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Optimization of engineering systems under uncertainty often involves problems that 

have multiple objectives, constraints and subsystems. The main goal in these 

problems is to obtain solutions that are optimum and relatively insensitive to 

uncertainty. Such solutions are called robust optimum solutions. Two classes of such 

problems are considered in this dissertation. The first class involves Multi-Objective 

Robust Optimization (MORO) problems under interval uncertainty. In this class, an 

entire system optimization problem, which has multiple nonlinear objectives and 

constraints, is solved by a multiobjective optimizer at one level while robustness of 

trial alternatives generated by the optimizer is evaluated at the other level. This bi-

level (or nested) MORO approach can become computationally prohibitive as the size 

of the problem grows. To address this difficulty, a new and improved MORO 

approach under interval uncertainty is developed. Unlike the previously reported bi-

level MORO methods, the improved MORO performs robustness evaluation only for 

optimum solutions and uses this information to iteratively shrink the feasible domain 

and find the location of robust optimum solutions. Compared to the previous bi-level 



  

  

approach, the improved MORO significantly reduces the number of function calls 

needed to arrive at the solutions. To further improve the computational cost, the 

improved MORO is combined with an online approximation approach.  This new 

approach is called Approximation-Assisted MORO or AA-MORO.  

The second class involves Multiobjective collaborative Robust Optimization (McRO) 

problems. In this class, an entire system optimization problem is decomposed 

hierarchically along user-defined domain specific boundaries into system 

optimization problem and several subsystem optimization subproblems. The 

dissertation presents a new Approximation-Assisted McRO (AA-McRO) approach 

under interval uncertainty. AA-McRO uses a single-objective optimization problem 

to coordinate all system and subsystem optimization problems in a Collaborative 

Optimization (CO) framework. The approach converts the consistency constraints of 

CO into penalty terms which are integrated into the subsystem objective functions. In 

this way, AA-McRO is able to explore the design space and obtain optimum design 

solutions more efficiently compared to a previously reported McRO.  

Both AA-MORO and AA-McRO approaches are demonstrated with a variety of 

numerical and engineering optimization examples. It is found that the solutions from 

both approaches compare well with the previously reported approaches but require a 

significantly less computational cost. Finally, the AA-MORO has been used in the 

development of a decision support system for a refinery case study in order to 

facilitate the integration of engineering and business decisions using an agent-based 

approach. 
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Chapter 1: Introduction and Research Thrusts 

Many engineering optimization problems are multiobjective, constrained, and subject 

to various sources of uncertainty in their system inputs. For example, in designing a 

power tool, it is desirable to minimize its weight while maximizing the output power 

subject to the uncertainty in environment, loading conditions, part dimensions, and so 

on. Note that uncertainty in the system inputs can be transmitted through the system 

and produce large variations in the system outputs. Indeed, this input uncertainty 

could make the performance (objective and/or constraint functions) of an optimum 

solution too sensitive and therefore undesirable. Furthermore, current engineering 

system design problems are becoming increasingly complex and difficult to model 

and solve by an “all-in-one” formulation and therefore multiobjective multi-

disciplinary optimization approaches are needed to be explored particularly when 

there is uncertainty in the inputs. One significant limitation of previous approaches in 

this area is that they require a large number of function calls in order to arrive at a 

solution. Therefore, the main focus of this dissertation is in developing new methods 

in robust optimization combined with an online approximation to improve the 

computational effort for obtaining solution for these problems when compared with 

previous methods. 

The overall objective of this dissertation is to develop an approximation assisted 

multiobjective robust optimization methods for single- and multi-disciplinary 

optimization problems under uncertainty.  

More specifically, this dissertation develops (i) a new approximation assisted 

MultiObjective Robust Optimization (MORO) approach; and (ii) a new approach for 
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the solution of multiobjective multi-disciplinary optimization problems. Furthermore, 

a new Decision Support System (DSS) in the context of a refinery case study has 

been developed that combines MORO with an agent-based approach to facilitate 

decision making under uncertainty when both business and engineering decisions are 

considered.  

To develop these models and methods, three research thrusts are identified and 

explored.  

1.1 Research Thrusts 

A brief overview of the main thrusts and corresponding research in each thrust are 

presented in the following subsections. 

Thrust 1: Approximation Assisted MultiObjective Robust Optimization (AA-

MORO) under Interval Uncertainty 

This first thrust is focused on developing a new online approximation assisted MORO 

approach that is able to significantly reduce the number of function call, compared to 

existing and comparable MORO techniques. 

First, a new MORO approach is developed to reduce the number of robustness 

evaluations compared to a previous MORO approach. In a previous bi-level MORO 

(Li et al., 2006), candidate design points are identified and iteratively improved in an 

upper-level problem, while in a lower-level subproblem, the robustness of the 

candidate points are evaluated. However the new MORO is a sequential approach in 

which multiobjective optimal solutions are first obtained and subsequently the 

robustness of each optimal solution is evaluated. The sequential MORO requires 
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significantly fewer robustness evaluations and thus more efficient than the bi-level 

MORO.  

Second, an online approximation technique is developed and integrated with the 

sequential MORO approach to further improve the computational efficiency. The 

online approximation can replace a computationally expensive objective/constraint 

function with an inexpensive metamodel. Furthermore, the metamodel is updated 

using the optimum solution points obtained as the approach iteratively proceeds 

towards the solution. In this way, the predictive capabilities of the metamodel is 

progressively improved in the area where the optimum is expected to be, as more and 

more sample points are evaluated and added to the sample set.   

Thrust 2: Approximation Assisted Multiobjective collaborative Robust 

Optimization (AA-McRO) Under Interval Uncertainty 

The second research thrust is focused on developing a new AA-McRO approach to 

improve the computational efficiency of a previous approach (Li and Azarm, 2008). 

The new AA-McRO approach converts an upper-level system problem in McRO into 

two-level subproblems. Under this framework, the upper-level subproblem is 

responsible for coordinating the value of shared and coupling variables and guiding 

the optimization and robustness in lower-level subproblems. Because the upper-level 

subproblem in AA-McRO only focuses on coordination, AA-McRO is able to obtain 

optimum design solutions more efficiently when compared to a previous approach.  

The new AA-McRO approach converts “consistency constraints” in the subsystem 

optimization problems into penalty terms which are integrated into the objective 

function of the subsystem optimization subproblems. These penalty terms allow the 



  

 4 

 

system and subsystem optimization subproblems to explore the design space better. 

As the optimization proceeds, the penalized value is minimized so that eventually the 

consistency constraints are satisfied.  

Finally, AA-McRO employs an online approximation technique to reduce the number 

of function calls. An online verification of the estimated optimum solution is 

integrated such that the absolute error of the objective and constraint functions can be 

kept within a user specified threshold. In this way, AA-McRO can significantly 

reduce the computational effort compared to the previous McRO while obtaining 

reasonably accurate optimum solutions.  

Thrust 3: Integration of Business and Engineering Decisions in an Oil Refinery 

The third thrust is focused on developing a framework for integrating engineering and 

business decisions in an oil refinery using AA-MORO. Several research questions are 

explored in this thrust in the context of an oil refinery application. These include: (i) 

how to develop a business model that includes strategic management decisions and at 

the same time accounts for engineering objectives and constraints; (ii) how to 

determine the relative importance and effects of uncertain system and/or subsystem 

input parameters on subsystem and/or system outputs (e.g., system performance); and 

(iii) how to develop different case study scenarios to demonstrate the integrated 

decision support framework and understand the impact of business and engineering 

decisions on the refinery key performance indicators.  

1.2 Outline of the Dissertation 

The dissertation is organized as follows. The background and terminology are 

introduced in Chapter 2, followed by the three research thrusts in Chapter 3 to 
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Chapter 5. The conclusions, contributions and suggested future directions are 

presented in Chapter 6. 

 

Fig. 1.1 The organization of Chapter 2-5 of this dissertation 

As shown in Fig 1.1, following an overview of a Multiobjective Optimization 

Problem (MOP) in Section 2.1, Chapter 2 includes an introduction of multiobjective 

robustness in Section 2.2. Combining a MOP with the robustness evaluation, Section 

2.3 reviews Multiobjective Robust Optimization approach. Multiobjective 

Collaborative Optimization (MCO) and Multiobjective collaborative Robust 
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Optimization (McRO) are reviewed in Section 2.4. Section 2.5 presents a review of 

Approximation Assisted Optimization (AAO). 

The first research thrust, i.e., Approximation Assisted MORO (AA-MORO) is 

presented in Chapter 3. First an improved MORO approach is developed in Section 

3.2. Based on the improved MORO and the AAO, the AA-MORO approach is 

presented in Section 3.3. Chapter 4 focuses on the second research thrust in which the 

new MCO and new McRO approaches are presented in Section 4.2. Based on the new 

McRO approach and online approximation, the AA-McRO framework is presented in 

Section 4.3. In the third research thrust, the AA-MORO is used to integrate business 

and engineering decisions by way of a decision support system. The integration 

framework is presented in Section 5.3. An oil refinery case study is developed in 

Section 5.4 to demonstrate the decision support system with a dashboard user 

interface. Finally, in Chapter 6, the conclusions, contributions and suggested future 

research directions are provided. 
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Chapter 2: Background 

This chapter provides the technical background and terminology related to the main 

research thrusts of this dissertation.  

An overview of a Multiobjective Optimization Problem (MOP) is provided in Section 

2.1, including a definition for a MOP and the concept of non-dominated points for 

multiobjective optimization in subsection 2.1.1. Next, a brief introduction for 

MultiObjective Genetic Algorithm (MOGA) is presented in subsection 2.1.2. In 

Section 2.2, the basic idea of objective and feasibility robustness is provided. First a 

definition of robustness for a single-objective optimization problem is presented, 

followed by the definition of multiobjective robustness. Section 2.3 reviews the 

previous bi-level MultiObjective Robust Optimization (MORO) approach (Li et al. 

2006) and the steps in the previous MORO approach. A review of the previous 

Multiobjective Collaborative Optimization (MCO) and Multiobjective collaborative 

Robust Optimization (McRO) is provided in Section 2.4. In Section 2.5 an overview 

of a generic Approximation Assisted Optimization (AAO) technique is presented, 

which includes design of experiment, metamodeling and verification.  Finally, a 

summary of the chapter is provided in Section 2.6. 

2.1 Multiobjective Optimization Problem (MOP) 

2.1.1 Definition 

 A general formulation for a MOP is given in Eq. (2.1).  
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min  ( , )

s.t.   ( , ) 0

        [ , ]l u

≤

∈

x
f x p

g x p
x x x

 (2.1) 

where x and p represent the variables and parameters, respectively. Variables can be 

changed by an optimizer, while parameters are fixed during an optimization run. A 

bold letter such as x denotes a row vector, i.e., x = (x1, x2,…,xnx) where nx is the total 

number of design variables.  f and g represents the real-valued objective functions and 

constraint functions, respectively. In Eq. (2.1), the superscripts l and u in the variable 

x represent the lower and upper bounds, respectively. However, p (and even x) can 

have uncertainty -- more on this in Section 2.2. It is assumed that variables, 

parameters, objective and constraint functions are all real-valued. 

The feasible domain in Eq. (2.1), denoted by Ω, consists of a set of points that satisfy 

all constraints. For a MOP where the objective functions are to be minimized and at 

least partly conflicting, as in Eq. (2.1), a point x1 is said to multiobjectively dominate 

x2, if f(x1) ≤ f(x2) for all objective functions with strict inequality holding for at least 

one objective function (Deb, 2001). A solution point x∈Ω is non-dominated if there 

does not exist another solution point y∈Ω that dominates it. A non-dominated set Ψ, 

or Pareto set/frontier, is defined by the set: {x∈ Ψ | there does not exist y∈Ω such that 

y dominates x}. 
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Fig. 2.1 Pareto dominance in MOP with two design variables 

Fig. 2.1 shows the basic idea of Pareto dominance in a MOP with two design 

variables. The feasible domain is determined based on the constraints and the 

lower/upper bounds of design variables. This is illustrated in the design space on the 

left of Fig. 2.1. The feasible domain in design space is mapped to the objective space 

on the right of Fig. 2.1, where the set of points within the closed curve (grey area) 

represent the feasible domain. With respect to a design point x, the objective space is 

divided into three zones namely, the dominated zone, the dominant zone and non-

dominated zone. It can be seen that all points inside the dominated zone are 

dominated by point x and all point inside the dominant zone dominate point x. 

However, any point that falls inside the non-dominated zone is said to be non-

dominated to point x. Fig. 2.1 also shows the Pareto frontier (which is also a non-

dominated set) in the objective space, where e1 and e2 represent the two end points of 

the Pareto frontier. 

One way to measure the relative goodness of Pareto frontier is by using the quality 

metrics (Wu and Azarm, 2001). The Hyperarea Difference (HD) and Overall Spread 

(OS) are the two quality metrics calculated based on a set of non-dominated points. 
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As shown in Fig. 2.2, HD is represented by the shaded area based on a definition of a 

good point (Pgood) and a bad point (Pbad) in the objective space. Because HD 

measures the closeness of the non-dominated points to a good point, the smaller the 

HD value the better. On the other hand, OS is defined as the ratio between the 

rectangle area bounded by the two extreme points of the non-dominated points {a-f-e-

m} to the rectangle area bounded by the good and bad points. Since OS measures the 

spread of the set of non-dominated points, the larger the value of OS is the better the 

spread of the non-dominated points.  

 

Fig. 2.2 Quality metrics for a set of non-dominated points 

To obtain the Pareto frontier for a MOP, many methods are reported in the literature 

(e.g., Miettinen 1999). In many of these methods, the solutions for a MOP are 

obtained based on the idea of dominance which distinguishes between dominated and 

non-dominated solutions. One such method is a MultiObjective Genetic Algorithm 

(MOGA) (Deb, 2001) which is an evolutionary (meta-heuristic) approach, as 

overviewed next. 

f2
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Pbad

Pgood

a
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d
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2.1.2 MultiObjective Genetic Algorithm (MOGA) 

MOGA is basically a Genetic Algorithm (GA) (Holland, 1975), which is a meta-

heuristic with provisions for multiobjective dominance. It operates on a population of 

design points (or chromosomes). The fitness of each point in MOGA is a measure of 

performance of that point as defined by the objective and constraint functions. 

MOGA basically consists of three parts: (1) generating a population of design points; 

(2) evaluating the fitness of each design point based on multiple objectives (and 

constraints); and (3) applying genetic operators to generate the next generation of 

design points. Among these, the first and third parts in MOGA are essentially the 

same as those used in a single-objective GA, see, e.g., Goldberg (1989) and Fonseca 

and Fleming (1993). The fitness of each design point in MOGA is evaluated by 

performing a sorting algorithm based on the value of the objective functions.  

A commonly used sorting algorithm is Non-Dominated Sorting (NDS) (Deb, 2001). 

NDS is based on a population of design points and works as follows for an 

unconstrained MOP. First, a non-dominated set Φ1 for the population is determined 

based on their objective function values. All design points in Φ1 are assigned to have 

the first (or highest) rank. From the remaining design points, the set of non-dominated 

points Φ2 is determined and its members are assigned to the second rank. This 

procedure is repeated, until the entire population is divided into partitions (or sets) 

Φ1, Φ2, . . . , Φns. Members (or points) in each of these sets are assigned to ranks 1, 2, 

. . . ns. Obviously, there can be more than one element in each set. In order to 

establish a distinctive ranking among the elements of a particular set, crowding 

distance sorting can be used (Coello et al., 2002). Using a crowding distance sorting, 
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individuals that contribute more to the diversity are assigned higher ranks. In addition 

to NDS, other sorting schemes (e.g., Fonseca and Fleming, 1993; Knowles and Corne, 

1999) can be used for fitness assignment in MOGA.  

Finally, a simple penalty method can be integrated with MOGA to handle constraints. 

Using the penalty method, infeasible points are penalized by considering a large 

positive value (for constraints in Eq. (2.1)) to their original fitness values. Typically, 

the penalty value is proportional to a constraint function value. Since the constraint 

values for infeasible points are positive, as in Eq. (2.1), a highly infeasible point 

which results in a higher constraint value is penalized more than a less infeasible 

point. Other constraint handling techniques (e.g., Kurpati et al., 2002; Qu and 

Suganthan, 2011) can also be used. In general, these constraint handling approaches 

may consider constraint function values, number of constraint violations and other 

appropriate measures during the fitness assignment stage of MOGA. 

Next, the definition of multiobjective robustness is provided in Section 2.2 including 

the basic ideal of robustness with interval uncertainty for a single objective and single 

constraint function (Section 2.2.1), followed by a description of the concept of 

multiobjective and feasibility robustness (Section 2.2.2). 

2.2 Multiobjective Robustness 

In this section, the main concepts and approaches behind robustness for a MOP under 

interval uncertainty are reviewed and discussed.  



  

 13 

 

2.2.1 Robustness with Interval Uncertainty: Basic Idea 

It is assumed that, at a candidate design point x, the parameter p (i.e., each of its 

elements) has a nominal value. Let Δp represents the interval uncertainty around the 

nominal value of p. The uncertainty range is presumed to be known as: Δp ∈ [Δpl, 

Δpu]. Note that this definition of uncertainty in the parameters can be easily extended 

to the design variable x. The uncertainty in the parameters is transmitted to the 

objective and constraint functions, i.e., f(x, p) and g(x, p), which are then varied from 

their nominal value due to the transmitted uncertainty.  This variation can be 

undesirable. For example, the optimum value of objective functions may be degraded 

significantly due to the variation in f(x, p). Or an optimum design can become 

infeasible due to the transmitted uncertainty in g(x, p). To address this, the concept of 

robust design is considered and integrated in the optimization procedure (Taguchi, 

1987). The basic idea is for the optimizer to search the design space and identify 

design solutions which are relatively insensitive (or robust) to uncertainty, in terms of 

change in the objective function and feasibility of the design. To better understand the 

concept of robust design, consider the plots for a one-variable objective function f and 

constraint g as shown in Fig. 2.3. The goal is to minimize f subject to g ≤ 0 with 

interval uncertainty, as shown by the grey area along the x axis. In Fig. 2.3(a), points 

A, B and C represent the three local optimum points. The objective value at point A is 

rather sensitive to the uncertainty in the design variable, as represented by the 

variation or change of the function along the f axis. On the other hand, compared to 

point A, point C is less sensitive or relatively insensitive (objectively robust) to the 

interval uncertainty and that the variation of objective function for point C is the 
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smallest among the three points. In terms of constraint function values, points A and 

B are immune to infeasibility (or are feasibly robust) because the constraint function 

value at both points are still negative when there is uncertainty in x. However, point C 

may become infeasible when a positive variation occurs in x, as shown in Fig. 2.3(b). 

Therefore, considering the objective/feasibility robustness and optimality, point B is 

preferred (optimum and robust) among these points.  Note that while in this 

illustrative example the robust optimum solution is nominally (locally) optimum, in 

general, this may not be the case. 

 
(a) 

 
(b) 

Fig. 2.3 Basic ideal of robustness (a) objective robustness (b) 
feasibility robustness 

2.2.2 Multiobjective and Feasibility Robustness 

In a MOP problem, both multiobjective robustness and feasibility robustness are 

considered. Similar to the single objective example discussed in Section 2.2.1, 

multiobjective robustness can be defined such that variation or uncertainty in each 

A xo

f

B C

A
xo

g

B C
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objective function, as a result of input uncertainty, does not exceed an Acceptable 

Objective Variation Range (AOVR). Also, feasibility robustness can be defined in 

which the variation in constraint functions maintains the feasibility of a design point. 

Because the objective functions in a MOP are minimized as defined in Eq. (2.1), it is 

undesirable that the variation in any objective function increases its value beyond 

AOVR. Let the vector Δf+ denotes the amount of increase (with superscript + for an 

increase) in the value of the objective functions, which can be formulated as: 

 
[ ( , ) ( , )]

,  if ( , ) ( , )
    

( , ) ( , ),  otherwise

+ +∆ = + ∆ −

+ ∆ ≤
=  + ∆ −

f f x p p f x p
0 f x p p f x p
f x p p f x p

 (2.2) 

where f(x, p+Δp) and f(x, p) represent the actual (due to uncertainty from p) and 

nominal values for the objective functions, respectively. Δf+ is called the objective 

variation vector whose elements represent the increase (if any) in each objective 

function as a result of input uncertainty. To measure the variation in all objectives 

with a scalar, the Euclidean norm ║Δf+║is used. In solving a multiobjective 

optimization problem under interval uncertainty, it is important to obtain solutions 

which are not only optimal but also have acceptable increases in all of their objectives 

as a result of uncertainty. It is presumed that the decision maker can specify a positive 

scalar value of ηf as an AOVR for the objective variation value, such that the 

maximum of the norm of the objective variation vector is smaller than or equal to ηf: 

 max fη+

∆
∆ ≤

p
f  (2.3) 

In Eq. (2.3), 2 1/2

1
( )

nf

m
m

f+

=

∆ = ∆∑f where m and nf denote the index and the total number of 

objective functions, respectively. Since Δf+ represents an increase in multiple 
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objectives, the inequality constraint in Eq. (2.3) is referred to as a multiobjective 

robustness constraint. Any design point that satisfies Eq. (2.3) is considered to be a 

multiobjectively robust design point. A two dimensional example of multiobjective 

robustness with interval uncertainty is shown in Fig. 2.4. The grey area on the left 

represents the uncertainty variation region. Any point inside this variation region 

corresponds to a realization of uncertainty. For example, point o in the left figure is a 

nominal point (x, p), and points u and v each represents a realization of an uncertain p 

value. The uncertainty variation region can be mapped to the objective space where 

the set of points inside the closed curve (grey shaded) area represents the objective 

variation region.  

  

Fig. 2.4 Multiobjective robustness hypothetical case 
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In the objective space, the point oʹ represents the nominal value for the objective 

functions, i.e., f(x, p). It can be seen that the Euclidean norm of the objective 

variation vector ║Δf+║ is the distance from the nominal point oʹ to a point in the 

objective space. Since the only concern is with an increase in the objective function 

values, any point in the third quadrant in the mapped objective variation region is 

acceptable from an objective robustness point of view. Therefore, the third quadrant 

points are ignored when calculating the Euclidean norm of the objective variation. 

However, to calculate the Euclidean norm of the objective variation for points in the 

second and forth quadrant in the objective space, those points are to be projected on 

to the positive axis. For example, to calculate the objective variation for point v, it is 

first projected from the design space to the objective space, as represented by point vʹ, 

which is in the fourth quadrant. Then, point v' is again projected to the positive axis in 

the objective space to point vʹʹ. The Euclidean norm of the objective variation for 

point v, i.e., ║Δfv
+║, is represented by the horizontal line segment along the Δf1 axis.   

With the projection of  the objective variation region in the second and forth quadrant, 

the maximum Euclidean norm of the objective variation vector max║Δf+║ is the 

distance from the nominal point oʹ to the furthest point uʹ in the first quadrant 

(including the projected line segments on the positive axis). This value is essentially 

the radius of the smallest quarter-circle (shown in dashed line) that encloses the 

objective variation region in the first quadrant. According to the multiobjective 

robustness requirement in Eq. (2.3), this maximum value must not exceed the 

acceptable limit ηf. The geometrical interpretation is that the dash-lined quarter-circle 

must be enclosed within the solid-lined quarter-circle whose radius is equal to ηf.   
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Fig. 2.4 shows the case in which the furthest point on the projected objective variation 

region is located in the first quadrant in the objective space. Since the dashed circle is 

within the solid circle and max║Δf+║ ≤ ηf is satisfied, the candidate design point is 

said to be multiobjectively robust.  

Similarly, the feasibility robustness is defined with the following inequality constraint 

as: 

 max[max ( , )] 0
k∆

+ ∆ ≤
p

g x p p  (2.4) 

The first maximization in Eq. (2.4) is conducted with respect to Δp, and the second 

maximization inside the square bracket is with respect to k, where k represents the 

index for the constraint function number. Note that g = (g1, g2,…,gng) where ng 

represents the total number of constraint functions.  

For simplicity, from this point on the term “max[g]” is used to refer to the left-hand 

side of Eq. (2.4). Note that for feasibility robustness, the decision maker is concerned 

with the feasibility of a point (i.e., g ≤ 0) due to uncertainty in the design variables 

and parameters. As shown by the feasibility robustness constraint, Eq. (2.4), max[g] 

represents the worst-case constraint value, which should be less than or equal to zero 

in order to ensure feasibility. Consequently, any candidate design point that satisfies 

Eq. (2.4) is called a feasibly robust design point.  

The geometric interpretation of Eq. (2.4) can be explained by Fig. 2.4. As in 

multiobjective robustness, the uncertainty variation region is mapped to the constraint 

space on the right-hand side where the grey shaded area represents the constraint 

variation region. Point oʹʹ is the projected point for the nominal design point o. And 

point wʹ corresponds to max[g] which is obtained by searching for the closest point 
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on the constraint variation region to any constraint axis. The feasibility robustness as 

required by Eq. (2.4) indicates that the entire constraint variation region must be 

located in the third quadrant of the constraint function space.  

It must be noted that the definition of multiobjective and feasibility robustness are 

derived from the previous work (Gunawan and Azarm, 2005; Li et al., 2006). 

However, these earlier works focus on both positive and negative variations around a 

nominal design point for objective robustness. The one-sided objective robustness 

presented here is more applicable to engineering design applications where the 

designer is only concerned with the variation which degrades the optimum design 

(increasing objective function value). For example, a downside variation (or decrease) 

in cost (a typical objective) implies a cost reduction which is desirable.  

2.3 MultiObjective Robust Optimization (MORO) 

MORO is formulated as a bi-level optimization problem with an upper-level problem 

and two lower-level subproblems (Li et al., 2006). In the upper-level problem, the 

optimizer searches the design space for candidate feasible design points which 

optimize the objectives; while in the lower level, a single-objective global optimizer 

(such as genetic algorithm) evaluates multiobjective and feasibility robustness of each 

candidate design point. The formulation for the upper-level problem and lower-level 

subproblems is given in Eqs. (2.5) and (2.6) as follows: 

Upper-level 
problem: 

min  ( , )

s.t.   max   

        max [ ] 0

        [ , ]

f

l u

η+∆ ≤

≤

∈

x
f x p

f

g
x x x

 (2.5) 
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Lower-level  
subproblems: 

max max [ ( , ) ( , )]

s.t. [ , ]l u

+ +

∆
∆ = + ∆ −

∆ ∈ ∆ ∆

p
f f x p p f x p

p p p

 

(2.6-1) 

max[ ] max[max ( , )]

s.t. [ , ]
k

l u

∆
= + ∆

∆ ∈ ∆ ∆

p
g g x p p

p p p

 

(2.6-2) 

The upper-level problem is formulated as a multiobjective optimization problem as in 

Eq. (2.1), except that the multiobjective and feasibility robustness constraints as 

defined in Section 2.2 are added. Notice that in Eq. (2.5) the left-hand side of the 

inequalities of multiobjective and feasibility robustness constraints, i.e., max║Δf+║ 

and max[g] must be evaluated in the lower-level subproblems. As shown in Eqs. (2.6-

1) and (2.6-2), the lower-level includes two single-objective optimization 

subproblems where the value for the nominal design, denoted by x, is fixed.  

Essentially, the first optimization subproblem obtains the maximum Euclidean norm 

of increase in the objective vector, i.e., max║Δf+║, and the second optimization 

subproblem obtains the worst-case constraint value, i.e., max[g].   

Solving a MORO problem, Eq. (2.5) and (2.6), using a population based approach, 

such as MOGA for the upper-level and GA for the lower-level, works as follows (see, 

also, Li et al., 2006):  

First a set of candidate design points are generated in the upper-level problem. In 

order to assign fitness to each point, the objective and constraint functions of each 

point are calculated. Since the multiobjective robustness and feasibility robustness 

constraint in Eq. (2.5) needs to be evaluated in the lower-level subproblems, the 

nominal value of a current point (from the population), as denoted by a vector x, is 

passed on to the lower-level. Once the lower-level subproblems receive x, the single-

objective optimization problems in Eqs. (2.6-1) and (2.6-2) are solved with respect to 
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Δp. The optimal value from the two subproblems, i.e., max║Δf+║ and max[g] are 

obtained and returned to the upper-level problem to complete constraint evaluation 

for the current point x. The same procedure (solving the two lower-level 

subproblems) is repeated for all other candidate design points. Next, all current 

candidate design points are ranked based on their values of objective and constraint 

functions (including multiobjective and feasibility robustness constraints). 

Consequently the fitness of each candidate point is determined based on which the 

non-dominated points are determined. Depending on the multiobjective optimization 

approach being used, the previous procedure typically is repeated until a set of non-

dominated solutions (which are multiobjectively and feasibly robust and optimum) 

are obtained.  

As can be seen from the procedure above for MORO, the two lower-level 

subproblems are essentially “nested” within the upper-level problem. As the upper-

level problem considers each candidate design point, the two lower-level 

subproblems have to be solved to evaluate the maximum Euclidean norm of increase 

in the function and the worst-case constraint value. This bi-level procedure requires 

considerable computational effort. Using a population-based approach such as 

MOGA and GA, the computational effort needed by MORO to arrive at a solution 

grows exponentially as the size (number of variables) of the problem and therefore 

the number of points in the population increases. An improved MORO approach is 

presented in Chapter 3 in this dissertation which is more efficient than the previous 

MORO approach (Li et al., 2006). 
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2.4 Multiobjective Collaborative Optimization (MCO) and 

Multiobjective collaborative and Robust Optimization (McRO) 

The optimization models presented earlier in this chapter including those in Section 

2.1 and Section 2.3 focused on a single discipline all-in-one formulation. In this 

section, two multiobjective multi-disciplinary optimization approaches are presented. 

Section 2.4.1 reviews a previous deterministic MCO approach (Aute and Azarm, 

2006). Then, a brief review of the McRO approach (Li and Azarm, 2008) is presented 

in Section 2.4.2. 

2.4.1 MCO Formulation 

Fig. 2.5 shows the schematic of a MCO framework where both system and subsystem 

problems are characterized by a MOP. The system problem at the upper level is to 

achieve multiobjectively optimum system design solutions. At the same time the 

system problem also coordinates the shared variables (xsh) and coupling variables (yij) 

to guide the subsystem problems at the lower level.  

 

Fig. 2.5 Schematic of bi-level MCO framework 
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A general MCO problem with a two-level formulation is shown in Eqs. (2.7) and 

(2.8). The system optimization problem in Eq. (2.7) minimizes the system design 

objectives subject to system constraints, while a series of I subsystem-level 

optimization problems in Eq. (2.8) each minimizes the subsystem local design 

objectives subject to subsystem constraints. 

System problem 
(upper level): 0

0 0 0

0 0 0

0

0 0 0
0 0

0 0 sh 0 0 sh

min   ( , , )   =1,...               

s.t.    ( , , ) 0  =1,...

        ;  , =1,... ;

        [ , ]

        [ , , ]; [ , ]

i

i

ij ij i

l u

ij

i I

i I

ε i j I j i

≤

− ≤ ≠

∈
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 (2.8) 

where f0 and g0 represent the system design objectives and constraints, respectively. 

In Eq. (2.7), The system problem’s design variables X0 include system variables x0, 

shared variables x0
sh and target variables t0

ij, with a superscript “0” referring to the 

system. P0 includes system parameters p0, and shared parameters psh. Likewise, in 

the ith subsystem problem (i = 1,…, I), f i and gi represent the subsystem objectives 

and constraints, respectively. Xi includes subsystem variables xi, shared variables xi
sh 

and target variables ti
ji. Pi includes subsystem’s parameters pi and shared parameters 

psh. Note that both the system target variables t0
ij and subsystem target variables tj

ij 
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are specified to match the coupling variables yij. The subscript ij of a coupling 

variable yij indicates the coupling variable y is computed as an output from subsystem 

i and then used as input in subsystem j. The subscript of a target variable has the same 

definitions.  

In the ith subsystem, the coupling variable yij is a function (represented by Yij) of the 

subsystem variables and parameters as shown in Eq. (2.8). Because of the couplings 

between subsystems, there is a consistency constraint in Eq. (2.8) to ensure that a 

coupling variable matches a target variable. There, the deviation of coupling variable 

yij from the system-level target variables tij (represented by the Euclidean norm: ||yij -

tij||) is constrained and will not exceed a pre-specified tolerance εi. A second 

consistency constraint in Eq. (2.8) is used to ensure the deviation of subsystem target 

variable ti
ji from the system-level target variables tji (represented by ||ti

ji –t0
ji||) does 

not exceed a tolerance εj.  

The goal in solving Eq. (2.7) is to obtain a set of solutions for the system optimization 

problem while simultaneously coordinating the optimization of the subsystem 

optimization problems in Eq. (2.8).   

2.4.2 Multiobjective Collaborative Robustness 

A parameter in a MCO problem, as shown in Eqs. (2.7) and (2.8), can be 

characterized by a nominal value P and an interval uncertainty ΔP around nominal, 

i.e., P+ΔP. It is assumed that the upper and lower bounds of the interval uncertainty 

is known a priori such that ΔP ∈ [ΔPl, ΔPu]. This definition of uncertainty can be 

extended to design variables X by adding their corresponding interval uncertainties 
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ΔX to their nominal. Similar to the definition in Section 2.2, let Δf+ denotes an 

increase in the value of objective function in subsystem i, it can be formulated as: 

 
 [ ( ) ( )]

,          if ( ) ( )
      

( ) ( ),otherwise

i i i i i i i i

i i i i i i i

i i i i i i i

, ,
, ,

, ,

+ +∆ = + ∆ −

+ ∆ ≤
=  + ∆ −

f f X P P f X P
0 f X P P f X P
f X P P f X P

 (2.9) 

where f i(Xi, Pi+ΔPi) and f i(Xi, Pi) represent the actual (due to uncertainty) and 

nominal values for the objective functions in subsystem i. To measure the variations 

in all objectives in the ith subsystem using a scalar value, a Euclidean norm ║Δf i
+║ is 

used, where 2 1/2
,2

1
( )

inf

i i m
m

f+

=

∆ = ∆∑f  and nfi represent the total number of objective 

functions in subsystem i. As described below, to quantify the variation in the 

objective functions considering all subsystems, the maximum value is selected. 

Similarly, the maximum variations for the coupling variables is calculated except that 

both positive and negative variations in a coupling variable are considered, i.e., 

( ) ( )i i i i i i i i, ,∆ = + ∆ −y y X P P y X P . And finally the maximum value of constraint 

functions is calculated as defined earlier in Section 2.2. These are shown in Eqs. 

(2.10-1)-(2.10-3): 
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Eqs. (2.10-1)-(2.10-3) are collectively called the “robustness evaluation problems” for 

a MCO problem under uncertainty. Eq. (2.10-1) represents the maximum variation in 

the objective functions, where the first max is performed over all realizations of ΔPi 

in the interval [ΔPl
i, ΔPu

i] and the second max is performed with respect to different 

subsystems. Similarly, the maximum variations in the coupling variables and the 

maximum constraint function values are calculated using Eqs. (2.10-2) and (2.10-3), 

respectively. Note that in Eq. (2.10-3), the third maximization is done with respect to 

ki where ki represents the constraint function number index in subsystem i. 

Based on the maximum variation values as calculated in Eq. (2.10), the definition of 

robustness for MCO problem is similar to that in MOP. For example, objective 

robustness in MCO requires max║Δf+║≤ ηf, in which ηf is a user specified positive 

scalar. Similarly, the feasibility robustness requires max[g]≤ 0. However, a new 

measure of robustness of coupling variables, called collaborative robustness is 

defined in MCO. Collaborative robustness requires that the amount of variation in the 

value of coupling variables due to interval uncertainty should remain within an 

acceptable limit ηy. Notice that because a coupling variable could be an input to 

another subsystem, allowing a variation range for a coupling variable creates an input 

uncertainty to another subsystem. Li and Azarm (2008) discuss this issue in detail and 

develop a measure for the propagation of interdisciplinary uncertainty which is 

adopted in this dissertation.  

Based on the optimum value in the robustness evaluation problems, that is, the value 

of max║Δf+║, max║Δy║, and max[g], the robustness of a candidate design 

alternative can be determined using the following robustness conditions: 
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 max ;max ;max[ ] 0f yη η+∆ ≤ ∆ ≤ ≤f y g  (2.11) 

A candidate design alternative must satisfy the inequality constraints in Eq. (2.11) to 

be considered as a robust design. Therefore, Eq. (2.11) is added as constraint 

functions in the system problem in Eq. (2.7).   

2.4.3 Multiobjective collaborative Robust Optimization (McRO) 

With the optimization formulation for system, subsystem and robustness evaluation 

problems defined above, the framework for McRO (Li and Azarm, 2008) under 

uncertainty is shown in Fig. 2.5. Based on the McRO approach, system optimization 

as given in Eq. (2.7) is performed at the upper level while the subsystem optimization 

and robustness evaluations, Eqs. (2.11) and (2.10-1)-(2.10-3), are performed at the 

lower level. McRO uses MOGA (Deb 2001) to solve both system and subsystem 

problems Eqs. (2.7) and (2.8). Next, the solutions steps for McRO are briefly 

presented so that the difficulties in the previous McRO can be highlighted (see 

Section 2.4.4). 

The approach starts with multiobjective optimization at the system-level where each 

candidate design alternative, as denoted by x0
sh and t0

ij are sent as parameters to the 

subsystems. Next, multiobjective optimization is performed in each subsystem as 

defined in Eq. (2.8), for a given x0
sh and t0

ij from the system level. Next, the ith 

subsystem optimizer obtains a set of multiobjective optimal solutions. Then, one 

optimal solution is selected from each subsystem and returned to the system problem. 

The system (optimization) problem uses the returned solutions, one from each 

subsystem, to calculate the objective and constraint function values at the system-

level. Next, the system problem forwards the current candidate design alternative, 
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including system variables, the selected subsystem optimal solution from each 

subsystem to the robustness evaluation block as shown in Fig. 2.5. Based on Eqs. 

(2.10-1) to (2.10-3), robustness for the current design alternative is assessed and the 

results are returned to the system problem. Finally, the system problem assigns a 

fitness value to the current design alternative based on its system objectives, 

constraint function values and robustness evaluation results. This completes function 

evaluation for one candidate design alternative. The approach repeats the above 

procedure to evaluate a large number of design alternatives until convergence to an 

optimum Pareto frontier at the system problem.  

 

Fig. 2.5 McRO under interval uncertainty 

In an optimization problem with a computationally costly analyzer, Approximation 

Assisted Optimization (AAO) techniques can be used to replace the objective and/or 

constraint functions with a more compact (or closed form) metamodel (Wang and 

Shan 2007, Simpson et al., 2001b). In the following sections, the three main 

components of AAO are reviewed. These are Design of Experiments (DOE) as 

presented in Section 2.5.1, followed by the Kriging metamodeling technique in 
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Section 2.5.2. Section 2.5.3 discusses the error calculation formula used for a 

metamodel verification. 

2.5 Approximation Assisted Optimization (AAO) 

A typical AAO technique consists of DOE, metamodeling, and verification stages. In 

DOE, a set of sample points in the design space are generated. These points are then 

used to construct metamodels for the objective and constraint functions of an 

optimization problem which is called metamodeling. Based on these metamodels, the 

optimizer obtains a set of approximated optimum solutions, which should be verified.  

If the accuracy of these optimum solutions is not acceptable, the metamodels should 

be refined by adding additional sample points.  

The details of the three component of AAO are presented next. 

2.5.1 Design of Experiments (DOE) 

DOE is aimed at identifying the locations of a set of sample points in the design space. 

These sample points are then “observed”, which means their actual 

objective/constraint function values are computed. The observed sample points are 

used later for constructing the metamodels. Most DOE methods for AAO can be 

categorized as either offline and online. The main difference between these two is that 

sample points in an offline DOE method are not updated during AAO while they are 

updated in an online DOE. Examples of offline DOE method can be found in e.g., 

Lian and Liou (2004) and Li et al., (2010a); while online DOE approach can be 

referred in e.g., Karakasis et al., (2001) and Hu et al., (2012d). The detail in offline 

and online DOE is presented next. 
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In an offline DOE method, the sample points are determined based only on the 

information from the design space. For example, factorial design is typically used as a 

DOE method. Although factorial design covers well the boundary of the design space, 

it fails to locate enough sample points in the middle of the design space. Therefore, 

space-filling sampling becomes more widely used as DOE method in AAO.  One 

popular space-filling sampling technique is Latin Hypercube Sampling (LHS) 

proposed by McKay et al. (1979). In LHS, the design space is divided into equal 

levels along each input variable dimension and only one sample point is placed at 

each level. Locations of the sample points are randomly determined. 

On the other hand, an online DOE method usually consists of two stages. In the first 

stage, a small portion of the sample points are determined based on an offline DOE 

method. In the second stage, there is a feedback loop from the optimizer to choose 

additional sample points. The second stage in an online DOE method is iterative 

based on the information from the optimizer. In this way, and compared to an offline 

technique, one significant advantage of online DOE is that the sample points obtained 

from online DOE is able to progressively improve the predictive capabilities of the 

metamodels, as more and more sample points are evaluated and added to the sample 

set.  

Because offline DOE does not update sample points, it can be computationally 

expensive as it may require more sample points to build a globally accurate 

metamodel for AAO. However, online DOE may require fewer sample points. But 

one limitation of online DOE is that, with limited number of sample points in its first 
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stage, the predictive capability of the metamodel is poor. This can mislead the 

optimization process into sub-optimum or infeasible regions in the design space.  

2.5.2 Metamodeling: Kriging 

Many existing technique can be used in constructing a metamodel in AAO, such as 

response surface (Myers and Montgomery, 1995) neural network (Hong et al., 2003), 

support vector machine (Nakayama et al., 2003), as well as Gaussian-based methods 

(Buche et al., 2005), Kriging is a widely used metamodeling technique for a black-

box engineering function where the response is assumed to be the sum of both global 

and local models (Koehler and Owen, 1996). Kriging is based on an interpolation of 

the sample points. This property of Kriging is especially attractive in engineering 

applications because the response from Kriging on existing sample point is exactly 

accurate. Furthermore, Kriging is able to provide a confidence interval based on an 

estimated mean squared error for a predicted response function value. Because of 

these advantages, Kriging is used as a metamodeling technique in this dissertation. 

Let y(x) represents an objective or constraint function that should be approximated; 

the Kriging model is presented as: 

 ( ) ( )y Zδ= +x x

 

(2.12) 

where x is a point (vector) in the sample space, δ captures the overall (global) trend of 

the Kriging model and Z(x) is used to represent a localized deviation from the global 

function. Z(x) is defined as the realization of a Gaussian random process with mean 

zero and variance σ2. Typically, the sample points are interpolated with the Gaussian 

random function to estimate the stochastic process. Given a total number of n sample 
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points, the covariance of Z(x) at two sample points x1 and x2 can be expressed as in 

Eq. (2.13): 

 2
1 2 1 2[ ( ), ( )] ( , )Cov Z Z Rσ=x x x x

 

(2.13) 

where R(x1 , x2) is the Gaussian correlation function between sample points x1 and x2. 

The Kriging predictor is given in Eq. (2.14): 

 1ˆ ˆˆ( ) ( )y δ δ−′= + −x r R y 1

 

(2.14) 

where ŷ is the predicted (metamodel) value (predictor) of y and δ̂ is the predicted 

value of δ which is the expected value of the posterior process. R is a n×n matrix 

whose (i, j) element is Cov[Z(xi), Z(xj)], r (with prime superscript for transpose) is 

the vector whose ith element expressed as: 

 
( ) [ ( ), ( )]i

ir Cov Z Z=x x x

 

(2.15) 

Based on the Kriging model, the Mean Square Error (mse) at an unobserved design 

point x* is given in Eq. (2.16): 

 * 2( ) (1 ' 2 )mse σ c c cr= + −x R  (2.16) 

where c is a row vector of Kriging coefficients, r is a vector of correlations between 

x* and observed sample points. Since r represents the degree of correction between x* 

and the existing points, the value of 2cr should be large when an unobserved design 

point is close to the observed sample points. Therefore the closer x* is to the observed 

sample point, the smaller mse (x*) is.  
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In the later chapters of this dissertation, Kriging is the primary metamodeling 

techniques for constructing online approximation for expensive objective and 

constraint functions in multiobjective optimization.  

2.5.3 Verification 

Because the optimum solutions from AAO essentially estimate the location of 

optimum points, the mean squared error as defined in Eq. (2.16), can be used as a 

measure to verify the accuracy of these estimated solutions. In addition, the accuracy 

of the Pareto optimum solutions can also be validated independently based on the 

actual objective/constraint function evaluations of the estimated optimum solutions 

(e.g., Aute, 2007). For example, the Maximum Absolute Error (MAE) is defined in 

Eq. (2-17): 

 
1 1 2 2ˆ ˆ ˆMAE max( , ,..., ) |np npy y y y y y= − − −  (2.17) 

where np represents the total number of Pareto points obtained. y1, y2, …, ynp, 

represent the observed values at the Pareto points obtained using the actual function 

evaluations,  and ŷ1, ŷ2, …, ŷnp is the predicted values of the corresponding objective 

or constraint function based on the metamodels. Generally, smaller error values 

indicate better accuracy at the optimum solutions from AAO. 

2.6 Summary  

This chapter gives the background necessary for understanding the remaining 

chapters of this thesis.   

In Section 2.1, a general formulation and important definitions for a Multiobjective 

Optimization Problem (MOP) is provided. For solving a MOP, a MultiObjective 
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Genetic Algorithm (MOGA) is presented and the advantage of a MOGA compare to 

other approaches is briefly discussed. Section 2.2 provides a definition of objective 

and feasibility robustness in both single- and multiobjective optimization problems. 

Several important concepts related to the multiobjective robustness are explained with 

an illustrative figure. A review of the previous bi-level MultiObjective Robust 

Optimization (MORO) approach and MORO steps is presented in Section 2.3.  The 

computational difficulty with the bi-level MORO approach is discussed. Section 2.4 

reviewed the Multiobjective Collaborative Optimization (MCO) and Multiobjective 

collaborative Robust Optimization (McRO) approaches in the previous literature. The 

solution steps for both MCO and McRO approaches are provided.  

A review of approximation assisted optimization (AAO) is presented in Section 2.5, 

which include the three main components namely Design of Experiment (DOE), 

metamodeling and verification. The advantage of limitation of online and offline 

DOE methods for AAO is discussed. A brief review of Kriging metamodeling 

technique and an error measurement method are presented.  

In the next chapter, the approach for a new approximation assisted MORO is detailed. 

  



  

 35 

 

Chapter 3: Approximation Assisted MultiObjective 

Robust Optimization under Interval Uncertainty (AA-

MORO) 

In this chapter, an Approximation Assisted MultiObjective Robust Optimization (AA-

MORO) approach is presented. In this approach, MORO has been improved by Hu et 

al. (2009) 1  to overcome the computational difficulty experienced in a “previous 

MORO” approach (Li et. al., 2006). The AA-MORO of this chapter was also 

presented before in Hu et al. (2011)2 and Hu et al. (2012c)3 wherein an approximation 

technique is used to significantly reduce the number of function calls compared to a 

previous MORO.  

As reviewed in Section 2.3, the previous MORO (Li et. al., 2006) is a bi-level (nested) 

approach in that candidate design points are identified and iteratively improved in an 

upper-level problem, while in a lower-level subproblem the robustness of all 

intermediate points are evaluated.  Due to this bi-level structure, the previous MORO 

requires a large number of function calls for robustness evaluations and as a result the 

computational cost can become prohibitive. On the other hand, the AA-MORO 

approach is based on an improved sequential MORO approach, hereinafter called 

“improved MORO”, where multiobjective optimal solutions are first obtained and 

                                                 

1 Hu, W., Li, M., Azarm, S., Al Hashimi, S., Almansoori, A., and Al-Qasas, N., 2009, “Improving Multi-Objective Robust 
Optimization under Interval Uncertainty Using Worst Possible Point Constraint Cuts,” Proceedings of the ASME International 
Design Engineering Technical Conferences, San Diego, CA. 
2 Hu, W., Li, M., Azarm, S., and Almansoori, A., 2011, “Improving Multi-Objective Robust Optimization Under Interval 
Uncertainty using Online Approximation and Constraint Cuts,” Journal of Mechanical Design, 133(6), pp. 061002-1 to 061002-
9. 
3 Hu, W., Butt, A., Azarm, S., Almansoori, A., and Elkamel, A., 2012c, “Robust Multi-Objective Genetic Algorithm under 
Interval Uncertainty, in Multi-Objective Optimization: Developments and Prospects for Chemical Engineering,” Wiley, New 
York (Accepted). 
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subsequently the robustness of each optimal solution is evaluated and iteratively used 

to shrink the feasible domain and arrive at robust optimum solutions.  AA-MORO 

involves an online approximation method. The online approximation can be used to 

replace a computationally expensive objective/constraint function with an 

inexpensive metamodel.  

Compared to the previous MORO, the contributions of AA-MORO are: (i) an 

improved MORO approach which significantly reduces the number of robustness 

evaluations, and (ii) an online approximation technique which is integrated with the 

improved MORO to further improve the computational efficiency. Several numerical 

and engineering examples are used to compare AA-MORO with the previous 

approaches.  It is shown that the optimum solutions from AA-MORO are consistent 

with the previous approaches. Further, it is found that AA-MORO is able to approach 

the robust optimum solution using a relatively small number of function calls.  

In the following sections, first in Section 3.1, a literature review of related work is 

provided. Section 3.2 presents an improved MORO approach. Section 3.3 the AA-

MORO approach. Several numerical and engineering examples are used to 

demonstrate the AA-MORO and compare it with the related previous approaches in 

Section 3.4. Finally, a summary of the chapter is provided in Section 3.5.  

3.1 Literature Review 

The literature on robust optimization reports on numerous methods for obtaining a 

solution that is optimum and relatively insensitive (or robust) to uncertainty (Park et 

al., 2006, Beyer and Sendhoff, 2007). A significant number of these previous 

techniques can be classified as bi-level (nested) or sequential. In a bi-level approach, 
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an upper-level master problem searches for candidate design alternatives to optimize 

the objective functions subject to feasibility, while a lower-level subproblem 

evaluates robustness for each candidate design considered at the upper level. 

Examples of bi-level methods have been used in reliability based optimization (Youn 

et. al., 2003), and design under interval uncertainty using an “anti-optimization” 

concept (Elishakoff and Haftka, 1993). In a sequential approach, the search for the 

robust optimum design is performed through a series of iterations with each iteration 

consisting of two steps. The first step is a deterministic optimization and the second 

step is the robustness evaluation. These two steps are alternated (Du and Chen 2004). 

Related approaches report using a simple approximation to estimate robustness of 

design points (e.g., Zou and Mahadevan, 2006, Liang et al., 2007), and reducing 

computational cost in robustness evaluation based  on the linearity and convexity of 

the functions in optimization problems (e.g., Li et al. 2010b; Siddiqui et al., 2010).   

The majority of the previous robust optimization approaches focus on single objective 

optimization problems. Recent interests in multiobjective optimization approaches 

have attracted significant research efforts in developing multiobjective optimization 

approaches under uncertainty (Limbourg, 2005, Ferreira et al., 2008). A limited 

number of previous works considers robustness of candidate points in the context of 

multiobjective optimization (Messac and Ismail-Yahaya, 2002, Ray, 2002). The 

importance of evaluating uncertainty combined with non-dominated sorting of 

multiobjective solution points  and MOGA are also considered (Deb and Gupta, 2006; 

Gaspar-Cunha and Covas, 2008). In addition, a bi-level MORO is reported in which 

uncertainty in both objectives and constraints are accounted for (Li et al., 2006).  
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One well-known limitation of previous robust optimization approaches is that they 

require significantly more function calls than their deterministic counterpart. To 

address the computational issue, Approximation Assisted Optimization (AAO) is 

used in the literature for both single-objective optimization problems e.g., Lian and 

Liou (2004), Lee and Park (2006), as well as in multi-objective optimization 

problems (Ray et al., 2009, Voutchkov and Keane, 2010). Combining multiple 

surrogates in design optimization is also considered (Viana and Haftka, 2008). In 

addition, the literature reports on combining approximation technique with a single-

objective robust optimization approach (Jin et al. 2003, Lee and Park 2006). However, 

integration of multiobjective robust optimization with approximation has rarely been 

considered (Hu et al. 2009). 

3.2 Improved MORO 

In this section, the details for the improved MORO approach are provided.  

3.2.1 Improved MORO Formulation 

The improved MORO (see for details: Hu et al., 2011) is a sequential MORO 

approach developed to improve the computational efficiency of the previous MORO 

(Li et al. 2006). The improved MORO approach is iterative with each iteration 

involving two steps. In the first-step, a deterministic multiobjective optimization 

problem is solved to obtain a set of optimal solutions; while in the second step, the 

robustness is evaluated for each optimal solution obtained from the first step. These 

two steps are alternated iteratively to obtain the robust optimum solutions. The 
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formulation for the optimization problems in the two steps is given in the equations 

below: 

First step  
(Deterministic 
optimization): 

min  ( , )

s.t.    [ ( , ) ( , )] ,

         ( , ) 0,

         [ , ]

f f

g

l u

S

S

η++ ∆ − ≤ ∀∆ ∈

+ ∆ ≤ ∀∆ ∈

∈

x
f x p

f x p p f x p p

g x p p p

x x x

 (3.1) 

Second step 
(Robustness 
evaluation): 

max [ ( , ) ( , )] , [ , ]l u
fη+

∆
+ ∆ − ≤ ∀∆ ∈ ∆ ∆

p
f x p p f x p p p p

 

(3.2-1) 

max[max ( , )] 0,  [ , ]l u

k∆
+ ∆ ≤ ∀∆ ∈ ∆ ∆

p
g x p p p p p

 

(3.2-2) 

Suppose the deterministic optimization problem of Eq. (3.1) obtains np number of 

Pareto optimum solutions. After robustness evaluation is performed for each Pareto 

optimum solution, there will be np number of Δp values obtained from Eqs. (3.2-1). 

These Δp values are returned to the deterministic problem in Eq. (3.1) and inserted in 

the set Sf. Likewise, np number of Δp values are inserted in the set Sg. These are 

defined as: 1 1{0, ,..., }f f
f npS = ∆ ∆p p  and 1 2{0, ,..., }g g

g npS = ∆ ∆p p , where Δpf and Δpg 

each represents a fixed value of Δp, np1 and np2 represent the total number of Δp 

values in Sf and Sg, respectively. Because the improved MORO repeats the first and 

second step for a number of iterations and the Δp values in either Sf or Sg are 

accumulated, both np1and np2 can be larger than np. In this way, the number of 

constraint functions defined by [ ( , ) ( , )] ,f fCη++ ∆ − ≤ ∀∆ ∈f x p p f x p p is nf×(np1+1) 

and the number of constraints defined by  ( , ) 0, gC+ ∆ ≤ ∀∆ ∈g x p p p is ng×(np2+1) 

where nf and ng represent the number of objective and constraint functions, 

respectively. Notice that the robustness evaluation in Eqs. (3.2-1) and (3.2-2) is 
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similar to the lower-level subproblems in the previous MORO, as defined in Section 

2.3. 

3.2.2 Improved MORO Iterations 

The iterative process for the improved MORO is as follows: 

First Iteration: At the beginning, Sf = Sg = {0}, which means that in the first step, Eq. 

(3.1) reduces to the original MOP problem in Eq. (2.1). The Pareto optimal solutions 

from Eq. (3.1) are obtained. In the second step, the robustness for the Pareto optimum 

solutions from the first step is evaluated. This robustness evaluation is performed by 

solving Eqs. (3.2-1) and (3.2-2) for each obtained Pareto optimum solution. Solving 

each of the maximization problems in Eqs. (3.2-1) and (3.2-2) globally obtains an 

optimum value of Δp. This essentially is the worst value of Δp considering the 

variation in the objective and constraint functions. The two worst values of Δp, one 

from Eqs. (3.2-1) and the other from (3.2-2), are inserted in Sf and Sg, respectively. 

The robustness evaluation is performed for the remaining Pareto optimum solutions 

one by one. By the end of the second step for all Pareto optimum points in the first 

iteration, there are an equal number of worst values of Δp in Sf and Sg. Finally, based 

on the robustness evaluation, i.e., whether the inequality in Eq. (3.2-1) and Eq. (3.2-1) 

are satisfied, the robust solutions are identified while the non-robust ones are 

discarded. This completes a single iteration in the improved MORO.  

Second Iteration: MORO repeats the previous steps in the first iteration except that 

both Sf and Sg now contain the worst values of Δp, from the previous iteration. In this 

way, the problem in Eq. (3.1) has more constraints and becomes more restricted 

compared to that in the first iteration. As a result, the Pareto optimal solutions from 
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Eq. (3.1) may be different from those obtained in the first iteration. Again, the 

robustness for each Pareto optimum solution obtained in this iteration is evaluated, 

and additional worst values of Δp are added to Sf and Sg. The robust Pareto solutions 

obtained from the second iteration are combined with those from the first iteration, 

and this completes the second iteration in the improved MORO.  

Remaining Iterations: The same procedure as in the above iterations is repeated for a 

number of iterations until the following stopping criteria are satisfied: (i) a maximum 

number of function calls is reached; (ii) no improvement in the Pareto solutions from 

one iteration to the next is obtained. 

3.2.3 Discussions of the Sets Sf and Sg  

In Section 3.2.1, it is stated that there are an equal number of worst values of Δp in Sf 

and Sg during the iterations of the improved MORO approach. However, in practice 

the number of worst values of Δp are different in Sf and Sg. The reason for this is 

explained in the following.  

Ideally the number of worst values of Δp in Sf and Sg should be the same. This is 

because in the second step, Eqs. (3.2-1) and (3.2-2) are used to evaluate 

multiobjective and feasibility robustness constraints respectively for the same set of 

Pareto optimum solutions. Let np be the number of Pareto optimum solutions, then 

the total number of optimum solutions obtained from either Eq. (3.2-1) or Eq. (3.2-2) 

should be equal to np. Although the number of Δp in Sf and Sg can be equal, the value 

of Δp obtained from Eq. (3.2-1) is not the same as the values of Δp from Eq. (3.2-2). 

Therefore, the set Sf must be different from Sg. Furthermore, some values of Δp in 

either Sf or Sg can be redundant. Therefore, duplicate copies of Δp values are 
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eliminated by the end of each iteration, and thus the total number of Δp values, as 

represented respectively by np1 and np2, are also different. 

3.2.4 Previous versus Improved MORO 

There are several differences between the previous MORO (Li, et al., 2006) and the 

improved MORO (Hu et al., 2009): 

(i) Both Sf or Sg are already known in the optimization problem in Eq. (3.1). This 

allows the improved MORO to solve Eq. (3.1) as deterministic optimization in the 

first step without further calls to the robustness evaluation in each iteration. However, 

Sf or Sg are updated by using the worst values of Δp from the robustness evaluation in 

the second step. Indeed, when the upper-level problem in the previous MORO is 

solved, the constraint values in Eq. (2.5), i.e., max║Δf+║ and max[g] must be 

evaluated by calling the robustness evaluation in the lower-level subproblems, which 

is referred as the bi-level approach. As a result, the upper-level problem in Eq. (2.5) 

requires significantly more computational cost than Eq. (3.1).  

(ii) In the previous MORO, the upper-level problem in Eq. (2.5) is solved only once 

during the entire procedure. Because the upper-level problem evaluates 

multiobjective and feasibility robustness constraints for all intermediate points, the 

solutions from the upper-level problem include only robust solutions. In the improved 

MORO, the first-step problem in Eq. (3.1) is solved to produce some candidate 

optimal solutions. Because the multiobjective and feasibility robustness constraints 

are not evaluated in the first step, the candidate optimal solutions from the first step 

are not necessarily robust. Therefore, the robustness for these candidate optimal 

solutions is evaluated using Eqs. (3.2-1) and (3.2-2) during the second step. The two 
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steps in the improved MORO are repeated for a few iterations (e.g., about five 

iterations based on the empirical observations). 

 (iii) In the previous MORO, the lower-level subproblems defined in Eqs. (2.6-1) and 

(2.6-2) do not evaluate multiobjective and feasibility robustness constraints, they just 

provide max║Δf+║ and max[g] values for the upper-level problem. On the other 

hand, the second-step problems in Eqs. (3.2-1) and (3.2-2) in the improved MORO 

evaluate multiobjective and feasibility robustness constraints. Due to the nonlinear 

behavior of the objective functions in Eqs. (2.6-1), (2.6-2), (3.2-1) and (3.2-2), a 

global optimizer such as genetic algorithm must be used for the robustness evaluation 

in both approaches. 

Because of the differences between the two MORO approaches, as discussed above, 

the improved approach requires considerably less computational effort and can be 

more efficient than the previous approach. On the other hand, and in general, the 

improved MORO may not be able to obtain all robust solutions that can be obtained 

by the previous MORO.  

One can estimate and compare the number of function calls by the previous and 

improved MORO as follows:  

Suppose all optimization problems in both the previous and improved MORO are 

solved either using a multiobjective or single-objective genetic algorithm (GA) with 

the same number of generations and population size. Let ngs be the number of 

generations and nps be the population size. In the improved MORO, let nit represents 

the number of iterations and nos represent the average number of optimal solutions 

obtained from the first-step subproblems. Then the total number of function calls for 
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the previous MORO is of the order 2 2( )ngs npsΘ × while the total number of function 

calls in the improved MORO is of the order [ ( )]nit ngs nps nos ngs npsΘ × × + × ×  

which has the same order of magnitude as ( )nit nos ngs npsΘ × × × . The number of 

iterations in the improved MORO is much smaller than the number of generations of 

GA, e.g., as will be shown in the case study section, the number of iterations for the 

improved MORO is 5 while the number of GA generations is 50. Also the average 

number of optimal solutions must be smaller than the population size. Since nit<ngs 

and nos<nps, it follows that 2 2( ) ( )nit nos ngs nps ngs npsΘ × × × < Θ × . Therefore, the 

number of function calls by the improved MORO can be significantly less than that 

by the previous MORO. 

Nevertheless, both the previous and improved MORO can become computationally 

expensive. To reduce their computation effort, an online approximation approach is 

developed and combined with both the previous and improved MORO, as described 

next. 

3.3 Approximation Assisted MORO (AA-MORO) 

The proposed AA-MORO approach combines the improved MORO with 

approximation as presented in Section 2.5. Online approximation is used to update 

metamodels for objective and constraint functions as new sample points are 

determined during AA-MORO iterations. One important goal in AA-MORO is to 

locate and observe a limited number of sample points while satisfying an accuracy 

threshold for the metamodel of all objective and constraint functions. The proposed 

online approximation should help improve the accuracy of the metamodels in the 
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neighborhood of where multiobjective optimal solutions are expected to be. As AA-

MORO iteratively progresses, a better approximation of the objective and constraint 

functions can be expected.   

In the following, the online sampling, metamodeling and verification in AA-MORO 

in discussed in Section 3.3.1 followed by the sample selection and filtering strategy in 

in AA-MORO in Section 3.5.2. Finally, the AA-MORO solution steps are presented 

in Section 3.3.3. 

3.3.1 Online Sampling, Metamodeling and Verification 

In AA-MORO, the offline samples are generated initially based on a Latin Hypercube 

Sampling (LHS) (Koehler and Owen, 1996). These sample points are used to 

construct a metamodel for each objective and constraint function. Note that each 

sample point needs to be observed once for all functions. Using the metamodels of 

the objective and constraint functions (see Section 3.3.2), AA-MORO obtains a set of 

estimated optimal solutions.  From these estimated optimal solutions, a few are 

selected (the selection scheme is presented in Section 3.5.2) and observed, which are 

designated as the online samples. Both online and (previously obtained) offline 

samples are combined and used to reconstruct/update the metamodels for the 

objective and constraint functions.  Once the metamodels are updated, online 

sampling is repeated until AA-MORO approaches the Pareto optimum solutions.  

One motivation for using the estimated optimum solutions for online sampling is 

because they are potentially located close to the true optimum solutions. By observing 

the online sample points, the accuracy for the metamodel based objective and 
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constraint functions in the nearby region (close to optimum) is expected to be 

significantly improved.  

In AA-MORO, Kriging is used as the metamodeling technique for all the objective 

and constraint functions. The mean squared error (mse) defined in Chapter 2 accounts 

for an estimated correlation between an unobserved point and the sample (observed) 

points. Since the correlation between points decreases as the distance between them 

increases, an unobserved point with a large mse indicates a poor correlation with 

(e.g., located in a distance from) the existing sample points. In this way, the predicted 

function values for a distant point (from an observed point) can become inaccurate. In 

AA-MORO, the mse at the estimated optimal solutions are calculated using Eq. (2.16). 

If this error is larger than a user-specified tolerance value, additional sample points 

are considered and observed in order to increase the accuracy of the metamodel. 

3.3.2 Sample Selection and Filtering 

In AA-MORO, it is unnecessary to observe all the estimated optimum solution points, 

instead only a subset of the intermediate optimum solution points are selected and 

observed. For selection, the optimum solution points are ranked by using the mse 

which can be calculated from Eq. (2.16).  From a sampling point of view, it is more 

desirable to observe a sample with relatively larger mse in order to improve the 

overall accuracy of the approximation. On the other hand, since there are multiple 

functions (objectives and constraints) that need to be approximated through Kriging 

at each unobserved sample point, it is easier to define a single scalar as a measure of 

the overall accuracy for the estimated functions as shown in Eq. (3.3) 
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(3.3) 

where msef and mseg represent the Kriging mse’s of the objective and constraint 

functions respectively. The values of the Kriging mdeta-model of objective and 

constraint functions must be normalized so that their Kriging mse calculated from Eq. 

(2.16) are in the same scale. For example, the values of objective and constraint 

functions can be normalized using the largest absolute values for corresponding 

functions. Based on the calculation from Eq. (3.3), an estimated optimum solution 

with the largest error is ranked first followed by the one with the second largest error, 

and so on. Using this error based ranking, one or a number of solution points are 

selected and observed, i.e,, their actual objective/constraint function values are 

computed, in AA-MORO. 

In addition to the scheme in selecting the estimated optimum solutions, a sample 

filtering is also considered in AA-MORO to prevent clustering of sampled points. 

When the distance (measured in the design variable space) between a new sample and 

a previous sample point is less than a threshold value, the new sample point is 

eliminated. In AA-MORO, the following filtering constraint is used: , 

where xn refers to a new sample point and xe refers to any existing sample points. ||∙|| 

denotes the Euclidean norm (distance) between two vectors in the sample space, and ε 

is a user defined threshold value specifying the minimum acceptable distance 

between two sample points. This constraint requires that the distance between a new 

sample point and any existing sample points must be large than the minimum 

acceptable distance. As a general rule, the threshold is selected such that it is at least 

larger than one half of the shortest distance among the existing sample points (pair-

n e ε− ≥x x
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wisely measured). Additionally, the computational costs of the optimization models 

must also be considered in selecting the threshold ε. When the objectives and 

constraint functions are computationally expensive to compute, the value of ε needs 

to be increased in order to reduce the number of online samples. After additional 

sample points are determined and the actual simulations are evaluated to obtain the 

response (or observed) values, these sample points are added to the current set of 

sample points. Finally, the updated sample points are used to update the metamodels.  

3.3.3 AA-MORO Solution Steps 

The steps of the AA-MORO approach are summarized below: 

Step 1: Initialize Sf or Sg, i.e., Sf = Sg = {0}. An initial set of sample points based on 

LHS is created.  

Step 2: Calculate response values for all sample points by calculating the true value of 

objective and constraint functions. The Kriging metamodels are created for each 

objective and constraint function based on the current sample points.  

Step 3: Obtain Pareto optimal points by solving the optimization problem in Eq. (3.1) 

using the metamodels.  

Step 4: Evaluate robustness for each Pareto optimal points from Step 3 based on the 

metamodels.  

Step 5: Return the worst values of Δp from Step 4 to Eq. (3.1) and insert them into Sf 

and Sg . 

Step 6: Stop if one of the two stopping criteria stated next is satisfied; otherwise, 

continue to Step 7. [The stopping criteria are: (i) AA-MORO should stop if a pre-

specified maximum number of iterations is reached. An iteration in AA-MORO is 
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defined as a single pass from Step 2 through Step 5. (ii) AA-MORO should stop if no 

change to Sf  and Sg in Step 5 is observed after a pre-specified number of consecutive 

iterations.] 

Step 7: The Pareto optimal points and worst values of Δp are added to the existing 

sample set and the control returns to Step 2. 

3.4 Numerical and Engineering Examples 

In this section the results for the application of AA-MORO to several numerical and 

engineering examples are presented. Based on empirical observations, the maximum 

number of iterations for AA-MORO is set to five (5) to allow a sufficient number of 

robust solutions to be obtained. The multiobjective genetic algorithm of MATLABTM 

“Global Optimization Toolbox” version 2010a (Mathwork, 2010) is used as the 

optimizer. Parameter settings for the genetic algorithm in all examples are shown in 

Table 1. The DACE toolbox (Lophaven et al. 2002) is used for constructing Kriging 

metamodels in all examples. A second order polynomial function and a Gaussian 

function is used for Kriging metamodeling. The initial offline samples are generated 

using a LHS technique with (nx+1)×(nx+2)/2 number of samples, which is the 

minimum number of sample points required for constructing a Kriging metamodel.  

Table 3.1 Genetic algorithm parameter settings 

Parameter Upper level/First step Lower level/Second step 
Population size 15∙nx 15∙npr 
Maximum generation 50 50 
Elite number 1( nx < 5) and 2( nx > 5) 1 
Crossover probability 0.9 0.9 
Mutation probability 0.1 0.1 

* nx and npr are the number of variables and uncertain parameters, respectively 
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3.4.1 Illustrative Example 
The first example, well known in the literature (Deb, 2001) as TNK, is a deterministic 

bi-objective optimization problem that has been revised here with some added 

uncertainty. The deterministic problem formulation is: 
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 (3.4) 

The feasible domain is defined by the non-convex area within two inequality 

constraints g1 and g2. The optimum solutions to the problem in Eq. (3.4) are obtained 

using a multiobjective genetic algorithm and shown as “MOGA (Deterministic)” in 

Fig. 3.1. Notice that these solutions are located along the boundary of constraint g1. 

Due to the non-convexity of g1, the Pareto frontier consists of three discontinuous 

sections as shown in Fig. 3.1. 

 

Fig. 3.1 Optimum solutions in numerical example (TNK) 
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By considering interval uncertainty in the parameters, the optimization problem in Eq. 

(3.4) can be formulated using the previous MORO with an upper-level problem and a 

lower-level subproblem as in Eq. (3.5) and Eq. (3.6), respectively: 
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(3.6) 

This optimization problem has two design variables and two uncertain parameters. 

The nominal values for both parameters are: p1 = p2 =1. Δp1 and Δp2 represent the 

uncertainty in the parameters and their uncertainty ranges are as specified in Eq. (3.6).  

Notice that the upper-level problem in Eq. (3.5) reduces to the original formulation in 

Eq. (3.4) when Δp1 = Δp2 = 0.  Because there is no uncertainty in the objective 

functions and constraint g2, only feasibility robustness for constraint g1 is considered 

in this example. The lower-level subproblem in Eq. (3.6) is essentially a single-

objective maximization of g1. On the other hand, the optimization problem in Eq. (3.4) 

can be formulated using the improved MORO as shown in Eq. (3.7) and (3.8) 

respectively: 
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Deterministic 
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(3.8) 

where Sg represent a set of Δp1 and Δp2 values in the uncertain interval. As 

mentioned earlier, Sg is determined after robustness evaluation in Eq. (3.8).  

Next, the numerical example is solved with AA-MORO and compared with the 

previous MORO (defined in Eqs. (3.5) and (3.6)), improved MORO (defined in Eqs. 

(3.7) and (3.8)). Notice that in this example, the metamodels are developed only for 

the constraint functions but not for the objective functions due to the simplicity of the 

objective functions. The number of initial (offline) sample points is 15. To account 

for the randomness in GA, all MORO approaches were repeated for 10 times, among 

which the best solutions are selected based on the Hyperarea Difference (HD) value 

(a quality metric developed by Wu and Azarm, 2001) and plotted in Fig. 3.1. Notice 

that the “Previous MORO” and “Improved MORO” in Fig. 3.1 refer to the 

approaches without approximation.  

According to Fig. 3.1, the optimal solutions from both MORO approaches are inferior 

to the deterministic solutions, which are expected because the robust solutions are 

typically more conservative than the deterministic ones. On the other hand, the 
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optimal solutions from both previous and improved MORO approaches, and AA-

MORO are generally consistent in the objective space.  Table 3.2 compare the 

obtained mean value and standard deviation information for different MORO 

approaches. The previous MORO typically requires a large number of function calls; 

while the improved MORO requires considerably (about two orders of magnitude) 

less number of function calls. 

Table 3.2 Number of function calls and quality metrics (HD and OS) for the 
illustrative, numerical and oil refinery (case study) examples 

 

Examples Approach Average Num. 
function call  

HD 
Mean (std.) 

OS 
Mean (std.) 

Illustrative 
Previous MORO 1.9×106 0.60 (0.04) 0.27 (0.09 
Improved MORO 1.1×105 0.53 (0.01) 0.64 (0.27 
AA-MORO 26*  0.58 (0.04) 0.34 (0.08) 

     

Example 1 
Previous MORO 3.4×106 0.33 (0.01) 0.28 (0.08) 
Improved MORO 2.2×105 0.33 (0.01) 0.27 (0.07) 
AA-MORO 466*  0.34 (0.02) 0.31 (0.13) 

     

Example 2 
Previous MORO 3.5×106 0.42 (0.11) 0.37 (0.15) 
Improved MORO 1.9×105 0.41 (0.08) 0.36 (0.17) 
AA-MORO 657* 0.49 (0.12) 0.37 (0.17) 

     

Example 3 
Previous MORO 4.1×106 0.57 (0.11) 0.22 (0.13) 
Improved MORO 1.9×105 0.51 (0.08) 0.18 (0.05) 
AA-MORO 571*  0.58 (0.05) 0.14 (0.14) 

     

Example 4 
Previous MORO 4.3×106 0.69 (0.05) 0.22 (0.08) 
Improved MORO 1.9×105 0.65 (0.06) 0.18 (0.13) 
AA-MORO 614* 0.66 (0.04) 0.08 (0.05) 

     

Oil refinery AA-MORO 28* 0.66 (0.01) 0.22 (0.05) 
*The number of function calls for AA-MORO refers to the number of sample points 

The quality metrics (Wu and Azarm, 2001): Hyperarea Difference (HD) and Overall 

Pareto Spread (OS) are calculated to measure the goodness of the Pareto solution sets. 

It is found that the optimal solutions obtained from the improved MORO are slightly 

better than the solutions obtained from the previous MORO. For AA-MORO, the 

number of sample points is treated as the number of function calls. It is observed that 
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AA-MORO significantly reduces the number of calls for the evaluation of the 

constraint functions.  

The mean square errors calculated from the Kriging model (recall Eq. (2.16)) for the 

final optimal solution in AA-MORO are reasonably small. Furthermore, the optimum 

solutions obtained from different MORO approaches (including the previous and 

improved MORO and AA-MORO) are validated to ensure feasibility robustness for 

the optimal solutions are satisfied. For robustness validation, a Monte Carlo 

simulation method is used with a large number (104) of randomly points is generated 

within the uncertainty variation range around each optimal solution points. The 

probability of violation is calculated based on the number of points which violates the 

objective/feasibility robustness constraints. It is found that robustness of the solutions 

from different MORO approaches are validated with a probability of violation that is 

less than a 0.01% threshold value. 

3.4.2 AA-MORO vs. Previous and Improved MORO 

In this section, four numerical examples adapted from the literature, which are 

originally in deterministic form (Deb, 2001), are used to compare AA-MORO with 

the previous and improved MORO approaches. The problem formulations are 

summarized below: 
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The optimal solutions from AA-MORO are compared with the previous and 

improved MOROS approaches. As in the illustrative example, the best solutions from 

each approach are selected based on the HD value and plotted in Fig. 3.2. The 

deterministic solutions from MOGA are also obtained as a baseline for the 

comparison. As shown in Fig. 3.2, in general, the solutions obtained from AA-MORO 

are comparable with the solutions from the two MORO approaches. However, in 

some cases as in Example 3, AA-MORO may not be able to identify the complete 

robust optimal frontier. Another observation is with the relative goodness of the 

robust optimal solutions in comparison with the deterministic optimal solutions. It can 

be seen that a portion of the deterministic optimal designs could by themselves be 
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robust as shown in Examples 1 and 2. But in Examples 3 and 4, the robust solutions 

are dominated by the deterministic solutions.  

  
(a) (b) 

  
(c) (d) 

Fig. 3.2 Comparison of AA-MORO with previous and improved MORO 
approaches: (a)-(d) numerical example 1-4 

The mean value and standard deviation of the number of function calls and the quality 

metrics with the numerical examples are summarized in Table 3.2. Again the 

optimum solutions from AA-MORO are generally consistent with the other two 

MORO approaches. Finally, the AA-MORO solutions are validated based on the 

mean square error calculated using Eq. (2.16) from the Kriging model. Like in the 

numerical examples, for robustness validation, a Monte Carlo simulation method is 

used with 104 of random points with the probability of violation less than 0.01%.  
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3.4.3 Oil Refinery Case Study 

In this case study, a typical crude oil refinery is considered (Hu et al., 2012a), and the 

AA-MORO approach is employed for optimization. The refinery consists of common 

unit process/operations and nonlinear correlations are used to predict the yields and 

properties of the products of each unit. The units in this refinery case study are: 1) 

Crude distillation unit;  2) Delayed coker; 3) Hydrocracker for heavy vacuum gas 

oils; 4) Hydrotreater for light vacuum gas oils; 5) Fluid catalytic cracking unit 

(FCCU); 6) Hydrotreater for heavy straight run naphtha: 7) Catalytic reformer; 8) 

Light naphtha hydrotreater; 9) Isomerization unit. 

 

Fig. 3.3 Schematic of refinery model 

The schematic of the oil refinery is shown in Fig. 3.8. The flow diagram depicts 

various unit processes and flows of intermediate product streams. The products out of 

the crude distillation unit are lower straight run (LSR) naphtha, higher straight run 

(HSR) naphtha, straight run diesel (SRD), kerosene, light vacuum gas oil (LVGO), 
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heavy vacuum gas oil (HVGO) and vacuum residue (VacResid). The Vacuum residue 

is further processed in the delayed coker to get the lighter fractions. The heavy 

vacuum gas oils are hydrocracked in the hydrocracker to get light naphtha and heavy 

naphtha fractions. The LVGO, HSR and LSR are hydrotreated to reduce the sulfur 

contents and further treated in FCCU, Catalytic reformer and isomerization unit 

respectively to get the products of interest. All naphtha is sent to the blending pool to 

get the gasoline for the required grade.  

The simulation of the described refinery is done through Matlab (Mathwork, 2010) 

and simple non-linear correlations are used. The flow rate of crude oil to the crude 

distillation unit is assumed to be fixed with a value of 100,000 BPD. For simplicity, 

the schematic in Fig. 3.8 does not include the utility units such as steam, cooling 

water and electricity. Also, the storage facilities such as crude oil and intermediate 

product storage tanks are not shown.  

The refinery model is formulated as a MOO problem as described in Eq. (3.13). The 

two objectives are to maximize the product flow rate f1 and to minimize the cost f2. 

Both objectives can be evaluated from the refinery simulation model for a given set of 

design variables. The variables considered for optimization are the six cut 

temperatures (t1, t2,…, t6) in the crude distillation unit. The lower and upper bounds 

for the cut temperatures are given in Eq. (3.13). It is assumed that t2 and t3 are 

uncertain and the uncertainties are represented by Δti, j = 1, 2, and the range of 

uncertainties are between ±10% of their nominal cut temperature values. 
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(3.13) 

In the refinery example, the absolute value for the two objective functions are not in 

the same scale, e.g., the flow rate of light naphtha and total cost are in the order of 104 

and 106 respectively.  As such, the original value of the flow rate and total cost are 

first normalized to a value of unity using normalizing factors 105 and 107, 

respectively. The advantage of normalization is that using a Euclidean norm to 

restrict the objective variation as shown by the inequality constraint in Eq. (3.13), will 

give equal importance for both objectives. The acceptable variation limit ηf is 

specified as 0.1. The optimization problem given in Eq. (3.13) is solved using AA-

MORO and compared with the deterministic approach (MOGA). Due to the 

randomness in AA-MORO, a total of 10 runs are performed and the best sets of 

optimal solutions based on the HD value are plotted in the objective functions space 

in Fig. 3.4. It can be seen that the optimal solutions for the refinery example from 

AA-MORO are much inferior to the MOGA solutions. For example, the deterministic 

optimal solutions are better than AA-MORO approaches in achieving maximum flow 

rate of light naphtha, while the uncertainty in the cut temperature seems to have little 

effect on the daily total cost. 
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Fig. 3.4 The optimal solutions for the refinery example 

The average value and standard deviation of the optimal solutions based on the ten 

runs for AA-MORO are shown in the last row of Table 3.2. The average number of 

iterations for AA-MORO in the refinery example is 3. The number of total samples in 

AA-MORO for all 10 runs is 28. Based on the MSE error calculated using Eq. (2.16) 

in the approximated objective functions (less than 0.001), Kriging provides good 

accuracy in both approaches. This is possibly due to the good characterization of the 

polynomial relationship between the input and output variables in the refinery model.  

3.5 Summary 
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is solved in the first step to obtain multiobjective optimum solutions. The solutions 

are then passed on to the second step for a robustness evaluation. It is shown that the 

improved MORO can be more efficient than the previous MORO approach. However, 

the computational cost for applying the improved MORO can be intractable. To 

overcome this difficulty, an online approximation method is integrated with the 

improved MORO.  

Several numerical examples and an oil refinery test examples are solved and their 

results are compared with the previous methods. In the majority of the test examples, 

the solutions from AA-MORO are compared well to those obtained from the previous 

MORO approaches. The results from all numerical examples and case study also 

indicate that typically AA-MORO requires considerably fewer number of function 

calls than previous approaches.  

In the next chapter, the development of an improved Multiobjective collaborative 

Robust Optimization (McRO) approach is detailed.  
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Chapter 4: Approximation Assisted Multiobjective 

collaborative Robust Optimization under Interval 

Uncertainty (AA-McRO)  

This chapter provides the details of a new approach for multiobjective collaborative 

robust optimization with approximation and interval uncertainty considerations. The 

material of this chapter is essentially the same as that given in the paper by Hu et al. 

(2012b)4 with some slight modifications.  

Existing collaborative optimization techniques with multiple coupled subsystems are 

predominantly focused on single-objective deterministic optimization. However, 

many engineering optimization problems have system and subsystems optimization 

problems that can each be multiobjective, constrained under uncertainty. The 

literature reports on a few deterministic Multiobjective Multi-Disciplinary 

Optimization (MMDO) techniques. However, these techniques in general require a 

large number of function calls and their computational cost can be exacerbated when 

uncertainty is present. In this chapter, a new Approximation-assisted Multiobjective 

Collaborative Robust Optimization (AA-McRO) under interval uncertainty is 

presented. This new AA-McRO approach uses a single-objective optimization 

problem to coordinate all system and subsystem problems in a Collaborative 

Optimization (CO) framework. The approach also converts the consistency 

constraints of CO into penalty terms which are integrated into the subsystem 

                                                 

4 Hu, W., Azarm, S., and Almansoori, A., 2012b, “New Approximation Assisted Multi-Objective Collaborative Robust 
Optimization (New AA-McRO) Under Interval Uncertainty,” Structure and Multidisciplinary Optimization (To be appeared). 
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objective functions. The new AA-McRO is able to explore the design space and 

obtain optimum design solutions more efficiently. The new AA-McRO approach 

obtains an estimate of Pareto optimum solutions for MMDO problems whose system-

level objective and constraint function are relatively insensitive (or robust) to input 

uncertainties. Another characteristic of AA-McRO is the use of online approximation 

for objective and constraint functions to perform system robustness evaluation and 

subsystem-level optimization.  Based on the results from a numerical and an 

engineering example, it is concluded that AA-McRO performs better than previously 

reported MMDO methods.  

Compared to the previous McRO approach (Li and Azarm, 2008) presented in 

Chapter 2, the proposed AA-McRO approach has made the following contributions: (i) 

AA-McRO converts an upper-level system problem in McRO into a single-objective 

coordination problem at the upper level and a multiobjective optimization problem at 

the lower level. Under this framework, the upper-level problem is responsible for 

coordinating the shared and coupling variables and guiding the lower-level problems, 

while the system problem in the lower-level is responsible for achieve the optimum 

design solutions. Because the upper-level problem in AA-McRO only focuses on 

coordination, it is able to reach convergence and obtain optimum design solutions 

more efficiently. (ii) AA-McRO converts the consistency constraints in the lower-

level optimization problems into penalty terms which are integrated into the objective 

function at the lower level. These penalty terms allow the system and subsystem 

optimization to explore the design space better. However as the optimization proceeds, 

the penalized value is minimized so that eventually the consistency constraints are 
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satisfied. (iii) AA-McRO improves the optimal solution selection strategy at the lower 

level problems. This improvement enhances the consistency among the shared and 

coupling variables and further improves system convergence. (iv) AA-McRO 

employs an online approximation technique to reduce the number of function calls. 

An online verification of the estimated optimum solution is integrated such that the 

absolute error of the objective and constraint functions can be kept within a user 

specified threshold. In this way, AA-McRO can significantly reduce the 

computational effort compared to McRO and obtain reasonably accurate optimum 

solutions. A numerical and an engineering problem are tested with the AA-McRO 

approach. The test results show that with a limited number of sample points, AA-

McRO is able to obtain a good set of optimal solutions with significantly less 

computational cost for a MMDO problem under interval uncertainty than the McRO 

approach of (Li and Azarm, 2008).  

Section 4.1 provides a review of related work in the literature and presents the 

limitation of the McRO approach. A description of the new MCO approach is 

presented in Section 4.2.1, and the new McRO approach in presented in Section 4.2.2, 

In Section 4.3, the new AA-McRO approach is presented, including the online 

approximation approach in Section 4.3.1, and the steps in the new AA-McRO 

approach in Section 4.3.2. To illustrate the new AA-McRO approach, one numerical 

and one engineering example are solved and discussed in Section 4.4. Section 4.5 

summarizes the new AA-McRO approach with some concluding remarks. 
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4.1 Literature Review 

Multi-Disciplinary Optimization (MDO) refers to a class optimization methods for 

solving system optimization problems that can be decomposed into multiple coupled 

subsystem optimization subproblems (e.g., Sobieszczanski-Sobieski, 1982; Azarm 

and Li, 1988; Renaud and Gabriele, 1993; Balling and Sobieszczanski-Sobieski, 1996, 

Allison et al., 2009). Examples of MDO include methods like the all-at-once (Cramer 

et al., 1994), concurrent subspace optimization (Sobieszczanski-Sobieski, 1998), 

Collaborative Optimization (CO) (Braun and Kroo, 1996; Kroo and Manning, 2000), 

bi-level integrated system synthesis (BLISS) (Sobieszczanski-Sobieski and Agte, 

2000), Analytical Target Cascading (ATC) (Kim et al., 2003) and so on. Among these 

methods, the CO approach requires less information exchange among the subsystems 

and allows more flexibility at subsystem optimization (Kroo and Manning, 2000). 

This characteristic of CO has attracted considerable interests among researchers in 

improving the CO technique (Roth and Kroo 2008) and applying it to engineering 

optimization problems (e.g., Gu, et al., 2006).   

The original CO approach was developed for a single-objective optimization problem 

at the system level while the subsystems did not have any design objective (Braun 

and Kroo, 1996). Related work also proposed formulating CO with the use of penalty 

methods (DeMiguel and Murray, 2006). However, these CO formulations in general 

are not suitable for MDO with multiple objectives at both system- and subsystem-

level. Some previous methods have reported extending single-objective CO to 

multiobjective CO. For example, Tappeta and Renaud (1997) proposed a 

multiobjective CO where a system-level objective function was formulated as a 
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weighted sum of subsystem level objectives. However, their formulation has sthe 

shortcomings of the weighting method, which is not capable of capturing non-convex 

portion of the Pareto frontier (Deb, 2001). Gunawan et al. (2003) developed a 

multidisciplinary multiobjective genetic algorithm. However, their formulation used 

quality metrics at the system level instead of system design objectives and they did 

not consider any interdisciplinary couplings. Other examples include physical 

programming (McAllister et al., 2004) and genetic algorithms (Aute and Azarm, 

2006) in multiobjective CO (MCO). 

Recently, some MDO methodologies have been extended to account for uncertainty. 

Gu and Renaud (2006) considered an implicit uncertainty propagation technique and 

developed a robust CO framework. Kokkolaras et al. (2006) developed a probabilistic 

version of the ATC for hierarchically decomposable systems under uncertainty. Ahn 

and Kwon (2006) proposed a “ProBLISS” approach by embedding a single-level 

reliability-based design scheme with a BLISS framework. Li and Azarm (2008) 

extended the MCO framework of Aute and Azarm (2006) and developed a 

Multiobjective Collaborative Robust Optimization (McRO) approach under interval 

uncertainty. Among these approaches, the McRO technique allows for both system 

and subsystem levels to have multiple design objectives and also considers 

uncertainties in input parameters with a multidisciplinary uncertainty propagation 

approach. 

One of the most pressing limitations of the bi-level CO formulation (Braun and Kroo, 

1996) is that a large number of iterations is required between the system- and 

subsystem-level optimization problems. As a result, a significant number of function 
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calls is required to find optimum solutions and that the optimization of even a 

relatively simple engineering system could become intractable. To overcome this 

difficulty, Roth and Kroo (2008) proposed an enhanced CO formulation to improve 

convergence. They suggested solving the system- and subsystem-level optimization 

problems sequentially which reduced the computational cost. An overview of the bi-

level and sequential CO formulations can be found in Tosserams et al. (2009). In 

addition, a variety of methods are proposed to use approximation in CO. Notably, 

Sobieski et al. (1998) developed a local response surface method to approximate a 

subsystem optimization output in CO. Simpson et al. (2001a) applied Kriging to 

construct global approximation in an MDO framework. Jang et al. (2005) combined 

neural network and Kriging metamodeling of subsystems to classify feasibility of a 

system design vector and employed an “adaptive approximation” to maintain 

accuracy. More recently, Zadeh et al. (2008) proposed an approximation-based CO in 

which multi-fidelity and global approximation is used at the subsystem and system 

levels, respectively. The aforementioned methods mainly focus on deterministic and 

single-objective MDO. 

4.1.1 Limitations of the McRO Approach of (Li and Azarm, 2008) 

As presented in Chapter 2, McRO provides a general approach for solving robust 

MDO problems under interval uncertainty. However, there are several difficulties 

associated with the McRO approach, as elaborated in the following:  

(1) The system optimization problem in McRO fulfills two goals. First, a 

multiobjective optimization problem is solved at the upper level to determine system 

design variables while optimizing the system design objectives. Second, the system 
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problem coordinates subsystem optimization problems by selecting the shared and 

target variables in order to satisfy the subsystem consistency constraints. In this way, 

the system optimization problem in McRO becomes rather restricted and typically 

includes a large number of variables. This presents considerable challenge for the 

system optimizer convergence to solutions in an efficient manner. 

(2) Both system and subsystem optimization problems in McRO use consistency 

constraints to ensure that the coupling variables match among the subsystems. These 

consistency constraints are strict, as specified by a small tolerance value on their 

right-hand side, see Li and Azarm (2008). As a result, it is difficult to obtain feasible 

solutions for these optimization problems and the system optimization in McRO may 

require many iterations before converging to final solutions.   

(3) As mentioned earlier in this section, the subsystem optimization problem in 

McRO obtains a set of optimum solutions for each system candidate design 

alternative. Therefore a strategy must be developed to select the optimal solutions 

produced from the subsystem optimization problems. These solutions are then 

returned to the system optimization problem.  There are a few strategies reported in 

the literature which can be used for this purpose (Aute and Azarm, 2006), including 

selecting a single solution from each subsystem or combining different optimal sets 

from all subsystems. For example, one can devise a scheme that selects the “best” 

solution with the minimal value for one of the objectives which is considered the 

most important one (Aute and Azarm, 2006; Li and Azarm, 2008). However, such 

previous selection strategies in general are rather arbitrary. Moreover, the criteria of 



  

 69 

 

the selection are based solely on the design objectives in the subsystem but ignore 

issues such as convergence at the system optimization problem.  

(4) Finally, solving a MDO problem with McRO can be computationally expensive 

because of a large number of iterations required between the system and subsystem 

optimization problems. With the integration of uncertainty and robustness evaluation 

in the lower level (Fig. 2.5), the computational cost of McRO increases further.  

The objective of the current chapter is to enhance McRO in order to address the 

above mentioned difficulties. 

4.2 New Collaborative Optimization Approach  

In this section, the newly developed AA-McRO approach is presented. Compared to 

McRO, the AA-McRO has two major improvements. These are: (i) a new McRO 

formulation to improve convergence, and (ii), online approximation approach to 

significantly reduce the computational effort.  

The formulations for the new MCO and new McRO are presented in Section 4.2.1 

and 4.2.2. Section 4.2.3 discusses the online approximation in the new AA-McRO 

and finally the solution steps of the proposed approach are given in Section 4.2.4.  

4.2.1 New MCO Approach 

The basic idea in the new MCO approach is to divide the system optimization 

problem into two subproblems. One of the subproblems is placed at the upper level 

for coordinating the system and all subsystem optimization problems. The second 

subproblem is placed at the lower level for optimization of the system design 

objectives subject to its constraints. Essentially this new system optimization problem 
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is solved and treated in the same way as is a lower level subsystem optimization 

problem. The formulations for the coordination problem, the new system and 

subsystem problems are given as: 
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where in Eq. (4.1) the objective is to minimize the differences between the 

coordination problem target variables and coupling variables, and the differences 

between the coordination problem target and all system/subsystem target variables. 

This objective is intended to maximize the compatibility between all system and 

subsystem optimization problems. Note that the coordination target variable does not 

have a superscript. The new system problem defined in Eq. (4.2) characterizes the 

original design objectives and constraints in the system. Because the objective and 

constraint functions in the original system problem uses the subsystem objective and 

constraint value as input, in the new formulation in Eq. (4.2), the subsystem objective 

and constraint values are included in the target variables. However, for problems with 
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a large number of subsystems, this transformation may incur a larger number of target 

variables for the coordination problem and new system problem. One way to 

overcome this is to simply treat these subsystem objective and constraint values as 

parameters. In another word, the subsystem objective and constraint values are simply 

passed from the subsystem optimization to the system problem, without setting target 

variables to match them. Also in the new system problem in Eq. (4.2), the consistency 

constraints are included as a series of penalty terms in the objective functions. 

Similarly, the subsystem problem is revised in Eq. (4.3) to enforce the consistency 

constraints as penalty in the objective functions.  

One significant difference between the new MCO and MCO by Aute and Azarm, 

(2006) is that the upper-level problem in the new MCO is a single-objective 

optimization problem. In addition, a new system optimization problem as defined in 

Eq. (4.2) is added to the lower level, representing the design objectives in the original 

system optimization problem. Because no design objectives are included in the 

coordination problem, it becomes easier for the upper level in the new MCO to ensure 

the value of shared and target variables among the system/subsystems are eventually 

matched.  

4.2.2 New McRO Approach 

Here, the new MCO formulation is an extension of the McRO formulation. Eq. (4.4) 

is the coordination problem in the new McRO. 
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Coordination 
problem  
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where the robustness conditions as defined earlier in Chapter 2 are now integrated in 

the coordination problem in the new McRO. To determine these robustness 

conditions, the robustness evaluation problems Eqs. (2.10-1)-(2.10-3) defined earlier 

in Chapter 2 are also included below for completeness:  
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Fig. 4.2 shows the schematic of the new McRO approach. While the coordination 

problem in Eq. (4.1) is solved at the upper level, the system and subsystem problems 

as defined in Eqs. (4.2) and (4.3) are solved at the lower level. Notice that solving the 

system problem in the new McRO is essentially the same as solving all the other 

subsystem optimization problems. The procedure of applying new McRO is similar to 

McRO. It starts with solving the coordination problem where each candidate design 

alternative (including shared and target variables) is forwarded as a parameter to the 

system/subsystem problems in the lower level. After these optimization problems are 
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solved in the lower level, robustness of the candidate design alternative is evaluated 

in the lower level. Based on the system/subsystem response and robustness 

evaluations, the objective function value in the coordination problem (upper level) is 

determined.   

 

Fig. 4.1 New McRO 

To resolve the issue of an arbitrary choice of a subsystem optimum solution in McRO, 

the selection of a system and subsystem optimal solution in the new McRO is 

improved to take into consideration the compatibility of the system/subsystem 

optimal solutions. At the conclusion of system and subsystem optimization in the 

lower level, the penalty terms as defined, i.e., sh sh 2 2 2
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penalty give the best consistency among an obtained set of optimal solutions.  

Selecting the best compatible solutions facilitate the convergence of the coordination 

problem at the upper level.  

As presented above, the new McRO approach has three major improvements 

compared to McRO, namely, transformation of the system optimization problem, 
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selection. As it will be shown in the examples, these improvements help obtain 

optimal design solutions much more efficiently.  

4.2.3 Discussions 

From an implementation perspective, the optimum system design solutions in the new 

MCO and McRO approaches are obtained from the system optimization problem in 

the lower level. This is different from the previous approaches where the system 

design solutions are obtained from the system optimization problem in the upper level. 

Since the coordination problem is posed as a single-objective optimization problem in 

the new approaches, it will converge to a single design point. However, some 

problems may have multiple optimum solutions or converging points. Each of such 

points corresponds to a consistent solution for the shared and coupling variables 

among the subsystems. When solving such a problem, it is recommended to use a 

global optimization approach, e.g., genetic algorithm (Goldberg 1989), for the 

coordination problem so that multiple optimum points can be explored. In this case, 

the system optimization problem at the lower level may generate different sets of 

Pareto optimal solutions. These Pareto optimal solutions should then be combined 

and sorted, in order to obtain a final set of optimum system design solutions.   

By comparing McRO in Fig. 2.5 and new McRO in Fig. 4.1, it may appear that the 

new McRO is more complex than McRO. Indeed, the total number of function calls 

required by the lower level in the new McRO is slightly more than McRO. However, 

the total number of function calls for the new McRO equals to the multiplication of 

the upper-level and lower-level function calls. Because the number of function calls 

for the added subproblem is of the same order of magnitude as the other subsystem 
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problems, the system optimization does not increase the order of magnitude of the 

lower-level function calls in the new McRO.  In this way, the computational cost for 

McRO and new McRO is essentially comparable. One interesting observation from 

the results of the examples is that by applying the new McRO, the upper-level 

(coordination) problem requires fewer number of iterations to converge than it does 

with McRO. This is because the coordination problem in the new McRO is more 

efficient in obtaining optimum solutions as discussed earlier. More discussions on the 

comparison of the number of function calls between MCO and new MCO are 

presented with the examples in Section 4.4. 

4.3 AA-McRO Approach 

To address the computational difficulty associated with McRO, an online 

approximation method, similar to the one used in AA-MORO in Chapter 3, is used in 

the new McRO. However, the online approximation has to be extended to fit the 

framework of the new McRO with multiple subsystems. As shown in Fig. 4.2, the 

new AA-McRO approach includes an online Design of Experiment (DOE) and 

metamodeling, in which the metamodels of subsystem analysis models (which might 

be computationally expensive) are developed. These metamodels are forwarded to the 

subsystem optimization and robustness evaluation problems. Meanwhile, the online 

DOE locates sample points based on the optimum solutions from subsystem 

optimization and robustness evaluation. These sample points are collected and used to 

iteratively update metamodels for the design objectives and constraint functions. In 

the subsystem optimization problem, multiobjective optimization is performed by 

each subsystem optimizer based on the subsystem metamodels. The multiobjective 
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optimal solutions are returned back to the online DOE as additional sample points. 

During robustness evaluation, any function evaluation is accomplished based on the 

subsystem metamodels. Finally, the robustness evaluation as defined in Eq. (4.4-1)-

(4.4-3) returns optimal solutions for additional sampling as well.  

  

Fig. 4.2 Schematic of online approximation in the proposed approach 

4.3.1 Online Approximation 

The online approximation approach applied for AA-McRO is similar to the 

approximation approach in AA-MORO presented in Chapter 3. The objective of 

online DOE is to select points in the sample space so that they are as close to the 

optimum solutions as possible. The majority of the sample points are collected from 

the optimal solutions obtained in the subsystem optimization during online 

approximation. The online approximation starts with an initial set of sample points 

which are created using Maximum Entropy Design (MED) (Koehler and Owen, 

1996). These sample points are then forwarded to each subsystem analysis model 

where their actual design objectives and constraint functions are evaluated. Next, the 

sample points are used to build metamodels for each design objectives and constraint 
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functions in the subsystems. Additional online sample points are determined based on 

optimal solution points estimated from the approximation-assisted optimization. For 

the sample points, the true design objectives and constraint functions are evaluated 

and used to update the subsystem metamodels. This is repeated in all subsystems.  

A subsystem sample space in AA-McRO is defined over the entire variables and 

parameters space. For all “online” sample points, the shared variables are determined 

by the system level optimizer, which passes their values to the subsystems. During 

the online DOE, sample points are generated in two steps from the subsystem 

optimization and robustness evaluation. The first set of sample points is determined 

after subsystem optimization is completed, i.e., the value of the subsystem variables 

and target variables for these sample points are the optimum solutions in each 

subsystem. Note that the nominal value of uncertain parameters is used for these 

sample points. The second set of online sample points are determined during the 

robustness evaluation, i.e., the optimized uncertain parameter ΔPi
* is used as the 

values of the uncertain parameter. For these sample points, their subsystem variables 

and target variables is the same as the selected optimum solution.  

Since the new McRO involves design iterations, there can be many optimal solutions 

generated from the subsystem optimization problems. Using the online sampling 

scheme above, some sample points may overlap with existing sample points. 

Therefore, a filtering scheme as discussed in Chapter 3 is applied in AA-McRO. After 

additional sample points are determined and the actual simulations are evaluated to 

obtain the response values, these sample points are added to the current set of sample 

points. Consequently, the new sample set is used to update the metamodels.  
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A metamodel can be developed based on one of the many existing techniques. As 

highlighted in Chapter 2, AA-McRO uses a Kriging technique (Koehler and Owen, 

1996). Kriging estimates the Mean Squared Error (mse) when interpolating a response 

at an unobserved design point. This error is considered and discussed next.  

In AA-McRO, a design point with a smaller error is preferred than a design point with 

a large error, when their estimated function values are the same. This is because the 

proposed online approximation is intended to focus on sampling more points around 

the optimal solutions. The mse(x*) defined in Eq. (2.16) is used in adjusting the 

estimated objective and/or constraint function values so that a design point with a 

large error is not considered and automatically eliminated by the optimizer. In doing 

so, an estimate of design objective or constraint functions is adjusted by its mse as 

follows: 

 * * *
adjust estimate

* * *
adjust estimate

( ) ( ) ( )

( ) ( ) ( ) 0

f f mse

g g mse

= +

= + ≤

x x x

x x x
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where festimate and gestimate represents the estimated design objectives and constraint 

functions from Kriging, fadjust and gadjust represents the adjusted design objectives and 

constraint functions, respectively. According to Eq. (4.5), a design point with a large 

mse leads to larger adjusted design objectives and constraint functions since the term 

mse (x*) is always positive according to its definition in Eq. (2.16). As new McRO 

attempts to minimize design objectives subject to the feasibility of the constraint 

functions, the adjustment in Eq. (4.5) will always give more preference to a design 

alternative with a smaller error. Therefore, the design point with a large mse is less 

likely to be selected and automatically eliminated by the optimizer. In 
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implementation, the estimated function values and mse(x*) should be normalized so 

that all terms on the right hand side of Eq. (4.5) are in scale.  In the examples of this 

chapter, the maximum estimated function values and mse(x*) are used for 

normalization of the estimated design objectives, constraint functions and mse(x*) in 

Eq. (4.5). 

Since the new AA-McRO applies online approximation-assisted optimization, its 

optimum solutions are essentially “estimated” values. To ensure the new AA-McRO 

solutions are optimum and feasible with respect to the actual objective and constraint 

functions, these solutions should be verified. In the new AA-McRO, this validation 

step is integrated as a part of the stopping criteria. Basically, when the new AA-

McRO has satisfied all stopping criteria (e.g., total number of samples are exhausted, 

as discussed later in Section 4.4.2), the current set of optimum solutions is observed 

and the maximum absolute error (MAE) for each objective and constraint functions 

are calculated. The MAE is calculated using the following equation:

1 1, , 1 1, ,MAE max(| |,...,| |,| | ...,| |)estimate nf nf estimate estimate ng ng estimatef f f f g g g g= − − − −  where m and n 

represent the number of objective and constraint functions, respectively.  If the error 

is larger than a user specified threshold, e.g., 5% of the nominal value, additional 

iterations (samples) are added to refine the metamodel. This validation step 

effectively improves the accuracy of the new AA-McRO.  

4.3.2 New AA-McRO Solution Steps 

The new AA-McRO begins with a number of sample points generated using MED for 

each subsystem. Based on these samples, metamodels for design objectives and 

constraints of each subsystem are constructed in the design variable and uncertain 
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parameter space. These metamodels are used in lieu of the actual subsystem analysis 

models to obtain robust optimum solutions and to evaluate robustness of candidate 

solutions. Notice that a metamodel can also be constructed for a coupling variable if it 

is defined as a computationally expensive function of subsystem variables. In the 

following iterations, additional new samples are placed based on the optimum 

solutions obtained in each iteration, combined with a filtering strategy to eliminate 

overlapping of sample points as discussed earlier. The metamodels from previous 

iterations are updated using the new samples. In this way, as the system iteratively 

converges to optimum solutions, the sample points converge to the optimum design 

region and produce better prediction of objective and constraint function values. The 

steps in the new AA-McRO are as follows: 

Step 1: Generate an initial set of sample points in each subsystem. Use the 

subsystems analysis models to calculate the design objectives and constraint functions 

for the sample points.  

Step 2: Build metamodels for each subsystem’s design objectives and constraint 

functions using the sample points from Step 1.  

Step 3: Perform single-objective optimization for the coordination problem in Eq. 

(4.1). For each candidate design alternative, send the value of the shared and target 

variables xsh and tij as parameters to the system and subsystem problems in the lower 

level. 

Step 4: For each upper-level candidate design alternative, perform multiobjective 

optimization in system and subsystem problems based on the metamodels.  
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Step 5: Evaluate the robustness for the selected system and subsystem design 

solutions based on the metamodels. Repeat steps 3-5 until all candidate design 

alternatives are considered. 

Step 6: Collect the system and subsystem optimal design solutions and the optimized 

ΔPi value, or ΔPi
*, in the robustness evaluation. Perform online DOE, add the new 

samples and update the metamodels. 

Step 7: Check the following stopping criteria (i) and (ii). If the stopping criterion (i) is 

not satisfied, return to Step 3. If the stopping criterion (i) is satisfied but (ii) is not, 

then increase the maximum number of iterations or sample points and return to Step 3. 

Otherwise, stop and report the obtained optimum solutions.  

The stopping criteria are: (i) a pre-specified maximum number of iterations or sample 

points have been reached, (ii) the absolute error for the solutions are smaller than a 

user defined threshold. 

4.4 Examples 

To demonstrate the new AA-McRO approach, two examples are presented in this 

section. The first example is a numerical problem with two subsystems, which is used 

to illustrate how the new AA-McRO approach works. The second example is an 

engineering problem which contains three subsystems and is more complex than the 

numerical example. In both examples, the real-coded Genetic Algorithm (GA) of 

MATLABTM, version 2010a (Mathwork, 2010) is used as the optimizer for both 

system and subsystem optimization problems. The default setting in the MATLAB’s 

genetic algorithm is used. The population size of the genetic algorithm is set equal to 

15×nx (nx denotes the number of variables) and the maximum number of generations 
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is 50. The elite number in GA is set equal to 1 when the number of variables is less 

than five and 2 otherwise. The probability for crossover and mutation is 0.9 and 0.1, 

respectively. In both examples, several related approaches, including MCO (Aute and 

Azarm, 2006), McRO, AA-McRO (Hu et al., 2012b), new MCO, new McRO, and 

new AA-McRO are compared. For each example, the deterministic optimization 

approaches, i.e., MCO and new MCO are first compared. Then, the comparison 

among four robust optimization approaches including McRO, AA-McRO, new 

McRO, and new AA-McRO are conducted. These comparisons are intended to show 

the performance and efficiency of the new approaches in view of the previous 

methods. Due to the stochastic nature of GA, all approaches are repeated for ten times. 

Because the space limitation, the optimum solutions from an average run are shown 

in subsections 4.5.1 and 4.5.2. It should be mentioned that for the metamodeling in 

the AA-McRO approaches, Kriging is used with a second order polynomial function 

to build the regression model and a Gaussian function used for the correlation model. 

For a fair comparison, the same number of total sample points is used in both AA-

McRO and new AA-McRO approaches. This is done so that it can be observed which 

method gives a better estimate of solution for the same number of function calls. In 

addition, for the verification of the results, an acceptable threshold for the absolute 

errors on the optimum solutions is set equal to 5% of the nominal value for both 

examples.  
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4.4.1 Illustrative Example 

The first example was used as a test case in a previous work (Aute and Azarm, 2006). 

In the “All-at-once” formulation, Eq. (4.6), the example has six design variables with 

two objectives and six inequality constraints:  

All-at-once 
formulation 

2 2 2 2 2
1 1 2 3 4 5

2 2 2 2 2 2
2 1 2 3 4 5 6

1 1 2

2 1 2

3 2 1
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2

5 3 4
2
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 (4.6) 

The above problem can be divided into two subproblems and formulated based on a 

new McRO with an upper-level coordination problem, one system problem and two 

subsystem and robustness problems, as in the following: 

Coordination 
problem 

2 2 2
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System 
problem 
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Subsystem 1 
problem 

2 2 2 2
11 1 2 3 4

1 1 1
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Subsystem 2 
problem 
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Robustness 
evaluation 
problems  

2 2,

3 6
2 2 2 2

11 1 2 3 4
2 2 2 2 2

12 1 2 3 4 5
2

21 1

max max[max [ ( + ) ( )] ] , 1 2

s.t [ 10% ,10% ]; [ , ]

   ( ) [12.5( 2) 0.5( 2) ( 1) ( 4) ]

   ( ) 0.5( )

   ( ) [12.5( 2) 0.

ij iji j
f f ,i j ,

.  x x

  f x x x x

  f x x x x x

  f x

+ +

∆
∆ = ∆ − =

∆ ∈ − ∆ ≡ ∆ ∆

= − − + − + − + −

= + + + +

= − − +

x
f x x x

x x x x

x

x

x 2 2
2 5

2 2 2
22 1 2 6

5( 2) ( 1) ]

   ( ) 0.5( )

x x

  f x x x

− + −

= + +x

 

(4.11-1) 

 

3 6

1 1 2

2 1 2

3 2 1

4 1 2
2

5 3 4

6 5

max[ ] max[max ( )] 1 6

s.t [ 10% ,10% ]; [ , ]
      ( ) 2 0
      ( ) 6 0
      ( ) 2 0
      ( ) 3 2 0

      ( ) ( 3) 4 0

      ( ) 4 (

kk
g ,k ,...,

.   x x
g x x
g x x
g x x
g x x
g x x
g x

∆
= + ∆ =

∆ ∈ − ∆ ≡ ∆ ∆
= − − ≤
= + − ≤
= − − ≤
= − − ≤

= − + − ≤

= − −

x
g x x

x x x x
x
x
x
x
x
x 2

63) 0x+ ≤

 

(4.11-2) 



  

 85 

 

The hierarchical relationship among the above problems follows Fig. 2. In other 

words, the coordination problem in Eq. (4.7) is at the upper level. The system 

problem in Eq. (4.8) has four constraints from the original problem in Eq. (4.6) and 

its objective function is formulated as the summation of subsystem 1 and subsystem 2 

objective values. Each of the two subsystems in Eqs. (4.9) and (4.10) has one 

constraint from the original problem in Eq. (4.6) and their objective functions are part 

of the original objective function as well. The variables x1 and x2 are the two shared 

variables in this example, and x5 is a coupling variable which goes from subsystem 2 

to subsystem 1. Additionally, all subsystem objective function such as f11, f12, f21 and 

f22 are treated as coupling variables under the new collaborative optimization 

framework. Also notice that in the system and subsystem problems, the compatibility 

of shared and coupling variables with the coordination level variables are enforced by 

using penalty terms. As mentioned earlier, these penalty terms allow the system and 

subsystem optimization to search the design space better. However as the 

optimization proceeds, these penalty term must be minimized so essentially the 

compatibility requirement (e.g., 0 0 0
sh sh 10 10 20 202 2 2

0; 0; 0− = − = − =x x t t t t  for system 

problem) can be satisfied when the problem converges. The robustness evaluation 

problems, Eqs. (4.11-1) and (4.11-2), consider the interval uncertainty in the two 

design variables x3, x6. It is assumed that the range of uncertainty is within +/-10% of 

their nominal values. The acceptable variation limit ηf for the objective functions is 

20% of the nominal value. Notice that objective robustness of Eq. (4.11-1) is only 

considered for the two subsystems. This is because in this example, the system 

objective is a simple summation of the subsystem objectives and there is no need to 
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evaluate the objective robustness for the system problem separately. Also because the 

coupling variable x5 in subsystem 2 does not have any uncertainty, the robustness on 

the coupling variable is not considered. 

The above problem is first solved using the MCO and also the new MCO. The 

formulation for the problem with the new MCO approach is given in Eqs. (4.7)-(4.10), 

except that the robustness conditions in Eq. (4.8) should be ignored. The formulation 

with the MCO approach can be found in Aute and Azarm (2006) and is omitted here. 

The system Pareto optimum solutions are plotted in the objective space as in Fig. 4.3 

(a) for one of the ten runs. The all-at-once problem as defined by Eq. (4.6) is also 

solved using a multiobjective genetic algorithm. Because the all-at-once formulation 

is a single-disciplinary optimization and less restricted (relaxed compared to MCO 

with multiple subsystem), its solutions are typically better than (or in the worst case 

the same as) any decomposition-based (or MCO) optimization approaches. The all-at-

once solutions are used as a baseline for the comparison. As shown in Fig. 4.3 (a), the 

new MCO solutions are slightly closer to the baseline solutions in the objective space 

than the MCO solutions. The spread of the new MCO solutions seems to be better 

than the MCO solutions as well.  

Table 4.1 summarizes number of function calls, the mean and standard deviation of 

two quality metrics for the MCO and new MCO solutions. The quality metrics 

considered for the comparison are the Hyperarea Difference (HD) and Overall Spread 

(OS) (Wu and Azarm, 2001). While HD measures the closeness (the smaller the 

better) of the non-dominated points to the ideal (or good) solutions, the quality metric 

OS characterizes the spread (the larger the better) of the set of non-dominated points 
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in the objective space. Note that a function call here refers to evaluating a combined 

set of objective and/or constraint functions for the given input variables. For example, 

one function call in the subsystem 1 problem of Eq. (4.9) implies a single evaluation 

of that subsystem’s objective functions f11 and f12 and constraint g5 altogether. The 

function calls for all subsystems are added up to obtain the overall number of function 

calls. As shown in Table 1, the average number (based on ten runs) of function calls 

are approximately 1.5×107 and 1.2×107 for MCO and new MCO approaches, 

respectively. As mentioned earlier in Section 3.3, the lower-level problems in the new 

MCO require slightly more function calls because of the addition of the system 

problem at the lower level. However, the upper-level (coordination) problem in the 

new MCO requires fewer number of iterations than the upper-level (system) problem 

in MCO. As a result the total number of function calls in the new MCO is actually 

less than MCO.  

  

(a) (b) 

Fig. 4.3 Pareto optimum solutions for numerical example 
(a) deterministic solutions (b) robust solutions 

Next, the robust collaborative optimization approaches, including McRO, new McRO, 

AA-McRO and new AA-McRO are applied to the numerical example. The McRO 
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formulation uses the MCO formulation (Aute and Azarm, 2006) with an addition of a 

robustness evaluation as in Eq. (4.7) in the lower level. The formulation for the new 

McRO is given in Eq. (4.7)-(4.11), while the new AA-McRO is formulated the same 

way as the new McRO except that all objective and constraint function evaluations 

are approximated following the steps given in Section 3.4. The system Pareto 

optimum solutions from all these different approaches are shown in the objective 

space and compared against the baseline solutions in Fig. 4.3 (b). In terms of 

closeness to the baseline solution, the performance of the new McRO is significantly 

better than McRO. Most importantly, the Pareto optimum solutions from the new 

AA-McRO are better (in terms of closeness to the baseline deterministic solution) 

than the solutions from AA-McRO for the same number of sample points. The spread 

of the new McRO and AA-McRO solutions are also clearly better than the McRO and 

AA-McRO solutions. Similar observations are found with other runs and Table 1 

summarizes the average value of the closeness (HD) and spread (OS) for the ten runs 

using different approaches. In terms of computational cost, the numbers of function 

calls by McRO and new McRO are approximately 1.9×107 and 1.3×107, while the 

total number of sample points (one sample can be regarded as one function call) for 

both AA-McRO approaches are 360. Note that both AA-McRO and new AA-McRO 

use the same number of sample points for metamodeling and thus their function calls 

are the same. However, by comparing the optimum solutions in Fig. 4.3, it can be 

seen clearly that new AA-McRO performs better than AA-McRO. 

It should be mentioned that since the new AA-McRO and AA-McRO use 

approximation-assisted optimization, the optimum solutions are essentially estimated 
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from the metamodeling. As discussed earlier, in the new AA-McRO the MAE for the 

objective and constraint functions of these optimum solutions are verified so that they 

are within a 5% limit of the nominal objective and constraint function values. Notice 

that in AA-McRO the final optimum solutions are also verified except that this step is 

performed after the optimum solutions are obtained. For the numerical example, the 

error of the optimum solution from AA-McRO is within 5% of the nominal values.   

Table 4.1 Number of function calls and quality metrics for numerical and 
engineering examples 

 Approach Average number 
Function call 

HD 
mean (Std.) 

OS 
mean (Std.) 

Illustrative 
example 

MCO 1.5×107 0.45 (0.02) 0.34 (0.10) 
New MCO 1.2×107 0.41 (0.02) 0.42 (0.20) 
McRO 1.9×107 0.73 (0.10) 0.12 (0.03) 
New McRO 1.3×107 0.46 (0.03) 0.41 (0.20) 
AA-McRO 360* 0.82 (0.20) 0.09 (0.02) 
New AA-McRO 360* 0.50 (0.03) 0.38 (0.20) 

     

Angel 
grinder 
example 

MCO 6.5×107 0.38 (0.23) 0.19 (0.01) 
New MCO 2.5×107 0.29 (0.06) 0.38 (0.10) 
McRO 9.0×107 0.55 (0.10) 0.17 (0.06) 
New McRO 3.3×107 0.42 (0.08) 0.28 (0.08) 
AA-McRO 1350* 0.64 (0.16) 0.11 (0.05) 
New AA-McRO 1350* 0.48 (0.08) 0.42 (0.10) 

*The number of function calls for AA-McRO and new AA-McRO refers to the number of sample points 

Finally, in order to verify the robustness of the optimum solutions, a Monte Carlo 

simulation method is applied by checking the system responses (including objective, 

constraint functions) at a large number of random points around each of the optimum 

solution points. The total number of randomly generated points used for robustness 

verification is 104. Only five out of the 104 random points are allowed to violate the 

robustness conditions as specified in Eq. (4.7). However, it is found that the optimum 
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solutions from McRO, AA-McRO, new McRO and new AA-McRO approaches as 

shown in Fig. 4.3 (b) satisfy these robustness conditions. 

4.4.2 Angle Grinder Example 

To demonstrate the applicability of the new AA-McRO approach to an engineering 

design problem, a cordless angle grinder is considered in the second example (Li et 

al., 2010c). Fig. 4.4 shows the three major subsystems of an angle grinder model 

considered in this example. The details of the system and subsystem optimization 

specifics, including the number of functions and variables, are shown in Table 4.2.  

 

Fig. 4.4 System decomposition of angle grinder 

The three subsystems are bevel gear, motor and battery pack. The system design 

objective is to minimum total mass and maximum output power. While each of the 

subsystems has its own design variables, four variables are shared among the system 

and subsystems namely, current (I), the number of battery cells (ncell), motor-gear 

shaft diameter (ds) and motor-gear shaft length (ls). The first two design variables (I 

and ncell) are shared by the system (SS0), motor (SS2) and battery (SS3); and the last 

two design variables (ds and ls) are shared by the bevel gear (SS1) and motor (SS2). 

SS2 : Motor

min   mass

max    torque load

SS1 : Bevel Gear

min    mass

min    stress

SS3 : Battery

min   mass

max    duration

SS0: System

min     mass
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There is also a coupling variable σload (motor output torque at loaded condition) 

which is an output from the motor subsystem and input to the bevel gear subsystem. 

The details of the system and subsystem design variables can be found in Li et al. 

(2010c). Notice that in this example each subsystem also has its own design 

objectives.  

In the angle grinder example, a large number of parameters exists and many of them 

are uncertain. These uncertain parameters are shown in Table 4.3. Notice that a range 

of [-10%, 10%] for the uncertainty interval is specified. The acceptable variation 

range for the objective functions and coupling variables are each 5% from their 

nominal values.  

Table 4.2 System and subsystem optimization problem specifics 

 Subsystem0 
(system) 

Subsystem1 
(gear) 

Subsystem2 
(motor) 

Subsystem3 
(battery) 

# of objective functions 2 2 2 2 
# of constraint functions 2 3 10 6 
# of design variables 5 2 6 5 
# of uncertain parameters 1 1 3 4 
# of target variables 1 1 0 0 

 

Table 4.3 Uncertain parameters in angle grinder example 
Para

meter Desciprtion Nominal 
value 

Uncertain 
interval 

Vcell nominal cell voltage (V) 1.2 [-10%, 10%] 
rcellmax max battery cell radius(mm) 100 [-10%, 10%] 
hcellmax max battery cell height(mm) 200 [-10%, 10%] 
Rw 20 awg copper wire resistivity (ohms/m) 0.036 [-10%, 10%] 

Aw 20 awg copper wire cross-sectional area 
(mm2) 0.504 [-10%, 10%] 

Mext mass of misc components (kg) 1.355 [-10%, 10%] 
α brush loss factor 2 [-10%, 10%] 
wf face width in meters (m) 0.008 [-10%, 10%] 
tcell battery cell wall thickness (mm) 0.2 [-10%, 10%] 
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As in the first numerical example, two deterministic optimization approaches are first 

applied to the angle grinder model. The optimal solutions from new MCO are 

compared with those from MCO as shown in Fig. 4.5 (a). In terms of closeness to the 

baseline (all-at-once) optimal solutions and the spread in the objective space, the new 

MCO solutions are better than the MCO solutions. The same trend can be observed 

from Table 4.1 in which the average values for closeness (HD) and spread (OS) from 

the new MCO are better than MCO. The average number (based on ten runs) of 

function calls for MCO and new MCO approaches are approximately 6.5×107 and 

2.5×107 respectively.  

  

(a) (b) 
Fig. 4.5 System Pareto optimum solutions for angle grinder example 

(a) deterministic solutions (b) robust solutions 

Next, the robust optimization approaches are applied to the angle grinder example 

with the uncertainty specified in Table 4.3. The robust optimum solutions from 

McRO, AA-McRO, new McRO and new AA-McRO are compared with the baseline 

solutions in Fig. 4.5 (b). It is observed that the solutions from new McRO slightly 

dominate the solutions from McRO, and the optimum solutions from the new AA-

McRO are better than AA-McRO solutions in terms of the closeness to the baseline 
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solution. Moreover, the optimum solutions from the new McRO and AA-McRO 

cover a wider range than the previous approaches. The number of function calls for 

different McRO approaches can be found in Table 4.1. Again, as in the numerical 

example, the solutions are verified with a 5% error threshold. The average (mean) 

values of the quality metrics from all test runs with different approaches are again 

compared and shown in Table 4.1. The values of quality metrics are consistent with 

the results in Fig. 4.5. Finally, the robustness for the optimum solutions from all 

solution approaches is verified as in the numerical example.  

4.5 Summary 

A new approximation-assisted McRO (new AA-McRO) approach is developed in this 

Chapter. The new AA-McRO significantly improves the convergence (based on 

numerical evidence) and overcomes computational difficulties in a previously 

developed McRO (Li and Azarm, 2008) and AA-McRO (Hu et al., 2012b). The new 

AA-McRO enhances the convergence by transforming the multiobjective system 

problem at the upper level into a single-objective upper-level coordination problem 

and a multiobjective lower-level optimization problem. This transformation allows 

the new AA-McRO achieve convergence more efficiently than the previous 

approaches. To mitigate the computational cost, the new AA-McRO replaces 

subsystem analysis outputs which are used for calculating design objectives and 

constraint functions with approximations. The new AA-McRO also verifies the final 

optimum solutions until the absolute error falls under a user-specified threshold. Two 

examples are used to demonstrate the applicability of the proposed new AA-McRO 

and compare it with several related approaches. It is found that the new MCO, new 



  

 94 

 

McRO and new AA-McRO converge faster than the previous MCO, McRO and AA-

McRO approaches. This is attributed to the single-objective problem dedicated to 

coordinating the shared and coupling variables. Both the AA-McRO and new AA-

McRO require significantly fewer number of function calls and thus more efficient 

than the other CO approaches that do not use approximation. In both examples, the 

total number of AA-McRO sample points is several orders of magnitude smaller than 

the number of function calls required by the McRO and new McRO approach. 

However, the optimal solutions from the new AA-McRO are better than the AA-

McRO solutions in terms of closeness to the optimum Pareto frontier and spread in 

the objective space. The robustness of final solutions in McRO, AA-McRO, new 

McRO and new AA-McRO was verified using a Monte Carlo simulation and found to 

be acceptable. Although the performance of the new AA-McRO is attractive for the 

examples, the approach requires additional coupling variables compared to the 

previous approaches because the original system optimization is moved to the lower 

level. In the case in which a problem has many coupling variables between the 

subsystems and system problem, this move could create many target variables in the 

coordination problem which can increase the problem size compared to AA-McRO. 

On the other hand, although the online approximation in AA-McRO provides a good 

estimate of the predicted functions according to the results in both examples, the 

approximation accuracy is dependent upon the approximation method used.  

In the next chapter, a two-stage decision support system (DSS) is developed to 

integrated business and engineering decisions under uncertainty for an oil refinery 

case study based on the AA-MORO approach of Chapter 3. 
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Chapter 5 Integration of Engineering and Business 

Decisions in Oil Refineries Using AA-MORO and 

Agent-Based Approaches 

The material of this chapter is essentially the same as that given in the paper by Hu et 

al. (2012a)5 with some slight modifications.  

It is generally very challenging for an oil refinery to make integrated decisions 

encompassing multiple functions based on a traditional Decision Support System 

(DSS), given the complexity and interactions of various decisions. To overcome this 

limitation, we propose an integrated DSS framework by combining both business and 

engineering systems with a dashboard. The dashboard serves as a human-computer 

interface and allows a decision maker to adjust decision variables and exchange 

information with the DSS. The proposed framework provides a two-stage decision 

making mechanism based on optimization and agent-based models. Under the 

proposed DSS, the decision maker decides on the values of a subset of decision 

variables. These values, or the first-stage decision, are forwarded through the 

dashboard to the DSS.  For the given set of first-stage decision variables, a multi-

objective robust optimization problem, based on an integrated business and 

engineering simulation model, is solved to obtain the values for a set of second-stage 

decision variables. The two-stage decision making process iterates until a 

convergence is achieved. A simple oil refinery case study with an example dashboard 

demonstrates the applicability of the integrated DSS. 

                                                 

5 Hu, W., Almansoori, A., Kannan, P.K., and Azarm, S., 2012a, “Corporate Dashboards for Integrated Business and Engineering 
Decisions in Oil Refineries: an Agent-Based Approach,” Journal of Decision Support Systems, 52(3), pp. 729-741. 
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5.1 Introduction  

An oil refinery is a complex and continuous processing system with a series of highly 

nonlinear and strongly coupled subsystems (Pinto et al., 2000). Such a system 

presents considerable difficulties for enterprise management, operational optimization 

and process control, especially in uncertain environments (Khor et al., 2008). 

Managerial decisions for an oil refinery need to take into account capital investments, 

production, sales, material supply, product transportation, inventory, product 

developments and improvements, financial markets and market risks (Chryssolouris 

et al., 2005, Grossmann, 2005, Pongsakdi, et al., 2006). It is crucial that decision and 

information flow at different hierarchical levels of the company be considered as a 

whole to account for uncertainties in demand, raw material procurements, product 

quality and other market changes while achieving effective integration of business 

and engineering decisions (Koutsoukis et al., 1999).  

Managing the inherent tradeoffs in decisions in business and engineering processes 

are most essential to an oil refinery’s success and profitability. A typical oil refinery 

business process consists mainly of crude procurement, sales, inventory, 

transportation (delivery), and others (Lee et al., 1996). While business decisions are 

made at the upper level of the overall refinery operations, the lower-level engineering 

decisions are focused on transforming crude oil into various intermediate and end 

products in an energy-efficient manner (Kondili et al., 1993) while meeting the 

specifications demanded by the upper-level business processes. Several commercial 

decision support tools in the context of oil refinery operations are available, e.g., 

GRTMPS by Haverly Systems (2003), RPMS by Honeywell (2006) and PIMS by 
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Aspen Technology (2009). However, these commercial tools are predominantly 

focused either on business process and supply chain management, e.g., GRTMPS, or 

on engineering and process control, e.g., RPMS and PIMS, while taking little 

consideration of the interactions and integration of business and engineering 

processes. Consequently, a significant gap exists between the upper-level business 

and the lower-level engineering decision processes, while the problems of 

adaptability of an engineering department in response to market fluctuations have 

become increasingly prominent (Wang, 2005). In order to improve operational 

efficiency and enterprise profitability, it is necessary to achieve integration between 

the business and engineering decisions by making full use of the information flow 

between them. 

In recent years, with an increasingly competitive global market, decisions in oil 

refinery business and engineering processes are frequently influenced by the market 

fluctuations and uncertainties. Matching demand and output of a refinery is a delicate 

balance, and a significant mismatch can be the difference between profit and loss.  

The management of this delicate balance has often led to comments such as “Oil 

production creates wealth, but oil refining has often destroyed it” (Mouaward, 2009). 

The commercially available decision support tools are typically developed with 

deterministic models and could suggest decisions which are sensitive to the 

uncertainty. Under such circumstances, it is desirable for business and engineering 

decisions to take into account the uncertain factors and obtain robust (or insensitive) 

decisions in midst of the fluctuating global markets and uncertain environments. The 

proposed DSS in this chapter is aimed at obtaining optimally robust decisions for 



  

 98 

 

products and/or processes, that is, solutions that are optimum and relatively 

insensitive to uncertainty.    

A variety of DSS methodologies and frameworks have been developed with real-

world applications (Raghunathan, 1996, Power and Sharda, 2007). Kim et al. (2002) 

evaluated the enterprise information portal systems in the context of knowledge 

management activities. Their framework can be used to improve knowledge 

integration and information flow and facilitate efficient operations in large scale 

enterprises. The related literature also reports on an active intelligent DSS to support 

complex system decision making (Rao et al., 1994). Various information structures 

for team decision making are also considered for business decisions (Rao et al., 

1995).  While many of these developments are common to oil refinery systems, oil 

refinery problems are characterized by volatile input and market conditions that make 

it particularly challenging for DSS development. 

Focusing on business decisions in an oil and petrochemical system, Chryssoloouris et 

al. (2005) presented a simulation-based approach to tackle short-term refinery 

scheduling problem. Their approach is able to handle discrete decision variables in a 

short decision-making time frame thus handling the uncertainties using a shorter 

planning horizon. Paolucci et al. (2002) considered the problem of allocating the 

crude oil loads of tanker ships to port and refinery tanks. Pitty et al. (2008) and Koo 

et al. (2008) used Matlab (Mathwork, 2010) to model the integrated refinery supply 

chain taking into consideration the activities of each component of the chain.  They 

were able to model various business decisions and policies and to monitor the impact 

on the company’s business performance. Clark (2005) showed the possibility for a 



  

 99 

 

refinery company to monitor its supply chain in real-time or near real-time using 

advanced forecasting, planning and scheduling tools. Pinto et al. (2000) investigated 

optimization of a multi-product plant and proposed modeling of multi-product plant 

assuming that the fluctuations in market demand characteristics provide opportunity 

to define new operating points that increases the production of more valuable 

products. Gattu et al. (2003) identified integration of yield accounting with SAP 

(2010) for inventory management and order fulfillment and allocation. Their 

approach is based on an online (real time) optimization of the whole refinery. Jackson 

et al. (2003) used nonlinear optimization in the planning of multi-plant production 

site, where nonlinear models are used at the plant level to determine monthly 

production and inventory levels to meet demand forecast and maximize profit. Zhang 

and Zhu (2000) proposed a two-level decomposition approach for optimizing a large-

scale refinery plant. The main advantage of their technique is the flexibility to adapt 

different optimizers for different subsystems.  

While the majority of literature focus on refinery business decisions as presented 

above, optimization models for engineering decisions have also been studied (Al-

Sharrah et al., 2001). For example, Gadalla et al. (2003) focused on optimization of 

an existing distillation process by changing key engineering variables. Micheletto et 

al. (2008) developed a mix-integer mathematical model for operational variables to 

minimize refinery utility costs. However, none of the previous work has considered 

both business and engineering decisions in a larger enterprise such as an oil refinery. 

This chapter proposes to integrate business and engineering decisions with a 

dashboard based on an agent-based approach (Shoham et al., 2007) and a two-stage 
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decision-making process. Under the proposed decision support framework, dashboard 

serves as a human-computer interface which allows a decision maker to adjust 

decision variables and exchange information with the DSS. During the decision-

making process, the first-stage decision variables are determined by the decision 

maker and forwarded through the dashboard to the DSS.  For a given set of first-stage 

decision variables, the DSS simulates the business and engineering performances of 

the refinery as a function of the second-stage decision variables. Essentially, the 

second-stage decision-making process is posed as a multi-objective (both business 

and engineering objectives are considered) optimization problem which is solved to 

obtain a set of optimum solutions from which a preferred one is selected by the 

decision maker. Upon observing the selected solution in the oil refinery and its 

performance, the decision maker is able to refine and adjust the first-stage values of 

decision variables in order to achieve certain goals. Finally, the first-stage decision 

variables are updated through the dashboard and optimization of the second-stage 

decision variables is repeated.  With the help of dashboard, the decision maker is able 

to interact with the DSS until a desired refinery performance is achieved. To 

demonstrate the proposed integration framework, a simple oil refinery case study is 

developed, in which the decision maker is modeled as an intelligent agent. The values 

of the first-stage decision variables are generated from a distribution profile function 

and updated using a no-regret learning algorithm (Hart and Mas-Colell, 2000) 

according to the profit. The oil refinery simulation model was developed to simulate 

the business and engineering performances using an agent-based simulation tool 

NetLogo (1999) and a commercial simulation software HYSYS (2009), respectively. 
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In the case study, a multi-objective robust optimization approach is applied to solve 

the integrated business and engineering optimization problem. As we show in this 

chapter, the integrated DSS framework considerably improves efficiency and 

effectiveness of decision support and information-processing capability for oil 

refinery decision making under uncertainty. 

In the next section, a background on multi-objective robust optimization and the 

agent based approach is provided. In Section 5.3, a general framework for an 

integrated DSS is proposed. A case study which presents the specifics of the system 

constructed on the basis of the proposed framework is presented in Section 5.4. 

Section 5.5 concludes this chapter by providing the advantages of the integrated 

framework. 

5.2 Problem Definition and Background 

This section first presents the problem definition and then presents the background on 

agent-based approach for the proposed framework. 

5.2.1 Problem Definition 

Consider an enterprise such as an oil refinery company where the values for a set of 

business and engineering decisions need to be determined in order to achieve certain 

goals, e.g., to maximize profit and to maximize product quality. The decision 

variables are divided into two subsets, each of which contains both business and 

engineering decisions. The first set of decisions, as represented by xI (a vector), 

consists of the values of decision variables which are set by the decision makers. A 

decision maker can be the manager or an expert in the company who makes critical 
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and strategic decisions and can set such values based on his/her expertise and 

experience. The second set of decisions, as represented by xII (also a vector), includes 

decision variables considered for optimization.  Categorization of decision variables 

to either xI or xII is based on the following rules: (1) the decision space (number of 

decision variables) for xI is limited because it is difficult for a human decision maker 

to consider too many decisions; decisions on xI typically consist of variables that 

decision maker has expertise/intuition and experience in setting; and (2) there is 

almost no limit on the number of decision variables in xII unless restricted by the size 

of optimization problem and computation costs. 

In this study, an oil refinery is characterized by a series of models which defines the 

functional relationships between the inputs and the outputs. The inputs to the oil 

refinery include a set of decision variables which are controlled by the decision maker 

and some parameters which are fixed at their nominal values. For example, a 

parameter such as the price of phthalic anhydride (an end product) is fixed at its 

nominal value of 1,200 $/ton. The outputs include intermediate and end product 

flows, utility costs, performance and characteristics of process units and so on. The 

outputs from the refinery are used to calculate Key Performance Indicators (KPIs) as 

well as the objective and constraint functions in the optimization problem. It is 

assumed that the lower and upper bounds of all decision variables are known a priori. 

Further, both decision variables and parameters can have interval uncertainty whose 

lower and upper limits are assumed to be known. Before introducing the proposed 

DSS framework, we present a brief introduction of two techniques used in the DSS 

system next.  
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5.2.2 Agent-Based Approach 

An agent is an entity (software, model or individual) that performs a specific task 

without intervention of users or other agents (Julka et al., 2002a, 2002b). The most 

essential characteristic of an agent lies in its capability of making independent 

decisions. An agent can be responsive to and learn from the environment which is 

usually referred to as the adaptive behavior in an agent-based approach. In the 

proposed DSS framework, the agent-based approach is used to model the business 

process and the interaction between decision maker and dashboard, as elaborated 

next.  

In simulating the refinery business model, the refinery, its inventory and the 

customers are each modeled as an agent. During a simulation cycle, each customer 

agent determines the quantity of product it is willing to purchase.  This could be 

based on a realization from the distribution of the demand and sometimes updated 

based on a customer modifying its preferences based on other customers’ preferences 

(learning from others). When a customer agent places its order, the refinery and 

inventory agents will respond and decide how to fulfill the order based on a 

predefined protocol. For instance, an end product is always delivered to a customer 

agent directly from the refinery whenever the production meets the demand; also the 

remaining products by the end of each simulation cycle are stored in the inventory. 

An inventory agent incurs a holding cost based on the amount of stock in inventory. 

There is also a “stock-out” penalty cost when stock in the inventory runs out or is not 

enough to fulfill an order. Since the rate of penalty cost is typically higher than the 

holding cost, the inventory agent should strike a balance between keeping too much 
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stock, which runs up inventory holding-costs, and too little stock, which brings a 

greater risk of running out of stock and incurring excessive penalty cost.   

In general, the decision maker uses the dashboard to determine the values of some 

decision variables (xII) and then selects the values of the rest of the decision variables 

(xI) and vice versa. On the other hand, by taking the values of the decision variables 

xI from the decision maker, the dashboard uses the optimization model to obtain a 

new set of decision alternatives x II for the decision maker. This action-reaction 

process between the decision maker and the dashboard would eventually align with 

an improvement in the corporate profit such as profit. In the case study, the decision 

maker and a multi-objective optimization assisted dashboard are each modeled as an 

agent. The decision making agent is responsible for deciding on xI, while the 

dashboard agent generates a set of values for xII. These two agents interact by 

observing decisions made by each other and gradually learn to improve the decisions. 

In particular, a “no-regret learning” algorithm is used to model a “simulated decision 

maker” in the case study. The detail of the interaction between the decision maker 

and dashboard is discussed in Section 5.3.4 and the “no-regret learning” algorithm in 

Section 5.4.4.  

5.3 An Integrated Decision Support System 

The main components in the business and engineering domains are presented first. An 

integration framework is presented next which considers both business and 

engineering domains. Finally, a dashboard is developed as a decision support tool for 

the proposed DSS framework. 
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5.3.1 The Business Domain 

An oil refinery’s business domain is characterized by a  network of retailers, 

distributors, transporters, storage facilities, and suppliers that participate in the sale, 

delivery, and production of a series of fuel and petrochemical products.  The business 

domain in a typical oil refinery has the following components: 

Procurement: request and track crude oil supply, and maintain crude supply records.  

Demand planning: create an overall demand forecast for the oil refinery. 

Capacity planning: evaluate the long-term and short-term capacity of the refinery to 

meet customers' demand. 

Material requirements planning: determine crude quality requirements to support the 

production plan.  

Inventory management: develop inventory policies and decisions based on the 

primary inventory cost. 

Distribution planning: select the most cost-effective route and inventory movements 

based on customers’ demand, transportation and inventory costs. 

The oil refinery business domain serves to collect and process data concerning 

customers, orders, market fluctuations, distributors and services. An important 

function of oil refinery business is to determine market demands with respect to 

actual customer orders and estimate market trends by applying forecasting 

techniques. Based on the market information, the business decision variables such as 

how much crude oil to be purchased, what type of end products to produce and the 

quality requirements of these end products, are made to maximize profit for a given 

time period. The formulation of profit is given in Eq. (5.1):  

http://www.businessdictionary.com/definition/retailer.html
http://www.investorwords.com/1501/distributor.html
http://www.investorwords.com/4762/storage.html
http://www.businessdictionary.com/definition/facility.html
http://www.investorwords.com/4821/supplier.html
http://www.investorwords.com/4363/sale.html
http://www.investorwords.com/1386/delivery.html
http://www.businessdictionary.com/definition/production.html
http://www.investorwords.com/3874/product.html
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where cpro is the unit price of products and ccru is the unit cost of crude oil. qpro and 

qcru are the quantities of product sales and crude oil feed flow rate respectively. Cre s 

represents other costs such as the capital cost, operating and utility costs, labor cost, 

inventory cost and so on. S1 denotes different types of products and S2 represents 

different types of crude oil. S3 includes resources that the production requires, e.g., 

human resources, utility and so on.  Notice that the quantity of feed flow rate Fk is a 

business decisions variable in Eq. (5.1). However, there are other business decision 

variables in a company that are not explicitly expressed in Eq. (5.1). For example, the 

quantity of an intermediate product used for production of an end-product is a short-

term business decision not given in Eq. (5.1). Such a decision could affect the output 

capacity. On the other hand, end-product quantity and quality also depend on 

engineering decisions such as the operational settings. Therefore, the quantity on 

product sales qpro is a result of both business decisions and engineering decisions. On 

the other hand, if difference between the internal and external markets is considered, 

product sales can be divided into internal market sales and external market sales as in 

Eq.(5.2): 

 
1 1, 1,

, , , ,
I E

pro pro pro I pro I pro E pro E
pro S pro S pro S

q c q c F c
∈ ∈ ∈

= +∑ ∑ ∑  (5.2)  

where qpro,I and qpro,E represent quantity of products sold to the internal and external 

markets respectively. cpro,I and cpro,E represent the unit price of products in the 

internal and external markets respectively. In both Eq. (5.1) and Eq. (5.2), the unit 

price/cost of product and material such as cpro (including cpro,I and cpro,E), ccru and 
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Cres are business parameters whose values can be assumed known. However, these 

parameters might have uncertainties. The uncertainties in business parameters are 

considered in the proposed DSS framework using the AA-MORO approach, while the 

detail will be discussed later in this paper. In the next section, the components of the 

engineering domain are presented.  

5.3.2 The Engineering Domain 

The oil refinery’s engineering domain starts from the supply of crude oil. Crude oil is 

separated in the Crude Distillation Unit (CDU) into kerosene, naphtha, gas oil, 

petroleum gases, and others. These intermediate products are further processed and 

blended into fuel (e.g., gasoline, kerosene) and other petrochemical products. The 

objectives of an engineering department are to maximize the purity of the products 

that they produce while keeping the utility (energy, electricity, cooling water and so 

on) cost at a minimum level.  Engineering is also responsible for collecting, 

accessing, and analyzing production data, and forwarding the critical information to 

the management. In order to meet business goals and comply with an oil company’s 

overall plan, decision maker in an engineering department need to consider a few 

critical factors as in the following: 

Operation setting: adjust operation parameters in the process equipment, for example 

feed flow rate, reflux ratio, boil-up ratio, and utility in CDU. 

Production scheduling: develop a feasible production schedule for a product, given 

demand, production plan, capacity, and material availability. 

Specifications: determine the quality specification of end products according to the 

law, standards, and regulations, taking into account customer requirements. 
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Quality management: monitor variations in the intermediate and end product quality 

through the enforcement of quality control criteria 

Maintenance: optimize equipment operations to reduce utility cost, malfunctioning 

and equipment maintenance fee.   

Typically, engineering decisions are focused on the operational variables in the 

process equipments and thus calculating product purity for a set of engineering 

decision variables involves solving a series of complicated nonlinear equations. In 

practical applications, this can be accomplished with the help of chemical process 

simulation software such as Aspen HYSYS (2009).  

In a refinery, all facilities need to operate in an equilibrium state defined by the 

nominal values of the engineering process variables. However, uncertainty in the 

operating environment and variance in crude oil composition and properties tends to 

cause fluctuations in the engineering process, which could affect the quality and 

specification of the products. In the proposed DSS framework, AA-MORO is used to 

consider such uncertainty in engineering parameters. On the other hand, the 

engineering departments are at the lower echelons of decision making in an oil 

refinery and are rarely involved in the upper-level business/management decision-

making process. If the engineering department can only make adjustment on the 

process variables based on the decisions made solely by the business process, the 

overall performance of the oil refinery can suffer as a result of the disconnect between 

business and engineering.  This limitation is expected to be overcome by integration 

of business and engineering decisions, as presented in the next section. 
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5.3.3 Integration of Business and Engineering Decisions 

The roadmap for integration of business and engineering decisions is shown in Fig. 

5.1. It contains two primary flows: decisions flow mainly from the top decision maker 

to the business and engineering simulation models, and information flows in the 

opposite direction. Both decision and information flows pass through the dashboard 

which assists decision maker in implementing decisions and visualizing information 

for decision making.  At the top of the roadmap, decision maker has certain goals to 

achieve during the decision-making process. These goals can include but not limited 

to maximizing profit, complying with market laws, regulations and etc. At the bottom 

of the roadmap, a robust optimization problem is formulated based on an integrated 

business and engineering simulation model.  

 

Fig. 5.1 Roadmap for integration of business and engineering decisions 

The business and engineering models each is capable of predicting respective 

business and engineering performances for a given set of decision variables and 

parameters. In this integrated model, the business decision focus on the long-term 
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strategic decisions which is made at the higher hierarchy while the engineering 

decisions focus on the short-term operational decisions which is formulated at the 

lower hierarchy. Furthermore, the business and engineering model are coupled 

through the coupling variables. The coupling variables are represented by the 

business/engineering outputs between the two models. To achieve the optimal 

decision, it is desirable to connect business and engineering models, taking into 

account the coupling variables between them. An example of such couplings is 

characterized by the feed flow rate which is determined by a business department will 

be used as an input by the engineering department. The engineering department, on 

the other hand, returns the operating (utility) cost and product flow rate to the 

business department for calculating profit. The values of these coupling variables 

must be agreed upon by both business and engineering departments. Identifying the 

coupling variables to reach a mutual agreement without the support of a DSS system 

is a delicate task which typically involves many trials and errors. In the proposed DSS 

framework, however, a consistency constraint is enforced for each coupling variable 

such that if there are any discrepancies on a coupling variable, the differences will 

lead to a violation of the corresponding consistency constraint. Consequently, the 

optimizer tries to minimize the inconsistency as much as possible to retain model 

feasibility. When the optimal decision are obtained, the approach will guarantee the 

business and engineering analysis models to agree upon each other while achieving 

the optimal objectives.  

Based on the integrated business and engineering model and considering both 

business and engineering objective and constraint functions, the optimization of 
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business and engineering decision variables is formulated as a multi-objective 

problem as follows: 
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where fB and gB,j represent business objective and business constraints, respectively, 

such as inventory capacity, limitation on the type and volume of products that can be 

produced, and so on. fE and gE,j represent engineering objective and engineering 

constraints, respectively, considering equipment processing capacity, maximum 

allowable vessel pressure and temperature for safety and other restrictions. xII is a 

vector consisting of business and engineering decision variables in optimization, as 

defined earlier in Section 5.2.1. pB and pE represent uncertain business and 

engineering parameters while ΔpB and ΔpE represent the variation in those 

parameters.  

Note that in Eq. (5.3), evaluation of each objective and constraint function such as fB, 

fE, gB, gE, requires a simulation run of either the business or engineering model. 

Therefore, it could result in a large number of function calls and present 

computational difficulties. However, in the proposed DSS framework, the AA-

MORO approach is employed to efficiently solve Eq. (5.3). On the other hand, in 

practice, the optimization problem in Eq. (5.3) may include many decision variables 

from both business and engineering domain, which poses another challenge to the 

decision maker of an oil refinery to observe and make decisions. To improve the 
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efficiency of decision-making process and quality of the decisions, an interactive user 

interface, or dashboard is constructed in the proposed DSS framework. The main 

function and role of dashboard is presented in the next section. 

5.3.4 Dashboard: Management Decision Support System 

Dashboard is a human-computer interface. In the proposed framework, dashboard 

connects the decision maker and the integrated business and engineering simulation 

and optimization model to facilitate presentation of information to top-level decision 

maker of the refinery.  

The layout of a conceptual dashboard for oil refinery performance management is 

shown in Fig. 5.2. One important capability of dashboard is to visualize KPIs. For 

example, profit from sales of an end product is an indicator of how efficient the 

company is in turning investment into net income and which products are driving 

profits. Similarly, stock-out cost and production informs the decision maker how well 

the oil refinery’s production capacity can meet market demands. With the current and 

historical KPIs presented on dashboard, the decision maker is able to observe oil 

refinery’s performance first hand. In addition, the dashboard allows decision makers 

across various departments in an oil refinery to coordinate and implement decisions. 

When there is a significant deviation of KPIs from their normal value, the decision 

maker can take actions by changing the decision variables through the sliders on 

dashboard. Because an oil refinery may involve many decision variables, it is 

typically difficult for a decision maker to control all decision variables manually on 

the dashboard. Therefore, the proposed DSS framework also integrates multi-

objective optimization to obtain optimum decision variables as shown in Fig. 5.2.  
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Fig. 5.2 Layout of a conceptual dashboard for oil refinery performance management  

Fig. 5.3 shows decision support role of a dashboard where xI and xII represent 

decision variables controlled by the decision maker and optimizer, respectively. 

Particularly, the values of xI are determined according to decision maker’s expertise 

and previous experience while the value of xII is selected based on the optimum 

solutions obtained from AA-MORO. When making decisions, decision maker needs 

to evaluate the information shown on the dashboard. The decision maker has certain 

goals to achieve such as maintain all the KPIs in the oil refinery at their normal level 

and ensure that the refinery is profitable. It should be noted, however, that any 

decision from the decision maker must comply with market regulations and other 

constraints. On the other hand, the objective functions in AA-MORO need to be 

consistent with the goal of decision maker. For example, maximizing profit from 
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sales and maximizing the purity of an end-product are the two primary goals in the 

case study presented in Section 5.4. 

 

Fig. 5.3 The decision support role of dashboard 

With the help of dashboard, the decision-making process starts with an initial set of 

decision variables (x I) by the decision maker. These decision variables (xI) are then 

reflected (update previous decision variables) on the dashboard and then passed on to 

the integrated business and engineering simulation in the ‘Optimization’ block. Next, 

AA-MORO searches for the robust optimum solutions using the simulation model for 

the given set of decision variables (xI) made by the decision variable maker. The 

optimum decision variables, represented by x II
*(xI), are forwarded to the oil refinery 

where ∏(xI, x II
*(xI)) represents firm-market assessment (for example, profit) 

function. Based on the optimum decision variables xII
*(xI) and current values of 

decision variables xI, the KPIs of the oil refinery are observed and sent to the 

dashboard. By observing the KPIs on dashboard, decision maker needs to update the 

decision strategy function s(xI). According to the updated strategy function, decision 

maker makes a new decision on xI and updates the decision variables on the 

dashboard. The integrated simulation-based AA-MORO is then repeated. After the 

new set of optimum decision variables are obtained and implemented in the refinery, 

it may impact the current KPIs according to the firm-market assessment. As a result, 
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these KPIs may be changed and are shown on the dashboard again, through which the 

decision maker continue to update decision variables until plant performance reaches 

an equilibrium state with desired values of KPIs. 

In the next section, we use a case study to demonstrate how the above mentioned 

approach works for an example dashboard. 

5.4 An Oil Refinery Case Study 

In this case study, the focus is on (1) identifying the KPIs that help better represent 

the interactions among the market forces, the management policies and business and 

engineering decisions, (2) designing the measurement schemes across various 

business and engineering departments that will encompass the areas of marketing 

metrics, financial measures, and key engineering performance measures, and (3) 

designing simulation studies to test these measures under different product market 

(ranging from products being substitutes to products being complements among the 

firms) scenarios, and the sensitivity of these measures to policy changes and actions. 

Based on the KPIs, the measurement schemes and simulations, a dashboard that 

integrates data of the market, the company, and those KPI’s is devised.  

The schematic of the supply, production, and marketing activities involved in the case 

study is shown in Fig. 5.4. In the figure, “Murban” refers to a particular type of crude 

oil. The internal market consists of local customers, while the external market is 

composed of other customers not considered in the internal market, e.g., foreign 

customers. The schematic starts with the crude oil (Murban) extraction in the oil field 

where the oil refinery purchases Murban from the oil extraction company. The 

majority of the purchased Murban is transported to the oil refinery plant for 
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producing fuel and petrochemical products, which are sold in both internal and 

external market. In addition to supply internal and external market for petroleum 

product demand, the oil refinery in the case study can also sell some portion of crude 

oil directly in the external crude oil market, as shown in Fig. 5.4.   

 

Fig. 5.4 Schematic of case study model 

Inside the oil refinery plant in Fig. 5.4, Murban is first processed in the Crude 

Distillation Unit (CDU), where the output of CDU includes among others some 

naphtha. Naphtha is then used to produce o-xylene and processed in a reactor-

distillation unit. One output product from the reactor-distillation unit is phthalic 

anhydride, an industrial chemical for production of plasticizers for plastics. In our 

case study, it is assumed that phthalic anhydride is the end product sold in the market.  

In the case study, we make various other assumptions. One assumption is that 

phthalic anhydrides can be sold directly to the internal and external customers if the 

production from the refinery is equal or greater than the quantity of demands. Note in 

reality, the products from refinery are first stored in a short-term inventory whenever 

they are produced. The products that are stored in the short-term inventory are then 
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delivered to customers, depending on their demands. In the case study, however, the 

short-term inventory is not considered and the transportation and short-term inventory 

costs are ignored. After satisfying customer demands, the remaining (excessive) 

products are forwarded and stored in the designated long-term inventory to meet 

future customer demands. Long-term inventory costs are considered in the case study. 

In case the production from the refinery is less than demand, the product previously 

stored in the long-term inventory is used to fulfill the demand. However, if a 

combination of the refinery production and inventory still fails to meet the demand, a 

stock-out penalty cost has to be assessed.   

The decision variables in the case study are summarized in Table 5.1. Among these 

decision variables, the amount of daily crude oil purchase (variable xI) is determined 

by the decision maker and a few selected engineering and business decision variables 

(xII,1 , xII,2,… xII,5) are determined by AA-MORO (optimization).  

Table 5.1 Decision variables in the oil refinery case study 

Description Variable Unit Lower bound Upper bound 

Daily crude oil purchase  xI bbl/day 9.0×104 10.0×104 

Percentage of crude oil sold 

to external market  
xII,1 N/A 0% 100% 

Percentage of storage sold to 

external market 
xII,2 N/A 0% 100% 

Mass flow rate of feed air  xII,3 kg/s 24 27 

Pressure of cooled mixture  xII,4 kPa 100 104 

Phthalic column reflux ratio xII,5 N/A 0.3 2.0 

In general, both xI and x II are defined as vectors and include engineering as well as 

business decision variables. In the case study xI is a scalar and contains only one 
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business decision variable for simplicity but xII includes two business decision 

variables (xII,1 and xII,2) and three engineering decision variables (xII,3, xII,4, xII,5) as 

shown in Table 5.1.  

In the case study, it is also assumed that both engineering and business parameters 

can have interval uncertainties. For example, the temperature of feed stream to 

phthalic distillation column is an uncertain engineering parameter and the selling 

price of phthalic anhydride in external market is an uncertain business parameter. The 

nominal values of uncertain parameters and their lower and upper limits of 

uncertainties are shown in Table 5.2.  

Table 5.2 Uncertain parameters in the oil refinery case study 

Description Nominal Unit Lower limit Upper limit 

Price of phthalic anhydride in 
external market 

1,200 $/ton -5% 5% 

Temperature of feed stream 
to phthalic distillation column 

75.27 °C -5% 5% 

The objective of AA-MORO is to maximize profit that the refinery generates through 

the sale of phthalic anhydride and maximize the purity of phthalic anhydride. The 

optimization problem needs to satisfy certain constraints such as capacity of 

inventory, limitation of pressure and temperature in the oil refining process and so on. 

It is subject to the lower and upper bounds on the decision variables as specified in 

Table 5.2. In order to obtain robust optimal solutions, an acceptable variation range 

for each objective is defined. In the case study, the acceptable range for each 

objective is assumed to be ±5% of the nominal objective function value. By solving 

the bi-objective optimization problem, AA-MORO obtains a set of Pareto optimum 
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solutions from which the decision maker can choose. The selected values for 

optimum decision variables (xI) are assumed to be used or implemented in the oil 

refinery and accordingly the decision maker obtains the KPIs from the dashboard (as 

presented later) that will help him/her to adjust decision variables on xI.  

5.4.1 Engineering and Business Simulation 

The engineering model focuses on the reactor-distillation process for producing 

phthalic anhydride from naphtha. The process is simulated in Aspen HYSYS (2009), 

as shown in Fig. 5.5.  

 

Fig. 5.5 Process flow diagram of engineering simulation 

In the simulated reactor-distillation process, the raw materials are air and o-xylene. 

The vaporized o-xylene and hot air are first combined and then fed to the reactor. In 

the reactor, o-xylene is oxidized to form phthalic anhydride but some maleic 

anhydride may also be formed. The reactor effluent enters the switch condenser to 

remove light gases and water. From the switch condenser, the remaining anhydride 

and unreacted o-xylene are fed to a series of two distillation columns to separate and 
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obtain phthalic anhydride. The phthalic distillation column separates phthalic 

anhydride from the feed stream and the maleic distillation column separate maleic 

anhydride from the remaining components. The top stream from the maleic column 

contains mostly unreacted o-xylene with a small amount of maleic anhydride and 

water. In the simulation, the unreacted o-xylene is recycled and combined with the o-

xylene as feed material.  

The business model is simulated using the agent-based software NetLogo (1999). The 

business model characterizes the crude oil and end-product markets by simulating oil 

refinery supply and the customer demand. The customers, including the internal and 

external customers are modeled using the customer agents which can be distributors 

or downstream chemical companies. The internal and external markets for phthalic 

anhydride each have five customer agents. The demand by each customer agent is 

assumed to be normally distributed. The mean and standard deviation of demand for 

internal and external customer agents are summarized in Table 5.3. Notice that the 

probabilities for customers in both internal and external markets making purchases 

are presumed to follow truncated normal distribution as per empirical observations. 

The mean and standard deviation of the probability are also shown in Table 5.3. 

Particularly, the external crude oil market is characterized by one customer agent with 

a 100% probability of purchasing. That is, no matter how much the company decides 

to sell to the crude oil external market, all quantity will be purchased by the crude oil 

market customer agent.  
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Table 5.3 Parameter of customer agents in the oil refinery case study 

Description Number  
of agents 

Demand (kg/day) Probability 
mean std. mean std. 

Internal market 5 30,000 500 100% 10% 

External market 5 25,000 1000 100% 10% 

External crude oil market 1 - - 100% - 

Fig. 5.6 shows the simulation window of the business model in NetLogo. The 

business parameter and their descriptions in the Netlogo simulation are defined in 

Table 5.4, where the nominal values of business parameters are fixed. The two circles 

shown in the center of the simulation window represent the refinery agent and 

inventory agent. The black and white agents in the simulation window represent the 

internal customer agents and external customer agents, respectively. According to the 

interactions between the markets and the oil refinery, the profit from end-product 

sales can be obtained as an output from the business model.  

 

Fig. 5.6 Agent-based business simulation window in Netlogo 
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Table 5.4 Descriptions of business parameters in Netlogo 

Description Parameter Nominal 
Value Unit 

Price of crude oil in external market  pmur 70 $/bbl 

Percentage of inventory storage released 
to internal market finv-to-local 52% N/A 

Price of phthalic anhydride in internal 
market  p4 900 $/ton 

Inventory storage expense of phthalic 
anhydride   inv-level-penalty 4 $/ton/day 

Inventory stock-out penalty of phthalic 
anhydride   stock-out-penalty 400 $/ton 

Yield of naphtha from crude distillation ynaf 34% N/A 

Yield of oxylene from naphtha yoxy 22% N/A 

The input to the engineering simulation includes three decision variables (Table 5.1) 

such as mass flow rate of feed air, pressure of cooled mixture, phthalic column reflux 

ratio, one uncertain parameter such as temperature of feed stream to phthalic 

distillation column (Table 5.2) and the feed flow rate of o-xylene (obtained as a 

output from the business simulation). The output to the engineering simulation 

includes the purity and flow rate of phthalic anhydride. The input to the business 

simulation includes three decision variables (Table 5.1) such as daily crude oil 

purchase, percentage of crude oil sold to external market, percentage of inventory 

storage sold to external market, one uncertain parameter: price of phthalic anhydride 

in external market (Table 5.2) and the flow rate of phthalic anhydride (obtained as a 

output from the engineering simulation). The output of the business simulation 

includes profit and the feed flow rate of o-xylene. In the case study, the engineering 

and business simulations are connected through an interface program developed in 
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Matlab, which is used to run both simulations programmatically and exchange 

information between Netlogo and Aspen HYSYS.  

5.4.2 Formulation of Multi-Objective Robust Optimization 

Based on the engineering and business simulations, a multi-objective optimization 

problem is formulated to maximize profit (business objective) and maximize purity of 

phthalic anhydride (engineering objective), as defined in the following: 

 
2,

2,

Maximize:  Profit (objective 1)

Maximize:  Purity of phthalic anhydride (objective 2)

Subject to:  Business (e.g. inventory) constraints
                   Engineering (e.g. pressure) constraints

i

i

x

x

II II II

 
                   Uncertainty in parameters (e.g. price, temperature)

                   l u≤ ≤x x x

 
(5.4)  

Using the AA-MORO approach, xII,1 , xII,2,… xII,5 (including both business and 

engineering decision variables in Table 5.1) is robustly optimized.  

5.4.3 Dashboard 

Dashboard in the case study is developed using the Graphical User Interface 

capability in Matlab. It includes three main functional panels: “Key Performance 

Indicator”, “Decision Control” and “Optimum Decision”, as shown in Fig. 5.7. The 

daily crude oil purchase (xI) is controlled by the decision maker and a set of five 

engineering and business decision variables (xII,1 , xII,2,… xII,5) are considered for 

optimization by AA-MORO. Profit is used as a key performance indicator in the case 

study, as shown in “Key Performance Indicator” panel. The decision maker can 

observe current KPI as well as the data in the previous iterations. Based on the 



  

 124 

 

observation, decision maker then updates his/her decisions in the “Decision Control” 

panel when necessary. The history (simulation steps) of decisions made by the 

decision maker are recorded and shown as well. On the right-hand side, the 

“Optimum Decision” panel presents the multi-objective (Pareto) optimum solutions 

to the decision maker. The decision maker can select a preferred solution from the 

Pareto solutions. The table in the lower half of the “Optimum Decision” panel 

indicates the optimum values of selected solution.  

 

Fig. 5.7 A Matlab GUI based dashboard in the case study 

Decision making based on dashboard is an iterative process. In the following 

paragraph, we briefly explain how dashboard facilitates such a process: 

Initially, the daily crude oil purchase (xI) is determined according to previous settings 

in the oil refinery. Decision maker adjusts the slider bar in the “Decision Control” 

panel for an initial value of xI. Dashboard forwards the value of xI to the integrated 

business and engineering simulation model. When decision maker engages the 
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“optimization” button on dashboard, AA-MORO start running multi-objective robust 

optimization based on the integrated engineering and business simulations for a fixed 

value of xI (as determined by the decision maker earlier). After optimization 

completes, AA-MORO obtains a set of multi-objective optimum solutions. These 

solutions are presented in the “Optimum Decision” panel, as shown in Fig. 5.7. From 

these optimum solutions, the decision maker is required to select one solution per 

his/her preference. The optimum values of the decision variables (xII,1 , xII,2,… xII,5) 

for the selected solution are shown in the table in the lower half of the ‘Optimum 

Decision’ panel. These optimum values of xII, along with xI are then implemented in 

the oil refinery. According to engineering operation and the firm-market interaction, 

the actual values of refinery’s performance are obtained. Afterwards, decision maker 

engages the “Update KPIs” button on dashboard to refresh the current value of KPI in 

the “Key Performance Indicators” panel.  

By observing the KPI, the decision maker can adjust the previous values of decision 

variables on dashboard. The adjustment on xI is forwarded to the integrated 

simulations by dashboard. Once again, decision maker engages the “Optimization” 

button on dashboard to run AA-MORO and select an optimum solution for 

implementation in the oil refinery. Finally, the current KPIs may be changed and 

reflected on the dashboard after decision maker engages “Update KPIs”. 

Consequently, the decision maker updates xI after observing new data of KPI, and the 

procedure is repeated until a desired reading of KPI is achieved. 
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5.4.4 No-regret Learning 

In the case study, it is assumed that the decision maker has a decision strategy 

function, as represented by s(xI). A decision maker’s strategy function is essentially a 

probability distribution profile (or probability density function) of the decision 

variable x I. The decision-making process is comparable to drawing a sample from the 

strategy function. A change of the strategy function reflects a change of belief of the 

decision maker about a decision made previously. In simulating the decision-making 

process by the decision maker, a no-regret learning algorithm (Hart and Mas-Colell, 

2000) is used in the case study. We assume that the decision maker exhibits learning 

behavior, i.e., updating his/her decision strategy by iteratively making decisions and 

observing payoffs (Miller, 2007). We define “action” as the decision, i.e., xI
c, made in 

the c’th iteration. Additionally, we define “strategy”, i.e., s(xI), as a probability 

density function representing the likelihood that the decision maker chooses an action 

xI. By letting the decision maker exhibit learning behavior, we account for the fact 

that the decision maker may deviate from making optimal decision by anticipating the 

future (Montgomery et al., 2005).  

The no-regret learning algorithm is adapted to simulate the process that the decision 

maker uses to gradually develop his/her decision strategy by interacting with the 

dashboard. The no-regret learning algorithm was previously applied to represent a 

dynamic procedure of action-reactions among multiple players (Wang et al., 2011). In 

the case study, we consider the decision maker and the optimizer (presenting the 

optimization results in the dashboard) who make decisions collectively to affect the 

firm’s profit. The decision maker’s decision is made by learning from the past 
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whereas the optimizer (AA-MORO) searches and obtains decisions to optimize its 

objectives.  

Let ∏(xI, xI I) denote the profit function for the firm. The decision maker’s payoff 

function is set to be identical to profit. In every iteration, the decision maker first 

computes a regret function R defined as (c is the iteration counter): 

 ( )I I II I II
1

1( ) ( , ) ( , )
ncc c c c

c
R

nc =
= Π −Π∑x x x x x  (5.5)  

The regret function reflects the average increase in profit if an action has been always 

played in previous iterations. The strategy function, i.e., the probability of playing xI 

in the following iteration, is proportional to the regret: 
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where a positive superscript implies that a non-negative value of regret function is 

used. In case the calculated regret function value is negative, a zero value is used 

instead.  The above equations assume that the decision variable xI is discrete. In case 

xI is continuous, the summation in Eq. (5.7) is replaced with an integral. When the 

decision maker makes a decision, i.e., playing an action, it essentially draws a sample 

from the updated strategy function in Eq. (5.7).  

5.4.5 Dashboard Demo 

Two case study scenarios are considered. In both scenarios, the range for crude oil 

input (xI) is pre-specified based on unit capacity as 9.0×104 ≤ xI ≤ 1.0×105 (bbl/day). 
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In the first scenario, the decision maker controls the dashboard manually based on 

his/her experience. In the second scenario, the decision-making process and the 

control of dashboard is automated by using a no-regret learning algorithm, which is 

essentially used to simulate a decision maker.  

Scenario 1: xI is determined by decision maker 

In scenario 1, the value of daily crude oil input (xI) is determined by decision maker. 

For demonstration, it is assumed that decision maker randomly selects four discrete 

values for xI: 9.2×104, 9.4×104, 9.6×104 and 9.8×104 bbl/day. The decisions on daily 

crude oil that are selected by the decision maker are used to run the simulation. In 

each iteration, the decision maker first adjusts the decision control bar on dashboard. 

The value of daily crude oil input (xI) is sent by dashboard as fixed value to the 

integrated engineering and business simulation. Next, decision maker engages the 

“optimization” level on dashboard to initiate AA-MORO to obtain the multi-objective 

robust optimal solutions. Finally, decision maker is required to select one desirable 

solution from a set of optimum solutions based on its objective values. In addition, 

the optimum values for the decision variables corresponding to the optimum solution 

are implemented in the oil refinery by the dashboard. 

Fig. 5.8 shows the optimum solutions for each iteration in the objective function 

space. In Fig. 5.8, it can be seen that the two objective functions are conflicting and 

therefore as profit increases (its negative value decreases), the purity of phthalic 

anhydride decreases (its negative value increases). Comparing different iterations 

with different values of daily crude oil input, the range on product purity is similar. 
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However the largest profit is achieve in iteration 3 when the amount of daily crude oil 

input is 9.6×104 bbl/day. 

 

Fig. 5.8 Optimum design solution for case study scenario 1 

Scenario 2: xI is determined by no-regret learning 

In scenario 2, instead of the decision maker manually determining the value of daily 

crude oil input (decision on xI), a no-regret learning algorithm is used to simulate 

(mimic) the decision making process. Based on the no-regret learning, a total of 300 

iterations are simulated. In each iteration, a sample is first drawn from the strategy 

function s(xI) which is characterized by a distribution profile (PDF). The procedure 

of drawing a sample is comparable to the decision maker making a new decision. 

Dashboard is informed of the new decision and forwards it to the integrated 

simulation model. Similar to Scenario 1, AA-MORO obtains robust optimum 

solutions and again the decision maker selects a solution with maximum profit. 

Notice that a selection strategy can also be derived using a utility function (e.g., a 

weighed summation) of the two objective functions. For demonstration, the solution 
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with maximum profit is selected which essentially assumes the utility (weight) of 

product purity is zero. When the selected solution is implemented, the outcome profit 

is used to update the strategy function from which another sample (decision) is drawn 

and the iteration continues.  

The simulated distribution profile (PDFs) for s(xI) in iteration 10, 50, 150 and 300 are 

shown in Fig. 5.9. It can be seen that initially (i.e., in iteration 10), the distribution 

profile is diffusive because the decision maker has no information about the past. By 

iteratively making decisions through interacting with the dashboard and observing the 

outcome (profit), the decision maker gradually shift his/her decision to a more 

profitable position, as represented by the shift of distribution of the PDFs. 

Furthermore, the shrinkage of the distribution profile reflects that the decision maker 

strengthens her/her belief on the more profitable decisions.  

 

Fig. 5.9 Simulated distribution profile (PDFs) of daily crude oil input 

In Scenario 2, it is noticed that the shape of the distribution profile and the observed 

profit remain unchanged (converged) after 300 iterations. As the no-regret learning 
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algorithm is driven by profit, the value of profit is maximized when the simulation is 

converged. A closer look at Fig. 5.9 reveals that the maximum profit in Scenario 2 

corresponds to the peak of the PDF where the amount of daily crude oil input is 

between 9.5×104 and 9.6×104 (bbl/day).  This observation appears consistent with the 

result from Scenario 1 where profit is maximum at xI = 9.6×104 (bbl/day) among four 

discrete choices.  

It should be noted that a variety of other learning algorithms are also applicable to 

modeling the decision-making process. However, the simulation in Scenario 2 is 

primarily aimed at demonstrating how a human decision maker and an automated 

decision agent (i.e., AA-MORO) can interact and collectively improve a firm’s 

performances (e.g., profit).  We leave a comparison and appropriateness of learning 

algorithms to a future study. 

5. Summary 

The traditional oil refinery DSS is built around a single decision maker and based on 

either business or engineering decisions, but not on both. Under the traditional DSS, 

business and engineering decision makers make decisions only considering their own 

domains, and there is no connection/discussion between them. A significant limitation 

of the traditional DSS scheme is that both business and engineering decisions could 

drive to optimize their own local functional objective. The decisions made in this way 

could be conflicting or suboptimal. In this study, we show that when the business and 

engineering decisions are combined, an integrated DSS can be more effective in 

supporting the management to make critical decisions. This integrated DSS is based 

on an “all-at-once” multi-objective robust optimization scheme where business and 
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engineering analysis models are integrated and considered as a whole. Using the 

proposed integration framework, an oil refinery is able to obtain a global optimal 

solution and better decisions than otherwise. 

Complexities and problems of non-linearity that are inherent to any refinery supply 

chain optimization, and to which multi-objective optimizers have been proposed, can 

be efficiently combined as a backbone of the dashboard with the help of simulation 

software like NetLogo. The power of NetLogo resides in the ability to represent every 

single customer, their interactions, and the element of the supply chain and its 

interactions, and model these appropriately. In the context of stochastic demand data, 

by varying decision variables, we were able to monitor the company’s performance 

and ultimately tune those decisions to meet our objective of maximum profit. Also 

visible through the simulation were the changes to the elements that would constitute 

the dashboard, and the set of key performance indicators critical to the health of the 

company. We use a simple case study to show the decision support role of dashboard 

and how it can be used to coordinate across various departments in decision making. 

It is observed that a maximum simulated profit can be achieved in the two case study 

scenarios. This study and the integration framework are in the context of oil and 

petrochemical industries. The proposed framework is applicable to many firms with 

similar business and engineering sectors and it can also accommodate other market 

variables such as interest rate and exchange rate fluctuations.  

In the next Chapter, the conclusion of this dissertation is presented. The chapter 

highlights the contributions and limitation of three main research thrusts of this 

dissertation, followed by the recommendations for future work. 
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Chapter 6:  Conclusion 

In this dissertation, a new Approximation Assisted MultiObjective Robust 

Optimization (AA-MORO) approach and a new Approximation Assisted 

Multiobjective collaborative Robust Optimization (AA-McRO) approach under 

interval uncertainty are developed. Some of the highlights of these approaches are as 

follows: 

• Both AA-MORO and AA-McRO use online approximation that can be used to 

replace a computationally expensive objective and/or constraint function with an 

inexpensive metamodel, and significantly reduce the computational cost. 

• AA-MORO is developed based on an improved MORO framework. This 

improved MORO is sequential and significantly reduces the number of robustness 

evaluations compared to a previous MORO approach. 

• AA-McRO is based on a newly formulated bi-level collaborative optimization 

framework where a single-objective optimization problem in the upper level is 

used to coordinate the lower-level optimization problems and enhances the 

convergence (numerical evidence) of system solutions. 

• A two-stage robust decision support system is developed with AA-MORO to 

integrate business and engineering decisions in the context of an oil refinery. The 

proposed decision framework allows an oil refinery manager to make informed 

decisions more efficiently by way of a dashboard. 

Section 6.1 provides concluding remarks, followed by the contributions in Section 6.2. 

The limitations of the proposed approaches are summarized in Section 6.3. Finally, 

the recommendations for the future work are provided in Section 6.4. 
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6.1 Concluding Remarks 

In Chapter 3, a new MORO approach under interval uncertainty is developed. The 

new MORO approach performs robustness evaluation of solutions with respect to 

their objective and constraint functions based on a worst-case analysis. The 

robustness evaluation is only performed for the optimum solutions and this 

information is used to iteratively refine the feasible domain to locate robust optimum 

solutions. Compared to the bi-level approach, the new MORO approach significantly 

reduces the number of robustness evaluation needed to obtain robust optimum 

solutions. To further improve the computational cost, the new MORO approach is 

combined with an online approximation.  The resulting approach is called 

Approximation-Assisted MORO or AA-MORO. Several numerical examples and an 

oil refinery engineering example are solved and their results are compared for AA-

MORO and other MORO approaches. The comparison results indicate that typically 

AA-MORO requires considerably fewer number of function calls than the previous 

approaches.  

In Chapter 4, an Approximation Assisted Multiobjective collaborative Robust 

Optimization (AA-McRO) approach under interval uncertainty is presented. AA-

McRO uses a single-objective optimization problem to coordinate all system and 

subsystem optimization problems in a CO framework. AA-McRO is based on a new 

framework in which the consistency constraints in a CO are converted into penalty 

terms. These penalty terms are then integrated into the subsystem objective functions. 

By using this new framework, AA-McRO is able to explore the design space and 

obtain optimum solutions more efficiently compared to a previously reported McRO. 
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AA-McRO also uses online approximation for objective and constraint functions to 

perform system robustness evaluation and subsystem-level optimization. The 

optimum solutions from AA-McRO are verified online and considered acceptable 

only when the absolute error falls under a user-specified threshold. A numerical 

example and an engineering example are used to demonstrate the applicability of AA-

McRO. The results from AA-McRO and several related approaches including the 

previous and the new MCO and McRO are compared. It is found that the new MCO, 

new McRO and new AA-McRO converge faster (numerical evidence) than the 

previous MCO, McRO and AA-McRO approaches. This is attributed to the single-

objective problem that is dedicated to coordinate the shared and coupling variables. 

Both the AA-McRO and new AA-McRO require significantly fewer number of 

function calls and thus more efficient than the other CO approaches that do not use 

approximation.  

In Chapter 5, a two-stage decision support system (DSS) is developed in the context 

of an oil refinery to integrate engineering and business decisions under uncertainty 

using the AA-MORO approach. This integrated DSS is based on a scheme where 

business and engineering analysis models are integrated and considered together. The 

two-stage DSS allows the user to focus on the most critical decision variables in an 

oil refinery, while AA-MORO is used to optimize the rest of the decision variables. 

To demonstrate how the integrated DSS framework can be used in a real-world 

application, a simple oil refinery case study is developed with dashboard. The case 

study employs two scenarios to show that the two-stage DSS iteratively guide the 

user in the decision making process in achieving the desired refinery performance.  
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6.2 Contributions 

The main contributions of this dissertation are as described next. 

1. Development of a new MORO approach 

• A new sequential MORO approach is developed which does not require 

robustness evaluation for each candidate design point. Instead, the sequential 

MORO performs robustness evaluation only for the optimum solution points, and 

is more efficiency compared to the previously reported bi-level MORO approach. 

• The new MORO approach obtains robust optimum solutions by iteratively 

restricting the feasibility domain of the optimization problem. The approach 

accumulates the worst values of Δp during robustness evaluation and 

subsequently uses that information to form constraint cuts to refine the 

optimization problem and obtain robust optimum solutions.   

2. Development of a New MCO and a New McRO approach 

• A new bi-level collaborative optimization framework is developed for MCO. The 

new MCO approach uses a single-objective optimization problem at the upper 

level to coordinate the optimization problems in each subsystem at the lower level, 

which allows MCO to achieve convergence (numerical evidence) much faster 

compared to a previous approach.   

• A new McRO approach is developed with the same new bi-level collaborative 

optimization framework as in the new MCO. To consider interval uncertainty in 

the system and subsystem optimization problems, the new McRO integrates 

robustness evaluation in its lower level.  
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• In the new MCO and McRO framework, the consistency constraints are converted 

into penalty terms which are integrated into the objective function in both system 

and subsystem optimization. Using the penalty method in the system and 

subsystem optimization problems allows the optimizer to explore the design space 

better than using the consistency constraints in these problems.  

• The optimal solution selection strategy in the new MCO and new McRO are also 

improved. Instead of selecting a random solution, as is done a previously reported 

approach, the new selection strategy devised such that it achieves better 

consistency in the coupling variables among the subsystems.  

3. Integration of Online Approximation with MORO and McRO 

• A new online approximation approach is proposed in which the metamodel is 

updated using the optimum solution points. In this way, the predictive capabilities 

of the metamodel is progressively improved in the area where the optimum is 

expected to be, as more and more sample points are evaluated and added to the 

sample set.   

• A new online verification method is developed and implemented in the proposed 

AAO to quantify the accuracy of the estimated optimum solution. Using the 

online verification, the accuracy of the objective and constraint functions at the 

optimum solution points has to reach a user specified threshold before the 

solutions are declared. 

• Both AA-MORO and AA-McRO combine online approximation with the 

improved MORO and new McRO to reduce computational cost. 



  

 138 

 

4. An Integrated Decision Support System (DSS) 

• A new two-stage decision support paradigm is developed in which the decision 

maker and AA-MORO each determines a subset of the decision variables in an oil 

refinery. The values of decision variables determined by the decision maker 

depend on the values of decision variables optimized using an AA-MORO 

approach, and vice versa. These two stages are iterated. In this way, the decision 

maker is able to progressively refine the value of decision variables until a desired 

oil refinery performance is achieved. 

6.3 Limitations 

The limitations of the proposed approaches are summarized in the following: 

• The new MORO approach obtains robust design solutions by iteratively 

restricting the feasible domain of a deterministic optimization problem. The 

success of obtaining robust solutions from the new MORO depends on 

accumulation of the worst values of Δp during the robustness evaluation, which 

are used to form constraint cuts. In some numerical examples, the new MORO 

approach may not obtain as many robust solutions as the previous MORO 

approach given a limited number of iterations.  

• Online approximation in the proposed approaches, i.e., AA-MORO and AA-

McRO, provides good estimated values for the predicted functions according to 

the results in the numerical and engineering examples. However, the accuracy of 

the estimate is dependent upon the approximation (metamodeling) techniques and 

the parameters used.  
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• The new AA-McRO requires additional coupling variables compared to the 

previous McRO approaches. This is because the original system optimization is 

moved to the lower level. In the case in which a problem has many coupling 

variables between the subsystems and system problem, this move could create a 

large number of target variables in the coordination problem which can increase 

the problem size in AA-McRO.  

• The integrated DSS focuses on a small scale model of an oil refinery. The size of 

the problem can grow significantly considering the interaction and relationship 

between business and engineering decisions for real-world and larger scale oil 

refinery firms. This may create computational difficulty with the optimization and 

agent based DSS framework, as presented in this dissertation.   

The above limitations could be addressed as part of the future work, as discussed next. 

6.4 Recommendations for Future Work 

Some recommendations for future work are presented as follows. 

1. Quantification of reducible uncertainty in AA-MORO and AA-McRO 

A key assumption in this dissertation is that the uncertainty is defined by a known and 

fixed interval where the lower and upper bounds are known a priori. This assumption 

can be relaxed by considering interval uncertainty to be reducible. The concept of 

reducible interval uncertainty has been reported in the previous literature. Combining 

the concept of reducible uncertainty with the proposed AA-MORO and AA-McRO 

approach can be a natural extension to this dissertation. Several research questions 

need to be explored with reducible uncertainty in AA-MORO and AA-McRO. These 

are: (i) How to quantify the trade-off between cost of reducing the uncertainty and the 
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adjustments on the lower and upper bounds of uncertainty. (ii) How to combine 

reducible uncertainty in the existing AA-MORO and AA-McRO frameworks to 

provide design flexibility while not significantly increasing computational cost. (iii) 

How to develop an approximation approach to consider the adjustment of the 

uncertain interval and improve the accuracy of metamodeling in the robustness 

evaluation stage. 

2. Improvement to AA-McRO 

The current AA-McRO uses a bi-level formulation, where the evaluation of each 

system candidate design requires a call to the subsystem optimization problems, and a 

large number of system design points are considered. This bi-level formulation can 

require significant amount of computational effort, particularly when the size of the 

problem grows. To address this limitation, a sequential formulation for collaborative 

optimization (e.g., Roth and Brian 2008, Tosserams et al. 2009) may be considered 

for the AA-McRO approach. Using a sequential approach, the coordination problem 

and subsystem optimization problems are iterated to arrive at the system optimum 

solution. This can be more efficient than the bi-level approach. However, 

reformulating AA-McRO with a sequential approach still presents considerable 

technical challenge because robustness evaluation is not considered in the existing 

sequential collaborative optimization approaches. As such, the investigation and 

research on the development of a sequential AA-McRO approach should be explored 

further. On the other hand, the dissertation has not provided any proof of existence of 

solutions with the AA-McRO approach in its current formulation. Further research is 

required to show a formal convergence proof for the AA-McRO approach. 
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3. Improvement to online approximation 

One of the most critical strategies in online approximation is the use of optimum 

solution points in (DOE) sampling for the purpose of focusing on the expected 

optimum regions. However, it may be important to perform sampling with respect to 

the constraint functions that are used to form the optimum solutions as well. 

Furthermore, research is needed on refining the metamodel accuracy for robustness 

evaluation. This is because for robustness evaluation the metamodel should focus on 

a smaller uncertain interval around each design point. On the other hand, developing 

a good metamodel is typically problem dependent. Specially, other types of 

metamodeling techniques and fine-tuning of the parameters used in construction of 

the metamodel need to be further investigation.  

4. Extending the current DSS for large-scale and/or multi-plant oil refinery 

The context within which the DSS framework in Chapter 5 is developed is based on a 

small-scale and single-plant oil refinery. However, a large oil refinery may include a 

number of plants with close interactions among those plants. This requires the 

development of a DSS framework which is able to support and consider a multi-plant 

oil refinery. In achieving this objective, one important challenge lies in the 

computational cost when the size of the optimization problem increases, considering 

the coupling variables between different plants. With multi-plant oil refinery, the AA-

McRO approach can be applied to solve the optimization problem in a decomposed 

manner. Finally, the DSS framework can also be extended further to consider 

competition among a number of oil refineries. All these research recommendations 

need to be considered in a future work. 
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