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This dissertation studies topics on market microstructure. The first chapter 

theoretically studies market manipulation in stock markets in a linear equilibrium. 

The second chapter empirically examines the presence of opportunities for liquidity 

arbitrage. The last chapter develops and examines a method to capture a co-

movement of informed trading. 

 In chapter 1, I study a theory of trade-based price manipulation in markets. I 

compare two different types of price manipulation studied in previous literature, 

uninformed and informed manipulation, in the same linear equilibrium model. I show 

that the presence of positive-feedback traders creates an incentive for the informed 

trader to bluff, but the opportunity is absent if a sufficient number of uninformed 

traders behave strategically. Numerical comparable statics results show that informed 

manipulation is more likely and more profitable when the noise trading is more 

volatile and that market efficiency could become worse under the presence of 



  

manipulation. A financial transaction tax can not prevent informed manipulation, but 

it reduces the liquidity of the market. 

 Chapter 2 empirically investigates intra-day price manipulation in a stock 

market. My microstructure model is specifically designed to define the conditions 

under which a manipulation opportunity arises from the variation in liquidity as 

measured by price impact. My empirical analysis using data from the Tokyo Stock 

Exchange suggests that while there is a significant chance of uninformed 

manipulation across time and stock codes, it is not profitable enough to affect price 

fluctuations. Analysis of intraday price and trade sizes shows that the opportunity 

begins to disappear in 10 minutes. 

 Chapter 3 studies contagion in a financial market by using a market 

microstructure model. We extend the Easley, Kiefer, and O’Hara (1997) model to a 

multiple-asset framework. The model allows us to identify whether the driving forces 

of informed trading common or idiosyncratic information events are. We apply the 

method to three groups of stocks listed on the New York Stock Exchange: American 

Depositary Receipts (ADRs) of developed and emerging countries, and blue chips. 

We find contagion among emerging-country ADRs during the Asian Financial Crisis 

of 1997, in the sense that informed trades were mostly driven by common information 

events. 
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Chapter 1

Trade-Based Price Manipulation in a Linear Equilibrium

1.1. Introduction

Motivation Recently, high-frequency algorithmic trading has become widely used

in markets. In the United States, high-frequency trading firms account for 73% of

all equity order volume according to a recent survey1. Different from traditional

automated trading, the algorithms run by high-tech hedge funds are finely tuned

and repeat orders and cancellations millions of times a day. More surprisingly,

such high-frequency trading (HFT) can earn profits consistently throughout the

day, according to recent research by Kirilenko, Kyle, Samadi, and Tuzun (2011).

They have net zero position at the end of a day, indicating a clear contrast with

long-term buy-and-hold investment. The public’s concern with HFT is growing

because the public believes that such trades can potentially harm market efficiency

and increase the volatility of markets.

Can traders potentially make a profit like the HFTs, using information about how

stock prices are determined by strategic interactions rather than information about

a firm’s future cash flows? How can we identify and measure the potential profit

1 Rob Iati, The Real Story of Trading Software Espionage, AdvancedTrading.com, July 10,
2009

1



opportunities? Can we regulate HFTs to improve market efficiency? In this paper,

I theoretically study intraday asset trading to investigate such questions. The work

presented here is strongly connected to the study of trade-based price manipula-

tion found in the market microstructure literature. Trade-based price manipulation

is a buying or selling securities in markets to earn profits by misleading other par-

ticipants about the value of the securities without communication other than the

trading itself.

In practice, various strategies can be utilized in trade-based manipulation, and

some such strategies have been theoretically studied. Allen and Gale (1992)

presents a theoretical model which supports uninformed manipulation in equilib-

rium when uninformed traders believe that there is informed trading. Examining

a special case of trade-based manipulation, Kumar and Seppi (1992) studied the-

oretical price manipulation in cash settled contracts, and Brunnermeier and Ped-

ersen (2005) theoretically investigated predatory trading which attacks stop-loss

orders to drive down the price. Recently, Hasbrouck and Saar (2009) noted how

the mechanism of HFT allows for the repeated cancellation and resubmission of

limit orders within a second to take advantage of potential profits (called “fleeting

orders”). Kirilenko, Kyle, Samadi, and Tuzun (2011) examined empirically the

trading of high-frequency traders in Standard and Poor’s E-mini S&P 500 futures

contract and find that their positions were correlated with the past return within the

space of one minute and one second. Working against these algorithmic traders,

some market participants have also been known to take advantage of predictable

features of algorithmic trading and to make a profit by placing spoof limit orders2.

The algorithmic trading strategy was designed to submit market orders in response

to changes in the limit order book, even though the limit orders were intended to

“spoof” the algorithmic traders. In one such case, the trader was eventually ac-

2 SESC cases on the manipulation of Hokuetsu Kishu Seishi (3865), on June 14 and 15, 2010.
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cused of manipulative trading by the concerned authority. The party that actually

manipulated the market is, however yet to be determined. This example illustrates

that the definition of “manipulation” is wide-ranging and somewhat confusing.

Therefore, before proceeding with the explanation of the measure I have devised,

I will formally define the term “manipulation” in the context of this paper.

I study trade-based manipulation in a stylized model that does not consider outside

of trading in the market. This implies that market participants trade and manipu-

late prices based on their private information and strategic interactions, but they

do not spread rumors nor trade on them. I assume that there are no regulatory

or administrative causes of manipulation, such as cash settlement and stop-loss

orders enabling predatory trading. My study does not rely on any specific empir-

ical events, and I can construct the model as an extension of the standard market

microstructure model of Kyle (1985, 1989).

Definition of Manipulation My theory-based definitions of manipulation, or the

profitability of intraday stock trading, are simple; they are described as a profitable

of a round-trip trade (i.e., uninformed manipulation) or trade in a direction counter

to the manipulator’s private information (i.e., informed manipulation defined by

Chakraborty and Yilmaz (2006)). These trading strategies differ from the strategy

the Kyle model suggests; in the Kyle model, an insider should splits the trades to

minimize the price impact but does not trade against her private information.

A round-trip trade is a set of offsetting purchases and sales during a certain inter-

val. A net-zero-position round trip trade should not earn any profits on average if

uniformed manipulation is not allowed. Uninformed manipulation is called “un-

informed” because it does not require the manipulator to have private information:

i.e., the manipulator uses only public information.
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Informed manipulation can be viewed as an exercise in profitable front running.

When dealers can sell a stock to their customers at prices higher than the market

price, would they have an incentive to sell the stock in the market? Apparently, the

dealers are reluctant to trade lower prices in the market. The answer can be yes,

however, if dealers are able to manipulate the market price and buy more shares

at an even lower price than the price at which they sold at the market.

These trading strategies differ from insider trading. Insiders can trade along with

their private information and split their orders to minimize price impacts, as a re-

sult of which the market price can gradually reveal the insiders information. With

the manipulation, the market price does not necessarily reflect the true fundamen-

tal value: the market price can move in the opposite direction of the fundamental

value.

My market microstructure model provides clear conditions for manipulation op-

portunities. These conditions are described only by the variation in the liquidity

of the stock: permanent price impact (PPI) and immediate price impact (IPI).

PPI has been traditionally studied in the field of empirical market microstructure

(e.g., Hasbrouck (1991)). , A theoretical definition of PPI is also known as Kyle’s

lambda. I can estimate the PPI as a regression coefficient of price changes on or-

der imbalances defined as buyer-initiated order minus seller-initiated orders. IPI

is defined by the price difference between the midpoint of the limit order book

and the executed price.

The advantage of separating IPI and PPI is empirical. Some electronic trading

platforms have pre-trade transparency, i.e., the trading platform reveals to traders

the quantities of buy and sell orders in the limit order book. In markets with

pre-trade transparency, IPI can be calculated by traders from order book data.

Thus, IPI is available to any trader in many electrical trading markets, but PPI
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can only be estimated from the price and order sequences. In many market mi-

crostructure models, including the Kyle model, the trading game is modeled as

a simultaneous-move game and the IPI and PPI become identical. The trading

game is more like a sequential-move game in limit order markets. In such an

environment, the execution price can overshoot, implying that the IPI and PPI is

not identical. Recent literature on intraday stock markets3 also focuses on the dy-

namics of the limit order book (i.e., IPI), and my model provides a simple strategic

framework to consider the limit order market.

Theoretical Implication Kyle (1985) considers uniformed manipulation a the-

oretical possibility: the informed trader is allowed to engage in trade-based ma-

nipulation, but he chooses not to do so in equilibrium. Instead, he always trades

so that he is pushing prices in a direction which reveals his private information.

Informed manipulation was proposed by Chakraborty and Yilmaz (2004). They

consider the information structure that implies that the manipulator pushes the

prices in a direction opposite from his private information. My study considers

both in a consolidated framework. My aim in constructing this model is to present

a measure of manipulation opportunity analogous to an arbitrage opportunity. My

theory suggests that, to preclude arbitrage opportunities, my manipulation mea-

sure should not be greater than zero.

I show that theoretically informed manipulation may occur if I allow rule-of-thumb

traders to trade. Without rule-of-thumb traders, whose demand function is not

strategically determined, I show that manipulation is never observed because un-

informed traders respond optimally to the informed manipulators. Uninformed

manipulation is even more difficult to obtain in theoretical models because the

manipulator can make an unbounded profit by taking an unbounded position, an

3 e.g., Roşu (2006).
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outcome not supported as an equilibrium. Technically speaking, the condition

of uninformed manipulation necessarily implies violation of second order condi-

tion of informed traders. The absence of uninformed manipulation holds for any

extension of the Kyle model in which manipulators do not have a wealth limit.

When informed manipulation takes place, the market price moves in a direction

opposite from the true fundamental value. The price is no longer a sufficient mea-

sure of fundamental value. Market efficiency, in the sense of the distance between

the market price and the true fundamental value, deteriorates. It has been argued

that a transactions tax would improve market efficiency by reducing the trading

activity of HFTs who engage in trade-based manipulation. I investigate this idea

theoretically, by simulating the efficiency of the market both with a transactions

tax and without a transactions tax. I show that a transactions tax does not discour-

age manipulators from trading and can not improve market efficiency. Instead, it

reduces liquidity. The tax discourages the informed trader from executing large

quantities at the last period, which reduces the profit from private information.

To compensate for the loss, the informed trader tends to manipulate more aggres-

sively in earlier period.

Literature Theorecital model provides an environment in which the manipula-

tion opportunity assumed by Huberman and Stanzl (2004). In their model, each

IPI and PPI function is exogenously given. Their model analyzes conditions

which preclude uninformed price manipulation, defined as a risk-less profitable

round-trip trade. The resulting no-arbitrage condition is that, for the single asset

case, PPI should be less than the sum of current and future IPIs. My model recov-

ers the same condition (the uninformed manipulation condition) in a linear equi-

librium framework in which IPI and PPI are derived endogenously. The condition

is never satisfied in equilibrium, however, because the second order condition of
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the informed trader’s maximization problem is not satisfied. Thus, uninformed

price manipulation is not supported as a linear equilibrium.

My notion of informed price manipulation, characterized by trading against pri-

vate information, is similar to that studied by Chakraborty and Yilmaz (2004a,

b). The differences between my framework and theirs are the following: first,

that I model an equilibrium with linear strategies, whereas their structure deals

with a discrete sets of strategies, and second, while I ascribe the informed price

manipulation opportunity to a non-strategic reaction of uninformed traders, the

Chakraborty and Yilmaz framework does not require such traders.

Mei, Wu, and Zhou (2004) study uninformed price manipulation generated by

the presence of behavioral traders, and they consider the empirical plausibility of

manipulation. They introduce rule-of-thumb “momentum” traders in a manner

similar to those of De-Long et al. (1990) and Hong and Stein (1999). As a result,

they propose that there could be uninformed manipulation. In my framework,

while the non-strategic traders follow a similar strategy, uninformed price manip-

ulation is not supported as an equilibrium because the profit becomes unbounded.

Also, their model focuses on the contrarian behavior of traders, while in my model

contrarian traders cannot be a profitable source of manipulation. This difference

arises because my model deals with a two-period trading game while they model

a T-periods game and because my model incorporates strategic traders who suc-

cessfully respond to a manipulator’s strategy. Such strategic traders push pushes

the price back in an unprofitable direction for manipulators, at least in a pure

strategy equilibrium. Similarly, the price does not necessarily deviate from the

fundamentals in the way that De-Long, Shleifer, Summers, and Waldmann (1990)

propose because my model has strategic uninformed traders while the uninformed

traders in the model of De-Long et al. trade non-strategically.

7



The model of Mendel and Shleifer (2011) is also comparable. They propose that

positive uninformed “Outsider” traders could have an upward sloping demand

curve when the uninformed traders confuse noise traders with informed traders.

This effect is not observed in my model simply because my model highlights

the presence of monopolistic informed traders while all the agents in Mendel and

Shleifer’s model are price takers. The monopolistic traders can affect the price and

make an unbounded profit from the uninformed trader’s upward sloping demand,

but the uninformed traders can avoid this effect by creating a downward sloping

demand. My model has a structure similar to Kumar and Seppi (1992), who

study price manipulation of future markets which are cash settled. I will discuss

their model in detail in the next section.

Kyle and Viswanathan (2008) do not consider these trading strategies to be ma-

nipulation because they do not harm market efficiency. In line with their argu-

ment, my manipulation opportunity can be considered a liquidity arbitrage. In my

model, also, the trading game is zero-sum, and the market price may deviate from

the fundamental during the game, but it does not affect the total profit that the

agents will earn. Thus, I do not look further into the welfare consequence of price

manipulation.

This paper proceeds as follows. Section 2 analises the model of price manipula-

tion. Section 3 discusses additional propositions of the model, including market

efficiency under manipulation, a financial transaction tax, and other comparative

statics results. Section 4 concludes.
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1.2. Theoretical Model

Motivation for the Model I present a model to provide an analytical framework

to study the conditions under which manipulation can occur in equilibrium. I can

also study how the volatility of noise trading, the risk aversion of traders, and the

number and attitude of rule-of-thumb traders influence manipulation opportuni-

ties. In contrast to the frameworks of Huberman and Stanzl (2004) and De-long,

Shleifer, Summers, and Waldman (1990), in which the level of liquidity is ex-

ogenously specified, my framework endogenously derives an equilibrium level of

liquidity, which is determined by the amount of asymmetric information and the

risk aversion of traders. Also, I do not allow an exogenous liquidity provision

based on regulatory or investment requirements such as cash settlement (Kumar

and Seppi (1992)), predatory trading (Brunnermeier and Pedersen (2005)), and

currency attacks. I show that a weak and plausible assumption about exogenous

liquidity provision, the presence of positive feedback rule-of-thumb traders is suf-

ficient to generate manipulative trading.

1.2.1. The Model Environment

The model resembles a multiple trading period version of the model of Kyle

(1989). An informed trader, who is the “manipulator”, can affect the market price

to obtain larger profits. Uninformed traders observe the order imbalance, which

is caused by the informed trader and noise traders, update their expectations of

fundamentals, and trade against the informed trader strategically.

Trade Opportunities In this model, there are two trading opportunities at t = 1

and t = 2. In addition, the entire risky asset is liquidated at the fundamental value

v after the two trading periods. Five types of agents — informed, uninformed

9



(denoted A at t = 1 and B at t = 2), rule-of-thumb and noise traders — trade

against each other. At the end of each period, the market price is determined by

an auctioneer to clear the demand and supply of traders.

Assets and Agents There is a risky stock and a risk-less asset. The risky stock is

liquidated at the exogenous price v in the last period, and its unconditional expec-

tation is v0. The informed trader knows the fundamental value, but the uninformed

traders know only its distribution, ṽ∼ N(v0,σ
2
v ).

The informed trader stays in the market throughout this trading game, but unin-

formed traders can exit and entrer. A fraction θ of uninformed traders at t = 1

remain in the market, but the rest of the uninformed traders leave by the liqui-

dation period. At t = 2, new uninformed traders join the market. I allow these

uninformed traders traders to have different risk aversions (γ1, γ2). These as-

sumptions are made to control the number of uninformed traders and to keep the

solution tractable. I assume that θ ∈ [0,1), and γ1,γ2 > 0.

The utility function of uninformed traders is a negative exponential−exp(−γiW̃U)

in their terminal wealth W̃U for i = 1,2. This specification, together with the nor-

mally distributed W̃ , introduces a linear functional form for the traders’ demand

and the supply curves for the risky stock. Traders are allowed to short both assets

without limitations.

The informed trader is risk neutral and optimizes his position dynamically. At t =

1 and t = 2, the noise traders, denoted z1and z2, submit a market order following

to a normal distribution N(0,σ2
z ).

The rule-of-thumb traders are risk averse, and their demand function is given ex-

ogenously:

x2,R = φ (κPt−1 +(1−κ)v0− pt) , φ > 0. (1.2.1)
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Here, Pt−1 is the last transaction price and pt is the current price. This trader is

considered a contrarian trader if κ < 0 and a momentum follower if κ > 0. If κ =

0, they do not update their expectation of the fundamental value v. Assuming a risk

aversion parameter of one, the parameter φ measures the number of momentum

traders. The rule of thumb traders are assumed to have a negative exponential

utility function with risk aversion φ and the expectation E[v|F ] = κPt−1 +(1−

κ)v0. Without loss of generality, the conditional variance is set to one, since

reducing the conditional variance is equivalent to increasing the risk aversion by

the same proportion.

The conditional variance under their information set is set to 1 for normalization.

I can also assume the conditional variance is σ2
v or σ̂2

v , but it is the same to define

different φ .

This specification is essentially the same as that of De-Long et al. (1990), Hong

and Stein (1999), or Mei, Wu, and Zhou (2004). In other words, the rule-of-thumb

trader’s expectation of the fundamental price is based on a simple adaptive learn-

ing process. In fact, this type of trading strategy includes many of the rule-based

trading strategies, such as the Kalman filter forecasting and technical analysis.

At t = 1,2, the information set of each trader is described as follows.

F1,U = { /0} , F2,U = {P1}

F1,I = {v,P1} , F2,I = {v,P1,P2} .

Information about the distribution is common knowledge. Here, I assume that

overlapping old and young agents have the same information set, and so I do not

use different notation.
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For random variables, I assume that ṽ, z̃1, z̃2 follows a multivariate Normal distri-

bution:


ṽ

z̃1

z̃2

∼ N




v0

0

0

 ,


σ2

v 0 0

0 σ2
z 0

0 0 σ2
z


 .

Thus, the random variables are independently distributed.

I assume that uninformed traders and and rule-of-thumb traders are perfectly

competitive price takers and that the informed trader is monopolist. Uninformed

traders behave like agents in an inventory model.

Timing of the game The timing of this game is described in Fig. 1.2.1. At period

t = 0, uninformed traders A submit to the market their limit orders XA1(·), which

are price contingent supply-demand schedules for the risky asset. The thickness

of the limit order book is determined by the variance of the fundamentals and

uninformed traders’ risk aversion.

At period t = 1, an informed trader and noise traders enter the market. Looking

at the limit order book composed of XA1(·), the informed trader submits limit

orders XI1(·) strategically. Noise traders submit market orders z̃1 after the in-

formed trader.4 At the end of the period t = 1, an auctioneer sets a uniform price

p̃1 = P1(z̃1;XA1,XI1) to clear the market.

At period t = 2, uninformed traders A and B realize that there were informed

trades, and they update the expectation of the fundamental value to submit limit

orders XA2(·) and XB2(·). Here, I note that the A-group uninformed traders already

have positions from t = 1 trades, but these positions were not planned at t = 0.

4 The informed trader incurs the price fluctuation risk made by noise traders, but it does not
matter for risk neutral monopolistic informed traders.
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Uninformed

submit limit orders

Informed (&noise)

submit orders

Update

the expectation

Uninformed

submit limit orders

Informed (&noise)

submit orders

New Uninformed

arrive

P1 P2

Liquidation dateAdaptive trader

submit limit orders

θ

1-θ

Figure 1.2.1. The time-line of the game.

The trade at t = 1 is unexpected for uninformed traders. This assumption makes

their optimization problem static rather than dynamic. The rule-of-thumb traders

submit limit orders XR2(·).

Lastly, the noise and informed traders submit final orders z̃2 and XI2(·) as period

t = 1. Noise and informed traders are allowed to have a positive or negative

position. Because I assume that noise trading follows a normal distribution, the

expectation of the net position of noise traders is zero mean.

After p̃2 = P2(z̃1;XA2,XB2,XI2,XR2) is determined, the private information be-

comes public, and infinite liquidity is then provided to determine a final liqui-

dation price. Therefore, the net profit (per unit) for each trader is the difference

between the purchasing (shorting) prices P1 and P2and the liquidation price v.

Strategy Uninformed traders A and B, informed trader I, and rule-of-thumb trader

R submit price schedules, noise z̃1 and z̃2 submit quantities. I denote the strategies

as follows:

XA1 = XA1(p1), XA2 = XA2(P1, p2),

XR2 = XR2(P1, p2), XB2 = XB2(P1, p2),

XI1 = XI1(v, p1), XI2 = XB2(v,P1, p2).

13



The strateges of the rule-of-thumb traders are exogenously defined by φ and κ .

Each trader’s strategy is a function from their information set to their limit order

schedule. I also denote the demand schedule using the notation XI1(·) = XI1(v, ·).

I can change the informed trader’s strategy to submiting market orders rather than

demand schedules. Because informed traders internalize the price impacts, this

different setup gives identical outcomes.

Pricing and market clearing An auctioneer combines schedules to obtain the

market clearing prices

p̃1 = P1(ṽ, z̃1;XI1,XA1)

which satisfies the market clearing condition XA1 + XI1 + z1 = 0. Similarly, at

period 2, the market price

p̃2 = P2(ṽ, z̃2;XI2,XA2,XB2,XR2).

is determined to satisfy the market clearing condition XA2+XB2+XR2+XI2+z2 =

0.

Maximization problems The optimal strategies are solutions to maximization

problems. To state how the strategies are dependent on the other agent’s strategies,

we denote the dependence explicitly. The market clearing price P2 is a function of

the previous market clearing price P1 as well as other strategies

P2(ṽ, z̃2;P1(ṽ, z̃1;XA1,XI1),XA1,XI1,XA2,XB2,XR2,XI2).

14



Uninformed traders A and B are perfect competitors with negative exponential

utility γA and γB. Trader B’s wealth is (v−P2)xB2. As a perfect competitor he

realizes how P2 is determined. The solution to B’s problem is denoted:

X∗B2(P1, p2) = argmax
X(·,·)

E {(ṽ−P2(ṽ, z̃2;P1(ṽ, z̃1;XA1,XI1),Xall)) ·X(·, ·)|P1(ṽ, z̃1;XI1,XA1) = p1} .

(1.2.2)

Trader B chooses X(·), taking everything else as given. Like a rational expec-

tation’s equilibrium, he understandes distributions of ṽ, z̃1, z̃2. Trader B observes

P1, and conditions on p2. I use the notation Xall = {XA1,XI1,XA2,XB2,XR2,XI2} to

denote all strategies.

Trader A’s wealth is (v−P1)xA1 +(v−P2)xA2 if he trades in period 2, and (v−
P1)xA1 if he does not trade in period 2. For simplicity, the possibility of trading

in period 2 is not considered when trader A chooses his period 1 trade. Period

2 trade is a surprise for A (See discussion later). Therefore trader A solves two

static optimization problems one for each period. The solution to the period 2

problem for A is

X∗A2(P1, p2) = argmax
X(·,·)

E {(ṽ−P2(ṽ, z̃2;P1(ṽ, z̃1;XA1,XI1),Xall)) ·X(·, ·)|P1(ṽ, z̃1;XI1,XA1) = p1} .

(1.2.3)

The solution to the period 1 problem for A:

X∗A1(p1) = argmax
X(·)

E {(ṽ−P1(ṽ, z̃1;XA1,XI1)) ·X(·)} . (1.2.4)

Note that trader A takes the price P1(ṽ, z̃1;XA1,XI1) as given.

The informed trader is risk neutral, maximizing expected profits (v−P1)xA1 +

(v−P2)xA2. The informed trader exercises monopoly optimally in dynamically

consistent manner over periods 1 and 2. The problem is complicated because

informed trading at period 1 needs to take account of the effects of her trading on
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prices on both periods. From the perspective of the informed trader, the price is

considered as a function of his own strategy as well as other trader’s strategies.

The optimal strategy in period 2 is influenced by the choice in period 1. X∗I2(v,P1, p2;XI1,X−I)

can be thought of XI2(·) = XB2(v,P1, ·;XI1,X−I) as a demand schedule which re-

flects X1,v, and P1 as given. I denote X−I = {XA1,XA2,XB2,XR2} to economize on

notation. The solution to the informed trader’s problem is

X∗I2(v,P1, ·;XI1,X−I) = argmax
X(·,·,·)

E

{
(ṽ−P1(ṽ, z̃1;XI1,XA1)) ·XI1 (1.2.5)

+(ṽ−P2(ṽ, z̃2;P1(ṽ, z̃1;XI1 ,X−I),X(·, ·, ·),XI1,X−I) ·X(·, ·, ·)|ṽ = v,P1(ṽ, z̃1;XI1,XA1) = p1

}
.

The first term is a profit from period 1 trade, and it is pre-determined. Therefore

it does not influence on the period 2 solution.

In period 1, the informed trader takes into account that he will adjust XI2 to

changes in XI1 through X∗I2(XI1). The solution to the informed trader’s period

1 problem is

X∗I1(v, ·;X∗I2,X−I) = argmax
X(·,·)

E

{
(ṽ−P1(ṽ, z̃1;X(·, ·),X−I)) ·X(·, ·) (1.2.6)

+(ṽ−P2(ṽ, z̃2;P1(ṽ, z̃1;X(·, ·),X−I),X∗I2(v,P1, p̃2;X(·, ·),X−I),X(·, ·),X−I)) ·X∗I2(v,P1, p̃2;X(·, ·),X−I)|ṽ = v

}
.

At t = 1, the informed trader realizes that he influences the price in period 2, and

optimizes his trade in period 1.

Linear equilibrium conjecture A sequentially rational Bayesian Nash equilib-

rium of this game is given by strategies XA1,XI1,XA2,XB2,XR2,XI2, and the mar-

ket clearing price P1 and P2 such that all maximization problems (1.2.2), (1.2.3),

(1.2.4), (1.2.5), (1.2.6) solved. The conditional expectations are derived using

Bayes’ rule in a way consistent with the equilibrium strategies.
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The equilibrium is solved with following linear conjecture for strategies:

XA1(p1) = µ−λ1 p1, XA1(P1, p2) = µ2,A+δAP1−λ2,A p2, XB2(P1, p2) = µ2,B+δBP1−λ2,B p2,

XI1(v, p1) = α1 +β1v−ζ1 p1, XI2(v,P1, p2) = α2 +β2v+ξ2P1−ζ2 p2. (1.2.7)

For uninformed trader A and B, market clearing implies p̃1 = P1(ṽ, z̃1;XI1,XA1)

and p̃2 = P2(ṽ, z̃2;XI2,XA2,XB2,XR2).

For the informed trader, the residual demand schedule at each period is XM1(·) =

XA1(·) and XM1(·) = XA2(·)+XB2(·)+XR2(·). This implements a solution to the

period 2 problem. The informed trader’s demand function at period 2 does not

depend on P1 (i.e., ξ2 = 0), because the informed trader knows the information of

P1 and his exercise of monopoly power is expressed in their demand function of v

and p2.The characterization of equilibrium is found in Appendix A.

Model discussion Even without the rule-of-thumb uninformed traders, this model

differs from the Kyle (1989) model in at least three ways: multiple trading periods,

overlapping generations of uninformed traders, and the assumption of an alternat-

ing rather than simultaneous game. The multi-period framework is essential to my

analysis because price manipulation is a dynamic trading strategy, but the OLG

feature for uninformed traders is just for tractability.

In this model, uninformed trader A at period 2 trades as if the arrival of in-

formed and noise is a surprise. Thus I avoid considering the hedging demand

for long-lived uninformed trader A. Because uninformed trader A is risk averse,

he would have a hedging demand for the risk associated with the trade in period

2. Also, I assume that some fraction of uninformed trader A does not to trade in
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period 2. Otherwise, at period 2, he liquidates all the positions acquired in period

1. This discourages the informed trader from trading in period 1, considering the

information leakage and the price impact made by the uninformed trader.

For this issue, I can propose an alternative interpretation. I can assume that unin-

formed trader A is a long term investor and holds the position until the liquidation

period, but the rule-of-thumb trader will liquidate a fraction of the position of

trader A. This liquidation can be thought of as a contrarian pressure. This pres-

sure is combined with the original κ , and it defines the new value for κ . Setting

the mass of uninformed trader B as 1
γB
+ θ

γA
, and I can obtain a new model that

provides the same results.

Finally, the largest simplification is that the uninformed trader is limited to one

update. This restriction reflects the fact that the limit order trades are more like

an alternating game rather than a simultaneous game. In addition, there are two

benefits from this assumption. The first is tractability. Because the uniformed

trader’s problem at t = 1 is not affected by the informed trader’s strategy, it is

treated as exogenous. As a result, the simultaneous equation that characterizes

equilibrium becomes much simpler. Another benefit is that I can separate the

price impact into an informational component (PPI) and a risk aversion component

(IPI).

The comparison with the Kumar and Seppi (1992) model is interesting. They

study the manipulation of the price at a future contract, which is settled at the

price of cash assets, and their model also allows for multi-trading periods. In their

model, at t = 2, the manipulator switches from an uninformed trader to an in-

formed one. The manipulator also has upward demand curve, and the manipulator

invests all of his wealth at t = 1. This result resembles uninformed manipulation
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End. variables Ex. variables
xt,U , xt,I Trade vol. γA,γB Risk aversion param.

Pt Transaction price σv, σz Std. of stochastic var.
Strategic variables τv, τz Precisions τ ≡ σ−2

µt , λt , δ Decision rules for uninf. z̃t Noise trading vol.
αt , βt , ξ , ζt Decision rules for inf. ṽ True fundamental value

m0, m1 coef. of E[ṽ|Ft,U ] θ Probability of retuning
κ Adaptive expectation parameter

t = 1,2 φ Risk capacity of non-strategic.

Table 1.1. Variables used in this model. Tilde means it is a stochastic variable, and
hat means it is a estimated variable. Note that x and z mean the trading volume.
They mean buy if the value is positive, and sell if negative. Some literature employ

notation that x is a position. In this paper, the position at t is ∑
T
t=1 xt .

in my model, but I prohibit the degenerate equilibrium in which the manipulator

invests infinitely many times.

1.2.2. Characterization of the Equilibrium

Here, I outline how I solved for the equilibrium. The detailed characterization can

be found in the Appendix.

I solve for the equilibrium in reverse. For the first step, I calculate the conditional

expectation of the fundamental value for the uninformed traders’ problem. Then,

I solve the t = 2 maximization problems given any realization at t = 1. Lastly, I

the solve t = 1 problem.

Uninformed trader’s problem Uninformed traders have a negative exponential

utility function. The maximization problems for the i = A,B generations of unin-

formed traders are described as follows:

maxx2,i E
[
−exp(−γi

{
(ṽ− p2)x2,i +(ṽ−P1)x1,i

}
)|F2,U

]
,
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maxx1,A E
[
−exp(−γ(ṽ− p1)x1,A)|F1,A

]
.

I note that the conditional expected value and variance of ṽ are calculated with

the projection theorem: v̂U ≡ E[ṽ|FUi,2 = {P1}] and σ̂2
U ≡ Var(ṽ|FUi,2 = {P1}).

Because ṽ and P1 are jointly normally distributed, so is their terminal wealth, and

I can use the moment generating function to simplify the expected utility.

Uninformed trader B has no position at t = 2, and x1,B = 0. The first order condi-

tions determine their demand function:

x∗2,i(p2) =
v̂U − p2

γiσ̂
2
U
− x1,i i = A,B.

x∗1,A(p1) =
v0− p1

γAσ2
v

.

The conditional volatility of the fundamental decreases because of the information

leakage from the informed trades, yielding σ̂2
U < σ2

v . The informed trader submits

more limit orders (implying deeper limit order book) when they are less risk averse

(small γ). At t = 2, the A traders unwind their position acquired into t = 1 . Thus,

θ = 1 implies the trade at t = 1 to be trivial.

Permanent price impact is defined like a Kyle’s lambda:

v̂U − v0 =
(1+ θγB

γA
)δ +θλ1 +φκ

λ1

(
(1+ θγB

γA
)λ2 +φ

) (x1,I + z1) .
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The price has a martingale property. This property is implied by the assumptions

that uninformed traders are risk neutral price takers.

Informed trader’s problem The maximization problems for the informed trader

are described as follows:

maxx2,I E
[
(v− P̃2(x2,I))x2,I|F2,I

]
,

maxx1,I E
[
(v−P1)x1,I +(v− P̃2)x∗2,I +B0|F1,I

]
.

At t = 2, the informed trader does not take the position at t = 1 into account

because the informed trader is risk neutral. The residual demand curves for the

informed trader (XM2 and XM1) are

P̃2 =
1

(1+ θγB
γA

)λ2 +φ

(
(1+

θγB

γA
)µ2−θ µ1 +

(
(1+

θγB

γA
)δ +θλ1 +φκ

)
P1 + x2,I + z̃2

)
,

P̃1 =
1
λ1

(µ1 + x1,I + z̃1) .

The immediate price impact at t = 1 and t = 2, ∂P2
∂x2,I

and ∂P1
∂x1,I

, are given by

1
λ1

,
1

(1+ θγB
γA

)λ2 +φ
.

These expressions are determined by the risk aversion of uninformed traders. Sub-

stituting these terms into the residual demand curve, I can derive the first order

and second order conditions for the informed trader. With the demand functions

derived above, I can characterize the equilibrium.
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1.2.3. Analysis

Existence of equilibrium A linear equilibrium is characterized by (A.1.3), (A.1.7),

and (A.1.9). Assuming v0 = 0 yields µ1 = µ2 = m0 = 0.5 Because the conditional

expectation and the informed trader’s strategic variables can be expressed as a

function of uninformed trader’s strategic variables, the system equation is then

simplified to a cubic equation for δ which characterizes the equilibrium.

Proposition 1. Assuming v0 = 0, we let all the constant terms equal to zero:

α1 = α2 = µ1 = µ2 = m0 = 0. A linear equilibrium is characterized by a root of

the cubic equation for δ and the informed trader’s second order conditions. The

existence of the equilibrium is shown using examples.

The expression of the equation is tedious, so I do not include it here. The equi-

librium may or may not exist depending on the parameters because they fail to

satisfy the S.O.C.

Definition of price manipulation In my model, the monopolistic trader, or in-

formed trader, can be a manipulator. I analyze two types of manipulation: unin-

formed manipulation and informed manipulation. Uninformed manipulation is a

zero information, zero net cost trading strategy that yields a positive payoff, while

informed manipulation is a trading strategy that utilizes private information.

Uninformed manipulation is also called a pump and dump scheme. This scheme

aims to make a profit just by repeating purchases and sales6. I call this strategy

“uninformed” because it does not require private information. In my model, I

assume that the manipulator has information and that uninformed traders believe

5 The fundamental value can be negative. Traders can make profit by shorting the stock even
in that case. While they are allowed to dispose of the stock, such an action cannot be optimal.

6 Ususally pump and dump scheme also involves spreading rumors. In this paper, however, I
do not consider spreading rumor to make the argument simpler.
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the existence of information based trades; otherwise, there is no permanent price

impact7. The appearance of an informed trader is disguised by the noise trading.

As the volatility of noise trading becomes larger, the fraction of informed trade

becomes relatively smaller and informed traders can trade more aggressively.

Informed manipulation is illustrated as follows. Informed traders’ first trade against

their private information. For example, they first sell if they know the asset value

is higher than the market price. This action causes a loss to the manipulator, but

they can make a more advantageous position with the resulting better price. In this

sense, they are “bluffing.” Different from uninformed manipulation, the informed

manipulator has non-zero net position at the end of trading.

I provide the formal definition of the two manipulations that are found in my

model. Uninformed manipulation is defined as follows.

Definition. Uninformed price manipulation is defined as a round-trip trade by the

monopolistic trader who makes a positive profit. In my environment, uninformed

manipulation is profitable when

(1+ θγB
γA

)δ +θλ1 +φκ(
(1+ θγB

γA
)λ2 +φ

)
λ1︸ ︷︷ ︸

Permanent P.I.

− 1

(1+ θγB
γA

)λ2 +φ︸ ︷︷ ︸
Immediate P.It+1

− 1
λ1︸︷︷︸

Immediate P.It

> 0.

I can derive this condition by imposing a round-trip restriction on the problem of

the manipulator. The detailed derivation is found in Appendix.

Uninformed price manipulation requires a trade at t to have an impact on the t +1

price that is more than the sum of the slippage at t and t+1. The impact on the next

period is expressed as ∂P2
∂x1,I

=
(1+ θγB

γA
)δ+θλ1+φκ

(1+ θγB
γA

)λ2+φ
· 1

λ1
. The numerator is the demand

change of uninformed traders due to the price change at the first period. The

7

Ross and Tinn (2010) assumes the probability of the presence of informed traders to be a random
variable. Uninformed traders update the probability by using Bayesian learning.
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first term is from information leakage, the second term is from liquidation of first

period trade, and the last term φκ is from rule-of-thumb traders. The price impact

on the current price (immediate price impact) is ∂P1
∂x1,I

= 1
λ1

and ∂P2
∂x2,I

= 1
(1+ θγB

γA
)λ2+φ

.

Next, I define informed manipulation: a trade in direction different from the

trader’s private information. Since β2 = (1+ θγB
γA

)λ2 > 0 always holds because

slippage 1/λi is always positive, I focus on the sign of β1 = 2λ1− ((1+ θγB
γA

)δ +

θλ1 +φκ).

Definition. Informed manipulation is defined as a trading strategy that can have

an position opposite to the private information and a nonzero net holding at the

liquidation date.

In my environment, a monopolistic trader could take a manipulative position if

β1 = λ1− ((1+ θγB
γA

)δ +θλ1 +φκ)< 0.

The condition can be rewritten as
(1+ θγB

γA
)δ+θλ1+φκ(

(1+ θγB
γA

)λ2+φ

)
λ1
− 1

(1+ θγB
γA

)λ2+φ
> 0. Since sign(δ )=

sign(β 1)< 0 , I need to rely on φκ to satisfy the condition.

This type of definition of price manipulation also appears in Chakraborty and

Yilmaz (2004a,b). In their framework, as long as unformed traders believe there

is an informed trades, the monopolistic informed traders can trade in a direction

opposite to his private information.

Back and Baruch (2004) also show the presence of bluffing in equilibrium. In both

models, bluffing is a possibility in a mixed strategy equilibrium, and it cannot

occur without rule-of-thumb traders in my model, in which I only consider the

linear pure-strategy equilibrium.

Price manipulation in equilibrium Comparing the two conditions, I observe

that both conditions state that the degree of momentum trading (1+ θγB
γA

)δ +θλ1+
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φκ should be low enough to exclude manipulation in equilibrium. The S.O.C also

takes a similar form.

— The S.O.C for a linear equilibrium is

(
(1+

θγB

γA
)δ +θλ1 +φκ

)2

< 4λ1

(
(1+

θγB

γA
)λ2 +φ

)
.

— The condition implying absence of uninformed manipulation is

(1+
θγB

γA
)δ +θλ1 +φκ < λ1 +

(
(1+

θγB

γA
)λ2 +φ

)

— The condition implying absence of informed manipulation trade is

(1+
θγB

γA
)δ +θλ1 +φκ < λ1.

From the definition, it is evident that uninformed manipulation does not occur in

equilibrium. It is ruled out by the second order condition.

Proposition 2. Uninformed manipulation does not occur in equilibrium.

The proof is from the inequality of arithmetic and geometric means: λ1+
(
(1+ θγB

γA
)λ2 +φ

)
>

2
√

λ1

(
(1+ θγB

γA
)λ2 +φ

)
. Each term is assumed to be positive, and the unin-

formed manipulation opportunity necessarily implies that the S.O.C does not hold.

However, informed manipulation could occur in equilibrium:

Proposition 3. If there are no rule-of-thumb traders (φ=0) or if they are contrar-

ian (φ > 0 and κ < 0), informed manipulation does not occur in equilibrium.

Existence of an informed manipulation opportunity implies the presence of rule-of-thumb

momentum traders. Unfortunately, I cannot fully identify the presence of rule-of-thumb
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traders empiricallly, but I can draw an inference by checking the manipulation

condition.

Comparing the three conditions and the definition of each strategic variable δ , λ1,

and β1 , I can complete the proof8.

Supposing that either φ=0 or φ > 0,κ < 0 and the existence of informed ma-

nipulation leads to a contradiction. Note that the sign of δ and β1 should be

the same. If β1 < 0, there is an informed manipulation by definition. Then,

(1+ θγB
γA

)δ +(θ −1)λ1 +φκ > 0. However the left hand side should be negative,

because δ < 0, 0≤ θ < 1, and θκ ≤ 0. Here, λ1 is strictly positive because of the

definition of γ1 and σv: uninformed traders must have downward sloping demand

curve. Thus, I have shown a contradiction.

To derive examples of informed manipulation, I use the following remark for my

numerical analysis.

Remark 4. Setting φ = 2(1− θ/2)λ1, I obtain β1 = λ1(1− θ/2)(1−κ)− (1+

θγB
γA

)δ/2. Because the signs of β1 and δ are always the same, κ > 1 implies β1 < 0.

The condition κ = 1 implies β1 = 0.

1.3. Discussion

Simulated Price and the Price Efficiency

I would like to evaluate the efficiency of the price when there is a informed ma-

nipulation opportunity. I generated a sample price path with simulations and ex-

amined the distance between the market price and the fundamental.

8 Caldentey and Stacchetti (2010) consider a variant of the Kyle model in which the fun-
damental is described by Brownian motion, and they propose that bluffing and boundless profit
(uninformed manipulation) are not supported as an equilibrium.
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Figure 1.3.1. Simulated price path. Parameters are, [v,v0,θ ,γA,γB,σ
2
z ,σ

2
v ,φ ]=[-1,

0, 0.2, 1/3, 1/3, 1,1, 2(1− θ/2)λ1]. The true fundamental price is v = −1. The
informed trader conducts informed manipulation when κ > 1. Trades were exe-
cuted at t = 1 and t = 3, and the price at t = 0 and t = 2 are the mid-price or the

expected fundamental for uninformed traders.
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Fig. 1.3.1 shows the simulated price path. Trades were executed at t = 1 and t = 3,

and the prices at t = 0 and t = 2 are the mid-price or the expected fundamental for

uninformed traders. I set the true fundamental equal to -1 and generated the noise

trading in 500 iterations. The presented price is an average over the 500 simula-

tions. Here, I can observe how the market price deviates from the fundamental

price.

Because I set φ = 2(1− θ/2)λ1, κ > 1 implies informed manipulation. When

there is informed manipulation, the price at t = 1 always deviates from the funda-

mental. We know this derivation from the market clearing condition (Eq. (A.1.1)).

The coefficient of v is β1
λ1+ζ1

. The denominator is always positive, and the negative

β1 pushes the price in the direction opposite to the true fundamental.

Thus, when there is manipulation, the price at t = 1 goes up even though the true

fundamental is less than the current price v0 = 0. When κ < 1, the informed trader

starts to sell from the beginning. When κ = 1, the informed trader does not trade.

At t = 2, the uninformed traders observe the order imbalance at t = 1, and update

their expectations. Because the rule-of-thumb contrarian traders (κ < 0) trade in

the direction opposite to the first executed price, the price goes up at t = 2 when

κ < 0. At the last period, the informed traders exploit their monopolistic power,

and the price goes to nearly the half of the true fundamental (-0.5).

The inefficiency in this paper is defined as an average distance from the funda-

mental value ∑t=1,...4
(v−Pt)

2

4 . The executed price P1 and P2 are not semi-strong

efficient in the sense that the price does not include all the information obtained

by uninformed traders after each trade. Uninformed traders, however, could make

a profit at period 2 because of rule-of-thumb traders are less rational. In this sense,

each executed price satisfies a weak form of maket efficiency. v̂U is a semi-strong
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efficient price, but it still can deviate more from the true fundamental than uncon-

ditional expectation v0. The calculated market inefficiencies for the simulation

above are 0.863, 0.848, 0.823, and 0.799, for κ = 2,1,0,−1, respectively. Thus,

the market is more efficient, in terms of the incorporation of private information

when the rule of thumb traders are contrarian because the informed trader can

trade more aggressively against these rule of thumb traders, who provide the liq-

uidity to informed traders.

Financial Transaction Tax

I can examine policy implications desigined to prevent the manipulation. Be-

cause informed manipulation undermines market efficiency, government regula-

tion might recover the efficiency. Recently, introduction of the financial transac-

tion tax (FTT) has been discussed as a policy to suppress the activity of HFTs and

to stabilize the markets. In practice, I expect that FTT could reduce manipula-

tion because HFTs may avoid the transaction tax. This intuition is, however, not

necessarily true in the model.

To study the effect of FTT, I incorporated a quadratic transaction cost (or tax).

Both uninformed and informed traders pay c
2x2 to trade x units. Assuming that

γ1 = γ2, I express the coefficient β1 and ζ1 as follows:

β1 =

[
1−ζ2PPI

(
1− ζ2IPI2

1+ζ2IPI2

)]
· (IPI1 + c)−1.

ζ1 =

(
1− PPI2

IPI1IPI2
· ζ2IPI2

1+ζ2IPI2

)
· (IPI1 + c)−1

Here, ζ2 =

[(
(1+ θγB

γA
)λ2 +φ

)−1
+ c
]−1

, IPI1 =
1

γAσ2
v +c IPI2 =

1
(1+ θγB

γA
)λ2+φ

, λ2 =

1
γBσ̂2

U+c
, and PPI = ((1+ θ)δ + θλ1λ2γσ̂2

U + φκ) · IPI1 · IPI2. Higher costs in-

crease both IPI and PPI, implying a loss of liquidity in the market. When c = 0,
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Figure 1.3.2. Simulated price path. Parameters are, [v,v0,θ ,γA,γB,σ
2
z ,σ

2
v ,φ ]=[-1, 0,

0.2, 1/3, 1/3, 0.5,1, 2(1−θ/2)λ1]. The true fundamental price is v =−1. κ = 1.8
for left graph, and the informed trader conducts informed manipulation. κ = 0.5
for right graph, and the informed trader does not conduct informed manipulation.
Trades were executed at t = 1 and t = 3, and the price at t = 0 and t = 2 are the

mid-price or the expected fundamental for uninformed traders.

ζ2 = IPI−1
2 , and we can confirm every strategic variable is identical to those of the

no-transaction-cost case.

The effect of the adjustment cost c is ambiguous when it is moderately small. The

manipulator cannot trade aggressively at time t = 2 because of the transaction

cost. This restriction increases the motivation for manipulation at t = 1, and the

price deviates more from the fundamental when κ > 1 and informed manipulation

occurs. However, the transaction cost can also smooth the price path when κ < 1.

The simulations of price path, for both the κ > 1 and κ < 1 cases, are described

in Fig 1.3.2. The higher cost even helps the price to deviate from the fundamental

v =−1 when κ > 1. High costs also discourage the informed trader from trading

at the last period, preventing the price from approaching the fundamentals. For

κ = 1.8, the calculated market inefficiencies are 0.859, 0.901, 0.941, and 1.059,

for c = 0,0.05,0.10,0.15, respectively. The market inefficiency gets worse when

the transaction tax is higher. For κ = 0.5, the market inefficiencies are 0.796,
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0.799, 0.794, and 0.788. The inefficiency does not change a lot depending on the

level of transaction tax.

Heterogeneous Belief

The assumption of the rule-of-thumb traders is a key device in this model, but it

also seems ad-hoc. We can, however, reinterpret the model as a kind of hetero-

geneous belief model on the random variables, under certain conditions on the

parameters. Thus, I can investigate whether heterogeneous beliefs could imply

momentum trading which can lead informed manipulation.

I study whether if the model with rule of thumb traders can be replicated by two

models with heterogeneous belief: (1) the uninformed traders believe that the

noise trading is correlated with the fundamental, (2) the uninformed traders be-

lieve that the precision of the noise is high. I assume that the traders agree to

disagree about the noise structure. More specifically, I assume (1) Cov(z1,v) =

σzv 6= 0, and (2) Var(z1) = kσ2
z , 0 < k < 1 to calculate the demand function of

uninformed traders. Because the noise only becomes important when uninformed

traders update their expectation, I only have to consider the change of uninformed

traders and rule-of-thumb traders.

Combining the demand function of the uninformed traders (Eq.A.1.4) and the

rule-of-thumb traders (Eq.1.2.1), I obtain

X2,B(·)+X2,R(·)=
1

γBσ̂2
U

{(
Cov(P1,v)
Var(P1)

+ γBσ̂
2
U φκ

)
(P1−E[P1])+

(
1+ γBσ̂

2
U φ
)

v0−
(
1+ γBσ̂

2
U φ
)

p2

}
.

Thus, I find that the aggregated demand X2,B(·)+X2,R(·) becomes a linear trans-

formation of X2,B(·) except for the different coefficient of (P1−E[P1]). I investi-

gate the condition that the aggregated demand can be transformed as changes in

the assumption (1) and (2).
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The changes of (1) and (2) alter the conditional variance σ̂2
U and the projection

coefficient Cov(P1,v)
Var(P1)

at the same time. Because I have two free parameters φ and κ ,

the implicit function theorem guarantees that I can determines the transformation

of the rule-of-thumb traders model into the different noise structure models (1)

and (2).

To simplify the analysis, I assume that Φ = φ

γBσ̂2
U

,i.e., the risk capacity of the

rule-of-thumb traders is a linear transformation of that of uninformed trader at

t = 2 .

Proposition 5. The model with rule-of-thumb traders (Φ, κ) can be transformed

to (1) the model with agreement to disagree about noise-fundamental correlation

(Cov(z1,v) = σzv), and (2) the model with agreement to disagree about noise pre-

cision (Var(z1|Fu) = kσ2
z ) when we set φ and κ as follows:

(1) Φ = σzvAβ1
σ2

p(σ
2
v σ2

z −σ2
zv)

, κ =
β1σ2

v σzv+σ2
v σ2

z
A ·

(
β1

λ1+ζ1

)−1
and A = β1σ2

v σzv+2σ2
v σ2

z +

σ2
zvσ2

z /β1,

(2) Φ = (1−k)
k ρ2, κ =

(
β1

λ1+ζ1

)−1
.

I can find the expressions by solving following simultaneous equations for Φ and

κ:

(1)
Cov(P1,v)+

σzv
λ1+ζ1

Var(P1)+
2β1σzv

(λ1+ζ1)
2

=
Cov(P1,v)
Var(P1)

· 1
1+Φ

+
Φκ

1+Φ
, σ

2
v −

(
Cov(P1,v)+

σzv
λ1+ζ1

)2

Var(P1)+
2β1σzv

(λ1+ζ1)
2

=
1

1+Φ
· σ̂2

U

(2)
Cov(P1,v)

β 2
1 σ2

v

(λ1+ζ1)
2 +

kσ2
z

(λ1+ζ1)
2

=
Cov(P1,v)
Var(P1)

· 1
1+Φ

+
Φκ

1+Φ
, σ

2
v −

Cov(P1,v)2

β 2
1 σ2

v

(λ1+ζ1)
2 +

kσ2
z

(λ1+ζ1)
2

=
1

1+Φ
· σ̂2

U

Thus, I can propose that the model with informed manipulation (β1 < 0, κ > 0)

cannot be transformed to the model (2). However, numerical examples show that

informed manipulation can occur in the model (1).
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Figure 1.3.3. Numerical comparative statics for β1. β1 < 0 indicates presence of
informed manipulation.

(Left) (horizontal) Mass of Uninformed trader (1/γ2), (vertical) β1
(Right) (horizontal) Volatility of noise trading (σz), (vertical) β1
Note: Other parameters: (Left) [θ ,γA,σ

2
z ,σ

2
v ,κ]=[.2, 1/5, 3, 1, 1],

(Right) [θ ,γA,γB,σ
2
v ,φ ]=[.2, 1/5, 1/3, 1, (1−θ)λ1]

Numerical Comparative Statics

The equilibrium is characterized by a cubic equation. I can solve this equation

numerically9, but the solution may not be unique or there may not be an equilib-

rium under some parameter sets because the solution will violate the second order

condition.

The role of rule of thumb traders I am interested in determining when manip-

ulation (informed manipulation, indicated by negative β1) is more likely. One

obvious connection is the inflow of momentum traders at t = 2, which is indicated

by φ . The more momentum traders that trade, the easier it is for manipulation to

occur. The left graph of the Fig. 1.3.3 confirms this intuition.

When φ increases, β1decreases. If φ > (1− θ)λ1, β1 changes sign. In the case

of φ = (1− θ)λ1and κ = 1, β1 = 0. This relation implies that informed traders

9 I used Matlab to calculate the cubic equation that governs the equilibrium. Then I determine
whether the second order conditions are satisfied for the candidate solution.
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trade independently of their private information because the loss from information

leakage and the gain from manipulating rule-of-thumb traders are equal. The

informed traders only trade to obtain the advantage of the variation of the number

of uninformed traders (described in ζ1 terms).

When 1/γB increases (implying that the liquidity provision at t = 2 increases), the

informed trader takes smaller position to minimize their information leakage and

wait for t = 2 to trade. Thus, β1 decreases as 1/γB increases.

Noise trading and the manipulation measure The right graph of Fig. 1.3.3 de-

scribes the connection between the volatility of noise and β1. Here, I assume that

φ = (1−θ)λ1. Again, κ = 1 implies β1 = 0 regardless of the value of σz.

Because the informed trader can hide behind the noise trading, he can trade more

aggressively (aggressive manipulation or aggressive informed trading) by using

private information. When informed manipulation is more profitable than honest

trading, informed traders tend to manipulate more.

Profitability Lastly, I would like to note the profit from the manipulation. Fig. 1.3.4

describes the changes in profit depending on the number of uninformed traders

and the volatility of noise trading.

When there are more strategic uninformed traders, as shown in the left graph, the

profitability declines because the liquidity also declines. This relationship is true

even when the informed trader conducts manipulation. An increase in the number

of uninformed traders, which is the same as the number of rule-of-thumb traders,

increases the total profit of the informed trader. Because uninformed traders take

more risk and submit orders more aggressively, and it implies more liqidity pro-

vision to the informed traders.
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Figure 1.3.4. Numerical comparative statics for the total profit for informed
traders.

(Left) (horizonal) Mass of Uninformed trader (1/γB), (vertical) profit
(Right) (horizontal) Volatility of noise trading (σz), (vertical) profit

Note: Other parameters: (Left) [θ ,γA,σ
2
v ,σ

2
z ,κ]=[.2, 1/5, 3, 1, 1],

(Right) [θ ,γA,γB,σ
2
v ,φ ]=[.2, 1/5, 1/3, 1, (1−θ)λ1]

The higher noise trading decreases permanent price impact. This decrease im-

proves the profitability of non-manipulative trading but at the same time dampens

the profit from manipulation. The contribution of more volatile noise trading to

the profit is high for non-manipulative trading and low for manipulative trading.

This result is described in the right graph of Fig. 1.3.4.

Even though manipulative trading can make as much profit as non-manipulative

trading, the “rate” of profit is even higher when contrarian traders are the majority

because informed manipulation requires much greater funds to pump and dump

the prices. The liquidity provided by the contrarian traders is more favorable for

informed traders.

1.4. Conclusion

I study the intraday opportunity of stock price manipulation. The model suggests

two conditions for price manipulation, which are obtained as restrictions on the
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variation of liquidity: uninformed and informed price manipulation. The model

views the price manipulation as an arbitrage opportunity regarding expected liq-

uidity changes. Uninformed price manipulation is not supported in a Bayesian

Nash Equilibrium because the manipulator can earn unbounded profit. The model

gives an equilibrium framework to the model of Huberman and Stanzl (2004).

Informed manipulation is easier to conduct because it has only to pay one-way

slippage, but it requires private information about the fundamental. The opportu-

nity for informed manipulation is available in an equilibrium when there are pos-

itive feedback (momentum) rule-of-thumb traders, who do not trade strategically

and are naively influenced by manipulators. The manipulation cannot be suc-

cessful without the rule-of-thumb traders because uninformed traders optimally

respond to the manipulation.

Numerical comparable statics show that informed manipulation is more likely

and more profitable when the noise trading is more volatile and that the market

efficiency could become worse under the presence of manipulation. Financial

transaction tax does not prevent informed manipulation and reduces the liquidity

of the market.
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Chapter 2

Intraday Liquidity Trading Opportunities

2.1. Introduction

Need for this study Can traders deceive their counterparts to make a bigger profit

even when they do not have access to private information on fundamentals and

liquidity? If they can accomplish this, how can one identify and measure this op-

portunity? For example, high-frequency trading (HFT) apparently allows steadly

accumulation of profit by repeating trades during a day (Kirilenko, Kyle, Samadi,

and Tuzun (2011)). How do the traders discover opportunities to make a profit?

The concerns about HFT and resulting market efficiency have attracted growing

concern, but not much academic research has been conducted in this area. I shall

attempt to answer these questions in this paper. I present a measure designed to

discover the manipulation opportunity based on a market microstructure model

and test it empirically.

Various real-life examples depict ways in which market prices may be manipu-

lated. Most of these are regulated by the authorities. Aggarwal and Wu (2006)

investigated cases from the United States Securities and Exchange Commission

(SEC), and summarized the ways in which profits may be made through manipu-

lation: trade-based manipulation, rumors, wash sales, and corners.
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In practice, various strategies can be utilized in trade-based manipulation, and

some such strategies have been theoretically studied. Allen and Gale (1992)

presents a theoretical model which supports uninformed manipulation in equilib-

rium when uninformed traders believe that there is informed trading. Examining

a special case of trade-based manipulation, Kumar and Seppi (1992) studied the-

oretical price manipulation in cash settled contracts, and Brunnermeier and Ped-

ersen (2005) theoretically investigated predatory trading which attacks stop-loss

orders to drive down the price. Recently, Hasbrouck and Saar (2009) noted how

the mechanism of HFT allows for the repeated cancellation and resubmission of

limit orders within a second to take advantage of potential profits (called “fleeting

orders”). Kirilenko, Kyle, Samadi, and Tuzun (2011) examined empirically the

trading of high-frequency traders in Standard and Poor’s E-mini S&P 500 futures

contract and find that their positions were correlated with the past return within the

space of one minute and one second. Working against these algorithmic traders,

some market participants have also been known to take advantage of predictable

features of algorithmic trading and to make a profit by placing spoof limit orders1.

The algorithmic trading strategy was designed to submit market orders in response

to changes in the limit order book, even though the limit orders were intended to

“spoof” the algorithmic traders. In one such case, the trader was eventually ac-

cused of manipulative trading by the concerned authority. The party that actually

manipulated the market is, however yet to be determined. This example illustrates

that the definition of “manipulation” is wide-ranging and somewhat confusing.

Therefore, before proceeding with the explanation of the measure I have devised,

I will formally define the term “manipulation” in the context of this paper.

In this paper, I intend to study trade-based manipulation in light of the predictabil-

ity of intraday liquidity. This means that I do not consider rumors to affect the par-

1 SESC cases on the manipulation of Hokuetsu Kishu Seishi (3865), on June 14 and 15, 2010.
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ticipant’s belief of the fundamentals, and the relation between the market price and

its fundamentals. I assume there are no regulatory and/or administrative causes of

manipulation, such as cash settlements and stop loss orders for predatory trading.

While my study does not rely on specific real-life events, I construct a manipu-

lation opportunity measure for every listed stock as if it were a general arbitrage

opportunity.

Modern portfolio theory tells us how to measure risk using mean-variance anal-

ysis. The profitability of manipulation is also associated with risk, given that the

market price may fluctuate due to unanticipated reasons. However, there is a twist

when it comes to the consideration of risk: the profit from manipulation bacause

of market power is quadratic in the amount of trading. Thus, a comparison with

the usual stock trading where the return is linear is not straightforward. My model

provides insights on how to account for the risk. I also recognize that my analysis

is about the ex-ante hypothetical profitability of a manipulation opportunity, and

clarify that I do not aim to detect whether a manipulation has actually occurred.

Different from my approach, the majority of empirical studies concerning market

manipulation resort to anecdotal evidence. Aggarwal and Wu (2006) studied data

related to enforcement actions by the SEC. They concluded that manipulators are

usually informed parties like insiders, brokers, and large shareholders and that

their manipulation influences liquidity, price volatility, returns, etc. Khwaja and

Mian (2005) documented a trade-based “pump and dump” scheme exercised by

colluding principal brokers to generate an artificial momentum.

Definition of Manipulation Our theory-based definitions of manipulation can

be applied to intraday stock trading. They are described as follows: “uninformed

manipulation” refers to the profitability of a round trip trade, and “informed ma-

nipulation” addresses whether a manipulator could trade in a direction opposite

39



to their private information. A “round trip trade” is an offsetting set of buying

and selling trades in a certain interval. This zero-net-position trade should not

earn any profit on average in a very short time interval. Informed manipulation

is related to the following practical question—if traders have information that the

stock fundamental is better than the market price, would they like to sell the stock?

The answer can be in the affirmative, provided they are able to buy more shares at

the lower price after the sale.

Note that these trading strategies are different from insider trading. Insiders could

trade along with their private information, and they might split their orders to

minimize price impacts. In this case, the market price incorporates the true fun-

damentals. However, under manipulate trading, the market price does not neces-

sarily reflect true fundamentals.

In this paper, I attempt to model the dynamics of the limit order book (LOB) and

incoming market orders. The dynamics involves an exogenous stochastic process,

whereby a manipulator tries to maximize his profit by manipulating the environ-

ment. This allows us to analyze the conditions enabling a profitable opportunity

for the manipulator. The conditions are described by the variation of liquidity and

the volatility of the price; in order to find an opportunity for manipulation, I need

to measure both Permanent Price Impact (PPI), and Immediate Price Impact (IPI).

PPI has been traditionally studied in the field of empirical market microstructure

(e.g., Hasbrouck (1991)). It is also known as the Kyle’s lambda (l). Theoret-

ically, we can estimate PPI as a regression coefficient of price changes on the

order imbalances (buyer-initiated orders minus seller- initiated orders). In order
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to calculate IPI, we need rich information about the market. Therefore, I calculate

IPI by using LOB data.

Literature The two types of manipulation strategies, uninformed manipulation

and informed manipulation, have been studied previously. Uninformed manipu-

lation has been referred to as a theoretical possibility by Kyle (1985). Informed

manipulation was proposed by Chakraborty and Yilmaz (2004). I am going to

study both strategies within a consolidated framework.

My aim in building the model is to present a measure of the manipulation oppor-

tunity, like the arbitrage opportunity implied by the alpha of the CAPM. As the

CAPM assumes that the alpha is not significantly different from zero as the ab-

sence of arbitrage, my theory suggests that the manipulation opportunity measure

should not be greater than zero as the absence of arbitrage, which means there is

no opportunity of uninformed manipulation.

My model resembles the environment of Huberman and Stanzl (2004), where

each IPI and PPI function is exogenously given. Their model analyzesconditions

which preclude uninformed price manipulation, defined as a risk-less profitable

round trip trade. The resulting no arbitrage condition mandates that for the single

asset case, PPI should be less than the sum of current and future IPIs. My model

considers a risk-averse manipulator reluctant to take the risk of price changes. The

resulting manipulation condition tells us how to consider the risk of manipulation.

My notion of informed price manipulation, characterized by the trading against

private information, is similar to the argument studied by Chakraborty and Yil-

maz (2004a, b). I can consider informed manipulation in a framework similar to

that proposed by Huberman and Stanzl (2004). Mei, Wu and Zhou (2004) studied

uninformed price manipulation generated by the presence of behavioral traders,

and considered its empirical plausibility. They introduced a rule of thumb for
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“momentum” traders in a manner similar to that of De-Long et al. (1990) and

Hong and Stein (1999). While I do not specifically assume such a rule of thumb

for traders in my model, I empirically examine whether the return or abnormal

volume can affect the manipulation measure I am proposing. If they do, it implies

that the predictable behavior of rule of thumb for traders leads the profitability of

manipulation.

This paper proceeds as follows. In section 2 presents the model to define the

profitability of manipulation. Section 3 describes the data. Section 4 explains the

empirical formulation and presents the results. I conclude in section 5.

2.2. The Model

Motivation for the Model I present a model to define the conditions of manipu-

lation. The conditions motivate my empirical formulation. To simplify the model,

I assume the incoming orders are exogenous, and the manipulator maximizes his

profit based on the environment. I assume a very short time for the trade, and that

the dividend from the trade is zero.

2.2.1. The Model Environment

I model the state of the LOB st , at time t as pairs of the amount of limit order and

the price:st = {(bt,i, pbt,i),(at,i, pat,i)}i=1,...I . Here, b and a denote the quantities

in bid and ask side of the book, respectively. pbt,i and pat,i denote bid and ask

prices of the ith step at time t. From LOB orders up to I steps of the ask and bid
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are publicly observable. I define the mid price of the book mpt as the weighted

average of the best bid and ask prices

mpt =
at,1 pbt,1 +bt,1 pat,1

bt,1 +at,1
.

I also define effective spreads for bid and ask as esb,t and esa,t , respectively. For

example, esb,t = mpt− pbt,1.

I assume incoming market orders between t and t− 1, and arrivals of public in-

formation that affect the book without inducing any executions. Combining with

a PPI λt , I model the changes in the mid price as follows:

mpt−mpt−1 = λtvt + it . (2.2.1)

vt denotes the executed order imbalances between t and t− 1, and it is the price

change from public information. This formulation is motivated by Kyle (1985).

λt represents the update of belief of market participants (or market makers) about

the fundamental. If the order imbalances do not have any content of private infor-

mation, λt = 0.

In addition to the PPI, I want to know the instantaneous price change which is

made by my own execution at time t after observing the state of the book. This

leads to the definition of IPI. I can define an IPI at t from the state of the book st .

When I buy x units of the stock at time t, the IPI is a function of x, and the buyer

pays an averaged purchase price− pat,1 per unit that can be calculated from st .
2

Based on a system represented by st ,vt , it ,λt , I set up the maximization problem

of a manipulator at t−1 and t. I examine two cases: a case when the manipulator

2 In reality, for the limit order book, I would observe the maximum purchase price rather than
the averaged purchase price. My definition employs the latter so as to simplify the maximization
problem of a manipulator.
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make a round trip trade in the market, and another case when the manipulator does

front-running. The first setup derives the condition for uninformed manipulation,

while the second setup gives the condition for informed manipulation.

Uninformed manipulation A round trip trade is a set of two trades with zero

net position at the end. The manipulator first buys (sells) a stock, and liquidates

the position after some time interval. I will examine whether the round trip trade

between t − 1 and t could make a positive profit. To simplify the notation, the

IPI at t and t + 1 of x unit execution are denoted as IPIt(x) and IPIt+1(x). If

the LOB is discrete, the function of IPI is described as a step function depending

on st . I assume IPIt(x),vt , it ,λt follow stochastic processes, and the manipulator

maximizes the profit based on the information set at t−1.

I also assume the manipulator has a negative exponential utility function in the

terminal wealth Wt : u(Wt) = −exp(−γWt). The maximization problem for the

manipulator who conducts a round trip trade of x ∈ R+ units of stocks 3 is,

maxxEt−1 [−exp(−γ (Pt(x,−x)−Pt−1(0,x)) · x)] . (2.2.2)

Here Pt(x,y) is an averaged execution price when the manipulator trades x at t−

1 and y at t. The restriction of a round trip trade can be denoted as y = −x.

Combining Equation (2.2.1) and the definition of IPI gives us,

Pt(x,−x)= λt(vt +x)+it +IPIt(−x)−esb,t +mpt−1, Pt−1(0,x)= esa,t−1+IPIt−1(x)+mpt−1,

when x ≥ 0. To simplify this argument, I assume IPI(x) is a linear function:

IPI(x) = IPI · x.

3 I assume manipulators start with buying rather than selling. This is because anecdotal
evidence suggests that more than 90% of manipulators start with buying in order to manipulate the
price. The analysis of selling manipulation is mostly symmetric to this analysis.
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I further assume (IPIt ,esb,t ,vt , it ,λt) are jointly normally distributed and uncorre-

lated. Their means are assumed to be ( ¯IPI, ¯esb,t ,0,0, λ̄ ) and their variances are

(σ2
IPI,σ

2
esb
,σ2

v ,σ
2
i ,σ

2
λ
). The maximization problem can be rewritten as,

maxx −Et−1
[
exp
(
−γx

(
ĩt− x ˜IPIt− ẽsb,t

))]
·Et−1

[
exp
(
−γx · λ̃t(ṽt + x)

)]
·exp(−γx(−esa,t−1− xIPIt−1)) .

because (vt +x) and the other terms are independent, and Pt−1(0,x) is a determin-

istic term. The randam variables are marked with tilde. Taking out the expectation,

I obtain

maxx −exp
[
−γx

(
−x ¯IPI− ēsb,t

)
+ γ2x2

2

(
σ2

i + x2σ2
IPI +σ2

esb

)]
(2.2.3)

·exp
[

2λ̄x(−γx)+γ2x2(σ2
λ

x2+σ2
v λ̄ 2)

2(1−γ2x2σ2
λ

σ2
v )

]
/(1− γ2x2σ2

λ
σ2

v )
1
2

·exp(−γx [−esa,t−1− xIPIt−1]).

Here, the first term is from a moment generating function of a normal distribution,

and the second term is from that of a product-normal distribution. Note that taking

γ→ 0 generates a risk neutral case, and taking σλ → 0 leads the product-normal to

a normal distribution. The maximization problem seen in Equation (2.2.3) should

have its second order condition satisfied in order to preclude the profitable un-

informed manipulation. Taking the second order derivative, I find that it takes

the form of f ′′(x)e f (x)+ f (x)′2e f (x) for a function f (x). When the second order

condition is positive, the manipulator buys stocks infinitely (unbounded solution).

When the condition is negative, it is optimal to set x = 0 (denoting an absence of

uninformed manipulation). Since f (x)′2, e f (x) are positive, I focus on f (x)′′ to
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test the sign of the second order condition. Taking a Taylor expansion of f (x)′′

around x = 0, I obtain

2γ
(
−λ̄ + ¯IPI + IPIt−1

)
+γ

2 (
λ̄

2
σ

2
v +σ

2
i +σ

2
esb

+σ
2
λ

σ
2
v
)
+γ

3 (ēsb,t + esa,t−1
)

σ
2
λ

σ
2
v x+O(x2).

(2.2.4)

The first term is the same as the risk neutral uninformed manipulation condition

−λ + IPIt + IPIt−1 < 0, which is the condition to obtain positive expected profit4.

The second term represents the risk, and this is interpreted as the volatility of

mid price changes, and the volatility of effective spread incurred in the liquidation

period. The third term is related to the bid and ask spread, but I ignore it because

I realize the solution should be either x = ∞ or x = 0.

Equation (2.2.4) motivates my risk-averse uninformed manipulation measure Mt ,

which I define as follows,

Mt ≡ Et−1 [λt− IPIt ]− IPIt−1−
γ2σ2

price

2
. (2.2.5)

When Mt > 0, I find an opportunity to make a profit from uninformed manipula-

tion between t−1 and t. I can empirically test this manipulation opportunity with

market data.

Informed manipulation Informed manipulation is defined as a profitability of

front running. I assume that the manipulator can liquidate their position at t +1 at

a price Pexit (to denote front running). They have two options to earn a profit: di-

viding their order to mitigate the price impacts, or trading in the opposite direction

4 The risk neutral manipulation condition is the same as the one proposed by Huberman and
Stanzl (2005).
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at t−1 to take an advantage of the price at t. Assuming that the manipulator would

take the second strategy, I can formulate the maximization problem as follows:

maxxt−1,xt Et−1 [−exp(−γ (Pexit · (xt + xt−1)−Pt(xt−1,xt)xt−Pt−1(0,xt−1)xt−1))] .

(2.2.6)

Here, I assume that the manipulator has private information indicating better fun-

damentals and sells at t − 1 and then buys at t. The execution price depends

on whether the manipulator buys or sells because of different effective spreads.

When it is selling (buying), the price is associated with esb,t(esa,t). The problem

at t gives the solution x∗t =
Pexit−(λ (x+v)+esz,t+i+mpt−1)

2IPI . Given x∗t , the problem can

be transformed into

maxxEt−1

[
−exp

(
−γ

(
Pexit −

(
λ (x+ ṽ)+ ẽsa,t + ĩt +mpt−1

))
4IPIt

2

− γx
(
Pexit − (mpt−1− esb,t−1− IPIt−1 · x)

))]
,

to obtain xt−1 = x∗. For tractability, here I assumed that the PPI and IPI are

deterministic. Based on this assumptions, I can take out the expectation by using

the momentum generating function of a non-central Chi-square distribution. The

second term is pre-determined. I may write,

maxxt−1 −
exp
[

−γσ2

σ2(1+2γσ2)
[Pexit−(mpt−1+λxt−1+ēsa,t )]

4IPIt

2]
(1+2γσ2)

1
2

·exp
[
−γ
(
Pexit − (mpt−1− esb,t−1− IPIt−1 · xt−1)

)
xt−1

]
.

I denote σ2 =
λ 2σ2

v +σ2
esa,t+σ2

i
4IPIt

, and Et−1[esa,t ] = ēsa,t .

I want to show the solution x∗< 0 when Pexit >Et−1[esa,t ]+mpt−1. The first order

condition is

−2γσ2λ

σ2(1+2γσ2)
3
2

(
Pexit − (λxt−1 + ēsa,t +mpt−1)

4IPIt

)
+γ
(
Pexit − (mpt−1− esb,t−1−2IPIt−1 · xt−1)

)
= 0.
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I drop the exponential term. After solving for xt−1, the condition for x∗t−1 < 0 , the

risk averse informed manipulation condition, is

λ >
Pexit− (mpt−1− esb,t−1)

Pexit−Et−1[ēsa,t +mpt−1]
·2IPIt · (1+2γσ

2)
3
2 . (2.2.7)

When the manipulator is risk neutral and the effective spreads are zero, γ = 0 and

esa = esb = 0, then the condition reduces to λ > 2IPIt .

2.2.2. Summary for the Empirical Study

In this section, I summarize the empirical implication obtained from this model.

The manipulation opportunity can be examined by estimating the IPI and PPI.

Each price impact is identified without estimating the structural parameters that

govern the behavior of the traders. The PPI is identified as Kyle’s lambda, and

if I allow a linear approximation, the IPI should be the slope of the demand and

supply curve implied by the LOB.

The fundamental question about the manipulation opportunity is whether if it is

arbitraged or not. If market participants recognize the presence of the arbitrage

opportunity, it should be exploited. To answer this question, I develop follow-

ing empirical questions: (1) what is the likelihood of the manipulation measure

(defined in Eq.(2.2.5), and Eq.(2.2.7)) being positive (implying the presence of

manipulation opportunity), (2) is it profitable enough for risk averse manipula-

tors, and (3) whether it changes along with an intraday time range. I explore these

questions by taking look at the descriptive statistics.

Other questions about the measure are its cross-sectional and time series proper-

ties. Which stock is more likely to present a high opportunity for manipulation?

During a day, what is the driver of the time-variant manipulation measure? These
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questions assume significance when I implement the manipulation strategy, and

therefore, I think it is prudent to explore the link between the manipulation mea-

sure and other market variables.

For the cross-sectional analysis, I look at the relation between the measure and

number and volume of trade(s), volatility of noise trading, and market capitaliza-

tion. In my time series regression model, I use lagged return, order imbalance,

and abnormal volume, which are supposed to be correlated with “attention-based

trading,” as per the findings of Barber and Odean (2008). If these market vari-

ables stimulate the behavior of momentum follower, the stock price is more easily

manipulated.

2.3. Data

2.3.1. Description of Data

In this analysis, I use tick-by-tick transactions and LOB data provided by the

Nikkei Tick data5. Transaction data contain the code of equities, quantities, prices,

up-tick or down-tick flags, and time-stamp (minute-by-minute for the Tokyo Stock

Exchange (TSE), second-by-second for the Osaka Securities Exchange (OSE)).

There are no flags to identify market orders from limit orders. The LOB data

contains every snapshot of the LOB, which is revised at every new order arrival.

The LOB in the TSE is described as five-step best bid and ask prices associated

with the total order volume. Note that my data does not include block-trading and

basket-trading transactions conducted during off-auction hours through the Tokyo

Stock Exchange Trading Network or ToSTNet.

5 I appreciate Prof.Takatoshi Ito, and Center for Advanced Research in Finance at University
of Tokyo for the access to this data.
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The trading system, rules, and basic characteristics are documented in Lehmann-Modest

(1994). The dealing system of the TSE starts at 9:00 AM with an auction. It has a

break between 11:00 AM to 12:30 PM, and ends at 3:00 PM. The dealing system

at the OSE ends at 3:10 PM. There is a price limit that ranges from 7% to 20% of

each equity price, depending on its price range. Each equity’s minimum tick size

ranges between 3bp to 100%, and is characterized by a relatively bigger minimum

tick size than that of the New York Stock Exchange or NYSE. The total quoted

trade volume was the fourth largest in the world in 2009. Currently, there are about

3,000 listed stocks. Unlike other Electronic Trading Systems (ETS), the TSE does

not allow hidden orders, and traders can use either a market or limit order. The

pricing system has price and time priority. Each order is anonymous, and traders

cannot identify whether if it comes from institutional investors or retail dealers.

The advantages of the TSE and OSE data are as follows: (1) it is one of the biggest

markets using ETS, and is the most liquid, (2) whole LOB data are available, (3)

index and bond futures and option data are also available, and (4) relatively new

data (ranging between 2004 to 2009) are available. The defects of the data are

as follows: (1) the time-stamp is sparse (minute-by-minute), (2) order identities

are hidden, (3) old data (before 2004) are not available, (4) the tick size is large,

and (5) there are price limits. For the purposes of my study, the liquidity and

availability of LOB data are essential. 6

2.3.2. Descriptive Statistics

Table 2.1 shows the descriptive statistics of my paper. These statistics are cal-

culated for the sample time range from November 1, 2004 to November 1, 2005.

6 The presence of a price limit may distort the results. Therefore, I omit data approaching the
price limit for a particular stock day.
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Variable Mean Std. Dev.
Immediate Price impact (ask,yen/unit) .084 .143
Immediate Price impact (bid,yen/unit) .091 .165

Bid and Ask spread (yen) 1.469 1.141
Permanent price impact (yen/unit) .063 .237

Ask side depth (million yen) 2.31 7.47
Bid side depth (million yen) 2.12 6.74

Number of trades perday 339.4 321.8
Daily volume (# of shares) 2.46 million 9.28 million
Order imbalances(in unit) 4.849 523.8

sd(return) .002 .001
market capitalization (log yen) 25.99 1.158

Obs. 432

Table 2.1. Descriptive statistics. The return is a 5-minutes return. “unit” means
the minimum shares to trade which depends on the stock’s face value.

Since the Kalman filter does not necessarily converge and I focus on one-minimum

tick size stocks, the number of samples reduces from 1000 to 432.

To calculate PPI and IPI correctly, each stock needs large enough activity. I can

measure the activity, or liquidity, by trading volume, trade numbers, and depth.

For the 432 sample stocks, the mean trading volume is 2.46 million shares, and

the mean trading number is 339.4 per day. Also, the mean ask and bid side depth

are 2.31 and 2.12 million yen, respectively. Thus, the sample stocks are liquid

enough in terms of both depth and volume. Further, the mean PPI (0.63 yen per

unit) is lower than the IPI 0.84 yen per unit for ask, and 0.91 yen per unit for bid).

This indicates there is no opportunity for manipulation on average.
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2.4. Empirical Analysis

2.4.1. Empirical Formulation

2.4.1.1. Immediate Price Impact (IPI)

I consider measuring the IPI (also called slippage). Theoretically, slippage is mea-

sured by estimating the slope of the demand-supply schedule implied by each

snapshot of the LOB. However, my empirical estimate of the IPI differs from the

theoretical definition. My model assumes that the IPI is defined on the average

purchase price that depends on the amount of executed volume, but in reality, the

IPI is the executed price for the last one unit. In order to draw the IPI to simply

represent the state of the book, I approximate the real LOB with a linear demand

and supply curve.

From a snapshot of the LOB, I conjecture the price schedule as a linear function to

define the IPI for the ask side of the book. Then I conduct the following regression:

Slippage estimation: p(Vk)− pat,1 = IPIA ·Vk+εk, Vk =
k

∑
i=1

order volumei

(2.4.1)

where i = 1,2, · · ·5 because I have only five best bid and ask orders from the data.

I repeat the regression for the bid side of the LOB to obtain IPIB. Here I do not

consider the presence of bid and ask spread, as I do not have to heed the spread

while considering the uninformed manipulation condition.

As indicated previously, I want to define the IPI based on the average purchase

price rather than the last marginal purchase price. This necessitates a modification
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such that the IPI is denoted as half of the linear price impact inferred from the

LOB, or IPI/2. The details of this modification are located in the Appendix.

2.4.1.2. Permanent Price Impact (PPI)

The PPI is a price change led by information leakage. The PPI is identified by the

order imbalance and the mid-price change in the LOB. The empirical regression

equation is as follows:

Permanent price impact estimation: ∆p̃t+1 =PPI ·vt+1+εt+1, t = 1,2, · · ·T,

(2.4.2)

where vt+1 denotes order imbalance between t and t+1, and ∆p̃t+1 ≡ p̃t+1− p̃t is

a mid-price change7. The order imbalance is defined as a difference between the

buy volume and sell volume, or the sum of signed volume in shares. According to

the standard market microstructure model, the PPI is determined endogenously;

the trading of manipulator does not affect the PPI itself.

2.4.1.3. The Kalman Filter

The price impact coefficients, IPI and PPI, are assumed to be time varying. The

IPIt and PPIt are price impacts which are estimated at the ending of each time

segment t, and are conditional on the past realization of price and trade up to

7 In practice, defining p̃t+1 can be a problem. The LOB price p̃t+1 is defined either as the
mid-point of bid and ask price, or depth-weighted average of bid and ask price. The latter method
is an approximation of estimating the crossing point of demand and supply schedule implied by
the LOB. I define p̃t as a depth-weighted average price. This also relieves the bid-ask bounce
problem. Cao, Hansch, and Wang (2009) discussed the use of share weighted mid-quote in more
detail.
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t−1. To calculate them, I employ the Kalman filtering algorithm. The equations

are expressed as a state space as noted below.

Observation equation:

 ∆ p̃t

IPIt

=

 vt 0

0 1


 ˜PPIt

˜IPIt

+

 εU,t

0



Transition equation:

 ˜PPIt+1

˜IPIt+1

=

 1 0

0 1


 PPIt

˜IPIt

+

 uU,t

uS,t


I distinguish the state of slippage ˜IPI from the observed slippage IPI. The error

terms are further assumed as follows:


εU,t

uU,t

uS,t

|Ft−1

∼ N




0

0

0

 ,


σ2
ε,U 0 0

0 σ2
U 0

0 0 σ2
S


 (2.4.3)

The Kalman Filtering provides one-period ahead estimation θt |Ft−1∼N(θ̂t|t−1,Vt|t−1),

where θt is the parameter vector (PPIt IPIt)′. Vt|t−1 is the conditional variance

and is recursively defined. Also, I can estimate an initial parameter PPI0, and the

standard deviations σε,U , σu,U , σu,S by maximum likelihood estimation. Abbre-

viating the observation function as yt = Ztθt +Ht , I can express the log likelihood

function as follows:

T

∑
t=1

log f (yt |Xt ,Ft−1 : λ0,σε ,σλ ,σµ) = −T
2

log(2π)− 1
2

T

∑
t=1

log det(Z′tVt|t−1Zt +Ht)

−1
2

T

∑
t
(yt − yt|t−1)

′(Z′tVt|t−1Zt +Ht)
−1(yt − yt|t−1)

Eventually, I obtain PPIt|t−1 and IPIt|t−1 by the information up to t−1: Ft−1 =

{∆p̃t−1,vt−1, IPIt−1,Ft−2}. I apply this empirical framework to the LOB data in
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the TSE. I take 5, 15, and 30 minute intervals to calculate the order imbalance vt

and the mid-price change ∆pt . Each slippage IPIt is calculated from the snapshot

of the LOB at the beginning of every five minutes.

As mentioned previously, for this formulation, I estimate the standard deviation

of the transition and observation errors with maximum likelihood lstimation. Be-

cause the optimization program might not always converge, I confirm that the

rolling Ordinary Least Squares (OLS) Method leads to similar results.

2.4.1.4. Regression formulation

The objective of this empirical study is to show the existence of manipulation

opportunity and its driving force. Here, I implement cross-sectional and intraday

time series regression analysis.

Cross-sectional analysis For cross-sectional analysis, I examine the frequency of

the manipulation opportunity averaged over a year. This analysis aims to explore

what sort of stock is more likely to be manipulated. For explanatory variables, I

calculate the amount of noise trading on the basis of the probability of informed

trading (PIN) model, log market capitalization, short-term price volatility, aver-

aged trade volume, and frequency.

Intraday time series analysis I assume that the manipulation opportunity mea-

sure Mt is driven by the mass of momentum traders. However, I cannot estimate

the behavior of momentum traders. As a plausible proxy, I used lagged return,

order imbalances, and abnormal volume as defined by Barber and Odean (2008).

Independent variables also include abnormal volume and trade frequency defined

as a percentage deviation from the means. Independent variables introduced in the

cross-sectional analysis are also included. This empirical methodology is similar
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to the time series regression adopted by Ahn, Bae, and Chan(2001), and Breen,

Hodrick, and Korajczyk (2002).

The manipulation opportunity would not be persistent if manipulators exploit it.

I examine this intuition by adding dummy variables indicating the opportunity:

1Mt>0. If the manipulation measure lies towards one end of the no-manipulation

region, the coefficient of the interaction variable Mt ·1Mt>0 should be significantly

negative. This specification follows a threshold auto-regressive model, which was

also used to test the opportunity of index arbitrage (Dwyer, Locke, Yu (1996)).

I focus on “buy and sell” manipulation rather than “sell and buy” manipulation.

This is because manipulation through short sell is not popular8.

2.4.2. Descriptive Results

2.4.2.1. Relative frequency of manipulation opportunity

I examine the ease of manipulation measured by the price impacts. I define the

uninformed manipulation condition as Mt = E[PPIt − IPIt+1]− IPIt > 0. Thus,

the sign of the measure is essential to infer the manipulation opportunity. As a

measure of the ease of manipulation, I use the frequency of positive Mt obser-

vations divided by the number of total observations. This represents the average

possibility of manipulation. Along with the theoretical implication, I also look

into the risk adjusted manipulation opportunity measure E[PPIt− IPIt+1]− IPIt−
γVar(∆Pt)

2 , the informed manipulation condition E[PPIt − 2IPIt+1], and their fre-

quency of the manipulation opportunity.

Table 2.2 summarizes the results about the descriptive statistics. The descriptive

statistics are calculated for different sampling intervals: 5 minutes, 15minutes,

8 More than 90% of trade-based stock manipulation is ignited by buy trades (Aggarwal and
Wu (2006)).

56



-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3

0

0.5

1

1.5

2

2.5

3
x 10

6
Histogram: Arbitrage Conditions

 

 

UMC: λ
t
 - IPI

ask,t-1
 - IPI

bid,t

UMC: λ
t
 - 2IPI

bid,t

Figure 2.4.1. Overall frequency of the two different manipulation opportunity
measures: uninformed manipulation measure and informed manipulation mea-
sure. The horizontal line denotes the value of each measure, and the vertical line

the density.

and 30 minutes. Since the PPI, becomes smaller as the time interval becomes

longer, the possibility of manipulation opportunity ∑1Mt>0/#obs also reduces

for the longer time interval examinations. For five minutes sampling case, the

uninformed manipulation opportunity can be found in 32% of overall intervals.

For the 15 minutes sampling case, the possibility of uninformed manipulation

opportunity reduces to around 29%. For 30 minutes intervals, it becomes 26%.

When the price fluctuation risk is considered, however, the five minutes interval

manipulation opportunity declines to 0.6% 9. This drop in the opportunity can be

observed in different time intervals as well. I will look more details on the risk of

manipulation in later section.

When it comes to informed manipulation, the frequency ratio goes up to 58%

for the five minutes interval case. This implies that there are slightly more of

manipulation possibilities for those who have strong private information and exit

9 To construct the risk adjusted measure, I set the risk aversion parameter γ = 1.
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plans (or indulge in front running). This is due to the fact that liquidity shows

increasing during a day, which confirms the well-know inversed J shape of intra-

day liquidity. Informed manipulation, or bluffing trading, could make the market

price deviated from the true fundamentals. Figure 2.4.1 shows the distribution

of each manipulation opportunity measure that are sampled across each stock and

interval. The horizontal axis is the value of measure, and the vertical axis is the

number of observations. The informed manipulation measure is more skewed to

the left, which indicates the informed manipulation can be more easily conducted.

It is hard to see that the manipulation opportunity is exploited in markets, however,

the opportunity almost disappears when the risk is considered as shown in later

section.

2.4.2.2. Time range and manipulation opportunity

So far, I have examined the descriptive statistics of the manipulation opportunity. I

find that there are occasional chances of manipulation. From this section, I should

focus our attention on the determinants of the measure. First of all, I start from

examining the intraday variation of the possible opportunities.

I can see an intraday pattern of price impacts and manipulation opportunity mea-

sure in Figure 2.4.1. I stratified intraday time bins by each 30 minutes, and took

the cross-sectional mean of price impacts (PPI and IPIs) and manipulation oppor-

tunity measure. PPI and IPI decrease monotonically during a day. At the end of a

day, PPI drops by 35% from the beginning of the day. While IPI-bid (ask) drops

by 47% (38%). Thus, PPI shows a slightly more moderate drop than IPI. As a

result, Mt is low in the morning (-0.54 at 9:00-9:30 bin), and increases during the

middle of a day (-0.20 at 12:30-1:00 bin). At the end of a day, it becomes lower

once more (-0.26 at 2:30-3:00 bin). The standard deviation of the measure is high

at the beginning of a day and the afternoon session.
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5 minutes 15 minutes 30 minutes

Variable Variable definition Mean S.D Mean S.D Mean S.D.

Uninformed manip. PPIt − IPIt − IPIt+1 -.024 .232 -.037 .348 -.048 .447

Freq/obs of U.M.
∑1PPIt−IPIt−IPIt+1>0

#obs . .324 .052 .288 .063 .256 .081

Risk adjusted U.M. PPIt − IPIt − IPIt+1− γ

2 σ2
p -.691 1.657 -1.139 3.119 -1.644 4.818

Freq/obs of R.A.U.M.
∑1

PPIt−IPIt−IPIt+1−γσ2p/2>0
#obs . .006 .016 .002 .014 .003 .025

Informed manip. PPIt − IPIt+1 -.028 .248 -.042 .363 -.056 .466

Freq/obs of I.M.
∑1PPIt−IPIt+1>0

#obs . .336 .0526 .300 .060 .265 .073

Uninformed manip. (rolling) PPIt − IPIt − IPIt+1 -.035 .104 - - - -

Freq/obs U.M.(rolling)
∑1PPIt−IPIt−IPIt+1>0

#obs . .242 .057 - - - -

Uninf manip (2006) PPIt − IPIt − IPIt+1 -.037 .348 - - - -

Freq/obs U.M.(2006)
∑1PPIt−IPIt−IPIt+1>0

#obs . .288 .063 - - - -

Table 2.2. Averaged manipulation opportunity measure and the frequency of ma-
nipulation opportunity. This table shows the ease of manipulation implied by the
manipulation opportunity measure dictated by the model. Each three panel is a
result for 5, 15, and 30-minute intervals of price impacts obtained by the Kalman
Filter. Results from different definitions of the ease of manipulation are presented
for each row. E[PPIt − IPIt+1]− IPIt is the manipulation opportunity measure
of uninformed manipulation, and it implies manipulation opportunity whenever it
is positive. E[PPIt − IPIt+1]− IPIt − γσ2

p/2 is a risk adjusted uninformed price
manipulation measure, where I take γ = 1 for this experiment. E[PPIt −2IPIt+1]
is the informed price manipulation measure without any bid-ask spread loss. Each

measure also gives a frequency of manipulation opportunity intervals.

59



Time Dummy PPIt s.d IPIt ask s.d IPIt bid s.d PPIt − IPIt ask− IPIt+1bid s.d

9:00-9:30 .071 .430 .114 .196 .137 .264 -.054 .444

9:30-10:00 .080 .211 .099 .165 .107 .186 -.023 .199

10:00-10:30 .073 .178 .088 .145 .095 .161 -.019 .160

10:30-11:00 .066 .166 .085 .140 .091 .151 -.022 .151

12:30-1:00 .065 .247 .081 .139 .090 .165 -.020 .239

1:00-1:30 .059 .155 .074 .124 .079 .134 -.018 .143

1:30-2:00 .054 .139 .073 .122 .076 .129 -.020 .129

2:00-2:30 .051 .130 .071 .119 .074 .127 -.022 .122

2:30-3:00 .046 .121 .070 .120 .073 .128 -.026 .120

Table 2.3. The intraday pattern of manipulation opportunity and price impacts.
Each trading day is stratified into 9 time ranges, each of which corresponds to
30 minutes. The bins from one to four, and five to nine are from morning and
afternoon sessions, respectively. For each time range, Mt = E[PPIt − IPIt+1|t]−

IPIt are averaged over stocks and time.

In sum, the manipulation opportunity is more likely during the middle of a day,

and less likely during the first and last 30 minutes.

2.4.2.3. Risk aversion and profitability of manipulation opportunity

I observe that the manipulation measure is high enough to create manipulation

profits, but I also would like to evaluate the risk associated with the manipulation

strategy. I consider two risks: the price fluctuation risk indicated by Eq. (2.2.5)

and the estimation error. To quantify the risk that comes from estimation error,

I calculate the lower two-sigma band from the estimation of Vt|t−1. I can see

that the manipulation opportunity is likely to be well arbitraged when the risk is

considered.

Figure 2.4.2 shows the distributions of the manipulation measure that takes the

two risks into consideration. Both distributions exhibit that there is a clear cutoff

between the manipulation opportunity region (Mt > 0) and the no-manipulation

region (Mt < 0). The observation in Mt > 0 is very small. This indicates that the
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Figure 2.4.2. Overall frequency of the manipulation opportunity measures that
consider risks: risk adjusted uninformed manipulation measure, and the measure
subtracted by the two sigma of the standard error of the coefficients. The horizon-
tal axis denotes the value of each measure, and the vertical axis the density. The
leftmost bar express the observation ( < -0.55). The risk aversion is set to one to

derive the measure.

risk of the manipulation strategies is sufficiently high, and the opportunity to earn

profit can be well arbitraged.

To evaluate the risk, I need to fix the risk aversion parameter. Figure 2.4.3 shows

the relationship between the frequency of manipulation opportunity and the risk

aversion to more detail. In this graph, the horizontal axis is the risk aversion γ

and the vertical axis is the frequency. It shows how the manipulation opportunity

decreases with an increase in the manipulator’s risk aversion. The plot for the

five-minutes interval shows the highest manipulation opportunity to begin with,

but it decays quickly. Only 2% of the cases can be profitable for nearly risk

neutral manipulator (γ = 0.5). This result implies that uninformed manipulation

could be risky for most traders with moderate risk aversion.
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Figure 2.4.3. The uninformed manipulation opportunity and the manipulator’s
risk aversion. The vertical line denotes the frequency of manipulation opportunity.

2.4.3. Cross Sectional Analysis

For a cross-sectional analysis, I regress the frequency of the manipulation oppor-

tunity measure on the log of the market capitalization (log(mrktcap)), mean price

range (meanPrice) in yen, the frequency of noise trading (Noise) estimated by

the PIN model, 10 standard deviation of the short-term price changes (Std(∆P),

5, 15 and 30 minute intervals), mean volume in share (meanVol), and mean trade

frequency (meanTrade#).

The dependent variable is the frequency of the positive uninformed manipulation

measure (Mt > 0). For a robustness check, I also employe the mean manipulation

measure as a dependent variable. The empirical results for the average manipula-

tion measure are largely consistent with the results of the frequency measure. My

10 The derivation for noise trading is based on the PIN model by Easley, Kiefer, O’Hara
(1996) . The model is presented in the Appendix.
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Cross Section

M_freq(5min) s.e. M_freq(15min) s.e. M_freq(30min) s.e. M_mean(5min) s.e

std.log(mrktcap) -.021*** .003 -.020*** .003 -.017*** .004 -.005*** .002

std.meanPrice .008*** .002 -.008** .003 -.018*** .004 -.013*** .001

std.Noise -.005 .004 -.004 .004 -.003 .006 -.001 .002

std.Sd(∆P) -.018*** .002 -.015*** .003 -.003 .004 -.008*** .001

std.meanV volume -.003 .003 .005 .004 .009* .005 -.008*** .002

std.meanTtrade# .014*** .005 .022*** .006 .029*** .008 .023*** .003

constant .322*** .002 .286*** .003 .254*** .003 -.026*** .001

# of observations 432 431 445 432

Table 2.4. Cross-sectional regression analysis for the mean frequency/absolute
value of the uninformed price manipulation opportunity. For each column, de-
pendent variables are the manipulation opportunity frequency/mean absolute val-
ues that are derived for 5, 15 and 30-minute interval price impacts. Independent
variables are the standard deviations of 5, 15 and 30 minutes price changes cor-
responding to the sampling frequency of the dependent variables, the frequency
of noise trading (based on the PIN model), log market capitalization, mean price
range, and constant. Note: *** denotes p < .01, ** denotes p < .05, * denotes p <

.1

regression specification is as follows:

#(Mi > 0)
Observations

= constant +β1log(mrktcap)+β2meanPrice

+β3Noise+Std(∆P)+β4meanVol +β5meanTrade#+ error

Each independent variable is standardized to ascertain the relative strength of the

effect to the dependent variables.

The regression results are shown in Table 2.4. Market capitalization, mean price

range, standard deviation of price changes, and number of daily trades are sig-

nificantly different from zero. For such influential independent variables, first,

market capitalization has a negative effect on the manipulation opportunity; the

regression coefficient is -0.021. This means that there is less opportunity for price

manipulation in larger stocks. Another standard deviation of log market capital-
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ization reduces the frequency of uninformed manipulation opportunity by 2.1%.

This confirms the empirical result of Aggarwal and Wu (2006) that manipulation

is likely to happen for small and middle size of stocks.

For second, mean price range has mixed sign of coefficient dependent on the sam-

pling intervals11. The absolute value is smaller than the other coefficients. When

the price range is high (or minimum tick size is small), trader can influence the

price more easily. However, the result indicates that it is not a big issue in manip-

ulation.

Third, the coefficient of sd(∆P) is -0.018, lower price volatility implies a higher

possibility of price manipulation. This result may not be intuitive, because Ag-

garwal and Wu (2006) found that manipulated stocks usually showed high price

volatility. I look at the ex-ante opportunity of manipulation, and not the ex-post

consequence of manipulation. Different from market capitalization, volatility of

price is determined in a market and not easily comparable to the result in Aggarwal

and Wu (2006).

Lastly, mean trade numbers have positive coefficient (0.014), but the coefficients

on mean volume and noise trading are not significant. Because high trade numbers

with the same trade volume implies that each execution has small volume, this

implies manipulation opportunity is likely when there are many small investors.

2.4.4. Time Series Analysis

I confirm that the manipulation opportunities are likely to be exploited (or ar-

bitraged) during a day. I also examine how past returns, order imbalances, and

changes in trading volume (measured in shares) affect the manipulation measure.

11 Mean price can also seen as the inverse of relative minimum tick size. In this empirical
study, I choose the stock with minimum tick size equal to one yen, but the relative tick size differs
from the absolute price of the stock.
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The independent variables are lagged manipulation measure, lagged manipula-

tion measure times manipulation opportunity dummy (1Mi,t− j>0), lagged return

rt , lagged order imbalances (in shares divided by shares outstanding, scaled by

basis points) OIBt , and lagged volume difference (in shares divided by shares

outstanding, scaled by basis points) ∆Volt . When the coefficients of lagged in-

teraction variable (θ j) are negative, the measure are less autocorrelated, and the

probability that the measure goes to no-arbitrage region increases. The regression

specification for time series analysis is as follows.

Mi,t = constant +∑
j

(
β1, jMi,t− j +θ jMi,t− j1Mi,t− j>0

)
+∑

j
β2, jri,t− j +∑

j
β3, jOIBi,t− j +∑

j
β4, j∆Voli,t− j

+ controli,t + errori,t

For controls, I use a time range dummy, deviation of daily volume from its mean

((daily volume−mean volume)/mean volume), and deviation of number of daily

trades from its mean defined in the same way. I take five lags: j = 1,2, · · ·5. The

estimation method is OLS with robust clustered standard errors. I group stock

codes to calculate the clustered standard error, but the results do not change much

when I take two-way (time and code) clusters.

Table 2.5 shows the quantitative result. Because the scale of independent vari-

ables is not aligned, comparison of the magnitude of coefficients is not meaning-

ful. The qualitative results are as follows. There are positive auto-correlations, but

the interaction term M ·1Mi,t− j>0 can be negatively significant. This means that the

manipulation opportunity tends to be arbitraged. The lagged return has a positive

significant effect, but it has reversals in later lags. The one-period lagged order

imbalance has a positive significant coefficient, but the later lags are insignificant.
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The abnormal volume has long lasting negative effects. In sum, the manipulation

opportunity could be driven by positive returns and order imbalances, which im-

plies presence of momentum traders. However, this occurs only over short periods

of time.

Comparing the results from different time ranges, I find the interaction term is

negatively significant between 10 minutes and 75 minutes; the coefficients of M ∗

1Mi,t− j>0 for five minutes intervals are negative significant from the second lag,

those of 15 minutes lags are all negative significant, and those of thirty minutes

lags are only significant at the first lag. The manipulation opportunity can be

found during this time period but tend to be exploited. I can also find lagged

variables (return, order imbalances, and volume) are less significant for longer

interval estimations. The manipulation opportunity, which is inferred to be driven

by rule of thumb traders, is not influenced by long-past variables. Rather, it is

affected by recent changes in the market (for a time period of perhaps less than 60

minutes).

2.4.5. Robustness

In this section, I address robustness issues. My interest in doing so is two-fold—determining

alternative specifications and an alternative estimation methodology.

For alternative specifications, I examine three cases: (1) inclusion of lagged IPIs

as regressors, (2) separate estimations for different face value stocks, and (3) sep-

arate estimations for low volatility ranges. I can confirm most of the qualitative

results still hold, though the magnitude of coefficients changes. For alternative

methods, I change the estimation method of PPI to a rolling regression from the

Kalman Filter. I also try to calculate the Fama-MacBeth standard error rather than
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M(5min) M(15min) M(30min)
coef se coef se coef se

L.Mi,t .452*** .026 .216*** .027 .237*** .034
L2.Mi,t .070*** .006 .092*** .016 .076** .033
L3.Mi,t .046*** .005 .042*** .008 .106*** .021
L4.Mi,t .027*** .005 .045*** .011 .018 .015
L5.Mi,t .027*** .003 .041*** .004 -.025** .012

L.[Mi,t ·1Mi,t>0] .020 .013 -.075*** .020 -.155** .072
L2.[Mi,t ·1Mi,t>0] -.021* .011 -.042*** .016 -.038 .028
L3.[Mi,t ·1Mi,t>0] -.020*** .007 -.029*** .009 -.239 .181
L4.[Mi,t ·1Mi,t>0] -.005 .007 -.038** .017 .031 .045
L5.[Mi,t ·1Mi,t>0] -.025*** .004 -.033*** .009 .024 .025

L.rt .541*** .175 .627*** .159 .294 .337
L2.rt -.195** .088 .009 .122 .041 .221
L3.rt -.073 .064 .032 .104 -.176 .443
L4.rt .053 .058 .078 .074 .297** .144
L5.rt -.012 .058 -.023 .063 -.094 .139
L.oibt .070*** .011 .012 .009 .013 .014

L2.oibt -.006 .005 .002 .008 .019** .009
L3.oibt .003 .004 -.008 .005 .005 .025
L4.oibt .002 .004 .007 .006 -.021* .011
L5.oibt .002 .005 .004 .006 .006 .012
L.D.volt -.244*** .017 -.144*** .010 -.087*** .012

L2.D.volt .003 .006 -.041*** .008 -.022** .010
L3.D.volt .006 .004 -.018*** .005 -.020 .015
L4.D.volt .011*** .004 .002 .006 .011 .012
L5.D.volt .012*** .004 -.001 .006 -.006 .023

cons .030*** .010 .046** .018 .062 .042
obs. 4,627,240 1,001,119 105,736

Adjusted R2 .303 .084 .093
F 363.632 61.973 5.624

Table 2.5. Intraday time series regression of the manipulation opportunity mea-
sure Mi,t . The regression is clustered over the code to calculate robust standard er-
rors. Independent variables are own lags, lagged returns, lagged order imbalances,
lagged abnormal volume, and lagged interaction variables 1PPIt−IPIt−IPIt+1>0 ∗
(PPIt− IPIt− IPIt+1). They have up to 5 lags. The fixed control variables are the
time range dummy, deviation of volume from its mean, and deviation of number
of trades from its mean, but they are not reported here. Each column corresponds
to the different time intervals to calculate the PPI: 5, 15, or 30 minutes. Note: ***

denotes p < .01, ** denotes p < .05, * denotes p < .1
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clustered OLS standard errors, and experiment with data from different years for

the estimation. The result do not change much.

2.4.5.1. Different specification

In this section, I examine variants of the original five-minute interval time-series

estimation. The difference from the original model is that I added IPIs into the

regression analysis. In stock price manipulation, manipulators sometimes submit

“spoofing” limit orders, intending a disguise as if there is buying (or selling pres-

sures). In this case, the changes in limit order book may affect the manipulation

measure itself. Including IPI as independent variables can be a simple way to

examine how plausible the manipulation technique is.

Because the manipulation measure itself is defined by IPI and IPI is highly auto-

correlated, I take the differences for IPI as independent variables. The definition

of other independent variables are the same as those of previous section.

Mi,t = constant +∑
j

β1, j
(
Mi,t− j +θ jMi,t− j ·1Mi,t− j>0

)
+∑

j
β2, jti,t− j +∑

j
β3, jOIBi,t− j +∑

j
β4, j∆Voli,t− j

+∑
j

β5, j∆IPI(ask)i,t− j +∑
j

β6, j∆IPI(bid)i,t− j + controli,t + errori,t

I take up to five lags but present only up to three lags, so as to avoid confusion

in the interpretation of the result. Based on this different formulation, I further

examined two different datasets: the dataset restricted to different face values of

the stocks, and the dataset when the price change is less than the minimum tick

size. The regression result is shown in Table 2.6.

First, I examine the influence of lagged changes of the ∆IPI. The inclusion of

the additional regressor does not change the other estimation by much, nor does it
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improve the adjusted R2. The bid-side change positively affects the manipulation

measure, and it is persistently significant. This implies that order cancellation to

the bid-side book (i.e., increase in IPI (bid)) increases the likelihood of profitable

manipulation. In contrast, the negative coefficient in IPI-ask implies that of order

submission to the ask-side book (decrease in IPI (ask)) increases the manipulation

opportunity. The influence from the bid-side book is significant over longer lags

than the ask-side. .

Second, as a robustness check, I examine separate estimations for stocks of dif-

ferent face values. The results are presented in the second and third column of

Table 2.6. Because I scale the volume by the minimum trading unit that in turn

is determined by the face value, it might affect the result. The difference in the

face value, whether it is 50 yen or 500 yen, determines the minimum unit to trade:

1000 shares for 50 yen face value, and 100 shares for 500 yen face value. The

estimation result shows that the qualitative result does not change much. Also, the

relative frequency of manipulation opportunity is .329 for the 100 shares per unit

stock, and .321 for the 1000 shares. Thus, the changes in face value have little

effect on the analysis.

Lastly, I examined the case when the price change is small. Because I used the

weighted average price to calculate permanent price impacts, the estimated PPI

may not be accurate when the price bounces between the bid and ask. I added

interaction terms to differentiate whether the recent price change is less than the

minimum tick size (1∆P<minimum tick) or not. Here, the minimum tick size is always

1 by data construction. The values in the right column are the coefficients for the

interaction variables. The regression results when the price change is small can

be obtained by the sum of these coefficients.

The result shows that many interaction terms are significant.The manipulation
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opportunity still tends to follow a self-exciting process, but the influence of lagged

return and order imbalance becomes significantly weaker when the price change

is small. For example, the sum of the first lag of return becomes -0.18, which are

much less than the original regression results (0.541). This implies a non-linear

effect; the attention traders are more attracted by a jump or a dramatic change. The

relative frequency of manipulation opportunity is .320 for the ∆P < minimum tick

case, and .329 for the rest.

2.4.5.2. Fama-MacBeth Standard Error

Finally, I examine the methodological robustness. Here I examine the method

used to calculate the PPI, and the method used to calculate the time series re-

gression. The estimation results presented here all depend on five minute interval

dataset. First, I consider a different way to calculate PPI. Second, I employ the

Fama-MacBeth method to calculate the regression coefficients and standard er-

rors. For an alternative way to calculate PPI, I use a rolling regression instead

of the Kalman Filter. I took a one-day lag as the rolling window. This typically

smoothes out the time series of the PPI when the Kalman Filter finds high volatil-

ity in the transition equation.

The first estimation column of 2.7 show the result. The auto-correlation is stronger

than the Kalman Filter result, and the self-exciting process Mi,t · 1Mi,t>0 needs

more lags to become negatively significant. For example, the original setup by

Kalman filter presents 0.452 and 0.70 as coefficients of first and second lag of de-

pendent variables, while the OLS setup shows 0.504 and 0.149, respectively. The

interaction variable was negative significant at the second lag, but now it is not

significant. Despite such subtle differences, the overall qualitative result remains

the same.
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For the estimation of robust standard error, the Fama-MacBeth method is often

employed in the literature on empirical finance. To implement the Fama-MacBeth

method, I first calculate the time series regression stock-by-stock, and then take

the average over the coefficients. I also present a result of different year esti-

mations (for the years 2005 and 2006). The estimation results are shown in the

second and third column of Table 2.7. The qualitative results are the same, indi-

cating methodological robustness.

2.5. Conclusion

I study the intraday opportunity of stock price manipulation. My model suggests

two conditions for price manipulation that are obtained as restrictions on the vari-

ation of liquidity. The model views price manipulation as an arbitrage opportunity

regarding expected liquidity changes. While it is easier for informed manipulation

to take place (given that it concerns payment of one-way slippage only), it never-

theless requires private information about the fundamentals. The model suggests

how the risk of price fluctuation may be considered during manipulation.

Each manipulation condition that is described by price impacts (PPI and IPI),

is tested by using intraday data at TSE. I use the LOB data to identify the IPI.

The PPI is identified as a Kyle’s lambda. I find that while the opportunity for

uninformed price manipulation may exist, the transactions cannot be profitable

enough if the manipulators are risk averse.

My empirical investigation implies that the manipulation opportunity is more

likely for stocks with small market capitalization, low mean price (high mini-

mum tick size), low price volatility, and large trade number. The measure of

noise trading implied by the PIN model does not have a significant effect on the

manipulation opportunity.
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OLS vs Kalman Mt (2005) Mt (2006)
coef se coef se coef se

L.Mi,t .504*** .011 .456*** .008 .399*** .007
L2.Mi,t .149*** .004 .051*** .003 .059*** .003
L3.Mi,t .077*** .003 .022*** .002 .027*** .002
L4.Mi,t .060*** .003 .014*** .001 .019*** .001
L5.Mi,t .065*** .003 .012*** .001 .011*** .001

L.[Mi,t ·1Mi,t>0] .272*** .052 .049*** .006 .076*** .006
L2.[Mi,t ·1Mi,t>0] -.041 .028 -.023*** .004 -.028*** .005
L3.[Mi,t ·1Mi,t>0] -.053*** .015 -.013*** .003 -.011*** .003
L4.[Mi,t ·1Mi,t>0] -.060*** .006 -.011*** .002 -.016*** .002
L5.[Mi,t ·1Mi,t>0] -.069*** .010 -.006*** .002 -.008** .002

L.rt .644*** .094 .406*** .145 .392 .390
L2.rt -.279*** .042 -.226** .083 -.174 .198
L3.rt -.031 .029 -.068 .075 -.293** .131
L4.rt -.045* .025 .030 .060 .079 .213
L5.rt -.064*** .022 .096 .081 .057 .110
L.oibt .097*** .008 .077*** .009 .108*** .035
L2.oibt .003 .002 -.012* .006 -.008 .028
L3.oibt -.004** .002 .002 .008 .022 .022
L4.oibt .002 .002 .003 .006 .019 .022
L5.oibt -.001 .002 -.001 .006 -.040 .029
L.D.volt -.174*** .011 -.317*** .021 -.473*** .038

L2.D.volt -.016*** .002 -.012** .005 .019 .015
L3.D.volt -.003** .002 -.012** .004 .013* .018
L4.D.volt .004*** .001 -.010** .005 .059*** .013
L5.D.volt .012*** .001 .000 .005 .048*** .013

cons .002*** .000 -.004*** .000 -.010*** .001
obs 4,626,552

Table 2.7. Intraday time series regression of the manipulation opportunity mea-
sure Mi,t = E[PPIt − IPIt+1]− IPIt . The difference between this table and Table
6 lies in the methodology employed. Starting with the column on the left: rolling
OLS to obtain PPI, Fama-MacBeth regression for the year 2005, Fama-MacBeth
regression for the year 2006. Note: *** denotes p < .01, ** denotes p < .05, *

denotes p < .1

73



For the intraday analysis, I find that the manipulation opportunity is likely when

the lagged returns and order imbalances are high, and the abnormal volume is low.

The manipulation measure follows a self-exciting process. The estimation implies

that the opportunity starts to be exploited after 10 minutes. Various robustness

checks confirm the results.

In this study, I look at only single stocks for manipulation. It is possible to con-

sider the price impact across multiple stocks. In reality, a portfolio manager can

make a position of index future in advance, and they can mitigate the price impact

of individual stocks. Thus, the study on cross price impact may be practically

useful. I leave it to future research.
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Chapter 3

The Informational Channel of Financial Contagion: An Empirical

Analysis with Market Microstructure Data

with Marco Cipriani1

3.1. Introduction

Motivation of this research Contagion during a financial crisis has been the

topic of scholarly discussion for a long time, but identifying the existence of finan-

cial contagion and its characteristics is not straightforward. To measure contagion,

we focus on the informational channel in a stock market. Individual stocks are

influenced by different motivations as a result of idiosyncratic or common infor-

mation shocks, and stock transactions reflect this information through the trading

of informed traders. In this study, we build a structural framework to distinguish

these differently motivated trades caused by informed traders. Our framework is

applied to stocks in the New York Stock Exchange (NYSE), where cross-country

stocks are listed as American Depositary Receipts (ADRs). We look for the in-

dication that common information influences emerging-market ADRs that are hit

by a financial crisis.

Our methodology shows how much informed trades are motivated by common

shocks. We found that for emerging country ADRs, correlated informed trades

were dominant during the Asian financial crisis of 1997. In this research, we

1 Federal Reserve Bank of New York and the George Washington University.
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define contagion as the exposure to common information and the high probability

of informed trading motivated by this common information.

The majority of research on financial contagion has focused on increased correla-

tion during financial crises. A simple statistical test gives an evidence of financial

contagion (King and Wadhwani (1990)). However, Forbes (2002) points out that

this estimation is biased, because the conditional variance is influenced by the

regressor’s variance. After correcting this bias, the evidence of contagion disap-

pears.

Our research aims to identify contagion in a different way from these previous

studies, on at least two points. First, our research deals with the sequence of

trades rather than prices. Our structural model detects informed trades on the

basis of trade frequency and order imbalance (OIB)2. Second, we estimate the

model’s structural parameters directly by using maximum-likelihood estimation.

This gives us a different identification method from reduced-form regression mod-

els.

Methodology Our methodology is an extension of that in Easley, Kiefer, and

O’Hara (1997; hereafter, EKO). Based on the paper by Glosten and Milgrom

(1985), these authors develop an empirical framework to estimate the frequency

of informed trades, noise traders, and the probability and direction of informa-

tion events. They assume only one risky stock to trade, while our model allows

multiple stocks. We assume that informed traders receive information about the

fundamental and whether it is common or idiosyncratic. Their trades contribute

to the correlation of trade imbalance among stocks. Based on the probability

structure of traders’ arrival, our theoretical model gives a likelihood function for

2 The relation between the probability of informed trading (PIN) and liquidity is further stud-
ied by Duarte and Young (2008).
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the number of buyer- and seller-initiated trades observed in one day. From the

trade-and-quote (TAQ) data, we can recover the buyer- and seller-initiated trade

numbers using the Lee–Ready Algorithm. Then we can estimate the structural

parameters by maximizing the likelihood function.

In our model, there are two major new advances. The first is that our model iden-

tifies the occurrence of common information events and their probability among

the targeted group of stocks.

The second is that our model provides further details on the individual stocks.

The original PIN model does not identify what factors drive stock movement:

common or idiosyncratic events. Our framework can identify them, and the result

tells whether the stock is driven by common or idiosyncratic events.

To find financial contagion, we focus on ADRs listed in the NYSE. Intraday data

are obtained from the TAQ database . We calculate the number of buys and sells by

using the Lee–Ready algorithm. We constitute three groups of stocks to which ap-

ply our methodology. The first is ADRs from emerging countries, which include

Asian and South American countries . The second is blue chip stocks, which are

listed as Dow industrial components. The last group is ADRs from developed

countries, which include the U.S., Japan, and European countries. (See Table 3.4

for details.) We choose the stocks based on the number of trades per day.

Related Literature Aside from EKO (1997), our model can also be compared

to Kodres and Pritsker (2002). Based on the classic model of Grossman and

Stiglitz (1980), these authors studied contagion in the informational channel. In

our model, in contrast, informed traders are assumed to know rather than infer the

correlation of fundamentals. The uninformed market maker does not know the

information, and makes an inference regarding the fundamentals of a stock group;

77



then, his inference is reflected into multiple stock prices at the same time. His

behavior is much like that assumed by Kodres and Pritsker (2002).

The empirical literature on financial contagion is plentiful. The most straightfor-

ward approach to test contagion is to use cross-market correlation coefficients. Ex-

amples can be found in King and Wadhwani (1990), Forbes and Rigomon (2002),

Baig and Goldfajn (1999), and Chung (2005), for the use of ADR . But the results

are mixed and controversial.

Empirical Results In order to evaluate the statistical properties of the model,

we first conducted an artificial simulation. The result shows unbiasedness and

consistency. The nested structure of the model contributes to the unbiasedness.

Otherwise, the model does not work well when the stock group includes unrelated

stocks.

Our main interest in this model is its application to financial crises. We expect

that there was a common information event that influenced contagious stocks. In

order to test this hypothesis, we took ADRs from the NYSE. We take three groups

of stock: emerging country ADRs, developed country ADRs, and U.S. blue chip

stocks.

We found that the emerging country ADRs during 1997 were mostly driven by a

common information event during 1997. This is especially true for Asian stocks.

This was not observed in the other groups. This implies that information for

common events was important for the price efficiency of these emerging ADRs but

not for developed ADRs or U.S. blue chips. For developed ADRs and blue chips,

we didn’t see as much evidence of contagion as for emerging ADRs. We can

observe common events, but they didn’t necessarily have wide influence among

stocks.
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The organization of this research is as follows. In section 2, we demonstrate the

model. In section 3, we examine the identification by running a simulation. In

section 4, we apply the method and obtain empirical results. Section 5 concludes.

3.2. The Model

The model extends the Easley, Kiefer, and O’Hara (EKO; 1997) model to an econ-

omy with many risky assets. EKO builds a sequential trading model based on

Glosten and Milgrom (1985), where agents trade one asset strategically in a mar-

ket. The behavior of informed and uninformed traders generates specific patterns

in trade submissions, and they estimate economic structural parameters based on

the model.

An important simplification of the EKO’s model is that it assumes only one risky

asset. However, there are many risky assets in the real economy, and private infor-

mation can easily affect not only one asset but also other assets that have similar

characterizations. Also, some traders may project stock values based on news

from other stocks. As a result, a single piece of news may propagate contagiously,

as Kodres and Pritsker (2002) proposed. In this section, we present a framework

to extend the original single-asset EKO model to a multiple-asset model.

EKO’s model is characterized by its market structure, assets, traders, and market

makers. The behavior of traders resulting from it introduces a likelihood function

that is characterized by the number of buys and sells.

Market Structure There are three types of agents: informed traders, market

makers, and noise traders. Individuals trade risky assets with a market maker

over d = 1,2, · · ·D trading days. For each intraday trading, time is continuous

but trading opportunity is indexed by t = 1,2, · · ·T . A market maker determines a
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price by observing order imbalances. Each trade consists of a trade of one unit of

the asset for cash. The trader’s action space is defined as A = buy,sell,notrade.

Here we assume that the asset is indivisible and that agents are restricted to hold

only one asset. We denote the history of day d until time t ↓ as Hd
t . The history

is the sequences of trades, which can be buyer- or seller-initiated until time t for

each day d.

Fundamental Value of Assets Figure 3.2.1 shows the process of events in this

model. Before each day’s opening bell, nature determines whether a common

informational event occurs. It is independently distributed and occurs with prob-

ability ω . When the common shock occurs, the fundamental value of all assets

V i
d, i = 1,2, · · ·N changes in the same direction. The shock is bad with probability

δ , and good with probability 1− δ . Even when there is a common event, indi-

vidual stock may not be influenced, with probability 1−θ i. Even if an individual

stock is not influenced by the common shock, it may be influenced by idiosyn-

cratic events. Idiosyncratic events after common events take the same form as

those that are not after common events.

In the case where there is no common event, nature also determines whether id-

iosyncratic informational events occur. Each idiosyncratic shock is independently

distributed across days and cross-sections. As a result of the idiosyncratic shock,

the fundamental changes with probability α i, or doesn’t change (V i
d =V i

d−1) with

probability 1−α i. Again, each shock fundamental is bad with probability δ i, and

good with probability 1−δ i. We assume that changes in the fundamental value are

the same across common and idiosyncratic shocks. That is, the fundamental value

of i at day d only takes
{

V̄ i
d,V

∗i
d ,V i

d

}
= {V i

d−1 + λ H
i , V i

d−1, V i
d−1 + λ L

i }. Note

that we can allow λ H
i and λ L

i to be different when the info event is common as
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opposed to idiosyncratic, but nothing will change. The value of the fundamental

does not change during a day, but is revealed after the closing bell every day.

Traders There are countable number of traders of two types: informed and noise.

Both informed and noise traders arrive in the market following Poisson processes.

We assume the arrival rate of informed traders in stock i is µ i and the arrival rate

of noise is ε i for each day. On a day with no common or idiosyncratic events,

only noise traders arrive. In contrast, on a day with events, informed traders also

arrive. We assume the arrival rates do not change depending on the common or

idiosyncratic events; the traders specialize in a stock and don’t trade others3.

Informed traders are assumed to know the true state of the economy, whether

the information involved is idiosyncratic or common and whether good or bad.

In other words, the precision of the signal they get on the informational event is

infinite. They are risk neutral and competitive. If they get good signals, they buy

the stock, as a profit-maximizing behavior. If they get bad signals, they sell the

stock. These arrival process are assumed to be independent. We do not assume a

short-sale constraint here.

Noise traders are motivated to trade solely by a liquidity reason independent of

any of the events described in our model. In order to justify the behavior of these

traders, they are assumed to have a payoff function U : {V i
d

¯,V i
d}×A × [V i

d,V̄
i
d]

2→

R+:

U(Vd,Xd
t ,a

d
t ,b

d
t ) =


Vd−ad

t if Xd
t = buy.

0 if Xd
t = no trade

bd
t −Vd if Xd

t = sell.

3 We tried the model with changing arrival rates, but the identification was not good enough.
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G : good state

 Buyer initiated trade = ε+μ

 Seller initiated trade = ε 

N: no news state

 Buyer initiated trade = ε

 Seller initiated trade = ε 

Figure 3.2.1. Tree of benchmark multiple-asset trading model. There is a common
shock in probability ω at the beginning of each day. The common shock is bad in prob-
ability δ and good in 1− δ . Each stock i is influenced by this shock in probability θi.
When the stock is not affected by the common event, it draws an idiosyncratic event in
probability αi. Also, in the case of no common event, stocks also have an idiosyncratic
event in the same probability, αi . Informed traders arrive in the market with a Poisson
distribution µ and submit orders according to the information. Uninformed traders arrive

with ε and submit orders as noise.

An informed trader chooses Xd
t to maximize the expected utility. Therefore, she

finds it optimal to buy whenever E(Vd|Hd
t ,S

d
t )≥ ad

t , and sell whenever E(Vd|Hd
t ,B

d
t )≤

bd
t . She chooses not to trade when bd

t ≤ E(Vd|Hd
t ,s

d
t )≤ ad

t .

Figure 3.2.1 shows the diagram of the trading process. At the first node of the

tree, the nature determines there is a common event or not. If there is a common

event, the nature then decides whether it is bad or good. After that, the nature

further decides whether each firms is influenced by this event or not. When a

firm is not influenced by the event, they follow the case when there is no common

event. In this sense, the model is nested.

Without a common event, the tree is the same as the original PIN model. Nature

82



choose whether there is a idiosyncratic event and whether it is bad or good. Here,

we assumed that the idiosyncratic parameters are same between cases with and

without common events.

The market maker and price process The market maker observes the number

of buys and sells, setting different prices for buying and selling. The ask price is

a price conditional on the number of buys, and the bid price is contingent on the

number of sells. In order to simulate price easily, here we present the price of a

stock at each end of fixed period t.

Let the belief of the market maker at t as P(t) = {Ph(t),Pb(t),Pn(t)} . Ph(t) rep-

resents the probability of a good event at time t, Pl(t) represents the probability

of a bad event, and Pn(t) represents the probability of no event. At time zero, the

initial belief is defined as

P(0) = {(1−ω)α(1−δi)+ωθ(1−δ )+ω(1−θ)α(1−δi)

,(1−ω)αδi +ωθδ +ω(1−θ)αδi,ω(1−θ)(1−α)+(1−ω)(1−α)}

Every time the market maker receives an order submission, she repeatedly updates

her belief for each probability, in the manner of Bayesian updates. Let Bt and St

be the number of buy and sell orders which the market maker receives between

t−1 and t, and we define the posterior probability Ph(t|Bt ,St) as follows:

Ph(t|Bt ,St)=
Ph(t) ·Pr(Bt ,St |Ψ = H)

Ph(t) ·Pr(Bt ,St |Ψ = H)+Pl(t) ·Pr(Bt ,St |Ψ = L)+Pn(t) ·Pr(Bt ,St |Ψ = 0)
,

Here the label of individual stock i is suppressed. Ψ represents the state of the

stock; it is either high, low or no event. Pl(t|Bt ,St) and Pn(t|Bt ,St) can be defined
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similarly. The probability of the history follows a Poisson distribution, and its

explicit form is described as follows.

Pr(Bt ,St |Ψ = 0) = e−
ε

τ

( ε

τ
)B

B!
e−

ε

τ

( ε

τ
)S

S!
(3.2.1)

Pr(Bt ,St |Ψ = H) = e−
µ+ε

τ

(µ+ε

τ
)B

B!
e−

ε

τ

( ε

τ
)S

S!
(3.2.2)

Pr(Bt ,St |Ψ = L) = e−
µ+ε

τ

( ε

τ
)B

B!
e−

µ+ε

τ

(µ+ε

τ
)S

S!
(3.2.3)

The parameterτ is exogenously fixed to match the time length. For example,

τ = 390 means we take one minute interval to calculate prices, because each day

has 390 trading minutes. The true fundamental is assumed to be V̄i when there is

a good event, Vi when there is a bad event, and V ∗i when there is no events. The

market maker prices the stock according to his/her belief:

Pricei(t) = V̄iPh(t)+ViPl(t)+V ∗i Pn(t). (3.2.4)

The market maker is assumed to be risk neutral and competitive; then we can

derive the martingale condition on the market prices:

((1−ω)(1−δi)+ωθ(1−δ )+ω(1−θ)(1−δi))V i
+((1−ω)δi +ωθδ +ω(1−θ)δi)V i

(3.2.5)

= ω(1−θ)(1−α)+(1−ω)(1−α)V ∗i .
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Given V̄i and Vi, we can use V ∗i to pin down (3.2.5).

The Probability of Informational Trade (PIN), Revised PIN measures the prob-

ability of informational trade. In the standard environment of EKO (1997), it is

computed as

PIN =
αµ

αµ +2ε

In contrast, PIN in the multi-asset model is computed as

MPINi =

(
(1−ωθ i)α i +ωθ i)µ i

((1−ωθ i)α i +ωθ i)µ i +2ε i .

where we suppressed i subscript. Thus, given the same set of parameters, the

condition that MPIN > PIN always holds. This is because informed traders are

assumed to be aware of not only idiosyncratic events but also common events.

Obviously, ω = 0 , θ = 0 and N = 1 imply the standard single-asset formula-

tion. Also, MPIN is increasing in ω and θ . Thus, with the assumption of an in-

formed trader, more highly correlated stocks are likely to undergo more informed

trades. When PIN is seen as a measure of liquidity, as Duarte and Young (2009)

suggested, increase of probability of a common event implies global illiquidity

commonality among stocks.

As we will confirm by simulation in the next section, each parameter α̂ ′ and δ̂ ′

estimated by single PIN model could be biased if a common event is more likely.

However, estimated PINs for these parameters are the same as MPIN. That is,

denoting the parameters estimated by the multi-asset PIN model as α̂, ω̂, θ̂ , α̂ ′ =

(1− ω̂θ̂ i)α̂ i + ω̂θ̂ i holds.
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We can divide MPIN into two parts: probability of trading based on idiosyncratic

event (IPIN) and common event (CPIN):

IPIN =
(1−ωθ i)α iµ i

((1−ωθ i)α i +ωθ i)µ i +2ε i , CPIN =
ωθ iµ i

((1−ωθ i)α i +ωθ i)µ i +2ε i .

IPIN represents trade driven by an idiosyncratic event, and CPIN represents trade

driven by a common event. We will define the ratio of common event–driven

trades to the overall informed trades CPIN/MPIN. This ratio plays a central role

of our analysis. We consider it to be evidence of contagion.

Total Number of Trade, Order imbalances The expected value of the total trade

is

E[T Ti] = 2ε
i +(1−ω)α i

µ
i +
(
θ

i +(1−θ
i)α i)

ωµ
i.

ω = 0 or θ i = 0, reduced to the standard single asset case. Because α i, θ i, ω are

between zero and one, expected total trade is supposed to be larger than in the no

common event case. The larger θ leads the larger total trade, because informed

traders trade on not only idiosyncratic information but also common informational

events.

Order imbalance is defined as, OIB = number o f buys− number o f sells. The

expected value of the order imbalance is

E[OIBi] = ωθ
i
µ

i(1−2δ )+(1−ωθ
i)α i

µ
i(1−2δ

i).

Thus, the order imbalances of one stock may affect the estimation of common

event direction δ as well as idiosyncratic event direction δ i. Positive order imbal-

ance, meaning more buyer-initiated than seller-initiated trades, pushes δ towards
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zero, which implies good (positive) information events, while negative order im-

balance pushes δ towards one, which implies bad (negative) information events.

The cutoff point is δ = 1/2 and δi = 1/2. The expected value of OIB is a weighted

sum of the deviation from 1/2 for each δ . The numerator of the ratio CPIN/MPIN

is the weight.

Price Efficiency We are interested in the efficiency of price determination ac-

cording to the market maker’s information set. In other words, we wish to answer

the question, to what extent does the price approaches the true fundamental price

if the market maker knows the occurrence of common information event? We ad-

dress this question by conducting a following simulation, based on O’Hara (1997).

1. The market maker may know of the occurrence of a common information

event (full information case), or she may not know it (limited information

case). We also assume she knows the probability structure: (ω,δ ,{δi,αi,θiµi,εi}i∈I)∈

F0. The initial belief, Prob(Ψi|F0), is calculated as follows. For the limited

information case, for every state in 3#I probability space,

Prob(state|F0) = ∑
state
{ ωδ ·Prob(state|Ψi = bad)

+ω(1−δ ) ·Prob(state|Ψi = good)

+(1−ω) ·Prob(state|Ψi = noEvent)} ,

Prob(Ψi|F0) = ∑
state∈Ψi

Prob(state|F0).

Note that we replace ω with 0 or 1 in case of full information.

2. The market maker observes the number of buy and sell orders {buyi,selli}i∈I

for every fixed time interval τ , which follows the Poisson distribution.
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3. Dependent on her initial belief and the observed buy and sell orders, the market

maker updates the occurrence of event Ψi using Bayesian updating.

Prob(state|Ft−1,{H i
t }i) =

Prob({H i
t }i) ·Prob(state|Ft−1)

∑state Prob({H i
t }i|state) ·Prob(state|Ft−1)

,

Prob(Ψi|Ft−1,{H i
t }i)) = ∑

state∈Ψi

Prob(state|Ft−1,{H i
t }i)).

4. The price is determined according to (3.2.4):

Pricet = P(Ψi = good|Ft−1,{H i
t }i) ·1+P(Ψi = noEvent|Ft−1,{H i

t }i) ·V0,i

+P(Ψi = bad|Ft−1,{H i
t }i) ·0.

Note that the market maker updates belief by using order information for multiple

stocks. The probability of history Prob(H i
t i|state) follows a Poisson p.d.f and

is a function of the realization of orders buyi,sellii∈I and the Poisson parameters

{µi,εi}i∈I given the state. The numerator of the equation at 3. ends up with

P(Ht ,state|Ft−1). This state is defined as a set of possible occurrences of events,

and there are 3#I possibilities depending on whether each stock is good, bad, or

no event. The value V0,i, where no events happen, is determined by the martin-

gale condition (3.2.5): V0,i = (P(Ψi = good) ·1+P(Ψi = bad) ·0)./(1−P(Ψi =

noEvent)).

We randomly generate the occurrence of events 1000 times, and for each event,

we simulate intraday price sequence calculated by this algorithm. Efficiency is
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defined as the distance between the full information price and the limited infor-

mation price.4

Efficiencyi =
T

∑
t=1
|pt,i, f ul−in f o− pt,i,limited−in f o| (3.2.6)

3.2.1. The Likelihood Function

In order to estimate the structural parameters Θ=(ω,δ ,{α}i∈I,{δ}i∈I,{µ}i∈I,{ε}i∈I,{θ}i∈I)),

we build a maximum likelihood function. We estimate the PIN for each firm-year.

Let us demonstrate the likelihood function for a generic day d. We denote by Bi

and Si, the number of buys and sells for asset i on a given day. The history, H i, is a

sequence of buy and sell transactions. Let us denote by Ψi = 0,H,L the fact there

is either a no-information event, a high-information event or a low-information

event in market i. Note that the event may be idiosyncratic, common, or both.

Now we can compute the probability of the history of the day, conditional on each

informational event

Pr(H i|Ψi = 0)≡ Pr(Bi,Si,Ni|Ψi = 0) = e−ε i (ε i)Bi

Bi!
e−ε i (ε i)Si

Si!
(3.2.7)

Pr(H i|Ψi =H)≡ Pr(Bi,Si,Ni|Ψi =H) = e−(µ
i+ε i) (µ

i + ε i)Bi

Bi!
e−ε i (ε i)Si

Si!
(3.2.8)

4 The three matlab programs Efficiency_simulation.m,

Efficiency_Bayesian_multi.m, Efficiency_Bayesian_initial.m provide the compu-
tation.
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Pr(H i|Ψi = L)≡ Pr(Bi,Si,Ni|Ψi = L) = e−ε i (ε i)Bi

Bi!
e−(µ

i+ε i) (µ
i + ε i)Si

Si!
. (3.2.9)

Next, we calculate the probability of a common high event, common low event,

and no common event using Bayes’ law. Let us denote by Iθ the set of assets

affected by common events at each day. I\θ is the set of assets that is not affeced

by the common events. Then the probability of each state given common shock is

PrCS≡Pr(Iθ , I\θ IH , IL, I0)=∏
Iθ

θ
i×∏(1−θ

i)
I\θ

× ∏
IH∩I\θ

α
i(1−δ

i)× ∏
IL∩I\θ

α
i
δ

i× ∏
I0∩I\θ

(
1−α

i) .

Let us denote by IH , IL, I0 the set of assets with a high, low and no idiosyncratic

event. Obviously the number of assets in IH , IL, I0 has to be equal to the number

of assets N: #IH +#IL+#I0 = N. Then, given no common shocks, the probability

of each state characterized by idiosyncratic informational events is,

PrNCS ≡ Pr(IH , IL, I0) = ∏
IH

α
i(1−δ

i)×∏
IL

α
i
δ

i×∏
I0

(
1−α

i)

Here we omit the notation that PrCS and PrNCS is a function of the realization

of the combination of stock. Now we are ready to describe the day likelihood

function. The probability of the history of trades in a day d will be given by the

sum of the following terms.

1. Probability in case of common high event (L1):

ω(1−δ ) ∑
all I

[
PrCS×∏

Iθ

Pr(H i|Ψi = H)

{
∏

IH∩I\θ
Pr(H i|Ψi = H)× ∏

IL∩I\θ
Pr(H i|Ψi = L)× ∏

Io∩I\θ
Pr(H i|Ψi = 0)

}]

2. Probability in case of common low event (L2):

ωδ ∑
all I

[
PrCS×∏

Iθ

Pr(H i|Ψi = L)

{
∏

IH∩I\θ
Pr(H i|Ψi = H)× ∏

IL∩I\θ
Pr(H i|Ψi = L)× ∏

Io∩I\θ
Pr(H i|Ψi = 0)

}]
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3. Probability in case no common event (L3):

(1−ω) ∑
all I

[
PrNCS×∏

IH

Pr(H i|Ψi = H)×∏
IL

Pr(H i|Ψi = L)×∏
Io

Pr(H i|Ψi = 0)

]

∑all I describes the summation of all possible (the number of 3#I) realization of

I. The likelihood function for the whole history of trading is simply the product

of the likelihood of each single day, because the information events are indepen-

dently distributed. The standard errors of the estimated parameters are calculated

from the asymptotic distribution using the delta method.

The Curse of Dimensionality Problem Estimating this likelihood function is a

challenging task due to the “curse of dimensionality.” The number of states needed

to evaluate the likelihood function grows exponentially, because we have to eval-

uate the probability of every event that can occur. The number of evaluations

thus skyrockets according to the number of assets. With Matlab and Pentium

dual-core processor computers, it takes about five seconds to calculate the likeli-

hood function of a case with eight assets with 500 observations. The minimization

of likelihood function usually needs at least 2000 evaluations, and it takes more

than three hours to finish one estimation. Adding one stock requires about six

times more calculation. Therefore, we limit the number of stocks to 9 and run the

estimation on various mixes of stocks.

In order to speed up the algorithm, we can estimate in two steps. The Poisson

parameters µ and ε are unbiasedly estimated by stock-by-stock PIN calculations.

Therefore we first conduct single-asset PIN calculations for each stock to estimate
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µ and ε , and then calculate other parameters simultaneously by using the first-step

results.5

Computational Overflow Furthermore, there is a well known computational dif-

ficulty in implementing the PIN model: the a problem of computational overflow.

This overflow occurs because the likelihood function is composed of high-powered

values, which are too large for computers to evaluate. This problem often occurs

when a stock has large order imbalances. In order to deal with this problem, we

transform the likelihood function.

After factoring out Π
i
( ε i

µ i+ε i )
2Mi

, Π
i
e−2ε i

,Π
i

1
Bi!Si! , and Π

i
(µ i + ε i)Bi+Si

from the

log-likelihood function lnL (B,S|Θ) = ln((L1)+(L2)+(L3)), we finally obtain

lnL (B,S|Θ) = ∑
d∈D

∑
all I

∑
i∈I

[
−2ε

i +2Mi,d ln(xi)+
(

Bi,d +Si,d
)

ln(µ i + ε
i)
]

+ ∑
d∈D

ln

[
ω(1−δ ) ∑

all I

{
PrCS

(
Π

i∈Iθ
e−µi

xSi,d−2Mi,d
i

)(
Π

i∈IH∩I\θ
e−µi

xBi,d−2Mi,d
i Π

i∈IL∩I\θ
e−µi

xSi,d−2Mi,d
i Π

i∈I0∩I\θ
xSi,d+Bi,d−2Mi,d

i

)}

+ωδ ∑
all I

{
PrCS

(
Π

i∈Iθ
e−µi

xBi,d−2Mi,d
i

)(
Π

i∈IH∩I\θ
e−µi

xBi,d−2Mi,d
i Π

i∈IL∩I\θ
e−µi

xSi,d−2Mi,d
i Π

i∈I0∩I\θ
xSi,d+Bi,d−2Mi,d

i

)}

+(1−ω) ∑
all I

{
PrNCS

(
Π

i∈IH
e−µi

xBi,d−2Mi,d
i Π

i∈IL
e−µi

xSi,d−2Mi,d
i Π

i∈I0
xSi,d+Bi,d−2Mi,d

i

)}]
. (3.2.10)

We define xi ≡ εi
µ+εi

and Mi,d are arbitrary chosen to improve the computational

efficiency. Easley, Hvidkjaer, and O’hara (2002) suggests Mi,d = min(Si,d,Bi,d)+

max(Si,d ,Bi,d)
2 . We searched optimal Mi,d according to the choice of stocks.

Even after this transformation, sometimes it is still difficult to avoid overflow,

especially when we estimate the multiple-asset model on blue chips. This is be-

cause the order imbalance tends to incline in one direction after earning reports

or remarkable events, and when it is imbalanced, the blue chips sometimes record

more than 500 imbalances. This messes up the likelihood function, and a system-

atic treatment is difficult to obtain.

5 We can confirm that the estimation results without this shortcut return the same result.
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For the computation to minimize the log-likelihood function, we employed the

Matlab built-in optimization function “fmincon.” Probability parameters are re-

stricted to take a value between zero and one. The Poisson arrival parameters µ

and ε , are restricted to take a value between zero and max{Bt +St}t=1,··· ,T because

µ and ε are the average number of informed and uninformed trades, which will

never be bigger than the max trade number. The initial value is set randomly

between the lower and upper bounds.

3.2.2. Simulation Results

In this section, we check the robustness and identification of the multiple-asset

model by simulation. We intend to recover the original parameters by estimating

the parameters for data generated by the simulation.

Table 3.1 We first show the unbiasedness and consistency of the estimation.

Given certain sets of parameters, we generate data simulated by the structure

assumptions. Then we conduct the maximum-likelihood estimation to recover

the original parameters. We set the number of observations to 253 and 505, the

yearly and biannual numbers of trading days, and use five stocks for simultaneous

estimation. We carry out six different fixed-parameter experiments. For each

experiment, we calculate the error, defined as the distance between the original

parameters and the estimated parameters, and the standard deviation of the error.

Table 3.1 shows the estimation result for the multiple-asset specification; the es-

timated values are largely unbiased and consistent. For every parameter, the error

and standard deviation are reduced when many observation is available. The com-

mon probability of bad δ has little effect on the efficiency: the standard deviations

are not affected by the value of δ .
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Random Fixed

ω− ω̂ δ − δ̂
∑α−α̂

N
∑δ−δ̂

N ω− ω̂ δ − δ̂
∑α−α̂

N
∑δ−δ̂

N
.0121 .0071 .022 .0148 .0002 -.0009 .0008 -.0011

SD .1326 .12 .0903 .1082 .0482 .0438 .0368 .0753

Table 3.2. The benchmark model’s simulation result with a irrelevant stock. The left
panel is an experiment for randomly generated parameters, and the right panel is for fixed
parameters. The fixed parameters are the same as the last estimations, but δ is always .25
and ω is .3 or .5 or .7. The simulation is generated to allow one stock that is totally irrele-
vant with common events. Each value is the mean of estimated value over 30 simulations.

Standard deviations are associated.

In contrast, the common parameters δ and ω , as well as θi are slightly better es-

timated when the probability of common event ω is high. However, idiosyncratic

parameters are less efficient when ω is high. Thus, the efficiency of common

event-related parameters ω , δ , θ and the efficiency of idiosyncratic parameters

is a tradeoff. This is because the shock for each stock is either idiosyncratic or

correlated, and more observations for one shock means less observations for the

other.

Table 3.2 In order to check robustness, we test the multiple-asset specification

under different data-generation processes. The last test deals with the case in

which the data generation process is assumed to match the likelihood function.

However, deviation from this assumption is likely and can devastate the estimation

results.

We conduct the following robustness check. First, we generate 30 simulations

based on fixed parameters for five stocks. Each simulation follows the data-generation

process of the benchmark model, but only one stock is totally irrelevant, and it is

assumed to follow the single-asset PIN model. In other words, θ = 0 for one stock.

As a supplemental result, we provide estimation results where the parameters are

totally randomized rather than fixed.
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Table 3.2 show the simulation results for this experiment. For both fixed and

random experiments, the benchmark model does a good job in terms of unbiased-

ness and efficiency. This is because the model is nested and immune to this kind

of misspecification. When the model is not nested, the estimation result is not

robust and becomes sensitive to the choice of stock. Nevertheless, the estimation

efficiency is worse in the case of randomly assigned parameters.

Identification We address the identification of each structural parameter. Trades

can occur many times in a day, and µ and ε can be identified even by one-day data.

This is because µ and ε are parameters of the Poisson process, and the frequency

of occurrence is many times throughout the day.

We assume that informational events occur only once in a day, however, and the

idiosyncratic parameters αi and δi cannot be identified from that one draw. Mul-

tiple days are needed to αi and δi.

Similarly, parameters related to common event ω , δ , and θi are assumed to be

drawn only once a day; therefore, they cannot be identified from the data of only

one stock. They can be identified only when we have multiple stocks.

When the number of observations is limited, there is a tradeoff between identi-

fying idiosyncratic and common parameters. Suppose every stock is independent

of every other—then we cannot identify the common event parameters. Thus,

common parameters can only be weakly identified when stocks are not affected

by a common event (low θi). On the contrary, when θi is too high, it becomes

hard to identify idiosyncratic parameters because we cannot obtain as many ob-

servations on the idiosyncratic case. Regardless of this potential identification

problem, as we have seen in the simulation, the estimation works well as long as

the parameters are not at the extreme.
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3.3. Data

In order to estimate the structural parameters, we need to calculate the num-

ber of buys and sells day by day and stock by stock. Our data, however, does

not identify whether the transaction is buyer- or seller-initiated. We employ the

Lee–Ready (1991) algorithm to differentiate trade transactions. That is, we at-

tach a timestamp to each quote transaction every five seconds ; then we decide

the trade is buyer-initiated if the price is higher than the mid-point of the last

quote, and vice versa. If the price is same as the last mid-quote, it is compared

with the second-last transaction price, and so on. If the current transaction price

had decreased (increased) with respect to the last transaction price, it is consid-

ered a seller- (buyer-) initiated trade. The Lee–Ready algorithm is found to be

reasonable, because the quote records are sometimes delayed compared to real

trade time, especially during the 1990s. Our dataset covers only the 1990s, and a

five-second delay therefore seems reasonable.

We collect cross-sectional intraday trade and quote data from the TAQ database.

After obtaining the data, we conduct the following data-cleaning procedures: (1)

keep the transaction only if it is from the New York stock exchange; (2) drop all

the trade observations where the “corr” sign is not equal to zero; (3) drop all the

quote observations if the ask price is 1.5 times higher than the bid price or the bid

price is higher than the ask; (4) drop all the trade transactions before any quote

is recorded at the beginning of the day; and (5) drop all the first opening call

trades. This follows standard data cleaning approaches, but some studies don’t

truncate the trade from regional stock exchange markets, and because of this the

estimations don’t necessarily exactly match.

When we conduct the multiple-asset estimation, sometimes the total trading-day

data doesn’t match perfectly. Some stocks lack transaction after the data cleaning
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described above; we take an intersection of the data in these cases. As a result,

we miss some data, but it is for less than six trading days in all, and this doesn’t

change the qualitative result of the estimation.

Our data set spans from 1995/Jan/03 to 1998/Dec/3. There is total 1011 trading

days. We choose the sample stocks as follows. First, we choose all the ADR

stocks that had been listed in the NYSE before 1995/Nov/21 ; in total 41 ADR

stocks from developed and emerging countries. Second, we choose 30 stocks

from the Dow Jones Industrial Average. This means that in the end we have 71

sample stocks in our dataset.

Some stocks can show extreme order imbalance. DIS and PT are examples. When

we conduct an estimation for many stocks, like eight or nine, the presence of

these stocks not only pushes the estimation towards an extreme but also makes

for a severe overflow problem. Therefore, we didn’t include these stocks in our

estimations of many stocks. Also, some stocks were delisted during the period of

the study, like WX, TLK, AWC, and IRE ; we exclude these stocks as candidates.

Up-tick Rule for Short Sales The uptick rule for short sales was effective during

the sample period. According to Asquith, Oman, and Safaya (2010) and Diether,

et al. , this regulation biases trade classification using Lee–Ready. Short sales

in NYSE stocks are recognized as buyer-initiated trade at 70 %. Because the

order imbalance tends to be positive, with a lot of buyer-initiated trades, it implies

lower d: a good information event. However, short sales are more likely to be

associated with bad economic conditions, and the result of δ will therefore be

severely downwardly biased.

In contrast, the other parameter estimations are less likely to be biased. This is

because the bias mainly affects order imbalance and doesn’t much influence the

other structural parameters.
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3.4. Estimation

In this section, we first show the descriptive statistics and single-asset PIN. Then

we move to estimate the multiple-stock model.

3.4.1. Descriptive Statistics and Standard PIN

First, we applied the EKO method to calculate standard individual PIN. The re-

sults are summarized in Table e 3.3. As mentioned, stocks with large order imbal-

ances are hard to make converge, but the transformation of the likelihood function

works well. We obtained convergent result for all firm-years.

As documented in Easley, Hvidkjaer and O’hara (2010), the liquid blue-chip

stocks usually show low PIN while the illiquid ADR stocks show high PIN.

Also we note that the order imbalance of each stock is mostly positive during the

period. This is because of the Uptick-rule to restrict short sell as mentioned in

Asquith, Oman, and Safaya (2010) . As a result, the probability of bad event, δ

is very low. But this doesn’t necessarily imply the business condition was good

during the period. On the contrary, bad business conditions may lead to short

sales, which implies a low δ . Without adjustment for the uptick rule, δ results

may mislead.

In order to investigate the near-zero δ , we also looked into the price changes and

order imbalances. Table 3.4 summarizes the result of descriptive statistics. There

are two hypotheses which could be related to the near zero δ (high likelihood of

positive fundamental news). The first is the hypothesis of highly frequent negative

public news6. If negative public news is common, traders may be more attracted

to contrarian behavior, and this may generate pressure for buyer-initiated trade.

6 We thank Prof.O’Hara for this point.
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Second, sell orders may be larger than buy orders, since the PIN calculation ig-

nores volume data. If sell orders are biased upward, OIB based on trade numbers

may yield confusing results.

In order to capture the arrival of public news, we calculated price jumps for each

stock. A jump is defined as a price change beyond two sigmas of the stock price.

The descriptive statistics shows that the jumps are mostly balanced between posi-

tive and negative7.

The order imbalance is usually positive, regardless of the way it is measured.

This is because short sales are restricted by the uptick rule. We report OIB based

on volume as well as trade numbers. It is largely proportional to the imbalance

in trade numbers. A simple regression analysis shows that the relationships are

usually positive and rarely become negative. This is the opposite of the previous

hypothesis.

3.4.2. Estimation result of Multi-asset PIN model

As we have noted, this multiple-asset PIN model suffers from the “curse of di-

mension” problem. The computational burden grows on the order of 3N . For

tractability, we limit the number of stocks to six. Therefore, we need to select sets

of stocks to be estimated.

Our model assumes only one common event per stock group. Because of this

restriction, expanding the stock pool isn’t necessarily the right specification. The

more stocks are included, the more common shocks will be involved. This causes

potential misspecification. Our choice of stocks is as follows.

7 The descriptive statistics for price changes imply that the effect of time-zone. For Asian
stocks, where the openings of the stock markets don’t overlap, we observe more frequent large
price change between days. This indicates that public information which change the price often
occur while markets open.
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— First, we take ADRs listed on the NYSE. We focus on emerging-market ADRs

to capture contagion among countries stemming from the Asian currency crisis

in 1997. The stocks used are YPF (Argentina), CCU (Chile), TMX (Mexico),

IIT (Indonesia), PKX (Korea), and SHI (China). The choice is based on total

trades per day for the country’s ADRs.

— Second, for blue chips, we take six stocks that have different first-digit SIC

codes. When there are more than one stocks where the first-digit SIC code is

the same, we pick the one with the highest individual PIN. The list is BS, DIS,

IP, JPM, T, and Z.

— Third, we pick developed-country ADRs and one blue chip stocks . The list

is STM, BS, HIT, TOT, and BT. The choice is based on total trades per day

among the country’s ADRs.

The choice of stock is based on the PIN and the total number of trades. For

ADR stocks, high-PIN stocks are usually very illiquid stocks, so we prefer to

use the total number of trades as a criterion. For U.S. stocks, high-trade stocks

usually cause overflow problems due to high order imbalance. We take PIN for

the criterion.

In this experiment, we would like to focus on the following economic parame-

ters: common event probability ω , probability of informational trade based on

idiosyncratic or common events (IPIN and WPIN respectively), their ratio, and

the efficiency of the price.

Table 3.5 First, for cross-country ADR samples, we conducted a whole-year es-

timation during 1995/Jan/4 to 1998/Dec/30 using single-asset and multiple-asset

models.

The estimation results differ in αi and δi. The multiple-asset model estimates a

lower αi than the single-asset model does. This is natural, because the multiple-asset
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model identifies some informational events as common events which are identified

as idiosyncratic events in the single-asset model. Also, each δi in the multiple-asset

model is higher. This means that idiosyncratic news was usually worse than com-

mon news. During the study period, these stocks usually recorded positive order

imbalances, which pushes δ and δi downwards, but the multiple-asset model sep-

arates out these good common events and finds the true value of δi. However,

again, we have to be careful in interpreting the result, because this estimation

doesn’t consider the uptick rule.

The result of θ is only available for the multiple-asset model. This probability

implies that roughly half of the common events influence each stock.

The estimated PIN results are almost identical. This indicates that, while each

economic parameter is biased, the single-asset model can be as accurate as the

multiple-asset model to estimate the probability of information trade. Thus, the

advantage of the multiple-asset model is not to provide more accurate estimates

for probability of information trade, but to separate information trade into com-

mon and idiosyncratic components.

Rolling Estimation for Emerging ADRs In order to check the time-series conti-

nuity of the estimated parameters, we conducted a rolling estimation spanning the

period from 1995/Jan/4 to 1998/Dec/3 . We take a rolling window for 253 days,

and apply the multiple-asset PIN model for every other 30-day period. Each figure

describes the time-series of ω , δ , MPIN, and the ratio of common to idiosyncratic

event-driven trades (WPIN/MPIN).

In Figure 3.5.1 and 3.5.2, we can see that ω is largely continuous. The sudden

spike in δ at 271 days, which is a period during 1996, is led by the order imbalance

of TMX. If we omit TMX, we do not observe this spike any more. During 1997,

ω keeps steady and high, while δ stays near zero. However, this result doesn’t
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necessarily show evidence of contagion. As a more direct measure of contagion,

we can look at the ratio of common event-driven trade.

Figure 3.5.3 shows the ratio of trades based on common events against overall

informed trades. The top, middle, and bottom graphs shows the emerging ADRs,

developed ADRs, and U.S. blue chips, respectively.

The emerging ADRs apparently show highly correlated common informational

trades during 1997. The blue chips and developed ADRs do not show a simi-

lar pattern. This indicates that during 1997, many of the emerging ADR stocks

were driven by common information events but the other ADR stocks and U.S.

stocks were not. While we cannot evaluate the direction of the information, the

uptick rule bias lets us infer that there was a large amount of short selling during

this period. Thus, our model suggests that there was financial contagion among

emerging countries, but that it did not spread into developed countries.

Comparison between Tranquil and Crisis Period, Table 3.6, 3.7, 3.8 In these

tables, we estimated the parameters for two periods: 1996 (tranquil period) and

1997 (crisis period). We conducted the estimation for cross -country ADRs,

developed-country ADRs, and cross-industry blue chips. The choice of ADRs was

the same as in the last estimation. We sorted the 30 stocks from the Dow Industrial

average by single-asset PIN. Then we picked the highest-PIN stock among each

industry.

In these tables, we also report the efficiency gain from knowledge of common

information events. When market makers know of a common information event,

they can price stocks more accurately. Compared to the case when the market

maker does not know of the occurrence of a common event, the distance to the

true price should be shorter. Formally, the efficiency gain is calculated as the 3.2.6.

Here S is the number of simulation, set as 1000, and the calculation of prices p
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are shown in the section 2. We confirmed that price efficiency of informed case is

always higher than the no information case.

In general, high θ and low αi are associated with high efficiency gain, because the

price is mainly driven by common information even in this case. We can also say

that efficiency gain is high when WPIN/MPIN ratio is high.

Table 3.6 shows the estimation results for emerging-country ADRs in 1996 and

1997. The ratio of common-informed trading is uniformly higher in 1997 than

in 1996, which indicates contagion. The MPIN is slightly higher in 1997, but

the biggest difference is in θ . In 1997, θ is uniformly high, which implies a

significant influence of a common informed event. In 1996, only YPF shows high

θ . This implies that YPF played a central role in the common informed event

for 1996, but that this event was not as influential as the common event for 1997.

The low d in 1997 implies massive short sales rather than a good event. Because

the common event in 1996 is not influential, knowing about its occurrence is not

efficiency-improving for most stocks. This shows a sharp contrast to 1997.

Table 3.7 shows the estimation results for developed-country ADRs in 1996 and

1997. Unlike emerging ADRs, developed ADRs don’t change much in terms of

common/idiosyncratic ratio, efficiency, and δ . While the center of the common

informed event shifts from STM-BS to HIT-TOT, the overall level of the estimated

values stays the same.

Table 3.8 shows the estimation results for U.S stocks in 1996 and 1997. Again,

the common/idiosyncratic ratio is relatively unchanged. BS, T, and Z are less

affected by the common event. The generally low δ for blue chips is mostly

driven by DIS and JPM, which have huge positive order imbalances. Their θi is
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also high, which means that the common event is strongly affected by these two

companies.

3.4.3. Robustness Check

In this section, we propose a robustness check for the previous result. We propose

two sets of the check. The first is for choice of stock, as demonstrated above, and

the other is to address the concern regarding time difference between countries.

Choice of Stock So far, our estimation highlights only specific subsets of securi-

ties. Here, we repeat the estimation by looking at many possible combinations of

securities.

First, we illustrate how to generate a combination of securities. We again divide

the whole set of stocks into emerging-country ADRs, developed-country ADR,

and U.S. blue chips. For emerging ADRs, we maintain the diversity of countries

and rotate stocks within countries listing more than one stock as ADR. We rotate

the stock of Argentina, Chile, and Mexico. The other countries, mostly located

in Asia, have only one stock listed as ADR. Using this method, we can generate

24 alternative combinations. For developed-country ADRs and U.S. blue chips,

we don’t care about diversity. We choose the five most-traded stocks and the four

highest-PIN stocks from the blue chips, and for the developed ADRs, we choose

the nine most-traded stocks and the blue chip with the code BS 8. We tried all six

possible combinations within these sets. The total number of combination is (9,

6) = 84.
8 High PIN developed ADRs sometimes show very low liquidity and less than 1000 trad-

ing days. Therefore we choose 9 most traded stocks. Blue chips show no such problem.
Finally, our choice set is ’GE’,’IBM’,’T’,’MRK’,’MO’,’BS’,’Z’,’IP’,’BA’ for blue chips, and
’BT’,’PHG’,’ELN’,’STM’,’SNE’,’REP’,’BS’,’TOT’ for developed ADRs.
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In Table 3.9, the results shows estimated average and standard deviation of ω ,

ratio of common-information trade, and price efficiency. Emerging-country ADR

shows high CPIN/MPIN ratio, which indicates that common-information trade is

not a special case but a common situation.

3.5. Conclusion

We studied a multiple-asset market microstructure model as an extension of Easley,

Kiefer, and O’Hara’s (1997) model to studying financial contagion. We find that

the multiple-asset model performed well with respect to unbiasedness, efficiency,

and robustness. The estimation based on this model differentiates common infor-

mation events from idiosyncratic events.

We applied the model to NYSE-listed stocks from 1995 to 1998. The results

show that trades are motivated mostly by common information shocks among

emerging-country ADRs in 1997, which implies financial contagion between these

countries. However, we didn’t observe correlated informed trades of this sort

among developed-country ADRs and U.S. blue chip stocks.

The estimation results of δ , unlike our expectations, are usually negative (showing

good information events) during the financial crisis. Some hypotheses are tested

regarding the reason for this result, but they don’t give clear evidence. Uptick rule

for short sales may contribute to this result, but the model cannot identify short

sales.
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Symbol Nationality days Total mean B mean S α δ µ ε PIN
CCU Chile 1011 124.8 68.5 56.3 .282 .212 61.0 53.3 .171
IIT Indonesia 1010 32.4 17.4 15.0 .236 .332 34.6 12.5 .235

PKX Korea 1004 57.2 31.7 25.4 .295 .213 42.0 22.3 .239
SHI Indonesia 1010 29.3 15.4 14.0 .188 .387 37.8 2.0 .230

TMX Mexico 1011 495.5 236.9 258.6 .334 .393 226.9 21.4 .151
YPF Argentina 1011 188.6 2.0 87.6 .334 .320 84.9 79.9 .152
BS U.S.A 1011 155.0 81.9 73.0 .385 .307 65.0 65.4 .161
DIS U.S.A 1011 728.5 424.0 304.5 .423 .080 265.9 306.3 .150
IP U.S.A 1011 439.4 247.3 192.1 .434 .123 137.5 189.8 .143

JPM U.S.A 1011 436.6 24.3 196.3 .440 .136 125.2 19.6 .124
T U.S.A 1011 1028.8 52.2 508.6 .377 .444 284.0 461.8 .106
Z U.S.A 1011 145.3 7.2 75.2 .358 .535 61.1 61.7 .152

STM Italy 1011 139.4 77.9 61.5 .268 .192 87.91 57.74 .182
BS U.S.A 1011 155.0 81.9 73.0 .385 .307 65.0 65.4 .161
HIT Japan 1010 45.1 28.1 17.0 .571 .134 23.67 15.80 .309
TOT French 1010 48.3 27.4 21.0 .361 .158 22.55 2.33 .166
BT U.K. 1011 289.4 157.2 132.2 .350 .169 143.61 122.56 .145

Table 3.3. Standard calculation of PIN. The list of stocks is from different three groups:
emergent-country ADRs, U.S. blue chips, and developed-country ADRs. The data covers

1995 to 1998.
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Figure 3.5.1. Rolling estimation of ω and δ . The window size is 253-days.The list of
stock is YPF, TMX, CCU, SHI, IIT, PKX.
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Symbol Nationality OIB (#) OIB(vol)/VOL iner/intra PC # PC mean PC std PC
CCU Chile 12.231 .064 .222 44 -.054 1.534
IIT Indonesia 2.401 .097 .824 135 -.030 .422

PKX Korea 6.326 .104 1.057 109 -.039 .439
SHI Indonesia 1.393 .032 4.313 85 -.009 .570

TMX Mexico -21.776 -.045 .227 119 -.015 .734
YPF Argentina 13.345 -.011 .288 103 .010 .394
BS U.S.A 8.89 .025 .167 126 .011 .213
DIS U.S.A 119.54 .144 .337 115 -.018 .819
IP U.S.A 55.17 .107 .163 121 .018 .652

JPM U.S.A 44.01 .093 .144 135 .055 1.275
T U.S.A 11.53 .048 .198 97 .003 .661
Z U.S.A -4.96 -.007 .124 127 -.020 .300

STM Italy 16.4 .049 .446 133 .089 1.340
BS U.S.A 8.89 .025 .167 126 .011 .213
HIT Japan 11.1 .280 3.207 122 -.254 1.050
TOT French 6.4 .141 1.848 131 -.036 .622
BT U.K. 25.0 .080 .279 110 .018 1.180

Table 3.4. Descriptive statistics for order imbalance and price changes. Daily order
imbalance (OIB) with respect to the number and volume of trades is reported. Price
change, or large intraday and interday price change (PC), is also reported. “Large” price
change is defined as that larger than two sigmas. The stocks are is from three different
groups: emerging-country ADRs, U.S. blue chips, and developed-country ADRs. The

data covers 1995 to 1998.

108



YPF TMX CCU SHI IIT PKX
ω .240
δ .122
α Single .365 .278 .281 .144 .158 .321

Multiple .303 .243 .169 .074 .081 .208
δ Single .245 .394 .203 .337 .284 .364

Multiple .268 .462 .284 .591 .489 .546
θ Single - - - - - -

Multiple .377 .195 .566 .313 .354 .592
µ 88.4 28.7 124.4 5.1 44.4 55.5
ε 78.3 208.8 45.2 11.1 12.7 19.8

PIN Single .171 .157 .279 .245 .216 .311
MPIN Multiple .171 .157 .279 .245 .217 .310

Table 3.5. Whole-year estimation. The list of stocks is YPF, TMX, CCU, SHI,
IIT, PKX. Each row shows the estimation results from M0 (original single-asset
model) and multiple-asset benchmark models. For µ and ε , the estimated values

are the same between the single- and multi-asset models.
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Figure 3.5.2. Rolling estimation of PIN. 253-days window size. List of stock is YPF,
TMX, CCU, SHI, IIT, PKX.
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Figure 3.5.3. Rolling estimation of CPIN/MPIN. Top: Emergin country’s ADRs, Mid-
dle:Developped’s ADRs, Bottom: U.S. bluechips. This shows whether the private in-
formed trade is driven by common event or idiosyncratic event. The window size is
253-days. The list of stock is YPF, TMX, CCU, SHI, IIT, PKX. Here, YPF, ENI, TMX are
South America ADRs, and PKX, SHI, IIT are Asia ADRs. The central mark represents
the median, the edges of the box are 25th and 75th percentiles, the whiskers are the most
extreme data points that is not considered as outliers, and outliers are plotted individually

as “+”.
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Emg ADR U.S. Dev ADR
1996 ω .261 .746 .418

S.D .138 .241 .243

PIN .202 .23 .207
S.D .052 .035 .056

Ratio .228 .363 .296
S.D .173 .222 .230

Eff. Gain .031 .016 .03
S.D .018 .014 .019

1997 ω .351 .796 .448
S.D .15 .213 .247

PIN .199 .231 .18
S.D .051 .035 .034

Ratio .375 .446 .322
S.D .17 .24 .197

Eff. Gain .032 .017 .032
S.D .017 .016 .021

Table 3.9. Robustness check.
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Appendix A

Appendix for Chapter 1

A.1. Characterization of Equilibrium

I now describe how to characterize a linear equilibrium. I solve it by back-

ward induction. I note that uninformed traders solve a static problem at t = 1

non-strategically: they do not expect the arrival of informed traders1. I summarize

the variables that are used in this model at Table 1.1. I solve for the endogenous

variables for the linear conjecture.

Step 1: Conditional expectation of ṽ and its variance.

Between t = 1 and t = 2, the uninformed traders make an projection to the funda-

mental value of the asset conditional on their available information. Our conjec-

ture (1.2.7) and the market clearing condition imply that, for uninformed traders,

P̃1 =
1

λ1 +ζ1
(µ1 +(α1 +β1ṽ)+ z̃1) . (A.1.1)

1 The informed traders’ awareness of uninformed traders appears in their conditional volatil-
ity of the fundamental. As in Kyle (1985), this conditional volatility does not depend on the
endogenous variables, and it is determined only by exogenous volatility. To simplify the calcula-
tion, I omit this first stage projection. Also, I do not assume that the uninformed trader considered
the price fluctuation induced by noise trading. This assumption is a consequence of the assumption
of uninformed traders as price takers.
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Thus, the fundamental value ṽ and the price P̃1 are jointly normally distributed. I

apply the projection theorem to calculate v̂U ≡ E[ṽ|P1] and σ̂2
U ≡Var(ṽ|P1):

v̂U = E[ṽ]+
β1

λ1+ζ1
σ2

v(
β1

λ1+ζ1

)2
σ2

v +
(

1
λ1+ζ1

)2
σ2

z

(P1−E[P̃1])

σ̂
2
U = σ

2
v −

(
β1σ2

v
)2

β 2
1 σ2

v +σ2
z
.

Note that
β1

λ1+ζ1
σ2

v(
β1

λ1+ζ1

)2
σ2

v +
(

1
λ1+ζ1

)2
σ2

z

= Cov(P1,v)
Var(P1)

and σ2
v −

(β1σ2
v )

2

β 2
1 σ2

v +σ2
z
= (1−ρ2

P1,v)σ
2
v . I

abbreviate the expression above as v̂U = m0 +m1P1. That is,

m0 = v0(1−m1), m1 =
β1σ2

v (λ1 +ζ1)

β 2
1 σ2

v +σ2
z

. (A.1.2)

This conditional expectation is the same for uninformed traders who enter the

market at different times.

Step2: t = 2 problems

Uninformed trader’s problem Next, I solve the optimization for uninformed

traders. Their maximization problem is

maxx2,i E
[
−exp(−γi

{
(ṽ− p2)x2,i +(ṽ−P1)x1,i

}
)|F2,U

]
.

Because they have a negative exponential utility with a parameter γi, i = A,B

and the terminal wealth is normally distributed (because the fundamental value
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follows a normal distribution), their demand function is now calculated as

x∗2,i =
v̂U − p2

γiσ̂
2
U
− x1,i i = A,B.

I note that they are assumed to be a price taker. If the uninformed traders are new

entrants B, x1,B = 0. Thus I can define µ2,i,λ2,i,δi ,which are strategic variables

for new entrants, as a function of m0,m1 as follows:

µ2,i =
m0

γiσ̂
2
U
,λ2,i =

1
γiσ̂

2
U
,δi =

m1

γ2σ̂2
U
. (A.1.3)

The aggregated demand of both uninformed traders (x2,U = x2,B + x2,A) is

x2,B + x2,A = (µ2,B +θ µ2,A)+(δB +θδA)P1− (λ2,B +θλ2,B)p2,

= (1+
θγB

γA
)µ2,B +(1+

θγB

γA
)δBP1− (1+

θγB

γA
)λ2,B p2. (A.1.4)

Remember, only a fraction θ of uninformed traders at t = 1 trade at t = 2. I denote

µ2,B = µ2 and so on, in order to omit the subscript. Here, λ2 is strictly positive be-

cause γi is assumed to be positive and σ̂2
U is squared. Therefore, Equation (A.1.3)

obviously clears the second order condition for the maximization problem. Intu-

itively, a positive λ2 assures a downward sloping curve of the demand function of

uninformed traders at t = 2.

Informed trader’s problem An informed trader solves following problem.

maxx2,I E
[
(v− P̃2(x2,I))x2,I|F2,I

]
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P̃2 =
1

(1+ θγB
γA

)λ2 +φ

(
(1+

θγB

γA
)µ2−θ µ1 +

(
(1+

θγB

γA
)δ +θλ1 +φκ

)
P1 + x2,I + z̃2

)
.

(A.1.5)

Note that, in period t = 2, a fraction of the initial old θ arrive at the market,

and unwind the position they make at period t = 1. I can determine P̃2 from

x2,U,o+x2,U,n+x2,R = 0, which is the sum of uninformed traders and rule of thumb

traders. I can also interpret P̃2 is a transaction price for the informed trader. The

first order and second order conditions are

x2,I

(1+ θγB
γA

)λ2 +φ
−
(
v−E[P̃2|F2,I]

)
= 0,

−2

(1+ θγB
γA

)λ2 +φ
< 0. (A.1.6)

The second order condition, or a strictly positive λ2, makes a trader’s demand

function agree with their private information. That is, there is no motivation to

manipulate at this period. Arranging terms, I obtain the following expression for

x∗2,I . Writing E[P̃2|F2,I] = p2, I obtain

x∗2,I =
(
(1+

θγB

γA
)λ2 +φ

)
(v− p2)

Then the coefficients of a trader’s decision rule is

α2 = 0, β2 = (1+
θγB

γA
)λ2 +φ , ζ2 = (1+

θγB

γA
)λ2 +φ , ξ2 = 0 (A.1.7)
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Thus, positive λ2 necessarily implies positive β2 and ζ2. The p2 can be substituted

for by E[P̃2|F2,I], but for tractability I leave it as is.

Proof of Remark 1: The price change at the limit order book I define the

mid-price change as a difference of quotes before the informed trader trades. At

the second period, the mid-quote is a market clearing price for x2,U + x2,RT = 02.

The mid-price change from t = 1 is v̂− v0, and it can be rearranged as

∆P2 ≡ 1

(1+ θγB
γA

)λ2 +φ

(
(1+

θγB

γA
)µ2−θ µ1 +

(
(1+

θγB

γA
)δ +θλ1 +φκ

)
P1

)
− v0 (A.1.8)

=
1

(1+ θγB
γA

)λ2 +φ

(
(1+

θγB

γA
)µ2−θ µ1 +

(
(1+

θγB

γA
)δ +θλ1 +φκ

)(
λ
−1
1 (x1,I + z1)− v0

))
− v0

=
1

(1+ θγB
γA

)λ2 +φ

((
(1+

θγB

γA
)δ +θλ1 +φκ

)
λ
−1
1 (x1,I + z1)+

(
(1+

θγB

γA
)λ2 +φ

)
v0

)
− v0

=
(1+ θγB

γA
)δ +θλ1 +φκ

λ1

(
(1+ θγB

γA
)λ2 +φ

) (x1,I + z1) .

To the first equation, I applied the market clearing condition at t = 1: P1− v0 =

λ
−1
1 (x1,I +z1). From the second to third equation, I used the results for µ . The left

hand side is the mid-price change (P2−v0), and the right hand side is order imbal-

ance at the end of t = 1 multiplied by a coefficient. Because E[x1,I + z1|F1,U ] = 0

, the mid-price follows a Martingale.

This result confirms the findings of Kyle (1985). I use this coefficient as a defini-

tion of the permanent price impact, or Kyle’s lambda.

2 Here I implicitly assume the rule of thumb traders can advance to the informed trader,
because they can execute a part of their order against the uninformed traders. The informed trader
delays the trade, but the noise traders come last. This exogenous timing doesn’t influence the
equilibrium much, because of the price taking behavior or uninformed traders and risk neutrality of
the informed trader, but it does matters when the informed trader is risk averse (potential settlement
risk).

The intentional delay in double auction markets and the role of rule of thumb traders are also
documented in Rust,Miller, and Palmerf (1993).
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Step 3: t = 1 problems

Uninformed trader’s problem The uninformed trader A’s problem is

maxx1,A E
[
−exp(−γA(ṽ− p1)x1,A)|F1,A

]
Here, an informed entrant is not expected. This problem is solved as follows.

x∗1,U =
E[ṽ]− p1

γAσ2
v

,

µ1 =
v0

γAσ2
v
, λ1 =

1
γAσ2

v
. (A.1.9)

E[ṽ] = v0.λ1is assumed to be positive to obtain a downward sloping curve.

Informed trader’s problem The problem for the informed trader is

maxx1,I E
[
(v−P1)x1,I +(v− P̃2)x∗2,I|F1,I

]
.

Substituting x∗2,I = ((1+ θγB
γA

)λ2 +φ)(v−P2) by (A.1.6), I obtain

maxx1,I E
[
(v−P1)x1,I +

(
(1+

θγB

γA
)λ2 +φ

)
(v− P̃2)

2|F1,I

]
.

The first order condition is

(
v−P1−

∂P1

∂x1,I
x1,I

)
−
[

2
(
(1+

θγB

γA
)λ2 +φ

)
(v−E[P2|F1,I]) ·

1
2

∂P2

∂P1

∂P1

∂x1,I

]
= 0.

(A.1.10)

120



The first term shows the profit from period one deals, and the second shows the

profit from the second period.

The second order derivative is

−2
∂P1

∂x1,I
+

1
2

(
(1+

θγB

γA
)λ2 +φ

)(
∂P2

∂P1

∂P1

∂x1,I

)2

.

Our conjecture suggests ∂P1
∂x1,I

= 1
λ1

, ∂P2
∂P1

=
(1+ θγB

γA
)δ+θλ1+φκ(

(1+ θγB
γA

)λ2+φ

) . Then the F.O.C. and

S.O.C. become

x∗1,I = λ1(v−P1)−
1
2

(1+ θγB
γA

)δ +θλ1 +φκ(
(1+ θγB

γA
)λ2 +φ

) [(
(1+

θγB

γA
)λ2 +φ

)
λ2v−

(
(1+

θγB

γA
)µ2−θ µ1 +((1+

θγB

γA
)δ +θλ1 +φκ)P1

)]
,

1
4

(
(1+

θγB

γA
)λ2 +φ

) (1+ θγB
γA

)δ +θλ1 +φκ(
(1+ θγB

γA
)λ2 +φ

)
λ1

2

− 1
λ1

< 0

The second order condition may not necessarily hold. Finally I obtain

α1 =
1
2

(1+ θγB
γA

)δ +θλ1 +φκ

(1+ θγB
γA

)λ2 +φ
· (θ µ1− (1+

θγB

γA
)µ2), β1 = λ1−

1
2
((1+

θγB

γA
)δ +θλ1+φκ),

(A.1.11)

ζ1 = λ1−
1
2

(
(1+ θγB

γA
)δ +θλ1 +φκ

)2

(1+ θγB
γA

)λ2 +φ
.

The sign of ζ 1 is the same as the S.O.C. This means that the informed trader must

have upward sloping curve with respect to prices.

The equations (A.1.2), (A.1.3), (A.1.7), (A.1.9), (A.1.11) with the informed trader’s

t = 1 second order condition pin down the equilibrium.

121



A.2. Derivation of Uninformed Manipulation Condition

The uninformed manipulation condition is derived from the profitability condition

of a round trip trade. I check whether the informed trader (i.e., manipulator) has

an incentive to holding the round trip trade. Let x1,I = x ∈ R and x2,I = −x, the

trader’s expected profit is

max
x

E [x · {P2(−x)−P1(x)}] .

Without the loss of generality, I let v0 = 0. I use the market clearing conditions

at t = 1 and t = 2. We can find the solution is either x = 0 or x =±∞. When the

second order condition holds, I obtain x = 0. Namely

(1+ θγB
γA

)δ +θλ1 +φκ(
(1+ θγB

γA
)λ2 +φ

)
λ1

− 1

(1+ θγB
γA

)λ2 +φ
− 1

λ1
< 0.

This is the condition that the informed trader does not deviate to taking the round

trip position. When the equality holds, the expected profit is equal to zero re-

gardless of the value of x. Thus, I can derive the condition that describes the

profitability of uninformed manipulation.



Appendix B

Appendix for Chapter 2

B.1. Immediate Price Impact

The model sets a uniform price double auction, and does not induce any bid and

ask spread. Further, the market-clearing price for the model is not the same as

the transaction price at the LOB market. Fortunately, the linear demand function

gives us a simple relationship between them. The IPI in the model is half the

linear price impact inferred from the LOB; IPI = IPI f rom LOB/2.

Proof. Consider the case of buying q̄ shares in an LOB market, and we define a

linear price impact coefficient IPI f rom LOB to satisfy the total amount of payment

pq̄ =
´ q̄

0

(
p+ IPI f rom LOBq

)
dq. Here, p is the average purchasing price (consid-

ering uniform pricing), and p is also the lowest execution price, or the best ask

price. We define the bid and ask spread as bas = 2(p− p̃), where p̃ is the mid

quote. Substituting for p and calculating the integration, we get the expression

p− p̃ = bas/2+ IPI f rom LOBq̄/2. The left hand side of the equation is the price

change in the uniform pricing market, and the right hand side is the linear price

impact in the LOB market. Since the bid and ask spread appears as a first or-

der term, we can ignore it because the uninformed manipulation gives a profit,
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which is a square of the amount of traded volume. Thus, we can find a direct

relationship exists between empirical price impact IPI f rom LOB and theoretical IPI

as IPI = IPI f rom LOB/2.

B.2. Details of Data Cleaning

Data Cleaning The raw data dates back to two years, and includes 1,000 most

traded stocks listed on the TSE. The 1,000 stocks were chosen by the trade vol-

ume in January 2005. I first performed a cleaning process on the raw data in the

following manner.

1. I truncated data for the whole day for stock where it hits the upper or lower

limit of one-day price change.

2. I interpolated the observation with missing order book entries with very small

numbers (less than .0001% of the observation).

3. When the number of ask side LOB does not match the number of bid side of

the book, I omitted data corresponding to the whole day of that stock.

4. Lastly, I picked stocks with observations for more than 200 trading days.

These omissions did not reduce the data by much.

Then, I created a sampling or snapshot of the LOB, cumulative volume, num-

ber of trades, and order imbalances. I employed a sampling frequency of one

minute. The volume and order imbalances were an accumulation of this sampling

frequency. Figure B.2.1 explains the sampling timing. For each snapshot of the

LOB, the depth-weighted price and price impacts were calculated.

Thus, I obtained the one-minute sequence of volume, number of trades, order

imbalances, weighted price, and IPIs.
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Then, I calculated the prediction for PPI and IPI using the Kalman Filter for 5, 15,

and 30-minute intervals. The Kalman Filter was applied to whole the sequence

once. The overnight factor remained, but I omitted the first and last observations

of one day anyway.

After performing the Kalman filtering to obtain the predicted PPI and IPI, I trun-

cated (1) the first and the last observation of each day (because they were supposed

to be priced by the opening and closing auctions), (2) stock with tick size bigger

than 1, and (3) the data between November 2, 2004 and November 2, 2005.

Unlike stocks listed on the NYSE, stock prices in the TSE have different face

values, tick size, and minimum unit of shares to trade. The changes in the min-

imum tick size are dependent on the price range. Comparing the stock liquidity

among different face value, unit of shares, and the tick size is often complicated.

Fortunately, around 70% of the stocks have a tick size of 1 yen, so I focused on

tick size stocks of this value.

One minute interval data I made minute-by-minute data from the original data.

I took a sample of price and price impact that were last recorded within each

minute. I added up the signed trade volume over one minute, and constructed the

order imbalance. The number of transactions was also calculated in the same way.

In this manner, I could compress the data volume. The raw data of each day had a

volume of around 2GB, and was difficult to deal with. Since my data did not have

a second-by-second time stamp, it was reasonable to focus on minute-by-minute

records. Whenever I could not observe any records for some fixed time ranges,

the order imbalance and number of trades were set zero, while the price was set

the same as that in the last minute.

Although I picked the most liquid 1,000 stocks in the TSE, some stocks did not

have any trade transactions for more than 10 minutes. This could have led to a
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limit order change

time stamp:10:12

transaction

time stamp:10:13

sample price
sample price impact
permanent price impact estimate

40000

5000

12000

3000

56000

544

543

542

541

540
539

538

537

536

535

45000

34000

23000

3000

43000

Ask Bid

Figure B.2.1. Sampling timing of the data and the LOB snapshot. The price
and the price impact were picked up from the bid and ask price of the last LOB
record within a minute. The order imbalance at t , vt , is a summation of order
imbalances between the time between t−1 and t. At the end of time t, the LOB
is revealed and the values for slippage IPI and the mid-price change ∆p̃t become

known. Based on this information, it is possible to estimate the PPI and IPI

bid and ask bounce problem, which I mitigated by employing the depth-weighted

average price.

Scaling I summarize how I scaled the variables.

— All the volume and order imbalances were scaled by the unit rather than the

raw sequence, because the minimum number of trading units depended on the

face value of the stock.

— In the regression models, the order imbalance and volume (as independent

variables) were scaled by the total volume of the day.

— In the regression models, the price impacts (as independent variables) were

scaled by the price, and denoted as a percentage.

Measure of Noise trading In order to calculate the measure of noise trading, I

resorted to the framework of Easley, Kiefer, O’Hara, and Paperman (1996).
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They assumed the Poisson distribution for incoming informed noise trade, with

each realized trade being dependent on whether the informational event happens

or not on the given day. The informational event drives informed traders, who buy

or sell at the bid or ask price, and it induces positive or negative order imbalances.

The likelihood function of the Easley, Kiefer, O’Hara and Paperman (1996) model

is

L(θ |B,S)= (1−α)e−2ε εB+S

B!S!
+αδe−(µ+ε) (ε +µ)BεS

B!S!
+α(1−δ )e−(µ+ε) εB(ε +µ)S

B!S!
.

where θ = (α,δ ,µ,ε), and α is the probability that the information event occurs,

δ is the probability that the event is a bad news, µ is the Poisson parameter accord-

ing to which informed traders arrive at the market, and ε is the Poisson parameter

according to which noise traders arrive at the market. B and S are the number of

buys and sells for a given day. We can estimate these parameters year-by-year by

maximizing the likelihood.
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