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Several variants of hybrid data assimilation algorithms have been developed 

and tested within recent years, particularly for numerical weather prediction (NWP).  

The hybrid algorithms are designed to combine the strengths of variational and 

ensemble-based techniques while at the same time attempting to mitigate their 

weaknesses.  One such variational-based algorithm is under development for use with 

the National Centers for Environmental Prediction’s (NCEP) global forecast system 

(GFS) model.  In this work, we attempt to better understand the impact of utilizing a 

hybrid scheme on the quality of analyses and subsequent forecasts, as well as explore 

alternative extensions to make better use of the ensemble information within the 

variational solver. 

 A series of Observing System Simulation Experiments (OSSEs) are carried 

out.  It is demonstrated that analysis and subsequent forecast errors are generally 

reduced in a 3D-hybrid scheme relative to 3DVAR.  Several variational-based 4D 



  

extensions are proposed and tested, including the use of a variety of dynamic 

constraints.  A simple approach for hybridizing the 4D-ensemble with a time-

invariant contribution is proposed and tested.  The 4D variants are shown to be 

superior to the 3D-hybrid, with positive contributions from static B as well as the 

dynamic constraint formulations.  It is clear from both the 3D and 4D experiments 

that more sophisticated methods for dealing with inflation and localization in the 

ensemble update are needed even within the hybrid paradigm.  Lastly, a method for 

applying piecewise scale-dependent weights is proposed and successfully tested. 

 The 3D OSSE-based results are also compared with results from an 

experiment using real observations to corroborate the findings.  It is found that in 

general, most of the results are comparable, though the positive impact in the real 

system is more consistent and impressive.   
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Chapter 1: Introduction 
 

1.1  Background 

Operational Numerical Weather Prediction (NWP) centers such as the 

National Centers for Environmental Prediction (NCEP) have been using variational 

data assimilation techniques (Derber 1989) for initializing NWP model forecast for 

decades (Parrish and Derber 1992; Rabier et al. 2000; Lorenc et al. 2000; Kleist et al. 

2009b).  Variational methods are used to create a best estimate of the initial state for 

NWP models at a particular time by combining information from observations as well 

as a background, usually a short term NWP forecast from the same model.  This best 

estimate is attained through the minimization of an objective function that includes 

measures of the weighted distance of an analysis from the observations and 

background.  A key component to this procedure is the specification of the weights, 

or specifically, the error characteristics of both the observations and (model 

produced) background state.   

Typically in these variational methods, the background error covariance 

matrix is estimated a-priori through the use of lagged forecast pairs, a free run of the 

NWP model, ensemble of forecasts, or by utilizing a comparison of model forecasts 

to observations (a comprehensive summary can be found in Bannister 2008a,b).  The 

background error covariance matrix is typically kept static, meaning the analysis is 

unaware of flow-dependent errors (though some implicit flow-dependence is 

achieved in 4DVAR through the dynamics of the model by linearly propagating the 

increment throughout the assimilation window).  For state of the art NWP models, the 
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error covariance matrix is prohibitively large and complex, and in particular, it is 

difficult to prescribe the multivariate aspects (for example, relating water vapor to the 

other dynamic variables). 

Another class of algorithms based on the Kalman filter solution to the data 

assimilation problem has been developed in an attempt to avoid some of the 

weaknesses and difficulties with variational schemes.  Ensemble Kalman filter 

(EnKF) data assimilation systems utilize fully flow-dependent background (and 

analysis) error covariances estimated from an ensemble of forecasts (e.g., Evensen 

1994; Houtekamer and Mitchell 1998; Whitaker and Hamill 2002).  In addition to 

being fully flow-dependent, the ensemble used to represent the background error 

covariance contains information about how each variable (at every location) is 

correlated with all of the other variables in the model.  Two studies have 

demonstrated success in using an EnKF to assimilate real observations into the NCEP 

GFS (Szunyogh et al. 2008; Whitaker et al. 2008).  The main disadvantage of the 

EnKF algorithms results from the fact that an ensemble of limited size is used to 

sample the background error covariance.  This results in the need for various ad-hoc 

procedures such as localization and inflation to avoid filter divergence. 

 Fundamentally, EnKF and variational algorithms are solving for the same 

problem in slightly different manners.  In fact, it is not difficult to reformulate one of 

the methods within the context of the other (given certain assumptions and 

considerations).  For example, the extended Kalman filter can be formulated within a 

variational framework quite easily.  We start with some nonlinear numerical model, 

M, that can propagate information forward in time (t): 



 

 3 
 

(1.1) 

where xb and xa are the model state vector for the background (forecast of some 

length) and analysis respectively.  Here, the t+1 represents relative cycle time, as the 

model propagates the analysis state forward in time to create the background state for 

the next cycle (i.e., the t+1 can represent 1-hr, 3-hr, 6-hr, etc. depending on the 

cycling frequency).  The tangent linear model M of nonlinear model M, and its 

adjoint, MT, can then be used to evolve the error covariances of the analysis (AKF) 

and background (BKF) forward in time,  

(1.2) 

where Q represents the known model error.  A new initial condition (analysis) can be 

found by updating the forecast background) state through the assimilation of 

observations 

(1.3) 

where yo are the observations, H the operator that translates the information from 

model state to observation space, and K the Kalman gain matrix.  This gain matrix is 

formulated to combine the observation operator with the known error covariances of 

the background and observations (R): 

(1.4) 

The analysis error covariance associated with the updated xa is then defined as an 

update to the background error covariance: 

(1.5) 

( )ab
t1t M xx =+

QMAMB += T
KFKF

( ) KFKF BKHIA −=

( )boba HxyKxx −+=

( ) .1T
KF

T
KF

−
+= HHBRHBK
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representing a reduction of the uncertainty in the error covariance.  Instead of solving 

for the xa in an optimal interpolation (OI) fashion as in equation 1.3, a variational cost 

function can be formulated using the same B: 

 
(1.6) 

 

Here, the incremental form is used for simplicity and for direct comparison with 

derivations in other chapters, where the analysis increment and observation residuals 

(or innovations) are defined as 

(1.7) 

(1.8) 

The analysis increment (x’) is obtained by minimizing the cost function given by 

equation 1.6.  The BKF is the same time-evolving background error covariance matrix 

that is derived from a propagation of the AKF, which is defined as the inversion 

Hessian of JKF (x’): 

(1.9) 
 

representing enhancement of accuracy. 

 For NWP applications, the size of x is quite large (O(107)), making explicit 

calculation of BKF and AKF (particularly the time propagation) practically impossible.  

The EnKF algorithms are designed to sample A and B through the use of an 

ensemble:  
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where xe now schematically denotes the ensemble of state vector states, xtrue is the 

known true state, and E the expectation.  In reality, the true state is never really 

known, so the covariance matrices are approximated with ensemble perturbations 

(from an ensemble of size N), taking the background error covariance as an example: 

 
(1.12) 

 
 

where the over bar is now representative of the ensemble mean.  Assuming one had 

access to such a representation of the background error, it could easily be used within 

the variational framework as well just as in equation 1.6.   

 Variational assimilation algorithms do in fact have their own approximation to 

the background error covariance.  This results in a very minor modification to the 

incremental 3D cost function from equation 1.6: 

 
 

(1.13) 
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method (Hamill and Snyder 2000; Lorenc 2003; Zupanski 2005) attempts to combine 

the advantages of both variational and EnKF methods while at the same time tries to 

ameliorate their deficiencies.  Several studies have demonstrated the potential for 

hybrid methods using both simple models as well as full NWP models (Hamill and 
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Snyder 2000; Wang et al. 2007b, 2009; Buehner et al. 2010a, b).  Some of the 

potential advantages of hybrid schemes over their stand-alone variational or EnKF 

counterparts include: 

• Capability to incorporate fully flow-dependent, multivariate covariances 

within the variational scheme 

• Supplementing an ensemble estimate with a thoroughly tested climatalogical 

B 

• Ease of applying dynamic and physical constraints on the solution  

• Implicit, physical-space localization, potentially advantageous for 

measurements such as satellite radiances 

• Easy transition to operational NWP applications within the already established 

variational framework. 

Results thus far have been so promising that several operational centers have 

implemented (UK Met office, Clayton et al. 2012) or are pursuing (NCEP, U.S. 

Navy, Environment Canada) hybrid methods for operational applications.  Lastly, 

although a variety of (slightly different) hybrid algorithms have been developed and 

tested, it has been shown that many of them are theoretically equivalent (Wang et al. 

2007a). 

Although the term hybrid has come to mean different things in the literature, 

here it will refer to any configuration that actually blends an ensemble-based estimate 

for the background error covariance with a climatological estimate all within the 

variational framework.  It is of course possible to hybridize an EnKF update through 

the use of a static estimate for B, but that is beyond the scope of this study.  Any 
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variational-based configuration that uses only an ensemble perturbation 

representation of a covariance without blending with some static estimate will be 

referred to as “ensemble-var”.   

Along the lines of 4D extensions to the EnKF algorithm (Hunt et al. 2004), 

several 4D variants to the use of ensembles within the variational framework have 

been proposed and developed as cheaper alternatives to the costly 4DVAR algorithm 

(Liu et al. 2008; Tian et al. 2008; Tian et al. 2011; Buehner et al. 2010a).  Some of 

these algorithms are not truly hybrid within the context used in this work.  However, 

the extension to supplement with a full-rank, climatological B is fairly straight 

forward to implement.  Because of the reduced computational resources required, 

such an algorithm could be very attractive for an operational NWP center, if it can be 

shown to be as effective as an algorithm such as 4DVAR. 

 

1.2  Thesis Objectives and Outline 

 A hybrid data assimilation algorithm for use with the NCEP GFS model is 

explored in this study.  Progress is already underway at NCEP to extend the 

operational assimilation algorithm, the GSI, to incorporate ensemble perturbations for 

use as a hybridization of the static error covariance.  This work focuses on expanding 

upon this development, and tries to incorporate new features and algorithms to 

enhance the development.  An initial operational GFS implementation of a dual-

resolution hybrid scheme is planned for May 2012, and forms the building block 

which will be expanded upon in this work.  We aim to answer several pertinent 

questions: 



 

 8 
 

• Does the inclusion of ensemble covariances in a hybrid fashion reduce 

analysis errors? 

• What are the key components or parameters yielding the best results within 

the dual resolution hybrid framework (localization, weighting, inflation, etc.)? 

• What is the impact of expanding the 3D-hybrid to a 4D-ensemble based (and 

hybrid) extension?  Can dynamical constraints improve the quality of analysis 

in the 4D context? 

• Can ensemble information be incorporated into the hybrid in a better manner 

than has been utilized to this point (with single, global weighting parameters 

between the static and ensemble covariances)? 

To answer some of these questions, a series of experiments utilizing an Observing 

System Simulation Experiment (OSSE) are carried out.  The main advantage of this 

type of controlled experimentation is the access to the truth.  Chapter 2 describes the 

details of the various components to the system, including the nature run and 

simulated observations as well as results from various 3D-Hybrid experiments using 

the NCEP GFS.  An extension of the hybrid to include 4D ensemble perturbations is 

described in Chapter 3.  This includes a novel approach to incorporating a 

hybridization of the 4D-ensemble-var algorithm, as well as proposals for a variety of 

dynamic constraints.  Various 4D extensions are tested using the same simulated 

environment as is described in Chapter 2.  This is then followed by Chapter 4 which 

investigates the use of scale-dependent weighting within a hybrid scheme.  

Experiments using real observations are then carried out in Chapter 5, in an effort to 

show the forecast impact of using a 3D-Hybrid instead of 3DVAR algorithm for 



 

 9 
 

initializing a pseudo-operational version of the GFS model.  This is then followed by 

the final chapter which provides a summary, as well as a variety of issues and ideas 

for future work and further development. 
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Chapter 2: System Description and 3D-Hybrid OSSE 
results 
 

2.1  Introduction 

To combine the advantages of the ensemble and variational methods while at 

the same time attempting to minimize their weaknesses, hybrid assimilation methods 

have been proposed and developed (Hamill and Snyder 2000; Lorenc 2003; Zupanski 

2005).  Typically, the proposed hybrid methods have utilized the variational method 

for the purposes of calculating the analysis increment (though, it is possible that one 

could utilize the EnKF framework and supplement the ensemble with a static 

background error covariance).  Many of the (slightly different) algorithms have been 

shown to be theoretically equivalent, whether using a combined covariance through 

brute force or through a variational-based control variable method (Wang et al. 2007).    

In the hybrid methods that utilize the variational framework, the flow-

dependent, ensemble-based covariances are added to the cost function through the 

extended control variable method (Lorenc 2003; Buehner 2010a, b): 

 
 

(2.1) 
                                       
 
                                                                         

where Bf is the static background error covariance, R the observation error 

covariance, H the observation operators, y’ the observation residuals (equation 1.8), 

αn the ensemble control variable for each member with L defined as its covariance 

matrix (just as described in Lorenc 2003; Wang 2010).  Here, n is the index for the 
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ensemble members for the total ensemble size N.  This is equivalent to replacing BKF 

from equation 1.6 and Bf from equation 1.13 with a (weighted) linear combination of 

BEN (equation 1.12) and Bf (Hamill and Snyder 2000).  The analysis increment, x’, is 

obtained by minimizing the cost function (equation 2.1) and can be partitioned into 

two components: 

(2.2) 
 

 
The total analysis increment (x’t) is the sum of that which is derived from the static 

error covariance (x’f) and that which is derived from the ensemble perturbations (xe
n) 

as prescribed by the control variable (α).  There is a single ensemble control variable 

for all variables, so for the single-resolution case where the ensemble is the same 

resolution as the analysis, the dimension of α is equal to that of the 3D analysis grid.  

However, the additional computational cost associated with the addition of the hybrid 

control variable method is much smaller than adding N 3D variables to the control 

vector due to the simplified formulation of L.  Further computational savings can be 

achieved through the use of a dual-resolution framework, where the ensemble 

perturbations are applied using a lower resolution ensemble grid. 

There are tuning parameters, βf and βe, that control how heavily to weight the 

static and ensemble contributions respectively.  Historically, care has been taken to 

ensure that the sum of the inverses of the weighting parameters is equal to one.  This 

is done in an effort to ‘preserve’ the effective error variances and use this parameter 

simply to assign the weight given to static and ensemble estimates.  As an example, 

utilizing a βe
-1 parameter setting of 0.75 (thereby making βf

-1 = 0.25) results in the 
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hybrid analysis relying 75% on the ensemble and 25% on the static estimate for the 

background error covariance. 

 Various studies have demonstrated that the hybrid algorithm can in fact 

improve upon variational or ensemble-based algorithms on their own (Hamill and 

Snyder 2000; Wang et al. 2007b).  A particularly thorough comparison that was 

described in Buehner et al. (2010 a, b) showed that a hybrid 4D algorithm improved 

upon the Canadian operational 4DVAR system.  The advantages gained over the 

variational standalone systems come from the improved specification of the fully 

flow-dependent background error covariance with better multivariate definitions 

through the use of the ensemble.   Additionally, hybrid systems have the ability to 

improve upon the standalone ensemble systems by linearly evolving the covariance in 

the full dimension space of the NWP model (in the case of 4DVAR hybrid with 

adjoint) and by applying the localization in physical space (whereas most EnKF 

algorithms for large NWP applications perform localization in observation space).  

Physical space localization is particularly helpful for the assimilation of those 

observations which are not point measurements, but instead integrated quantities such 

as satellite brightness temperatures (Campbell et al. 2010).  This is in part because 

physical space localization avoids the need to explicitly assign a vertical location for 

such observations.  It has also been suggested that the use of hybrid algorithms can be 

particularly useful for small ensemble sizes (Wang et al. 2007b, 2009). 

Motivated by the successes of others in applying variational-based hybrid 

algorithms to the NWP data assimilation problem, a hybrid algorithm has been 

developed for the operational variational assimilation system at NCEP.  This chapter 
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describes several experiments that utilize simulated observations to evaluate and 

demonstrate the impact of hybrid DA on the quality of analyses and subsequent 

forecasts using an observing system simulation experiment (OSSE).  Section 2.2 

describes the components of the NCEP data assimilation system including the 

implementation of the hybrid algorithm.  Section 2.3 then provides details regarding 

the Joint OSSE project and simulated observations.  This is followed by section 2.4 

which provides a description of the various experimental components.  Sections 2.5 

and 2.6 describe experimental results from assimilating the simulated observations 

using 3DVAR and 3D-Hybrid configurations.  Lastly, a summary and motivation for 

the subsequent chapters then follows. 

 

2.2  NCEP Hybrid Data Assimilation 

2.2.1  System Description 

The gridpoint statistical interpolation (GSI) is a physical-space based 

variational analysis scheme (Wu et al. 2002; Kleist et al. 2009b) that has been made 

operational for several NCEP applications including the global data assimilation 

system (GDAS) and initialization of the global forecast system (GFS) model, used to 

produce global medium range deterministic forecast guidance (as well as boundary 

conditions for other applications).  Although a variety of minimization algorithms 

exist within the code, a preconditioned (full background error covariance B) double 

conjugate gradient solver (Derber and Rosati 1989) is the default choice within the 

GSI.  Recursive filters are utilized (Purser et al. 2003 a, b) to model some of the off-

diagonal components of the background error covariance matrix.  Although the GSI 
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does have a 4DVAR capability embedded within it, it has yet to be exercised within 

the operational applications at NCEP.  This is mostly due to the lack of development 

of the necessary tangent-linear and adjoint model codes as well as the significant 

computational cost associated with 4DVAR.  Several dynamic and physical constraint 

options have been developed such as the penalty terms for unphysical tracers, 

incremental normal mode initialization, conservation of global mean dry mass, and a 

weak constraint digital filter for 4D applications (some of these are discussed in 

greater detail in section 3.3).  The GSI that is run routinely as part of the GDAS uses 

a static estimate for the background error covariance which is supplemented with a 

tendency-based algorithm to apply flow dependent variances.  In this algorithm, the 

static variances undergo a simple rescaling based on the 6-hr tendency in the model 

forecast valid for the assimilation window.  The variances are increased (decreased) 

where the model tendencies are relatively large (small).  An example of the 

reweighting procedure can be found in Figure 5 of Saha et al. (2010).  The 

reweighting procedure is fairly simplistic and does not address the off-diagonal 

(stretching) nor multivariate deficiencies in the static error covariance estimate.  More 

detailed information regarding the GSI can be obtained from the Developmental 

Testbed Center user’s guide available online at http://www.dtcenter.org/com-

GSI/users/index.php. 

Following a similar procedure that is outlined in Wang (2010) as first 

proposed by Lorenc (2003), the hybrid method is implemented into the GSI using an 

extended control variable (as in equation 2.1)1

                                                 
1 Control variable method originally implemented by David Parrish and Daryl Kleist of NCEP/EMC. 

.  Initially, the hybrid option was only 

developed for use with the GFS model, but has since been expanded to other 

http://www.dtcenter.org/com-GSI/users/index.php�
http://www.dtcenter.org/com-GSI/users/index.php�
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applications (such as the NCEP regional and hurricane models).  The hybrid option in 

GSI includes a dual-resolution capability, where the ensemble perturbations being 

used can be at lower resolution than the deterministic forecast and subsequent 

analysis.  This also reduces the additional cost of the ensemble control variable over 

standard 3DVAR since the dimension of α is then reduced to the ensemble grid (with 

some work necessary to interpolate between analysis and ensemble grids).  This is 

important for high resolution operational applications, where it is not affordable to 

run an ensemble at full resolution.  As with standard 3DVAR in GSI for global 

applications, another option within the hybrid allows for an incremental tangent linear 

normal mode (strong) constraint to be applied (Kleist et al. 2009a) to the total 

analysis increment (the sum of the components from static and ensemble error 

covariances) or to the static contribution only.    

The localization of the ensemble based covariances is handled through the 

specification of the error covariance matrix (L, equation 2.1) for the ensemble control 

variable.  The function L is assumed to be Gaussian and explicitly local with unit 

amplitude.  In the GSI for global applications, this function is applied by utilizing 

spectral correlation functions for the horizontal and a recursive filter in the vertical 

instead of utilizing quasi-Gaussian functions with compact support as is typically 

done for the EnKF.  The GSI-specific implementation of the hybrid allows for a 

level-dependent specification of the decorrelation length scales used in L (one each 

for the horizontal and vertical).  Since there is (currently) only a single control 

variable (dimensioned to be the size of the 3D ensemble grid) for the entire ensemble 

perturbation matrix, the effective localization is the same for all analysis variables.  
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2.2.2  Single Observation Example 

To demonstrate that the implementation of the hybrid algorithm has been done 

correctly in the GSI, an experiment that assimilates only a single observation is 

performed.  The observation chosen for this test is a single temperature observation 

for a particular case, and assigned a deviation of one degree from the background (a 

6-hr GFS forecast) and an observation error of one degree.  The observation is chosen 

to reside in an area of a large local gradient in temperature in an attempt to 

demonstrate the importance of the flow-dependent part of the background error 

specification (Fig. 2.1).  Three GSI runs are performed using this single observation, 

including a standard 3DVAR run with static error covariance estimate, and two 

hybrid assimilation runs utilizing βe
-1 specifications of 0.5 and 1.0 to demonstrate the 

case of equal and full ensemble weighting, respectively.  For the hybrid runs, an 80 

member ensemble (from an ensemble of forecasts initialized using an offline EnKF) 

is used to prescribe the background error.  A comparison of the experiments reveals 

that the resultant increment from the hybrid options is heavily stretched along the 

temperature gradient from southwest to northeast (Fig. 2.1).  To contrast, the 

increment from standard 3DVAR is smaller in amplitude, larger in scale, and nearly 

isotropic, spread equally with little knowledge of the background temperature 

gradient.  The hybrid run that utilizes the 0.5 weighting qualitatively appears to be a 

smoothed out version of the run that utilized a pure ensemble specification of the 

background error.  Although not shown, the analysis increment that results from an 

EnKF run using the same ensemble and observation looks qualitatively and 

quantitatively similar to the hybrid run that utilized the 1.0 weighting.   



 

 17 
 

 
 
Figure 2.1: Model level 15 (~850 hPa) ensemble spread (K, upper left) as well as the 850 hPa 
temperature background (contours, other three panels) and analysis increment (shaded, 1K 
interval) resulting from the from the assimilation of a single 850 hPa temperature observation 
(location denoted with dot) given a 1K deviation from the model guess and 1K observation error 
for a 3DVAR (upper right), 3DENSV (lower left) and 3DHYB (50% weighting, lower right) valid 
at 00 UTC 12 September 2008. 

 

 

2.3  Joint OSSE 

An OSSE is typically designed to be able to investigate the potential impact of 

a future observing system (Masutani et al. 2007, 2010).  However, OSSE experiments 

can also be utilized to investigate various aspects of a data assimilation system such 

as analysis error (Errico et al. 2007).  In an OSSE for atmospheric NWP applications, 

a reference state (nature run), is first generated by making a climate, uninterrupted 
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free run using a NWP model (using state-dependent boundary conditions such as 

observed sea surface temperatures, if desired).  This free run is then considered to be 

the true state.  Simulated observations are generated by extracting the appropriate 

information from the nature run and adding realistic errors.  The simulated 

observations can then be used by a data assimilation system to assess their impact on 

analysis and forecast accuracy.  For an OSSE to be useful, it is critical to ensure that 

the nature run is a suitable representation of the real atmosphere.  In order to achieve 

realistic results, it is important to use a model within the data assimilation system that 

is different than that which was used to generate the nature run (if the same model is 

used for both, the so-called identical-twin experiment, model error goes unaccounted 

for).   

An internationally collaborative effort called the Joint OSSE has formed over 

the past several years.  A nature run for use within the Joint OSSE community has 

been generated by the European Center for Medium Range Weather prediction 

(ECMWF), by completing a 13-month forecast using cycle 30r1 of their Integrated 

Forecast System model with T511 horizontal resolution and 91 vertical levels 

(Andersson and Masutani 2010).  The initial condition for the run was 12 UTC on 01 

May 2005, though since this was a free run of the forecast model, the starting date is 

not very relevant.  The nature run was carefully evaluated to ensure it was realistic in 

terms of general climatology, storm tracks, as well as clouds and precipitation (Reale 

et al. 2007, McCarty et al. 2012).  From this nature run, scientists at NCEP and 

NASA have simulated observations that were operationally available in 2005, 

including ‘conventional’ (radiosonde, surface, aircraft, satellite derived atmospheric 
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motion vectors, wind profiler, ship and buoy, scatterometer-based surface winds, etc.) 

and satellite microwave and infrared brightness temperature (including HIRS, 

AMSUA, AMSUB, MHS, AIRS on the simulated polar orbiters of NOAA 14, 15, 16, 

17 as well as AQUA, in addition to the GOES sounder radiances from simulated 

geostationary satellites GOES 10 and 12).  The simulated observations have been 

assimilated into a NWP model and gone through initial validation to ensure their 

usefulness (Errico et al. 2012).  Both the nature run and simulated observations have 

been made available to the research community for the purpose of running OSSE 

experiments.   

A subset of calibrated observations covering the simulated period from 01 

July through 31 August was generated by GMAO and made available.  Observations 

were only simulated to correspond to the NCEP GDAS (late cut-off) cycle (example 

of observations available for a single cycle shown in Figs. 2.2 and 2.3).  The errors 

that were generated and added to the simulated observations from the nature run were 

calibrated in an attempt to match observation impacts from the real system, evaluated 

with a series of data denial (observing system experiment) runs (Privé, personal 

communication)2

 

.   

2.4  Experiment Design 

To test the impact of the various components and aspects of including a 

hybrid variational-ensemble component to the system, it is necessary to first produce 

a fully-cycled 3DVAR (non-hybrid) run utilizing simulated observations from the 

                                                 
2 Simulated observations kindly provided by Nikki Privé, NASA GMAO. 
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Joint OSSE as described in section 2.3.  The model used for the assimilation 

experiments is a degraded resolution version of the operational NCEP GFS that 

became operational in May 2011.  The version of the GFS utilized in this study is a 

T382 spectral model with 64 hybrid sigma-pressure vertical levels.  A description of 

the GFS model version 9.0.1 is available from the NCEP Environmental Modeling 

Center (EMC), http://www.emc.ncep.noaa.gov/GFS/doc.php.  No tuning is done to 

the physical parameterization schemes for this work.  The same version of the model 

is used for both data assimilation cycling and longer (7 day) free forecasts.   

 

 

Figure 2.2: Spatial distribution of simulated satellite radiance observations available for 
assimilation valid at 00 UTC 24 July 2005 from the Joint OSSE for AMSUA and MSU (upper 
left), AIRS and HIRS (upper right), AMSUB (lower left) and GOES Sounder (lower right) from 
AQUA (dark green), NOAA-14 (brown),  NOAA-15 (red), NOAA-16 (blue), NOAA-17 (purple), 
GOES-12 (orange), and GOES-10 (light green).  

http://www.emc.ncep.noaa.gov/GFS/doc.php�
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Figure 2.3: As in Fig. 2.2, but for ‘conventional observation’ including surface (upper left, land 
meter [green], ships & buoys [red], and moored buoy [blue], rawinsonde (upper right), AMVs 
(middle left, from GOES [red, blue], EUMETSAT [green, brown], and JMA [orange, aqua]), 
aircraft (middle right), VAD winds (blue), lidar wind profilers (red) and pibal (green) [lower 
left], and SSMI derived surface wind speeds (lower right). 
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2.4.1  3DVAR 

The 3DVAR control experiment is configured to mimic as closely as possible 

an operational configuration, in the hope that the OSSE-based results will match the 

real system.  The hybrid-ready version of the GSI is utilized in the control run for 

proper comparison.  The static background error estimate for this version of the 

model is derived using the so-called NMC method (Parrish and Derber 1992), 

extracting statistics from 24-hr and 48-hr lagged forecast pairs (and the same tuning 

parameters that are used in the operational GSI).  The incremental normal mode 

constraint (TLNMC, Kleist et al. 2009a), global mean dry mass weak constraint, and 

flow-dependent variance reweighting are all utilized.  Radiative transfer calculations 

for assimilation of satellite radiances within the GSI are performed using the JCSDA 

Community Radiative Transfer Model (CRTM, Han et al. 2006).  This particular 

version of the CRTM is slightly different than the version that was used to generate 

the simulated brightness temperatures from the nature run.  Since the simulated 

observations were only generated for the GDAS (late cut-off) cycle, no early data cut-

off (GFS) cycles are performed.  Long forecasts are carried out once per day at 00 

UTC from the analysis generated by assimilating the GDAS simulated observations.   

The GSI/GFS is cycled through the period for which the simulated 

observations were made available, 01 July through 31 August.  An initial condition 

for 01 July is spun up by assimilating the Joint OSSE simulated observations in a 

separate, offline, low-resolution experiment (that assimilated observations for the 

simulated June period).  The spun-up 01 July initial condition is utilized for the 

starting point for all experiments (including those that utilize various hybrid 
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configurations).  From this initial condition, an additional two weeks of the 

experiment is ignored to allow for proper spin-up to this experimental configuration.   

 

2.4.2  3D-Hybrid  

A hybrid experiment (hereafter referred to as 3DHYB) is carried out that 

utilizes an ensemble of forecasts which are initialized each cycle with a serial square 

root filter form of an EnKF (Whitaker and Hamill 2002).  The version of the EnKF 

update used in the experiment utilizes the GSI for all of the observation operators and 

applies both additive and multiplicative inflation after the ensemble update step.  The 

multiplicative inflation factor (ρ) is proportional to the posterior standard deviation 

reduction from the prior through the assimilation of observations: 

 
(2.3) 

 

where s is the sample standard deviation for each component to the analysis control 

vector: 

(2.4) 

 
The analysis perturbations {xn

a} are post multiplied by this factor, ρ.  The amplitudes 

are controlled through the global tuning parameter ω.  It can be seen that the inflation 

factor is allowed to be different for each variable, vertical level, and horizontal grid 

point and in general will be larger where observations are dense.  The additive 

inflation extracts perturbations from a database of lagged forecast pairs (24-hr and 48-

hr) within a window about the valid analysis time (to ensure the perturbations are 
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appropriate for the given season), and the final analysis post-perturbation (xap) 

becomes:  

(2.5) 

Each ensemble member, n, is assigned a different quasi-random perturbation vector, 

x’r.  The lagged forecast database contains cases spanning an entire year (4 per day 

associated with the data assimilation cycling frequency).  There is a single amplitude 

parameter (κ) to rescale the perturbations that are extracted from the lagged forecast 

pairs.  A more detailed description of the inflation procedure can be found in 

Whitaker and Hamill (2012).  The 3DHYB experiment utilizes the default parameter 

settings of ω=0.85 and κ=0.32. 

To maintain synergy between the ensemble and hybrid (deterministic) 

analyses, the ensemble mean is replaced every cycle using a re-centering procedure 

that ensures the ensemble of analysis perturbations are always centered about the 

(presumably better) hybrid analysis (schematic of the hybrid procedure can be seen in 

Fig. 2.4).  The same localization parameters used for the hybrid (control variable in 

physical space) are used in the EnKF (observation space).  A level dependent 

specification for the horizontal decorrelation length scales that is derived from an 

ensemble of forecasts (similar to Pannecoucke et al. 2008) is used (Fig. 2.5).  A single 

value of 0.5 scale heights is used for the vertical localization in the hybrid.  A 

conversion factor is applied in the EnKF to convert between the two localization 

definitions (distance to zero within the Gaspari and Cohn (1999) framework versus 

the Gaussian e-folding distance for the hybrid).   
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Figure 2.4: Schematic showing how the hybrid variational-ensemble paradigm operates for a 
given cycle using a three member ensemble.  The yellow denotes the ensemble (potentially lower 
resolution) component whereas the green represents the high resolution deterministic 
component.  The re-centering procedure (blue) replaces the EnKF analysis mean with the hybrid 
analysis. 
 
 
 
 
 

The ensemble used in the experiment contains 80 members that are run at 

T254 spatial resolution, but maintains the same specification of (64) sigma-pressure 

vertical levels using an identical version of the GFS model (physical 

parameterizations are not changed despite the degraded resolution).  The 3DHYB 

experiment uses parameter settings of βf
-1=0.25 and βe

-1=0.75, so the static 

contribution to the analysis increment is chosen to be 25% (and therefore, relying 

75% on the ensemble covariances). 
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Figure 2.5: Horizontal localization scale (km) utilized in the GSI hybrid (Gaussian de-correlation 
length scale) derived from a database of ensemble forecasts (using stream function). 

 

 

The initial ensemble is generated by taking the same initial condition for 01 

July that is utilized in the control experiment and performing the additive inflation 

procedure as in equation 2.5 (with 100% larger κ).  As with the control, the first two 

weeks of the experiment are ignored to allow for the analysis (and ensemble) to spin 

up.  The initial condition for the high resolution deterministic component to the 

3DHYB experiment is identical to that from the 3DVAR control.  The hybrid 

experiment selects simulated observations to assimilate from the exact same set of 

files that the 3DVAR control utilizes, though the exact data selection and counts are 
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allowed to differ for any given cycled based on GSI internal quality control checks 

(gross error, as well as decisions made by the variational quality control procedure 

within the minimization).   

The observations that are selected and assimilated as part of the EnKF update 

are not identical to the subset used within the hybrid update.  The data selection and 

quality control decisions for the EnKF are driven by the (low resolution) guess from 

the ensemble mean instead of the high resolution deterministic guess.  The data 

selection for this particular EnKF, while utilizing the GSI for the observation 

operators, is done in this way as a practical means to ensure that identical 

observations are chosen for all of the ensemble members.  If the GSI-based observer 

is allowed to operate on each ensemble member background independently without 

further constraint, a different set of quality control and thinning decisions will be 

made for each member.  Additionally, a coarser mesh (225 km) is used for the 

satellite thinning procedure for the ensemble relative to the high resolution 

deterministic update (which uses a 150 km mesh).  This results in fewer observations 

being assimilated into the lower resolution ensemble update.  Since the EnKF used in 

this study is a serial, square root filter, the reduced number of satellite observations 

assimilated helps improve efficiency without degrading the quality of the ensemble 

update.   

The analysis increment derived from the hybrid deterministic update utilizes 

the tangent linear normal mode constraint (Kleist et al. 2009a) on the total analysis 

increment.  Applying the constraint in this manner maintains consistency in terms of 

the balance and noise characteristics of the analysis increment between the 3DVAR 
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and 3DHYB experiments.  The total analysis increment (as in equation 2.2) that is 

used in the observation term in (2.1) then becomes 

 
(2.6) 

 

where C represents the forward linear normal mode constraint operator (exactly as 

described in Kleist et al. 2009a).  In addition to the consistency between the 

increments within the 3DVAR and 3DHYB paradigms, the use of such a constraint 

can act to help ameliorate potential imbalance and noise introduced through the 

localization of the control variable as well as sampling error inherent to the ensemble 

covariances.  An alternative would be to filter the ensemble perturbations themselves, 

though this would be computationally expensive relative to the application of the 

constraint over a single instance of the total analysis increment.  A summary of all of 

the OSSE-based experiments performed for this chapter can be found in Table 2.1. 

 

2.5  3DVAR Results 

As an initial validation of the experimental configuration, an evaluation of the 

zonal mean square root of the variance in the analysis increments from the 3DVAR 

experiment is carried out as in Errico et al. (2007).  The zonal wind increment in the 

OSSE-based 3DVAR control exhibits two local maxima (Fig. 2.6b), associated with 

the extratropical jets and consistent with the background error variance specification.  

Two secondary maxima are also noted in the near surface extratropics, with larger 

amplitude in the southern hemisphere consistent with the season for which the 

observations are assimilated.   
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Experiment Control Description Relevant 
Figures 

Relevant 
Equations 

3DVAR -- 3DVAR Control 
βe

-1=0.0 Fig. 2.6 Eq. 2.1 

3DHYB 3DVAR 3D-Hybrid (TLNMC) 
βf 

-1=0.25, βe 
-1=0.75 

Fig. 2.7- 
Fig. 2.13 

Eq. 2.1 
Eq. 2.6 

3DENSV 3DVAR 
3DHYB 

3D-Ensemble-Var 
No TLNMC 

βf 
-1=0.0, βe 

-1=1.0 
Fig. 2.15 

 
Eq. 2.1 

 

3DHYB_RS 3DHYB 3DHYB + Reduced 
Inflation Fig. 3.9 

 
Eq. 2.1 
Eq. 2.3- 
Eq. 2.6 

 
 
Table 2.1:  Description of various 3D (var and hybrid) OSSE-based experiments, as well as 
relevant figures and equations. 
 

 

The increments from the OSSE-based 3DVAR experiment are then compared 

in a qualitative sense to a system that assimilated real observations over a similar time 

period.  To perform this comparison, analysis increments are extracted from an 

experiment that utilizes a T382 version of the GFS model as well as the GSI for 

assimilation (Kleist et al. 2009b)3

                                                 
3 Experiment was part of a pre-implementation run to test the impact of replacing a spectral analysis 
with the GSI as part of the GDAS/GFS system. 

.  One has to keep in mind that the atmospheric state 

(truth) is different in this comparison, since the OSSE-based experiment utilized a 

model free run as a baseline.  The zonal wind increment in the real system exhibits 

similar structure to that in the OSSE-based run, with maxima associated with the 

extratropical jets and a secondary maximum in the near-surface southern hemisphere 

extratropics (Fig. 2.6a).  Interestingly, the magnitude of the low-level maxima is 
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Figure 2.6: Time mean zonally-averaged standard deviation of the 3DVAR analysis increment 
for a real observation experiment (left) and OSSE experiment (right) for zonal wind (top, m s-1), 
temperature (middle, K), and surface pressure (bottom, hPa).  The real observations case covers 
the period 00 UTC 01 August 2006 through 18 UTC 30 August 2006, whereas the OSSE 
experiment covers the simulated period spanning 00 UTC 01 August 2005 through 18 UTC 30 
August 2005. 
 

 



 

 31 
 

similar between the OSSE and real observation experiments, with larger 

discrepancies in amplitude associated with the jet level maxima.  The real system also 

exhibits two local maxima in each hemisphere at jet level, one associated with the 

tropics/subtropics, and a second (lower) maximum associated with the mid-latitude 

jet.  The OSSE-based control, on the other hand, does not exhibit these two distinct 

features, and instead has a much broader (across latitude) structure. 

A comparison of other variables shows that the OSSE and real observations 

are quite similar in terms of incremental statistics.   For example, the temperature 

increment exhibits very similar structure and amplitude between the two experiments 

(Fig 2.6 c,d).  Both experiments exhibit distinct maxima in the temperature 

increments poleward of thirty degrees in both hemispheres, with separate local 

maxima near the surface and near jet level.  Other than an odd feature in the lower 

troposphere right over the South Pole in the real observation experiment, the OSSE 

compares remarkably well.  Similarly, the surface pressure analysis increment is very 

similar between the two runs (Fig. 2.6 e,f), with the OSSE-based experiment 

exhibiting smaller amplitude.  The statistics described here are similar to the findings 

in Errico et al. (2007) and Errico et al. (2012) where the largest discrepancies between 

the OSSE-based and real observation systems seem to be associated with the wind 

increments.   

It is to be expected that there will be some quantitative discrepancies between 

the real analysis system and the OSSE based experiment (Errico et al. 2007).  

However, the focus of this work is not the impact of particular observations or the 

evaluation of real analysis error, and instead is the relative (potential) improvement in 
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the quality of analysis resulting in algorithmic changes such as the introduction of the 

hybrid.  In this sense, the only expectation is that one can produce something that at 

least behaves similarly to the real system.  Of course, one would hope that the OSSE 

and real system are close enough so that the findings of the OSSE-based 

experimentation would translate directly to the real system. 

 

2.6  3D-Hybrid Results 

2.6.1  Analysis Comparison 

The analysis (and forecast) quality for the 3DVAR control and 3DHYB 

experiments are compared by computing errors relative to the ECMWF provided 

nature run.  For this purpose, all fields are interpolated to a common grid (one degree 

regular latitude/longitude grid in the horizontal, pressure surfaces for the vertical).  

The analysis error structure is quite similar between the 3DVAR and 3DHYB runs 

(Fig. 2.7), exhibiting zonal wind error local maxima in the upper troposphere 

associated with jets, large temperature errors in the lower troposphere poleward of 

sixty degrees south, and lower tropospheric maxima in specific humidity errors.  

Despite the obvious similarities, several differences immediately stand out.  A plot of 

the difference between the 3DHYB experiment and 3DVAR control reveals that 

analysis errors are generally reduced in the hybrid system (Fig. 2.8).  Notably, there 

appears to be a significant reduction in the wind errors, particularly in the locations 

where the largest errors exist and near the model top.  The reduction in analysis 

temperature errors is not as impressive, consistent with the fact the observing system 

is made up predominantly of mass-type observations (satellite radiances). 
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Figure 2.7: Time mean zonally-averaged standard deviation of the analysis error the 3DVAR 
(left) and 3DHYB experiment (right) for zonal wind (top, m s-1), temperature (middle, K), and 
specific humidity (bottom, g kg-1), covering the period spanning 00 UTC August 2005 through 18 
UTC 30 August 2005. 
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Figure 2.8: Difference in the time mean zonally-averaged standard deviation of the analysis error 
(3DHYB-3DVAR) for zonal wind (top, m s-1), temperature (middle, K), and specific humidity 
(bottom, g kg-1), covering the period spanning 00 UTC August 2005 through 18 UTC 30 August 
2005. 
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The reduction in the specific humidity errors in the 3DHYB run (Fig. 2.8c) is 

consistent with the wind error reduction, with near uniform error reduction in the 

regions associated with the largest errors.  The large reduction in analysis errors for 

wind and humidity, but not temperature, is suggestive that the multivariate aspects of 

the analysis increments in the hybrid play a critical role in improving the quality of 

analysis.  It is noteworthy that the 3DHYB system did not result in uniform error 

reduction, with a noticeable increase in the analysis errors relative to the 3DVAR 

control for temperature and wind between 50 hPa and 400 hPa poleward of sixty 

degrees south (Fig. 2.8 a,b).  This is discussed in more detail in Section 2.6.3, as 

follow-on hybrid experiments were carried out to attempt to investigate the reasons 

for this degradation. 

A comparison of the 300 hPa zonal wind analysis error standard deviation 

between the 3DHYB and 3DVAR experiments reveals that the biggest impact from 

the hybrid system can be found in the tropics (Fig. 2.9), where the 3DVAR control 

appears to have the most issues.  In particular, a large local maximum in error over 

the Indian Ocean region, associated with deep convection, is significantly reduced in 

the 3DHYB experiment.  The difference in analysis errors (Fig. 2.9c) reveals that the 

3DHYB is almost uniformly better than the 3DVAR control for the simulated August 

period, with small scale exceptions located just off the equator north of South 

America, and subtle hints of degradation poleward of sixty south (as previously 

revealed in the zonal mean plots).  Interestingly, the errors in the 3DVAR control are 

quite large over the Southern Ocean as expected but quite small over the central and 

north Pacific.  This is likely an artifact of the errors that were added to the simulated  
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Figure 2.9: Time-averaged standard deviation of the 300 hPa zonal wind analysis error (ms-1) for 
the 3DVAR (top) and 3DHYB (experiments) for the period spanning 00 UTC August 2005 
through 18 UTC 30 August 2005, as well as the difference (3DHYB-3DVAR, bottom). 
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observations and trying to match the impact of each observing platform relative to 

realistic OSEs (Privé, personal communication). 

Some interesting behavior in both the 3DVAR and 3DHYB systems is 

revealed by the time series of the analysis and background error standard deviations 

(as in Fig. 2.10).  In general, the analysis error is smaller than the background error 

for any given cycle, though there are rare exceptions.  For mid-tropospheric zonal 

wind, the background errors for the 3DHYB experiment are significantly smaller than 

the analysis errors from the 3DVAR control.  Interestingly, the magnitude of the 

difference between the analysis errors and background errors for 500 hPa zonal wind 

is comparable, despite the hybrid exhibiting significantly smaller errors.  For 850 hPa 

temperature, the behavior is quite different as the difference between the background 

and analysis error is much more subtle with a clear signal by cycle.  The temperature 

errors are a minimum for the 00 UTC analysis cycle each day in both the 3DVAR and 

3DHYB.  A much more subtle secondary minimum in analysis error is associated 

with the 12 UTC cycle.  The smaller errors at 00 and 12 UTC can be attributed to the 

addition of the radiosonde network for those times.  The zonal wind errors appear to 

have a bit of cyclical nature to them as well, but the pattern is much more difficult to 

ascertain amongst the much larger day to day variability relative to the temperature 

errors.  Consistent with previous discussion, the temperature errors between the 

3DVAR and 3DHYB experiments are much more similar to each other and exhibit 

much less variability, attributable to the fact that the temperature analysis errors are 

anchored substantially through the assimilation of satellite radiances. 
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Figure 2.10: Time series of the standard deviation of the 500 hPa zonal wind (top, m s-1)) and 850 
hPa temperature (bottom, K) background (solid) and analysis (dashed) errors for the 3DVAR 
(green) and 3DHYB (red) experiments for the  period spanning 00 UTC August 2005 through 18 
UTC 30 August 2005. 
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2.6.2  Forecast Impact 

It is clear that the analysis quality in the 3DHYB experiment is superior 

relative to that from the 3DVAR control.  However, for operational NWP, it is 

imperative that the improved analyses also translate to improved forecasts.  To test 

the impact of the hybrid in this framework, forecasts are initialized once per day at 

simulated 00 UTC, and run out to 7.5 days using the same forecast model that was 

used for data assimilation cycling, starting after the two weeks spin-up.  Forecasts 

from the 3DVAR and 3DHYB runs are then verified by comparing with the ECMWF 

nature run (instead of doing verification relative to its own analysis as is standard 

practice in operational NWP).   

The forecasts generated by starting from the 3DVAR control analyses exhibit 

behavior similar to the real system, at least in terms of geopotential height errors. The 

errors generally increase significantly with time, especially at jet level and near the 

top of the model (Fig. 2.11).  The forecasts in the 3DHYB experiment do not seem to 

have much of an impact for short lead times.  However, the hybrid analysis results in 

substantial improvement for longer lead times in the Southern Hemisphere 

troposphere and in the upper stratosphere globally.  The skill in the Northern 

Hemisphere troposphere appears very similar between the 3DVAR and 3DHYB.  A 

die-off curve showing the 500 hPa anomaly correlation (a WMO established standard 

verification metric for operational centers, see Wilks 2006 for a description) shows a 

consistent result, with the 3DHYB having a significant impact on the Southern 

Hemisphere skill.  As was the case for the RMSE, the anomaly correlation shows a 

somewhat positive impact for short lead times and neutral impact at days 5 and 6 in  
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Figure 2.11: Time-averaged root mean square geopotential height errors (m) for forecasts from 
the 00 UTC analysis in the 3DVAR experiment as a function of lead time for the Northern 
Hemisphere (upper left) and Southern Hemisphere (lower left) verified against the ECMWF 
nature run for forecasts verifying between 27 July 2005 and 01 September 2005.  The difference 
between two experiments (3DHYB-3DVAR) for the Northern Hemisphere (upper right) and 
Southern Hemisphere (lower right) is also plotted. 
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the Northern Hemisphere (Fig. 2.12).  Lastly, just as for the background and analysis 

errors for zonal wind, the 3DHYB experiment results in significantly improved 

forecast errors for vector wind in the tropics for all levels and all lead times (Fig. 

2.13).   

 

 

 

 

Figure 2.12: Time-averaged 500 hPa anomaly correlation (upper panels) for the Northern 
Hemisphere (left) and Southern Hemisphere (right) for the 3DVAR (green) and 3DHYB (red) 
experiments for forecasts from the 00 UTC analyses as a function of lead time as well as the 
difference (3DHYB-3DVAR, lower panels).  The 95% confidence threshold for a significance test 
(derived from a standard t-test) is also plotted in the lower panels. 
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Figure 2.13: As in Fig. 2.11, but for the vector wind RMSE in the tropics. 
 

 

2.6.3  Follow on 3D-Hybrid Experiments 

Although the analysis errors are almost uniformly reduced in the hybrid 

experiment, it is interesting that there appear to be isolated regions and metrics for 

with the hybrid system actually results in a degraded analysis.  This seems especially 

true for wind and temperature in a layer between 100 and 400 hPa over the south 

polar cap (Fig. 2.8).  Given that everything else is kept the same, it seems intuitive 

that the ensemble used within the hybrid framework must have issues in these regions 

to result in a worse analysis.  It is clear by looking at the average spread for zonal 

wind that the ensemble used within the hybrid experiment is over-dispersive.    

Compared to the actual 6-hr (background) forecast error, the over-inflated ensemble 

spread is most egregious in the same region where the hybrid resulted in increased 
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analysis errors (Fig. 2.14).  The average amplitude of the ensemble based background 

error is in general agreement with the static estimate derived from the NMC-method, 

except for the large discrepancy between 500 and 150 hPa over the southern latitudes.   

 

 

 

Figure 2.14: Time mean zonally-averaged standard deviation of the zonal wind 06-hr forecast 
(background) error for the 3DVAR (upper left) and 3DHYB (upper right) experiments, as well 
as the NMC-method based static error estimate (lower left) and 3DHYB 06-hr ensemble spread 
(lower right) covering the period spanning 00 UTC August 2005 through 18 UTC 30 August 
2005. 
 

 

Additional 3D hybrid experiments are designed to further investigate these 

small regions where the hybrid seems to degrade the quality of analysis.  The first 

additional experiment (3DENSV) is similar to the original 3DHYB experiment, 
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except that it does not utilize a static background error contribution by setting βe
-1=1 

and βf
-1=0 in equation 2.1 (nor does it use the incremental normal mode constraint, so 

that the impact of using the ensemble covariances directly can be investigated).  This 

experiment is analogous to running a high resolution analysis of 3D-EnKF using a 

low resolution forecast ensemble but in a variational framework.  The 3DENSV 

experiment is designed to ascertain whether or not the ensemble is really to blame for 

the degradation seen over the southern latitude upper troposphere and lower 

stratosphere.  All other settings (including inflation and localization parameters) are 

kept the same.  A comparison of the analysis error differences reveals that, as 

expected, the same problem areas from the 3DHYB system (Fig. 2.8) show up again 

in the 3DENSV experiment (Fig. 2.15).  Even more interesting is the fact that the 

errors in the southern latitude upper troposphere are even worse in the 3DENSV 

experiment.  This is consistent with the ensemble spread being much too large in 

these regions, resulting in the analysis drawing too closely to the (imperfect) 

observations.  It is also noticeable that there is a much larger mix of positive and 

negative impact in the 3DENSV case, whereas the result was almost uniformly 

positive in the 3DHYB case.  The 3DENSV experiment does significantly reduce the 

tropical zonal wind errors just as in the 3DHYB case.  It is clear that there is a 

positive contribution from the static error covariance in the hybrid as well as the 

incremental normal mode initialization, over the 3DENSV case, particularly in 

regions where the ensemble is over-dispersive.   
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Figure 2.15: As in Fig. 2.8, but for the difference between 3DENSV-3DVAR 
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As a result of sampling error and to avoid filter divergence, additive and 

multiplicative inflation are applied to the ensemble members after the EnKF update.  

The amount of inflation that is applied is a key component to controlling how much 

spread exists within the background ensemble.  The inflation parameters that are used 

in the 3DHYB and 3DENSV experiments are chosen to match those utilized in a real 

EnKF (or hybrid) system, such as the one in development and testing for the 

operational NCEP GDAS.  Given that those particular parameter settings result in an 

ensemble with too much spread (in certain regions and variables) and keeping in 

mind the results from the 3DHYB and 3DENSV experiments, an additional 

experiment (3DHYB_RS) is carried out that utilizes smaller inflation parameters (see 

Section 2.4.2) to reduce the spread in the background ensemble.  The multiplicative 

inflation parameter (ω) is reduced from 0.85 to 0.7 globally and the amplitude factor 

(κ) for the additive perturbations is reduced by 35% globally.  These parameters are 

tuned in an attempt to better match the ensemble spread (for multiple variables) with 

the actual background errors of the system in a global, general sense. 

In the 3DHYB_RS experiment, everything is identical to the 3DHYB 

experiment (including localization, as well as weights given to the static and 

ensemble contributions) except for the inflation parameters.  The resultant average 

standard deviation of the ensemble spread for zonal wind can be seen in Fig. 2.16.  In 

the 3DHYB_RS experiment, the amplitude of the ensemble-based error standard 

deviation is in better agreement with the actual 6-hr forecast error.  In fact, there are 

regions where the ensemble appears to have spread that is too small, such as in the 

tropical troposphere as well as much of the stratosphere.  The inflation parameters are  
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Figure 2.16: As in Figure 2.14 (lower right, from original 3DHYB experiment), but for the 
experiment 3DHYB_RS (reduced spread).  
 

 

 

global numbers making this type of experiment a tuning exercise.  Again, the 

motivation is not to match the ensemble spread and error relative to the nature run as 

closely as possible, but instead to test the impact of smaller ensemble spread on the 

analysis error in the hybrid paradigm. 

A comparison of the time averaged zonal mean analysis error reveals the 

analyses in the 3DHYB_RS experiment exhibit smaller errors for most variables and 

most levels (Fig. 2.17).  As designed, the 3DHYB_RS experiment does have a 

positive impact on the analysis in the southern latitude upper troposphere by reducing 

the ensemble spread in those regions to more realistic levels.  However, this has come 

at the expense of an increase in the temperature errors for some levels in the upper  
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Figure 2.17: As in Fig. 2.8 (which had comparison 3DHYB-3DVAR), but for the difference 
between 3DHYB_RS-3DHYB.   
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stratosphere.  The reduction in zonal wind errors is of slightly larger amplitude in the 

3DHYB_RS experiment than the original 3DHYB experiment and expands over 

larger areas of the globe.  A comparison of the 3DHYB_RS experiment with the 

original 3DVAR run reveals remarkable analysis error reduction for nearly all 

variables and all levels (Fig. 2.18).  Almost all of the problem areas from the original 

3DHYB run (Fig. 2.8) are eliminated, with the exception of some small regions for 

temperature, again over the South Pole in the upper troposphere (Fig. 2.18).  The 

amplitude of the original error increase for temperatures in these regions (3DHYB 

over 3DVAR) has been significantly reduced in 3DHYB_RS.  Furthermore, the 

spatial coverage of the reduction in analysis errors is much greater in 3DHYB_RS 

compared to 3DHYB. 

This is an interesting result for real NWP applications, where it is impossible 

to tune the ensemble spread to match exactly the real forecast error standard 

deviation.  Given that care has to be taken to avoid filter divergence, one can take the 

cautious approach and ensure that the ensemble spread is large enough.  It is 

encouraging that the hybrid does seem to overcome some of the problems that come 

with using an over-spread ensemble.  However, this evidence suggests that an 

ensemble spread that is closer to the real background error will result in an improved 

analysis.  Perhaps through adaptive inflation methods (Anderson 2009; Miyoshi 

2011), or through a hybridization of the background error covariance used in the 

EnKF as well, some of these issues can be mitigated.  
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Figure 2.18:  As in Fig. 2.8 and Fig. 2.17, but for the difference between 3DHYB_RS-3DVAR. 
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2.7  Summary and Conclusions 

 Hybrid data assimilation algorithms that attempt to combine the strengths of 

variational and ensemble algorithms while attempting to minimize their weaknesses 

have become popular within the data assimilation community.  This is true at NCEP 

where efforts are underway to develop and test a hybrid system for the operational 

application.  For an operational center, a hybrid algorithm allows for an easier 

transition toward using ensemble-based, flow-dependent error covariances without a 

complete paradigm shift by incorporating ensemble perturbations into well-

established variational algorithms.  There are advantages to maintaining the 

variational framework beyond the practical aspects, such as supplementing the 

ensemble estimate with a static error covariance, the application of already 

established dynamic constraints, and localization in physical space. 

Although impact tests with real observations have corroborated that hybrid 

algorithms can prove superior to their stand-alone variational and ensemble 

counterparts (Hamill and Snyder 2000; Wang et al. 2007b, 2009; Buehner et al. 2010 

a,b), OSSEs provide a platform for which to evaluate the characteristics of the 

analysis error since the truth is known.  With this in mind, a series of experiments are 

carried out to evaluate the impact of a hybrid data assimilation algorithm relative to 

3DVAR control through the assimilation of observations generated from an ECMWF-

produced nature run.  The errors that are added to the simulated observations were 

done in such a manner that their impact on the analysis and forecast skill within the 

OSSE framework matched their counterparts from real observations OSEs.  Using the 

NCEP GFS model, 3DVAR and 3DHYB experiments are carried out over a 
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simulated two month period in a framework that closely resembles a real world NWP 

application. 

Consistent with previous studies, the quality of analyses and forecasts from 

the hybrid experiment are generally superior to those derived from the 3DVAR 

control.  In particular, the analysis errors for wind and moisture are substantially 

reduced, while the impact on the quality of temperature analysis was much smaller.  

Interestingly, the spatial distribution of analysis errors is qualitatively similar to the 

background errors (compare Figs. 2.7 and 2.14, for example).    Surprisingly, it was 

found that the analysis error in the control for some metrics is substantially greater 

than the background error (6-hr forecast) in the hybrid.  The improved analyses are 

found to yield improved forecast skill for most variables and most lead times. 

A few problem areas are identified in the hybrid analyses, where the 

introduction of the ensemble based covariances actually leads to an increase in the 

analysis error, such as the case for temperature and winds in the southern latitude 

upper troposphere.  A comparison of the time mean ensemble spread with the actual 

6-hr forecast error reveals that the ensemble that is utilized in the hybrid experiment 

has too much spread in the same regions that were identified to be problematic.  The 

EnKF is not drawing as closely to the simulated observations as is seen for real 

observation experiments, resulting in larger analysis spread (not shown).  Of course, 

this implies that the analysis ensemble requires less inflation.  Furthermore, the 

default set of parameters were tuned from a real observation system at higher 

resolution.  System growth rates also play a role in how much one needs to inflate an 

initial ensemble, as a model configuration with faster perturbation growth rates does 
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not require as large initial perturbations to achieve a certain level of spread after some 

time interval compared to a model with slower perturbation growth rates. 

Two additional experiments, 3DENSV and 3DHYB_RS are then carried out 

to further demonstrate that the large spread in the ensemble is in fact the cause of the 

degradation in those regions.  The first experiment turns off the static error 

contribution as well as the normal mode constraint, to test the impact of using only 

the ensemble-based covariance within the 3D framework.  The same problem areas 

show up in this experiment (along with other regions), demonstrating the impact of 

the ensemble spread being too large.  Interestingly, the 3DHYB experiment seems to 

help quite a bit for most of the problem areas in the 3DENSV experiment.  Given that 

the ensemble spread is largely controllable through inflation parameters, a final 

experiment is carried out to test the impact of an ensemble with more realistic spread 

(relative to the actual forecast errors) on the hybrid system.  It is found that this 

experiment generally resembles the original hybrid experiment but without the 

problem areas.  For winds, the reduced spread experiment exhibits even smaller 

errors.   

It is encouraging that the forecast impact seen from the hybrid within this 

framework is somewhat consistent with results that have been achieved for more 

realistic systems (that assimilate real observations).  This system then provides a 

framework for which to experiment with ways to improve the hybrid system, with the 

expectation that gains achieved in this framework will translate to the real NWP and 

DA systems.  A natural extension to the hybrid that has already been developed and 

tested is to utilize 4D ensemble perturbations.  As a product of a very fruitful 
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collaboration with NASA GMAO, the same code that was used for these experiments 

already has a 4DVAR capability.  These two things combined allow for the 

application of a 4D ensemble-based method utilizing the variational framework, and 

without the need for a tangent linear and corresponding adjoint model (similar to Liu 

et al. 2008; Buehner et al. 2010 a,b).  This same OSSE framework can be utilized to 

test the impact of such an extension to the hybrid algorithm and is the subject of 

Chapter 3. 
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Chapter 3: OSSE Experiments with 4D-Ensemble-
Var and Hybrid Variants 
 

3.1  Introduction 

Four-dimensional variational data assimilation (4DVAR) techniques that use 

tangent linear (Lewis and Derber 1985; Courtier et al. 1994) or linear perturbation 

models (Rawlins et al. 2007) and their corresponding adjoints have been shown to be 

powerful natural extensions to the 3DVAR technique.  In fact, 4DVAR is the method 

of choice for initialization of deterministic NWP applications at many operational 

centers (Rabier et al. 2000; Rosmond and Xu 2006; Gauthier et al. 2007; Rawlins et 

al. 2007).  One attractive feature of 4DVAR is that a dynamic model is used to help 

impose temporal smoothness and physical constraints.  Additionally, 4DVAR allows 

for the simultaneous assimilation of asynchronous observations throughout a window 

at their appropriate times by producing a 4D analysis trajectory (Lorenc and Rawlins 

2005).  This is in contrast with the so-called 3DVAR-FGAT method (Rabier et al. 

1998; Lawless 2010), which employs time interpolation to compute innovations at the 

appropriate time but only solves for a solution at a single time (typically at the center 

of a window).  The major drawbacks to the 4DVAR technique are the computational 

cost (since the method involves propagating a model forward and backward in an 

iterative manner) as well as the complications related to developing and maintaining 

linearized forecast models and their corresponding adjoints. 

Much like the 3DVAR technique, 4DVAR methods typically assume a static 

error covariance (though, valid at the beginning of the assimilation window instead of 
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the middle).  This background error covariance is then implicitly evolved by the 

linear dynamic (and adjoint) model as part of the variational solver.  This procedure 

does allow for some flow-dependence, though the quality of the initial background 

error covariance can still play a crucial role for short assimilation windows.  Further, 

the use of a dynamic model to constrain the solution does help improve the 

multivariate aspects.  Much like for the 3D case, the development and application of a 

hybrid ensemble-4DVAR technique, which utilizes ensemble based covariances for 

prescribing the background error covariance at the beginning of the assimilation 

window has been shown to be beneficial (Buehner et al. 2010a,b).  The drawbacks of 

such a method are the same as those for 4DVAR, namely computational cost and the 

need for linearized and adjoint models. 

Along the lines of the 4D ensemble-based techniques (Hunt et al. 2004) such 

as the 4D-LETKF (Hunt et al. 2007), several methods expanding on the idea 

introduced by Lorenc (2003) have recently been proposed to utilize 4D ensemble 

perturbations within a variational framework to help solve for a 4D-analysis 

increment without the need for a tangent linear and adjoint model (Liu at al. 2008; 

Tian et al. 2008; Tian et al. 2011; Buehner et al. 2010a).  Most of the methods in 

these previous works rely exclusively on an ensemble based error covariance, without 

combining information with a climatological estimate as has been done in many 3D-

based hybrid studies.  This exposes these particular techniques to the same 

weaknesses that have been documented in regards to the EnKF technique, in 

particular issues related sampling or lack of temporal smoothness.  Formulating the 

problem in the variational framework allows one to take full advantage of the many 
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developments that have taken place over the years, such as dynamic constraints 

(Gauthier and Thépaut 2001; Kleist et al. 2009a) and variational bias correction 

(Derber and Wu 1998; Dee 2005). 

In Chapter 2, it was demonstrated that including ensemble covariances in a 

variational-based hybrid algorithm yielded improvements in the quality of analyses 

and subsequent forecasts for the National Centers for Environment Prediction 

(NCEP) global forecast system (GFS) model in the context of an observation 

simulation system experiment (OSSE).  The experiments that were conducted were 

all performed using 3DVAR and 3D-Hybrid variants, leaving significant room for 

improvement.  Without access to a tangent linear and adjoint model, a natural 

extension of the 3D hybrid to include 4D ensemble perturbations (i.e., 4D-ensemble-

var, just as proposed in Buehner et al. 2010a) is a logical next step for improving 

upon the previous work.  This chapter focuses on such a 4D extension to the GSI-

based hybrid.  Section 3.2 describes the implementation of the 4D extension to the 

hybrid including a time-invariant static error covariance supplement.  Section 3.3 then 

follows with a description of various OSSE-based experiments that demonstrate the 

impact of utilizing 4D-ensemble-var (and hybrid variants) relative to the 3DHYB 

experiments that were carried out in Chapter 2.  Several experiments are carried out 

to demonstrate the impact of including a static error covariance in the dual-resolution 

4D-ensemble-var paradigm, as well as show the impact of various dynamic 

constraints.  A summary and motivation for future work then follows. 
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3.2  4D-Ensemble-Var 

3.2.1  GSI-Based Hybrid Extension 

Traditionally, incremental 4DVAR involves solving for the optimal solution 

(x
0
’) at the beginning of a time window, obtained by minimizing a cost function  

 

(3.1) 

For notation please refer to Chapter 2, but now a time-level index (k) is included for 

the initial condition valid at t=0 and asynchronous observations (for each k) for K-

time levels.  The adjoint of the linear model (the transpose of M) is necessary in order 

to obtain the gradient in this formulation.  This cost function can then be easily 

extended to a hybrid 4DVAR cost function by including a control variable (α) for the 

ensemble contribution to the analysis increment at the beginning of the window:  

 
(3.2) 

 

 

where, just as in the 3D hybrid case, x
0
’ becomes a linear combination of that which 

is derived from a static error covariance (x’f) and that which is derived from the 

ensemble perturbations (xe
n) as prescribed by the control variable (α) for an ensemble 

of size N: 

(3.3) 
 

This hybrid configuration will hereafter be referred to as H-4DVAR_AD (with AD to 

denote the use of the adjoint [and forward linear] model within the minimization).   
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As pointed out by Buehner (2010a), this can be further manipulated to solve a 

similar 4D cost function without the need for the linear model and its adjoint by 

utilizing 4D ensemble perturbations (hereafter referred to as 4DENSV).  Solving 

instead for the control variable in this so-called 4D-ensemble-var case, the cost 

function then becomes: 

 
(3.4) 

 

where the linear dynamic model is replaced with 4D, nonlinear ensemble 

perturbations, so the increment valid at each of the observation time levels can be 

prescribed as 

(3.5) 
 

 
As in the 3DHYB case, L denotes the error covariance for the ensemble control 

variable, specified to be unit amplitude and Gaussian in structure, thereby acting to 

enforce localization of the ensemble based error covariance.  In this particular 

formulation, α is assumed to be the same throughout the assimilation window, 

analogous to the weights in a 4D-LETKF without temporal localization.   

 The components necessary to solve the GSI using the formulation that is 

described by equations 3.4 and 3.5, 4DENSV, are already in place.  The ensemble 

control variable for the hybrid is developed and implemented as part of the 3D-hybrid 

work described in Chapter 2.  A 4DVAR capability within the GSI was previously 

developed through collaboration with colleagues at NASA GMAO (Todling and 

Trémolet, personal communication).  A key component of the extension of 3DVAR 

to 4DVAR within the GSI was the addition of new observation handling features and 
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the inclusion of time binning.  With these pieces in place, the 3D hybrid capability is 

extended to allow for 4D ensemble perturbations and a 4DENSV option.   

 

3.2.2  4D-Ensemble-Var Hybrid 

As was demonstrated in the 3D-hybrid context, the inclusion of a static 

(climatological) estimate for the background error covariance within the hybrid can 

prove beneficial.  This seems especially true for dual-resolution applications or for 

those problems that require the utilization of a (relatively) small ensemble.  As shown 

equation 3.2, this can be achieved in the hybrid H-4DVAR_AD context, where the 

ensemble is used only to supplement the background error covariance at the initial 

time.  However, such a paradigm is computationally expensive since it has all the cost 

of a 4DVAR formulation (plus some), in addition to having to maintain and update 

the ensemble.  A cost effective alternative does exist, if one is willing to allow for a 

time-invariant (3DVAR-like) contribution to the solution.  By combining equations 

3.2-3.5,  

 
 

(3.6) 

 

to formulate a cost function that is a blend of a 4DENSV and 3DVAR-FGAT cost 

function.  In this context, x’f is the analysis increment that is prescribed from a static, 

time-invariant error covariance estimate Bf (i.e. the same B that is used in 3DVAR or 

4DVAR at the beginning of the window).  The contribution of this part of the solution 

to the analysis increment at any given observation time is constant: 
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(3.7) 
 

The ensemble contribution to the analysis increment at any given observation time is 

exactly like that for the 4DENSV case.  In this instance, however, the (4D) ensemble 

and (3D) static contributions are weighted similarly to the 3D-hybrid case, with βe 

and βf respectively.  By setting the extended control variable for the ensemble, αn=0, 

this method is equivalent to 3DVAR-FGAT.  The capability to run the 4DENSV 

option in a truly hybrid mode, by including a time-invariant static contribution to the 

increment as shown in 3.6 is implemented for use within the GSI-based hybrid 

(referred to as H-4DENSV from here on out, as not to be confused with the H-

4DVAR_AD formulation).  Given a configuration that utilizes a dual-resolution 

option, the static contribution is aimed at accomplishing two things: 1) filling the null 

space at higher frequencies that the low resolution ensemble cannot resolve and 2) 

anchoring the solution with a static error covariance (which can itself help further 

ameliorate potential sampling and localization issues).  An H-4DVAR_AD option is 

also implemented into the code though is not the main focus of this study. 

 

3.2.3  Single Observation Example 

To demonstrate the impact of the 4DENSV (and H-4DENSV variant) 

algorithm, an experiment that assimilates only a single observation is performed.  The 

observation chosen for this is a mid-tropospheric temperature observation taken at the 

beginning of a 6-hr assimilation window (three hours prior to the “update” analysis 

time), and is assigned a negative two degree departure from the background at that 

time (a 3-hr forecast) and one degree observation error.  The observation is chosen to 
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reside upstream from the base of a shortwave trough, similar to the single observation 

experiments shown in Buehner et al. (2010a) for comparison.  Several 4D 

experiments are then carried out that assimilate this single observation.  A summary 

and description of the experiments is available in Table 3.1.  The two hybrid cases 

that include a static and ensemble contribution to the increment are done so with      

βf
-1=0.25 and βe

-1=0.75.  For the two 4DVAR variants, the tangent linear and adjoint 

model that are utilized in the inner loop are adaptations of a fairly simple model that 

has been under development at NCEP for the sole purpose of running 4DVAR.  

Although not yet ready for large problems or cycling due to its current computation 

inefficiencies, it is still quite useful for evaluating (low resolution) single observation 

experiments that require only a few iterations to minimize.   

 

 

 

Experiment Description Relevant 
Equations 

4DVAR 4DVAR Eq. 3.1 

H-4DVAR_AD Hybrid ensemble-4DVAR (with adjoint) 
βf

-1=0.25, βe
-1=0.75 

Eq. 3.2 
Eq. 3.3 

4DENSV 4D-Ensemble-Var (no static B) 
βf

-1=0.0, βe
-1=1.0 

Eq. 3.4 
Eq. 3.5 

H-4DENSV Hybrid 4D-Ensemble-Var 
βf

-1=0.25, βe
-1=0.75 

Eq. 3.6 
Eq. 3.7 

 
Table 3.1:  Description of various 4D (and hybrid) single observation experiments and relevant 
equations for Figs. 3.1 and 3.2. 
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The resultant analysis increment at the middle of the assimilation window 

(three hours after the observation is taken) for the various 4D configurations is 

shown in Fig. 3.1.  All four experiments show the maximum increment downstream 

from where the actual observation was taken consistent with the northwesterly 

background flow.  The 4DVAR experiment results in a spatially broad, quasi- 

Gaussian temperature increment (Fig. 3.1a).  This is not terribly surprising given that 

only three hours elapses between the time that the observation was taken (beginning 

of the window) and the center of the window.  The three experiments that utilized 

ensemble covariances exhibit a temperature increment that is stretched along the 

height gradient as would be expected (Fig. 3.1b-d).  All of the experiments show a 

cyclonic wind response to the cold temperature observation and increment, with the 

ensemble/hybrid based experiments showing a stronger wind response than the 

4DVAR case.  It is clear that the 4DENSV case suffers from sampling (spurious 

correlations) more so than the two hybrid variants.  This is not surprising either, in 

this case, given that a 40 member ensemble is utilized.  However, adding a time- 

invariant, static contribution to the increment helps ameliorate these apparent issues 

substantially, without hurting the 4D nature of the increment.  In fact, the H-

4DENSV increment is qualitatively and quantitatively very similar to that from the 

H-4DVAR_AD experiment, despite the fact that one uses a fairly simply dynamic 

model while the other utilizes 4D, nonlinearly evolved ensemble perturbations. 

The same single observation test can be utilized to further investigate how the 

algorithms handle the propagation of information through the assimilation window, 

by visualizing the analysis increment at various k-time levels.  Recall that for the  
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Figure 3.1: 500 hPa Temperature (shaded, K) and vector wind (vectors, m s-1) analysis increment 
resulting from the assimilation of a single 500 hPa temperature observation (-2K innovation, 1K 
error) taken -3h from analysis time (location of observation denoted with black dot) for 4DVAR 
(upper left), H-4DVAR_AD (lower left), 4DENSV (upper right), and H-4DENSV (lower right).  
The reference arrow is representative of 1 m s-1. 

 

 

4DVAR cases, this involves an explicit propagation of the increment though the use 

of a (linear) dynamic model.  For the 4DENSV variants, the propagation of 

information is achieved implicitly through correlations contained within the 4D 

ensemble perturbations.  The time evolution of the temperature and wind increments 

at 500 hPa in 3-hr intervals for the H-4DVAR_AD and H-4DENSV cases is shown in 

Fig. 3.2.  First note that the solution between the two is virtually identical at the 

beginning of the window (the time at which the observation was taken).  This is  
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Figure 3.2: As in Fig. 3.1, except for the analysis increment valid at the beginning (t-3h, top), 
middle (t=0h, middle), and end (t+3h, bottom) of the assimilation window for the H-4DVAR_AD 
(left) and H-4DENSV (right) cases. 
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expected given that the same ensemble perturbations, relative weights, and static error 

covariance (since it has not yet been evolved by the dynamic model in the 4DVAR 

case) are identical between the two experiments.  This is not the case for observations 

taken at other times in the assimilation window (not shown), where for the                

H-4DVAR_AD case, the effective “static” error covariance is evolved forward in 

time consistent with the linear dynamic model.  For the other times in the six hour 

assimilation window (middle and end) the temperature and wind increment between 

the two hybrid cases is strikingly similar both qualitatively and quantitatively.  By the 

end of the window, the H-4DENSV case develops more small amplitude features 

away from the location of the original observation and has a slightly tighter structure 

aligned with the height contours.  The H-4DVAR_AD case, on the other hand, has 

slightly broader features at the end of the window.  It is quite encouraging that the 

(computationally cheaper) ensemble method can mimic quite nicely the evolution of 

the increment within the assimilation window.  Although not shown, other single 

observation experiments for other variables and levels reveal similar results.   

 

3.3  Constraint Formulations 

3.3.1  Incremental Normal Mode Constraint 

The 4DENSV (and hybrid) option is implemented in such a way as to allow 

for the application of many of the standard features included in the 3D GSI such as 

variational quality control, variational satellite bias correction, the tangent linear 

normal mode constraint, and various weak constraints.  However, the 4DENSV 

solution to the analysis problem requires special attention when it comes to the 
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application of such constraints given that the 4D aspect of the problem is obtained 

through a dot product of the weights and the ensemble perturbations in a discrete 

manner without the explicit use of a dynamic model.  This introduces the possibility 

that it may be necessary to apply such constraints over all k-time levels to ensure 

consistency.  For a dynamic constraint such as the tangent linear normal mode 

constraint, this can be prohibitively expensive if one were to use hourly time levels 

and a six hour assimilation window, as an example.  Furthermore, the original 

implementation of the normal mode constraint for application within the 3D-Hybrid 

requires the filter to be applied to the total analysis increment (sum of static and 

ensemble contributions) without much flexibility (as in equation 2.1 from Chapter 2).  

For these reasons, several options related to the application of various constraints are 

explored and implemented into the analysis code. 

Building on previous successes in applying the tangent linear normal mode 

constraint in 3DVAR (Kleist et al. 2009a) and 3DHYB (Chapter 2) applications, 

various possibilities for application of such a constraint in the 4DENSV (and hybrid) 

context are developed and tested.  First, the possibility to apply the constraint to only 

the static contribution to the increment is implemented: 

 
(3.8) 

 

This requires a single constraint operation per iteration, making the cost equivalent to 

3D applications.  Note that this capability can also be applied within the 3DHYB 

context, though previous results suggest the inclusion of the constraint to the total 

increment aids in ameliorating potential imbalances introduced by the ensemble based 
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increment.  This formulation is motivated by the desire to allow for the use of the 

unfiltered ensemble covariance, while still filtering the static contribution to the 

increment. 

 In order to help mitigate imbalances that can be introduced through sampling 

and localization, the ability to apply the tangent linear normal mode constraint to the 

total increment is explored.  To apply the incremental normal mode constraint to the 

total increment in the H-4DENSV (and 4DENSV) context, two possibilities are 

considered.  The first is to simply apply the constraint over all k-time levels: 

 
(3.9) 

 

Here, the balance operator Ck is also denoted with a time level index, since the 

possibility exists for linearization about the background for each time level (since the 

constraint is in fact tangent-linear).  However, for practical reasons (computational 

cost and memory), the linearization state is assumed to be the center of the window.  

Even still, the application of the constraint in this manner can be prohibitively 

expensive.  For a six-hour window with hourly time levels (and hourly ensemble 

perturbations) the computational cost of the analysis goes up substantially.  For this 

reason, the possibility to apply the full constraint only to the solution in the middle of 

the window is considered.  The advantage to such a method is the increment that is 

applied to the background and used to restart the model can be filtered explicitly 

reducing spin-up and spin-down, without the considerable cost of having to filter all 

time levels.  This of course introduces inconsistencies between the incremental 
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solution in the center of the window and the other time-levels, which could have 

undesirable consequences. 

 

3.3.2  Weak Constraint Digital Filter 

Digital filter weak constraints have been shown to be beneficial in many 

4DVAR applications (Polavarapu et al. 2000; Gauthier and Thépaut 2001, Wee and 

Kuo 2004).  A similar constraint has previously been implemented by colleagues at 

NASA GMAO for the 4DVAR extension of the GSI.3

(3.10) 

   The formulation of such a 

constraint involves the addition of a new penalty term (see Gustafson 1993 or 

Polavarapu et al. 2000 for a more detailed derivation): 

 
where xm

i denotes a filtered or “initialized” state at time m (in the case of 4DENSV, 

assumed to be the center of the assimilation window), and χ  a general weighting term 

(typically denoted α in the literature but avoided in this context to remove confusion 

with the ensemble control variable).   Although previous derivations involve the 

tangent linear and adjoint models required to run 4DVAR, such a constraint can be 

utilized in the 4DENSV context based on the 4D increment that is prescribed from the 

ensemble perturbations.  The filtered state is constructed from the 4D increment using 

the same filter coefficients (h) as in the typical formulation (Lynch and Huang 1992) 

 
(3.11) 

 

                                                 
3 The JcDFI that was originally developed for 4DVAR applications was not implemented for the 
standard double conjugate gradient minimization algorithm that is utilized for the hybrid applications.  
Minor modifications were necessary to adapt the code for use in this context. 
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where xk
u denotes the unfiltered increment at each time level-k.  The norm for the 

penalty function in this implementation is chosen to be a dry energy norm (though the 

capability does exist to use a moist energy norm).  Such a constraint in the 4DENSV 

context potentially allows for noise control within the 4D increment without adding 

much computational cost.  Additionally, it is now possible to explore the use of a 

combination of noise constraints (weak constraint digital filter and incremental 

normal mode) to improve the quality of analysis. 

 

3.3.3  Impact on Single Analysis 

To ensure that the constraints are all properly functioning for use with the new 

4DENSV paradigm within GSI, a single analysis test case that assimilates real 

observations (including satellite radiances) within a 6-hr window valid at 06 UTC 15 

July 2010 is performed.  The background and ensemble files are generated from an 

offline experiment that utilizes the dual-resolution hybrid configuration, but at higher 

resolution than the OSSE-based cycled experiments described in Chapter 2.  For 

practical reasons, this analysis test case is also run at the higher resolution (from the 

T574 GFS model, with an 80 member, T254 ensemble with hourly output).  The 

analysis is run utilizing four separate configurations: 1) 4DENSV, 2) 4DENSV with 

tangent linear normal mode constraint on the increment over all time levels, 3) 

4DENSV with weak constraint digital filter, and 4) 4DENSV with weak constraint 

digital filter and the tangent linear normal mode constraint on the center of the 

window only.  The fourth configuration that utilizes both constraints is done with 

computational considerations in mind.  In all four configurations, there is no static 
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contribution to the solution (i.e. βf 
-1=0).  The desire is to have the normal mode 

constraint remove gravity mode tendencies in the middle of the window while 

allowing the weak constraint digital filter to maintain the connection to the other time 

levels through the procedure to get the filtered state, and penalize additional noise 

accordingly. 

Consistent with previous work in the literature utilizing 4DVAR, the 

divergence increment for the experiments that ran with the weak constraint digital 

filter is damped across the entire spectrum (Fig. 3.3).   Some interesting behavior is 

observed on the high spatial frequency part of the spectrum, most of which is an 

artifact of the dual-resolution aspect of the configuration (which is the subject of 

Chapter 4).  As expected, the more the solution is constrained, the more difficult it 

becomes to draw to the observations (Fig. 3.4).  The penalty reduction is greatest for 

the 4DENSV case with no extra constraints, followed by the experiment that utilizing 

the normal mode constraint and then the two experiments that utilized the weak 

constraint digital filter.   In all four configurations, the minimization appears well 

behaved with a steady reduction of the gradient norm.  By design, the tangent linear 

normal mode constraint has a significant impact on the incremental tendencies, 

particularly the gravity mode tendencies (Table 3.2).  On the other hand, while the 

weak constraint digital filter reduces the total tendencies by a factor of three, it has 

very little impact on the amount of tendencies that project onto undesirable gravity 

modes.  The configuration that utilizes the weak constraint digital filter and normal 

mode constraint in the center of the window appears to be the best compromise, by 

significantly reducing the total tendencies while also reducing the percentage that  
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Figure 3.3: Power spectra of the divergence increment for a single analysis valid at 06 UTC 15 
July 2010 on model level 35 (top, approximately 200 hPa) and 14 (bottom, approximately 850 
hPa) utilizing 4DENSV (non-hybrid) with no constraints (red), tangent linear normal mode 
constraint (blue), weak constraint digital filter (purple), and combined normal mode and weak 
constraint (green). 
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Figure 3.4: Observation penalty (top) and reduction of the gradient norm (bottom) by iteration 
for an analysis valid at 06 UTC 15 July 2010 utilizing 4DENSV (non-hybrid) with no constraints 
(red), tangent linear normal mode constraint (blue), weak constraint digital filter (purple), and 
combined normal mode and weak constraint (green). 
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Experiment Total Tendency Gravity Mode 
Tendency Ratio 

4DENSV 2.994×10-3 2.884×10-3 0.96 

4DENSV+TLNMC 3.313×10-4 2.029×10-4 0.61 

4DENSV+JCDFI 1.305×10-3 1.279×10-3 0.98 

4DENSV+COMB 8.874×10-5 6.608×10-5 0.74 

H-4DENSV 1.791×10-3 1.597×10-3 0.89 

 
Table 3.2: The root mean square sum of the incremental (spectral) tendencies (total and gravity 
mode) as well as the ratio (gravity mode / total) for the eight vertical modes kept as part of the 
TLNMC for the single analysis valid at 06 UTC 15 July 2010 using various 4DENSV 
configurations. 
 

 

project onto gravity modes, all at a significantly cheaper computational cost than 

running the normal mode constraint on all time levels.  The H-4DENSV experiment 

is included in Table 3.2 to aid in the interpretation of results later in this chapter. 

 

3.4  Experiment Results 

3.4.1  Impact of 4D Ensemble 

A series of experiments are designed to include various 4D-ensemble and 

hybrid components as an extension to the 3D runs that were described in Chapter 2.  

All of these new experiments utilize the same cold start initial condition for the 

control and ensemble, simulated observations from the Joint OSSE (Andersson and 

Masutani 2010), GFS model version and spatial resolutions (dual resolution mode), 

comparable versions for the GSI and EnKF codes, identical inflation parameters, and 
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cycling configuration for the data assimilation including the re-centering procedure.  

The experiments are designed in such a way as to infer which components of the 

hybrid and 4D extensions yield improvements (or degradations) to the quality of 

analyses, building upon the 3DVAR, 3DENSV ,and 3DHYB runs that were included 

in Chapter 2.  A listing and description of the five experiments can be found in Table 

3.3. 

 

 

 

 

Experiment Control Description Relevant 
Figures 

Relevant 
Equations 

4DENSV 3DENSV 
Pure 4D-Ensemble-

Var (No Static B), no 
TLNMC or JCDFI 

Fig. 3.5 Eq. 3.4 

H-4DENSV 4DENSV 4DENSV +  
βf -1=0.25, βe -1=0.75 Fig. 3.6 Eq. 3.6 

H-4DENSV_NMI H-4DENSV 
H-4DENSV + 
TLNMC (all 

observation k-levels) 

Fig. 3.7 
Fig. 3.8 

Eq. 3.6 
Eq. 3.9 

H-4DENSV_DFI H-4DENSV H-4DENSV + JCDFI 
(χ=10) Fig. 3.9 Eq. 3.6 

Eq. 3.10 

H-
4DENSV_COMB 

H-4DENSV 
3DHYB 

H-4DENSV + 
TLNMC (k=mid only) 

+ JCDFI (χ=10) 

Fig. 3.11 
Fig. 3.12 

Eq. 3.6 
Eq. 3.9 (k=m) 

Eq. 3.10 
 
Table 3.3:  Description of various (hybrid) 4D-ensemble-var OSSE-based experiments and 
relevant figures showing comparison of analysis errors relative to the control run for each.   
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The first experiment, 4DENSV, is designed to test the impact of going simply 

from 3DENSV to 4DENSV.  In this context, none of the constraints are invoked and 

the variational solver is utilized simply to initialize the high resolution deterministic 

component.  Likewise, the solution in both the 3DENSV and 4DENSV experiments is 

exclusively reliant upon the ensemble to prescribe the background error covariance.  

The assimilation window is kept fixed at six hours, though the 4DENSEV experiment 

utilizes hourly time levels (and therefore, hourly background and ensemble 

perturbations).  The change in the analysis error for zonal wind, temperature, and 

specific humidity is shown in Fig. 3.5.  Generally speaking, the analysis error is 

smaller in the 4DENSV experiment, especially for upper tropospheric extratropical 

winds and temperature, and lower tropospheric water vapor.  It appears that by going 

from 3D to 4D, the temperature analysis error has actually increased over the 

southern polar cap in the lower troposphere.  Recall from Chapter 2 (Fig. 2.6) that this 

region (southern polar cap, below 700 hPa) had seemingly large analysis errors to 

begin with, at least partly an artifact of utilizing pressure level data on a common grid 

and exposing interpolation and extrapolation issues (done independently and in a 

different manner in the validation data set and post-processing of each of the data 

assimilation experiments).  It is still interesting that this region is being exposed to 

exhibit an error increase in going to 4D, perhaps indicative of issues related to 

differences in topography between the nature run and model used in the experiments 

being exacerbated.  Also of note is the slight increase in analysis error for specific 

humidity in the mid-tropospheric tropics.  By in large, however, the impact in going 

from 3DENSV to 4DENSV is generally positive,  
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Figure 3.5: Difference in the time-averaged (August) zonal mean standard deviation of the 
analysis error for the 4DENSV experiment relative to 3DENSV for zonal wind (top, ms-1), 
temperature (middle, K), and specific humidity (bottom, g kg-1), covering the period spanning 00 
UTC August 2005 through 18 UTC 30 August 2005. 
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consistent with the better use of observations distributed through the assimilation 

windows as was demonstrated with the single observation test. 

By utilizing equations 3.6 and 3.7, an H-4DENSV experiment is designed to 

demonstrate the impact of including a time invariant static contribution to the analysis 

increment.  In this case, parameter settings similar to the 3DHYB experiment from 

chapter 2 are chosen with βf
-1=0.25 and βe

-1=0.75, so the (time-invariant) static 

contribution to the analysis increment is chosen to be 25% (and therefore, relying 

75% on the ensemble covariances). The tangent linear normal mode constraint is 

applied to the static component to the analysis increment solution only (and not to the 

total increment, see equations 3.8 and 3.9) in an effort to cleanly demonstrate the 

impact of the static contribution alone.  Given that the default settings chosen for the 

inflation parameters in the ensemble update result in an over-spread ensemble, it 

should be expected that the hybrid also helps to reduce the effective error variances 

thereby resulting in a better analysis.  A comparison of the analysis errors from this 

H-4DENSV experiment with the 4DENSV run show a nearly uniform reduction in 

the analysis error (Fig. 3.6), with the largest impacts evident in the extratropical wind 

and temperature fields, tropical upper tropospheric winds, and lower tropospheric 

specific humidity.  The inclusion of the static B to the 4DENSV solution has as big of 

an impact for some variables and levels as was found when going from 3DVAR to 

3DHYB (Fig. 2.8), though in different geographic regions (and more consistently). 
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Figure 3.6:  As in Fig. 3.5, but for the H-4DENSV minus 4DENSV experiment errors. 
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3.4.2  Constraint Experiments 

To further improve the quality of analyses within the 4D-ensemble-var hybrid 

context, experiments are designed to explore the contribution of adding further 

constraints to the total increment, such as through the inclusion of the normal mode 

constraint and weak constraint digital filter.  The first of such experiments is 

analogous to the original 3DHYB experiment that yielded such good results in 

Chapter 2, and applies the tangent linear normal mode constraint to the total analysis 

increment over all (hourly) k-time levels as in equation 3.9.  It should be noted, again, 

that such a configuration is quite computationally expensive as this particular 

constraint requires the calculation of incremental tendencies as well as spectral to grid 

transforms, all within the iterative minimization scheme.  However, the point here is 

to demonstrate the impact of such a constraint on the quality of analysis.  This 

experiment, denoted H-4DENSV_NMI, is carried out in the hopes of improving upon 

the H-4DENSV result described in the previous section.  However, the constraint 

appears to have very little (and localized) impact on reducing the analysis error (Fig. 

3.7), confined to small areas poleward of 70S for temperature and wind.  Similar to 

the findings in Kleist et al. (2009), the normal mode constraint does have an impact 

on reducing the background and analysis errors for surface pressure (Fig. 3.8).  This 

is consistent with the removal of incremental tendencies that project onto gravity 

modes, as also demonstrated within the context of the single analysis investigation in 

Section 3.3.3. 
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Figure 3.7: As in Fig. 3.6, but for the H-4DENSV_NMI minus H-4DENSV experiment errors. 
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Figure 3.8: Time series showing the global mean surface pressure error (hPa) for the 
background (top, solid) and analysis (bottom, dashed) from the H-4DENSV (red) and H-
4DENSV_NMI (blue) experiments. 
 
 

 

 

Another experiment, called H-4DENSV_DFI is conducted to test the impact 

of including the weak constraint digital filter in place of the normal mode constraint 

in the 4DENSV context.  Outside of the change in constraint terms, all of the other 

settings from the previous H-4DENSV experiments remain unchanged.   The digital 
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filter term is chosen to be based on a dry energy norm and utilizes a weighting 

parameter (χ) of ten, based on previous findings and documentation in literature.  The 

impact on reducing the analysis error is found to be larger than that for the normal 

mode constraint for temperature, wind, and specific humidity (Fig. 3.9).  The digital 

filter constraint does not have an impact on the surface pressure background and 

analysis errors as was noted for the normal mode constraint (not shown).  The 

improvement found in the specific humidity analysis error is surprising, given the 

choice of norm for the weak constraint penalty term (which does not include a moist 

component).  This suggests that the constraint is improving the overall quality of 

analysis in addition to positively impacting moist and precipitation processes in the 

short-term forecasts. 

It should be pointed out, however, that the impact of including the dynamic 

constraints on the 4DENSV formulation would likely be different in the absence of a 

static B contribution, which is utilized in H-4DENSV_NMI and H-4DENSV_DFI.  

One of the impacts that the static covariance has on the solution is to reduce the 

amplitude of the imbalance/noise.  A comparison of the incremental tendencies for 

the previously discussed single analysis case (Table 3.2) shows that H-4DENSV has 

tendencies that are roughly twice as small in amplitude as compared to the pure 

4DENSV case, with a much smaller projection onto gravity modes.  Although the 

impact of the static B on the imbalance is not as large as either of the constraints, it is 

noteworthy to aid in the interpretation of results. 

Building on the success of the H-4DENSV_NMI and H-4DENSV_DFI 

experiments and given that each of the two constraints appears to be contributing to  
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Figure 3.9: As in Fig. 3.7, but for the H-4DENSV_DFI minus H-4DENSV experiment errors. 
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improving the analysis through different means, a new experiment (H-

4DENSV_COMB) is designed that utilizes a combined tangent linear normal mode 

constraint and weak constraint digital filter.  In this experiment, the weak constraint 

digital filter parameter choices are identical to those utilized in H-4DENSV_DFI.  

However, the normal mode constraint is only applied to the center of the assimilation 

window, or in other words, to the actual increment that is added to the 6-hr forecast 

which is then passed on as the initial condition for the forecast model.  Explicitly 

applying the constraint to this specific time level will help ameliorate spin up issues 

by forcing the parts of the increment that project onto high frequency modes to zero.  

The weak constraint digital filter uses information over all of the time levels, and as 

such, aids to ‘propagate’ the balance information to the time levels away from the 

center of the window according to the filter weights (the center of the window is the 

largest contributor to the filtered state).  This is demonstrated by looking at the total 

and gravity mode tendencies from the single analysis case used in section 3.3, 

comparing the increments from a 4DENSV configuration and a configuration that 

utilizes both the weak constraint digital filter and normal mode constraint in the 

center of the assimilation window (Fig. 3.10).  First, note that the tendencies are 

significantly larger for the analysis without any constraints, with a very large portion 

of the tendencies coming from those that project onto gravity modes. The tendencies 

in the analysis that utilizes the constraints have a distribution throughout the window 

similar to the inverse of the filter weights, with the smallest amplitude in the center of 

the window and then increasing further away.  By design, the incremental tendencies 

at the center of the window have a much smaller projection onto gravity modes.  
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Figure 3.10: The root mean square sum of the incremental spectral tendencies (top) for the total 
tendency (4DENSV-red dashed, 4DENSV_COMB-blue dashed) and gravity mode tendency 
(4DENSV-red solid, 4DENSV_COMB-blue solid) for the eight vertical modes kept as part of the 
TLNMC for the single analysis valid at 06 UTC 15 July as a function of observation bin (analysis 
relative time).  Also plotted is the ratio (bottom, gravity mode/total tendencies) for the 4DENSV 
(red) and 4DENSV_COMB (blue) experiment. 
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 The inclusion of both constraints in the H-4DENSV_COMB experiment has a 

positive impact on the quality of analysis (Fig. 3.11), in the same regions as was 

noted in the H-4DENSV_NMI and H-4DENSV_DFI experiments.  Interestingly, the 

impact from including both constraints is slightly larger in amplitude than the 

combined impact of each of the constraints individually.  This validates the notion 

that the two constraints are contributing positively to the analysis in quasi-

independent manners (i.e., they are filtering different aspects of noise and imbalance).  

It is also interesting the constraints are contributing positively in the very same 

aspects as the static error covariance (comparing Figs. 3.6 and 3.11), resulting in 

significant improvements over pure 4DENSV when all three are utilized.  This is 

quite encouraging for operational (high resolution) applications, given that the 

configuration utilized in the H-4DENSV_COMB experiment is only slightly more 

expensive then the 4DENSV case (less than 10% increase in computational time), 

which in itself is almost exactly twice as computationally expensive as the 3DENSV 

configuration (all of which are much cheaper than a comparable 4DVAR or H-

4DVAR_AD would be). 

 A comparison of the analysis error from the H-4DENSV_COMB experiment 

with the 3DHYB experiment from Chapter 2 reveals that the inclusion of the 4D 

ensemble and constraint configuration results in significant reduction in analysis 

errors (Fig. 3.12).  This is particularly true for zonal wind, where the error reduction 

is evident for nearly all levels and regions, with a notable lack of change in the 

tropical lower troposphere.  Recall from Chapter 2 that the reduction in error was 

more evident in the tropics when going to the 3DHYB, with smaller error reduction  
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Figure 3.11:  As in Fig. 3.9 but for the H-4DENSV_COMB minus H-4DENSV experiment errors. 
 

 



 

 89 
 

 

Figure 3.12: As in Fig. 3.11 but for the H-4DENSV_COMB minus 3DHYB experiment errors. 
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(and in fact, an error increase for some variables and levels) in the extratropics.  The 

addition of the ensemble-based covariance seems to have the biggest impact in the 

tropics, whereas the extension to 4D has a bigger impact on the more dynamically 

active extratropics (particularly for temperatures and winds near jet level).  Note that 

the amplitude in the error reduction is similar when going from 3D to 4D hybrid as 

compared to the reduction found when adding the hybrid in the 3D context over the 

3DVAR control.  This is further confirmed by visualizing the geographic distribution 

of the 300 hPa zonal wind analysis errors in the H-4DENSV_COMB and 3DHYB 

experiments as well as their differences (Fig 3.13).  Although the local maxima in 

wind errors in several regions in the tropics associated with convection still exist, the 

amplitude is comparable to the 3DHYB results.  The reduction in the errors outside of 

the tropics is significant. 

The two problem areas that showed up in the comparison of the 4DENSV and 

3DENSV experiments are present yet again, however:  the low-level temperatures 

near the Antarctic ice shelf and the mid to upper tropospheric specific humidity in the 

tropics (Fig. 3.12).  The increase in analysis error for specific humidity (and very 

subtly for temperature) in the upper tropospheric tropics is a bit puzzling, given the 

lower tropospheric errors are in fact reduced.  A closer inspection of two sets of 3D to 

4D experiments reveals that the 4D paradigms result in more precipitable water in the 

analysis (Fig. 3.14), most notably in the tropics.  This subtle change in the amount of 

moisture in the analysis between the 3D and 4D paradigms is likely attributable to the 

treatment of the unphysical moisture (nonlinear) weak constraint terms used in the 

GSI.  The penalty terms for negative water vapor and supersaturation involve global  
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Figure 3.13: Time averaged analysis error standard deviation for 300 hPa zonal wind (ms-1) from 
the 3DHYB (top) and H-4DENSV_COMB (middle), as well as the difference (bottom, H-
4DENSV_COMB minus 3DHYB) for the simulated August period. 
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Figure 3.14: Analysis time-mean zonally averaged precipitable water (kg m-2, upper left) and 06-
hr forecasted precipitation (kg m-2, upper right) for the simulated August period for the 
3DENSV (blue, dashed), 4DENSV (orange, dashed), 3DHYB (red, solid) H-4DENSV_COMB 
(blue, solid) experiments.  The differences are shown on the bottom between the 4DENSV minus 
3DENSV (blue) and H-4DENSV_COMB minus 3DHYB (red) for precipitable water (kg m-2, 
lower left) and precipitation forecast (kg   m-2, lower right). 

 

 

sums of the amount of unphysical values.  In the extension of the solution to the 4D 

hybrid, these penalty terms are also extended to include options to utilize the entire 

4D increment as to ensure consistency between the different time levels (and 

therefore treatment of observations).  This results in a significant change in the 

manner for which these (highly nonlinear) weak constraint terms operate.  In this 

case, it seems that this change in weak constraint term (without further tuning of the 
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weighting parameters) in combination with the 4D use of the observations results in a 

slight increase in the amount of analyzed moisture. 

All other things being equal (such as the forecast model, nature of balance in 

the initial conditions, etc.), an increase in available moisture will result in a 

corresponding increase in precipitation for a short term forecasts, as is the case here 

(Fig. 3.14).  Given that the modeled tropical precipitation is dominated by convective 

parameterizations in both the nature run model and GFS, it is possible that such a 

distribution of decrease (lower level) and increase (upper level) in errors is associated 

with differences in the parameterized convection between the two models. 

A comparison of the H-4DENSV_COMB experiment to the original 3DVAR 

control reveals a substantial reduction in analysis error for all variables and levels 

(Fig. 3.15).  One exception is in the region that was noted to have ensemble spread 

(error variances) that is much too large compared to the actual background errors.  It 

is expected that a re-run of the H-4DENSV_COMB experiment with reduced 

inflation parameters will result in analysis errors that are even further reduced, similar 

to the findings in the 3DHYB and 3DHYB_RS experiments.  The slight increase in 

error for moisture in the upper tropospheric tropics that was found when going from 

3D to 4D is masked by the substantial gains attributable to the addition of the 

ensemble based covariances. 

 

3.4.3  Forecast Impact 

Similar to Chapter 2, a forecast impact experiment is carried out utilizing 00 

UTC analyses from the H-4DENSV_COMB configuration to initialize the GFS  
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Figure 3.15: As in Fig. 3.12 but for the H-4DENSV_COMB minus 3DVAR experiment errors. 
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model for integration out to 7.5 days.  The first two weeks of the experiment are 

ignored to account for spin-up.  All verification is done relative to the ECMWF 

nature run on a common grid.  Recall that it was found that forecasts initialized from 

the 3DHYB analyses were generally superior to those that were initialized from 

3DVAR analyses.  Given that the H-4DENSV_COMB experiment demonstrated 

reduced analysis errors relative to 3DHYB, it is reasonable to expect a similar 

reduction in forecast errors. 

A comparison of the mean geopotential height errors in the extratropics 

reveals the forecasts initialized from the H-4DENSV_COMB analyses are superior to 

those from the 3DHYB experiment in the northern hemisphere, but slightly worse in 

the southern hemisphere (Fig. 3.16).  The differences between the H-

4DENSV_COMB and 3DHYB forecasts for short lead times for 500 hPa geopotential 

height are statistically significant, whereas the differences for other regions and levels 

are not.  The apparent degradation to the southern hemisphere forecasts in the H-

4DENSV_COMB experiment is quite interesting, given the strong evidence for a 

generally superior analysis.  The H-4DENSV_COMB forecasts are superior to the 

original 3DVAR control for both regions, levels, and for all lead times as expected.  

Similar to the extratropical geopotential heights, there is evidence that the    

H-4DENSV_COMB results in less skillful forecasts in terms of tropical vector wind 

root mean square errors (Fig. 3.17).  It is a bit puzzling that a significant reduction in 

analysis error for the 200 hPa vector wind quickly disappears, within 24 hours, 

relative to the 3DHYB.  This is possibly consistent with the previously noted issues 

regarding the increased convection in the tropics for all of the 4D-based experiments.   
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Figure 3.16: The average geopotential height root mean square error by lead time for the 
3DVAR control (green), 3DHYB (red) and H-4DENSV_COMB (blue) experiments verifying 
daily between the simulated 27 July and 01 September for the northern hemisphere (left) and 
southern hemisphere (right) at 1000 hPa (top) and 500 hPa (bottom).  The difference between the 
experiments is shown on the bottom section of each panel for the 3DVAR-3DHYB (green) and H-
4DENSV_COMB-3DHYB (blue) along with the 95% confidence derived from a t-test.  Forecasts 
for each experiment were initialized at 00 UTC and verified against the ECMWF nature run. 
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Figure 3.17: As in Fig. 3.16, but for the vector wind root mean square errors in the tropics at 200 
hPa (left) and 850 hPa (right).  
 
 
 
 
The degradation in the H-4DENSV_COMB experiment does appear to be statistically 

significant.  It should be noted, however, that both the H-4DENSV_COMB and 

3DHYB experiments are superior beyond a 95% confidence threshold relative to the 

3DVAR control for all lead times out to 5 days.   

 

3.5  Summary and Conclusions 

An extension of the GSI-based hybrid variational ensemble algorithm to 

include 4D ensemble perturbations is proposed and implemented.  The 4DENSV 

algorithm has several advantages relative to 4D-EnKF and 4DVAR algorithms that 

make it attractive for an operational center such as NCEP.  Since 4DENSV does not 
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require the use of an additional dynamic model (i.e., the tangent linear or adjoint), it 

requires less in terms of computational resources than a traditional 4DVAR 

algorithm.  Since it is based on a variational algorithm, it becomes quite trivial to 

supplement the ensemble-based (4D) covariance will some static estimate which can 

help ameliorate potential sampling issues, particularly for small ensemble sizes.  

Furthermore, such a configuration allows for easy implementation of a dual-

resolution algorithm, solving for a high resolution increment using a low resolution 

ensemble and control variable (analogous to the interpolation of ensemble weights 

algorithm, Yang et al. 2009).  Lastly, variational-based methods have the advantage 

of physical space localization (implicit through the “background error” for the control 

variable) which can be important for observations such as satellite radiances. 

The ability to incorporate dynamic constraints on the solution within the 

variational framework is quite attractive.  Some examples include tangent linear 

normal mode constraints, weak constraints on unphysical values for atmospheric 

tracers, and weak constrains on conservation of global mean dry mass.  It is 

demonstrated that these constraints operate quite well within the 4DENSV 

framework.  Along these lines, an adaptation of a weak constraint digital filter 

(typically used in 4DVAR applications) is proposed and implemented.  A weak 

constraint digital filter allows for the control of noise within the 4D increment 

without much additional computational costs. 

Several OSSE-based experiments are carried out to demonstrate that the 4D-

ensemble-var algorithm and its hybrid variants contribute positively to the quality of 

analysis relative to the 3DENSV and 3DHYB experiments that were carried out in 
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Chapter 2.  It is found that going from 3D to 4D ensemble perturbations reduces the 

analysis error for most variables and levels.  The addition of a time-invariant static 

contribution to the analysis increment (i.e., hybridization) further reduces the analysis 

error.  The dynamic constraints (tangent linear normal mode constraint and weak 

constraint digital filter) are found to have a much smaller impact (individually) on the 

reduction in analysis error, but both do contribute positively.   

A follow-on experiment is designed to attempt to utilize both constraints, 

where the normal mode constraint is used to filter the solution only at the center of 

the window and the weak constraint digital filter is utilized to help control the noise 

throughout the 4D increment.  Such a configuration is computationally inexpensive 

relative to applying the normal mode constraint over all time levels, making it an 

attractive option for realistic (and high resolution) applications.  It is found that this 

combined constraint reduces the analysis error more than the sum of the individual 

constraint experiments do.  The combined constraint has the largest impact on 

reducing the wind errors, particularly in the extratropics.   

All of the 4D-based experiments have a larger impact, relative to their 3D 

counterparts, in the extratropics (particularly in the upper troposphere) than in the 

tropics.  This is consistent with the fact that these regions are more dynamically 

active, where the propagation of information and the usage of the appropriate time 

levels within the observations are more important.  The amplitude of the error 

reduction in going from the 3DHYB to H-4DENSV_COMB is similar to that when 

going from the 3DVAR control to 3DHYB.  The combined impact then of the                     

H-4DENSV_COMB relative to the original 3DVAR control is substantial for nearly 
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all variables and levels.  The only real problem areas are related to the regions for 

which the ensemble was found to be significantly over-spread (particularly poleward 

of 70S).  It is expected that a rerun of the H-4DENSV_COMB experiment with tuned 

inflation parameters (to reduce the ensemble spread, particularly in those regions) will 

result in even further improved analyses.  Further investigation may be needed to sort 

out precisely why the 4D extensions result in greater precipitable water in the 

analysis, and therefore exciting more convection.  One such set of experiments could 

involve a rerun of the 3DHYB and H-4DENSV experiments without the use of the 

weak constraint for unphysical tracers, since it is extremely difficult to force such a 

constraint to operate the same way in the 3D and 4D paradigms.  Another thought 

may be to look more closely into the 4D nature of the simulated observations, since 

they were extracted from discrete (3 hourly) time levels from the nature run, using 

linear interpolation to fill in the gaps. 

The interpretation of the forecast impact experiments from the H-

4DENSV_COMB analyses is more difficult than was the case for the 3DHYB 

experiment (relative to the control).  The H-4DENSV_COMB analysis does result in 

superior forecast skill in the northern hemisphere, but seemingly degrades the 

forecasts in the southern hemisphere and tropics relative to the 3DHYB forecasts.  

However, the differences in the southern hemisphere are not statistically significant, 

and the degradation in the tropics is likely related to the increased convective 

precipitation.  Work is already underway to test the H-4DENSV_COMB 

configuration using real observations to test the forecast impact on the real system. 
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Although the GSI has a 4DVAR capability within it, the inefficiencies of the 

inner loop dynamic model make it unaffordable for running fully cycled experiments.  

Work is ongoing to make the dynamic model more efficient.  Once it is ready and can 

be utilized for such an experiment, it will be interesting to compare the results of the 

H-4DENSV experiments with actual 4DVAR (including H-4DVAR_AD).  There is 

also additional work that can be done on the 4DENSV algorithm itself, such as 

treating the outer loop more appropriately (along the lines of the ideas proposed in 

Yang et al. 2012).  To this point, the 4DENSV algorithm has been executed more like 

a 3DVAR implementation at least in terms of how the outer loop operates.  Perhaps 

some of the noted issues can be improved through a quasi-outer loop (where the 

nonlinear control model is run as part of the outer loop but the perturbations are held 

fixed) or full outer loop (where both the control and ensemble forecasts are rerun). 
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Chapter 4: Scale-Dependent Weighting 
 

4.1  Introduction 

 It has been demonstrated that ensembles can be effectively used to provide 

flow-dependent, multivariate estimates of analysis and background error covariances 

in ensemble (Evensen 1994; Houtekamer and Mitchell 1998; Whitaker and Hamill 

2002; Hunt et al. 2004, 2007; and many others) and hybrid (Wang et al. 2007b; 

Buehner et al. 2010a,b) data assimilation algorithms.  Ensembles of assimilations 

have also been shown to be beneficial in providing flow dependent error variances for 

variational systems (Kucukkaraca and Fisher 2006; Isaksen et al. 2007; Raynaud et al. 

2009, 2011).   However, due to computational considerations, compromises are often 

necessary in terms of the choice of ensemble resolution and/or size.  The use of a 

finite sized ensembles, typically between 0(10) and 0(102), introduces the necessity to 

deal with sampling noise in order to effectively use the covariance (or variance) 

estimate.   

The issue of spurious correlations over large spatial distances has been widely 

studied and addressed in the framework of localization within ensemble data 

assimilation algorithms (examples include but are not limited to Houtekamer and 

Mitchell 1998; Hamill et al. 2001; Bishop and Hodyss 2007; Hunt et al. 2007).  

Within the hybrid algorithm as described in Chapters 2 and 3, two separate sets of 

localization are utilized:  one within the ensemble assimilation update (as in Whitaker 

and Hamill 2002) and the other implicitly in the variational-based hybrid through the 
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specification of the L covariance matrix for the ensemble control variable (as in 

equations 2.1 and 3.6).   

For the use of ensemble-based variances from limited-sized ensembles within 

variational algorithms, a variety of spatial filtering techniques have been proposed 

and successfully implemented (Raynaud et al. 2009; Bonavita et al. 2011).  In the 

objective filtering work proposed by Reynaud et al. (2009), a filtering step is 

designed that attempts to maximize the signal to noise ratio of ensemble variances.  

As such, it requires a method for calculating the energy spectrum of the sampling 

noise in the ensemble-based variances.  Several examples demonstrate that sampling 

noise dominates for high frequency scales of motions, whereas even a fairly small 

ensemble can capture the true error variance without much contamination from 

sampling (see. Figs. 2 and 3 in Reynaud et al. 2009; and Fig. 5 in Bonavita et al. 

2011).   

Within the hybrid algorithm up to this point, the ensemble perturbations have 

been utilized as-is when being blended with climatological estimates for B, assuming 

that sampling error is constant for all variables, locations, and scales of phenomenon.  

Given that it has been demonstrated for a finite-sized ensemble that the variance 

estimates are dominated by sampling for small scales, there are clearly alternative 

methods for using the ensemble-based information more intelligently within the 

hybrid update, such as through a (piecewise) scale-dependent weighting between the 

ensemble and static contributions.  One such idea was proposed in Lorenc (2003), 

where it was argued that it might be desirable to have the small scales determined 

more heavily by the traditional control variable (i.e., through the use of static B), 
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while relying more on the ensemble for synoptic (large) scales.  For the 3DHYB 

experiment carried out in Chapter 2, it is evident that the evolved EnKF perturbations 

used within the hybrid have too little power at the very largest scales, too much power 

for wave numbers between 25 and 100, and no information at all at high frequencies 

(Fig. 4.1).  Interestingly, there is pretty good agreement between the power spectra 

within the EnKF approximated background error and the actual background error for 

the case shown.  It is evident even from this simple example that the weighting 

parameter between the static and ensemble contributions should be expanded beyond 

a single value for all frequencies. 

The rest of this chapter describes an algorithm for applying scale-dependent 

weights for the ensemble and static contributions to the solution within hybrid data 

assimilation.  Section 4.2 describes further motivation and practical implementation 

of a scale-dependent scheme into the GSI-based hybrid.  The results of including 

scale-dependent weighting in a 3D-hybrid experiment are provided in section 4.3.  

This is followed by a brief summary and motivation for future work. 

 

4.2  Scale-dependent weighting in GSI-based hybrid 

The extension to include scale-dependent weighting terms within the 

variational-based hybrid is straightforward through a minor modification of equation 

2.1, if x, B, and L are formulated in spectral space (superscript s denotes spectral or 

wave space): 
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Figure 4.1: Power spectra for zonal wind (top, kinetic energy m2s-2) and temperature (bottom, 
potential energy, K2) for the nature run forecast (brown), 3DHYB 06-hr forecast error (red), and 
06-hr EnKF perturbations from the 3DHYB (aqua) averaged from 06 UTC 08 August through 
12 UTC 09 August. 
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where, β sf and β se are now functions of total wavenumber.  In practice, however, the 

GSI is solved utilizing a preconditioned conjugate gradient algorithm.  For this 

purpose, we rewrite the spectral cost function using two transformed variables 

(similar to Wang 2010): 

(4.2) 

(4.3) 

resulting in 

(4.4) 

 
where Jo is representative of the observation penalty term.  The control variables can 

then be represented as 

(4.5) 
 

 
 (4.6) 

 
Conveniently, the inverses of B and L are no longer necessary.  Some details 

regarding the minimization algorithm can be found in the GSI User’s Guide (see 

Chapter 6, available online at http://www.dtcenter.org/com-GSI/users/index.php).  

The scale dependent weighting is implemented directly into equations 4.5 and 4.6.  

However, to do so requires an additional step since the solution is formulated in 

physical (not wave) space.  By inserting a grid to spectral operator (S) and its inverse, 

and operating directly on the z and ν in physical space (dropping the s) we finally end 

up with 
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The calculation of the total analysis increment (xt) as the sum of the static and 

ensemble contributions is exactly as in equation 2.2.  Note that this derivation results 

in the scale dependence being applied directly to the control variable (and not the 

contribution to the increment) for the ensemble term. 

The use of a dual-resolution hybrid update step (where the ensemble is at 

lower spatial resolution, as in Chapters 2 and 3) introduces an interesting problem.  

To this point, only a single weighting parameter is utilized to control the relative 

weights for the entire spectrum, even though the ensemble and static contributions 

have information over a different range of scales (i.e. the ensemble has zero 

information for scales below the truncation).  For frequencies that are higher than the 

truncation of the ensemble, the amplitude of the solution is going to be artificially 

damped since the ensemble perturbations cannot contribute anything meaningful and 

the static contribution is weighted to account for a pre-specified percentage across all 

scales.   

To demonstrate the problem, a single analysis test case that assimilates real 

observations (including satellite radiances) within a six hour window valid at 06 UTC 

15 July 2010 is performed (identical to the high resolution single analysis experiment 

in section 3.3.3).  Two single cases are run from the same dataset, a 3DVAR control 

and dual-resolution 3DHYB (T574 deterministic control, 80 member T254 ensemble, 

with βf
-1=0.25).  For the dual-resolution hybrid configuration, interpolation (and the 

adjoint thereof) between the lower resolution (ensemble) grid and full analysis grid is 

necessary to translate the ensemble information to the analysis increment.  This 
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results in spurious information being aliased to the highest of frequencies in the 

analysis increment for several of the fields (Fig. 4.2).  For the 3DHYB increment, the 

truncation of the ensemble resolution is obvious, with a sharp cutoff at wave number 

254, except for the spurious power at high frequencies generated from the 

interpolation.  This further motivates the desire to have a capability to apply scale 

dependence, as a means for masking issues related to the interpolation of information 

between the lower resolution ensemble and high resolution hybrid increment. 

 

 

 

Figure 4.2:  Power spectra of the analysis increment from a 3DVAR (green) and dual-resolution 
3DHYB (red) experiment valid at 06 UTC 15 July 2010 for 200 hPa divergence (upper left), 500 
hPa vorticity (upper right), 850 hPa temperature (lower left) and surface pressure (lower right). 
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The dual-resolution hybrid necessitates a slight reformulation for the 

application of the scale dependent weights for the ensemble term.  Instead of applying 

the scale dependent weights to the ensemble control variable, the algorithm is 

modified: 

(4.9) 

 
(4.10) 

 

where xe is the solution for the ensemble contribution only.  In this formulation, the 

scale dependent weights are applied to the transformed physical space variables 

directly for both the ensemble and static contributions to the increment (i.e. equation 

4.7 is kept the same).  One advantage of this formulation is that it allows for an 

explicit mask to be applied (i.e. zero) for wavelengths that the ensemble has no 

information. 

 

4.3  Experimental Results 

4.3.1  Single Analysis Test Case 

 To test that the scale dependent weighting has been implemented correctly, 

the previously used single analysis dual-resolution 3DHYB experiment is rerun with 

scale dependent weightings turned on.  The weights that are utilized for the two scale 

dependent tests can be found in Fig. 4.3.  In the first test (SD1), the exact same hybrid 

weights are used for wave numbers 0 through 254 (βf
-1=0.25, βe

-1=0.75), however, for 

wave numbers 255 through 574, the increment comes exclusively from the static 

contribution (βf
-1=1.0, βe

-1=0.0).  This has the effect of explicitly zeroing out any 
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spurious contribution from the part of the spectrum that the ensemble has no 

information.  Also, this allows the analysis to make appropriate changes at the highest 

frequencies according to the specification of B.  A second test (SD2) is designed to 

attempt to exercise the scale-dependent code in a manner consistent with the assumed 

characteristics of the sampling error within the ensemble.  The weighting terms are 

assigned values to rely heavily on the ensemble for the large scales, not at all for high 

frequencies, and a compromise or blend for wavenumbers in between (weights can be 

found in Fig. 4.3). 

 

 
Figure 4.3: The scale-dependent weights, βf

-1 (black) and βe
-1 (grey) for the SD1 (left) and SD2 

(right) single analysis experiments.  
 

 

 By design, both of the experiments SD1 and SD2 are able to mitigate the 

previously noted aliasing issues at the highest frequencies within the dual-resolution 

hybrid related to the interpolation between grids (Fig. 4.4).  Relative to the 3DHYB, 

the resultant analysis increment in the SD1 experiment is very similar for all wave 

numbers within the resolution of the ensemble.  The increment from SD2 exhibits 
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characteristics consistent with the designed weighting parameters, having the 

amplitude down-weighted from the 3DHYB toward the 3DVAR based solutions for 

the wave numbers ranging between 100 and 200.  Since the power spectra for the 

surface pressure increment is very similar in the 3DVAR and 3DHYB test cases (Fig. 

4.2) due to the tangent linear normal mode constraint filtering, the scale-dependent 

weights have very little impact (Fig. 4.4). 

 

 

 
Figure 4.4: As in Fig. 4.2, but for the 3DHYB (red), SD1 (purple), and SD2 (light blue) 
experiments.  
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4.3.2  Cycling OSSE Experiment 

Just as in previous chapters, a cycling experiment is carried out by 

assimilating the simulated observations from the Joint OSSE for the same period.  

The new experiment utilizes the 3DHYB_RS experiment from Chapter 2 as the 

control run, and tests the impact of adding scale dependence on the quality of 

analysis.  The 3DHYB_RS experiment is chosen as the baseline given the superior 

performance relative to the original 3DHYB experiment, resulting from tuning the 

inflation parameters to give better ensemble spread.  The choice of scale-dependent 

weights for this new experiment (3DHYB_RSSD) is illustrated in Fig. 4.5.  This 

configuration results in a system that should behave exactly as the previous hybrid 

experiment (3DHYB_RS) for all wave numbers smaller than 120 (i.e. 75% ensemble, 

25% static contribution).  For all wave numbers greater than 170, only the static B 

contributes to the solution.  The frequency band in between then contains a transition 

zone that goes from heavy ensemble to all static B.  The biggest difference, then, 

between the 3DHYB_RS and 3DHYB_RSSD should be for the highest frequencies, 

where the original 3DHYB_RS experiment likely suffered from the aforementioned 

aliasing problem. 

The inclusion of the scale dependent weighting, even though quite 

conservative, yields a reduction in the analysis errors relative to the 3DHYB_RS 

experiment (which itself was quite an improvement over the original 3DHYB) for 

zonal wind and temperature, particularly in the extratropical troposphere (Fig. 4.6).  

The scale dependence increases the analysis error for stratospheric temperatures and 

localized regions in the tropics for humidity.  This provides evidence that the use of  
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Figure 4.5: As in Fig. 4.2, but for the 3DHYB_RSSD cycling experiment. 
 
 
 
the ensemble-based information needs to be made even more flexible beyond the 

specification of scale dependent global weights, and instead may need to include 

level- and/or variable-dependent weights.  For example, the truncation for which the 

water vapor and cloud information from the ensemble may be more useful is likely at 

much smaller wavelengths than for temperature and winds.  However, introducing 

variable specific scale-dependent weights introduces the possibility of destroying 

some of the balance between variables within the perturbations.  In terms of applying 

level-dependent weights, to utilize only the very largest of scales from the ensemble 

in the stratosphere, for example, is straightforward to implement and will be one of 

many areas for future work.  Ideally, an algorithm needs to be developed to utilize a 

fully adaptive, flow-dependent, evolving set of weights between the static and 

ensemble contributions. 
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Figure 4.6: Difference in the time-averaged (August) zonal mean standard deviation of the 
analysis error for the 3DHYB_RSSD experiment relative to 3DHYB_RS for zonal wind (top, m  
s-1), temperature (middle, K), and specific humidity (bottom, g kg-1). 
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4.4  Summary and Discussion 

Ensemble-based (and hybrid) methods are always going to be sensitive to 

compromises that need to be made related to resolution and ensemble size.  Methods 

for dealing with sampling error in ensemble and variational algorithms have been 

explored in some detail through covariance localization and spatial filtering 

techniques.  Along these lines, it remains an area of research to find better ways for 

utilizing ensemble information within hybrid algorithms.  One such idea is to build 

weighting parameters between the static and ensemble covariance approximations 

that are a function of scale.  The idea is motivated by the fact that the signal to noise 

ratio for limited size ensembles is much smaller at high frequencies than for small. 

A simple method for applying scale dependent β-factors is derived and 

implemented for use within the GSI-based hybrid scheme.  The impact of the scale-

dependent scheme is demonstrated through single analysis and cycling experiments. 

The impact on the power spectrum of the analysis increment is as expected, 

demonstrating that the scale-dependent weights are implemented correctly.  Despite 

the fact that the initial set of experiments utilized fairly conservative set of scale 

dependent weights, the net result was a general reduction in analysis errors in the 

OSSE-based cycled run, particularly in the extratropical troposphere.  

The scheme is able to eliminate some artificial features at the highest 

frequencies that appear within the dual-resolution hybrid as a result of aliasing from 

the interpolation algorithm between the low and high resolution grids.  The use of 

scale-dependent weights is not the only way to mitigate this issue.  As was shown in 

the 4D context, the use of a weak constraint digital filter can help eliminate such 
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issues (Fig. 3.3).  Alternative (higher order or smoothing) interpolation schemes could 

also be implemented as an alternative to the brute force scale-dependent weights 

method. 

  The increase in analysis errors for several variables and regions highlights the 

necessity for more work investigating how to make better use of the ensemble 

information within the hybrid.  The weights should likely be expanded to also be 

level- and/or variable-dependent.  However, doing so does increase the number of 

parameters that need to be specified and makes maintaining a model consistent 

balance more difficult.  Building on previous research on adaptive inflation 

(Anderson 2009; Miyoshi 2011) and localization (Bishop and Hodyss 2007, 2009a, 

2009b, 2011; Anderson 2012) for ensemble assimilation schemes, a method for 

quantitatively specifying adaptive weights (which could be functions of level, scale, 

or variable) is a direction for future research. 
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Chapter 5:  Real Observation 3D-Hybrid Experiment 
 

5.1  Introduction  

It has been demonstrated in Chapters 2-4 that the inclusion of ensemble-based 

covariance estimates within the variational scheme in a hybrid manner yields 

improvements to the quality of analyses and subsequent forecasts within a controlled, 

OSSE framework where the truth is known.  However, there is no guarantee that such 

a finding will translate directly to the real system where the true atmospheric state is 

never known.  The nature run is produced by a discretized numerical model including 

parameterized physics resulting in many potential issues.  The observations and their 

(largely unknown) associated errors are simulated based on discrete output from the 

nature run model, and therefore may not be truly representative of the quasi-

continuous set of observations assimilated into the real NWP system.   

Forecast impact experiments within the OSSE framework may be especially 

susceptible to the issue of unrepresentative results of the real system, given that it is 

likely that the nature run and experiment models are more like each other than they 

are to the real atmosphere.  Although most of the results found in previous chapters 

were generally consistent, several lingering issues remain.  For example, not all of the 

experiments that yielded a significant reduction in analysis errors were able to 

produce better forecasts.  Recall that in the 3DHYB versus 3DVAR comparison, the 

results for the Northern Hemispheric forecasts were basically neutral, despite the fact 

that the 3DHYB exhibited smaller analysis errors than the 3DVAR counterpart.  For 

any OSSE-based findings to be of practical use to an operational center such as 
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NCEP, they need to be validated to produce the same expected behavior for the real 

system. 

To further validate the findings from Chapter 2, a set of analysis and forecast 

impact experiments analogous to 3DVAR and 3DHYB are designed and carried out 

using a real NWP system.  Section 5.2 provides details regarding the experiment 

design.  This is followed by a description of the impact of including the 3D-Hybrid on 

forecast skill relative to 3DVAR.  A brief summary and motivation for future work is 

then presented. 

  

5.2  Experimental configuration 

 Two experiments analogous to the OSSE-based 3DVAR and 3DHYB are 

carried out to test the impact of including the 3D-hybrid on forecast skill for a real 

NWP system.  For these experiments, the NCEP GFS model that became operational 

in May 2011 is again utilized.  However, for these experiments, the model is run at 

the operational T574 spectral resolution utilizing the same 64 hybrid (sigma-pressure) 

vertical levels that have been utilized for all other experiments.   

The same version of the model is utilized for both cycling within the global 

data assimilation system (GDAS) as well as making the two-week deterministic 

forecasts.  A 3DVAR control using real observations (3DVAR-R) is carried out 

spanning the period covering 15 July 2010 through 01 November 2010.  The first two 

weeks of the experiment are ignored for spin-up.  The data assimilation cycling 

mimics the procedure utilized in operations, where the long (15 day) forecasts are 

initialized from a cycle with an earlier data cut-off time (called GFS) to allow for 
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distribution of products as quickly as possible.  A second assimilation is run each 

cycle with a later data cutoff time (called GDAS).  This secondary, late cycle creates 

all of the necessary components for the following cycle.  The analysis for both the 

GFS and GDAS cycles utilizes a short-term forecast from the previous GDAS cycle 

as the background (a more detailed explanation is provided in Kleist et al. 2009 a, b).  

To save on computational resources, the longer deterministic forecasts for the GFS 

cycle are only initialized for the 00 UTC cycle (see Fig. 5.1 for illustration of 

experiment components).  Additionally, the forecasts are only carried out to 8 days, as 

opposed to 15 days as is done operationally by NCEP.  As in the 3DVAR 

experiments from previous chapters, the 3DVAR-R utilizes a similar, hybrid-capable 

version of the GSI.  The analysis is performed on the linear Gaussian grid that 

corresponds to T574, with 1152 × 578 grid points in the horizontal.  Tuned estimates 

for background and observation errors are taken from the operational GDAS (see 

Kleist et al. 2009b, with additional information available from 

http://www.emc.ncep.noaa.gov/gmb/gdas/).  All operationally available observations 

are assimilated for the period including rawinsondes, aircraft, surface pressure, wind 

profilers, ship and buoy, satellite derived AMVs, GPS radio occultation bending 

angle, as well as microwave and infrared satellite radiances (using the CRTM, Han et 

al. 2006).  A variational bias correction algorithm (Derber and Wu 1998; Dee 2005) is 

applied to the radiance observations as is done operationally. 

 A second experiment is then run to test the impact of the hybrid.  This new 

experiment, 3DHYB-R, starts from the same set of initial conditions as the  

http://www.emc.ncep.noaa.gov/gmb/gdas/�
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Figure 5.1:  Diagram of the cycling procedure used the operational NCEP GFS/GDAS and 
experiments in Chapter 5.  Solid arrows represent the short term (09-h) forecast from the GDAS 
analysis (two errors per cycle represent a single forecast), whereas dashed arrows represent the 
15-day forecast from the early (GFS) cycle.  Green (red) colors represent those components that 
are (not) performed in the 3DVAR-R and 3DHYB-R experiments.  Black arrows represent both 
the higher resolution deterministic and low resolution ensemble forecasts in the case of the 
hybrid. 
 

 

3DVAR-R and uses an identical configuration but adds the hybrid capability exactly 

as described in Chapter 2.  However, since the deterministic model is at higher 

resolution than what was used in the OSSE-based studies, the resolution of the 

ensemble is similarly increased to T254L64.  The ensemble utilized for the hybrid is 

an 80 member ensemble, updated with the same EnKF (serial square root filter, 

Whitaker and Hamill 2002) and inflation procedures as previous chapters.  The same 

inflation parameters that were used in the OSSE-based 3DHYB are used here.  Like 

previous experiments, the EnKF utilizes the GSI for all observations operators, and 

again uses separate data selection and quality control from the high resolution 

deterministic analysis (relying on the ensemble mean, as well as coarser thinning 

mesh).   Although it has an algorithm to do so internally, the EnKF relies on the GSI-
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hybrid for updating the variational bias correction coefficients.  This ensures 

consistency in the treatment of observations between the GSI-hybrid and EnKF.  The 

EnKF-based perturbations are also recentered about the hybrid analysis every cycle 

(Fig. 2.4).  The EnKF is only run as part of the late cutoff (GDAS) cycle.  The hybrid 

analysis for the early (GFS) cycle uses the ensemble forecasts from the previous 

GDAS cycle (Fig 5.1).  The initial ensemble for the 3DHYB-R experiment comes 

from a set of an interpolated set of operational NCEP Global Ensemble Forecast 

System (GEFS) initial conditions valid 00 UTC 15 July 2010.  The parameter settings 

for the GSI hybrid are βe
-1=0.75 and βf

-1=0.25.  

 

5.3  Forecast Impact 

The forecasts that are initialized from the 00 UTC GFS cycle from the 

3DVAR-R and 3DHYB-R are evaluated using a variety of metrics utilized by many 

operational centers.  All analysis grid-based metrics (RMSE, AC) are done by 

evaluating forecasts against analyses from each owns’ experiment (as opposed to an 

independent or consensus analysis.  All forecasts valid within the time spanning 00 

UTC 05 September and 00 UTC 31 October 31 are verified. 

Consistent with the results from the OSSE-based experiments discussed in 

Chapter 2, the addition of the hybrid to the analysis system yields a significant 

reduction in the forecast error for geopotential height in the extratropics for all lead 

times and levels (Fig. 5.2).  The error reduction shows up almost immediately in the 

forecasts and grows throughout in both hemispheres.  For this particular case, the 

error reduction is greater in the Southern Hemisphere (which itself exhibits larger 
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Figure 5.2:  Time-averaged root mean square geopotential height errors (m) for forecasts from 
the 00 UTC analysis in the 3DVAR-R experiment as a function of lead time for the Northern 
Hemisphere (upper left) and Southern Hemisphere (lower left) verified against the 3DVAR-R 
analyses for forecasts verifying between 05 August 2010 and 31 October 2010.  The difference 
between two experiments ([3DHYB-R]-[3DVAR-R]) for the Northern Hemisphere (upper right) 
and Southern Hemisphere (lower right) is also plotted, where 3DHYB-R forecasts are verified 
against 3DHYB-R analyses. 
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errors than the Northern Hemisphere).  In both hemispheres, there is a substantial 

reduction in geopotential height errors for lead times greater than 4 days in the 

stratosphere.  Focusing on the die off curves for 1000 hPa and 500 hPa, it is verified 

that most of the improvement is statistically significant at the 95% confidence level 

(Fig. 5.3).  This is particularly true for the Northern Hemisphere, despite the fact that 

amplitude of the error reduction is smaller than the Southern Hemisphere.  For the 

Southern Hemisphere, the error reduction is statistically significant for short lead 

times but on the edge of being significant for lead times beyond 4 days. 

In terms of anomaly correlation, the results are quite similar to the findings 

based on geopotential RMSE.  The 3DHYB-R is significantly more skillful in the 

Northern Hemisphere at both 1000 and 500 hPa (Fig. 5.4).  For the Southern 

Hemisphere, the improvement in skill in terms of this metric is even more impressive, 

and now shown to be significantly significant all the way out to 7 day lead times.  

This type of consistent, statistically significant improvement is very difficult to 

achieve for these types of metrics.  The results here are a bit in conflict with the 

findings found in Chapter 2, where the forecast skill improvement from the hybrid 

was not nearly as impressive in the Northern Hemisphere, attributable to the 

previously noted issues with using an OSSE for this type of investigation. 

 As impressive as the impact on extratropical height forecasts is exhibited to be 

through use of the hybrid, the OSSE-based experimentation provides evidence that 

the inclusion of ensemble based covariances has a larger impact in the tropics.  A 

comparison of the tropical vector wind RMSE reveals that hybrid does seemingly  
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Figure 5.3:  The average geopotential height root mean square error by lead time for the 
3DVAR-R (green) and 3DHYB-R (red) experiments verifying daily between 05 August 2010 and 
31 October 2010 for the northern hemisphere (left) and southern hemisphere (right) at 1000 hPa 
(top) and 500 hPa (bottom).  The difference between the experiments is shown on the bottom 
section of each panel for the [3DHYB-R]-[3DVAR-R] along with the 95% significance.  Forecasts 
for each experiment were initialized at 00 UTC and verified against analyses from their own 
experiment. 
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Figure 5.4:  As in Fig. 5.4, but for anomaly correlation instead of RMSE.    
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reduce the forecast error (Fig. 5.5).  However, the reduction in wind errors is not as 

impressive as those found for geopotential heights in the midlatitudes, except for the 

very substantial reduction noted in the tropical stratosphere.  There is evidence in the 

analysis based verification that the hybrid is actually increasing the errors by a small 

margin for short lead times in the troposphere.  However, a comparison of short-term 

forecasts to in situ wind observations in the tropics (rawinsonde and aircraft) shows 

that the 3DHYB-R forecasts are actually superior to the 3DVAR-R forecasts (Fig. 

5.6), in direct conflict with the information from the analysis-based RMSE metric.    

Compared to the observations, both the RMSE and low-speed bias are improved in 

the 3DHYB-R, throughout the depth of the troposphere.   

 
 
 
 

 
Figure 5.5:  As in Fig. 5.2, but for vector wind RMSE instead of geopotential height. 
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Figure 5.6:  Time-averaged wind speed bias (left) and vector wind RMSE (right) of 3DVAR-R 
(green) and 3DHYB-R (red) forecast with lead times of 24-h (top) and 48-h (bottom) as 
compared to rawinsonde and aircraft measurements in the tropics for the period covering 05 
August 2010 through 31 October 2010. 
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In terms of the conflicting verification, there is a region around 500 hPa where 

the analysis based metric shows that the 3DHYB-R forecasts are worse by some 0.2 

ms-1, whereas the observation based RMSE is improved in the 3DHYB-R by a similar 

amplitude for 24-hr forecasts.   It is important to note that both metrics are using a 

“truth” that has errors associated it (be it analysis or observation error).    Grid-based 

RMSE calculations can be misleading, as things can be inadvertently rewarded 

(penalized) for having a smoother (noisier) verifying analysis.   This may have 

implications for some of the interpretation of the OSSE-based results and worthy of 

further consideration in future work.  

 A comparison of tropical cyclone forecasts reveals that the hybrid results in a 

sizeable reduction in track/position errors, particularly beyond 48-hr lead time (Fig. 

5.7).  The differences between the 3DVAR-R and 3DHYB-R forecasts are found to 

be at or near 95% significance for 48-hr through 96-hr by utilizing a paired block 

bootstrapping algorithm (Hamill et al. 2011a).  These results are consistent with the 

findings for both EnKF and hybrid-based results presented in Hamill et al. (2011b).   

Given that these are global model forecasts at fairly coarse resolution for tropical 

cyclone dynamics, much of the gain can likely be attributable to the improved 

steering forecasts and not necessarily improvements to the initialization of the 

tropical cyclones themselves.  In both the 3DVAR-R and 3DHYB-R experiments, the 

assimilation of tropical cyclone minimum sea level pressure is utilized (Kleist 2011), 

which is the one of the predominant mechanisms along with a relocation procedure 

for initializing the storms in the GFS (most observations are actually screened due to 

representativeness issues).  The intensity bias is very similar between the two 



 

 129 
 

experiments for all lead times including initialization (not shown), indicating that the 

hybrid is not simply providing better initial storms, thereby further suggesting that the 

improved steering flow in the tropics is critical.   

 

 

 
 
 
 

 
 

Figure 5.7:  The average tropical cyclone track error (km) for 3DVAR-R (green) and 3DHYB-R  
(red) forecasts for the period covering 10 August 2010 through 31 October 2010.  The average 
track error was computed from a homogeneous sample of cases for storms in the Atlantic, East 
Pacific, and West Pacific basins.  The number of cases for each lead time is identified below each 
forecast hour.  Error bars indicate the 5th and 95th percentile of a re-sampled block bootstrap 
distribution. 
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 Although only small subset of verification metrics is presented here for the 

comparison of the 3DVAR-R and 3DHYB-R experiments, it is generally 

representative of other variables, levels, and metrics.  These results are also consistent 

with the findings of pre-operational trials of the hybrid for the NCEP GFS/GDAS, 

scheduled to be implemented in spring 2012.  A further evaluation of these 

experiments is ongoing, and will be the subject of another manuscript that will 

include some follow-on work and interpretation. 

 

5.4  Conclusions 

 Experiments have been designed and carried out to test the impact of 

including a 3D-Hybrid scheme using a realistic (operational resolution) prototype 

system and real observations.  The experiment is designed to mimic the operational 

GDAS/GFS as closely as possible including observational processing, cycle 

configuration (early cut-off for initialization of deterministic forecast), and post-

processing of model output.  Unlike the OSSE-based results, there is no known 

“truth” to validate the analysis error.  Instead, focus is placed on validating the quality 

of forecasts initialized from the hybrid analyses versus those initialized using 

3DVAR.   The three month experiment covers the 2010 hurricane season.   

 It is immediately clear the hybrid analyses result in more skillful forecasts 

than those initialized using 3DVAR.  Several metrics are considered, including 

analysis-based RMSE and AC, fits of forecasts to observations, and tropical cyclone 

track and intensity errors.  The gain in skill appears for most variables, regions, and 

lead times.  For most metrics, the skill difference is found to be statistically 
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significant at the 95% level.  Although not focused on in this chapter, a sizeable 

reduction in errors in the stratospheric forecasts is also observed.  A more thorough 

evaluation is ongoing and will be the subject of a future manuscript.  Similar to the 

systematic OSSE-based runs discussed in Chapters 2 and 3, more sensitivity 

experiments are underway (though using real observations) in an attempt to ascertain 

which aspects of the hybrid yield the significant gains (background error, physical 

space localization, dynamic constraint terms in the variational framework), relative to 

standalone 3DVAR and 3D-EnKF counterparts. 

 Some of the results found in the real observation experiments are in conflict 

with the results from the OSSE-based experiments.  Consider the forecast impact 

experiments carried out in Chapter 2 (3DVAR versus 3DHYB) with those carried out 

in this chapter (3DVAR-R versus 3DHYB-R).  The experiments were designed in 

such a fashion as to be analogous (running through a similar season/time period, 

using the same forecast model, parameter settings, with the OSSE-based experiments 

using slightly lower resolution).  The forecast impact results from the real observation 

experiments are much more impressive then the results found from the OSSE-based 

experiments, especially when considering the gain in skill from the hybrid in 

Northern Hemispheric geopotential height forecasts.  It is still not entirely clear why 

this is the case, though it is possible that one of the main issues is related to the fact 

that the GFS is more like the nature run model than either is to the real atmosphere.   

 Given the discrepancy found between the OSSE-based and real observation 

forecast impact experiments, it will be interesting to see what happens when the H-

4DENSV_COMB configuration is tested using real observations.  There is clear 
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evidence that the analyses in such a configuration are superior to 3DHYB, though as 

documented in Chapter 3, this did not translate clearly to improved forecast skill 

(except in the Northern Hemisphere).  Experiments of this sort are already underway, 

and NCEP is considering such a paradigm for a prototype GDAS configuration in lieu 

of traditional 4DVAR (with adjoint), given resource (computational and manpower) 

issues. 
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Chapter 6:  Summary and Conclusions 
 
 Hybrid data assimilation algorithms (Hamill and Snyder 2000; Lorenc 2003; 

Zupanski 2005) have become popular, in a concerted effort to attempt to combine the 

advantages of varational- and ensemble-based methods while at the same time trying 

to minimize their weaknesses.  Most methods, to this point, have tried to incorporate 

ensemble-based covariance estimates into variational algorithms.  Usually, this 

ensemble based information is combined with some full-rank, climatological estimate 

(i.e. the standard B utilized in variational algorithms).  Many studies have found that 

hybrid based-algorithms improve upon the variational or ensemble-based algorithms 

on their own (Hamill and Snyder 2000; Wang et al. 2007b, Buehner et al. 2010 a,b). 

 Hybrid algorithms have many potential advantages over their stand alone 

counterparts.  Ensemble-based covariance estimates contain fully flow-dependent and 

multivariate information, though typically suffer from sampling issues.  Variational-

based hybrid algorithms can easily apply localization in physical space, which can be 

particularly advantageous for the assimilation of observations that are integrated 

quantities such as satellite radiances (Campbell et al. 2010).  Dynamic constraints are 

quite easy to implement within variational solvers, and as such, hybrid algorithms can 

help improve balance and noise issues for ensemble-based analysis increments.  

Lastly, it has been suggested that hybrid algorithms may be particularly useful for 

small ensemble sizes (Wang et al. 2007b, 2009). 

 The purpose of this research was to investigate the use of a hybrid data 

assimilation algorithm for use with the NCEP GFS model.  The development and 
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testing of a prototype 3D variational-ensemble hybrid system for use with the 

operational system was already underway at the time this research began.  This work 

was designed to learn more about the hybrid system already under development and 

to expand upon it with further innovation, testing under various configurations all 

with eventual implementation into the operational NCEP system in mind.  There is a 

lot of research currently ongoing in regards to hybrid data assimilation within the 

earth science community (particularly for atmospheric and oceanic applications), but 

the work presented here has several novel aspects to it: 

• Focus on systems and algorithmic developments that can eventually be 

transitioned to an operational framework.  Experiments are designed to run at 

(or near) operational resolution, using a dual-resolution paradigm for the 

ensemble component. 

• Use of a hybridized 4DENSV algorithm, through application of a time-

invariant static B supplement. 

• Experimentation with various dynamical constraints within the hybrid-

4DENSV framework, including use of a weak constraint digital filter, 

incremental normal mode constraint, and combinations thereof. 

• Proposal and experimentation with scale dependence within the hybrid 

“weights” (i.e. β-terms in the cost function). 

 

6.1  OSSE-based Hybrid Experiments 

 To answer some of the questions proposed regarding the use of a hybrid 

algorithm, a series of OSSE-based experiments are carried out.  A realistic set of 
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simulated observations (including reasonable errors) from the Joint OSSE nature run 

were kindly provided for use in such experiments by GMAO.  These simulated 

observations, as well as the truth (nature run) provide the basis for a whole suite of 

experiments to test various aspects of the hybrid algorithm.  An initial 3DVAR 

experiment was carried out using a T382L64 version of the NCEP GFS model, to 

validate the usability of the simulated observations and evaluate how realistic the 

experimental configuration was.  The OSSE-based 3DVAR innovation statistics were 

found to be very similar to those extracted from a real observation experiment.  This 

finding, combined with previous work on the validation of the Joint OSSE nature run 

(Reale et al. 2007; McCarty et al. 2012) and simulated observations (Errico et al. 

2007; Errico et al. 2012) provided confidence in the experiment design. 

 A 3DHYB experiment was then carried out in the OSSE framework using a 

dual-resolution configuration, designed to mimic the hybrid prototype that was under 

development for implementation for use with the NCEP GDAS/GFS.  It was found 

that the hybrid algorithm resulted in analyses that were generally superior to those 

from 3DVAR, especially in the tropics.  For some variables, the background errors 

within the hybrid were smaller than the analysis errors from 3DVAR.  It was noted, 

however, that the hybrid seemed to actually increase the analysis errors in small 

regions for temperature and wind in the southern latitude upper troposphere.  A 

follow-on hybrid experiment with reduced inflation (3DHYB_RS) demonstrated that 

a hybrid system that used an ensemble with spread more representative of the real 

background error amplitude resulted in significantly improved analyses.  This result 

was a bit surprising, at least in terms of the amplitude of the error reduction through a 
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simple tuning of inflation parameters within the ensemble update.  This further 

motivates the need to develop better means for controlling sampling issues within the 

EnKF (through use adaptive inflation methods or hybridization of the EnKF itself). 

 The GSI-based hybrid was then extended to include 4D-ensemble 

perturbations, i.e. 4DENSV (just as in Lorenc 2003, Buehner et al. 2010a).  The use 

of 4D-ensemble based methods in place of traditional 4DVAR has become popular in 

the research community, given the fact that the method does not require the 

development of an adjoint model (Liu et al. 2008; Tian et al. 2008, 2011; Buehner et 

al. 2010a).  The 4DENSEV algorithm is very similar to a 4D-LETKF (Hunt et al. 

2007), except that the weights are solved for within the variational framework.  A 

hybrid variant of the 4DENSV algorithm was then proposed, that simply uses a time-

invariant B estimate to supplement the 4D-ensemble based increment.  Various 

configurations of dynamic constraints are also proposed for use within the H-

4DENSV algorithm, including the tangent linear normal mode constraint, a weak 

constraint digital filter, and combined normal mode-digital filter constraint.  The 

combined constraint is motivated by the exorbitant cost of running the normal mode 

constraint over all time levels, and simply applies it to the center of the window only 

(allow for the weak constraint digital filter to act upon the other time levels, 

“propagating” the information). 

 The OSSE based experiments demonstrated that the inclusion of 4D ensemble 

perturbations improves upon the use of 3D perturbations, and then, the addition of a 

static B contribution improves the solution even further.  Although the normal mode 

constraint and weak constraint digital filter seem to have a small additional impact on 
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the system, both do contribute positively.  If such experiments had been done without 

the hybrid component, the impact may have been larger as static B does seem to help 

improve the balance to the solution (i.e. reducing the necessity for such constraints to 

begin with).  Interestingly, the experiment with the combined constraint resulted in 

improvements that were larger than the combined impact of each of the individual 

constraint experiments.  Of all the experiments tested in Chapter 3, the combined H-

4DENSV experiment (with hybrid) not only yields the best results, but does so 

without extreme additional computational cost over a 3D-hybrid paradigm. 

 Lastly, a method for using scale dependent weighting between the ensemble 

and static contributions to the solution within the GSI-based hybrid algorithm was 

proposed.  From a practical standpoint, such an algorithm is not trivial to implement 

and does not come without cost.  The impact of the algorithm on the power spectrum 

of the analysis increment was as expected (depending on choice of scale-dependent 

weights).  Within the dual-resolution hybrid, interesting features were observed for 

the highest frequency part of the spectrum, an artifact of interpolation errors and 

aliasing between the ensemble and analysis grids.  The scale dependent weighting 

was demonstrated to be one way to clean up such noise.  Preliminary results from a 

cycling experiment were somewhat encouraging, with a conservative set of scale-

dependent weights resulting in a reduction in analysis error for extratropical wind and 

temperature.   
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6.2  Prospects for Real NWP System 

 For all of the OSSE-based hybrid runs, forecast impact experiments were 

attempted with some limited success.  The 3DHYB forecasts were demonstrated to be 

more skillful than the 3DVAR forecasts for many variables and levels, though the 

Northern Hemispheric scores were unimpressive despite the fact that the analysis 

errors were shown to be smaller.  The forecasts from the 4D-experiments were even 

more difficult to interpret. Some improvement relative to the 3DHYB run was found, 

but generally the extension to 4D analyses resulted in larger forecasts errors (again, 

despite the smaller analysis errors).  There may be an inherit limitation within OSSE 

studies in terms of usefulness for doing forecast impact evaluation.   

A comparison of the OSSE-based 3D forecast impact results with those from 

experiments using real observations further raised this possibility.  In the real 

observation experiments, the hybrid forecasts were clearly superior to the 3DVAR-

based forecasts for nearly all metrics explored.  This is despite the fact that the OSSE-

based experiments were designed to mimic as closely as possible those for the real 

observation experiments (including similar versions of the model, parameter choices, 

etc.).  Given this discrepancy, it will be interesting to see if the results from an H-

4DENSV experiment using real observations results in improvements (as the 

reduction in analysis error within the OSSE framework suggested) or not (as some of 

the forecast impact results seem to suggest). 

Algorithms such as the 4DENSV (and hybrid variants) are quite enticing for 

an operational center for many reasons.  Such an algorithm would allow one to adopt 

a non-adjoint extension to 4D without having to overhaul existing infrastructure and 
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familiarity (say if one wanted to replace a 3DVAR with a 4D-EnKF).  Further, with a 

3D-hybrid set to become operational as part of the GDAS in spring 2012, an 

extension to include a 4D ensemble is the next logical step (again, given the lack of 

adjoint model and sufficient computational resources).  The extension to 4D is in fact 

quite inexpensive (not free) at least relative to a true 4DVAR, without having to 

totally sacrifice resolution.  Although a full (operational) resolution ensemble is not 

feasible, the static B contribution to the H-4DENSV (and 3DHYB for that matter) 

helps to fill the void for the parts of the spectrum that the ensemble simply cannot 

represent.  A real observation follow-on experiment to those carried out in Chapter 5 

is already underway to test the impact of an H-4DENSV_COMB algorithm in the real 

system. 

 

6.3 Future Work 

The use of scale-dependent weighting is not quite as mature as the 4DESNV 

hybrid extensions.  In fact, as implemented, the application of scale dependent 

weights is more expensive than the 4D extension to the hybrid.  In addition to the 

computational issues, further work is needed to better understand quantitatively just 

how to set the weights properly.  This may include a further expansion to level-

dependent specification of the weights.  Beyond a simple scale-dependence, it seems 

reasonable that one should be able to develop fully flow-dependent, adaptive methods 

for deciding on the choice of weights between the static and ensemble contributions.  

Such a method could be analogous to methods that have already been developed 

within the ensemble data assimilation community for adaptive localization (Bishop 
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and Hodyss 2007, 2009a, 2009b, 2011; Anderson 2012) and inflation (Anderson 

2009; Miyoshi 2011).    

 In all of the 4DENSV experiments carried out as part of this research project, 

the assumption has been made that the control variable (or ensemble weights) are 

valid throughout the assimilation window.  For many regions and applications, this 

seems to be a reasonable assumption.  However, there may be situations for which 

one may want to have the capability to apply time localization within the assimilation.  

This would be especially true if one were interested in extending the assimilation 

window to something longer than several hours.  This may also be true for specific 

applications such as storm scale or hurricane initialization.  To perform such time 

localization within the GSI-based hybrid as formulated previously, the control 

variable needs to be expanded to be a function of time level, so the cost function 

becomes: 

 
 

(6.1) 
 

 
Now, some method for passing information between time levels, perhaps through a 

simple weighting procedure (w) is included 

 
(6.2) 

 

and the increment at each time level is prescribed by 
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Here, the same spatial correlation matrix, L, is used for the control variable over all 

time levels.  For the implementation in chapter 3, the w is simply set to one for all 

values of j and k, so the control variable at each grid point is assumed to be constant 

for all of the time levels.  How precisely to prescribe equation 6.2, and specifically 

assign values for w (or some other method for information propagation/control 

between time levels) is unclear.   

 The current formulation of the hybrid 4DENSV only utilizes a time-invariant 

contribution to the increment from a static B.  However, there is the possibility of 

adding some time information to the “fixed” contribution to the increment.  One such 

idea would be to utilize a first-order time extrapolation to the observation (FOTO) 

algorithm, taking advantage of the time tendencies of the state variables that are 

computed as part of the incremental normal mode constraint (Rančić et al. 2008).  

Such an extension would provide some synergy (at least in terms of geographic 

displacement) between the static and ensemble based increments, for those 

observations taken away from the center of the analysis window.  

Lastly, several follow-on experiments are already planned within the OSSE 

framework.  First and foremost, an experiment utilizing 4DVAR (with adjoint) will 

be carried out for comparison with the 4DENSV results.  This will then be followed 

by a hybrid 4DVAR (with adjoint) experiment, to see if the use of the linear model is 

beneficial relative to the straight use of the nonlinear 4D ensemble within the 

4DENSV algorithm.  These experiments are still waiting for further development of a 

usable tangent linear and adjoint model for use within the inner loop for 4DVAR.  

Additionally, to help further understand the moisture related issues that were noted in 
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Chapter 3 when going to 4D, some of the experiments will be rerun but exclude the 

weak constraint on unphysical moisture. 
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