payments. Therefore, in order to find the optimal

mechanism in the original market, it is enough to find the optimal mechanism in the

transformed market.

Proof. First, we show that any mechanism in M ∈ M(1) can be interpreted as a

mechanism in M. That is trivially true because M allocates to each agent at most

one unit from each bin, which is at most cj units of each item j of the original market,

which is no more than 1
k

of all units of item j.

Next, we show that any mechanism M ∈ M can be interpreted as a mechanism in

M(1). For every j, we create a list Lj of all the bins of item j. Lj is initially sorted

in decreasing order of the size of the bins. Let xMij be the number of units of item j

allocated to agent i by M . We specify the allocations in the transformed market as

follows. For each agent i we repeat the following, xMij times: Allocate one unit from

the bin that is first in the list Lj and then move the bin back to the end of the list.
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It is easy to see that no two units from the same bin are allocated to the same agent,

which completes the proof.

Note that by Theorem 35, any mechanism in the original market is equivalent to

a mechanism in the transformed market with the exact same allocations/payments

from the perspective of agents. Therefore, WLOG, we can work with the transformed

market and only consider mechanisms in this market. However, to use our generic

multi agent mechanisms in the transformed market, the underlying single agent mech-

anisms should be capable of handling correlated valuations, because units of the same

item, even when labeled with different types, are perfect substitutes from the view

point of an agent. Among the single agent mechanisms presented in this chapter,

only the mechanism explained in §4.6.4 can handle correlated valuations.

4.8 Omitted Proofs

Proof of Theorem 25. Suppose we create n boxes and in each box, independently, we

put $1 with probability k
n
. If the magician opens a box containing a $1, then he gets

the $1 but we break his wand (i.e., xi = k
n
). Observe that the expected total prize

is k dollars, but because we put a dollar in each box independently, there are some

instances in which there are more than k non-empty boxes but the magician cannot

win more than k dollars at any instance. Let Xi be the indicator random variable

which is 1 iff there is a dollar in box i. The expected total prize is E[
P
i Xi] = k, but

the expected prize that the magician can win is at most E[min(
P
i Xi, k)]. It can be

verified that E[min(
P
i Xi, k)] ≈ (1− kk

ekk!
)k asymptotically as n→∞. In fact, for any

positive ε, there is a large enough n such that E[min(
P
i Xi, k)] < (1− kk

ekk!
+ ε)k. On

the other hand, if a magician can guarantee that every box is opened with probability

at least γ = 1− kk

ekk!
+ ε, then he will be able to obtain a prize of at least

P
i γE[Xi] =

(1− kk

ekk!
+ ε)k in expectation which is a contradiction; therefore it is not possible to

make such a guarantee.

Proof of Theorem 26. First, we show that each Si includes each item j with proba-

bility at least γ. Observe that for each item j, a sequence of n boxes are presented
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to the jth magician with probabilities x1j, . . . , xnj written on them. Since
P
i xij ≤ kj

and γ ∈ [0, γk], we can argue that each box is opened with probability at least γ (see

Theorem 24 and Definition 19); therefore Si includes each item j with probability at

least γ.

Next, we show that the expected objective value of γ-pre-rounding is at least

γα-fraction of the expected objective value of the optimal mechanism in M. Note

that by Theorem 22, the expected objective value of the optimal mechanism in M

is upper bounded by the optimal value of (OPT ) which is
P
iRi(xi); therefore, it

is enough to show that ESi [Ri(xi[Si])] ≥ γαRi(xi), i.e., the expected objective value

that Mi〈xi[Si]〉 obtains from agent i is at least γαRi(xi). Let ξi be a budget balanced

cross monotonic cost share function for Ri(·); then

ESi [Ri(xi[Si])] = ESi

24X
j∈Si

ξi(j, xi[Si])

35 because ξi is budget balanced

≥ ESi

24X
j∈Si

ξi(j, xi[{1, . . . ,m}])

35 because ξi is cross monotonic

=
X
j∈[m]

Pr [j ∈ Si] ξi(j, xi)

≥
X
j∈[m]

γξi(j, xi)

= γRi(xi) because ξi is budget balanced

Next, we show that the multi agent mechanism based on γ-pre-rounding is in M

and it is dominant strategy incentive compatible (DSIC). The fact that this mech-

anism is in M follows from assumption A6 and the fact that for each item j, the

corresponding magician breaks no more than kj wands, which means no more than

kj units are allocated at any instance. To show that it is DSIC, observe that the only

way the reports of other agents could affect the outcome of agent i is by affecting Si,

yet Mi〈xi[Si]〉 is a mechanism in Mi, so it is incentive compatible mechanism for any

choice of Si; therefore the resulting mechanism is DSIC. Observe that this mechanism

also preserves all of the ex post properties of each Mi (e.g., individual rationality).
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Proof of Theorem 27. First, we show that each Si includes each item j with proba-

bility exactly γ. Observe that for each item j, a sequence of n boxes are presented to

the jth magician with probabilities x̂1j, . . . , x̂nj written on them. Since γ ∈ [0, γk] andP
i x̂ij ≤ kj and because each Mi〈xi〉 allocates each item j with probability exactly

x̂ij, we can argue that each box is opened with probability exactly γ (see Theorem 24

and Definition 19); therefore Si includes each item j with probability exactly γ.

Next, we show that γ-post-rounding obtains in expectation at least γα-fraction

of the expected objective value of the optimal mechanism in M. Note that by Theo-

rem 22 the expected objective value of the optimal mechanism in M is upper bounded

by the optimal value of (OPT ) which is
P
iRi(xi); therefore, it is enough to show

that Eti,xi,pi [Obji(ti, xi, pi)] ≥ γαRi(xi), i.e., the expected objective value that γ-post-

rounding obtains from agent i is at least γαRi(xi). Let ξi be a budget balanced cross

monotonic cost share function for Obji as required by A′2; then

Eti,xi,pi [Obji(ti, xi, pi)] = Eti,xi,pi [Obji(ti, xi, 0) + cipi] By A′2

= Eti,xi,pi

24X
j∈xi

ξi(j, ti, xi) + cipi

35 because ξi is budget balanced

≥ Eti,xi,pi

24X
j∈xi

ξi(j, ti, x
′
i) + cipi

35 because ξi is cross monotonic

= Eti,x′i,p
′
i,Si

24X
j∈x′i

Pr [j ∈ Si] ξi(j, ti, x′i) + ciγp
′
i

35
= Eti,x′i,p

′
i

24X
j∈x′i

γξi(j, ti, x
′
i) + ciγp

′
i

35
= γEti,x′i,p

′
i
[Obji(ti, x

′
i, p
′
i)]

≥ γαRi(xi)

Note that the last step follows because Eti,x′i,p
′
i
[Obji(ti, x

′
i, p
′
i)] is exactly the expected

objective value of Mi〈xi〉 which is at least αRi(xi).
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Next, we show that γ-post-rounding is Bayesian incentive compatible (BIC) and

does not over allocate any item. Consider any arbitrary agent i. Observe that each

item j ∈ x′i is included in xi with a probability of exactly γ; furthermore, by A′4,

valuations of agent i can be interpreted as a weighted rank function of some ma-

troid; WLOG, we may assume that x′i is always an independent set of this matroid24;

therefore, the valuation of the agent for the items in x′i is additive; consequently, her

expected valuation for xi is exactly γ times her valuation for x′i. Observe that both

the expected valuation and the expected payment of agent i are scaled by γ for any

outcome of Mi〈xi〉 and Mi〈xi〉 itself was incentive compatible; therefore, the result-

ing mechanism is incentive also incentive compatible. However, the final mechanism

is only Bayesian incentive compatible because Si depends on the typers/reports of

agents other that i 25. Also note that the mechanism does not over allocate any item,

because for each unit of item j being allocated one of the kj wands of the jth magician

breaks.

Proof of Lemma 5. The proof is very similar to the proof of Theorem 21. To show

that R(x) is concave, it is enough to show that for any x and x′ and any β ∈ [0, 1],

R(βx+ (1− β)x′) ≥ βR(x) + (1− β)R(x′). Let y and y′ be the optimal assignments

for the convex program subject to x and x′ respectively; then y′′ = βy + (1− β)y′ is

also a feasible assignment for the convex program subject to βx+(1−β)x′; therefore,

R(βx+(1−β)x′) must be at least u(βy+(1−β)y′); on the other hand u(·) is concave,

so u(βy+ (1−β)y′) ≥ βu(y) + (1−β)u(y′) = βR(x) + (1−β)R(x′). That proves the

claim.

Proof of Lemma 9. Let µ =
P
j E[Zj]. Define the random variables Yj = max(Yj−1−

Zj, 0) and Y0 = B. Observe that for each j, Yj = max(B−Pj
r=1 Zr, 0), so min(

Pj
r=1 Zr, B)+

Yj = B. Therefore E[min(
Pj
r=1 Zr, B)] + E[Yj] = B and to prove the theorem it is

enough to show that E[Ym] ≤ 1
eµ/B

B. We first show that

Yj ≤ (1− E[Zj]

B
)Yj−1. (Yj)

24Otherwise, we could replace x′i by a maximum weight independent subset of x′i.
25I.e., Pr[j ∈ Si] is equal to γ only in expectation over other agents’ reports
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Consequently

Ym ≤ B
mY
j=1

(1− E[Zj]

B
) (4.1)

≤ B
1

eµ/B
(4.2)

The last inequality follows because
Qm
j=1(1− E[Zj ]

B
) takes its maximum when E[Zj ]

B
=

µ
mB

(for all j) and m→∞.

To prove the second inequality in the statement of the lemma we can use the

fact that (1 − xa) ≥ (1 − x)a for any a ≤ 1, and conclude that (1 − 1
eµ/B

)B ≥
(1− 1

emin(µ,B)/B )B ≥ (1− 1
e
)min(µ,B)

B
B = (1− 1

e
) min(µ,B).

To complete the proof, we prove inequality (Yj) as follows.

E [Yj] = E [max(Yj−1 − Zj, 0)]

≤ E
�
max(Yj−1 − Zj

Yj−1

B
, 0)
�

because
Yj−1

B
≤ 1

= E
�
Yj−1 − Zj

Yj−1

B

�
because

Zj
B
≤ 1

= E [Yj−1]− 1

B
E [ZjYj−1]

≤ E [Yj−1]− 1

B
E [Zj] E [Yj−1] because Zj and Yj−1 are independent.

= (1− E[Zj]

B
) E [Yj−1]

Proof of Lemma 8. To prove the claim, it is enough to show that r1P
j
xjpj
≥ 1

2
. WLOG,

we may assume that
P
j pjxj = 1 since we can scale p1, . . . , pm by a constant c =

1P
j
xjpj

and this will also scale r1, . . . , rm by the same constant c, so their ratio is not

be affected. Consider the following LP and observe that xj, pj, and rj, as defined in

the statement of the lemma, form a feasible assignment for this LP. If we show that

the optimal objective value of the LP is bounded below by 1
2
, any feasible assignment

yields an objective value of at least 1
2
, and therefore r1P

j
xjpj
≥ 1

2
which proves the

lemma. In the following LP, pj and rj are variables and everything else is constant.
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minimize r1

subject to rj ≥ xjpj + (1− xj)rj+1, ∀j ∈ [m] (αj)

rj ≥ rj+1, ∀j ∈ [m] (βj)
mX
j=1

xjpj ≥ 1 (γ)

pj ≥ 0, ∀j ∈ [m]

rj ≥ 0, ∀j ∈ [m+ 1]

To prove that the optimal value of the above LP is bounded below by 1
2
, we

construct a feasible assignment for its dual LP, obtaining a value of 1
2
. The dual LP

is as follows.

maximize γ

subject to γ ≤ αj, ∀j ∈ [m] (pj)

α1 + β1 ≤ 1 (r1)

αj + βj ≤ (1− xj−1)αj−1 + βj−1, ∀j ∈ {2, . . . ,m} (rj)

0 ≤ (1− xm)αm + βm (rm+1)

αj ≥ 0, βj ≥ 0, γ ≥ 0, ∀j ∈ [m]

We construct an assignment for the dual LP as follows. Set αj = γ and set

βj = βj−1 − xj−1γ for all j, except that for j = 1 we set β1 = 1 − γ. From this

assignment we get βj = 1− γ − γPj−1
`=1 x`. Observe that we get a feasible assignment

as long as all βj resulting from this assignment are non-negative. Furthermore, it is

easy to see that βj ≥ 1 − γ − γPm
`=1 x` ≥ 1 − 2γ because

P
j xj ≤ 1. Therefore, by

setting γ = 1
2
, all βj are non-negative and we always get a feasible assignment for the

dual LP with an objective value of 1
2
, which completes the proof.
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Chapter 5

The Generalized Magician’s Problem and Applica-

tions

5.1 Introduction

In this chapter we present a generalization of the magician’s problem from §4.4 along

with several applications. As the first application, we present an improved algo-

rithm/lower bound for a generalization of prophet inequalities. As the second ap-

plication, we present an online algorithm for the stochastic generalized assignment

problem.

5.2 The Generalized Magician’s Problem

We present a generalization of the magician’s problem along with a near-optimal

solution.
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Definition 30 (The Generalized Magician’s Problem). A magician is presented with

a series of boxes one by one, in an online fashion. There is a prize hidden in one of

the boxes. The magician has a magic wand that can be used to open the boxes. The

wand has k units of mana1. If the wand is used on box i and has at least 1 unit of

mana, the box opens, but the wand looses a random amount of mana Xi ∈ [0, 1] drawn

from a distribution specified on the box by its cumulative distribution function FXi

(i.e., the magician learns FXi
upon seeing box i). The magician wishes to maximize

the probability of obtaining the prize, but unfortunately the sequence of boxes, the

distributions written on the boxes, and the box containing the prize have been arranged

by a villain; the magician has no prior information (not even the number of the boxes);

however, it is guaranteed that
P
i E[Xi] ≤ k, and that the villain has to prepare the

sequence of boxes in advance (i.e., cannot make any changes once the process has

started).

The magician could fail to open a box either because (a) he might choose to

skip the box, or (b) his wand might run out of mana before getting to the box.

Note that once the magician fixes his strategy, the best strategy for the villain is to

put the prize in the box which, based on the magician’s strategy, has the lowest ex

ante probability of being opened. Therefore, in order for the magician to obtain the

prize with a probability of at least γ, he has to devise a strategy that guarantees

an ex ante probability of at least γ for opening each box. Notice that allowing the

prize to be split among multiple boxes does not affect the problem. We present an

algorithm parameterized by a probability γ ∈ [0, 1] which guarantees a minimum ex-

ante probability of γ for opening each box while trying to minimize the mana used.

1“Mana is an indigenous Pacific islander concept of an impersonal force or quality that resides
in people, animals, and inanimate objects. . . . . Modern fantasy fiction, computer and role-playing
games have adopted mana as a term for magic points, an expendable (and most often rechargeable)
resource out of which magic users form their magical spells.”Wikipedia (2012)
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We show that for γ ≤ 1− 1√
k

this algorithm never requires more than k units of mana.

Definition 31 (γ-Conservative Magician). The magician adaptively computes a se-

quence of thresholds θ1, θ2, . . . ∈ R+ and makes a decision about each box as follows:

let Wi denote the amount of mana lost prior to seeing the ith box; the magician makes

a decision about box i by comparing Wi against θi; if Wi < θi, it opens the box; if

Wi > θi, it does not open the box; and if Wi = θi, it randomizes and opens the box with

some probability (to be defined). The magician chooses the smallest threshold θi for

which Pr[Wi ≤ θi] ≥ γ where the probability is computed ex ante (i.e., not conditioned

on X1, . . . ,Xi−1). Note that γ is a parameter that is given. Let FWi
(w) = Pr[Wi ≤ w]

denote the ex ante CDF of random variable Wi, and let Yi be the indicator random

variable which is 1 iff the magician opens the box i. Formally, the probability with

which the magician should open box i condition on Wi is computed as follows2.

Pr [Yi = 1|Wi] =

8>>><>>>:
1 Wi < θi

(γ − F−Wi
(θi))/(FWi

(θi)− F−Wi
(θi)) Wi = θi

0 Wi > θi

(Y )

θi = inf{w|FWi
(w) ≥ γ} (θ)

In the above definition, F−Wi
is the left limit of FWi

, i.e., F−Wi
(w) = Pr[Wi < w].

Note that FWi+1
and F−Wi+1

are fully determined by FWi
and FXi

and the choice of

γ (see Theorem 38). Observe that θi is in fact computed before seeing box i itself.

A γ-conservative magician may fail for a choice of γ unless all thresholds θi are

less than or equal to k − 1. The following theorem states a condition on γ that is

sufficient to guarantee that θi ≤ k − 1 for all i.

Theorem 36 (γ-Conservative Magician). For any γ ≤ 1 − 1√
k
, a γ-conservative

magician with k units of mana opens each box with an ex ante probability of γ exactly.

Proof. See §5.5.

2Assume W0 = 0
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Theorem 37 (γ-Conservative Magician (0–1)). If Xi ∈ {0, 1} (i.e., Bernoulli random

variable) for all i, then for any γ ≤ 1− 1√
k+3

, a γ-conservative magician with k units

of mana opens each box with an ex ante probability of γ exactly; furthermore, if each

FXi
is not the exact CDF of Xi but stochastically dominates it, then the magician

opens each box with an ex ante probability of at least γ.

Proof. See §5.5.

Definition 32 (γ∗k and γk). We define γ∗k to be the largest probability such that for

any k′ ≥ k and any instance of the magician’s problem with k′ units of mana, the

thresholds computed by a γ∗k-conservative magician are no more than k′− 1. In other

words, γ∗k is the optimal choice of γ which works for all instances with k′ ≥ k units

of mana. By Theorem 36, γ∗k must be3 at least 1 − 1√
k
. We define γk similar to γ∗k

but with the extra assumption that Xi ∈ {0, 1} for all i. By Theorem 37, γk must be

least 1− 1√
k+3

.

Observe that γ∗k and γk are non-decreasing functions in k and they both approach

1 as k →∞. However, for k = 1, γ∗1 = 0 whereas γ1 = 1
2
. We can show that both of

these bounds are tight for k = 1.

Proposition 8. For the generalized magician’s problem for k = 1, no algorithm for

the magician (online or offline) can guarantee a constant non-zero probability for

opening each box.

Proof. Suppose there is an algorithm for the magician that is guaranteed to open

each box with a probability of at least γ ∈ (0, 1]. We construct an instance in which

the algorithm fails. Let n = d 1
γ
e+ 1. Suppose all Xi are (independently) drawn from

the distribution specified below.

Xi =

8><>:
1

2n
with prob. 1− 1

2n

1 with prob. 1
2n

, ∀i ∈ [n]

3Because for any k′ ≥ k obviously 1− 1√
k
≤ 1− 1√

k′ .
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As soon as the magician opens a box, the remaining mana will be less than 1, so he will

not be able to open any other box, i.e., the magician can open only one box at every

instance. Let Yi denote the indicator random variable which is 1 iff the magician

opens box i. Since
P
i Yi ≤ 1, it must be

P
i E[Yi] ≤ 1. On the other hand, E[Yi] ≥ γ

because the magician has guaranteed to open each box with a probability of at least

γ. However
P
i E[Yi] ≥ nγ > 1 which is a contradiction. Note that

P
i E[Xi] < 1 so

it satisfies the requirement of Definition 30.

Proposition 9. For the magician’s problem for k = 1, assuming Xi ∈ {0, 1} for all i,

no algorithm for the magician (online or offline) can guarantee a probability of more

than 1
2

for opening each box.

Proof. Suppose there is an algorithm for the magician that is guaranteed to open each

box with a probability of at least γ ∈ (0.5, 1]. We construct an instance in which the

algorithm fails. Pick any δ ∈ ( 1
2γ
, 1]. Suppose there are two boxes with distributions

specified below.

X1 =

8><>:
1 with prob. δ

0 otherwise

X2 =

8><>:
1 with prob. 1− δ

0 otherwise

Observe that the algorithm must open the first box with probability at least γ; so the

probability that there is enough mana left for the second box is at most 1− γδ < 1
2
;

therefore the algorithm will not be able to open the second box with a probability of
1
2

or more. Note that
P
i E[Xi] = 1 so it satisfies the requirement of Definition 30.

Computation of FWi
(·). For every i ∈ [n], the equation Wi+1 = Wi + YiXi relates

the distribution of Wi+1 to those of Wi and Xi
4. The following lemma shows that the

distribution of Wi+1 is fully determined by the information available to the magician

before seeing box i+ 1.

4Note that the distribution of Yi is dependent on/determined by Wi.
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Theorem 38. In the algorithm of γ-conservative magician (Definition 31), the choice

of γ and the distributions of X1, . . . ,Xi fully determine the distribution of Wi+1, for

every i ∈ [n]. In particular, FWi+1
can be recursively defined as follows.

FWi+1
(w) = FWi

(w)−Gi(w) + EXi∼FXi
[Gi(w − Xi)] ∀i ∈ [n] , ∀w ∈ R+ (FW)

Gi(w) = min(FWi
(w), γ) ∀i ∈ [n] ,∀w ∈ R+ (G)

Proof. See §5.5.

As a corollary of Theorem 38, we show how FWi
can be computed using dynamic

programming, assuming Xi can only take discrete values that are proper multiples of

some minimum value.

Corollary 5. If all Xi are proper multiple of 1
D

for some D ∈ N, then FWi
(·) can be

computed using the following dynamic program.

FWi+1
(w) =

8>>><>>>:
FWi

(w)−Gi(w) +
P
` Pr[Xi = `

D
]Gi(w − `

D
) i ≥ 1, w ≥ 0

1 i = 0, w ≥ 0

0 otherwise.

, ∀i ∈ [n] ,∀w ∈ R+

In particular, the γ-conservative magician makes a decision for each box in time

O(D).

Note that it is enough to compute FWi
only for proper multiples of 1

D
because

FWi
(w) = FWi

( bDwc
D

) for any w ∈ R+.

5.3 Prophet Inequalities

We prove a generalization of prophet inequalities by a direct reduction to the magi-

cian’s problem. Prophet inequalities have been extensively studied in the past (e.g.

Hill and Kertz (1992)). Prior to this work, the best known bound for the generaliza-

tion to sum of k choices was 1 − O(
√

ln k√
k

) by Hajiaghayi et al. (2007). We improve
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this to 1 − 1√
k+3

. Note that the current bound is tight for k = 1, and is useful even

for small values of k. We start by defining the problem formally.

Definition 33 (k-Choice Sum). A sequence of n non-negative random numbers V1, . . . ,Vn

are drawn from arbitrary distributions F1, . . . , Fn one by one in an arbitrary order. A

gambler observes the process and may select k of the random numbers, with the goal

of maximizing the sum of the selected ones; a random number may only be selected

at the time it is drawn, and it cannot be unselected later. The gambler knows all the

distributions in advance, and observes from which distribution the current number is

drawn, but not the order in which the future numbers are drawn. On the other hand,

a prophet knows all the actual draws in advance, so he chooses the k highest draws.

We assume that the order in which the random numbers are drawn is fixed in advance

(i.e., may not change based on the decisions of the gambler).

Hajiaghayi et al. (2007) proved that there is a strategy for the gambler that

guarantees in expectation at least 1− O(
√

ln k√
k

) fraction of the payoff of the prophet,

using a non-decreasing sequence of k stopping rules (thresholds) 5. Next, we construct

a gambler that obtains in expectation at least γk fraction of the prophet’s payoff, using

a γk-conservative magician as a black box. Note that γk ≥ 1 − 1√
k+3

. This gambler

uses only a single threshold. However, he may skip some of the random draws at

random.

Theorem 39 (Prophet Inequalities – k-Choice Sum). The following strategy ensures

that the gambler obtains at least γk fraction of payoff of the prophet in expectation. 6

• Find a threshold τ such that
P
i Pr[Vi > τ ] = k (e.g., by doing a binary search

on τ).

• Use a γk-conservative magician with k units of mana. Upon seeing each Vi,

create a box and write xi = Pr[Vi > τ ] on it and present it to the magician.

If the magician chooses to open the box and also Vi > τ , then select Vi and

decrease the magician’s mana by 1, otherwise skip Vi.

5A gambler with stopping rules τ1, . . . , τk works as follows. Upon seeing Vi, he selects it iff
Vi ≥ τj+1 where j is the number of random draws selected so far.

6To simplify the exposition we assume that the distributions do not have point masses. The
result holds with slight modifications if we allow point masses.
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Proof. First, we compute an upper bound on the expected payoff of the prophet.

Let xi be the ex ante probability (i.e., before any random number is drawn) that

the prophet chooses Vi (i.e. the probability that Vi is among the k highest draws).

Let ui(xi) denote the maximum possible contribution of the random variable Vi to

the expected payoff of the prophet if Vi is selected with an ex ante probability xi.

Note that ui(xi) is equal to the expected value of Vi conditioned on being above

the 1 − xi quantile, multiplied by the probability of Vi being above that quantile.

Assuming Fi(·) and fi(·) denote the CDF and PDF of Vi, we can write ui(xi) =R∞
F−1
i (1−xi) vfi(v)dv. By changing the integration variable and applying the chain rule

we get ui(xi) =
R xi

0 F−1
i (1 − x)dx. Observe that d

dxi
ui(xi) = F−1

i (1 − xi) is a non-

increasing function, so ui(xi) is a concave function. Furthermore,
P
i xi ≤ k because

the prophet cannot choose more than k random draws. So the optimal value of the

following convex program is an upper bound on the payoff of the prophet.

maximize
X
i

ui(xi)

subject to
X
i

xi ≤ k (τ)

xi ≥ 0, ∀i ∈ [n] (µi)

Define the Lagrangian for the above convex program as

L(x, τ, µ) = −
X
i

ui(xi) + τ

 X
i

xi − k
!
−
X
i

µixi.

By KKT stationarity condition, at the optimal assignment, it must be ∂
∂xi
L(q, τ, µ) =

0. On the other hand, ∂
∂xi
L(q, τ, µ) = −F−1

i (1− xi) + τ − µi. Assuming that xi > 0,

by complementary slackness µi = 0, which then implies that xi = 1 − Fi(τ), so

xi = Pr[Vi > τ ]. Furthermore, it is easy to show that the first constraint must be

tight, which implies that
P
i Pr[Vi > τ ] = k. Observe that the contribution of each

Vi to the objective value of the convex program is exactly E[Vi|Vi > τ ] Pr[Vi > τ ].

By using a γk-conservative magician we can ensure that each box is opened with
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probability at least γk which implies the contribution of each Vi to the expected

payoff of the gambler is E[Vi|Vi > τ ] Pr[Vi > τ ]γk which proves that the expected

payoff of the gambler is at least γk fraction of optimal objective value of the convex

program, which was itself and upper bound on the expected payoff of the prophet.

5.4 Online Stochastic Generalized Assignment Problem

5.4.1 Introduction

The generalized assignment problem (GAP) and its special cases, multi knapsack

problem and bin packing capture a class of optimization problems with various appli-

cations in computer science, operations research, and related disciplines. The (offline)

GAP is defined as follows:

Definition 34 (Generalized Assignment Problem). There is a set of items that can

be assigned to a set of bins. Each item has a known size and a known value for each

bin. the objective is to maximize the total value of the assignment subject to the total

size of the items assigned to each bin not exceeding the capacity of that bin. The size

and value of each item may depend on the bin it is assigned to (if assigned).

For example GAP can be viewed as a scheduling problem on parallel machines,

where each machine has a capacity (or a maximum load) and each job has a size (or

a processing time) and a profit each possibly dependent on the machine to which it

is assigned, and the objective is to find a feasible scheduling which maximizes the

total profit. Though multiple knapsack and bin packing have a fully polynomial-time

approximation scheme (asymptotic for bin packing) ? in the offline setting, GAP is

APX-hard and the best known approximation ratio is 1 − 1/e + ε where ε ≈ 10−180

?, which improves on a previous (1− 1/e)-approximation ?.
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In this section we consider the following online stochastic variant of the problem.

Definition 35 (Online Stochastic Generalized Assignment Problem). A sequence of

items arrive online and each item can be either assigned to a bin from a fixed set of

bins, or discarded. Items arrive in an arbitrary unknown order; each item has a size

and a value; stochastic information is known about the size/value of each item; the

objective is to maximize the total value of the assignment subject to the total size of

the items assigned to each bin not exceeding the capacity of that bin. The size and

value of each item may depend on the bin it is assigned to (if assigned). The actual

size of an item becomes known only after it is placed in a bin. Furthermore, it is given

that an item does not take up more than 1
k

fraction of the capacity of any relevant

bin.

We present a 1 − 1√
k
-approximate online algorithm for the online stochastic as-

signment problem under the assumption that no item takes up more than 1
k

fraction

of the capacity of any bin. Items arrive online; each item has a value and a size; upon

arrival, an item can be placed in a bin or discarded; the objective is to maximize

the total value of the placement. Both value and size of an item may depend on

the bin in which the item is placed; the size of an item is revealed only after it has

been placed in a bin; distribution information is available about the value and size of

each item in advance (not necessarily i.i.d), however items arrive in adversarial order

(non-adaptive adversary).

5.4.2 Related Work

To the best of our knowledge Feldman et al. ? were the first to consider the generalized

assignment problem in an online setting. In the adversarial model where the items

and the order of arrivals are chosen by an adversary, there is no competitive algorithm.

Consider the simple case of one bin with capacity one and two arriving items each

with size one. The value of the first item is 1. The value of the second item would be

either 1
ε

or 0 based on whether we assign the first item to the bin. Thus the online

profit cannot be more than ε factor of the offline profit. Indeed one can show a much

stronger hardness result for the adversarial model: two special cases of GAP, namely
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the Adword problem7 and the Display Ad problem8 are shown to be not competitive

even under the large-capacity assumption ??.

Since no algorithm is competitive for online GAP in the adversarial model, Feld-

man et al. consider this model with free disposal. In free disposal model, the total

size of items assigned to a bin may exceed its capacity, however, the profit of the

bin is the maximum-valued subset of the assigned items which does not violate the

capacity. Feldman et al. give a (1− 1
e
−ε)-competitive primal-dual algorithm for GAP

under the free disposal assumption and the additional large-capacity assumption by

which the capacity of each bin is at least O(1
ε
) times larger than the maximum size

of a single item. Although the free disposal assumption might be counter-intuitive

in time-sensitive applications such as job scheduling, where the machine may start

doing a job right after the job assignment, it is a very natural assumption in many

applications including applications in economics like Ad allocation – a buyer does not

mind receiving more items.

Dean, Goemans, and Vondrak ? consider the closely related problem of (offline)

stochastic knapsack problem. In their model, there is only one bin and the value of

each item is known. However, the size of each item is drawn from a known distribution

only after it is placed in the knapsack. We note that this is an offline setting in the

sense that we may choose any order of items for allocation. This model is motivated

by job scheduling on a single machine where the actual processing time required for a

job is learned only after the completion of the job. Dean et al. give various adaptive

and non-adaptive algorithms for their model where the best one has a competitive

ratio 1
3
− ε. This ratio was improved to 3

8
− ε by Bhalgat et al. ?. Recently Bhalgat

improved the competitive ratio to 1
2
− ε ?. Other variations, such as soft capacity

constraints, have also been considered for which we refer the reader to ???. Dean et

al. ? also introduce an ordered model where items must be considered in a specific

order, which can be seen as a version of the the online model where the order is

known. ? present a 1
9.5

-competitive algorithm. In general, the online model can be

considered as a more challenging variation of the models proposed by Dean et al,

7The Adword problem is a special case of GAP where the size and the value of assigning an item
to a bin is the same, i.e., sij = vij .

8The Display Ad problem is a special case of GAP where all sizes are uniform, i.e., sij = 1.
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however we show that the assumption of bound on the maximum size to capacity

ratio is enough to overcome this challenge.

Even with stochastic information about the arriving queries, no online algorithm

can achieve a competitive ratio better than 1
2

Hajiaghayi et al. (2007); ?); ?); Alaei

(2011). Consider the simple example where the value of the first item is 1 with

probability one and the value of the second item is 1
ε

with probability ε, and 0 with

probability 1 − ε. No online (randomized) algorithm can achieve a profit more than

max{1, ε(1
ε
)} = 1 in expectation. However, the expected profit of the optimum offline

assignment is (1 − ε)1 + ε(1
ε
) = 2 − ε. Therefore without any additional assumption

one cannot get a competitive ratio better than 1/2. We overcome this difficulty by

considering the natural large-capacity assumption which arises in many applications

such as online advertising.

Our techniques can be used to design asymptotically optimum algorithms for other

resource allocation settings. For example another application in ad allocation is the

banner advertisement problem. Feige et al. ? propose a new automated system for

selling banner advertisements. In this system, each advertiser specifies a collection of

webpages which are relevant to his product, a desired total quantity of impressions

on these pages, and a maximum per-impression price. The problem of selecting a

feasible subset of advertisers with maximum total value does not have any non-trivial

approximation. This can be shown by a reduction from the Independent Set problem

on a graph; advertisers represent the vertices of the graph and webpages represent the

edges of the graph. Advertisers desire all the impressions of the relevant webpages.

Thus any feasible subset of advertisers would denote an independent set in the graph.

This shows that maximizing the total value does not have a non-trivial approximation.

Feige et al. present two greedy heuristics and discuss new techniques to measure their

performances. By considering some variants of the banner advertisement problem,

they show that their algorithms can achieve a competitive ratio between 0.1 to 0.3

which depends on the structural properties of the optimum solution. We show that

one can get near optimum solutions if the number of available impressions on each

website is at least k times the required impressions of each relevant advertiser.
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5.4.3 Preliminaries

Model. We consider the problem of assigning m items to n bins; items arrive on-

line in an arbitrary but unknown order; stochastic information is known about the

size/value of each item; the objective is to maximize the total value of the assignment.

Each item i ∈ [m] has ri possible types with each type t ∈ [ri] having a probability of

pit, a value of vitj ∈ R+, and a size of Sitj ∈ [0, 1] if placed in bin j (for each j ∈ [n]);

Sitj is a random variable which is drawn from a distribution with a CDF of Fitj if the

item is placed in bin j. Each bin j ∈ [m] has a capacity of cj ∈ N0 which limits the

total size of the items placed in that bin9. The type of each item is revealed upon

arrival and the item must be either placed in a bin or discarded; this decision cannot

be changed later. The size of an item is revealed only after it has been place in a bin,

furthermore an item can be placed in a bin only if the bin has at least one unit of

capacity left. We assume that m, n, cj, vitj and Fitj are known in advance.

Note that the assumption that all item sizes being in [0, 1] is WLOG because all

item sizes and the capacity of each bin can be scaled.

Benchmark. Consider the following linear program in which esitj = ESitj∼Fitj [Sitj];

the optimal value of this linear program, which corresponds to the expected instance,

is an upper bound on the expected value of the optimal offline assignment.

maximize
X
i

X
t

X
j

vitjxitj (OPTGAP )

subject to
X
i

X
t

esitjxitj ≤ cj, ∀j ∈ [n]

X
j

xitj ≤ pit, ∀i ∈ [m] , ∀t ∈ [ri]

xitj ∈ [0, 1] ,

Theorem 40. The optimal value of the linear program (OPTGAP ) is an upper bound

the the expected value of the offline optimal assignment.

9Our results hold for non-integer capacitates, however we assume integer capacities to simplify
the exposition.
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Proof. Let x∗itj denote the ex ante probability that item i is of type t and is assigned

to bin j in the optimal offline assignment. It is easy to see that x∗itj is a feasible

assignment for the linear program. Furthermore, the expected value of the optimal

offline assignment is exactly
P
i

P
t

P
j vitjx

∗
itj which is equal to the value of the linear

program for x∗itj which is itself no more than the optimal value of the linear program.

Note that the optimal value of the linear program may be strictly higher since a

feasible assignment of the linear program does not necessarily correspond to a feasible

offline assignment policy.

Section §5.4.4 presents an online algorithm which obtains at least 1− 1√
k
-fraction

of the optimal value of the above linear program, where k = minj cj. Next section

presents a stochastic toy problem and its solution which is used as a black box in the

online algorithm of §5.4.4.

5.4.4 The Online Algorithm

We present an online algorithm which obtains at least 1− 1√
k
-fraction of the optimal

value of the linear program (OPTGAP ). The algorithm uses, as a black box, the

solution of the generalized magician’s problem.

Definition 36 (Online Stochastic GAP Algorithm).

1. Solve the linear program (OPTGAP ) and let x be an optimal assignment.

2. For each j ∈ [n], create a γ-conservative magician (Definition 31) with cj units

of mana for bin j. γ is a parameter that is given.

3. Upon arrival of each item i ∈ [m], do the following:

(a) Let t denote the type of item i.

(b) Choose a bin at random such that each bin j ∈ [n] is chosen with probability
xitj
pit

. Let j∗ denote the chosen bin.
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(c) For each j ∈ [n], define the random variable Xij as Xij ← Sitj if j∗ = j,

and Xij ← 0 otherwise10. For each j ∈ [n], write the CDF of Xij on a

box and present it to the magician of bin j. The CDF of Xij is Fxij
(s) =

(1−Pt′ xit′j) +
P
t′ xit′jFit′j(s).

(d) If the magician for bin j∗ opened his box in step 3c, then assign item i to

bin j∗, otherwise discard the item. For each j ∈ [n], if the magician of bin

j opened his box in step 3c, decrease the mana of that magician by Xij. In

particular, Xij = 0 for all j 6= j∗, and Xij∗ = Sitj∗.

Theorem 41. For any γ ≤ γ∗k, the online algorithm of Definition 36 obtains in

expectation at least a γ-fraction of the expected value of the optimal offline assignment

(recall that γ∗k ≥ 1− 1√
k
).

Proof. By Theorem 40, it is enough to show that the online algorithm obtains in

expectation at least a γ-fraction of the optimal value of the linear program (OPTGAP ).

Let x be an optimal assignment for the LP. The contribution of each item i ∈ [m]

to the value of bin j ∈ [n] in the LP is exactly
P
t vitjxitj. We show that the online

algorithm obtains in expectation γ
P
t vitjxitj from each item i and each bin j.

Consider an arbitrary item i ∈ [m] and an arbitrary bin j ∈ [n]. WLOG, suppose

the items are indexed in the order in which they arrive. Observe that

E [Xij] =
X
t

pit
xitj
pit

E [Sitj] =
X
t

xitjesitj.
Consequently,

X
i

E [Xij] =
X
i

X
t

xitjesitj ≤ cj.

The last inequality follows from the first set of constraints in the LP of (OPTGAP ).

Given that
P
i E[Xij] ≤ cj and γ ≤ γ∗k ≤ γ∗cj , Theorem 36 implies that the magician

of bin j opens each box with a probability of γ. Therefore, the expected contribution

10Note that Sitj is learned only after item i is placed in bin j which implies that Xij may not be
known at this point, however the algorithm does not use Xij until after it is learned.
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of item i to bin j is exactly
P
t γpit

xitj
pit
vitj = γ

P
t xitjvitj. Consequently, the online

algorithm obtains γ
P
i

P
j

P
t xitjvitj in expectation which is at least a γ-fraction of

the expected value of the optimal offline assignment. Furthermore, each magician

guarantees that the total size of the items assigned to each bin does not exceed the

capacity of that bin.

5.5 Analysis of Generalized γ-Conservative Magician

We present the proof of Theorem 36 and Theorem 37. We prove the theorems in two

parts. In the first part, we show that the thresholds computed by the γ-conservative

magician indeed guarantee that each box is opened with an ex-ante probability of γ,

assuming there is enough mana. In the second part, we show that for any γ ≤ 1− 1√
k

(or γ ≤ 1− 1√
k

and assuming Xi ∈ {0, 1}), the thresholds θi are less than or equal to

k − 1, for all i, which implies that the magician never requires more than k units of

mana. It can be shown that a non-adaptive algorithm cannot guarantee a probability

of more than 1−O(
√

ln k√
k

) for opening each box.

Below, we repeat the formulation of the threshold based strategy of the magician.

Pr [Yi = 1|Wi] =

8>>><>>>:
1 Wi < θi

(γ − F−Wi
(θi))/(FWi

(θi)− F−Wi
(θi)) Wi = θi

0 Wi > θi

(Y )

θi = inf{w|FWi
(w) ≥ γ} (θ)

Part 1. We show that the thresholds computed by a γ-conservative magician guar-

antee that each box is opened with an ex ante probability of γ (i.e., Pr[Yi = 1] = γ),

assuming there is enough mana.
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Pr [Yi ≤ w] = Pr [Yi = 1 ∩Wi < θi] + Pr [Yi = 1 ∩Wi = θi] + Pr [Yi = 1 ∩Wi > θi]

= Pr [Wi < θi] +
γ − F−Wi

(θi)

FWi
(θi)− F−Wi

(θi)
Pr [Wi = θi]

= γ

For Theorem 37, we must show that the thresholds computed by a γ-conservative

magician guarantee that each box is opened with an ex ante probability at least γ

when FXi
stochastically dominates the actual CDF of Xi for all i and assuming there

is enough mana. Let xi = EXi∼FXi
[Xi], i.e., xi is an upper bound on Pr Xi = 1 (recall

that xi ∈ {0, 1}). The proof is as follows.

(a) First we prove that Pr[Wi ≤ `] ≥ FWi
(`) by induction on i. The base case is

trivial. Suppose the inequality holds for i ≥ 1, we prove it for i+ 1 as follows.

Pr [Wi+1 ≤ `] ≥ Pr [Wi ≤ `− 1] + Pr [Wi = `] (1− y`ixi)

= Pr [Wi ≤ `− 1] y`ixi + Pr [Wi ≤ `] (1− y`ixi)

≥ FWi
(`− 1)y`ixi + FWi

(`)(1− y`ixi) by induction hypothesis

= FWi+1
(`) by (??)

(1.a)

Observe that all of the above inequalities are met with equality if every xi is the

exact probability of breaking wand for the corresponding box instead of just an

upper bound.

(b) Next, we show that each box is opened with probability at least γ. We shall show
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that Pr[Yi = 1] ≥ γ.

Pr [Yi = 1] =
X
`

Pr [Yi = 1|Wi = `] Pr [Wi = `]

=
θiX
`=0

y`i Pr [Wi = `]

= Pr [Wi < θi] + yθii Pr [Wi = θi] because y`i = 1 for ` < θi

= (1− yθii ) Pr [Wi < θi] + yθii Pr [Wi ≤ θi]

≥ (1− yθii )FWi
(θi − 1) + yθii FWi

(θi) by (1.a)

= FWi
(θi − 1) + yθii (FWi

(θi)− FWi
(θi − 1))

= γ by substituting yθii from (??)

Observe that all of the above inequalities are met with equality if each xi is the

exact probability of breaking a wand for the corresponding box instead of being

just an upper bound.

Part 2. Assuming γ ≤ 1 − 1√
k

(or γ ≤ 1 − 1√
k

and Xi ∈ {0, 1}), we show that

the thresholds computed by a γ-conservative magician are no more than k − 1 (i.e.,

θi ≤ k − 1 for all i). First, we present an interpretation of how FWi
(·) evolves in i in

terms of a sand displacement process.
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Definition 37 (Sand Displacement Process). Consider one unit of infinitely divisible

sand which is initially at position 0 on the real line. The sand is gradually moved to

the right and distributed over the real line in n rounds. Let FWi
(w) denote the total

amount of sand in the interval [0, w] at the beginning of round i ∈ [n]. At each round

i the following happens.

(I) The leftmost γ-fraction of the sand is selected by first identifying the smallest

threshold θi ∈ R+ such that FWi
(θi) ≥ γ and then selecting all the sand in the

interval [0, θi) and selecting a fraction of the sand at position θi itself such that

the total amount of selected sand is equal to γ. Formally, if Gi(w) denotes

the total amount of sand selected from [0, w], the selection of sand is such that

Gi(w) = min(FWi
(w), γ), for every w ∈ R+. In particular, this implies that

only a fraction of the sand at position θi itself might be selected, however all

the sand to the left of position θi is selected.

(II) The selected sand is moved to the right as follows. Consider the given random

variable Xi ∈ [0, 1] and let FXi
(·) denote its CDF. For every point w ∈ [0, θi]

and every distance δ ∈ [0, 1], take a fraction proportional to Pr[Xi = δ] out of

the sand which was selected from position w and move it to position w + δ.

It is easy to see that θi and FWi
(w) resulting from the above process are exactly

the same as those computed by the γ-conservative magician.

Lemma 10. At the end of the ith round of the sand displacement process, the total

amount of sand in the interval [0, w] is given by the following equation.

FWi+1
(w) = FWi

(w)−Gi(w) + EXi∼FXi
[Gi(w − Xi)] ∀i ∈ [n] , ∀w ∈ R+ (FW)

Proof. According to definition of the sand displacement process, FWi+1
(w) can be
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defined as follows.

FWi+1
(w) = (FWi

(w)−Gi(w)) +
ZZ

ω+δ≤w
dGi(ω) dFXi

(δ)

= FWi
(w)−Gi(w) +

Z
Gi(ω − δ) dFXi

(δ)

= FWi
(w)−Gi(w) + EXi∼FXi

[Gi(w − Xi)]

Proof of Theorem 38. The claim follows directly from Lemma 10

Consider a conceptual barrier which is at position θi+1 at the beginning of round i

and is moved to position θi+1+1 for the next round, for each i ∈ [n]. It is easy to verify

(i.e., by induction) that the sand never crosses to the right side of the barrier (i.e.,

FWi+1
(θi+1) = 1). The following theorem implies that the sand remains concentrated

near the barrier throughout the process.

Theorem 42 (Sand). Throughout the sand displacement process (Definition 37), at

the beginning of round i ∈ [n], the following inequality holds.

FWi
(w) < γFWi

(w + 1), ∀i ∈ [n] ,∀w ∈ [0, θi) (FW-ineq)

Furthermore, at the beginning of round i ∈ [n], the average distance of the sand from

the barrier, denoted by di, is upper bounded by the following inequalities11 in which

the first inequality is strict except for i = 1.

di ≤ (1− {θi})
1− γbθic+1

1− γ
+ {θi}

1− γdθie+1

1− γ
≤ 1− γdθie+1

1− γ
<

1

1− γ
, ∀i ∈ [n] (d)

Proof. We start by proving the inequality (FW-ineq). The proof is by induction on i.

The case of i = 1 is trivial because all the sand is at position 0 and so θ1 = 0. Suppose

the inequality holds at the beginning of round i for all w ∈ [0, θi); we show that it

holds at the beginning of round i+1 for all w ∈ [0, θi+1). Note that θi ≤ θi+1 ≤ θi+1,

so there are two possible cases:

11Note that {z} = z − bzc, for any z.
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Case 1. w ∈ [0, θi). Observe that Gi(w) = FWi
(w) in this interval, so:

FWi+1
(w) = FWi

(w)−Gi(w) + EXi [Gi(w − Xi)] by (FW).

= EXi

�
FWi

(w − Xi)
�

by Gi(w) = FWi
(w), for w ∈ [0, θi).

< EXi

�
γFWi

(w − Xi + 1)
�

by induction hypothesis.

= γEXi

�
FWi

(w − Xi + 1)−Gi(w − Xi + 1) +Gi(w − Xi + 1)
�

≤ γ
�
FWi

(w + 1)−Gi(w + 1) + EXi [Gi(w − Xi + 1)]
�

by monotonicity of FWi
(·)−Gi(·).

= γFWi+1
(w + 1) by (FW).

Case 2. w ∈ [θi, θi+1]. We prove the claim by showing that FWi+1
(w) < γ and

FWi+1
(w + 1) = 1. Observe that FWi+1

(w) < γ because w < θi+1 and because of the

definition of θi+1 in (θ). Furthermore, observe that FWi+1
(w + 1) ≥ FWi+1

(θi + 1) = 1

both before and after round i all the sand is still contained in the interval [0, θi + 1].

Next, we prove inequality (d) which upper bounds the average distance of the

sand from the barrier at the beginning of round i ∈ [n].
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di =
Z θi+1

0
(θi + 1− w) dFWi

(w)

=
Z θi+1

0
FWi

(w) dw by integration by part.

=
dθieX
`=0

Z θi+1−`

θi−`
FWi

(w) dw

≤
bθicX
`=0

Z θi+1

θi
γ`FWi

(w) dw +
Z θi+1

bθic+1
γdθieFWi

(w) dw by (FW-ineq).

≤
bθicX
`=0

γ` + {θi} γdθie by FWi
(w) ≤ 1.

= (1− {θi})
bθicX
`=0

γ` + {θi}
dθieX
`=0

γ`

= (1− {θi})
1− γbθic+1

1− γ
+ {θi}

1− γdθie+1

1− γ

≤ 1− γdθie+1

1− γ

The last inequality follows because (1 − β)L + βH ≤ H for any β ∈ [0, 1] and any

L,H with L ≤ H. Note that at least one of the first two inequalities is strict except

for i = 1 which proves the claim.

Theorem 43 (Barrier). If
Pn
i=1 EXi∼FXi

[Xi] ≤ k for some k ∈ N, and γ ≤ 1 − 1√
k

(or γ ≤ 1− 1√
k+3

and also Xi ∈ {0, 1} for all i), then the distance of the barrier from

the origin is no more than k throughout the process, i.e., θi ≤ k − 1 for all i ∈ [n].

Proof. At the beginning of round i, let di and d′i denote the average distance of

the sand from the barrier and from the origin respectively. Recall that the barrier is

defined to be at position θi+1 at the beginning of round i. Observe that di+d
′
i = θi+1.

Furthermore, d′i+1 = d′i+γE[Xi], i.e., the average distance of the sand from the origin

is increased exactly by γE[Xi] during round i (because the amount of selected sand

is exactly γ and the sand selected from every position w ∈ [0, θi] is moved to the right

by an expected distance of E[Xi]). By applying Theorem 42 we get the following
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inequality.

θi + 1 = d′i + di

< γ
i−1X
r=1

E [Xi] + di

≤ γk + (1− {θi})
1− γbθic+1

1− γ
+ {θi}

1− γdθie+1

1− γ
, ∀i ∈ [n] (Γ)

In order to show that the distance of the barrier from the origin is no more than

k throughout the process, it is enough to show that the above inequality cannot hold

for θi > k − 1. In fact it is just enough to show that it cannot hold for θi = k − 1;

alternatively, it is enough to show that the complement of the above inequality holds

for θi = k − 1.

k ≥ γk +
1− γk

1− γ

Consider the stronger inequality k ≥ γk + 1
1−γ ; this inequality is quadratic in γ

and can be solved to get a bound of γ ≤ 1− 1√
k
.

Next, consider the case in which Xi ∈ {0, 1} for all i. Observe that the barrier

can only take integral values; therefore, to show that the distance of the barrier from

the origin is no more than k, it is enough to show that inequality (Γ) cannot hold

for θi = k; alternatively, it is enough to show that the complement of that inequality

holds for θi = k.

k + 1 ≥ γk +
1− γk+1

1− γ

Consider the the stronger inequality k+ 1 ≥ γk+ 1
1−γ which is quadratic in γ and

yields a bound of γ ≤ 1− 1

1/2+
√
k+1/4

; this bound in fact imposes a looser constraint

than γ ≤ 1− 1√
k+3

when k ≥ 7. Furthermore it can be verified (by direct calculation)

that the inequality holds for k < 7 and γ ≤ 1− 1√
k+3

. That completes the proof.
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Theorem 43 implies that a γ-conservative magician requires no more than k units

of mana, assuming that γ ≤ 1− 1√
k

(or assuming γ ≤ 1− 1√
k+3

and also Xi ∈ {0, 1}
for all i). That completes the proof of Theorem 36 and Theorem 37.
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Part III

Non-Bayesian Mechanism Design
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Chapter 6

Competitive Equilibrium in Two Sided Matching

Markets

In this chapter, we study the class of competitive equilibria in two sided matching

markets with general (non-quasilinear) utility functions. Mechanism design in general

non-quasilinear setting is one of the biggest challenges in mechanism design. General

non-quasilinear utilities can for example model smooth budget constraints as a special

case. Due to the difficulty of dealing with arbitrary non-quasilinear utilities, a large

fraction of the existing work have considered the simpler case of quasilinear utilities

with hard budget constraints and they all rely on some form of ascending auction.

For general non-quasilinear utilities, we show that such ascending auctions may not

even converge in finite time. As such, almost all of the existing work on general non-

quasilinear utility function (Demange and Gale (1985); Gale (1984); Quinzii (1984))

have resorted to non-constructive proofs based on fixed point theorems or discretiza-

tion. In this chapter, we give the first direct characterization of competitive equilibria

in such markets. Our approach is constructive and solely based on induction. Our

characterization reveals striking similarities between the payments at the lowest com-

petitive equilibrium for general utilities and VCG payments for quasilinear utilities.

We also show that the mechanism that outputs the lowest competitive equilibrium is

group strategyproof. We also present a class of price discriminating truthful mech-

anisms for selling heterogeneous goods to unit-demand buyers with general utility

functions and from that we derive a natural welfare maximizing mechanism for ad-

auctions that combines pay per click and pay per impression advertisers with general
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utility functions. Our mechanism is group strategyproof even if the search engine and

advertisers have different estimates of clickthrough rates.

6.1 Introduction

In this chapter, we study the class of competitive equilibria in two sided matching

markets with general utility functions. In these markets, agents form a one-to-one

matching and monetary transfers are made between matched agents. Utility of each

agent is a function of whom she is matched to and the amount of the monetary

transfer to/from her partner. For the most of this chapter, we work with simpler

markets consisting of a set of buyers and a set of heterogeneous good. In section 6.5,

we show that the more general model can be reduced to this simpler buyer/good

model. We assume that the utility of each buyer depends on the choice of good she

receives and the price she pays but it is not necessarily a quasi-linear function of the

payment. Non-quasilinear utilities can be used for example to model smooth budget

constraints.

A competitive equilibrium, in these markets, is essentially an assignment of prices

to goods together with a feasible allocation of goods to buyers such that every buyer

receives her most preferred good at the announced prices and every unallocated good

has a price of 0. This is also referred to as an envy-free equilibrium for the buyer/good

model. In the case of unit-demand buyers, each buyer would be allocated at most a

single good. With quasi-linear utilities, buyer i’s utility for good j as a function of

payment can be written as uji (x) = vji − x where vji is the valuation of buyer i for

good j and x is the payment. In this case, social welfare is well-defined and VCG

is applicable. The efficient allocation can be computed using a maximum weight

matching on the bipartite graph consisting of buyers/goods with the edge between

buyer i and good j having a weight of vji . The VCG payoffs/payments would then

correspond to a minimum weighted cover on this graph Leonard (1983). For general

utilities, the functions uji (x) could be any continuous decreasing function of x. In this

case, social welfare is not well defined and VCG is not applicable.

As a motivating example of a unit-demand market with non-quasi-linear utilities,
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consider a housing market in which each seller owns a house and each buyer wants to

buy a house. Typically, a buyer will have a smooth budget constraint. For example,

they may need to get a loan/mortgage to pay for the house and so the actual cost

will include interests, fees, etc. in addition to the actual payment made to the seller.

This cost may depend on the choice of the house as well (e.g., the interest rate may

depend on the condition of the house). With non-quasilinear utilities, this can be

modeled as uji (x) = vji − c
j
i (x) in which cji (x) is the cost as a function of the price of

good j.

6.2 Related Work

In the abstract mathematical form, the problem we are looking at is a one-to-one

matching with monetary transfers and general utilities as described by Demange and

GaleDemange and Gale (1985). In this model, the set of competitive equilibria corre-

sponds exactly to the outcomes that are in the core. Demange and Gale also proved

the lattice structure on the set of competitive equilibria although the lattice struc-

ture was already discovered by Shapley and Shubik Shapley and Shubik (1971) for

the case of quasilinear utilities. Demange, Gale and Sotomayor Demange et al. (1986)

proposed an ascending auction for the quasilinear setting to compute a competitive

equilibrium. The existence of competitive equilibria for general utilities was proved

by Quinzii Quinzii (1984). Quinzii showed that the game defined by this model is a

“Balanced Game” and for general n-person balanced games it was already shown by

Scarf Scarf (1967) that the core is non-empty. Using a different method, Gale Gale

(1984) showed that for a more general class of preferences (i.e., preferences are not

even required to be monotone in payment, yet they should still satisfy some other

milder conditions) a competitive equilibrium always exists. Gale’s proof is based on

a generalization of the KKM lemma Knaster et al. (1929) which is the continuous

variant of the Sperner’s lemma. Both of these proofs only show the existence of an
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equilibrium and are non-constructive. As such, they don’t help much in understand-

ing the properties of the equilibria. 1

Using a completely different approach, Kelso and Crawford Kelso and Crawford

(1982) studied the equilibria of the more general case of many-to-one matching with

monetary transfers using discretization, i.e. the prices are chosen from a discrete

set rather than from a continuum). Their approach can be considered an extension

of the deferred acceptance algorithm of Gale and Shapley for college admission and

stable marriageGale and Shapley (1962). Kelso and Crawford state their problem

in the context of matching workers to firms. They introduce the notion of “Gross

Substitutes”(GS) and show that if firms’ preferences satisfy GS then the core is non-

empty. Later on, Hatfield and MilgromHatfield and Milgrom (2005) presented a

unified framework of many-to-one matching with contracts which subsumes the Kelso-

Crawford model. Their approach is also based on discretization. They replace the

finite set of discrete prices with a finite set of contracts where a contract could include

any general term which may include a monetary transfer amount as well. They

describe their model in the context of hospitals and doctors and show that if hospitals

preferences over the set of possible contracts satisfy GS and also if doctors have strict

preferences over the set of contracts then the core is non-empty. They show that the

set of core outcomes form a lattice and that the infimum of the lattice correspond

to the doctor optimal outcome while the supremum of the lattice correspond to the

optimal outcome for the hospitals. They provide an iterative procedure for finding

the core outcomes based on the discrete version of Tarski’s fixed point theorem. They

also characterize another condition which they call the “Law of Aggregate Demand”

under which the doctor optimal outcome is also group strategyproof for the doctors.

Recently, Hatfiled and Kominers Hatfield and Kominers (2010) generalized this to

many-to-many matchings with contracts.

Leonard Leonard (1983) first showed that in one-to-one markets with quasilinear

1Scarf’s proof actually provides an algorithm based on the pivoting algorithm of Lemke and
Howson Lemke and Howson (1964). When combined with Quinzii’s construction, that would lead
to a construction that requires 2O(n!) operations which runs on a matrix with O(n!) columns. Nev-
ertheless, the resulting algorithm is more of an exhaustive search algorithm and does not provide
any insight into the equilibrium structure.
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utilities, prices at the lowest competitive equilibrium equal VCG payments. Gul and

StacchettiGul and Stacchetti (1999) studied many-to-one matchings in the context of

allocation of indivisible goods to consumers with quasi-linear utilities. Their model

differs from the model of Kelso and Crawford in that they do not require discrete prices

but instead require the utilities to be quasi-linear in money. They show the existence

of competitive equilibria given that consumers’ preferences satisfy GS. They also show

that not only is GS sufficient but it is also necessary. Similarly, Bikhchandani and

Mamer Mamer (1997) showed the existence of competitive equilibria for the same

model but without indivisibility using a different approach. Their proofs crucially

needs the quasilinearity of utilities and their approach cannot be extended to general

utilities.

Ausubel and Milgrom Ausubel and Milgrom (2002) also studied the many-to-one

matching in the the context of allocation of indivisible goods to consumers with quasi-

linear utilities. They propose an ascending package auction to compute the outcome.

They assume that all the goods are initially owned by one seller and as such the

set of competitive equilibria is only a strict subset of the core. They consider the

core outcomes and not just the competitive equilibria. They present an ascending

package auction that always results in a core outcome even in the absence of GS

preferences. They show that if consumers’ preferences satisfy GS then the outcome

of their auction coincides with the VCG outcome. More specifically, they show that

their auction precisely computes the VCG outcome whenever the VCG outcome is

in the core. They also show that GS is the the necessary and sufficient condition for

the VCG outcome to be in the core. Their auction, however, requires payments to

be chosen from a finite discrete set. Their setting can be modeled as a special case

of the Milgrom and Hatfield matching with contracts Hatfield and Milgrom (2005).

Their proofs also crucially depend on quasilinearity of utilities.

There are also related work that consider one-to-one matching markets with quasi-

linear utilities and hard budget constraint. Aggarwal et al.Aggarwal et al. (2009), con-

sider this problem in the context of Ad-Auctions with advertisers having slot specific

hard budget constraints. They prove the existence of a budget-feasible competitive

equilibrium and present a truthful auction mechanism based on that. They present
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an extension of the Hungarian methodKuhn (1956) for computing the equilibrium

and their proofs are based on this construction. Ashlagi et al. Ashlagi et al. (2010)

also consider a similar problem but they assume a single hard budget constraint and a

single value per click for each advertiser and require separable click through rates. In

subsection 6.4.2, we discuss the major difficulty of dealing with soft budget constraints

as opposed to hard budget constraints.

6.3 Our Contribution

In this chapter we study the class of competitive equilibria in unit demand markets

with general utility function in continuous setting. We must emphasis that all of

the earlier works except for Demange and Gale (1985); Quinzii (1984); Gale (1984)

either crucially require quasilinear utilities or work in a discrete setting. Our main

contributions are the following:

• In Theorem 45, we present a construction using an inductive characterization of

prices/payoffs at the competitive equilibria that reveals interesting similarities

between VCG payments for quasilinear utilities and the prices at the lowest com-

petitive equilibrium for general utilities. In Theorem 46 we give a simple proof

for group strategyproofness based on a critical property of the lowset/highest

competitive equilibria. All of the earlier works only proved the existence of

a competitive equilibrium using either fixed point theorems or discretization

without providing an exact characterization of the equilibria. We present a

simple characterization that has a natural interpretation. Our characterization

provides a deeper insight into the structure of the equilibria.

• In section 6.6, we suggest a mechanism for ad-auctions that can naturally com-

bine both pay per click and pay per impression advertisers in a general setting

in which advertisers could submit a separate utility function for each slot as a

price of that slot. These utility functions could be any arbitrary function2 of

the price of that slot. Furthermore, our mechanism is group strategyproof even

2It has to be continuous and decreasing in the price of the slot and should become non-positive
for a high enough price.
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if search engine and advertisers have different estimates of clickthrough rates.

This also answers an open question raised by Aggarwal et al. (2009). Further-

more, our mechanism is welfare maximizing in the sense that it maximizes the

combined welfare of the search engine and any group of advertisers who have

quasilinear utilities and agree with the search engine on clickthrough rates and

assuming that the search engine has the correct clickthrough rates. In particu-

lar, if all advertisers have quasilinear utilities and agree with the search engine

on clickthrough rates, then the outcome of our mechanism coincides with the

VCG outcome.

6.4 Model and Main Results

In this section, we consider competitive equilibria in two sided markets with goods

on one side and buyers on the other side. Later in section 6.5, we consider the more

general model with agents on both sides and show that it can be reduced to the

simpler buyer/good model. In subsection 6.4.1, we formally define the problem and

our notation. In subsection 6.4.2, we explain the main challenges of dealing with non-

quasilinear utilities and explain why it is much harder to prove these results for non-

quasilinear utilities compared to their quasilinear counterparts. In subsection 6.4.3,

we present our main general theorems.

6.4.1 Model

In this subsection, we formally define the problem and our notation.

We denote by M = (I, J, {uji}), a market M with the set of unit demand buyers I

and the set of goods J such that the utility of buyer i for receiving good j at price x

is given by the monotonically decreasing function uji (x) which is privately known by

buyer i. We assume that for a large enough x, uji (x) becomes zero or negative3. We

will use pji (·) to denote the inverse of uji (·). Next, we formally define a Competitive

3This is to ensure that uji (·) is invertible. We also require the domain and the range of uji (·) to

cover the whole R. Since at an equilibrium both x and uji (x) are positive, we can easily extend the

domain of any uji (·) to the whole R to meet this requirement.
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Equilibrium.

Definition 38 (Competitive Equilibrium). Given a market M = (I, J, {uji}), a

“Competitive Equilibrium” of M is an assignment of prices to goods together with a

feasible matching of goods to buyers such that each buyer receives her most preferred

good at the assigned prices and every unmatched good has a price of 0. Formally, we

say that W = (p,u) is a competitive equilibrium of M with price vector p and payoff

vector u if and only if there exists a “Supporting Matching” µ such that the following

conditions hold. We use µ(i) to denote the good that is matched to buyer i:

∀i ∈ I,∀j ∈ J :

8><>:
ui = uji (p

j) j = µ(i)

ui ≥ uji (p
j) j 6= µ(i)

(6.1)

∀i ∈ I : µ(i) = ∅ ⇒ ui = 0 (6.2)

∀j ∈ J : µ−1(j) = ∅ ⇒ pj = 0 (6.3)

∀i ∈ I,∀j ∈ J : ui ≥ 0,pj ≥ 0 (6.4)

We denote an unmatched buyer or good by µ(i) = ∅ or µ−1(j) = ∅. Throughout

this chapter, instead of explicitly writing W = (p,u) , we use p(W ) and u(W ) to

denote the price vector p and the payoff vector u at W . We also use µ(W ) to denote

a supporting matching for W . Note that there could be more than one supporting

matching for a given W so we assume µ(W ) may return any one of them. We will

denote the set of all competitive equilibria for a market M by W(M).

6.4.2 The Main Challenges of Non-Quasilinear Utilities

In this subsection, we explain the main challenges of dealing with non-quasilinear

utilities. First, it is helpful to explain the connection between VCG and competitive

equilibria in unit-demand markets with quasilinear utilities.

VCG is based on maximizing the social welfare which is defined as the sum of the

utilities. Taking the sum of quasilinear utility functions makes sense because they

are measured in the same units and the payment terms cancel out. However, with
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general utilities, social welfare is not well-defined since different agents’ utilities are

not measured in the same units and are therefore non-transferrable (i.e. transferring

$1 from one agent to another does not transfer the same amount of utility). In

our problem, with quasilinear utilities, the utility functions would be of the form

uji (x) = vji − x where vji is the value of the agent i for good j. We could then

construct a complete bipartite graph with agents and goods in which each edge (i, j)

has a weight of vji . A social welfare maximizing mechanism like VCG would pick a

maximum weight matching in this graph which is also captured by the following LP:

Primal: max ·
X
i∈I

X
j∈J
vjix

j
i

∀i ∈ I :
P
j∈J xji ≤ 1

∀j ∈ J :
P
i∈I xji ≤ 1

xji ≥ 0

Dual: min ·
X
i∈I

ui +
X
j∈J

pj

∀i ∈ I,∀j ∈ J : ui + pj ≥ vji

ui ≥ 0

pj ≥ 0

(6.5)

Notice that there is a one-to-one correspondence between solutions of the dual

program and the competitive equilibria (observe that by complementary slackness,

if xji > 0 then ui = vji − pj). It is not hard to show that the prices at the lowest

competitive equilibrium (the one that has the lowest prices) correspond to the VCG

payments. Furthermore, any competitive equilibrium of the market leads to a social

welfare maximizing allocation (this follows from strong duality). To compute a max-

imum weight matching in this graph we can use the Hungarian Method Kuhn (1956).

Interestingly, the Hungarian method is equivalent to the following ascending price

auction proposed by Demange, Gale and SotomayorDemange et al. (1986):
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Definition 39 (Ascending Price Auction). Set all the prices equal to 0. Find a

minimally over demanded subset of goods, i.e. a subset T of goods such that there is

a subset S of the buyers who strictly prefer the goods in T at the current prices and

|S| > |T |. Increase the prices of goods in T at the same rate until one of the buyers

in S becomes indifferent between a good outside of T and her preferred good in T .

At that point, recompute the minimally over-demanded subset and repeat this process

until there is no over demanded subset of goods.

In fact, all of the existing methods for computing the lowest competitive equilib-

rium, that we are aware of, are based on running an ascending auction of the above

form or a similar ascending auction. Furthermore, in all of the related work that

are based on such ascending auctions, the proofs are heavily tied with the way the

ascending auction proceeds and the fact that it stops in finite time. Essentially, all

of these auctions work as follows: They advance the prices at some rate to the next

point at which there is a change in the demand structure 4. Then, they recompute

the rates and repeat. For quasilinear utility functions, the ascending auction stop

after O(|I| + |J |2) iterations (Each time the combinatorial structure of the demand

changes we start a new iteration).

Unfortunately, these ascending auctions may not even terminate in finite time if

utilities are not quasilinear. The problem occurs when we try to raise the prices of

goods in set T . With quasilinear utilities, when we raise the prices of all the goods in

T at the same rate, for buyers in S, the relative preferences over the goods in T do not

change. However, that is not true for general utility functions. For general utilities,

we may need to raise the prices of goods in T at different and possibly non-constant

rates and even then the preferences of buyers in S over goods in T may change an

unbounded number of times. We demonstrate this in the following example:

Example 1. Suppose there are 3 goods and 4 buyers with utility functions as given

in the following table in which V ≥ 2 is some constant and x is the price of the

corresponding good:

4Note that since there are no structural changes, the prices are essentially jumped discretely to
the next point at which there is a change in the demand sets
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good 1 good 2 good 3

buyer 1 V + 1− x V + 1− x V + 1− x
buyer 2 0 V + 1− x 0

buyer 3 0 0 V + 1− x
buyer 4 V − x V − c(x) V − c′(x)

All buyers have quasilinear utilities except buyer 4 for whom c(x) = x+V−x
V sin(V log(V −x))

and c′(x) = x+ V−x
V cos(V log(V −x)). Notice that both c(·) and c′(·) are strictly increasing

in x if V ≥ 2, so all utility functions are strictly decreasing in prices. Figure 6.1 shows

the prices of goods during the ascending auction. We should emphasis that in this

particular example, the ascending path of prices is unique. The ascending auction

can only increases the prices of goods that are over demanded, i.e., demanded by

at least two buyers. Furthermore, it can only raise the price of a good to the point

where the demand of that good is about to drop to 1. Therefore, for every good with

a positive price during the auction there should be at least a demand of 2. Observe

that the demand set of buyer 1 and 4 changes an infinite number of times during the

ascending auction. Specifically, the demand set of both buyer 1 and 4 include good 1

at all times. However, the demand set of buyer 1 includes good 2 and/or good 3 only

at the times in which the price curves of those goods overlap with the price curve of

good 1. Similarly, the demand set of buyer 4 includes good 2 and/or good 3 only at

the times in which the price curves of those goods do not overlap with the price curve

of good 1. Observe that the demand structure changes an infinite number of times as

the price of the goods approach V . So an ascending auction does not stop in finite

time.

The previous example, although contrived, illustrates what could go wrong with

ascending auctions and constructive proofs that are based on them. In general, as-

cending auctions are very sensitive to the structure of utility functions. Later, in

Theorem 45, we present a direct way of computing the lowest competitive equilib-

rium without running an ascending auction.

Hard budgets vs. Smooth budgets: Notice that with hard budget constrains,

utility functions are quasilinear except at the point where buyers hit their budget

limits. Therefore, the issue that was outlined in Example. 1 does not arise with
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The blue and red curves have been slightly shifted down to make the black curve visible.

Assume V = 11 and that the price of good 1 is increased at the rate of 1.

Figure 6.1: Prices of goods in the ascending auction of Example. 1.

quasilinear utilities and hard budget constraints. In fact, ascending auctions with

hard budget constraints converge almost as fast as ascending auction with quasilinear

utilities because each buyer may hit her budget limits at most |J | times (once per

each good) and beyond that they never demand that good again. This is what makes

general non-quasilinear utilities much harder to work with compared to quasilinear

utilities with hard budgets. It is worth mentioning that the related work of Aggarwal

et al. (2009) and Ashlagi et al. (2010) are based on such ascending auctions.

6.4.3 Main Results

In this subsection, we state our main theorems that capture the important properties

of competitive equilibria. Our main contributions in this section are Theorem 45

which characterizes the prices/payoffs at the higest/lowest competitive equilibria and
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Theorem 46 that establishes the group strategyproofness of the mechanism that se-

lects the lowest competitive equilibrium. Our characterization reveals a deep con-

nection between the way VCG computes its payments and the way prices can be

computed at the lowest competitive equilibria. We start by showing that the set of

competitive equilibria form a lattice.

Theorem 44 (Equilibrium Lattice). For a given market M = (I, J, {uji}), with the set

of competitive equilibria W(M), we define a partial ordering as follows. For any two

competitive equilibria W,W ′ ∈W(M), we say W ≤ W ′ iff p(W ) ≤ p(W ′) (or equiv-

alently u(W ) ≥ u(W ′))5. The partially ordered set (W(M),≤) is a complete lattice.

The inf and sup operators on the lattice are defined as follows. Let Winf = inf(W,W ′)

and Wsup = sup(W,W ′). Both Winf and Wsup are valid competitive equilibria (we

provide a supporting matching for each one):

Winf :

8>>>>>><>>>>>>:

pj(Winf) = min(pj(W ), pj(W ′))

ui(Winf) = max(ui(W ), ui(W
′))

µinf(i) =

8><>:
µ(i) ui ≥ u′i

µ′(i) ui < u′i

Wsup :

8>>>>>><>>>>>>:

pj(Wsup) = max(pj(W ), pj(W ′))

ui(Wsup) = min(ui(W ), ui(W
′))

µsup(i) =

8><>:
µ(i) ui < u′i

µ′(i) ui ≥ u′i

(6.6)

In particular, the lattice has a unique minimum which we refer to as the lowest

competitive equilibrium (i.e. has the lowest prices and the highest payoffs) and a

unique maximum which we refer to as the highest competitive equilibrium (i.e. has

the highest prices and the lowest payoffs)6 .

Throughout the rest of the chapter, we use the lattice structure of the set of

competitive equilibria without making explicit references to Theorem 44.

Before we present our theorems, we define the following notation. Note that we

can fully specify a competitive equilibrium W by just specifying either u(W ) or p(W ).

5A vector is considered less than or equal to another vector if it is less than or equal to the other
vector in every component

6It is not hard to show that W(M) is a closed compact set
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Given either the price vector or the payoff vector, we can compute the other one by

taking the induced prices/induced payoffs as defined next.

Definition 40 (Induced Payoffs u(p), Induced Prices p(u)). We use u(p) to denote

the “Induced Payoffs” of buyers from price vector p which is the best payoff that

each buyer can possibly get given the prices p. Similarly, we use p(u) to denote the

Induced Prices of goods from the payoff vector u. The formal definition is as follows

(remember that pji (·) is the inverse of uji (·)):

ui(p) = max({uji (pj)|j ∈ J} ∪ {0}) (6.7)

pj(u) = max({pji (ui)|i ∈ I} ∪ {0}) (6.8)

It is easy to see that if W is a competitive equilibrium then u(W ) = u(p(W )) and

p(W ) = p(u(W )) 7. Throughout this chapter, we use bold letters p and u to denote

variables representing price/payoff vectors and non-bold letters p and u to denote

functions returning price/payoff vectors. The next theorem states the main result of

this chapter. In what follows, ui(p) and pj(u) denote the induced payoff and induced

price as defined in (6.7) and (6.8) respectively.

Theorem 45 (Inductive Equilibrium). Given a market M = (I, J, {uji}), a compet-

itive equilibrium always exists. Furthermore, the lowest and the highest competitive

equilibria can be computed inductively as follows. Let W be the lowest and W be the

highest competitive equilibrium of the market M . For an arbitrary buyer i and an

arbitrary good j, let W−i be the highest competitive equilibrium of the market M−i

(i.e. the market without buyer i) and let W−j be the lowest competitive equilibrium of

the market M−j (i.e. the market without good j). The following inductive statements

fully characterize the prices/payoffs at the lowest/highest competitive equilibrium of

M :

I. ui(W ) = ui(p(W−i)).

II. pj(W ) = pj(u(W−j)).

7The inverse is not true.
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Furthermore, the following inequalities always hold:

resume pj(W ) ≤ pj(W−i), in particular, if j = µ(i) then pj(W ) = pj(W−i).

resume ui(W ) ≤ ui(W
−j), in particular, if j = µ(i) then ui(W ) = ui(W

−j).

Note that just 45.I and 45.II are enough to fully characterize the lowest/highest

competitive equilibria because we can fully specify any competitive equilibrium by

specifying either the prices or the payoffs. Intuitively, we can interpret them as the

following:

• (45.I) We can compute the payoff of any buyer i at the lowest competitive

equilibrium of M by doing the following. Remove i from the market. Compute

the prices at the highest competitive equilibrium of the rest of the market. Then,

bring buyer i back to the market. The payoff that buyer i gets from her most

preferred good at these prices is equal to her payoff at the lowest competitive

equilibrium of the market M .

• (45.II) We can compute the price of any good j at the highest competitive

equilibrium of the market M by doing the following. Remove good j from the

market. Compute the buyers’ payoffs at the lowest competitive equilibrium of

the rest of the market. Then, bring good j back to the market. Ask each of

the buyers to name a price for good j that would give them the same payoff

as what they get in the lowest competitive equilibrium of the market without

good j. Take the maximum among the named prices and that will be the price

of good j at the highest competitive equilibrium of the whole market.

Next, we combine the above two characterization to reveal a striking similarity

between the prices of the lowest competitive equilibrium and VCG payments. Note

that social welfare is not even well-defined for a market with general utilities so VCG

is inapplicable.

By combining the (45.I) and (45.II) we get the following interpretations for the

prices of goods at the lowest competitive equilibrium. WLOG, we give the interpreta-

tion for some arbitrary good j which is allocated to buyer i at the lowest competitive
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equilibrium. Notice the striking similarity between these interpretation and the VCG

payments “The price that buyer i pays for good j is the lowest price at which the rest

of the market becomes indifferent between buying or not buying good j. i.e., the lowest

price for good j such that there is a competitive equilibrium for the market without i

and j such that no buyers would strictly prefer good j to her current allocation. In

other words, the price that buyer i has to pay to get good j is equal to how much good

j is worth to the rest of the market.”

Theorem 46 (Group Strategyproofness). A mechanism that uses the allocations/prices

of the lowest competitive equilibrium is group strategyproof for buyers, meaning that

there is no coalition of buyers that can collude and misreport their uji (·) such that all

of them get strictly higher payoffs (assuming that there are no side payments).

In the rest of this section, we give a sketch of the proof of Theorem 45. We start

by defining a Tight Alternating Path.
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Definition 41 (Tight Alternating Path). Given a market M = (I, J, {uji}) and a

competitive equilibrium W of M with a supporting matching µ(W ), we define a Tight

Alternating Path with respect to W and µ(W ) as follows. Consider the complete

bipartite graph of buyers/goods. We say the edge (i, j) is tight iff ui(W ) = uji (p
j(W )).

A tight alternating path is a path consisting of tight edges where every other edge on the

path belongs to µ(W ). A tight alternating path may start at either a buyer or a good

and may end at either a buyer or a good. In particular, the end points of the path may

be unmatched in µ(W ). For example consider a tight alternating path (i1, j1, i2, j2, i3)

where i1 is matched with j1 and i2 is matched with j2 and i3 is unmatched in µ(W ).

In particular that means ui3(W ) = 0 = uj2i3 (pj2(W )).

Definition 42 (Demand Sets). Given a market M = (I, J, {uji}), we denote the

demand set of a subset of buyers S at prices p by DS(p). Similarly, we denote the

demand set of a subset of goods T at payoffs u by DT (u). Formally:.

DS(p) = {j ∈ J |∃i ∈ S : uji (p
j) = ui(p)} (6.9)

DT (u) = {i ∈ I|∃j ∈ T : pji (ui) = pj(u)} (6.10)

For a competitive equilibrium W of M , we use DS(W ) to denote DS(p(W )) and

DT (W ) to denote DT (u(W )).

Lemma 11 (Tightness). Given a market M = (I, J, {uji}), and a competitive equi-

librium W of M :

• W is the lowest competitive equilibrium of M iff for every subset T of the goods

with strictly positive prices we have |DT (W )| ≥ |T | + 1, i.e. at least |T | + 1

buyers are interested in T .

• W is the highest competitive equilibrium of M iff for every subset S of the buyers

with strictly positive payoffs we have |DS(W )| ≥ |S| + 1, i.e. the buyers in S

are interested in at least |S|+ 1 goods.

To see why Lemma 11 is true intuitively, assume that W is the lowest competitive

equilibrium of a market M but there is a subset T of goods such that |DT (W )| = |T |.
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Then, we could decrease the prices of goods in T down to the point where either a

buyer out of DT (W ) becomes indifferent between her current allocation and some

good in T ; or one of the goods in T hit the price of 0. But then, we get a competitive

equilibrium less than W which is a contradiction. Although this lemma seems very

intuitive, its formal proof turns out to be quite challenging. Most of the appendix

is devoted to proving this lemma. The next lemma states a critical property of the

lowest/highest competitive equilibria.

Lemma 12 (Critical Alternating Paths). Given a market M = (I, J, {uji}), and a

competitive equilibrium W of M with a supporting matching µ:

• Iff W is the highest competitive equilibrium of M then for any good j there exists

a tight alternating path from j to a buyer with a payoff of 0 or to an unmatched

good. The alternating path must start with a matching edge or be of length 0.

• Iff W is the lowest competitive equilibrium of M then for any buyer i there exists

a tight alternating path from i to a good with a price of 0 or to an unmatched

buyer. The alternating path must start with a matching edge or be of length 0.

We refer to such a tight alternating path as a “Critical Alternating Path”.

Proof. We only prove the first statement since the second one is similar (completely

symmetric): If either j is unmatched or the payoff of buyer who is matched to j is 0

we are done. Otherwise, we run the following algorithm while maintaining a subset

T of goods and a subset S of buyers with strictly positive payoffs such that there is a

tight alternating path from j to each good in T and each buyer in S and µ(S) = T .

Initially, we set T ← {j} and S ← {µ−1(j)}. The repeating step is as follows: Since

all buyers in S have strictly positive payoffs, we can apply Lemma 11 and argue that

DS(W ) ≥ |S|+ 1 = |T |+ 1. So, there must be a buyer i∗ in S that has a tight edge

to some good j′ not in T . If either j′ is unmatched or i′ = µ−1(j′) has a payoff of

0 then we are done. Otherwise, add j′ to T and add i′ to S and repeat. Note that

we always find a critical alternating path in at most |I| − 1 iterations. The “only if”

direction is trivial by applying Lemma 11.
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Next, we give a sketch the proof of our main theorem. The complete proof can be

found in the appendix.

Proof sketch of Theorem 45. We only give a sketch of the proof of (45.I) and (?).

The proofs of (45.II) and (?) are completely symmetric to the other two.

The plan of the proof is as follows. We remove an arbitrary buyer i from the

market and compute the highest competitive equilibrium of the rest of the market.

We then show that the prices at the highest competitive equilibrium of the market

without i leads to a valid competitive equilibrium for the whole market (including

buyer i) but with a possibly different matching. We also show that the induced

payoff of buyer i from these prices is the same as her payoff at the lowest competitive

equilibrium of the whole market. The detail of the construction is as follows.

Choose an arbitrary buyer i ∈ I. Let M−i denote the market without buyer i

and let W−i be the highest competitive equilibrium of the market M−i. Note that

the market M−i is of size |I| + |J | − 1 so by inductively applying Theorem 45 to

M−i we can argue that there exists a competitive equilibrium for the market M−i,

so the highest competitive equilibrium of M−i is well-defined. Let p = p(W−i) be

the prices at W−i. We claim that using the prices p for the market M leads to a

valid competitive equilibrium W . In particular, all the prices/payoffs in W are the

same as the prices/payoffs in W−i and also the payoff of buyer i is ui(p) however the

matching might be different. To obtain a supporting matching for W , we start with

a supporting matching for W−i and modify it as follows. If ui(p) = 0 then we can

leave buyer i unmatched and the matching does not need to be changed. Otherwise,

if ui(p) > 0 then let j be the good from which buyer i achieves her highest payoff at

the current prices, i.e. ui(p) = uji (p
j). By applying Lemma 12 to the market M−i,

we can argue that there is a tight alternating path from j either to an unmatched

good with a price of 0 or to a buyer with a payoff of 0. In both cases, we can match

good j to buyer i and then switch the matching edges along the alternating path to

get a new matching that supports W . Note that if the alternating path ends in a

buyer with a payoff of 0 then the last edge of the alternating path was a matching

edge and that buyer is now unmatched in the new matching, but she still has a payoff

of 0. The complete proof can be found in the appendix.
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Observe that from the view point of buyer i, this is a posted price mechanism

with posted price vector p(W−i) which does not depend on i’s reported utility (note

that the choice of i was arbitrary).

6.5 More General Models

In this section, we consider competitive equilibria in markets where both sides consist

of agents with general utility function. We show a reduction from this model to

the simpler model with goods and buyers. We also characterize a class of price

discriminating truthful mechanisms based on these markets.

Consider the matching markets of the form M = (I, J, {uji}, {q
j
i }) with two sets

of agents I and J such that if i ∈ I and j ∈ J are matched and x amount of money is

transferred from i to j, then the utility of i is given by uji (x) and the utility of j is given

by qji (−x) (note that x might be negative). We assume uji ’s and qji ’s have the same

properties we assumed in the buyer/good model (e.g. continuous, decreasing, etc). A

competitive equilibrium is also defined similarly. Despite its apparent generality, this

model can be reduced to the buyer/good model as the following theorem states:

Corollary 6. Given a market M = (I, J, {uji}, {q
j
i }) with agents on both sides,

we can construct a market M ′ = (I, J, {u′ji}) with buyers/goods in which u′ji (·) =

uji (−q
j
i

(−1)
(·)). Then, every competitive equilibrium in M ′ corresponds to a compet-

itive equilibrium in M and vice versa with the exact same payoffs. Therefore, all of

the results that we proved in the previous sections carry over to these markets. Fur-

thermore, the mechanism that selects the lowest competitive equilibrium of M ′ (which

is also the lowest competitive equilibrium of M) is group strategyproof for agents of

type I. Note that we could change the role of I and J and get a similar results for

agents of type J . Observe that the lowest competitive equilibrium of agents of type J

is the highest competitive equilibrium of agents of type I and vice versa.

Next, we present a class of price discriminating truthful mechanisms based on the

same idea:
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Corollary 7. Given a market M = (I, J, {uji}), the seller(s) can personalize the price

for each good/buyer by applying an arbitrary continuous and increasing function gji (·)
to the primary price of the good j. In other words, if the price of a good j ∈ J at the

equilibrium is pj then the price observed by agent i ∈ I is gji (p
j). Note that gji (·)’s

should be fixed in advance and should not depend on the reports of buyers. It is easy

to see that every competitive equilibrium in this market correspond to a competitive

equilibrium in the market M ′ = (I, J, {u′ji}) where u′ji (·) = uji (g
j
i (·)) and vice versa.

Consequently, all of the results that we proved in the previous sections carry over to

these markets/mechanisms.

Intuitively, the above two theorems suggest that we can write the utility functions

of the agents in set I in terms of the payoffs of the agents in set J (or in terms of the

primary prices in the case of personalized prices). We can then treat the agents on set

J as goods and their payoffs as the prices of these goods. Note that to maintain the

group strategyproofness, it is crucial that gji (·)’s be fixed in advance and not depend

on the reports of buyers. In the next section, we present a practical application of

this idea.

6.6 Application to Ad-Auctions

In this section, we present a truthful mechanism for Ad-auctions that combines pay

per click (a.k.a charge per click or CPC) and pay per impression (a.k.a CPM) advertis-

ers with general utility functions. In particular, our mechanism is group strategyproof

regardless of whether the search engine uses the correct clickthrough rates or whether

advertisers agree with the search engine on clickthrough rates.

We formally define our model as follows. Given a set of advertisers I and a set

of slots J , we assume that utility of advertiser i from slot j is given by uji (x)8 where

x is payment per click for CPC advertisers and payment per impression for CPM

advertisers. We say that a CPC advertiser i has standard utility function if for all

slots j: uji (x) = cji (v
j
i −x) in which vji is the advertiser’s value for a click on slot j and

8uji (x) must be continuous and decreasing in x and for a high enough x it should become non-
positive
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cji is the advertiser’s belief about her clickthrough rate (CTR). We also say that a

CPM advertiser i has standard utility function if for all slots j: uji (x) = vji−x in which

vji is the advertiser’s value for a click on slot j. Furthermore, we assume that search

engine believes that the CTR of advertiser i on slot j is ĉji which might be different

from cji (i.e., advertisers and search engine could disagree). Furthermore, we assume

that vji and cji are advertiser’s private information but ĉji is publicly announced.

Before we explain our mechanism, let us consider what happens if we applied

VCG to this setting, assuming that we only have CPC advertisers with standard

utility function. We get the following LPs. The primal computes the social welfare

maximizing allocation while the dual computes prices/payoffs:

Primal: max ·
X
i∈I

X
j∈J
cjiv

j
ix

j
i

∀i ∈ I :
P
j∈J xji ≤ 1

∀j ∈ J :
P
i∈I xji ≤ 1

xji ≥ 0

Dual: min ·
X
i∈I

ui +
X
j∈J

pj

∀i ∈ I,∀j ∈ J : ui + pj ≥ cjiv
j
i

ui ≥ 0

pj ≥ 0

(6.11)

The set of solutions to the dual program would be the set of competitive equilibria

of the market and the one with the lowest prices would correspond to the lowest

competitive equilibrium which would also coincide with the VCG payments/payoffs.

However, the problem is that payments should be charged per click while pj represents

the expected payment, i.e., payment per impression. So, per click payments are given

by pj/ĉji . However, by dividing by ĉji , we lose the strategyproofness guarantee if cji and

ĉji are not the same (i.e., if advertisers and search engine have different estimates about

clickthrough rates). Note that we cannot use pj/cji either because then advertisers

have the incentive to untruthfully report a higher cji which would give them a higher

chance of winning a better slot and at the same time would lower their payment.

Next, we present a mechanism that also addresses this problem.

Mechanism 1. Compute the lowest competitive equilibrium of the market M =

(I, J, {uji}) using the following personalized prices by applying Corollary 7. For each
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advertiser i and slot j we define a personalized price gji (·) as follows. If i is a CPC

advertiser then we define gji (x) = x/ĉji in which ĉji is the estimate of the search engine

for the clickthrough rate of advertiser i on slot j. If i is a CPM advertiser then we

define gji (x) = x.

Remark 4 (Interpretation of mechanism 1). We can conceptually reinterpret this

mechanism as an ascending auction as follows. Initially, we assign a primary price

of 0 to every slot and during the auction whenever the demand for a slot is more

that one, we increase the primary price of that slot. At any time during the auction,

each advertiser demands one of the slots at the current prices. However, different

advertisers see different prices. At any point during the auction, advertiser i observes

a price of gji (p
j) for slot j in which pj is the primary price of the slot j. The auction

stops when there is no over demanded slot. Intuitively, pj denotes the expected revenue

of the search engine from slot j and gji (p
j) is the price that advertiser i has to pay

for each click so that the search engine makes pj in expectation.

Next theorem summarizes the important properties of the above mechanism.

Theorem 47. Mechanism 1 is group strategyproof and also maximizes the social

welfare in the following sense. Let A be a group of advertisers with standard utility

functions who also agree with the search engine on the CTRs and let A′ be the rest

of the advertisers. Let s denote the search engine. Then mechanism 1 maximizes

the welfare of {s} ∪ A and also the presence of A′ may not decrease the welfare of

{s}∪A. In particular, if all advertisers have standard utility functions and agree with

the search engine on the CTRs then the outcome of this mechanism coincides exactly

with the VCG outcome.

Notice that mechanism 1 is group strategyproof regardless of whether the search

engine and advertisers have the same estimates about the clickthrough rates. This

answers an open question raised by Aggarwal et al. (2009). As for existing CPC ad-

auction mechanisms, that we are aware of, incentive compatibility relies on everyone

agreeing on clickthrough rate estimates made by the search engine.
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6.7 Other Results & Omitted Proofs

In this section, we present the missing proofs and several other results. Before we

proceed, we should mention that some of our theorems/lemmas mutually depend on

each other. However, this does not create a cycle in the proofs. The following diagram

illustrates the dependencies in the proofs. A solid arrow from A to B means that

when A is invoked on a market of size n, the proof of A invokes B on a market of

the same size. A dashed arrow from A to B means that A invokes B on a market of

strictly smaller size. We can then prove all of the lemmas/theorems by induction on

the size of the market. i.e. we assume that all of the lemmas/theorem are true for

markets of size less than n and then all of the lemmas/theorems can be proved for

markets of size n.

Theorem 45
(Inductive Equilibrium)

��

// Lemma 12
(Critical Alternating Paths)

��

Theorem 46
(Group Strategyproofness)

ooLemma 13
(Continuity)

OO

��

Lemma 11
(Tightness)

oo

Lemma 15
(Conservation of Matching)

// Lemma 14
(Entanglement)

Theorem 44
(Equilibrium Lattice )

(6.12)

Note that Theorem 44 is implicitly used by most of the other lemmas/theorems

so we didn’t display the dependencies on it in the above diagram.
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We proceed by defining Bounded Competitive Equilibrium:

Definition 43 ((u,p)-Bounded Competitive Equilibrium). Given a market M =

(I, J, {uji}) and a lower bound price vector p ≥ 0 and a lower bound payoff vector

u ≥ 0, we say that W is a (u,p)-bounded competitive equilibrium of M iff W is a

competitive equilibrium of M and p(W ) ≥ p and u(W ) ≥ u.

Note that for a given u and p, the (u,p)-bounded competitive equilibria of M

form a complete lattice which is a complete sublattice of all of the competitive equi-

libria of M . In particular, there is a lowest and a highest (u,p)-bounded competitive

equilibrium of M . Notice that for arbitrary u and p, a (u,p)-bounded competitive

equilibrium does not necessarily exist.

The next lemma provides the basic ingredient for the proof of Lemma 11.

Lemma 13 (Continuity). Assume a market M = (I, J, {uji}) with |I| = |J | and lower

bounds p ≥ 0 and u ≥ 0 on the prices/payoffs, such that a (u,p)-bounded competitive

equilibrium exists. Then, at the lowest (u,p)-bounded competitive equilibrium, there

exists at least one good j∗ ∈ J whose price is exactly equal to its lower bound (i.e.

pj
∗
). Similarly, at the highest (u,p)-bounded competitive equilibrium, there exists at

least one buyer i∗ ∈ I whose payoff is exactly equal to her lower bound (i.e. ui∗).

To give more intuition on the above statements, consider the following immediate

corollary which we can derive by setting no lower bounds (i.e. a lower bound of 0)

on the prices/payoff:

Corollary 8. Given a market M = (I, J, {uji}) with |I| = |J | the following statements

are always true:

• At the lowest competitive equilibrium, there is at least one good that has a price

of 0.

• At the highest competitive equilibrium there is at least one buyer that achieves

a payoff of 0.

As another immediate corollary, Lemma 13 shows that there is a continuum of

equilibria between the lowest and the highest competitive equilibria:
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Corollary 9. Given a market M = (I, J, {uji}) with |I| = |J |, with W and W being

the lowest and the highest competitive equilibria respectively, there is a continuum of

equilibria between W and W .

Proof. Define p(t) = (1 − t)p(W ) + tp(W ). Now by applying Lemma 13 we can

get a continuum of equilibria by computing the lowest (0, p(t))-bounded competitive

equilibrium for each t ∈ [0, 1].

Before we can proceed further, we need two more lemmas. The next two lemmas

show very basic properties of competitive equilibria in unit-demand markets:

Lemma 14 (Entanglement). Given a market M = (I, J, {uji}) and a competitive

equilibria W of M . If buyer i is matched with good j at W then the price of good

j and the payoff of buyer i are entangled in any other competitive equilibrium of M

which means at any other competitive equilibrium like W ′ if the price of good j is

higher then the payoff of buyer i must be lower and vice versa. Note that this claim

is true regardless of wether buyer i and good j are actually matched to each other in

W ′.

Proof. Let W ′ be any other competitive equilibrium of M . Partition the buyers to S,

S ′ and S ′′ such that buyers in S have a higher payoff at W , buyers in S ′ have a higher

payoff at W ′ and buyers in S ′′ have the same payoff at both W and W ′. Similarly,

partitions the goods to T , T ′ and T ′′ such that goods in T have a higher price at W ,

goods in T ′ have a higher price and W ′ and goods in T ′′ have the same price at both

W and W ′. It is easy to show the following statements are true using the definition

of competitive equilibria and the fact that both W and W ′ are competitive equilibria:

• At W , all buyers in S must be matched to goods in T ′ so |S| ≤ |T ′|.

• At W ′, all goods in T ′ must be matched to buyers in S so |T ′| ≤ |S|.

From the above statement, we can conclude |S| = |T ′| and buyers in S and goods

in T ′ must be matched to each other at both equilibria. Similarly:

• At W , all goods in T must be matched to buyers in S ′ so |T | ≤ |S ′|.
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• At W ′, all buyers in S ′ must be matched to goods in T so |S ′| ≤ |T |.

So, we can conclude |S ′| = |T | and buyers in S ′ and goods in T must be matched

to each other at both equilibria. Furthermore, we can then conclude that buyers in

S ′′ and goods in T ′′ may only be matched to each other. That proves the claim of

the lemma.

Lemma 15 (Conservation of Matching). Given a market M = (I, J, {uji}), for any

i ∈ I, if there exists a competitive equilibrium W of M at which buyer i has a strictly

positive payoff (i.e. ui(W ) > 0) then buyer i is never unmatched in any competitive

equilibrium of M . Similarly, for any j ∈ J , if there exists a competitive equilibrium

W of M at which good j has a strictly positive price (i.e. pj(W ) > 0) then good j is

never unmatched at any competitive equilibrium of M .

Proof. Let W ′ be any other competitive equilibrium of the market. Partition the

buyers to S, S ′, S ′′ and partition the goods to T , T ′, T ′′ as in the proof of Lemma 14.

In the proof of that lemma, we showed that the matching pairs can only be from S

and T ′ or S ′ and T or S ′′ and T ′′. Let i be any buyer with strictly positive payoff

at W , if i has strictly positive payoff at W ′ then it must also be matched at W ′.

Otherwise if the payoff of buyer i is 0 at W ′ then i must belong to set S. We know

that |S| = |T ′| and that all the goods in T ′ must have strictly positive prices so they

must all be matched and therefore all buyers in S, including buyer i, must also be

matched. The second statement can be proved by a similar argument for good j .

Proof of Lemma 13. We only prove the first claim. The proof of the second claim is

similar (completely symmetric). The plan of the proof is as follows:

First, we define a transformed market M ′ = (I, J, {u′ji}) with u′ji (x) = uji (x +

pj) − ui. We claim that there is a one-to-one mapping between (u,p)-bounded

competitive equilibria of the original market and the competitive equilibria of the

transformed market. Formally, a (u,p)-bounded competitive equilibrium W of M

corresponds to a competitive equilibrium W ′ of M ′ such that p(W ′) = p(W )−p and

u(W ′) = u(W ) − u and µ(W ′) = µ(W ). We then show that there is competitive

equilibrium of M ′ in which there is a good with a price of 0 which then means in the
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corresponding competitive equilibrium of the original market the price of that good

is equal to its lower bound and therefore at the lowest (u,p)-bounded competitive

equilibrium of M the price of that good must also be equal to its lower bound which

proves the claim.

We now prove that there is a good with a price of 0 at the lowest competitive

equilibrium of M ′. We choose an arbitrary buyer i from M ′ and remove it from the

market. Let W−i be the highest competitive equilibrium of the remaining market.

By the assumption of the lemma, we know |I| = |J | and so in W−i there are more

goods than there are buyers so there must be an unmatched good which we denote by

j∗. Note that the price of j∗ in W−i must be 0. On the other hand, by applying The-

orem 45 to M ′ and using (?) we have pj(W ) ≤ pj(W−i) for every good j. Therefore,

it must be that the price of j∗ in W is also 0 and that completes the proof.

There is a subtlety that we should point out about the one-to-one mapping be-

tween the competitive equilibria of the original market and those of the transformed

market. It is clear that every (u,p)-bounded competitive equilibrium of M can be

transformed to a competitive equilibrium of M ′. However, for the other direction,

we need to show that all goods/buyers are matched, otherwise after applying the

inverse transform we may end up with an unmatched good/buyer that has a positive

price/payoff. To show that all buyers/goods are matched in every competitive equi-

librium of M ′, we can apply Lemma 15. To apply that lemma, we only need to show

that there is a competitive equilibrium of M ′ in which all goods have strictly positive

prices and then by that lemma all the goods must always be matched (and so do all

buyers because |I| = |J |). Notice that if there is no competitive equilibrium for M ′

in which all goods have strictly positive prices then either in every (u,p)-bounded

competitive equilibrium of M there is a good whose price is equal to its lower bound

or M has no (u,p)-bounded competitive equilibrium at all which either way trivially

proves the claim of this lemma.

Proof of Lemma 11. We only prove the first statement. The proof of the second

statement is similar (completely symmetric).

First, we prove the “only if” direction. Assume that W is the lowest competitive

equilibrium of M . For every subset T of goods with strictly positive prices, we prove
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that DT (W ) ≥ |T | + 1, i.e. there are at least |T | + 1 buyers who are interested

in some good in T . The proof is as follows. Since all the goods in T have strictly

positive prices, they must all be matched. Let S be the subset of buyers that are

matched to T . Notice that S ⊂ DT (W ) and |S| = |T |. So, to complete the proof

we only need to show that there is one more buyer not in S who is also interested

in a good in T . Let p be the prices induced by payoffs of buyers not in S, i.e.

pj = maxi∈I−S p
j
i (ui(W )). Similarly, let u be the payoffs induced by the prices of

goods not in T , i.e. ui = maxj∈J−T u
j
i (p

j(W )). Notice that W is a (u,p)-bounded

competitive equilibria of the market M ′ = (S, T, {uji}). Furthermore, if we replaced

the part of W that corresponds to S and T with any other (u,p)-bounded competitive

equilibrium of M ′, we would get a valid competitive equilibrium for M which implies

that W must be the lowest (u,p)-bounded competitive equilibrium of M ′ as well

because otherwise we could replace the part of W corresponding to S and T with

the lowest (u,p)-bounded competitive equilibrium of M ′ and get a lower competitive

equilibrium for M which would contradict W being the lowest competitive equilibrium

of M . Because W is the lowest (u,p)-bounded competitive equilibrium of M ′, by

applying Lemma 13 to the market M ′, we can argue that there is a good j∗ ∈ T

such that pj
∗
(W ) = pj

∗
. Since all the goods in T , including j∗, have strictly positive

prices, pj
∗

must also be strictly positive and because of the way we defined p there

must be a buyer i∗ not in set S such that pj
∗

= pj
∗

i∗ (ui∗). That means i∗ must be

interested in good j∗ and therefore {i∗}∪S ⊂ DT (W ) which proves that there are at

least |T |+ 1 buyers interested in the goods in T .

The proof of the “if” direction is trivial. The proof is by contradiction. Let

W be a competitive equilibrium of M such that for every subset T of goods with

strictly positive prices we have DT (W ) ≥ |T | + 1. Let W be the lowest competitive

equilibrium of M and assume that W and W are not the same. Let T consist of all

the goods that have a higher price at W compared to W . We know that there are at

least |T |+ 1 buyers interested in T at W and these buyers must have higher payoffs

at W because the prices of the goods in T are strictly lower. Therefore, the goods

assigned to these buyers at W must have lower prices and so there are at least |T |+ 1

goods that have higher prices at W compared to W which contradicts the assumption
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that T was the set of all the goods that had higher prices at W .

Next, we present the complete proof of Theorem 45:

Proof of Theorem 45. We only prove (45.I) and (?). The proofs of (45.II) and (?)

are completely symmetric to the other two.

The plan of the proof is as follows. We remove an arbitrary buyer i from the

market and compute the highest competitive equilibrium of the rest of the market.

We then show that the prices at the highest competitive equilibrium of the market

without i leads to a valid competitive equilibrium for the whole market (including

buyer i) but with a possibly different matching. We also show that the induced

payoff of buyer i from these prices is the same as her payoff at the lowest competitive

equilibrium of the whole market. The detail of the construction is as follows.

Choose an arbitrary buyer i ∈ I. Let M−i denote the market without buyer i

and let W−i be the highest competitive equilibrium of the market M−i. Note that

the market M−i is of size |I| + |J | − 1 so by inductively applying Theorem 45 to

M−i we can argue that there exists a competitive equilibrium for the market M−i,

so the highest competitive equilibrium of M−i is well-defined. Let p = p(W−i) be

the prices at W−i. We claim that using the prices p for the market M leads to a

valid competitive equilibrium W . In particular, all the prices/payoffs at W are the

same as the prices/payoffs at W−i and also the payoff of buyer i is ui(p), however the

matching might be different. To obtain a supporting matching for W , we start with

a supporting matching for W−i and modify it as follows. If ui(p) = 0 then we can

leave buyer i unmatched and the matching does not need to be changed. Otherwise,

if ui(p) > 0 then let j be the good from which buyer i achieves her highest payoff at

the current prices, i.e. ui(p) = uji (p
j). By applying Lemma 12 to the market M−i, we

can argue that there is a tight alternating path from j either to an unmatched good

with a price of 0 or to a buyer with a payoff of 0. In both cases, we can match good

j to buyer i and then switch the matching edges along the alternating path to get a

new matching that supports W . Note that if the alternating path ends in a buyer

with a payoff of 0 then the last edge of the alternating path was a matching edge and

that buyer is now unmatched in the new matching, but she still has a payoff of 0.
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Next, we prove each one of our claims:

• Proof of Existence : By induction, we assumed that M−i must have a com-

petitive equilibrium. We then took the highest competitive equilibrium of M−i

and constructed a competitive equilibrium for M . So M has a competitive

equilibrium.

• Proof of (?) pj(W ) ≤ pj(W−i) : Notice that we constructed a competitive

equilibrium W of the market M which has the same prices as the W−i. The

prices at the lowest competitive equilibrium of M are no more than the prices

at W so p(W ) ≤ p(W ) = p(W−i).

• Proof of (?) pj(W ) = pj(W−i) when µ(i) = j : Notice that since i and j are

matched, if we remove both of them the rest of W is still a valid competitive

equilibrium for M−j
−i . Let W−j

−i denote the lowest competitive equilibrium of

M−j
−i . Note that both W and W−j

−i are valid competitive equilibria for M−j
−i but

W−j
−i is the lowest, so the prices of goods J − {j} might only be lower at W−j

−i

and so the payoffs of buyers I − {i} might only be higher at W−j
−i and so the

price induced by buyers I − {i} on good j might only be lower at W−j
−i than

the price induced by them on good j at W . However, by applying Theorem 45

inductively on market M−i and using (45.II), we get that pj(W−i) is exactly the

induced price of buyers I −{i} on good j at W−j
−i . Therefore, pj(W−i) must be

less than or equal to the induced price on good j at W which is itself less that

or equal to pj(W ). On the other hand, from the previous paragraph we have

pj(W ) ≤ pj(W−i), so the two must be equal.

• Proof of (45.I) ui(W ) = ui(p(W−i)) : If i is matched with j in W then ui =

uji (p
j(W )) and by the previous statement pj(W ) = pj(W−i). Therefore ui(W ) =

uji (p
j(W−i)) = ui(p(W−i)). The last equality follows from the fact that we chose

j to be the good from which buyer i obtains her highest payoff at prices p(W−i).

Proof of Theorem 46. To prove that the mechanism that uses the lowest competitive

equilibrium for allocations/payments is group strategyproof for buyers, we must show
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that there is no coalition of buyers who can collude such that all of them achieve

strictly higher payoffs (without making side payments). The proof is by contradiction.

Let S be the largest subset of buyers who can collude and possibly misreport their

uji ’s and all of them achieve strictly higher payoffs. Let W be the lowest competitive

equilibrium of M with respect to the true utility functions and let W ′ be the lowest

competitive equilibrium with respect to the reported utility functions assuming that

buyers is S have colluded. Let T be the subset of the goods that are matched to

S at W ′. Since all the buyers in S are achieving strictly higher payoffs at W ′, they

cannot be unmatched at W ′ (i.e. |T | = |S|) and the prices of the goods in T should

be strictly lower at W ′. That means the goods in T must have had strictly positive

prices in W . By applying Lemma 11, we argue that there must have been a subset

S ′ of buyers of size at least |T | + 1 who were interested in some good in T at W .

Observe that all of the buyers in S ′ must be getting a strictly higher payoff at W ′

because the prices of all the goods in T are strictly lower. But S ′ is larger than S

which contradicts our assumption that S was the largest set of buyers who could all

benefit from collusion.

Proof of Theorem 47. The group strategyproofness follows from Theorem 46. So we

only prove the second part: Assuming the mechanism has computed a lowest com-

petitive equilibrium W as the outcome with price vector p, the expected utility of

advertiser i from slot j is given by uji (g
j
i (p

j)) where pj is the base price of good j and

gji (x) = x/ĉji is the personalized price of slot j for advertiser i. So for each advertiser

i ∈ A we have uji (p
j) = cji (v

j
i − pj/ĉji ). Furthermore, since cji = ĉji , we can simplify

the utility function and get uji (p
j) = cjiv

j
i −pj. Now, consider the complete bipartite

graph G with advertisers and slots. Let the weight of each edge (i, j) be cjiv
j
i . Note

that for each advertiser i ∈ A we have ui(W ) + pj(W ) ≥ cjiv
j
i in which W is the

outcome of the mechanism. Therefore, the total expected welfare of the coalition

{s} ∪ A is at least as much as the weight of the maximum weight matching in the

absence of A′. Furthermore, if A′ is empty (i.e. everyone agrees on the CTRs), the

mechanism computes the efficient allocation (i.e., a maximum weight matching) and

the outcome is the same as the VCG outcome.
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Next, we present the proof of the lattice structure. The proof does not use any

other lemma.

Proof of Theorem 44. To simplify the proof, we add |J | dummy buyers and |I|
dummy goods so as to make sure that we can always get a perfect matching. We

set uji (x) = −x whenever either i or j or both are dummy. By doing this we can

always make sure that for every competitive equilibrium W there is a perfect match-

ing µ that supports the equilibrium. Note that (6.2) and (6.3) ensure that for any

unmatched buyer i, ui = 0 and for any unmatched good j, pj = 0 so we can ar-

bitrarily match the unmatched buyers/goods to the new dummy buyers/goods and

then match the remaining dummy buyers/goods together. Observe that by adding

dummy buyers/goods we don’t need to be concerned about (6.2) and (6.3) anymore
9.

• First, we prove that Winf is a valid competitive equilibrium :

– We first show that µinf is a valid matching. The proof is by contradiction.

Suppose it is not. Then, there should be i, i′ ∈ I such that µinf(i) =

µinf(i
′) = j. Since both µ and µ′ are valid matchings, j should be matched

to i in one of them and to i′ in the other one. WLOG, assume that µ(i) = j

and µ′(i′) = j. From the definition of µinf and because µinf(i) = µ(i), we

can argue ui ≥ u′i. So we have uji (p
j) = ui ≥ u′i ≥ uji (p

′j) which means

pj ≤ p′j. On the other hand, by repeating the same argument for i′ instead

of i, we can conclude that ui′ < u′i′ (note that according to the definition

of µinf , µinf(i
′) = µ′(i′) if ui′ < u′i′) and so we have uji′(p

j) ≤ ui′ < u′i′ =

uji′(p
′j) which means pj > p′j. We have a contradiction because we just

proved pj ≤ p′j and pj > p′j. Therefore, µinf must be a valid matching.

– We show that Winf satisfies the (6.1). WLOG, assume µinf(i) = µ(i) =

j. So uji (p
j) = ui ≥ u′i ≥ uji (p

′j) which means pj ≤ p′j. Therefore,

pj(Winf) = pj. Together with the fact that ui(Winf) = ui and µinf(i) = µ(i)

9Remember that for non-dummy buyers, uji (0) might be negative so we may not be able to match
the 0 priced items and 0 payoff buyers. This is a technicality that arises when we transform the
market in the proof of Lemma 13
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we can argue that Winf satisfies the first part of (6.1) because W satisfies

it. Similarly, for any j′, ui ≥ uj
′

i (p′j
′
) and u′i ≥ uj

′

i (p′j
′
). Therefore,

ui(Winf) ≥ max(uj
′

i (pj
′
), uj

′

i (p′j
′
)) = uj

′

i (min(pj
′
,p′j

′
)) = uj

′

i (pj
′
(Winf)) so

the second part of (6.1) is also satisfied.

• Next, we prove that Wsup is a valid competitive equilibrium :

– We first show that µsup is a valid matching. The proof is by contradiction.

Suppose it is not. Then, there should be i, i′ ∈ I such that µsup(i) =

µsup(i′) = j. Since |I| = |J | and there are two buyers that are matched

to the same good, there should be another good j′ to which no buyer is

matched. On the other hand, both µ and µ′ are valid perfect matchings

so j′ must be matched in both of them. Let s = µ−1(j′) and s′ = µ′−1(j′).

Notice that s 6= s′ otherwise µsup(s) would be j′ as well. Because j′ is

not matched in µsup, it should be that µsup(s) 6= j′ which means µinf(s) =

j′. Similarly, it should be that µsup(s′) 6= j′ which means µinf(s
′) = j′.

However, that means µinf(s) = µinf(s
′) = j′ which means µinf is not a

valid matching which is a contradiction since we already proved µinf is a

valid perfect matching.

– We show that Wsup satisfies the (6.1). WLOG, assume µsup(i) = µ(i) = j.

Let i′ = µ−1
inf (j). It must be that µ′(i′) = j (because we already know that

µ(i) = j so µ(i′) 6= j, but i′ must be matched to j in µ or µ′). That means

uji′(p
′j) = u′i′ ≥ ui′ ≥ uji′(p

j), so p′j ≤ pj and therefore pj(Wsup) = pj. We

also have ui(Wsup) = ui and µsup(i) = µ(i) so Wsup must satisfy the first

part of (6.1) because W satisfies it. On the other hand, since we assumed

µsup(i) = µ(i) = j, for any j′, we have ui(Wsup) = ui ≥ uj
′

i (pj
′
) ≥

uj
′

i (max(pj
′
,p′j

′
)) = uj

′

i (pj
′
(Wsup)). So Wsup satisfies second part of (6.1)

as well.
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Chapter 7

Conclusion

In chapter 2 and chapter 4, we presented optimal reductions and approximately op-

timal reductions from a multi agent Bayesian mechanism deign problem to single

agent subproblems. We showed that an exponential increase in the complexity of

the underlying optimization problem can be avoided by such reductions. chapter 2

presented reductions by decomposing the problem using the interim allocation rule.

Such decomposition allows computation of the optimal mechanism in polynomial

time, however the approach may not be practical as it makes use of the ellipsoid

method. chapter 4 presented reductions by decomposing the problem using the ex

ante allocation rule. Such decomposition allows efficient computation of approxi-

mately optimal mechanisms and also yields practical algorithms. It also leads to the

following conclusions.

• Market size. As the ratio of the maximum demand to supply (e.g., 1
k
) de-

creases, less coordination is required on decisions made for different agents; i.e.,

as 1
k
→ 0, the optimal mechanism treats each agent almost independently of

other agents. Observe that all of the approximation factors in this thesis only

depend on k (i.e., 1− 1√
k+3

) and not on the number of agents. It suggests that,

for characterizing asymptotic properties of such markets, the right parameter to

consider is perhaps the ratio of the maximum demand to supply; in particular,

notice that the number of agents is irrelevant.
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• Computational hardness. For mechanism design problems in a variety of

settings, the difficulty of making coordinated optimal decisions for multiple

agents can be avoided by losing a small constant factor in the objective (i.e.,

losing only a 1√
k+3

fraction of the objective), therefore the main difficulty of

constructing constant factor approximation mechanisms in multi dimensional

settings stems from the difficulty of designing single agent mechanisms, which

ultimately stems from enforcing the incentive compatibility constraints in the

single agent problem.

In chapter 5, we presented a generalization of the magician’s problem from

chapter 4. We also presented applications of the magician’s problem in prophet

inequalities (section 5.3) and online stochastic generalized assignment prob-

lem(section 5.4).

In chapter 6, we studied the class of competitive equilibria in two sided match-

ing markets with general utility functions. We presented an exact inductive

characterization of the competitive equilibria and gave a constructive proof for

its existence and various other properties. All of the previous known proofs were

non-constructive. Our characterization provides a deep insight into the struc-

ture of the equilibria and reveals striking similarities between the payments

at the lowest competitive equilibrium for general utilities and VCG payments

for quasilinear utilities. We also presented a social-welfare maximizing truthful

mechanism for pay per click Ad-auctions where the search engine and the adver-

tisers may disagree on the clickthrough rates (VCG is inapplicable if payments

are per click).

Our characterizations raise the question of whether it is possible to generalize

this result to more general matchings (e.g., the many-to-one matchings) with

general utilities. Another challenge is to find more efficient algorithms for com-

puting the competitive equilibria.
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