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Connectivities among people are amplified with recent advancements in internet

technology increasing the number of communication channels. Information spread over

these networks strengthen the social influence among individuals and affect their purchas-

ing decisions. In this thesis, we study three problems in the product design and diffusion

context by integrating such social network effects where influence takes place over neigh-

borhood relationship ties among the users of the product. We consider the setting where

peer influence plays a significant role in a consumer’s product choice or there is a tangible

benefit from using the same product as the rest of one’s social network.

Building upon the well-known Share-of-Choice problem, we model an influence

structure and define the Share-of-Choice problem with Network Effects. It is an NP-Hard

combinatorial optimization problem which we solve using a Genetic Algorithm. Using

simulated data we show that ignoring social network effects in the design phase of a

product results in a significantly lower market share for a product. Our genetic algorithm

obtains near-optimal solutions and is very robust in terms of its running time, scalability,

and ability to adapt to additional constraints/variations of the model. In this setting, we



introduce a product diffusion problem, the Least Cost Influence Problem, which increases

the market share of a product by intervening the natural diffusion of it over the social

network. This intervention is in the form of incentive supply to a group of people in a

least costly way while maximizing the spread of the product.

We generalize the Least Cost Influence Problem by moving away from the market-

ing setting and by treating the previous product as any piece of “information” that can

spread over a social network by adoption. We show that this problem is polynomially

solvable over tree networks under some conditions. We provide a Dynamic Programming

algorithm to solve this problem and show that it can be interpreted as a greedy algorithm

that gives incentives starting with the people that are least influenced by their neighbors,

albeit the definition of susceptibility to influence from neighbors is updated throughout

the algorithm.

We introduce a two dimensional influence model and extend our modeling and so-

lution methods for the product line design problem which involves designing multiple

products within the same product line with the objective of appealing to the heteroge-

neous structure of the market. The first dimension of influence is the affection of individ-

uals from using the same product, and the second dimension is the influence of using a

similar product from the same product line which has a lower intensity of influence. We

reexamine the Least Cost Influence Problem in the product line setting.
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Chapter 1

Introduction

1.1 Motivation and Problem Description

Can consumer buying decisions be isolated from their social networks? We con-

sider the setting where peer influence plays a significant role in a consumer’s product

choice or there is a tangible benefit from using the same product as the rest of one’s social

network. Take for example communication tools. Family plans encourage using the same

phone network by offering large discounts to customers for in network calls. When a per-

son has to choose between products, it is natural to take into account the positive network

effects (or peer influence) from their social networks in addition to a product’s attributes.

In the extreme case, if the communication is carried over the internet, such as voice or

video chat, it is necessary for users to install the same application (e.g., Skype). We are

focused on influence over neighborhood relationships which takes into account the social

ties among the users of the product and therefore is different from the traditional models

with positive network externalities described in Katz and Shapiro (1985) or Parker and

Van Alstyne (2005). We use the term “neighbor” throughout the dissertation to repre-

sent the individuals who are connected to the person of interest and the terms “link” and

“edge” to represent these connections. When presented on a network, the individuals are

referred to as “nodes”.

Recent advancements in social media allow better access to social networks of con-
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sumers. Interactive information sharing among customers is becoming fast and conve-

nient over the internet with the online social networks, blogs and review sections of shop-

ping websites. Online and offline reviews of products emerge as the first source of ref-

erence before making a purchase decision when interested in a newly launched product.

A friend’s (who has similar preferences or concerns) experience with a product can ease

the searching process among a variety of product alternatives, especially for complicated

technological products. Innovations such as mobile applications ask the users to log in

using their existing Facebook accounts. The online gaming industry is definitely a good

example of the business model which harvests social network effects among their con-

sumers into their business. Zynga (with a value of more than $7 billion in December

2011) offers a large variety of games which can be played by people over different on-

line social media. The games emulate a real life experience where players are allowed to

communicate (send a message or a drink) with each other over an online social network.

It is one of the examples of platforms where the users of a product (a game in this case)

are explicitly connected with each other over a social network which makes it easier to

collect information on the relationship network among the customers.

The exploding reach of the web and the prevalence of social networking sites, which

in turn have made large amounts of data on social networks easily available to marketers,

has only recently resulted in their recognition as an important tool for marketing (Van den

Bulte and Wuyts, 2007). Because the market is shifting to the online environment and be-

cause of the competitive nature of the industry, it is important for marketing departments

to benefit from such information with appropriate marketing strategies. Being able to ana-

lyze a social network provides marketers a competitive advantage in terms of forecasting
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the spread of product influence and intervening at times with promotions or incentives

to strengthen this process. Predictions on market share (the number of people who will

purchase the product) are critical when a new product enters the market and can create a

difference for businesses.

1.1.1 Social Influence on Purchase Decisions

Since the early 1950s, it is accepted that people behave similar to a certain frame of

reference that is produced by the groups they belong to (Merton and Rossi, 1949). More

specifically, a reference group is defined as a person or a group of people that significantly

influences an individual’s behavior (Bearden and Etzel, 1982). People change their ideas

or behavior according to different reference groups. In terms of opinion formations, ac-

cording to Kelman (1961), social influence has three distinct processes. Internalization

happens when an individual accepts influence because it is perceived as inherently helpful

to maximize his values/goals. Identification occurs when an individual adopts a behav-

ior because this behavior is associated with a self-defining relationship with that adopter

group. Compliance is observed when the individual conforms with the rest of the group

for a reward or to avoid punishment.

These social effects have been studied by researchers from different disciplines

on different types of behavior. Such influence has been termed variously such as band-

wagon effect, peer influence, neighborhood effect, conformity and contagion (Iyengar

et al., 2009). For purchasing decisions, the reference groups considered previously were

very general groups such as the social class a person belongs to or a group of people that

3



had a similar educational background. These groups were too large to observe purchase

decision effects, and therefore not reflective of the real life. Product influences are more

about the people that interact frequently and have closer relationships, family members,

friends and colleagues, and role models. The most recognized marketing discussion of

reference group influence is by Bourne (1957) in which the distinction between product

and brand decisions is stressed. Bourne (1957) argued that the most general attribute that

is susceptible to reference group influence on product and brand decisions is through con-

spicuousness and stated the two forms of conspicuousness as the degree of exclusivity

and the extent to which it is identifiable, respectively. Park and Lessig (1977) defined

three dimensions of influence from a reference group. i) Informational: People facing

uncertainties seek information from their reference group to make their decisions. ii)

Utilitarian: People comply with the wishes of others to achieve rewards or avoid punish-

ment. iii) Value-expressive: People need to feel psychologically associated with a person

or a group and this is achieved by the acceptance of positions expressed by others. Based

on the framework by Bourne (1957), Bearden and Etzel (1982) conducted a mail survey

and investigated reference group influence on product and brand purchase decisions by

examining the interrelationships among two forms of product use conspicuousness and

the three types of reference group influence (Park and Lessig, 1977).

Burnkrant and Cousineau (1975) showed that people may use the product evalua-

tions of others as a source of information about products. They conducted an experiment

with participants who saw evaluations of other people about a coffee type as a test group.

The authors found that after observing other peoples’ positive evaluations of a product,

people perceive the product more favorably themselves than they would in the absence of

4



this observation and suggested that the same phenomenon occurs regularly in shopping

situations.

The influence of reference groups on consumers’ connections to brands are stud-

ied by Escalas and Bettman (2003). The authors showed that reference groups can be a

source of brand associations reflecting a mental description of self for a consumer. They

conducted two studies examining undergraduate students attitudes and beliefs about pro-

totypical student types and their connections to brands. They indicated that the students

build a connection to a brand when there’s a connection with that brand and a reference

group which the students associate their self images with.

A change in the evaluation of a product can also be caused by affective reasons. An

interesting study is conducted by Howard and Gengler (2001) on emotional contagion.

The authors investigated whether and how one person’s emotional state can influence an-

other person’s evaluation of a product. In their experiment, they manipulated the emotion

of a gift sender (happy vs. neutral) and a receiver was led or not led to believe that the

sender provided her with a gift, inducing liking of the sender (liking vs. neutral). The

sender and the buyer evaluated the product when brought together. The results showed

that emotional contagion can lead to a positive bias on consumers’ product evaluation,

i.e., when senders were happy and receivers liked the senders, receivers’ evaluations were

most favorable.

Diffusion of innovation is the process by which an innovation is communicated

through certain channels over time among the members of a social system (Rogers, 1983

First Ed., 1962). The model proposed by Bass (1969) has been one of the most important

and influential diffusion models and it has been used frequently in practice. According
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to the Bass Model, the conditional probability of adoption at time t is increasing in the

fraction of the population that has already adopted, so with Bass Model one can predict the

number of users who will adopt an innovation at a given time t. In Bass Model, the rate

of adoption is a function of the current proportion of the population who have adopted

(Hill et al., 2006). Whereas the Bass Model portrayed a collective approach, there are

some later studies in the 1980s that developed diffusion models by specifying adoption

decisions at the individual level. Mahajan et al. (1990) provided a comprehensive review

of the early stages of new product diffusion models in marketing. In these models, an

adopter’s utility for an innovation is dependent on what he thinks of the innovation in

terms of its performance, value or benefits. But people’s perceptions change over time

as they learn more about the innovation from external and internal sources and when the

utility is greater than the utility from the status quo, they adopt. In this respect, the Bass

Model does not take into account stages of adoption, treating it as a binary process by

avoiding the intermediate stages such as awareness and knowledge of the product.

Berning and Jacoby (1974) examined the decision making process before purchas-

ing an innovation and the process before purchasing an established alternative. They

concluded that there is a difference and that this difference lies primarily in the search for

information from friends for the innovative products. They claimed that the patterns of

information acquisition were surprisingly similar across product categories.

As social networks are in the center of social influence, graph theory is an important

tool for understanding the structural properties. Nair et al. (1995) discussed this in their

paper and argued that although many studies talk about social networks, more precise

definitions of graphs, network structures and types of social relationships were required.
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Taking a graph theoretical approach, they studied brand choices of individuals in a speci-

fied social relationship by comparing it with those individuals who were not in that social

relation. For the social network in their paper, they used a real social network of a sorority

group. In a later study, Reingen and Kernan (1986) studied network structures concen-

trating on strength of ties in a social network. Graph theory analysis were also used for

addressing recommendation algorithms by Mirza et al. (2003).

Wu and Lee (2008) studied social influence on online impulsive purchases, i.e., un-

planned purchases, in an online setting to see if the social network effects persist. In their

experiments, two worlds are created as physical (friends, reference group) and virtual (on-

line friends, reviews, online information) and they measured happiness, disappointment,

willingness to buy and willingness to pay of the potential customers. Their empirical

results showed that people in social groups generally perceive stronger willingness to

buy, happiness, disappointment, and willingness to pay than the non-social group. They

claimed that these results clearly demonstrated that the effects of social comparison could

create a significant influence on consumers online purchasing behavior.

In a working study, Iyengar et al. (2009) studied whether friends influence pur-

chases in a social network. They used two different types of data collection method to

collect information from a Korean social network site. The first one is the geographic

proximity and the second one is self reports. The authors used a choice and quantity

model that captures the effect of social influence on a member’s decision to purchase.

They quantified the social influence in terms of changes in purchase probability and rev-

enues.

More recently on experimental studies, Trusov et al. (2010) found that, on average,
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approximately one-fifth of a user’s friends actually influence his or her activity level on the

site. Iyengar et al. (2011) analyzed a social network among physicians and showed that

there is a positive contagion effect at work in physicians’ decisions to adopt a new drug

which explicitly considered the role of social network structure and opinion leadership.

Social influences have been studied in a variety of topics in the economics litera-

ture. Leibenstein (1950) described the bandwagon effect as the increase in demand for

a commodity because some or all other individuals in the market also demanded more

of the commodity. However, the author also proposed a “diminishing marginal external

consumption effect” which means that for every individual there is a point where the ex-

ternal effect equals zero. Theoretical models have also been developed in the economics

literature where social interactions have been studied as a coordination process among in-

dividuals. Blume (1993) studied stochastic strategy revision processes in the interaction

among players in large populations.

Katz and Shapiro (1985) studied network externalities, discussed examples for pos-

sible sources of positive consumption externalities and modeled them in a competition

setting. Besides the direct physical effect of the number of people using the same com-

munication technologies, they discussed indirect effects such as compatibility issues and

post purchase services (which depend on the experience and the size of the service net-

work) for durable goods.

Especially with the increased use of technological tools, the reasons why people im-

itate the behavior of others is explained as informational effects and direct-benefit effects,

(Easley and Kleinberg, 2010). The first type of effect is similar to previous definitions

of people seeking to learn more about the product. The second type of effect includes
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an extra benefit when you align with the behavior of others. In traditional economics, a

person makes a decision to buy when the price of the product is less than his reservation

price. The authors argued that when network effects are present (especially for technolog-

ical tools, where interaction and compatibility with others can be important), a potential

purchaser takes into account both her own reservation price and the total number of users

of the good. They modeled this using two functions; when a z fraction of the population

is using the good, the reservation price of consumer x is equal to r(x)f(z), where r(x)

is the intrinsic interest of consumer x in the good, and f(z) measures the benefit to each

consumer from having a z fraction of the population use the good. The function f(z)

is increasing in z controlling how much the value increases as more people use it and

they use a multiplicative model so that those who place a greater intrinsic value on the

good benefit more from an increase in the fraction of the population using the good than

those who place a smaller intrinsic value on the good. The authors also discussed that

to convince a first group of people to buy, some cost can be incurred to give free sam-

ples/coupons to customers or to the fashion leaders who will promote the product simply

by using it.

In this thesis, we acknowledge the social interaction and the influence among people

over social networks and propose an influence model which specifically concentrates on

utility increase for an individual as a result of the influence from other adopters which are

directly connected to this individual.
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1.1.2 Product Design Problem

Although product design is a well-studied subject in marketing and the implications

of network externalities on several aspects of marketing (including customer behavior

and market structure, product-related decisions such as pre-announcements, timing of

product introductions and product differentiation and market entry) have been explored

(Srinivasan et al., 2004), social network effects have generally been ignored within the

product design process. In terms of social network effects, the organizational structure

and the management of new product development teams have been studied (Leenders

et al., 2003; Sosa et al., 2004) with respect to their relation with the design of a product

and the creativity involved in the process.

Product design without network effects has been of significant interest both in aca-

demic studies and industry applications. Market share forecasts and estimated customer

utilities for a product profile allow for a better understanding of the market needs and

can lead to better product designs for the companies. Calculation of perceived values for

product features have drawn attention from market researchers for many years. Conjoint

analysis is one of the most popular tools in new product design for identifying customer

preferences and utilities for attribute levels of a product called part-worth utilities (Green

and Rao, 1971). It has been studied widely in the marketing literature and has been used

to design many different products in practice. Broadly, there are two main steps in a

conjoint analysis. The first is the data collection from consumers and the second is the

analysis of this data to obtain part-worth utilities for each customer on each attribute level.

After this analysis, part-worth utilities data are used to design the product. Earlier litera-
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ture on marketing has focused on these two steps, especially in valid data collection and

improved statistical estimation. However the natural next step of optimally using such

data via conjoint optimization to design a product with maximum market share has been

given relatively less attention (Camm et al., 2006). The first optimization approach us-

ing conjoint data was proposed by (Zufryden, 1977). In this regard, the share-of-choice

(SOC) problem is defined in the product design process where the design corresponds to

the selection of levels for each attribute of a product. This is necessary if the number

of attributes and levels of the attributes are large and most product designs arising from

different attribute level combinations are technologically and economically feasible (Nair

et al., 1995). The objective is to create the product profile that will return the largest

market share. It finds the best (optimal) design among different possible product profiles.

Part-worth utilities are used as inputs for the share-of-choice problem to optimize

the selection of levels for each attribute. In this problem, one buys a product if and only if

the utility the person gets by using the product is greater than or equal to her/his “hurdle”.

The “hurdle” is the utility value at which one would be indifferent between making a

purchase or not making a purchase. It could also be seen as a status-quo product. In this

dissertation we model the social network influence effects on product design by making

adjustments to the well studied share-of-choice problem. The following notation is used

in the model to state the share-of-choice problem. Let V = {1, 2, . . . , n} denote the set

of people in the market, hs denote the hurdle utility of person s ∈ V, K be the number

of attributes, Lk be the number of levels for attribute k = 1, 2, . . . , K, and us
kl denote the

part-worth utility for person s if level l is chosen for attribute k. There are two types of

binary decision variables; xkl equals 1, if level l has been chosen for attribute k and is 0,

11



otherwise; and ys equals 1, if person s decides to buy the product and is 0, otherwise. The

share-of-choice (SOC) problem is then formulated mathematically as follows.

SOC: Maximize
n∑

s=1

ys, (1.1)

subject to
K∑

k=1

Lk∑

l=1

us
klxkl ≥ hsys s = 1, 2, . . . , n, (1.2)

Lk∑

l=1

xkl = 1 k = 1, 2, . . . , K, (1.3)

ys ∈ {0, 1} s = 1, 2, . . . , n, (1.4)

xkl ∈ {0, 1} k = 1, 2, . . . , K, l = 1, 2, . . . , Lk.(1.5)

In this share-of-choice model, the objective is to maximize the market share. (If the

objective is to maximize the total utility of the customers or the firm’s marginal return, the

problem is called the “buyer’s welfare” or “seller’s welfare” problem.) Constraint (1.2)

guarantees that people buy the product if and only if their utilities from the product exceed

their hurdles. Constraint (1.3) ensures that each attribute is assigned only to a single level.

Note that no network effects are taken into account in this model.

The share-of-choice problem has been studied in the marketing literature and shown

to be an NP-hard problem (Kohli and Krishnamurti, 1989). Several heuristics have been

used as solution approaches including a divide-and-conquer heuristic (Green and Krieger,

1989), greedy search and dynamic programming based heuristics (Kohli and Krishna-

murti, 1987, 1989), a genetic algorithm (Balakrishnan and Jacob, 1996), a pruning heuris-

tic (Tarasewich and McMullen, 2001) and a nested partitioning algorithm (Shi et al.,

2001). An exact branch-and-bound algorithm (Camm et al., 2006) has been applied more
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recently for the share-of-choice problem.1 For the product line design problem (designing

multiple products of the same product line) Belloni et al. (2008) provided a Lagrangian re-

laxation method followed by a branch-and-price approach by Wang et al. (2009). Belloni

et al. (2008) also provided a review of methods for product line optimization in general.

None of the previous studies consider integrating the network effects. To our knowledge,

this is the first study to explicitly incorporate social network (or peer influence) effects

among potential customers in the share-of-choice problem and product design.

In a recent pioneering study, Narayan et al. (2011) considered three behavioral

mechanisms of how consumers’ product choice decisions may be affected from influ-

ence of their neighbors. We explain these mechanisms in Chapter 2 when we introduce

our influence model.

From the product design literature, more recently Aral and Walker (2011) acknowl-

edged the effects of viral marketing and argued that such viral features can be engineered

during the launch of the product (We discuss a brief literature on viral marketing in Chap-

ter 3). The authors differentiate the “viral characteristics” and “viral features” of a prod-

uct. The first relates to the content of the product whereas the second corresponds to

how the product is shared and how the features allow relationships with the other con-

sumers. Concentrating on the viral features they showed that whereas the personalized

referrals are more effective in encouraging adoption, passive-broadcast viral messaging

is used more often and therefore causes a larger overall adoption. In this dissertation, we

focus more on the viral characteristics of a product implicitly by looking at the changes in

1We should note that some commercial packages for conjoint analysis now provide optimization capa-
bilities using some of the heuristics mentioned (Sawtooth Software, 2003).
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the utility consumers get from using the same product with their neighbors. We consider

the adoption as a passive-broadcast viral message which increases utilities for the other

consumers.

We discuss the combinatorial optimization problem at the design phase of a product

(after conjoint analysis has been completed for the product) with the same objective,

maximizing market share, but we also explicitly include social network effects that take

place at the product adoption stage, after the product is launched. For example, in a Zynga

environment, the share-of-choice model with network effects would provide an applicable

framework for designing new games as the characteristics of the problem in terms of the

number of feasible attributes and levels are large and product use by people over online

social networks are explicitly present. In this case the design that best fits the customers

can increase the market share significantly. We aim to integrate the social network effects

within the share-of-choice problem (both single and multiple product cases) and propose

a genetic algorithm to provide high-quality solutions for these problems.

We contribute to the product design literature by showing with computational stud-

ies that the integration of the social network effects in the design phase of a product may

lead to a different optimal product design and consequently to a larger market share. And

this increase can be guaranteed and further strengthened by intervening in the diffusion

process by providing tailored incentives to a group of individuals over the network. We

then provide an efficient method to optimize the diffusion process. The innovation in the

methodology of this dissertation is the integration of an exact mathematical modeling to

the genetic algorithm to solve the product design problem and introducing two algorithms

(dynamic programming and an iterative procedure) to solve a computationally challeng-
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ing problem arising in product adoption. The model with network effects is complicated

due to the dynamic relationship of the people (whether a person buys the product or not

changes depending on the buying decision of their connections) and hence the traditional

methods are inadequate to evaluate a product profile. We use a Matheuristic approach,

which we explain in the following chapters, to overcome this problem. The second prob-

lem (Least Cost Influence Problem) introduced in Section 2.2 addresses a problem of a

larger scope which may be applicable in different environments such as epidemiology, as

explained in Chapter 5.

1.2 Overview of the Dissertation

We discuss the three main problems in this dissertation which lie at the interface of

operations management and marketing research. The dissertation is organized as follows.

In Chapter 2, we develop our model on how to incorporate social network effects

into the share-of-choice problem. We show that by modeling the product design problem

with network effects, a product profile that reaches a much larger market share can be de-

signed. We introduce a complementary secondary problem called the Least Cost Influence

Problem (LCIP), which takes place when the product is on the market and its adoption

is spreading over the network. We show that to attain the desired market share, it may

be necessary to provide some incentives (such as free samples or discount coupons) to a

group of people over the network during this adoption period. For both of these compu-

tationally challenging problems, we propose smart solution methods; a genetic algorithm

to solve the first problem and an iterative approach that preserves optimality to solve the
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second problem. Using extensive computational studies, we discuss the performance of

the methods.

In Chapter 3, we build upon the second problem introduced in Chapter 2 by describ-

ing it for general networks and a more general setting. It addresses contagion models and

methods to determine critical nodes over a social network, which are of significant interest

in marketing and epidemiological settings. We show that this problem reduces to the well-

known NP-Hard knapsack problem for some cases, and propose a dynamic programming

algorithm to solve it for a special case; when the social network is a tree. Our dynamic

programming is a polynomial time algorithm which benefits from the star-shaped sub-

network structures that are frequently observed on social networks (such as networks of

authors of Wikipedia articles and networks of retweets from Twitter users). The least cost

influence problem (LCIP) has a correspondence with the influence maximization problem

(Kempe et al., 2003) that has been studied in computer science literature. Both problems

attempt to identify a set of nodes over a given network such that the diffusion over the

network is maximized. However the LCIP differentiates from the existing influence max-

imization literature as it allows for tailored incentives (incentive-discrimination) to be

given to potential consumers.

In Chapter 4, we extend our model for the single product design problem to the

product line design problem. There are multiple products in a product line and the prod-

uct line design problem finds the optimal combination of products to appeal to the het-

erogeneous choice structures within the market. For a review of methods for product-line

optimization in general, the reader is referred to Belloni et al. (2008). In that setting,

there is a constraint of type (1.2) for each product. Since the influence structure can be

16



augmented by the additional influence among users of different product types the model

is slightly more complicated than that of a single product design. We model it as a two

dimensional influence structure. We explain how our genetic algorithm solution method

can be adapted to work with multiple products at various levels of the algorithm. We

also explain the changes that will be observed when we encounter the least cost influence

problem.

In Chapter 5, we discuss how the least cost influence problem that we study in a

marketing setting can be altered to make it amenable to analysis in an epidemiological

setting. We also develop two models as extensions to our product design model with

network effects including a model with budgetary constraints and a comprehensive model

that combines the product design and diffusion problems.

In Chapter 6, we discuss directions for future research and conclude by summariz-

ing the dissertation and its contribution to the existing literature.
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Chapter 2

Incorporating Social Network Information in Product Design

In this chapter, we discuss our analytical model to incorporate social network ef-

fects in the share-of-choice problem and elucidate why this can be critical in product

design. We also explain why past solution procedures for the share-of-choice problem

unfortunately cannot be easily adapted for the share-of-choice problem that incorporates

network effects.

In Section 2.3, we present a genetic algorithm to solve the share-of-choice problem

with network effects. A novelty of this heuristic procedure is that the fitness (or quality) of

a solution is ascertained via an integer program (i.e., by using an exact solution procedure)

which allows it to achieve very high-quality solutions. Section 2.4 provides the results of a

computational study demonstrating both the speed of the calculations and the high quality

of the solutions provided by the genetic algorithm.

A secondary problem, the least cost influence problem (LCIP), is also introduced

as a complementary model using a subset of the network used for the share-of-choice

problem. It is the problem of identifying the cheapest way of influencing individuals

in a social network to achieve the market share associated with a given product design.

This problem is of independent interest, as it addresses contagion models and the issue

of determining influential nodes in a social network, which are of significant interest in

marketing and epidemiological settings.
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2.1 Share-of-Choice Problem with Network Effects

Consistent with social contagion research (Bell and Song, 2007; Manchanda et al.,

2008), we follow a multiattribute linear utility-maximization approach. We focus on cases

where an individual can only observe the outcome of a consumer’s purchase decision, but

not the relative preferences among each attribute level for three reasons. First, it is less

complicated to collect data on purchase decisions among large social network groups us-

ing sales data than information about consumers’ relative preferences among attributes

(in fact due to privacy concerns it may not be feasible to do so). Secondly, potential

consumers are exposed to peers’ decisions about a product over online and offline social

networks frequently since such information sharing requires less proximity or intimacy

among consumers. Thirdly, this approach allows for a tractable and solvable model for the

product design problem while still providing a well-established model to include social

network effects. Our mechanism to model social network effects processes the influence

from neighbors as an additional attribute of the product. Under this mechanism, the in-

fluence from other consumers adds to (or detracts from) product utility of a consumer in

a linear additive manner.

In their recent study, Narayan et al. (2011) considered three behavioral mecha-

nisms of how consumers’ product choice decisions may be affected from influence of

their neighbors. The first is a Bayesian mechanism where a consumer’s updated prefer-

ence for an attribute of the product is a weighted average of her initial (prior) preference

and the preferences of their neighbors for the same attribute. The second mechanism is

a more generalized Bayesian mechanism and allows for a more flexible process of pref-
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erence revision. Finally, the third mechanism, which is based on the literature on social

contagion and identical to our approach, abstains from updating the relative attribute pref-

erences. Although, they suggested that their first model fits their particular data set (one

study of MBA students in the same class) best, Narayan et al. (2011) also found that the

mean extent of influence of neighbors’ choices on consumer utility is positive and sig-

nificant. Thus, the choice of a product profile by an influencer leads to an increase in

the utility of that profile for the influenced consumer. Narayan et al. (2011) agreed that

their study might be less representative of the cases where influence among individuals

exclude choice-related information sharing and when the number of peers is large. Most

importantly, data burdens in the first and the second methods are significant and it is not

clear if the required data would be available in a social network setting. In this respect, for

the computational studies of this dissertation we propose a linear influence model (Model

1) where the influence between people is dependent only on the person being influenced

and the number of neighbors of this person. We also propose two different models where

the influence is dependent on the influencer as well as the influenced and the structure of

the influence is non-linear in the number of influencers.

Model 1: In our model, communication among friends strengthens the inclination towards

buying the same product which others have also purchased. The counterpart of this be-

havior in our model is the decrease in one’s hurdle (this could alternatively be viewed as

an increase in utility from the product which is the third mechanism in Narayan et al.,

2011). So, with every neighbor buying the product and individual’s hurdle is updated.

To avoid negative hurdles, the amount of decrease is limited within a hurdle span which

we define as the interval between the hurdle in the traditional product design problem
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where no social network effects are considered (high hurdle), and a low hurdle which

corresponds to the smallest value of utility a hurdle can take (i.e., when all friends buy

the product). For this study, motivated by privacy concerns1 prevalent on social networks,

we assume a decrease structure that does not depend on the identity of the neighbor for

the influence effect in our model. Therefore an individual is affected the same from each

neighbor, but this effect may be different for each individual. We first introduce the model

using a linearly decreasing influence effect.

Let hH
s denote the “high” (H) and hL

s denote the “low” (L) hurdle for person s. The

amount of decrease in high hurdle depends on the number of neighbors who purchases

the product. Due to the linear decrease structure, we calculate the unit decrease in hurdle

for person s, ∆s, as the ratio of the hurdle span and the degree (number of neighbors) of

each node (deg(s)): ∆s = hH
s −hL

s

deg(s)
, ∀s ∈ V . Using this definition for ∆s, the share-of-

choice model incorporating social network effects can be formulated as using the previous

model, SOC, where constraint (1.2) is replaced with the following new constraint.

K∑

k=1

Lk∑

l=1

us
klxkl ≥ hH

s ys −∆s

∑
j∈V

ajsyj s = 1, 2, . . . , n. (2.1)

In constraint (2.1), the right hand side represents the current hurdle for person s ∈

V . Each entry of the social network adjacency matrix is shown by ajs, and it is 1 if there

is an edge (j, s) between nodes j and s. We refer to the formulation with objective (1.1),

1In 2007, due to protests from users about privacy concerns, Facebook retreated on a tracking program
called Beacon which sent messages to users friends about what they are buying on websites like Trave-
locity.com (Story and Stone, 2007). To address this, our model assumes that the anonymity of the users’
friends will be preserved and only information on the number of friends purchasing the product is provided.
In an environment where such privacy concerns are not important, our model is easily modified as described
in Model 3.
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constraints (1.3), (1.4), (1.5) and (2.1) as the share-of-choice model incorporating social

network effects (SOCSNE).

Model 2: In an environment where the influence effects are negative and have a linear in-

crease structure on the hurdles, ∆s would simply be negative in constraint (2.1). For any

other influence structure (nonlinear, diminishing returns, etc.), we propose the following

model. Let fsi, i, s ∈ V , be the amount of change in hurdle of person s for the ith addi-

tional neighbor who has purchased or adopted the product, and let gsi be a binary decision

variable which equals 1 if there are at least i neighbors of node s who buy the product,

and 0 otherwise. Then, constraint (2.1) would be replaced by constraints (2.2), (2.3) and

(2.4). Constraint (2.2) is similar to constraint (2.1) in terms of calculating the current hur-

dle for node s. Here the effect equals to the sum of the effects from neighbors where each

neighbor has a different effect at different times. Constraint (2.3) sets the number of gsi

variables that are 1 equal to the number of neighbors who adopt the product. Constraint

(2.4) establishes an ordering on the gsi variables to correctly compute the change in hurdle

in accordance with the buyer neighbor. With this model, both the relationship with the

neighbor and the number of previous owners matters in terms of influence and these can

be regulated within the model using the f function.

K∑

k=1

Lk∑

l=1

us
klxkl ≥ hH

s ys −
deg(s)∑
i=1

fsigsi s = 1, 2, . . . , n. (2.2)

∑
j∈V

ajsyj =

deg(s)∑
i=1

gsi s = 1, 2, . . . , n. (2.3)

gs1 ≥ gs2 ≥ ... ≥ gs(deg(s)) s = 1, 2, . . . , n. (2.4)

22



Model 3: In a setting where neighbors of a node have different influences (this may be

the case when the privacy concerns discussed earlier are moot), we suggest modifying

the previous model as follows. Let ∆js represent the influence of neighbor node j on

node s (i.e., the amount by which node j’s product adoption reduces node s’s hurdle). To

calculate ∆js, we propose a weighted directed graph model, where (j, s) represents the

directed link from node j to node s and ajs = 1 if there is a directed link from node j to

node s with A(s) = {j|ajs = 1} being the set of neighbors of node s. Further, the relative

influence of node j on node s is denoted by the weight wjs (analogous to Narayan et al.,

2011). For each arc (j, s), ∆js can now be calculated using the formula;

∆js = (hH
s − hL

s )
wjs∑

j∈A(s)

wjs

. (2.5)

If there is no arc from node j to node s, then ∆js is set to 0. After ∆js is calculated,

constraint (2.1) in the SOCSNE model is replaced with the following inequality so that

the influence depends on the neighbor as well the node itself.

K∑

k=1

Lk∑

l=1

us
klxkl ≥ hH

s ys −
∑
j∈V

∆jsajsyj s = 1, 2, . . . , n. (2.6)

Note that ∆sj and ∆js are not necessarily equal in all three models, which is rea-

sonable as the influence among people is not necessarily symmetric.
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2.1.1 Why do Social Network Effects Matter in Product Design?

When social network effects are present, taking them into account in the share-

of-choice model can lead to product designs with a higher market share. The following

example is constructed to emphasize how large the difference can be among market shares

with and without social network effects taken into account in the product design process.

Consider a simple social network with 3 people where all customers are connected to

each other, i.e., a fully connected network with three nodes. The problem is to design a

product with a single attribute and maximize the market share. For simplicity, assume that

there are only two possible levels for this attribute, level 1 and level 2. The corresponding

Table 2.1: Utility, hurdle and ∆s values for the example.
Person Utilities High Hurdle ∆s

Level 1 Level 2

1 200 280 300 20
2 320 280 320 20
3 205 240 250 20

data on utility, high hurdle and ∆ values for each person are provided in Table 2.12. The

utilities are 200, 320, 205 for using level 1; 280, 280, 240 for using level 2, and the high

hurdles are 300, 320, 250 for the three people, respectively. So person 1 would prefer

level 2 to level 1 but would not buy the product in either case because his hurdle is larger

than his utilities from both levels. Again for simplicity, let ∆s values be the same for

each person, 20, i.e., for each additional neighbor purchasing the product, a person’s

hurdle decreases by 20. When the original share-of-choice formulation (without the social

network effects) is solved, it is easy to see by simply comparing utilities with hurdles that
2We should note that this data is generated only for this example and does not represent the data range

used for the computational studies.
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the optimal solution is to choose level 1; the market share is 1 and only person 2 purchases

the product. Although the social network effects have not been taken into account in the

design phase, if they are allowed after the product is launched, the purchase by person

2 decreases the hurdles for person 1 and 3. Their current hurdles become 280 and 230

but still are greater than their utilities (insufficient to induce them to buy the product). So

the market share does not change. When the problem is solved taking social networks

into account in the design phase (SOCSNE), the optimal solution is to choose level 2

and the market share is 3 where all 3 people buy the product. In this case, each hurdle

is lowered by 20x2=40 because 2 neighbors of each person are purchasing the product.

Now the comparison (300-40=260 vs. 280, 320-40=280 vs. 280 and 250-40=210 vs.

240) shows that all hurdles are less than the utilities. In this example, neglecting the

social network effects in the product design leads to a solution that is three times worse

than the solution obtained by the model that includes social network effects. This example

can be generalized (simply add customers to the market identical to person 3) to show that

in the worst case, the loss of market share when social network effects are ignored can be

as large as the size of the market!

2.2 Least Cost Influence Problem (LCIP) over the Buyer Network

From Table 2.1 in the previous example, we see that the utilities for level 2 for

each person are less than their high hurdles which implies no one would buy the product

(designed with level 2) at the outset. Yet, the market share equals three when this level

is selected for the attribute since the model implicitly allows for simultaneous buying.
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Assuming that people are not making buying decisions together, to obtain this market

share we need at least one person to purchase the product first and start a diffusion. But

how should that person be selected? The second problem in this chapter concentrates on

this question of diffusion and the ordering of buyers over a finite time period.

To obtain the market share solution from the product design of the proposed SOC-

SNE model, some people may need to be provided with incentives to make a purchase.

In practice, such intervention to the product diffusion process is not costless, and for a

business they can be contemplated as advertising or marketing costs of distributing free

samples or discount coupons to a select group of people. We consider an incentive as

an additional utility provided from the company selling the product to the potential cus-

tomer. Once a person makes a purchase, hurdles for her/his neighbors are updated and

checked to see if they also adopt (buy)3 the product. Every time a new person adopts the

product, this update and comparison is repeated. If at some point there is no new buyer

and the market share has not yet reached the amount dictated by the SOCSNE model, a

new person needs to be given incentives to purchase the product and to restart the diffu-

sion. Although providing incentives result in a larger market share (equal to the amount

dictated by the SOCSNE model), it could be expensive, therefore the set of people to give

incentives need to be selected with care. This trade-off is the subject matter of the second

problem in this chapter.

The objective of the least cost influence problem (LCIP) is to accomplish the mar-

ket share of the SOCSNE model while minimizing the total amount of incentives given.

To choose the set of people to give incentives to, we analyze the order of buying. We

3We use the terms adopt and buy interchangeably throughout the thesis.
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introduce the time dimension, t = 0, 1, ..., T (where T is the number of time periods), to

capture the ordering of buyers. The product profile, the market share, and the individuals

who will buy the product are inputs for the LCIP model because this problem is solved

after the solution to the SOCSNE model is obtained. The social network in this problem,

G′, is a subset of the network in the SOCSNE model and includes only the people, V ′,

that adopt the product as a result of the product profile chosen after solving the SOCSNE

model (i.e., it includes only those nodes for which ys = 1 in the SOCSNE model solution)

and the edges connecting them, E ′. There are two types of decision variables; zs, s ∈ V ′,

represents the amount of incentive given to person s and yst, s ∈ V ′, t = 0, 1, . . . , T , is a

binary variable which is 1, if person s buys in period t and is 0, otherwise. Since the at-

tribute levels have been chosen by the first model (SOCSNE), the utility one gets by using

the product can simply be represented as one parameter, Us, for each person s ∈ V ′. It

is the summation of utilities from each level selected in each attribute. The mathematical

formulation is as follows:

LCIP: Minimize
∑

s∈V ′
zs, (2.7)

subject to Us ≥ hH
s ys0 ∀s ∈ V ′, (2.8)

Us ≥ hH
s yst − zs −∆s

∑

j∈V ′
a′jsyj,t−1 ∀s ∈ V ′, ∀t ≥ 1, (2.9)

yst ≥ ys,t−1 ∀s ∈ V ′,∀t ≥ 1, (2.10)

ysT = 1 ∀s ∈ V ′, (2.11)

yst ∈ {0, 1} ∀s ∈ V ′, ∀t ≥ 0, (2.12)

zs ≥ 0 ∀s ∈ V ′. (2.13)
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The objective in this model is to minimize the total amount of incentives given to all

the people in the buyer network. Constraint (2.8) identifies the people who buy the prod-

uct in period 0 without requiring any incentives or influence from neighbors. Constraint

(2.9) is similar to constraint (2.1) in the SOCSNE model; the right hand side captures

the current hurdle. The current hurdle of a person in any time period is calculated as the

remainder after the amount of incentives and the social network effects are subtracted

from the high hurdle. Note that in the first model (SOCSNE), the hurdle of a person de-

creases only with social network effects. In the LCIP model, in addition to the decrease

from social network effects, hurdles are also decreased by the incentives people receive.

The second term in the right hand side of the constraint (2.9), zs, represents this incentive

amount for person s.

Observation 1: The amount of incentive one receives equals to the difference between its

current hurdle and utility from the product. If the incentive is less than this difference, the

person will not buy the product. If it’s greater than this difference, it will hurt our objective

function of minimizing the total amount of incentives. This consequently suggests a weak

upper bound for the objective function as
∑

s∈V ′
(hH

s − Us), which is the summation of all

the differences between hurdles and utilities for each node.

Observation 2: The number of periods is less than or equal to the number of people:

T ≤ |V ′|. Note that once yst = 1 for t = k, yst = 1 for t ≥ k by constraint (2.10) and

constraint (2.11) guarantees that every person on the network buys the product by forcing

the last period decision to be 1. By this definition of a time period, there may be more

than one buyer in a period.

Given the solution of the SOCSNE problem, the LCIP aims to identify the people
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whose purchase decisions constitute a bottleneck in the diffusion process and providing

them incentives will strengthen product adoption to reach the market share of SOCSNE.

In a general setting, the LCIP looks for the nodes to catalyze (or proliferate) a diffusion

process. In the literature, the contagion or diffusion over a network is modeled funda-

mentally using two models, the linear threshold model (Granovetter, 1978) and the in-

dependent cascade model (Goldenberg et al., 2001). The basic difference between the

two models is the way each individual is affected from individuals in its neighborhood.

In both models, we start with an initial set of nodes which have already adopted. In the

linear threshold model, a node is “affected” from diffusion when the sum of the influ-

ences from its neighbors exceeds a certain threshold. A person buys the product when

his total influence is greater than a threshold. As the number of people that adopted the

product increase, a person becomes more likely to adopt the product. In the Independent

Cascade Model, the process still unfolds as a discrete process while the influence follows

a randomized rule, i.e., when a person buys, he is given a single chance to influence his

neighbors with a certain probability independent of the history thus far. Both processes

run until there are no new adopters. Our model effectively follows the linear threshold

model since a node adopts the product if and only if the sum of the influences from its

neighbors and any incentives from outside the social network is greater than the differ-

ence, hH
s − Us. The problem of finding nodes to maximize the spread or influence over

a social network has been studied previously, and is of increasing interest in a variety of

disciplines including marketing, computer and information science. The most prominent

research in this area is the “influence maximization problem” (Kempe et al., 2003). Here

the objective is, for a given parameter k, to find a set of k-nodes to maximize influence
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over the network. The k individuals are seeded (i.e., given the product for free) at the

beginning of the diffusion process and the diffusion process takes place (with these k-

nodes exerting an influence on their neighbors). Our LCIP deviates from this approach;

the incentives in our model are not seed products and involve partial inducements tailored

for a set of individuals. We introduce incentive-discrimination which in a marketing set-

ting could correspond to 10%, 50%, etc. discount coupons rather than free samples of a

product. In this approach, an incentive is used to resolve a knot in the diffusion process

that will lead to a larger spread with more influenced nodes at the end. Such catalysation

addresses the trade-off of minimizing the amount of incentives given and reaching each

individual in the network.

The LCIP is a computationally challenging problem which can take significant

amount of time to solve a relatively small problem. In fact for a model where T = |V ′|,

it is not feasible to solve the LCIP model as it renders the computer out of memory in

less than three hours for the smallest size data set. In Section 2.5, we provide an iterative

approach to solve the LCIP optimally and in much shorter time.

2.3 A Genetic Algorithm for the Share-of-Choice Problem with Network

Effects

A genetic algorithm (GA) (Holland, 1975) is an evolutionary search algorithm that

imitates natural selection of species in order to reach near-optimal solutions. We use a

GA approach for the SOCSNE model for three reasons. First, the time required to solve

the presented integer programming model optimally increases rapidly with the size of the
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problem (making it a nonviable computational option). Second, due to influence effects,

even for the small integer programs state of the art solvers like CPLEX have numerical

instability and one is unable to find optimal solutions (specifically CPLEX finds incorrect

optimal solutions!) to the problem. Third, specialized approaches to solve the original

SOC problem cannot be extended easily to the SOCSNE problem. Our GA generates

high quality solutions and is robust in terms of computational time.

For the original share-of-choice problem, Camm et al. (2006) use Lagrangian re-

laxation with branch-and-bound method to solve the problem exactly. In this method, a

search tree is developed, where each level of the search tree corresponds to an attribute

of the product. So a node down a path in the tree would have some levels of attributes

fixed already. The search tree is pruned using logic-based rules. With these rules, a node

is fathomed if the path starting at this node cannot produce a feasible solution superior to

one that is already known. This is evaluated by checking whether people’s hurdles fall

in the range of the minimum and maximum utilities a person may have if that path is

followed for the product design. The network relationship among prospective customers

in our study prevents such logical inferences since comparison of utilities from the prod-

uct and the hurdles include social network effects which depend on the buying status of

one’s neighbors. The calculation of the objective value at each node would still require

the solution of the integer programming model proposed in this work which would sig-

nificantly slow down the methodology and actually make it computationally intractable.

For the product-line design case, efficient methods are presented and compared by Bel-

loni et al. (2008). Their findings are consistent with the literature in terms of supporting

the superiority of a genetic algorithm over other methods such as dynamic programming,
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beam search or a greedy heuristic. While simulated annealing is as successful, they report

that it has a running time that is one or two orders of magnitude larger than other meth-

ods. Balakrishnan and Jacob (1996) also demonstrated the use and advantages of genetic

algorithms for solving product design problems. Their study provides a starting point for

the genetic algorithm we present here. We use a similar approach to obtain the product

profile with the highest market share. However, our genetic algorithm varies significantly

from Balakrishnan and Jacob (1996) in several regards including the fitness evaluation.

The outline and the details of the genetic algorithm are given next. In our description, we

assume the reader has some familiarity with genetic algorithms. A good introduction to

genetic algorithms is the text by Goldberg (1989).

Outline of the Genetic Algorithm for the SOCSNE Problem

Input: Parameters: population size, mutation rate, number of generations.

Data: number of attributes, number of levels for each attribute, social network of people,

high and low hurdles for each person, utilities for each person.

Output: Recommended product design, market share of the chosen product design.

Step 1 [GENERATE] Generate an initial population of q product profiles. Set t = 0.

Step 2 [EVALUATION] Calculate fitness of each product profile and let BEST = the

profile with the largest fitness.

Step 3 [CROSSOVER] Perform single-point crossover operation to generate q

offsprings.

Step 4 [MUTATION] Perform mutation.

Step 5 Calculate fitness of each product profile. If the largest fitness > BEST,

update BEST.

32



Step 6 [REDUCTION] Reduce the population to half by choosing the ones with

greatest fitness. t = t + 1.

Step 7 If t < number of generations, then go to Step 3.

Else, STOP.

GENERATE: The population consists of product profiles which are represented by bi-

nary strings, sized
K∑

k=1

Lk where Lk is the number of levels for attribute k. An initial

population is generated randomly by assigning one level for each attribute. For exam-

ple, if the product has 2 attributes, color and size with 2 and 3 levels as (black, white)

and (small, medium, large) respectively, then the product with color white and size small

would be represented as (01 100).

EVALUATION: After the population is generated, each product profile in the population

is evaluated for fitness. Evaluation of a product profile corresponds to calculating the mar-

ket share if that product profile is launched in the market. The exact value of market share

is easily determined with the given xkl values for that profile (for example, by solving the

integer program SOCSNE model with the xkl values fixed). Methods used to calculate

the fitness should be chosen carefully. In an earlier approach, we used an approximate

fitness function (where the number of people adopting the product was calculated simply

by comparing hurdles with the utilities while hurdles are updated after each purchase)

for which the results of the genetic algorithm were significantly worse. Using the exact

evaluation via an integer program (for example with the solver CPLEX) corresponds to a

hybrid approach called MATHEURISTICS (Maniezzo et al., 2009) marrying mathemati-

cal programming with metaheuristic approaches.
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CROSSOVER: In this step, two offspring product profiles are produced by two parent

product profiles. Parents are chosen from a given population with respect to their fitnesses

using the roulette-wheel mechanism (Michalewicz, 1996). This allows individuals with

higher fitnesses to be more likely to get selected as parents. The offspring carry properties

of both parents. We use a single-point crossover to determine how the heritage is carried

to the new generation of individuals. A point is chosen randomly from the points where

binary representation of each attribute ends. One of the offspring gets the entries before

that point from the first parent and the entries after that from the second parent. The other

offspring gets the properties of the attributes after that point from the first parent and the

properties of attributes before that point from the second parent. This step is carried out

until the number of offspring created is equal to the population size, so the size of the

population is doubled at the end of this stage.

MUTATION: Mutation in product profiles are used to incorporate a different direction in

the search process. It corresponds to making a change in the product profile and creating

a profile whose properties are not all inherited from the parents. Each product profile in

the population undergoes this step, however mutation occurs with a predefined mutation

rate or probability, µ. In this algorithm, mutation is done by changing the level of one

of the attributes to another level. If a profile is subject to mutation, each attribute has an

equal chance of being changed. Similarly, all other levels are equally likely to be selected

to be the new level. When a profile is mutated, only the mutated version stays in the

population. So, at the end of this phase, the size of the population stays the same.

REDUCTION: The population size is halved by eliminating the individuals with the

least market share. The other half of the profiles with greater market share are carried to
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the next generation.

STOPPING CONDITION: The process is repeated until either there is no significant

improvement over multiple generations or a predefined number of iterations is reached.

2.4 Computational Results

In this section, we present experimental studies on the following issues; data gen-

eration, performance evaluation of the proposed genetic algorithm and the improvement

in market share when network effects are considered in product design process.

2.4.1 Data Generation

Similar to earlier work in the literature (Kohli and Krishnamurti, 1987; Balakrish-

nan and Jacob, 1996; Shi et al., 2001; Camm et al., 2006; Wang et al., 2009) on the

share-of-choice problem, we generated our own data which included the generation of a

social network, part-worth utilities and a hurdle span for each individual. Keeping along

similar lines with the data generation methods used in the previous studies (Kohli and

Krishnamurti, 1987; Nair et al., 1995), part-worth utilities are uniformly generated be-

tween 0 and 1 and normalized for each individual, meaning for each person there is one

level of attribute with utility 0 and one level of attribute with utility 1. The utilities for

rest of the levels change between 0 and 1. Our modeling approach requires a hurdle span

for each person which is characterized by a high and a low hurdle. To represent a het-

erogeneous preference behavior among the customers, hurdle spans are selected with the

following method; 1000 product profiles are randomly generated and for every person
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they are ranked in descending order with respect to total utilities they provide for that

person. High hurdle, which could correspond to total utilities of a status-quo product, is

randomly selected from the first 500 product profiles of this ordered set and low hurdle is

randomly selected from the second half of the same set.

Social networks of customers are randomly generated. However, the random gen-

eration of social networks is more complex than typical random graph generation. In the

past, random network generation has typically been done by using the Erdös and Rényi

(1959) method. In this model, given a set of vertices, two vertices have a connecting

edge with independent probability p. However, the degree distribution of the generated

network becomes a Poisson distribution and is found to be inaccurate in modeling real-

world social networks. Experimental studies also support the fact that random networks

generated with respect to the Erdös and Rényi (1959) model do not represent actual so-

cial networks. Random social networks are different from other random networks because

they show some sort of an order even while they have randomness. Several methods are

studied to generate random social networks. The most frequently studied ones are the

preferential attachment, exponential random graphs, power-law distributed graphs and

small-world phenomenon. Barabasi and Albert (1999) used the growing model (prefer-

ential attachment) for generating social networks. In this model, the nodes are added to

a network one by one and these new nodes prefer to connect to the nodes with higher

degrees. The second model is the power-law model. The probability P (k) that a vertex in

graph interacts with k other vertices decays as a power-law distribution. The third model

is the exponential random model (p* model) which is a generalization of Markov random

graphs. In our test data, we use the small-world network generation model in R program-
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ming (R Development Core Team, 2010). In the small-world model every node ends up

being only a few (about six) connections away from each other. To generate such a graph,

Watts and Strogatz (1998) proposed the following rewiring method. In this method, the

network starts with a ring of n nodes, each connected to its k nearest neighbors by undi-

rected links. A node and the link that connects it to its nearest neighbor in a clockwise

sense are chosen. With probability p, the edge is reconnected to a node chosen uniformly

at random over the entire ring, with duplicate edges forbidden; otherwise the edge is left

in place. This is repeated until each edge in the original lattice has been considered once.

For p = 0, the original ring is unchanged; as p increases, the graph becomes increasingly

disordered until for p = 1, all edges are rewired randomly, as illustrated in Figure 2.1.

The connection topology for social networks lies somewhere between the two extremes

of completely regular and completely random (Watts and Strogatz, 1998).

Figure 2.1: Random rewiring procedure.

Since (i) the clustering coefficient4 starts to decrease sharply at around p = 0.3,

and (ii) Watts and Strogatz (1998) showed that for intermediate values of p the graph is

a small-world network; we used p = 0.1, 0.2 and 0.3 as the rewiring probabilities when

generating the nine social networks with 100, 200 and 300 people, as illustrated in Figures

4For friendship networks, the intuitive meaning is that this coefficient measures the cliquishness of a
typical friendship circle (Watts and Strogatz, 1998).
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2.2, 2.3 and 2.4.

Figure 2.2: Social networks of 100 people for p = 0.1, p = 0.2, p = 0.3, respectively.

Figure 2.3: Social networks of 200 people for p = 0.1, p = 0.2, p = 0.3, respectively.

Figure 2.4: Social networks of 300 people for p = 0.1, p = 0.2, p = 0.3, respectively.

For the linear influence structure used in our computations, for an individual s, each

additional buying neighbor decreases the hurdle an equal amount, ∆s. When the social

network is generated and the neighbors are determined for each person, ∆s is calculated

as the ratio of the hurdle span and the number of neighbors. By this definition, if all

neighbors of an individual buy the product, the current hurdle for that individual reaches
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the low hurdle.

2.4.2 Performance Evaluation of the GA

To evaluate the performance of the proposed GA, we compare it with the optimal

solution of the exact integer programming (IP) model SOCSNE (described in Section

2.1) obtained using CPLEX 12.0 on a 3.00 GHz AMD Phenom II X2 B55 Processor with

4.00 GB of RAM. The GA was coded in C++ and run on the same computer. The com-

plete combination of product profiles of (3,4,5,6) attributes, (2,3,4,5) levels, (0.1,0.2,0.3)

rewiring probabilities (p) and (100,200,300) number of people in the market constitute the

144 data sets. After considerable experimentation on small data sets, the GA parameters

for the population size and the mutation rate are set to 100 and 0.3, respectively and the

stopping condition is set as 10 generations. The market shares for the product profiles

selected by the GA and SOCSNE IP model for the 144 problems are shown in Table 2.2.

Information on the rewiring probabilities used to generate the social networks and

the product profile (in terms of the number of attributes and the number of levels for each

attribute) are given in the first three columns of Table 2.2. Comparing the market shares

for the GA and the IP model SOCSNE, the GA obtains the optimal solution in 126 out

of 144 data sets where the optimal solution is known (from solving the SOCSNE model).

The average running time is 106 seconds for the GA and 1305 seconds for the SOCSNE.

The worst case for the SOCSNE IP model is as large as 20110 seconds to find the optimal

or 11642 seconds before running out of memory. The running time for the GA is only

slightly affected by the size of the social network (the worst case is 199 seconds), whereas
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the SOCSNE IP model is affected significantly both by the size of the network and the

size of the set of possible product profiles, as expected.

To explore the GA performance with larger data sets, we ran experiments using

product profiles of size (8,9,10) attributes with (2,3,4,5) levels for p = 0.2, 100 and 200

people, given in Table 2.3. The running time of the GA stays around 60 seconds for

the first network and 87 seconds for the second network whereas the IP model can take

around 15 hours before it reaches the optimal solution. Further it renders the computer

out of memory (abbreviated as o.o.m.) for nine problems. On average, for the problems

that the IP model could solve, the GA is able to get 98.76% of the optimal solution with

the running time around one minute.
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Table 2.2: Comparison of market shares for the GA and the optimal solution of SOCSNE.
Num. of Num.of 100 people 200 people 300 people
attributes levels GA SOCSNE GA SOCSNE GA SOCSNE

p=0.1 3 2 76 76 132 132 191 191
3 3 76 76 135 135 200 200
3 4 69 69 133 133 199 199
3 5 75 75 147 147 221 221
4 2 76 76 132 132 190 190
4 3 71 71 140 140 185 185
4 4 70 70 133 133 198 198
4 5 80 80 140 140 217 217
5 2 81 81 140 140 206 206
5 3 84 84 146 146 208 208
5 4 78 79 151 151 212 212
5 5 77 77 144 144 208 212
6 2 78 78 136 136 196 196
6 3 77 77 142 142 205 205
6 4 76 80 150 150 218 218
6 5 85 85 145 152 216 216

p=0.2 3 2 68 68 129 129 190 190
3 3 73 73 133 133 191 191
3 4 81 81 129 129 191 191
3 5 74 74 128 128 205 205
4 2 72 72 141 141 191 191
4 3 73 73 136 136 198 198
4 4 77 77 139 139 204 204
4 5 72 73 133 135 198 198
5 2 70 70 127 127 189 189
5 3 82 82 140 140 193 193
5 4 79 79 148 148 203 206
5 5 82 82 144 144 215 222
6 2 78 78 140 140 200 200
6 3 76 76 145 145 206 206
6 4 81 84 146 146 205 209
6 5 80 83 145 148 217 217

p=0.3 3 2 70 70 146 146 196 196
3 3 74 74 134 134 189 189
3 4 82 82 145 146 202 202
3 5 71 71 148 148 199 199
4 2 71 71 142 142 201 201
4 3 66 66 142 142 200 200
4 4 72 72 145 145 202 202
4 5 81 81 141 141 228 228
5 2 72 72 141 141 199 199
5 3 76 76 145 145 208 208
5 4 79 79 145 145 213 213
5 5 76 76 149 151 206 206
6 2 69 69 143 143 208 208
6 3 73 79 143 143 196 196
6 4 76 76 147 147 209 216
6 5 83 83 142 145 215 218
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2.4.3 Network Effects on Market Share

In Tables 2.4, 2.5 and 2.6, we compare the market shares for product profiles de-

signed with and without taking network effects into account. The column “SOC” gives

the market share for the optimal product design obtained by the exact integer program-

ming model solution of the original SOC model. In this model, network effects are not

considered in the design process, incentives are not allowed and people decide to buy the

product if and only if their utilities are greater than or equal to their hurdles. The second

column “SOC+NE” (NE=network effects) gives the market share for the same product,

but it is greater than the first column since this column shows the market share after the

product has spread over the network without any intervention from the company. As some

people bought the product, others are influenced and some of the influenced also buy the

product and this behavior naturally cascades through the network. In the fourth column

“GA+IN”, we have the market shares for the product designed using the GA for the SOC-

SNE model. However, obtaining this market share may involve promoting the product

with incentives (IN), as explained in Section 2.2. If such incentives are not provided, the

market shares are as given in column “GA+NE”. Note that for columns 2 and 3, the mar-

ket share with network effects but no incentives is easily computed in an iterative fashion,

while the market share with network effects and incentives given in column 4 is computed

by using the product profile and inserting it into the IP model SOCSNE (i.e., the variables

corresponding to the product are fixed).

As should be expected, considering network effects, compared to neglecting these

effects (SOC vs. SOC+NE), always increases the market share. Similarly, providing
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incentives, compared to no incentives (GA+NE vs. GA+IN), produces a larger market

share. The computational experiments indicate that this increase in market share can be

quite significant, and ignoring network effects in the design process leads to a substan-

tially inferior product design. The trade-off between the amount of incentives given and

the amount of increase acquired in the market share is analyzed in Section 2.5.3 with the

introduction of a social welfare measure.
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2.5 Solving the LCIP Model: Identifying Individuals to Pay Out Incen-

tives to

The solution to the least cost influence problem (LCIP) identifies the set of people

who receive some incentives to buy the product and further influence their neighbors. The

model for the LCIP was given in Section 2.2 and is computationally intractable to solve

even for very small problem sizes. To overcome this problem, we preprocess the model

and then use a tractable, iterative, and much faster approach that preserves optimality (i.e.,

ensures the LCIP is solved to optimality).

In the LCIP model, the influence spreads through the network over a finite number

of time periods (Observation 2) and eventually reaches everyone. At the beginning of

each period, an individual’s hurdle is updated with respect to neighbors’ buying decisions.

Decisions made in time t affect neighbors’ hurdles in period (t + 1).

Preprocessing: As a preprocessing step before solving the LCIP, we identify by simple

comparison the nodes whose utilities are already greater than or equal to their hurdles

and the cascade of nodes that purchase the product after being influenced from previous

buyers without requiring any incentives. Once these nodes are eliminated, the remaining

network of nodes are the ones that need an incentive to start a new cascade of buyers

(i.e., people which constitute the market share difference between columns GA+IN and

GA+NE in tables in Section 2.4.3).

It is then easier to recast the LCIP as follows. For convenience, we will repeat

notation and let V ′ denote the nodes in the problem after preprocessing, bs denote the

difference between the current hurdle and product utility for s ∈ V ′ (observe bs > 0 for
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s ∈ V ′), and djs = a′js∆s denote the influence of node j on node s if node j adopts the

product. The LCIP can be rewritten as;

LCIP: Minimize
∑

s∈V ′
zs, (2.14)

subject to zs +
∑

j∈V ′
djsyj(t−1) ≥ bsyjt ∀s ∈ V ′,∀t ≥ 1, (2.15)

ys0 = 0 ∀s ∈ V ′, (2.16)

Constraints (2.10), (2.11), (2.12) and (2.13).

Iterative approach: Our iterative approach further reduces the size of the LCIP by limiting

the number of time periods to obtain an initial solution, and then increments the number

of periods by one at each iteration. In the single period model, i.e., in the absence of

a successor period, network effects cannot take place. The individuals have to be paid

the difference between their hurdles and utilities to adopt. In the next iteration, the LCIP

model is re-solved with two time periods. Here the network effects are present but limited

to only the “first”- and “second”-generation buyers.

Observation 3: The cost of total incentives can never be worse than costs in the previous

iteration. In the additional period, some of the individuals who were given incentives in

the previous solution may be covered by influence from neighbors decreasing the total

amount of incentives.

Observation 4: The costs can only decrease when there is at least one new buyer in a

period. The decrease in the amount of incentives can only be covered by the influence of

new buyers in the previous period.

In every successive iteration an additional time period is added allowing peer influ-
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ence effects to cascade further into the network. The iterations are continued until the cost

of the LCIP solution (i.e., incentives paid out) stays the same as the cost of the previous

iteration.

Observation 5: The iteration where the objective stays the same is the optimal solution.

No improvement in the objective value shows that an additional time period is not used

for influence.

2.5.1 Computational Results

Table 2.7 shows the LCIP results for the 32 problems where p = 0.2 and networks

have sizes 100 and 200. Here, the ratio between the number of people who decide to buy

as a result of their neighbors’ decisions and who receive incentives is given in column

“Return”. For example, for the problem set (3,2,100), the return is 0.73 where 15 peo-

ple are given incentives and they influence 11 additional people to change their decisions

without receiving incentives. (Return is calculated as the ratio 11
15

.) Note that the number

of new buyers in columns 3 and 7 are equal to the difference between columns “GA+NE”

and “GA+IN” in Table 2.5. This number is the size of the set of buyers who purchase

the product after a subset of the network have been given incentives. For the same exam-

ple, the market share is increased from 42 to 68 by giving incentives to only 15 people.

Overall, the returns for the 32 data sets are all greater than or equal to 0.67 meaning (in

the worst case) giving incentives to 3 people leads 1 additional person to buy without

receiving incentives. The number of iterations needed to solve the LCIP problems are

given in columns 5 and 9 for 100 and 200 people, respectively. Notice that the original
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LCIP model for the problem with 6 attributes, 5 levels, 200 people (Table 2.5) has 145

time periods, but our preprocessing reduces this to a problem over 57 nodes and iterative

approach solves the problem within 4 iterations (Table 2.7).

Although the problem size is decreased with the iterative approach, the running

times for the problem data sets still increase with the size of market. The average run

time increases from 4.94 seconds to 47 minutes when the size of the market increase from

100 to 200. For the problem sets of (3,3,200), (3,5,200) and (6,5,200), the computer ran

out of memory before reaching the optimal solution. However, we were able to get close

to optimal solutions in terms of the number of people that are given incentives and the

amount of incentives they have been given. This is the case for almost half of the data

sets with 300 consumers, so we don’t present those results here.
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2.5.2 An Illustration of the LCIP solution

To further examine and illustrate the cascading network effects in the LCIP solution,

we focus on one data set (6,2,200, p = 0.2) as an example. For this example, when

incentives are not present, the product profile obtained by the GA captures a market share

of 114 customers after the network effects take place (Table 2.5). However, the product

adoption of 9 additional people via incentives increases the market share to 140. The

influence originating from these 9 people does not reach the additional 17 people in a

single period. Figure 2.5 and Table 2.8 show, period-by-period, how the influence spreads

over the part of the social network that contains people who will buy the product either

after receiving incentives or being influenced by their neighbors. Customers provided

with incentives are marked with “+” signs and customers that are influenced by others

and buy the product are marked with “•” signs.

Figure 2.5: LCIP solution for the data set (6,2,200,p = 0.2).
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To explain the diffusion process, we focus our attention on the largest network

block of nodes numbered as {9,10,. . . ,16}. The diffusion over the remaining nodes can

be followed via Table 2.8. In the first period node 12 is provided with incentives. In the

next period, hurdles are updated for its neighbors (11 and 13). Although 11 is influenced

by 12, it still does not adopt the product. The high hurdle for 13 decreases sufficiently

enough to change its decision. In the third period, the new customers affected from the

influence (of node 13) are 11 and 14. Both of them adopt the product. In the following

two periods, 15 buys after the influence from 14 and 16 buys as a result of the influence

from 15. In the fifth period node 9 is given incentives to adopt the product. Finally in

period 6, node 10 buys the product with the influence from node 9.

Table 2.8: LCIP example.
Current Hurdle

Person Utilities Hurdle ∆ t=1 t=2 t=3 t=4 t=5 t=6 Incentives

0 2.0899 2.5005 0.3666 2.5005 2.5005 2.5005 2.5005 2.1340 1.7674 0
1 3.5918 3.8967 0.3801 3.8967 3.8967 3.8967 3.5166 0
2 3.6248 3.9235 0.2552 3.9235 3.9235 3.9235 3.6683 3.4131 0
3 3.7329 3.8533 0.1208 3.8533 3.8533 3.7329 0.1204
4 2.0695 2.5299 0.2614 2.5299 2.5299 2.5299 2.0695 0.4604
5 2.3355 2.6251 0.3102 2.6251 2.6251 2.6251 2.6251 2.3148 0
6 2.0638 2.2550 0.1922 2.2550 2.2550 2.2550 2.2550 2.2550 2.0628 0
7 2.4257 2.7660 0.5966 2.7660 2.7660 2.7660 2.7660 2.1694 0
8 3.1668 3.2157 0.2219 3.2157 3.2157 3.2157 3.1668 0.0489
9 2.2630 2.3132 0.6612 2.3132 2.3132 2.3132 2.3132 2.2630 0.0502
10 3.5868 3.9947 0.2445 3.9947 3.9947 3.9947 3.7502 3.7502 3.5057 0
11 3.6349 4.3801 0.3775 4.3801 4.0026 3.6251 0
12 2.9853 3.0490 0.4652 2.9853 0.0637
13 3.7322 3.8657 0.1374 3.8657 3.7283 0
14 3.7534 4.0310 0.5328 4.0310 4.0310 3.4982 0
15 3.7941 3.9833 0.5875 3.9833 3.9833 3.9833 3.3958 0
16 2.0522 2.0543 0.2552 2.0543 2.0543 2.0543 2.0543 1.7991 0
17 1.8873 2.1816 0.4424 2.1816 2.1816 2.1816 2.1816 1.7391 0
18 5.0710 5.1173 0.2870 5.1173 5.1173 5.0710 0.0462
19 3.4486 3.7521 0.3519 3.7521 3.7521 3.7521 3.4002 0
20 2.8955 2.9618 0.1512 2.9618 2.9618 2.8955 0.0664
21 2.2459 2.6065 0.4770 2.6065 2.6065 2.6065 2.1295 0
22 2.5947 3.5842 0.5028 3.5842 3.5842 3.5842 2.5785 0
23 2.5196 3.2482 0.4113 3.2482 2.5196 0.3172
24 2.7059 2.7566 0.3072 2.7059 0.0507
25 2.8436 3.9490 0.6422 3.9490 3.3067 2.6645 0
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2.5.3 Social Welfare Comparison

The amount of incentives provided and the increase in the market share are not

measured in the same units, perhaps making it somewhat hard to analyze the trade-off. To

ease the comparison, we use a welfare measure similar to the utilitarian function (selecting

a product on the basis of the sum of utilities) as in Gupta and Kohli (1990). Finding the

product profile that results in the largest overall consumer utility is referred to as the

“buyer’s welfare problem”. Individual welfare is calculated as the difference between

total utility from a product and the current hurdle of the individual. Social welfare is the

sum of all the individual welfares. We look at the social welfare when incentives are given

in Table 2.9 and calculate the average increase in social welfare for a unit incentive given

in column “Return”. Note that all returns are positive and the smallest return is more than

4 times the incentive provided!
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2.6 Concluding Remarks

We proposed a novel model to include peer influence effects in product design

within the framework of the share-of-choice (SOC) problem. Although the share-of-

choice problem has been studied in the marketing literature, to our knowledge the peer

influence effects have never been explicitly considered previously within the product de-

sign process. In this model, we attempt to develop a new product taking social network

effects into account, before intervening during the marketing phase with targeted promo-

tions. By taking into account peer influence effects, with our new model one is able to

design products with far larger market shares than obtained by the original SOC model.

While the effects of peer influence on consumer choice are well documented, previous

analysis of conjoint data typically assumed that a consumer’s attribute preferences and

product choices are independent of choices of others. Narayan et al. (2011) take a sig-

nificant first step in the development of conjoint estimation models that incorporate peer

influence. The SOCSNE model introduced in this chapter allows one to successfully use

the results of such conjoint estimation models towards a logical next step—the design of

a product with the largest market share.

The new model we constructed remains a computationally challenging NP-Hard

problem. However, after extensive computational studies we show that the GA used to

solve this problem finds high quality solutions for the simulated data sets. Such evaluation

is possible for small size data sets where the optimal is available for comparison. For the

larger data sets, where CPLEX requires hours to solve the problem or is unable to do so,

the GA is robust and preserves a running time around less than two minutes independent
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of the size of the problem. As one of the characteristics of the GA, it is flexible with

extensions requiring only minor modifications to the algorithm.

Engineering the diffusion of a product is already used by businesses in the form of

free samples or discount coupons. The modeling of this process (LCIP) by using the prod-

uct profile obtained by the SOCSNE model, and then solving the problem with tailored

incentives for a group of customers addressing the trade-off between a larger market share

and the costs of providing incentives are the other class of contributions of this chapter.

We model the LCIP as an integer program. Since this model is computationally very hard

to solve, we develop a preprocessing procedure and a simple iterative strategy to solve it.

As noted earlier the LCIP is applicable in a larger number of settings. For instance, while

it is considered within the framework of the product design process in this study, in prac-

tice it may be used tactically and operationally during the marketing phase. Specifically,

the population to which the product is marketed to is typically larger than the popula-

tion used for the conjoint study. Further, social network structures are dynamic and may

change over time. Thus, with a product (or product line) in place a marketer could benefit

from the LCIP model to analyze the tradeoffs and incentives required to reach a desired

fraction of the population. Although the LCIP model considers incentives in terms of

customer utilities, one should note that following Miller et al. (2011) it is possible to infer

dollar values from customer utilities.

There are several natural directions for future research. Broadly, they all encompass

the expansion of product or product-line design problems to settings with social network

or peer influence effects. They include (i) pricing of the levels of attributes for a product

as part of the design process, (ii) consideration of alternate assumptions of product selec-
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tion amongst consumers (i.e., instead of the highest choice pattern where each consumer

deterministically self-selects the product from the line that provides her the highest sur-

plus one could consider the multinomial choice logit model (Chen and Hausman, 2000)),

and (iii) extension of the problem to stochastic network settings (i.e., one in which the

social network changes over time).
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Chapter 3

The Least Cost Influence Problem (LCIP)

3.1 Introduction

In the previous chapter, we have introduced the least cost influence problem as a

complementary piece to the product design problem; the solution of the integer program-

ming model for the share-of-choice problem with network effects implicitly required peo-

ple to make buying decisions together (see Section 2.2). To overcome this bottleneck, we

searched for the best way to persuade one person out of the group to initiate the buying

process through incentives. Working through iterations, the objective was to identify the

most critical nodes in the network in order to minimize the amount of incentives given.

In this chapter, we model the LCIP in a more generalized setting, independent of the

product design problem. Here, the objective is still to find a group of individuals to give

incentives to, but the aim here is for the spread to reach to a portion of the whole network.

This is relevant when it is desired that a certain threshold fraction in a society/social

network be reached (e.g., immunizing at least a certain proportion of the population). In

the previous model, every neighbor had the same amount of decrease (increase) in one’s

hurdle (utility) for the product. The model considered here allows each person to be

influenced in a different manner from different neighbors.

In the next section, Section 3.2, we briefly review the related literature on infor-

mation propagation in the computer science and information systems research areas. In
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Section 3.3, we show the mixed integer programming model for the general setting. In

Section 3.4, we focus on tree networks and show that LCIP over a tree network can be

solved in a polynomial time in certain cases. Next, we provide the algorithms to solve

this problem in Section 3.5. We propose a dynamic programming algorithm for the LCIP

on tree networks in Section 3.5.1 and show that it is equivalent to a greedy algorithm

in Section 3.5.2. In Section 3.6, we show that the LCIP over a tree network becomes a

knapsack problem when influence from neighbors are not equal to each other for a person

(more specifically, an instance of a knapsack problem can be polynomially transformed

to an instance of an LCIP). We conclude this chapter with an example of the proposed

algorithms in Section 3.7 and with concluding remarks in Section 3.8.

3.2 Information Propagation

Finding the most critical nodes to achieve a certain spread has found a large place in

the computer science and complex networks literature. The abundance of data on social

networks and the advancement of technologies that enable their collection, have encour-

aged computer and information scientists to search for reasoning behind actions of large

groups. These researchers are interested in knowing how any “information”, whether it

is a disease, a behavior, or an advertisement, spreads. Research on complex networks

studies the nonlinear dynamics of observing interactions among humans/cells/websites at

the individual level and understanding the emerging collective behavior, and it is a part of

a broader research on complex systems (Strogatz, 2001).
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3.2.1 Viral Marketing Literature

Influence spread over a network of individuals via electronic sources such as inter-

net or wireless networks to advertise a particular product or service is called Viral Mar-

keting. It was first used in 1997 in a Netscape newsletter, defined loosely as “network-

enhanced word-of-mouth”. The first idea came from Hotmail where a promotional pitch

with a clickable URL was included in every message sent by a hotmail user (Jurvet-

son, 2000). The main characteristics of viral marketing is that every customer becomes

an involuntary salesperson simply by using the product and talking about it to his/her

friends. As the name suggests, the origins of the idea is that the spread of influence is

similar to a virus carrying a disease over a network of people and affecting them through-

out a certain period of time. Viral marketing is also referred to as word-of-mouse or

word-of-keyboard. Network-based marketing is another term that refers to a collection of

marketing techniques that take advantage of links between consumers to increase sales.

Instances of network-based marketing have been called diffusion of innovation, buzz mar-

keting and viral marketing as well. Three modes of network-based marketing have been

defined (Hill et al., 2006): Explicit advocacy: People become vocal advocates of product.

Implicit advocacy: Cool members of smaller social groups adopt the product, they do not

explicitly speak about the product but use it. Network targeting: A firm creates a market

with respect to prior purchasers’ social-network neighbors.

In a broad sense, viral marketing has been studied from two main points of view.

The first one is from the marketing side which is more consumer-oriented and the other is

a sociological perspective which focuses on social network structures. With the recent ad-
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vancements in technology, researchers have access to large online networks and computer

science, physics and complex systems research have begun to study real network struc-

tures in detail. The first group is more interested in the characteristics of this spread and

on how to handle and control for the different components of this marketing structure. On

the other hand, the sociological studies are more interested in the structure of the network

and how it affects social influence. From the computer science perspective, diffusion

models of viral marketing are used in identifying the most critical nodes on a network

to maximize the number of affected people from the proposed product, idea or service.

The individuals in both types of studies consist of ones who have already adopted the

information and the ones who have not yet adopted it. In this respect, the LCIP proposed

in this section lies within the computer science perspective in which we try to identify a

set of people to persuade to adopt and to maximize the number of adopters as a result of

their influence on the others. In this section we will take a look at a nonexhaustive viral

marketing literature in the marketing, computer science and complex systems as these are

the most related papers to our work.

Starting with the marketing side, viral marketing has been in the focus for quite

some time now. Although it has been seen like a random process earlier (Goldenberg

et al., 2001), the marketing industry started to see the potential it has and began to direct

it rather than only trying to manage it so that they can take control over it and use it as

an advertising tool. A study by Reichheld (2003) showed that willingness of consumers

to recommend a company to their friends is by far the best predictor of a company’s

growth. Money et al. (1998) studied the factors that affect the word-of-mouth referral

behavior in international business transactions and studied them as native culture of the
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buyer, location of operation and relative location in general terms. More specifically,

they discussed the source nodes, strong ties on the network and measured the effect of

centrality on a network influence. Jurvetson (2000) suggested that viral marketing is more

powerful than third-party advertising because it conveys an implied endorsement from a

friend. The paper also stated the aspects that characterize a successful viral marketing

strategies such as; the product is being offered for free only on the internet and via no

other distribution channel, the offer contains a real customer value and the first “carriers”

are chosen very carefully. The paper also discusses the “first-mover advantages” in viral

marketing.

Mobile viral marketing is one of the word-of-marketing communication arenas

which emerged as the number of individuals who own a cell phone has increased dramat-

ically. Wiedemann (2007) examined 34 case studies to identify relevant characteristics of

mobile viral marketing. In this study, a description model of mobile viral marketing as

well as a derivation of four mobile viral marketing standard types are presented.

The nature of viral marketing and the access to large amounts of data through

technological advancements allows many experimental studies in marketing literature.

Van den Bulte and Stremersch (2004) looked at different contagion mechanisms and pro-

vided empirical support for the role of income heterogeneity in diffusion of consumer

innovations. Van den Bulte and Joshi (2007) formalized the previous theoretical argu-

ments on social structure and diffusion, and modeled the diffusion structure to generate

more refined theoretical insights with empirical analysis of 33 different data series. More

recently, Berger and Milkman (2012) took a psychological approach to understanding

diffusion and studied how content characteristics affect virality. Determining influential
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users in internet social networks and finding critical nodes to seed to start an adoption is a

topic that is of interest to both marketers and network scientists (Goldenberg et al., 2009;

Stonedahl et al., 2010; Bakshy et al., 2011).

Using communication data, Hill et al. (2006) showed that consumers linked to a

prior customer adopt a service at a rate 3-5 times greater than baseline groups selected

by the best practices of the firm’s marketing team. Interestingly, Hill et al. (2006) tried to

separate word-of-mouth effects from homophily, where homophily suggests that people

that are linked to each other are like-minded and like-minded people tend to buy the same

product. If we are not sure about the way of communication that takes place, it would

be difficult to understand what causes the influence. To overcome this effect, they used

propensity scores. They matched the scores in the treatment and control groups using

demographic data which helped to understand if homophily was present or not. Flagging

the customers NN (network neighbor) indicating whether they had communicated with

a current user of the service in a time period prior to the marketing campaign, they then

observed purchase behavior.

Viral marketing has received an increasing attention from the computer scientists

and engineers who concentrate more on the structure of the network and the relationship

among the components of the network. In the early study by Domingos and Richardson

(2001), the authors proposed a “network value” for each customer with respect to the ex-

pected increase in sales to others that results from marketing to that customer. The paper

concentrated on what determines this network value of a customer. Several examples to

this are the connectivity of the customer in the network, whether the taste of customer and

the product being marketed are similar, the second third and higher degree connectivity of
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the customer which would lead to faster spread of the influence. By viewing the market as

a social network, they modeled it as a Markov random field and seeked for the choice of

which customers to market to, and for the way to estimate what customer acquisition cost

is justified for each customer. They mined data from the EachMovie collaborative filter-

ing system and showed that their modeling framework have advantages over traditional

direct marketing.

In 2002, in another study (Richardson and Domingos, 2002) the authors search for

best viral marketing plan by mining data from Epinions knowledge-sharing site, where

customers review products and advise each other. Social network here is the trust rela-

tionship among the reviewers of products. The knowledge of the network is partial in

this paper, and that gathering that knowledge can itself have a cost. Some of the param-

eters were estimated such as the effect that marketing has on a customer’s probability of

purchasing, (i.e., the amount of influence between customers). They estimated the pur-

chasing probability using a Bayes model assuming that a user is more likely to purchase

a product if it was reviewed by a person he trusts. They extended their previous work

(Domingos and Richardson, 2001) and showed how to find the optimal viral marketing

plans that maximized positive word-of-mouth among customers using continuously val-

ued marketing actions, and they reduced computational costs. Later Domingos (2005)

looked back and presented a general introduction on the importance of viral marketing

mentioning that lack of data caused social network models traditionally to be descriptive

rather than predictive, and that having the data made the previous two studies possible.

The author argued that in traditional direct marketing customers are presented products

only if the price is greater than the production cost, however, in viral marketing a free
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sample which would mean an expense at current time can cause a larger number of peo-

ple to know about the product and lead to higher sales in the long term.

Structural measures of influence in social networks are studied by several researchers.

As mentioned in Section 2.2, Kempe et al. (2003) studied the k-max influence problem;

for a parameter k, find a k-node set of maximum influence. Adopters of the innovation

is represented as active nodes. The authors focused on two basic diffusion models for

the spread of an idea or innovation that have been studied well in social sciences; linear

threshold model and independent cascade model. They showed that this problem is NP-

Hard and provided the first provable approximation guarantee (within 63% of optimal)

for several classes of models, with a natural greedy strategy. Their algorithm outper-

formed node-selection heuristics based on the well-studied notions of degree centrality

and distance centrality in terms of the set of resulting active set size.

Leskovec et al. (2007) concentrated on person-to-person recommendation networks

and how recommendations spread. They analyzed how user behavior varies within user

communities defined by a recommendation network. The growth of recommendation

network over time and the effects of sender and receiver recommendations are studied.

Using a stochastic model, they successfully identified communities, product and pricing

categories for which viral marketing seems to be very effective. They found that the prob-

ability of purchasing a product increases with the number of recommendations received

but quickly saturates to a constant and relatively low probability.

Complex systems approaches have also been used to look at the underlying pro-

cess of word-of-mouth advertising. Goldenberg et al. (2001) used a stochastic cellular

automata, generated data and analyzed the results to understand the impact of strong and
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weak ties between people on the speed of acceptance of a new product. Here, the strength

of the ties affected the probability of an agent to be influenced by its neighbors. In another

study, Garcia (2005) studied the use of agent-based modeling (ABM) to study innovation

and new product development research. The paper explained the benefits of ABM, and

presented possible applications to use ABM for new product development and innovation.

The paper provided a quiet rich literature review and introduced three potential areas of re-

search for ABMs as, diffusions of innovations, organizations and knowledge/information

flows.

While communicating and spreading an idea or the influence about a product, peo-

ple can also talk about their negative experiences as well. This could lead to a decrease in

the sales revenue. In the extreme cases, there are many examples of hate sites. It is usu-

ally assumed that negative word-of-mouth is spread further than its positive counterpart

(Helm, 2000). Another possible negative effect occurs when customers feel used if they

have doubts about whether positive comments are really generated by regular people or

by that company. Luo (2009) studied the long-term impact of negative word-of-mouth on

cash flows and stock prices and provide insights for marketing research and viral market-

ing management.

Studies over social networks are sparse in the operations research literature. A

recent paper in the operations research literature is by Dawande et al. (2011). In their

paper, they studied searches of sets of nodes over social networks and in this respect they

defined two integer programs; The Elite Group Problem (EGP) and The Portal Problem

(PP) corresponding to the two set-based notions which are influential sets and central

sets, respectively. They provide a variety of algorithmic results and discuss computational
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complexities of both problems.

3.3 Problem Definition in a General Setting

Given an undirected graph G = (V,E), let vertex (node) set V = {1, 2, ..., n}

denote the set of people in the network and edge (link) set E represent the connections

among people. Each node i ∈ V is associated with a hurdle bi. Let dij (defined over all

edges (i, j) ∈ E so that dij = 0 if these two nodes are not adjacent to each other) denote

the “influence factor” which captures how much another node j influences node i if node

j adopts. This corresponds to ∆iaji in the model in Chapter 2. There the influences ∆ik

and ∆ij were equal to each other and therefore were represented as ∆i where i is the

person being influenced by neighbors k and j. We follow the linear influence structure

in the previous chapter, and also assume that node i adopts the information if and only if

the sum of the influence from neighbors and the incentive he receives is greater than or

equal to his hurdle. Remember that the hurdle in the previous chapter was the value at

which one would be indifferent between buying a product or not. Here, in a more general

setting, hurdle has a similar purpose. It serves as a limit which needs to be surpassed

for the node to adopt. However, we do not have utilities in this problem. The reader can

read the new hurdle as the remaining from the hurdle when utilities are subtracted. The

goal of the problem is to minimize the amount of incentives given while guaranteeing

that a fraction (α) of the market will adopt at the end. (We use the terms adopt and buy

interchangeably throughout this thesis.)

We model the LCIP in a general setting using a mixed-integer program. Again, to
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capture the order of buying among customers, we introduce time periods, t = 1, 2, ..., T .

Since there are |V | nodes, we can limit the time indices, T ≤ |V |. In this model we have

four types of decision variables. Let xi = 1 if node i eventually adopts by the time T , and

0 otherwise. Let yit = 1 if node i adopts in time period t, and 0 otherwise. Let vit = 1 if

node i adopts for the first time in time period t and 0 otherwise. Finally let pi denote the

inducement paid to node i. The mathematical formulation is as follows:

LCIP: Min
∑
i∈V

pi (3.1)

subject to pi +
∑
j∈V

dijyj,(t−1) ≥ biyit i ∈ V, t = 2, ..., T (3.2)

vit = yit − yi,(t−1) i ∈ V, t = 2, ..., T (3.3)
T∑

t=1

vit = xi i ∈ V (3.4)

∑
i∈V

xi = α|V | (3.5)

where xi, yit ∈ {0, 1} and vit, pi ≥ 0 i ∈ V, t = 1, 2, ..., T.

The objective of this formulation is to minimize the sum of the incentives given

over the network. The first constraint provides the buying condition for each person. The

hurdle, bi, for person i is compared with the sum of the total influence over all neighbors,

∑
j∈V

dijyj,(t−1), and the amount of incentive received, pi. With constraint 3.3 we introduce

the variable vit and keep track of when a person adopts for the first time. We assume

there is no churn. That is, adopters do not switch to not adopting at later points of time.

By summing over all periods in constraint 3.4, we decide if a person adopts. With con-

straint 3.5, we make sure the number of adopters constitute the required portion of the

population.
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3.4 Focus on Tree Networks

A tree network is a cycle free undirected graph where there is only one simple path

between any two vertices. In our solution procedure we utilize the star subnetworks within

a tree network. A star network consists of one root node for the tree and possibly many

leaf/end nodes connected to it. The degrees of leaf nodes are equal to one, whereas the

degree of the root node is equal to the number of leaf nodes. Figure 3.1 shows an example

of a tree network with 10 nodes. We have one root node (though it is not unique). On the

right, we show one way to decompose the tree into its star subnetworks. There are three

star subnetworks in this example. Nodes 2 and 4 become the root nodes for the other two

subnetworks.

Figure 3.1: An example of a tree and its star subnetworks.

The mixed integer program for the LCIP becomes intractable as the size of the

network increases. The LCIP is an NP-Hard problem for general networks. However,

we show that it is polynomially solvable on tree networks under the assumption that all

neighbors of a node exert equal influence.

Although the focus on trees as social networks may seem limited, they are prevalent.

Recent visualization tools allow network data to be better read for data scientists. Popular
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visualizations include data from Facebook, Twitter and Wikipedia articles. Various as-

pects of these different environments may lead to visualizations of star subnetworks and

tree networks, including infection trees on Blogsphere as described by Adar and Adamic

(2005), Facebook page trees as described by Sun et al. (2009), and “retweet trees” as

described by Kwak et al. (2010) and Sadikov et al. (2011). Therefore, our focus on tree

networks is still applicable to a wide variety of real life information on networks. Further

when a network can be decomposed into trees, our algorithm can be used to develop a

fast dynamic programming (though not polynomial) algorithm for sparse networks.

In the next section we propose a dynamic programming approach to solve this prob-

lem when the influence factor, dij , is the same for all neighbors, i.e., di = dij , ∀i ∈ V .

With this assumption, each node in the network is associated with only two numbers, bi

and di. We also assume the desired market share is the entire population size of the net-

work, i.e., α = 1. In this respect, we can express the LCIP problem over a tree network as

follows. Given the network below (Figure 3.2) and given the corresponding hurdles and

influence factors, choose the set of nodes, S, that will let the information be spread over

the whole network while receiving the minimum incentives.

Figure 3.2: The LCIP over a tree network.
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This figure shows all the nodes before adoption started over this network. Hurdles

are shown with bi and influence factors are shown with di. If none of the nodes is given

incentives, no adoption will take place in this network. If, for example, node 3 is paid

incentives in the amount of b3, node 3 would adopt and the hurdle for node 5 would

decrease by d5. Then paying b5 − d5 to node 5 would lead node 5 to adopt. This would

be followed by nodes 2, 6, and 10 to adopt in the next period without any incentives. It

would also decrease the hurdle for node 4. This is an example of how the diffusion takes

place over the network. In this example, nodes other than 4 and 5 are leaf nodes1. In terms

of solving the problem, paying incentives in the amount of b4 and b5 to nodes 4 and 5 at

the beginning of the adoption would suffice to reach all nodes. However, there may be a

cheaper solution where some of the leaf nodes are paid their current hurdles, and nodes 4

and 5 are only partially paid. In the next section, we will look at some properties of the

problem and the solution to understand how we can reach a solution for the LCIP over a

tree.

3.4.1 Properties of the problem and the solution procedure

Without loss of generality, we assume that if all nodes in the set of neighbors, Ni,

of a node i adopt then the total influence from these neighbors will be greater than or

equal to the node’s hurdle, i.e., she will adopt too. Otherwise, it would mean the only

way she could adopt would be when an incentive of bi−|Ni|di is given at the outset. This

difference would be independent of the solution of the problem and therefore can be seen

as a sunk cost and omitted. Consequently, we can say bi ≤ |Ni|di ∀i ∈ V .

1See Section 3.4.1 property 2 for why we do not show di for the leaf nodes.
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Letting ρ represent any root node in a tree network, we now describe additional

properties about the problem and its solution:

1- In the initial network, bi ≥ di ∀i ∈ V .

(The inequality bi ≤ di says that influence on node i is larger than i’s hurdle meaning a

single buyer neighbor will be sufficient for the node to buy. This is the same case if bi is

set to be equal to di since the extra influence of di − bi is not required.)

2- We can assume bi = di ∀i where i is a leaf node.

(Since α = 1, we know the whole network will buy at the end. A leaf node has a single

link connected to it (the root node) and since without loss of generality we have assumed

that bi ≤ |Ni|di, bi ≤ di and di cannot be less than bi, where |Ni| = 1. Then property 2

follows from property 1.)

3- In a star network, if the root adopts, then all the leaf nodes connected to it will adopt

too.

(Since bi = di for a leaf node, the influence from the root node will be sufficient to per-

suade the leaf node to adopt.)

4- In a star network, if a leaf node i is paid incentives, it is paid in the amount of its hurdle,

bi.

(If there is influence from the root node, then no incentives would be required. If there

is no influence from the root node and the incentive given to the leaf node is less then bi,

then the leaf node would not adopt.)

5- The initial network can be truncated by eliminating leaf nodes i for which bi ≥ bρ.

(Since bi ≥ di ∀i ∈ V in the initial network, bρ ≥ dρ and so bi ≥ bρ ≥ dρ. This means if

the leaf node receives an incentive of bi, its influence on the root node will be dρ, which is
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less than or equal to bi. So the cost (incentives given) of paying such leaf nodes is larger

than the benefit (the influence on the root node) we get.)

6- If there are only two people in a network that are connected to each other, it is always

cheaper to give incentives to the one whose current hurdle amount is the less than the

other one.

(The other one will automatically buy from the influence.)

7- One can think a natural upper bound would be to give incentives to everyone but ac-

tually, we never need to give incentives to all because we can always leave at least one

person out.

(Since all her neighbors would already have adopted, she will buy due to the influence

from them without requiring any incentives.)

8- A naive lower bound can be obtained by giving incentives to the person with the least

current hurdle.

(It may be the case that once she buys, all will be affected and buy.)

3.5 Algorithms to Solve the LCIP over a Tree Network

In this section, we explain our dynamic programming algorithm to solve the LCIP

over a tree network when the influence factor dij is the same for all neighbors j of i,

and then show how it can be viewed as a greedy algorithm. The dynamic programming

algorithm uses the advantage of the star subnetworks in a tree network and solves the

problem over each star network and suggests a method to compress them into a single

node. This promises that if we can iteratively reduce the tree network into a single star,
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we can solve the problem for the tree. A consequent product of this dynamic algorithm is

the greedy algorithm, which is computationally a lot easier than the dynamic algorithm.

In the greedy algorithm, nodes are selected in the ascending order of min{bi, di}, they

are paid in the amount of their current hurdles and the hurdles for the neighbors of the

selected node are updated at each iteration. After giving the details on both algorithms,

we explain how the greedy algorithm is an interpretation of the dynamic algorithm.

3.5.1 Dynamic Programming Algorithm

In the dynamic programming algorithm, we fragment the tree network into sub-

problems. Each subproblem is solved optimally leading to an optimal solution for the

problem. Subproblems are defined on star subnetworks which are collectively exhaus-

tive. Solving a subproblem corresponds to identifying the nodes to be given incentives

and calculating the total cost of incentives required for the adoption to spread over that

star subnetwork. Before solving the problem over a star, an important step is to consider

the link that connects the root node of the star to the rest of the network, which we will

call the “connector” link. We solve the problem over a star as if the influence over this

connector has been realized, meaning the influence from the rest of the network has trav-

eled over this link and the hurdle of the root of the star has been updated (reduced). In this

way, we will calculate the cost of solving this part of the problem assuming there is an

external influence from the rest of the network. Next, this star is compressed into a single

node (with a new hurdle and a new influence factor) and it becomes a leaf node for the

star subnetwork in the next iteration. When we compress the star, we fix the assumption
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over the connector link. We repeat this process until we are left with a single star network.

Once we solve the problem over the last star, a backtracking method is applied to identify

the nodes which have been given incentives.

Figure 3.3: The main idea behind the dynamic programming algorithm is compressing
the tree into a star network.

Figure 3.3 is an example of this process. In this figure, we start with a tree network

on the left, and the stages of the dynamic programming for this network are shown as we

move to the right. In the first iteration, the star with leaf nodes 1, 2 and 3 are compressed

into a single node, node 4. In the next iteration, leaf nodes 4 and 5 are compressed to a

single node. In the last iteration, leaf nodes 11, 12, 13, 14 and 15 become node 10, and

we are left with a single star with root node 8.

The pseudocode of the algorithm is as follows. We explain each part in detail next.

1. begin
2. for each star network do,
3. SolveStar
4. CompressStar
5. TotalCost
6. end

SolveStar: In a star network if the root node, ρ, is persuaded to adopt, all the leaf nodes

will definitely adopt in the following period (see Section 3.4.1 property 3). Therefore, an
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upper bound for the cost of a star network is the current hurdle of the root node. However,

a cheaper solution may also exist. In the SolveStar part of the dynamic programming we

search for this solution.

The first step is to let the influence over the connector link to be realized and update

the hurdle of the root node. To solve the problem over a star, we know we need to

concentrate on the root node and try to get it to adopt. Since all the leaf nodes have the

same influence over the root node, when incentives need to be given leaf nodes would be

preferred in the order of their hurdles starting from the smallest, since it will be cheaper

this way. Actually, leaf nodes with hurdles greater than the minimum of the root’s hurdle

and influence factor can be neglected. It is easy to see why this is the case (similar to

property 5 in Section 3.4.1). If the minimum of bρ and dρ is the influence factor, dρ, then

the influence from paying bi to the leaf node i, will be dρ and since dρ is less than bi,

we will be gaining less than what we spend. We could as well give this incentive in the

amount of dρ directly to the root node and secure the same decrease in the hurdle. If the

minimum of bρ and dρ is the hurdle, bρ, and we give the incentive to the leaf node i in

the amount of bi, then we are spending bi and decreasing the hurdle of the root node by

bρ (since this is all the amount the root node needs to adopt). Since bi > bρ, again we

will be spending more than what we are gaining. In either case, we could be better of by

giving the incentive directly to the root node, and never use such leaf nodes. This also

means we can eliminate these nodes (whose hurdle values are greater than or equal to

the minimum of the hurdle and the influence factor of the root node) before solving the

problem. We collect the remaining nodes (with hurdles less than the minimum of bρ and

dρ) in set S. Providing incentives to these nodes is advantageous (less expensive) in terms
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of decreasing the hurdle of the root node. This is why we choose nodes from this set and

eliminate all leaf nodes j, for which bj ≥ min{bρ, dρ}. Other nodes are put in set S and

selected in the ascending order of their hurdles.

To calculate the cost of the star, we calculate the number of adopter neighbors that

is sufficient for the root node to decide to adopt, which is d bρ

dρ
e. If there are sufficient

number of nodes in set S, we get the cost of the star by comparing the costs under two

cases. The difference between the cases is whether the root node is paid partial incentives

or not. In the first case, the root is convinced to adopt by the influence of her neighbors.

So the first d bρ

dρ
e leaf nodes in set S are paid. In the second case, we pay d bρ

dρ
e − 1 nodes

in set S and try to cover the remaining amount by paying directly to the root node. This

partial payment may be smaller than min{bρ, dρ}, and may also be smaller than the bi of

any of the nodes in set S. So we are better off by paying it directly to the root node. The

result of the comparison between these two cases changes depending on the difference

between the hurdle and the influence factor of the root node. When S = ∅ or |S| < d bρ

dρ
e,

all nodes in S are selected and the root node is given incentives to complement the total

amount. The following two networks are examples where the minimum is different for

the two cases.

In the networks in Figure 3.4, there are three nodes. Nodes 1, 2 and 3 form the

star. Hurdles and influence factors are given next to each node. For example in Case (a),

for node 1, hurdle equals 18 and influence factor is 10. These numbers are equal to each

other for the leaf nodes (see Section 3.4.1 property 2), so only one number is shown on

the picture, e.g., hurdle and influence factor equals 5 for node 2. In both cases (a) and

(b), the number of adopters needed is equal to 2 and set S contains nodes 2 and 3. Nodes
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Figure 3.4: Cost of a star network in the SolveStar algorithm, (Case (a) and Case (b)).

which are given incentives are marked with a plus sign. In case (a), when the incentives

are given to the two nodes in S, the total cost is 5+7=12. If the incentive is given to

a single node and the remaining is covered by the root node, the cost becomes 5+(18-

10)=13. Thus, it is less costly to give incentives to both leaf nodes in set S. In case (b),

when the incentives are given to the two nodes in S, the total cost is 5+7=12. However, if

the incentive is given to a single node and the remaining is covered by the root node, the

cost becomes 5+2=7 which is the better choice.

The algorithm SolveStar2 can be summarized as follows. For ease of exposition,

we use the same notation and do not use indices to differentiate each star. Let V be the set

of nodes, L be the set of leaf nodes, S∗ be the set of leaf nodes that are given incentives,

2If the tree network is a star at the outset, then Step 1 of the SolveStar algorithm can be omitted.
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and ρ be the root node of the star network. The cost of a star equals C. The records of

partial incentives are kept in an array P . The pointer B[i] = j shows that when we see

node i in the algorithm after a star has been compressed, it actually represents (points to)

node j. This will be useful when we calculate the total cost and identify the nodes with

incentives. At the beginning of the algorithm, P [i] is set to 0 for each i and each node

points to itself, i.e., B[i] = i.

algorithm SolveStar

1. Update hurdle for the root, bρ = bρ − dρ.

2. Let S = {i | bi < min{bρ, dρ}, i ∈ L}.

3. Order nodes in S with respect to bi, i ∈ S in ascending order

4. If |S| ≥ d bρ

dρ
e, cost of the star, C, equals to the minimum of the following;

5. Select the first d bρ

dρ
e nodes in S and give incentives equal to their

hurdle.

6. Select the first d bρ

dρ
e− 1 nodes in S and give incentives equal to their

hurdle. Pay the remaining to the root, P [ρ] = bρ − (d bρ

dρ
e − 1)dρ.

7. Else cost of the star, C, equals,

8. For all nodes in S, give incentives equal to their hurdle. Pay the

remaining to the root, P [ρ] = bρ − |S|dρ.

9. Remove the selected nodes from set S and place them in set S∗.

CompressStar: Once the cost of the star is determined, the star is converted into a single

node with hurdle, b′ρ and influence factor, d′ρ. In this part of the algorithm, the connector
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link between the star and the rest of the network plays an important role. Remember that

the influence over this link is assumed to be realized when the problem is solved over

the star. So the cost calculated for the star is the cost assuming this influence. When the

star is compressed, we take into account the fact that this influence has actually not been

realized and we include it as the hurdle of the new node. Determining this hurdle is a bit

tricky and is determined by considering the following two cases;

Case 1) Remaining hurdle at the root node.

Case 2) Hurdle of a leaf node that is in S.

The pseudocode for the CompressStar algorithm is given as follows.

algorithm CompressStar

1. New hurdle b′ = min{dρ, bρ + dρ − |S∗|dρ, min
i∈S

di}.

2. If b′ = min
i∈S

di, then B[ρ] = B[i].

3. New influence factor d′ = b′.

In Case 1, we basically put the assumed influence over the connector back into the

problem and calculate the remaining hurdle. There are two types of solutions in Case 1

due to the solution of the StarSolve algorithm. In the first type of solution, there’s no extra

influence on the root node from the leaf nodes and the hurdle for the compressed node is

equal to the influence factor of the root node, dρ which was assumed over the connector

link. In the second type of solution, the influence from the leaf nodes exceeded the hurdle

of the root node and this excess influence is subtracted from the hurdle of the root node

after the influence over the connector link is put back, bρ +dρ−|S∗|dρ. This classification

among the two solutions can also be done by looking at whether the root node is paid any
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incentives in the SolveStar solution. When the root node receives a partial payment, this

suggests that the hurdle for the root node is covered exactly and the hurdle of the new

node is simply the influence factor, dρ. However, if there is no partial payment, it means

the hurdle for the root node is covered through the influence from the leaf nodes and this

influence may actually be larger than the hurdle itself. In this second situation (when the

root node does not receive partial payment), the excess influence from the leaf nodes are

subtracted from the influence factor of the root node when calculating the hurdle of the

new node. We give examples to both of these types of solutions below in Figure 3.5 and

3.6 with explanations below.

In Case 2, hurdle of a leaf node in S is carried onto the next iteration as the hurdle

of the new compressed node. This is possible when there is a leaf node in set S (i.e., it

has not exerted influence on the root node). Since any node i in set S has a hurdle less

than the influence factor of the root node, it may be less costly to pay the amount di to the

node i in set S than to pay the remaining hurdle to the root node. Consequently when this

is the case, we select the hurdle of the new compressed node as di. We give an example

for this case in Figure 3.7. Since the compressed node becomes a leaf node, the influence

factor of this node is equal to the hurdle of the node in both cases.

In these examples, in Figure 3.5, 3.6 and 3.7, there are four nodes. Nodes 1, 2 and

3 form the star and the link between 1 and 4 is the connector link that connects this star

to the rest of the network. The numbers next to the nodes represent the hurdle and the

influence factor for that node. The four networks in each figure represent the evolution

of the star as the hurdles are updated. The “+” sign on a link in the star represents that a

diffusion takes place through that link.
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Figure 3.5: Example for Case 1 with partial incentives given to the root node (type 1).

The following is an example of the first type of solution in Case 1. In Figure 3.5,

the hurdle for the root node, 1, is equal to 45 and the influence factor is 10. The hurdles

for nodes 2 and 3 are 7 and 8, respectively. Initially, the influence from link (1,4) is

temporarily assumed to exist and the hurdle for node 1 is updated, 35=45-10. Next,

following the algorithm SolveStar, nodes 2 and 3 are given incentives and their influence

decreases node 1’s hurdle again. This decrease equals to 20 since there are two adopters.

The remaining amount, 15, is paid as a partial incentive to the root. The summation of the

influence from the leaf nodes and the partial payment to the root node add up to exactly

the hurdle of the root node (the root node is paid an incentive). When we bring back the

influence over the connector link, the hurdle of the compressed node is exactly equal to

the amount of the assumed influence factor, dρ = 10.

The following is an example for the second type of solution in Case 1. Hurdles

for the three nodes are equal to 25, 2 and 4, respectively. Again following SolveStar, the

two leaf nodes are selected and given incentives. As mentioned above, here is a slight

difference on the hurdle of the compressed node. In this solution, the total influence from

the leaf nodes exceed the current hurdle of the root node (there is no need to give any

partial payments to the root node). The excess influence from the leaf nodes covers a

portion of the hurdle and therefore the remaining becomes the new hurdle, bρ + dρ −
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|S∗|dρ = 15 + 10− 20 = 5.

Figure 3.6: Example for Case 1 with no partial incentives given to the root node (type 2).

In the second case, nodes in set S (nodes that were not selected in SolveStar), if any,

can still be in the optimal solution. In Figure 3.7, the solution of the SolveStar selected

node 2, but there is a leaf node (node 3) in set S which is not used to solve the problem

over the star network. The cost of influencing this leaf node 3 is b3 = 4. The cost under

Case 1 is equal to bρ + dρ − |S∗|dρ = 5 + 10 − 10 = 5. Comparing the two cases, it is

cheaper to select node 3 and the hurdle for the new node equals to 4. This implies that if

the new compressed node is given any partial payments in the future iterations, they are

actually paid to node 3.

Figure 3.7: Example for Case 2.

TotalCost: Star networks are solved one at a time and compressed to be the leaf node

of the next star until a single star is reached. This star is solved in the same way with

the other star networks, except now there is no external influence from the outside, so

the hurdle does not need to be updated at the beginning. Once the cost of this star is
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obtained, the algorithm is traced back to calculate the total cost (the objective of LCIP) of

the problem and to identify how this cost is distributed among the nodes. We name this

part of the algorithm TotalCost. The total cost of the problem is simply obtained as the

summation of all costs for each star network. To trace back which nodes have been given

incentives to, we use the array B and the set S which is the union of all sets of selected

nodes for each star. Remember that, the pointer B[i] = j shows that node j is represented

by node i in the algorithm after a star has been compressed. Leaf nodes, when selected in

the algorithm, always get paid their hurdle (see Section 3.4.1 property 4). If a node i is in

S and it points to a leaf node j, i.e., B[i] = j, in the initial tree network, then the amount

of incentive for j is its hurdle, bj . However, if node j is not a leaf node on the initial

tree network, that means it has been the root node for some star network at some iteration

and was selected when the star was compressed (Case 1 in CompressStar algorithm). The

amount of incentives j receives would be equal to its current hurdle when the star was

compressed, b′j . The nodes which received incentives can be identified by the P vector

and are collected in set P . They are paid in the amount of P [i].

algorithm TotalCost

1. Cost equals C =
∑

all stars
C.

2. Let S =
⋃

all stars
S∗.

3. If i ∈ S and B[i] ∈ L, then pay bB[i] to node B[i].

4. Else Pay b′B[i] to node B[i].

5. Let P = {i|P [i] > 0}.

6. If i ∈ P , Pay P [i] to node i.
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3.5.2 Greedy Algorithm

In the greedy algorithm, nodes to give incentives to are selected one by one in the

ascending order of min{bi, di}, i ∈ V . The selected node is paid incentives in the amount

of its current hurdle, bi and the hurdles for the neighbors of the selected node are updated

at each iteration. We use the dynamic programming algorithm to show that the greedy

algorithm solves the LCIP optimally over a tree network.

Proposition 1: At the outset, suppose node k = arg min
i∈V

di is chosen as the root of the

last star network in the algorithm.3 Then, all leaf nodes in the last star network will have

a larger di than dk.

Proof: Hurdles and influence factors of the leaf nodes in the last star are determined

when stars in the previous iterations are compressed into single nodes. Consider the first

compressed star in the algorithm. At this stage, the influence factor of the compressed

node, d′, is equal to the minimum of the following three; (dρ), (bρ +dρ−|S∗|dρ), (min
i∈S

di)

as we have seen in CompressStar algorithm. Since both (dρ) ≥ dk and (min
i∈S

di) ≥ dk,

if one of these is the minimum, we can easily say d′ ≥ dk. So we focus on the second

case where (bρ + dρ − |S∗|dρ) is the minimum, which can only take place if the root has

not been given partial payments (type 2 of Case 1 in CompressStar). This means if d bρ

dρ
e

people are required to buy, d bρ

dρ
e people are given incentives. So when costs are compared

in SolveStar, the cost of the first d bρ

dρ
e nodes in S is less than the cost of the first d bρ

dρ
e − 1

nodes in S plus the partial payments to the root which is P [ρ] = bρ − (d bρ

dρ
e − 1)dρ.

So ∃ a leaf node, j s.t. bρ − (d bρ

dρ
e − 1)dρ > dj . We know dk < dj , ∀j ∈ V , then

bρ − (d bρ

dρ
e − 1)dρ > dk which is equal to the current hurdle of the new leaf node since

3Remember that in the initial graph bi ≥ di ∀i ∈ V (see in Section 3.4.1 property 1).
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(bρ + dρ− |S∗|dρ) = bρ− (|S∗| − 1)dρ = bρ− (d bρ

dρ
e− 1)dρ. So in all the cases, dk is still

the smallest.

Corollary 1: Node k = arg min
i∈V

di will always be in the optimal solution.

Theorem 1: The greedy algorithm solves the LCIP on a tree optimally.

Proof: Select k = arg min
i∈V

di as the root node for the last star. It will be in the optimal

solution by Corollary 1. When k is removed from the network and the hurdles are updated,

Proposition 1 still holds for each network that appears. So, we would select the node with

min di, however when the hurdles for the neighbor nodes are being updated if bj < dj for

some node j (thus the hurdle for this node becomes less than its influence factor), then

this would effectively mean that the influence factor for node j is equal to the hurdle (see

Section 3.4.1 property 1) because the extra influence would be unnecessary. At this point,

if the hurdles for nodes connected to node k are processed between two iterations of the

greedy algorithm to be bi ≥ di, the new node with min{di}, i ∈ V can be selected next.

Otherwise, we would choose the node with min{bi, di}, i ∈ V . This can be repeated until

no further incentives are necessary.

The running time for the greedy algorithm is linear with respect to the number of

nodes since each iteration of the algorithm only involves selecting the node that has the

minimum of hurdles and influence factors (which is linear) and the number of iterations

are limited by the total number of nodes.
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3.6 When influence factor depends on the neighbors, dij 6= dik

We have modeled the influence from neighbors to be equal on an individual mainly

due to privacy concerns. In this section we show that the LCIP model reduces to the well-

known NP-Hard Knapsack Problem in a different influence model. We have introduced

this model in Section 2.1 as Model 3 where the influence is dependent not only on the per-

son being influenced but also the influencer. In this model, the influence was represented

with dij for nodes i and j and dij 6= dik for node k, i.e., nodes j and k have different

amount of influence on node i. In the LCIP on a tree network with this model, each node

can not be represented with two numbers as the current hurdle and the influence factor,

but each link would be assigned an influence factor for each direction (Figure 3.8).

Figure 3.8: LCIP with Influence Model 3.

Now to solve the problem over a star, it is not possible to identify the nodes which

have hurdles less than the influence factor of the root node since this factor is not unique

anymore. We need to select the nodes which are the cheapest and also have the largest

effect on the hurdle of the root node. This problem is similar to the knapsack problem

where we want to select items such that the sum of the weights do not exceed a certain

threshold while the total value of the selected items is the largest. In the dynamic pro-
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gramming algorithm, we need the solution of a knapsack problem to solve the problem

over each star. The following formulation shows how the LCIP over a star network can

be modeled using a mixed integer program.

Min
∑
i∈L

bixi + y (3.6)

s.t.
∑
i∈L

dρixi + y ≥ bρ (3.7)

y ≥ 0, xi ∈ {0, 1} ∀i ∈ L (3.8)

In this model, letting L ={Set of leaf nodes} decision variables are xi, i ∈ L and

y ≥ 0. Let xi = 1 if the leaf node i is given incentives, and xi = 0 otherwise and let y be

the amount of incentives given to the root node. This corresponds to P [ρ] in the dynamic

programming algorithm given in Section 3.5.1. bi and bρ are the current hurdles for all

i ∈ L and the root node ρ, respectively. The influence of leaf node i on the root node ρ

is dρi. The objective is to minimize the total amount of incentives paid to both the root

node, y, and the leaf nodes,
∑
i∈L

bixi. The only constraint forces the root node to adopt if

and only if the sum of the partial payment and the influence from the neighbors exceeds

the hurdle for the root node. For example, in this model if we decide to give incentives

only to leaf node i, i.e., xi = 1, this would mean we pay bi to node i and the hurdle bρ

would decrease by dρi. The remaining amount bρ − dρi (if > 0) would need to be paid

directly to the root node and would set the y variable to be equal to bρ − dρi.
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3.6.1 LCIP on a tree network is NP-Hard when dij 6= dik

To prove that the LCIP on a tree network is NP-Hard, we reduce a known NP-Hard

problem to our problem. In this respect, we use a mixed 0-1 knapsack problem (Marchand

and Wolsey, 1999) which is a knapsack problem with a single continuous variable (KPC)

(Büther and Briskorn, 2012).

Given a set of items (N ) with profit pj and weight wj for each item j ∈ N , the

objective is to maximize the profit of a selection of items where the capacity of the knap-

sack is limited by b. However, the capacity value b can be adjusted with a certain cost.

The adjustment is represented with s and the value per unit of flexible capacity is c. The

parameters can be restricted to the following: pj > 0 and wj > 0, j ∈ N . Moreover, in

order to avoid trivial cases it is assumed that
∑
j∈N

wj > b. The mathematical formulation

is as follows.

KPC: Max
∑
j∈N

pjxj − c · s

s.t.
∑
j∈N

wjxj ≤ b + s

l ≤ s ≤ u

xj ∈ {0, 1} ∀j ∈ N

This maximization problem can be transformed to the following equivalent mini-

mization problem where if x1, ..., xn is an optimal solution for the maximization problem,

then the variables yj := 1 − xj (j = 1, ..., n) is an optimal solution of the minimization

problem.
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KPC’ : Min
∑
j∈N

p′jyj + s′

s.t.
∑
j∈N

wjyj + s′ ≥ −b +
∑
j∈N

wj − l

s′ ≤ u

yj ∈ {0, 1} ∀j ∈ N

The transformation is done as follows.

Max
∑
j∈N

pj(1− yj)− c · s ≡ Min
∑
j∈N

−pj(1− yj) + c · s

= Min
∑
j∈N

pjyj −
∑
j∈N

pj + c · s

And minimizing
∑
j∈N

pjyj−
∑
j∈N

pj + c · s is equivalent to minimizing
∑
j∈N

(
pj

c
)yj + s.

Similarly for the first constraint;

∑
j∈N

wj(1− yj) ≤ b + s

∑
j∈N

−wj(1− yj) ≥ −b− s

∑
j∈N

wjyj + s ≥ −b +
∑
j∈N

wj

Let p′j = (
pj

c
) and let s′ = s − l for the second constraint, and we reach the model

KPC’.

Now, given an instance of KPC’, we have n items with profits p′1, p
′
2, ..., p

′
n and

weights w1, w2, ..., wn. Let p′i = bi and wi = dρi ∀i ∈ N . We want to select a set of nodes

to maximize the total profit while satisfying a capacity of b =
∑
j∈N

wj−bρ− l. When there

is no upper bound on the s′, we reach the following model.
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Min
∑
i∈N

biyi + s′

s.t.
∑
i∈N

dρiyi + s′ ≥ bρ

s′ ≥ 0, yi ∈ {0, 1} ∀i ∈ N

Solving this problem is equivalent to solving the LCIP on a star network.

3.7 Example of an LCIP solution

We solve the following example using both the dynamic programming approach and

the greedy algorithm to illustrate the algorithms and compare the solutions. The network

of this example was given in Figure 3.3 and the data on the hurdles and the influence

factors are given below.

Table 3.1: Hurdle and influence factor data for the example.
Node i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Hurdle bi 7 5 9 35 8 20 16 14 13 29 11 18 10 13 15
Influence Factor di 7 5 9 12 8 10 16 10 13 11 11 18 10 13 15

3.7.1 Dynamic programming algorithm

In this example, we apply the dynamic algorithm by working through the SolveStar,

CompressStar and TotalCost algorithms. The numbers in each line represent the corre-

sponding step of that algorithm.

B[i] = i, P [i] = 0 ∀i ∈ V .

SolveStar

V = {1, 2, 3, 4}, L = {1, 2, 3}, ρ = 4.

1. b4 = 35− 12 = 23.
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2. S = {1, 2, 3}.

3. S = {2, 1, 3}.

4. |S| = 3 > d23
12
e = 2.

5. b2 + b1 = 5 + 7 = 12 vs.

6. b2 + (b4 − (2− 1)d4) = 5 + (23− 12) = 16.

min{12, 16} = 12, then C = 12.

9. S = {3}, S∗ = {2, 1}.

CompressStar

1. b′ = min{d4, b4 + d4 − |S∗|d4, d3} = min{12, 23 + 12− 24, 9} = 9.

2. B[4] = B[3] = 3.

3. d′ = b′ = b′4 = d′4 = 9.

SolveStar

V = {4, 5, 6}, L = {4, 5}, ρ = 6.

1. b6 = 20− 10 = 10.

2. S = {4, 5}.

3. S = {5, 4}.

4. |S| = 2 ≥ d10
10
e = 1.

5. b5 = 8 vs.

6. 0 + (b6 − (1− 1)d6) = 0 + (10− (1− 1)10) = 10.

min{8, 10} = 8, then C = 8.

9. S = {4}, S∗ = {5}.

CompressStar

1. b′ = min{d6, b6 + d6 − |S∗|d6, d
′
4} = min{10, 10 + 10− 10, 9} = 9.
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2. B[6] = B[4] = 3.

3. d′ = b′ = b′6 = d′6 = 9.

SolveStar

V = {10, 11, 12, 13, 14, 15}, L = {11, 12, 13, 14, 15}, ρ = 10.

1. b10 = 29− 11 = 18.

2. S = {13}.

7. |S| = 1 < d18
11
e = 2.

8. C = b13 + P [10] = b13 + (b10 − (1)d10) = 10 + (18− 11) = 17.

9. S = ∅, S∗ = {13}.

CompressStar

1. b′ = min{d10, b10 + d10 − |S∗|d10} = min{11, 18 + 11− 11} = 11.

3. d′ = b′ = b′10 = d′10 = 11.

SolveStar

V = {7, 8, 6, 10, 9}, L = {7, 6, 10, 9}, ρ = 8 (The last star).

1. b8 = 14 (No update is necessary).

2. S = {6}.

7. |S| = 1 < d14
10
e = 2.

8. C = b6 + P [8] = b6 + (b8 − (1)d8) = 9 + (14− 10) = 13.

9. S = ∅, S∗ = {6}.

TotalCost

1. C = 12 + 8 + 17 + 13 = 50.

2. S = {2, 1, 5, 13, B[6] = 3}.

3. Pay nodes 2,1,5,13,3 full incentives in the amount of 5,7,8,10,9.
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5. P = {10, 8}.

6. Pay nodes 10,8 partial incentives in the amount of 7,4.

3.7.2 Greedy algorithm

We solve the same problem using the greedy algorithm. Each iteration of the greedy

algorithm is shown with a “·” at the beginning of the line.

· min{bi, di}, i ∈ V = 5.

Set of buyers: {2}.

Update the hurdles: b4 = 35− 12 = 23.

· min{bi, di}, i ∈ V − {2} = 7.

Set of buyers: {2, 1}.

Update the hurdles: b4 = 23− 12 = 11.

· min{bi, di}, i ∈ V − {2, 1} = 8.

Set of buyers: {2, 1, 5}.

Update the hurdles: b6 = 20− 10 = 10.

· min{bi, di}, i ∈ V − {2, 1, 5} = 9.

Set of buyers: {2, 1, 5, 3}.

Update the hurdles: b4 = 0.

Set of buyers: {2, 1, 5, 3, 4}.

Update the hurdles: b6 = 0.

Set of buyers: {2, 1, 5, 3, 4, 6}.

Update the hurdles: b8 = 14− 10 = 4.
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· min{bi, di}, i ∈ V − {2, 1, 5, 3, 4, 6} = 4.

Set of buyers: {2, 1, 5, 3, 4, 6, 8}.

Update the hurdles: b7 = b9 = 0, b10 = 29− 11 = 18.

Set of buyers: {2, 1, 5, 3, 4, 6, 8, 7, 9}.

· min{bi, di}, i ∈ V − {2, 1, 5, 3, 4, 6, 8, 7, 9} = 10.

Set of buyers: {2, 1, 5, 3, 4, 6, 8, 7, 9, 13}.

Update the hurdles: b10 = 18− 11 = 7.

· min{bi, di}, i ∈ V − {2, 1, 5, 3, 4, 6, 8, 7, 9, 13} = 7.

Set of buyers:{2, 1, 5, 3, 4, 6, 8, 7, 9, 13, 10}.

Update the hurdles: b11 = b12 = b14 = b15 = 0.

Set of buyers: V .

Total Cost = 5 + 7 + 8 + 9 + 4 + 10 + 7 = 50.

Set of nodes with partial or full incentives:{2, 1, 5, 3, 8, 13, 10}.

Both solution methods give the same total cost of 50, with the same set of nodes

that receive incentive, though the greedy algorithm is much easier to apply.

3.8 Concluding Remarks

In this chapter, we investigated the LCIP model independent of the product design

problem by proposing a model for general networks. As this model is NP-Hard, we

identified a polynomially solvable case, which is the problem on a tree network with

equal influences from one’s neighbors. We proposed a dynamic programming approach

as the solution method. This solution approach concentrates on the star subnetworks of
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a network and first solves the problem on these subnetworks. We also show that this

algorithm reduces to a greedy algorithm.

The LCIP is a combinatorial optimization problems that can be used in a variety

of environments, from marketing to epidemiology. It is an interesting problem in diffu-

sion of information as it offers a rich set of problems for future research. One of such

problems is the LCIP under a stochastic influence structure, rather than a discrete and

linear one used in this thesis. Another direction of problems can include the time depen-

dent social network, i.e., one which changes over time as the connections among nodes

break or new connections are built. Understanding the structural relationship (depending

on the location of the node over a network) of the optimal set of nodes is another direc-

tion for targeting. Exploring both exact algorithms and heuristics to expand the solution

approaches for these problems is a future research direction for the LCIP.
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Chapter 4

The Product Line Design Problem with Social Network Effects

4.1 Introduction and Literature Review

Product line design is an important problem companies face when they want to cre-

ate a selection of products to appeal to heterogenous consumer segments in the market.

Such products may be manufactured goods as well as a service good such as a cell phone

plan. It is a very well studied subject in the marketing literature. In this chapter we fo-

cus more on the optimization approaches and therefore refer the reader to Belloni et al.

(2008) for a detailed description and comparison of methods in the literature for prod-

uct line optimization in general. More recently, work by Wang et al. (2009) proposed a

branch-and-price algorithm, Luo (2011) provided an integrated marketing and engineer-

ing approach, and Tsafarakis et al. (2011) used a particle swarm optimization approach to

solve the product line design problem. Although we solve a product line design problem,

our problem is quite different from the existing literature as, to our knowledge, this is the

first study to incorporate social network effects in product line design.

As mentioned in Chapter 1, the product line design problem with social network

effects is more complicated than the single product design problem since the peer influ-

ence effects among users of different products of the same product line also have a role

in the diffusion of products. We model this situation using two dimensions as first and

second order peer influence effects. The first order effects are the peer influences from
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consumers of the same segment, i.e., using the same product, and the second order effects

are the peer influence among all product users across the product line.

In this model, the utility one gets from a product is dynamic under peer influence,

i.e., increases with the number of neighbors who also bought the same or a different prod-

uct (as the decrease in hurdle is mathematically equivalent to an increase in utility). This

fluctuation (change) in the utilities due to peer influence, before a purchasing decision is

made, prevents one from making a list of preference ordering among the products before

solving the product line design problem. (Note that the same is also true for the single

product model.) The model by Belloni et al. (2008) does not take into account such peer

influence effects and therefore can determine an a priori preference ordering among the

different product profiles which simplifies their model. It should be clear that it cannot

be used to model our setting. Wang et al. (2009) also modeled the product line design

for the share-of-choice problem without requiring an a priori preference ordering among

the product profiles for the consumers, however, their model does not require the iden-

tification of the highest utility product for each person. Determining the highest utility

product is important in the setting where peer influences vary across products (as the peer

influence is related specifically to the product chosen/adopted) and is more realistic in

terms of the customer preference. Thus, we significantly expand upon the Wang et al.

(2009) model by incorporating the peer influence effects and ensuring the customer picks

the product with the highest utility.1

1We should note that the branch-and-price approach in Wang et al. (2009) relies on the procedure devel-
oped in Camm et al. (2006) to solve the pricing problem. As explained in Section 2.3 that approach cannot
be applied in the setting with peer influence effects.
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4.2 Integer Program for the Product Line Design with Network Effects

To include the first order network effects that a person is positively affected from a

neighbor who uses the same product (as the influence model, Model 1, in Section 2.1) we

construct the following integer program. Let M be the number of products in the prod-

uct line and purchase among multiple products be represented by the additional decision

variable type ysq which is 1 if person s buys the q-th product in the product line. xklq is 1

if level l is selected for attribute k of the q-th product and is 0, otherwise. The share-of-

choice problem with network effects for the product line design problem (SOCNEPL) is

given below.

SOCNEPL: Maximize
n∑

s=1

ys, (4.1)

subject to
K∑

k=1

Lk∑

l=1

us
klxklq + ∆1

s

∑
j∈V

ajsyjq = Usq (4.2)

hH
s ysq ≤ Usq (4.3)

s = 1, 2, . . . , n, q = 1, 2, . . . , M,

Lk∑

l=1

xklq = 1 (4.4)

k = 1, 2, . . . , K, q = 1, 2, . . . , M,

M∑
q=1

ysq = ys s = 1, 2, . . . , n, (4.5)

(The integer program continues on the next page.)
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Usq − Usr ≤ B(1− cs
qr)

Usr − Usq ≤ Bcs
qr

ysq − ysr ≤ (1− cs
qr)

ysr − ysq ≤ cs
qr

cs
qr binary





s = 1, 2, . . . , n,

∀ q, r pairs ∈ {1, 2, . . . , M},

(4.6)
ys, ysq, xklq binary

Usq ≥ 0





s = 1, 2, . . . , n, l = 1, 2, . . . , Lk,

k = 1, 2, . . . , K, q = 1, 2, . . . , M.

(4.7)

The objective of the problem maximizes the total number of buyers. Constraints

(4.2) and (4.3) correspond to constraint (2.1) in the SOCSNE model and include only

the first-order network effects. One level is selected for each attribute with constraint

(4.4) and at most one product is allowed to be purchased by a customer with constraint

(4.5), represented by the binary variable ys which is 1 if person s buys a product and 0,

otherwise. As mentioned above, we need to ensure a customer purchases the product that

provides them the highest utility after taking social network effects into account. This is

somewhat tricky to model and the constraint group (4.6) guarantees that if the utility from

the q-th product is greater than the utility from the r-th product for a customer then the

q-th product is preferred over the r-th product by that person. Here B is a positive large

integer number, though it is easily seen that it is bounded by the total number of levels

and cs
qr is a binary variable required for the logical argument.

To differentiate the two dimensional network effects, we introduce a second order
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effect, ∆2
s, which includes network effects from buyers of products in the product line

other than the one that person owns and is of a smaller magnitude than the first order ef-

fect, ∆1
s. So the utility person s gets from using product q represented by Usq in constraint

(4.2) would now be replaced with the following (∆2
s is subtracted from ∆1

s to eliminate

double counting of the effect from the same consumer).

K∑

k=1

Lk∑

l=1

us
klxklq + (∆1

s −∆2
s)

∑
j∈V

ajsyjq + ∆2
s

∑
j∈V

ajsyj = Usq. (4.8)

From here on, when we discuss the integer program for the product line design with

network effects, we refer to the model with constraint (4.8), i.e., including both first and

second order effects, instead of constraint (4.2).

4.3 Genetic Algorithm for Product Line Design with Network Effects

The SOCNEPL model for the product line design problem with network effects

is not computationally tractable as the LP relaxation is weak. Genetic algorithms have

been used previously in the literature to solve the product line design problem without the

network effects and shown to have significant potential to solve product line design prob-

lems (Alexouda and Paparrizos (2001), Steiner and Hruschka (2003), Balakrishnan et al.

(2004), Fruchter et al. (2006)). Genetic algorithms have also been used in practice for a

product line design problem as part of an optimization study by Intel (Kempf and Rash,

2011) that also won the Daniel H. Wagner Prize Competition. We will follow the natural

extension of our genetic algorithm for the single product design for the product line de-

sign problem. We follow the same steps; Generation of an initial population, Evaluation,
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Crossover, Mutation and Reduction. The GA requires a few but major modifications to

adapt it to the product line model.

First, in the product line problem, the representation of an individual in the popu-

lation will need to include the different products in a product line. Here we expand our

approach in the single case by simply placing product profiles next to each other in an

individual representation. Note that with this approach there are more than one repre-

sentation of the same product line, which can be obtained by different permutations of

products in the product line. To overcome any problems that we may face due to this or-

dering at the crossover and mutation stages, we adapt these stages taking this into account

as we explain next.

An initial population is randomly generated. Fitness of a product line is the mar-

ket share of the product line and is calculated using the new integer program, SOCNEPL

which includes the first and second order effects. We do not necessarily prevent the same

product from appearing more than once in a representation. In this setting, increasing

the number of different products offered in a product line cannot worsen the solution (on

the other hand, there may be new buyers for the additional product). So we know that

solutions which contain the same product more than once will be eliminated through gen-

erations in the genetic algorithm because of their fitness values and are unlikely to appear

in the final solution. In the crossover stage, we use a single-point crossover, however the

solutions with the single point crossover as it is used in the single product case would be

dependent on the ordering of the products in the product line representation. To avoid

this, we repeat the crossover for each product in the representation, keeping the point of

crossover random for each product. Similarly, in the mutation step a level is changed
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with a predetermined probability for each product in the product line. At the end of the

mutation step, when the population size is doubled, it is halved by selecting the product

lines which have the largest total fitnesses.

4.4 Computational Results for Product Line Design with Network Ef-

fects

In this section, we describe our experiments on simulated data with our genetic

algorithm. We start with the data we used in Chapter 2. However, the market shares with

a single product are already high with this data and as we increase the number of products,

the market share quickly matches the size of the network, preventing us from observing

the effects of adding more products to the product line. To overcome this, we generate

a second set of data for the product line design problem with network effects where we

try to keep the market share below a certain percentage of the market size when a single

product is offered.

4.4.1 Data Generation

The data simulated in Chapter 2 does not include second order effects, so we gen-

erate ∆2
s for each node s. We generate ∆2

s proportional to ∆1
s for each node, as we expect

it to be more likely for a person who is more easily influenced by the first order effects to

be influenced from the second order effects. We keep the secondary effects less than the

first order effects and more specifically we select them to be within the interval of 33.3%

and 66.6% of the first order effects. To keep a rather heterogeneous structure, the second
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order effects are randomly generated from this interval.

For the new set of simulations in this chapter, utilities are generated uniformly be-

tween 0 and 1 and normalized for each person. In order to reach a market solution that

can clearly demonstrate the difference in market shares for different number of products,

we experimented with different hurdles and peer effects. To determine the hurdles, 1000

products are randomly generated and ranked for each person (in descending order of their

utilities) and their high hurdle is set as the utility value of a product profile selected ran-

domly from the top 5% of this ranking. This product profile is assumed to represent a

status-quo product in the market. Then the lower hurdle is selected randomly, within the

range determined by the corresponding high hurdle. We set the lower bound of this range

for the low hurdle as 60% of the high hurdle and the upper bound to be the same as the

high hurdle. This structure allows a person to have the same high and low hurdle with

a small probability. In other words, some individuals in the social network have a lot of

positive utility when their neighbors use the product and others have less. The second

part of the simulation includes the random generation of the first and second order ef-

fects. The first order effects are calculated as the ratio of the difference between high and

low hurdles and the degree of a node, as in the single product case. We want the second

order effects to be less than the first order effects and we set them to be within 50%-70%

(chosen randomly) of the first order effects.

We kept the same parameters in the GA for the product line design. However, as

most steps are repeated for each product in a product line, the GA running times for

the product line are noticeably longer than single product cases. Therefore we limit the

population size of the algorithm to 50 (instead of 100).
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Alexouda and Paparrizos (2001) and Steiner and Hruschka (2003) used 2 to 4 prod-

ucts for their computational studies, Balakrishnan et al. (2004) used 4 to 7 products, and

Belloni et al. (2008) used 3 to 5 products as the size of the product line. For our study,

taking into account the running times of the integer program (as the problem gets larger

with network effects), we use 2 to 5 products (which is comparable in size to the state-of-

the-art work by Belloni et al. (2008)).

4.4.2 Performance of the GA

We start our computational experiments using the data from Chapter 2 and show

with one of the data sets, with p = 0.2 and 100 nodes, that the market share reaches

the whole population quickly as the number of products is increased. In Table 4.1, we

show the market shares obtained with the GA for product lines with different number of

products. In these examples, by providing 2 different products we can reach almost all the

population, and when a third or a fourth product is added to the product line, we reach the

whole market where each individual can find an appealing product design for themselves.

Market shares for product lines with 4 products, as shown in Column 6, are expected to

be 100 when the results for 3 products are 100. Increasing the number of products at this

point (once the whole population is reached) cannot change (increase or decrease) the

market share, albeit the product a person buys may be different in the two cases.

We next present, in Table 4.2, the GA solutions with the new simulated data (for

p = 0.2) and compare it to the integer programming (SOCNEPL) solutions. Looking at

the computational time to reach these solutions, the average running time is 150 seconds
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Table 4.1: GA market shares for product lines of different sizes (with data in Chapter 2).
Num. of Num.of 100 people
attributes levels 1 product 2 products 3 products 4 products

3 2 68 100 100 100
3 3 73 98 100 100
3 4 81 97 100 100
3 5 74 96 100 100
4 2 72 100 100 100
4 3 73 96 100 100
4 4 77 98 100 100
4 5 72 97 100 100
5 2 70 100 100 100
5 3 82 99 100 100
5 4 79 99 100 100
5 5 82 99 100 100
6 2 78 100 100 100
6 3 76 98 100 100
6 4 81 99 100 100
6 5 80 97 100 100

for the 100 people network and 291 seconds for the 200 people network for the GA. As the

size of the integer program is large, the time to calculate the exact integer programming

solution is huge (renders the computer out of memory in 6 out of 28 cases) as well. For

the 22 cases where we could compare the GA solution with the exact IP solution, we hit

the optimal solution in 17 cases. When the optimal is missed, the GA solution is %96.34

of the optimal solution, on average. In tables 4.4, 4.5 and 4.6, we give the extensive GA

market share results for different networks and different sizes of product lines.

Looking at the market shares under different product line sizes, we see that the

market shares increase as product line is expanded with more products, as expected. We

want to explore if there is a significant difference in how the market share changes within

networks formed by different rewiring probabilities, p = 0.1, p = 0.2, p = 0.3. Note

that as p gets closer to 1, randomness of the graph increases. In Table 4.3 we observe the
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Table 4.2: Comparison of market shares for the GA and the SOCSNEPL (2,3 products).
2 products 3 products

Num. of Num.of 100 people 200 people 100 people 200 people
attributes levels GA SOCNEPL GA SOCNEPL GA SOCNEPL GA SOCNEPL

3 2 55 55 106 106 75 75 147 147
3 3 31 31 40 41 47 47 65 68
3 4 25 25 41 42 39 39 61 o.o.m.
3 5 25 25 37 38 34 o.o.m. 55 o.o.m.
4 2 41 41 64 64 61 61 100 100
4 3 28 28 50 50 42 42 76 76
4 4 29 31 42 o.o.m. 38 o.o.m. 60 o.o.m.

average (over all number of attributes and number of levels) market shares in each network

in columns 2, 3 and 4, and the percentage increases in the next two columns. According

to this table, for the 200 people network with p = 0.1 the market share has more than

doubled (25 to 52.75) when a second product is introduced and it is further increased by

another almost 48% with the addition of the third product (52.75 to 77.88). However, the

patterns of increase in the market share across differently generated networks are very

similar; more than doubled with the introduction of the second product, and with the

introduction of the third product the increase is less but still almost three times the market

share obtained with a single product.

Table 4.3: Average market shares and % increases for product lines of sizes 1, 2 and 3,
respectively.

Num. of people Avg m.s. Avg m.s. Avg m.s. % increase % increase

p=0.1 100 14.50 31.06 42.94 214.22 138.23
200 25.00 52.75 77.88 211.00 147.63
300 34.63 71.31 105.38 205.96 147.77

p=0.2 100 15.56 32.31 46.25 207.63 143.13
200 24.94 50.81 75.25 203.76 148.09
300 33.19 73.06 105.75 220.15 144.74

p=0.3 100 16.00 32.81 45.38 205.08 138.29
200 25.38 51.00 77.31 200.99 151.59
300 33.13 71.75 104.56 216.60 145.73
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When we look at the optimal product designs at product lines of different sizes,

we see that a product profile optimal in a product line with q products is not necessarily

optimal in a product line with q + n products, q, n ∈ Z+. Table 4.7 shows an example

of product profiles for one of those data sets (p = 0.2, 100 people, 3 attributes with 3

levels). The first row corresponds to the single product case. At every row, the number of

products in a product line are increased by 1. The first column shows the market share,

and the following columns show the optimal product designs within these product lines.

For example, the optimal design for the problem with a single product is 3-1-2, i.e., level

3 is selected for attribute 1, level 1 is selected for attribute 2, and level 2 is selected for

attribute 3. If the number of products in this product line are increased by 1, then the

product design 1-2-3 is included in the optimal solution. Product design 3-1-2 is carried

onto the solutions of the next four cases, but is absent in the product line with 5 products.

Similarly, product design 1-2-3 appears only in the product line with 2 products. In the

product line design problem with network effects, we aim to select the best combination

of product profiles, taking into account the interactions between customers.

4.4.3 Network Effects

Since we are using an integer problem within the evaluation process of the genetic

algorithm for the product line design problem with network effects, we encounter the

same incentives problem as in the single product case (see Section 2.2 for a comprehen-

sive explanation) and we want to minimize the total amount of incentives given. In this

section, we look at the market share results of the genetic algorithm with and without the
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Table 4.4: GA market shares for product lines of different sizes, for p = 0.1.
Num. of Num.of
attributes levels 1 prod. 2 prod. 3 prod.

100 people 3 2 27 52 74
3 3 13 29 43
3 4 10 28 40
3 5 8 20 32
4 2 21 42 58
4 3 13 30 44
4 4 13 29 34
4 5 11 22 34
5 2 13 30 47
5 3 13 28 38
5 4 12 27 36
5 5 13 29 36
6 2 15 33 45
6 3 18 32 44
6 4 16 33 43
6 5 16 33 39

200 people 3 2 42 96 131
3 3 30 54 78
3 4 19 41 64
3 5 18 39 59
4 2 33 73 112
4 3 21 40 69
4 4 18 37 60
4 5 18 37 56
5 2 29 65 93
5 3 23 49 74
5 4 26 55 74
5 5 23 48 69
6 2 24 63 93
6 3 22 47 73
6 4 27 53 75
6 5 27 47 66

300 people 3 2 70 137 209
3 3 30 67 104
3 4 29 61 92
3 5 25 53 76
4 2 36 86 135
4 3 31 65 96
4 4 31 58 88
4 5 21 51 77
5 2 39 87 130
5 3 37 73 100
5 4 36 65 82
5 5 25 45 68
6 2 35 85 130
6 3 40 80 113
6 4 36 71 104
6 5 33 57 82
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Table 4.5: GA market shares for product lines of different sizes, for p = 0.2.
Num. of Num.of
attributes levels 1 prod. 2 prod. 3 prod. 4 prod. 5 prod.

100 people 3 2 25 55 75 87 93
3 3 15 31 47 58 68
3 4 12 25 39 50 56
3 5 12 25 34 42 48
4 2 16 41 61 72 80
4 3 13 28 42 47 53
4 4 15 29 38 45 60
4 5 12 22 34 43 50
5 2 15 32 50 64 75
5 3 11 29 41 60 70
5 4 19 32 46 56 66
5 5 15 29 38 47 53
6 2 24 43 66 72 76
6 3 18 39 45 55 70
6 4 15 32 43 51 62
6 5 12 25 41 49 51

200 people 3 2 51 106 147 173 182
3 3 18 40 65 90 106
3 4 19 41 61 84 103
3 5 19 37 55 75 81
4 2 34 64 100 127 146
4 3 23 50 76 100 102
4 4 19 42 60 78 93
4 5 19 37 58 68 80
5 2 31 62 94 127 142
5 3 25 44 64 87 101
5 4 23 47 70 83 91
5 5 20 46 60 70 87
6 2 27 55 96 120 141
6 3 23 45 75 99 107
6 4 25 51 62 89 106
6 5 23 46 61 83 93

300 people 3 2 61 140 191 240 262
3 3 32 69 107 134 168
3 4 22 51 81 116 140
3 5 28 61 82 105 128
4 2 49 109 151 189 216
4 3 33 73 108 130 154
4 4 25 52 79 111 127
4 5 28 51 86 90 115
5 2 35 81 130 177 195
5 3 32 73 98 128 152
5 4 29 63 98 112 135
5 5 30 65 83 115 141
6 2 29 70 107 151 168
6 3 39 84 106 138 164
6 4 28 63 96 105 146
6 5 31 64 89 116 140
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Table 4.6: GA market shares for product lines of different sizes, for p = 0.3.
Num. of Num.of
attributes levels 1 prod. 2 prod. 3 prod.

100 people 3 2 26 54 75
3 3 16 31 46
3 4 13 26 35
3 5 10 24 33
4 2 17 41 60
4 3 14 29 40
4 4 13 25 36
4 5 13 23 31
5 2 16 37 51
5 3 11 31 51
5 4 19 34 45
5 5 15 32 38
6 2 23 44 60
6 3 18 34 45
6 4 17 33 47
6 5 15 27 33

200 people 3 2 42 85 131
3 3 19 45 71
3 4 22 40 62
3 5 17 37 65
4 2 39 71 110
4 3 23 49 75
4 4 18 39 64
4 5 20 38 57
5 2 30 64 97
5 3 33 58 80
5 4 20 44 68
5 5 19 48 65
6 2 27 56 85
6 3 25 49 81
6 4 25 52 67
6 5 27 41 59

300 people 3 2 61 129 192
3 3 35 71 112
3 4 27 57 84
3 5 26 55 84
4 2 44 88 140
4 3 35 74 104
4 4 32 62 84
4 5 24 49 74
5 2 29 86 123
5 3 28 77 108
5 4 25 56 82
5 5 28 60 79
6 2 29 73 110
6 3 32 69 101
6 4 41 80 104
6 5 34 62 92
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Table 4.7: Optimal product profiles for product lines of different sizes.
Market Share Product 1 Product 2 Product 3 Product 4 Product 5

15 3-1-2
31 3-1-2 1-2-3
47 2-2-3 3-1-2 2-2-2
58 2-2-3 3-1-2 1-2-1 1-3-2
68 2-2-3 1-2-2 1-1-1 2-3-2 3-3-3

use of incentives. In Table 4.8, 4.9 and 4.10, we compare the market shares when these

incentives are given vs. not given. Here GA+NE (GA with Network Effects) columns

show what the market shares are when the products designed with the GA is launched in

a market and the product is allowed to diffuse over the network in a natural way (through

influence over people’s connections), i.e., no outside incentives are given to the people.

In the adjacent columns, we have GA+IN (IN=incentives) which show the market share

when the products designed with the GA is launched in the market, and further inter-

ventions (coupons, free samples) are made by the seller to maximize the spread. By

comparing columns 5 and 6 (GA+IN for 2 products vs. GA+NE for 3 products), these

three tables also allow us to observe that in some cases we can reach a larger market share

by providing incentives instead of increasing the number of products in a product line.

Here, an analysis should be performed though, among the cost of introducing another

product into the line and the amount of resources needed to provide incentives.
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Table 4.8: Comparison of market shares with and without incentives, for p = 0.1.
Num. of Num.of 2 prod. 3 prod.
attributes levels GA+NE GA+IN GA+NE GA+IN

100 people 3 2 50 52 71 74
3 3 16 29 37 43
3 4 22 28 30 40
3 5 18 20 21 32
4 2 24 42 36 58
4 3 20 30 26 44
4 4 21 29 20 34
4 5 22 22 24 34
5 2 12 30 32 47
5 3 17 28 21 38
5 4 17 27 21 36
5 5 14 29 26 36
6 2 8 33 23 45
6 3 18 32 23 44
6 4 18 33 35 43
6 5 33 33 33 39

Average 20.63 31.06 29.94 42.94

200 people 3 2 79 96 122 131
3 3 36 54 56 78
3 4 31 41 45 64
3 5 34 39 52 59
4 2 44 73 78 112
4 3 25 40 56 69
4 4 26 37 42 60
4 5 21 37 41 56
5 2 40 65 61 93
5 3 31 49 53 74
5 4 42 55 43 74
5 5 25 48 42 69
6 2 25 63 48 93
6 3 32 47 51 73
6 4 30 53 55 75
6 5 29 47 57 66

Average 34.38 52.75 56.38 77.88

300 people 3 2 110 137 194 209
3 3 41 67 64 104
3 4 59 61 78 92
3 5 38 53 60 76
4 2 57 86 112 135
4 3 45 65 70 96
4 4 56 58 64 88
4 5 31 51 63 77
5 2 44 87 88 130
5 3 40 73 65 100
5 4 50 65 51 82
5 5 35 45 49 68
6 2 39 85 57 130
6 3 52 80 76 113
6 4 42 71 67 104
6 5 44 57 67 82

Average 48.94 71.31 76.56 105.38
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Table 4.9: Comparison of market shares with and without incentives, for p = 0.2.

Num. of Num.of 2 prod. 3 prod. 4 prod. 5 prod.
attributes levels GA+NE GA+IN GA+NE GA+IN GA+NE GA+IN GA+NE GA+IN

100 people 3 2 36 55 64 75 79 87 93 93
3 3 27 31 40 47 51 58 61 68
3 4 22 25 32 39 39 50 53 56
3 5 14 25 27 34 31 42 37 48
4 2 25 41 59 61 66 72 76 80
4 3 26 28 37 42 43 47 49 53
4 4 22 29 33 38 40 45 42 60
4 5 13 22 21 34 30 43 37 50
5 2 16 32 19 50 30 64 32 75
5 3 14 29 20 41 30 60 48 70
5 4 22 32 19 46 46 56 47 66
5 5 22 29 24 38 33 47 37 53
6 2 11 43 41 66 40 72 60 76
6 3 22 39 23 45 38 55 47 70
6 4 20 32 32 43 36 51 43 62
6 5 11 25 22 41 32 49 32 51

Average 20.19 32.31 32.06 46.25 56.13 64.44 49.63 64.44

200 people 3 2 96 106 137 147 173 173 182 182
3 3 30 40 50 65 78 90 90 106
3 4 30 41 36 61 68 84 68 103
3 5 25 37 48 55 55 75 65 81
4 2 34 64 74 100 95 127 130 146
4 3 45 50 48 76 67 100 79 102
4 4 26 42 46 60 57 78 66 93
4 5 30 37 37 58 52 68 52 80
5 2 41 62 55 94 93 127 115 142
5 3 31 44 46 64 62 87 76 101
5 4 33 47 53 70 66 83 80 91
5 5 32 46 53 60 48 70 66 87
6 2 25 55 51 96 95 120 83 141
6 3 27 45 50 75 75 99 58 107
6 4 27 51 27 62 57 89 89 106
6 5 29 46 46 61 59 83 65 93

Average 35.06 50.81 53.56 75.25 75.00 97.06 85.25 110.06

300 people 3 2 125 140 176 191 229 240 260 262
3 3 62 69 92 107 120 134 134 168
3 4 45 51 63 81 95 116 105 140
3 5 52 61 68 82 84 105 124 128
4 2 73 109 115 151 159 189 172 216
4 3 49 73 73 108 87 130 120 154
4 4 41 52 61 79 83 111 105 127
4 5 39 51 64 86 62 90 91 115
5 2 59 81 88 130 111 177 130 195
5 3 47 73 66 98 96 128 111 152
5 4 46 63 83 98 72 112 93 135
5 5 59 65 65 83 80 115 109 141
6 2 31 70 64 107 90 151 115 168
6 3 56 84 78 106 106 138 125 164
6 4 45 63 63 96 81 105 94 146
6 5 52 64 58 89 77 116 90 140

Average 55.06 73.06 79.81 105.75 102.00 134.81 123.63 159.44
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Table 4.10: Comparison of market shares with and without incentives, for p = 0.3.
Num. of Num.of 2 products 3 products
attributes levels GA+NE GA+IN GA+NE GA+IN

100 people 3 2 40 54 69 75
3 3 24 31 37 46
3 4 26 26 31 35
3 5 13 24 17 33
4 2 37 41 55 60
4 3 17 29 36 40
4 4 18 25 30 36
4 5 19 23 29 31
5 2 22 37 36 51
5 3 18 31 28 51
5 4 24 34 28 45
5 5 15 32 28 38
6 2 13 44 31 60
6 3 16 34 40 45
6 4 20 33 30 47
6 5 20 27 16 33

Average 21.38 32.81 33.81 45.38

200 people 3 2 81 85 111 131
3 3 34 45 47 71
3 4 34 40 50 62
3 5 29 37 40 65
4 2 50 71 88 110
4 3 35 49 59 75
4 4 37 39 42 64
4 5 31 38 39 57
5 2 32 64 60 97
5 3 42 58 56 80
5 4 37 44 45 68
5 5 36 48 52 65
6 2 18 56 62 85
6 3 43 49 62 81
6 4 44 52 55 67
6 5 31 41 47 59

Average 38.38 51.00 57.19 77.31

300 people 3 2 111 129 165 192
3 3 54 71 77 112
3 4 45 57 64 84
3 5 42 55 52 84
4 2 61 88 113 140
4 3 55 74 81 104
4 4 42 62 61 84
4 5 27 49 57 74
5 2 54 86 47 123
5 3 48 77 68 108
5 4 36 56 67 82
5 5 45 60 63 79
6 2 35 73 56 110
6 3 43 69 67 101
6 4 58 80 81 104
6 5 39 62 62 92

Average 49.69 71.75 73.81 104.56

117



4.5 LCIP for the Product Line Design with Network Effects

4.5.1 Model

In the single product case, in order to identify the set of nodes to give incentives to,

we zoom into the diffusion process and examine it one period at a time. The incentives

are given at points of time where natural diffusion of the product over the network cannot

expand anymore because there are no nodes whose utility is greater than their hurdles.

In this setting, incentives allow for more number of steps of diffusion to take place until

another knot is reached where more incentives are provided. This process is repeated until

all the market share (obtained with GA) is reached.

The model for the multiple products is more complicated than the single product

model for two reasons. First, people select the product with the highest utility. Secondly,

although there is a single hurdle for each node, utilities from each product increase at dif-

ferent rates as time advances, depending on the decisions of other buyer nodes. Therefore

the product with the highest utility may change for a node throughout this process.2 If

we follow the same approach as in the single product model with multiple products, we

might assign the wrong product to a node in the early stages of the diffusion leading us to

find a suboptimal solution for the LCIP. Determining the product profile with the highest

utility requires the whole process to be completed and therefore we cannot simply go one

time period at a time to determine the buyers and the corresponding products. However,

2e.g., Let utilities from product 1 and 2 be 10 and 5, respectively and first and second order effects be 4
and 2, respectively for node s. Assume both products have utilities higher than the hurdle and this node is
connected to 10 people who are not buyers yet. At this time, the person would select product 1. In the next
period, if all 10 neighbors buy the second product (by the effects of their other neighbors), then the utility
of the products for s would become 30 and 45, suggesting the node would select product 2.

118



since the diffusion problem is solved after the design problem, we know which product

each person buys before attempting to solve the diffusion problem. This puts us in an

advantageous position to solve the LCIP. Once we know the product for each person, the

model is simply equivalent to the single product model, though it requires a few initial

adjustments to the data. We explain this preprocessing stage next.

Preprocessing: The goal of this stage is to reduce the problem at hand to a single product

problem and to use the LCIP integer programming model from Chapter 2 to minimize the

incentives given in the product line design problem. (Note that the product will not be the

same for each person.) To do this, let’s remember the types of variables and data we have

in LCIP (Section 2.2). The two types of variables are the amount of incentives given to a

node and the binary variable which shows at which time interval a node buys the product.

We will keep these same variables here. In the single product case, the objective was the

same (to minimize the total amount of incentives given) and the incentives were specified

to the nodes. Here, the incentives for the product line design problem are specified with

respect to the product profile as well as the node itself. The four types of data we use

are 1) Utility from the product (Us), 2) Hurdle (hH
s ), 3) Adjacency matrix (ajs), and 4)

Influence factors (∆1
s and ∆2

s), for each node s.

In the LCIP (in both single product and product line problems), the network only in-

cludes the buyers. In the preprocessing stage, the first step is to identify these buyers and

classify them according to the products they buy. This allows us to calculate the utility

for person s, Us, from that product without any influence or incentives from outside. The

hurdles are distinct for each person and independent of the product profiles, so no modi-

fication is required for hurdles. The nodes which are not buyers and the edges connected
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to these nodes are eliminated from the adjacency matrix. In the product line problem we

have two orders of network effects; first order from the users of the same product, and

second order from users of any product. Since all nodes in the LCIP are buyers, we have

the second order effects between every node which are connected. For the first order ef-

fects, we use the sets we have identified at the beginning of the preprocessing step (buyers

of the same product) and consider the first order effects between two nodes if and only if

they belong to the same set. After this simple preprocessing stage, we can now use the

LCIP model in Section 2.2 by replacing constraint (2.9) with the following constraint.

Us ≥ hH
s yst − zs − (∆1

s −∆2
s)

∑
j∈V

ajsyjt −∆2
s

∑
j∈V ′

ajsyj (4.9)

where V = {j|Q(j) = Q(s)}

and Q(j) = q ⇔ node j buys product q.

To reduce the size of the model, as in the solution method of the single product

design, we eliminate the nodes that already buy that specified product without incentives

before trying to solve the LCIP for the product line design. Next we use the same iterative

approach we have introduced in Section 2.5 and solve the problem until no further im-

provement is obtained in the objective function. We know from Observation 5 in Chapter

2 that this is the optimal solution.

4.5.2 Computational results

We show the LCIP results for the product line design problem for the nine different

networks in tables 4.11, 4.12, 4.13, 4.14, 4.15, 4.16, 4.17, 4.18, 4.19 for product lines

with 2 and 3 products. In all of these tables, all rows correspond to one problem set. The
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number of new buyers in columns 3 and 7 show the network sizes of the LCIP. These are

the nodes that were not buyers until at least one node was given incentives. The columns 4

and 8 show the size of the set of nodes that receive incentives. For example, in Table 4.11,

for the problem with 2 products which have 6 attributes and 2 levels for each attribute,

out of 100 people 10 people are given incentives and in response to this the market share

is increased by 25 nodes. The return for each problem set is then calculated as the ratio

of the additional number of nodes which become buyers without receiving incentives and

the number of nodes that receive incentives; it measures how many additional buyers are

reached for each node that receives incentives. Over the nine networks, we calculate the

minimum return as 0.25 (where 8 out of 10 people have to be given incentives in the LCIP)

and the largest return as 15.50 (where 4 out of 66 people have to be given incentives in the

LCIP). The average return over nine networks is 1.32; for each person given incentives,

on average at least one additional person buys the product with that influence (i.e., with

no incentives). In tables 4.20, 4.21 and 4.22, we look at the solutions of the LCIP for

product lines with 4 and 5 products.

Within these tables (Table 4.11-4.22), there are some problem sets where the integer

program for the LCIP could not be solved to optimality due to their size, leaving the

computer out of memory after a certain period of calculations. We present these cases

with a star (*) next to the corresponding number of new buyers in columns 3 and 7,

and we show the best (close to optimal) solution we have for these cases. Observing

the number of new buyers and the total number of people receiving incentives in each

problem set, it is difficult to argue that the ratios of these values to the market share or the

market size change in a certain direction as the size of the product line is increased.
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4.6 Concluding Remarks

In this chapter, we looked at a product line design problem taking into account

peer influence effects. We model these effects in two dimensions as first and second

order effects, and extend our genetic algorithm for the single product model to solve

this computationally challenging problem. The least cost influence problem in the single

product model is also encountered in the multiple product model, and we propose simple

methods to adapt the existing model to the product line problem, and to solve it in a fast

and efficient method.

After extensive computational studies, we see that the market share increases as

the size of a product line increases. This is expected since each additional product will be

designed to satisfy the hurdles of the nodes which are not buyers. So increasing the size of

the product line always results in an increase in the market share. The number of products

where the marginal contribution of the next added product to the market share will be zero

would be the point right after the whole market share is reached. However the costs of

introducing a new product are overlooked in our model. An important trade-off of interest

is whether a company can be better off by providing higher amount of incentives to the

people with the current number of products, or by incrementing the size of the product

line.

The model we proposed in this chapter allows product line design problem to take

into account peer influence effects which previously was not possible. We see that an

optimal product profile for a single product model may not stay optimal as the number of

products are increased in the product line. We did not encounter any evidence suggesting
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a decrease in the amount of incentives required to reach the solution of the GA as the

number of products increased.

The running times of the GA increase rapidly, and the main reason behind this is

that the fitness is evaluated by the integer program SOCNEPL. We believe a stronger IP

model can help to decrease the search time.
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Chapter 5

Extensions

In this chapter, we first discuss how the model for the least cost influence problem

can be applied in an epidemiological setting and then introduce two extensions to the

SOCSNE model. We first present a model which takes into account budgetary concerns.

Next, we present a comprehensive model in which we solve the product design prob-

lem while minimizing the incentives distributed to the market, i.e., it models the product

design and diffusion problems simultaneously.

5.1 Application of the LCIP in Epidemiology and a Slight Generalization

Although the LCIP has been framed in a product diffusion setting, it can also be

equivalently viewed in an epidemiological setting. Suppose that ejs denotes the risk fac-

tors or influence of untreated node j on node s (e.g., if δjs denotes the probability of node

s getting infected by untreated node j, then ejs = − log(1 − δjs)). Let fjs denote the

reduction of influence of node j on node s if node j is treated so that its risk level is less

than or equal to a threshold risk level rj . In other words, if node j is treated so that its

risk level is below rj , its influence on node s is ejs− fjs. We would like to ensure that the

sum of all ejs − fjs’s for node s minus the intervention or treatment strategy zs reduces

the overall risk of node s below the threshold risk level rs. This may be equivalently set

in the marketing setting with bs = −rs +
∑

j∈V ′ ejs and djs = fjs, with a discrete set of
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intervention or treatment strategy choices at each node (with associated costs). The LCIP

in the epidemiological setting is then the problem of finding a least cost treatment plan

to ensure that a given population has its risk levels for a particular epidemic reduced to

below a target threshold level for each member of the population.

This illustrates that the LCIP is an extremely useful model in a social network set-

ting where the behavior of one’s immediate neighbors influences ones own, and it is of

interest to understand how “information” (loosely defined) spreads through a network. In

particular, it is of interest to understand the power of different nodes in a network in terms

of their relative “influence” in helping spread (or stop the spread) the “information” over

a network.

As explained in Section 3.3, in a setting where it is desired that a fraction of the

population (as opposed to the entire population) be influenced, the LCIP model can be

easily modified.

5.2 Budget constraint for SOCSNE

In many articles that study conjoint analysis, cost has been either explicitly included

in the price or has been included in the objective function negatively while maximizing

total profit (Dobson and Kalish, 1993). In many cases however, because of the financial

market conditions, the budget is not always available to develop a product that will return

the highest market share. Consequently, it is important to take product design decisions

in the context of budgetary constraints at the manufacturing organization. This is espe-

cially true if the costs are in terms of man-power or time, or the focus is a pre-stated
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design objective (e.g., design a laptop with a manufacturing cost of less than $300 while

maximizing market share). Consequently, rather than finding the optimal design that will

produce the highest market share, the question is to find the optimal design that will give

the largest market share under a limited design budget. To address these concerns, we

propose adding constraint (5.1) to the SOCSNE model. The design cost associated with

level l of attribute k is given by ckl and the total budget is B. In this way, the total cost of

the selected levels for the attributes will not be allowed to exceed a given design budget.

K∑

k=1

Lk∑

l=1

cklxkl ≤ B. (5.1)

In order to take into account the budget constraint, the evaluation phase of the ge-

netic algorithm needs to be modified. Remember that the fitness of a product profile is

calculated optimally using the integer program, SOCSNE. Now, if the evaluation is made

after constraint 5.1 is added to the SOCSNE, we can obtain product profiles which will

not violate the budget constraint.

5.3 A Comprehensive Model

An interesting question is whether the two problems (share-of-choice problem with

network effects and the least cost influence problem) can be solved (both for product

design and the total amount of incentives) in conjunction. We provide a slightly more

complex integer programming model where the two problems are integrated. This model

allows one to find the optimal product profile by maximizing the market share and mini-

mizing the amount of incentives at the same time.
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SOCSNLCI:

Maximize (
n∑

s=1

ys|T |)− γ

n∑
s=1

zs (5.2)

subject to
K∑

k=1

Lk∑

l=1

us
klxkl ≥ hH

s ys0 s = 1, 2, ..., n, (5.3)

K∑

k=1

Lk∑

l=1

us
klxkl ≥ hH

s yst − zs −∆s

∑
j∈V

asjyjt−1 s = 1, 2, ..., n, ∀t ≥ 1,(5.4)

Lk∑

l=1

xkl = 1 k = 1, 2, ..., K, (5.5)

ys0 ≤ ys1 ≤ ys2 ≤ . . . ≤ ys|T | s = 1, 2, ..., n. (5.6)

xkl, yst ∈ {0, 1}, zs ≥ 0 (5.7)

k = 1, 2, ..., K, l = 1, 2, ..., Lk, s = 1, 2, ..., n, ∀t ≥ 0.

The objective function is to maximize the market share, after the amount paid as

incentives are subtracted from it. The same variables and parameters are used as the pre-

vious models (SOCSNE and LCIP) with an additional parameter γ ≥ 0 that is introduced.

Since zs represents cost and the rest of the objective function represents market share, the

comparison of objectives should be done accordingly. γ serves as a scaling parameter

for the marketing/product promotion effects and represents the relative importance of the

amount spent with respect to the market share. If γ = 0, the amount of incentives paid are

not important at all and the objective becomes the same as the original problem (SOC-

SNE). If person s buys the product in time period t, yst′ equals 1, ∀t′ ≥ t. So the market

share equals to the number of people who buy in the last period. The first constraint rep-

resents the first period, similar to constraint (2.8) in the LCIP model. In constraint (5.4),
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hurdles and utilities are compared to ensure that only the people whose updated hurdles

are less than or equal to their utilities buy the product. It is the same as constraint (2.9)

in the LCIP model. Constraint (5.5) allows one level for each attribute. With constraint

(5.6), purchasing decisions of customers are carried to the successor periods. Note that in

this model, the ys|T | variables corresponding to the purchasing decisions in the last period

are not necessarily 1. This is because the optimal product profile is not an input in this

model, so at the end there may be customers who decide not to buy the product at all.

Alternatively, a coefficient equal to the revenue associated with person s could be

assigned to
n∑

s=1

ys|T | while γ = 1 for a model that maximizes revenue.
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Chapter 6

Summary and Concluding Remarks

In this thesis, we have focused on integrating social network effects in product

design and diffusion problems. We started with a single product model and extended it

to a product line design problem. The integer program proposed for the share-of-choice

problem required the introduction of a complementary problem to reach the forecasted

market share of the integer program. In the third problem of the thesis, we extended

our study in the first and second problems for the product line design problem with a two

dimensional influence model. We introduced a genetic algorithm for the first and the third

problems and an optimal solution method for the second problem for small size networks.

This thesis lies in the intersection of the operations, marketing and complex systems

research and is motivated by (i) the increased connectivity of the people around the world

and (ii) our ability to observe the interaction/effects of these connections. Communication

has become a lot easier, and it has helped strengthen information sharing among large

social networks with faster and cheaper internet technologies improving day by day. In

this thesis, we consider this social interaction and model influence among people when

they are making purchasing decisions. We propose that if these network effects are taken

into account when the product is designed, we can design better products that will reach a

larger market share. The aim is to manage the introduction of a new product operationally

(through product design) and strategically (through product diffusion) taking into account
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the spread of the adoption behavior over a social network with on-site (well advised)

marketing interventions.

The share-of-choice problem is a product design problem that aims to find the best

combination of levels of attributes of a product in order to create a product with the

largest market share. We introduce network effects and formulate an integer programming

model for the SOCSNE. However, since this formulation is computationally challenging

to solve, we describe a genetic algorithm (GA) to generate high-quality heuristics for

the SOCSNE. The GA alleviates the computational time significantly (capable of solving

problems which could not be solved using commercial IP solvers) while finding feasible

solutions which are on average 98.76% of the optimal solution.

In this setting, we introduce a secondary problem, the Least Cost Influential Prob-

lem (LCIP), of determining the least expensive way of influencing individuals in a social

network. The necessary expenses to strengthen diffusion over the social network are

similar to marketing costs of advertising in terms of free samples or discount coupons.

The integer programming model for this problem is difficult to solve. On a tree network

when influence from neighbors on an individual are equal to each other we show that

a dynamic programming algorithm (which reduces to a greedy algorithm) polynomially

solves the problem. When the influence depends on the neighbor (i.e., not the same for

each neighbor), the problem is NP-Hard on tree networks. This secondary problem, LCIP,

is of independent interest, as it addresses contagion models and the issue of determining

influential nodes in a social network, which are of significant interest in marketing and

epidemiological settings.

In the last part of the thesis, we solve the product line design problem with network

142



effects. Here the problem is more complicated both because the network influence is

more complex and because the size of the problem is larger. We distinguish our study

from the literature with the introduction of network effects and by including the selection

of the product with the highest utility. Inclusion of these properties prevents us from

using previous solution methods. We propose a genetic algorithm which uses an integer

program to evaluate fitness of an individual in the product population. We also extend our

solution method for the LCIP for the product line design problem.

To our knowledge, this is the first study to integrate social network effects in the

share-of-choice problem and coalesce optimization methods with marketing applications.

We show that integrating social network effects in the product design problem leads to

better products that will provide a larger utility to the user and a larger market share for

the business. We propose smart and fast algorithms to solve problems arising in this

context. Further, we believe there are many opportunities for operations research in terms

of the variety of combinatorial optimization problems that appear, not only in a marketing

setting but in general, when diffusion of information takes place. This thesis represents

a big first step in developing a strong theoretical model and solution methods for product

design that accounts for network effects. Going forward (as future research) it is important

to gather real data and conduct studies using actual data to apply this theory to practice.
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