Online Supplement to 'Efficient Simulation Resource Sharing and Allocation for Selecting the Best,'

published in IEEE Transactions on Automatic Control

Yijie Peng,* Chun-Hung Chen, Michael C. Fu and Jian-Qiang Hu

Appendix A: Proofs of Theorems 1 through 6

<u>Proof of Theorem 1</u>. The proof for Part (a) is quite straightforward, so we only give the proof for Part (b) here. Suppose N_1^* and N_2^* are optimal solution to (2) such that $N_1^* < N_2^*$. Let $N_1 = N_1^* + x$ and $N_2 = N_2^* - r'x$. We want to show that there exists some x such that (i) $N_1 \ge N_2 \ge 0$, and (ii)

$$\frac{r}{N_1} + \frac{1/r}{N_2} - \frac{2\rho}{N_1} \le \frac{r}{N_1^*} + \frac{1/r}{N_2^*} - \frac{2\rho}{N_2^*}$$

which implies that N_1 and N_2 are also optimal solution to (2).

To satisfy (i), we only need

$$\frac{N_2^* - N_1^*}{1 + r'} \le x \le \frac{N_2^*}{r'}.$$

For (ii), we have

$$-\frac{2\rho}{N_1} \le -\frac{2\rho}{N_2^*}$$

^{*}Yijie Peng (10110690016@fudan.edu.cn) and Jian-Qiang Hu (hujq@fudan.edu.cn) are with Department of Management Science, School of Management, Fudan University. Chun-Hung Chen is with Department of Systems Engineering & Operations Research, George Mason University (cchen9@gmu.edu). Michael C. Fu is with the Robert H. Smith School of Business and Institute for Systems Research, University of Maryland (mfu@umd.edu). This work was supported in part by the National Science Foundation (NSF) under Grants CMMI-0856256, EECS-0901543, by the Air Force Office of Scientific Research (AFOSR) under Grant FA9550-10-10340, by the Department of Energy under Award DE-SC0002223, by the National Institutes of Health (NIH) under Grant 1R21DK088368-01, by the National Natural Science Foundation of China under Grants 71071040, 71028001, 70832002, 71061160506, by the Shanghai Science and Technology PuJiang Funds under Grant 09PJ1401500, by the Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institution of Higher Learning, and by the National Science Council of Taiwan under Award NSC-100-2218-E-002-027-MY3. This material was also based in part on work supported by the National Science Foundation while M.C. Fu was working at the Foundation. Any opinion, finding, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation.

if $x \leq N_2^* - N_1^*$ (note that $\rho > 0$), and

$$\frac{r}{N_1} + \frac{1/r}{N_2} \le \frac{r}{N_1^*} + \frac{1/r}{N_2^*}$$

if

$$x \le \frac{rN_2^* - \sqrt{r'}N_1^*}{\sqrt{r'} + r'r}.$$

It is also easy to verify that if $\sqrt{r'} \leq r$, then

$$\frac{N_2^* - N_1^*}{1 + r'} \le \frac{rN_2^* - \sqrt{r'}N_1^*}{\sqrt{r'} + r'r}.$$

Putting the above together, we conclude that (i) and (ii) hold when

$$\frac{N_2^* - N_1^*}{1 + r'} \le x \le \min(N_2^* - N_1^*, \frac{rN_2^* - \sqrt{r'}N_1^*}{\sqrt{r'} + r'r}).$$

This concludes the proof.

<u>Proof of Theorem 2</u>. Denote

$$\begin{split} \Upsilon^* &= \max \lambda_i / \alpha_i, \\ \Omega_1 &= \{i \in \Omega | \lambda_i / \alpha_i = \Upsilon^*\}, \\ \Omega_2 &= \{i \in \Omega_1 | N_1^* < N_i^*\}, \\ \Omega_3 &= \{i \in \Omega_1 | N_1^* \ge N_i^*\}. \end{split}$$

Suppose the result does not hold, then $\Omega \setminus \Omega_1$ is not empty. Let

$$N'(\varepsilon) = N^* + \varepsilon,$$

$$N'_i(\varepsilon) = \begin{cases} N_1^* + \varepsilon & i = 1, \\ N_i^* & i \in \Omega_2, \\ N_i^* + \varepsilon & i \in \Omega_3, \\ N_i^* - C_0 \varepsilon & i \in \Omega \setminus \Omega_1 \end{cases}$$

where $C_0 = (\sum_{i \in \Omega_3} b_i + b_1 + b_0) / (\sum_{i \in \Omega \setminus \Omega_1} b_i), 0 < \varepsilon < \delta = \max\{\min_{i \in \Omega_2} (N_i - N_1), \min_{i \in \Omega_3} (N_i / C_0)\}.$ Note that we still have $\sum_i b_i N'_i(\varepsilon) = T.$

,

For $i \in \Omega_2$, we have

$$\left(\frac{\sigma_i^2 - 2C_{1i}}{N_i} + \frac{\sigma_1^2}{N_1 + \varepsilon}\right) - \left(\frac{\sigma_i^2 - 2C_{1i}}{N_i} + \frac{\sigma_1^2}{N_1}\right) = -\frac{\sigma_1^2}{N_1(N_1 + \varepsilon)}\varepsilon < 0,$$

and for $i \in \Omega_3$, we have

$$\left(\frac{\sigma_1^2 - 2C_{1i}}{N_1 + \varepsilon} + \frac{\sigma_i^2}{N_i + \varepsilon}\right) - \left(\frac{\sigma_1^2 - 2C_{1i}}{N_1} + \frac{\sigma_i^2}{N_i}\right)$$
$$= -\left[\frac{\sigma_1^2 - 2C_{1i}}{N_1(N_1 + \varepsilon)} + \frac{\sigma_i^2}{N_i(N_i + \varepsilon)}\right]\varepsilon \le -\frac{\sigma_1^2 + \sigma_i^2 - 2C_{1i}}{N_1(N_1 + \varepsilon)} < 0.$$

Denote

$$\Upsilon_{1}^{'}(\varepsilon) = \max_{i \in \Omega_{2} \bigcup \Omega_{3}} \{\lambda_{i} / \alpha_{i} | \sum_{i} b_{i} N_{i}^{'}(\varepsilon) = T \}$$

$$\Upsilon_{2}^{'}(\varepsilon) = \max_{i \in \Omega \setminus \Omega_{1}} \{\lambda_{i} / \alpha_{i} | \sum_{i} b_{i} N_{i}^{'}(\varepsilon) = T \},$$

then $\Upsilon'_1(\varepsilon) < \Upsilon^*$, for $\varepsilon < \delta$. In addition, because $\Upsilon'_2(0) < \Upsilon^*$ and it is an continuous function of ε , we can take ε small enough such that $\Upsilon'_2(\varepsilon) < \Upsilon^*$. Therefore, $\{N'_i(\varepsilon), i = 1, \ldots, k\}$ is a better solution than $\{N^*_i, i = 1, \ldots, k\}$, which is contradictory to the fact that $\{N^*_i, i = 1, \ldots, k\}$ is the optimal solution. This completes the proof.

<u>Proof of Theorem 3</u>. For $N_1^* \ge N_i^*$, we have

$$\frac{\sigma_1^2 - 2C_{1i}}{N_1^*} + \frac{\sigma_i^2}{N_i^*} = \Upsilon^* \alpha_i,$$

which leads to

$$N_i^* = \frac{\sigma_i^2}{M\alpha_i - \sigma_1^2 + 2C_{1i}} N_1^* \quad \Rightarrow \quad \frac{\sigma_i^2}{M\alpha_i - \sigma_1^2 + 2C_{1i}} \le 1 \quad \Rightarrow \quad A_i \le M_i$$

For $N_1^* \leq N_i^*$, we have

$$\frac{\sigma_1^2}{N_1^*} + \frac{\sigma_i^2 - 2C_{1i}}{N_i^*} = \Upsilon^* \alpha_i,$$

which leads to

$$N_{i}^{*} = \frac{\sigma_{i}^{2} - 2C_{1i}}{M\alpha_{i} - \sigma_{1}^{2}} N_{1}^{*} \quad \Rightarrow \quad \frac{\sigma_{i}^{2} - 2C_{1i}}{M\alpha_{i} - \sigma_{1}^{2}} \ge 1 \quad \Rightarrow \quad A_{i} \ge M.$$

The reverse of the above also holds. In other words,

$$\begin{array}{lll} A_i \geq M & \Leftrightarrow & N_1^* \leq N_i^* \\ A_i \leq M & \Leftrightarrow & N_1^* \geq N_i^*. \end{array}$$

In the following, we prove $2\rho_{1i} \geq \sigma_i/\sigma_1 \Rightarrow N_i^* \leq N_1^*$. We denote $I' = \{i \in I | N_i^* > N_1^*\}, J' = \{i \in J | N_i^* > N_1^*\}, \Omega' = \{i \in \Omega | N_i^* \leq N_1^*\}$. If the result does not hold, then J' is not empty, and let

$$\begin{array}{lll} N^{'}(\varepsilon) &=& N^{*}+\varepsilon, \\ N^{'}_{i}(\varepsilon) &=& \left\{ \begin{array}{ll} N^{*}_{1}+\varepsilon & i=1, \\ N^{*}_{i} & i\in I^{'}, \\ N^{*}_{i}+\varepsilon & i\in \Omega^{'}, \\ N^{*}_{i}-C_{3}\varepsilon & i\in J^{'}, \end{array} \right. \end{array}$$

where $C_3 = (\sum_{i \in \Omega'} b_i + b_1 + b_0) / (\sum_{i \in J'} b_i), 0 < \varepsilon < \delta = \max \left\{ \min_{i \in I'} (N_i - N_1), \min_{i \in J'} \frac{N_i - N_1}{1 + C_3} \right\}$. We still have $\sum_i b_i N'_i(\varepsilon) = T$. For $i \in I'$,

$$\left(\frac{\sigma_i^2 - 2C_{1i}}{N_i^*} + \frac{\sigma_1^2}{N_1^* + \varepsilon}\right) - \left(\frac{\sigma_i^2 - 2C_{1i}}{N_i^*} + \frac{\sigma_1^2}{N_1^*}\right) = -\frac{\sigma_1^2}{N_1^*(N_1^* + \varepsilon)}\varepsilon < 0.$$

For $i \in \Omega'$,

$$\left(\frac{\sigma_i^2 - 2C_{1i}}{N_i^*} + \frac{\sigma_1^2}{N_1^* + \varepsilon} \right) - \left(\frac{\sigma_i^2 - 2C_{1i}}{N_i^*} + \frac{\sigma_1^2}{N_1^*} \right)$$

$$= - \left[\frac{\sigma_1^2 - 2C_{1i}}{N_1^* (N_1^* + \varepsilon)} + \frac{\sigma_i^2}{N_i^* (N_i^* + \varepsilon)} \right] \varepsilon \le -\frac{\sigma_1^2 + \sigma_i^2 - 2C_{1i}}{N_1^* (N_1^* + \varepsilon)} < 0.$$

For $i \in J'$,

$$\left(\frac{\sigma_i^2 - 2C_{1i}}{N_i^*} + \frac{\sigma_1^2}{N_1^* + \varepsilon} \right) - \left(\frac{\sigma_i^2 - 2C_{1i}}{N_i^*} + \frac{\sigma_1^2}{N_1^*} \right)$$
$$= - \left[\frac{(2C_{1i} - \sigma_i^2)C_3}{N_i^*(N_i^* - C_3\varepsilon)} + \frac{\sigma_1^2}{N_1^*(N_1^* + \varepsilon)} \right] \varepsilon < 0.$$

Therefore, $\{N'_i(\varepsilon), i = 1, ..., k\}$ is a better solution to (OP_3) than $\{N^*_i, i = 1, ..., k\}$, which contradicts to the fact that $\{N^*_i, i = 1, ..., k\}$ is the optimal solution. This completes the proof.

Remark. Note that Theorem 3 implies that $2\rho_{1i} \ge \sigma_i/\sigma_1 \Rightarrow A_i \le M$, which also follows by applying $N_i \le N_1$ to (OP₃).

<u>Proof of Theorem 4</u>. Let Υ^*, N_i^* denote the optimal solution. From Theorem 3, for $i \in I$, we have

$$\Upsilon^* \alpha_i = \frac{\sigma_1^2}{N_1^*} + \frac{\sigma_i^2}{N_i^*} - \frac{2C_{1i}}{\max(N_1^*, N_i^*)} \ge \frac{\sigma_1^2}{N_1^*} + \frac{\sigma_i^2 - 2C_{1i}}{\max(N_1^*, N_i^*)} > \frac{\sigma_1^2}{N_1^*},$$

hence, we have $M > \sigma_1^2/\alpha_i$, which further leads to $M \ge A_0$. Denote $x = \Upsilon N_1$. Under (4), we only need to consider $x \ge A_0$ and

$$N_i = \begin{cases} \frac{\sigma_i^2}{x\alpha_i - \sigma_1^2 + 2C_{1i}} N_1 \le N_1 & \text{if } A_i \le x, \\ \frac{\sigma_i^2 - 2C_{1i}}{x\alpha_i - \sigma_1^2} N_1 \ge N_1 & \text{otherwise.} \end{cases}$$

Substituting (7) and (15) into (5), we have

$$\left[(b_1 + b_0 \mathbf{1}_{K(x)}(1)) + \sum_{i \in J \cup I \setminus I(M)} \frac{b_i \sigma_i^2}{\alpha_i M - \sigma_1^2 + 2C_{1i}} + \sum_{i \in I(M)} \frac{(b_i + b_0 \mathbf{1}_{K(x)}(i))(\sigma_i^2 - 2C_{1i})}{\alpha_i M - \sigma_1^2} \right] N_1^* = T,$$
(15)

where

$$j \in K(M) = \{i | N_i(M) = \max\{N_m(M), m = 1, \dots, k\}\}$$

and

$$\left[(b_1 + b_0 \mathbf{1}_{K(x)}(1)) + \sum_{i \in J \cup I \setminus I(x)} \frac{b_i \sigma_i^2}{\alpha_i x - \sigma_1^2 + 2C_{1i}} + \sum_{i \in I(x)} \frac{(b_i + b_0 \mathbf{1}_{K(x)}(i))(\sigma_i^2 - 2C_{1i})}{\alpha_i x - \sigma_1^2} \right] N_1 = T,$$
(16)

where

$$j \in K(x) = \{i | N_i(x) = \max\{N_m(x), m = 1, \dots, k\}\}.$$

In addition, $\forall j \in K(x)$, h(x) is constant (so it is well defined). (15) and (16) are equivalent to

$$\frac{h(M)}{T} = \frac{M}{N_1^*} = \Upsilon^* \text{ and } \frac{h(x)}{T} = \frac{x}{N_1} = \Upsilon,$$

respectively. Therefore,

$$\frac{h(M)}{T} = \Upsilon^* \le \Upsilon = \frac{h(x)}{T}.$$

This completes the proof.

<u>Proof of Theorem 5</u>. Let

$$d'_{i} = \begin{cases} b_{i}(j_{n}^{m})\sigma_{i}^{2}(\sigma_{1}^{2} - 2C_{1i})/\alpha_{i}^{2}, & i \in \Omega \setminus I_{n}, \\ b_{i}(j_{n}^{m})\sigma_{1}^{2}(\sigma_{i}^{2} - 2C_{1i})/\alpha_{i}^{2}, & i \in I_{n}; \end{cases}$$
$$d_{i} = \begin{cases} (\sigma_{1}^{2} - 2C_{1i})/\alpha_{i}, & i \in \Omega \setminus I_{n}, \\ \sigma_{1}^{2}/\alpha_{i}, & i \in I_{n}; \end{cases}$$
$$[h_{n}^{j_{n}^{m}}(x)]'x^{2} = b_{1}(j_{n}^{m})x^{2} - \sum_{i=2}^{k} d'_{i} - \frac{2d'_{i}d_{i}(x - d_{i}/2)}{(x - d_{i})^{2}}.$$

Differentiating $[h_n^{j_n^m}(x)]'x^2$, we obtain

$$\{[h_n^{j_n^m}(x)]'x^2\}' = 2b_1(j_n^m)x + \sum_{i=2}^k 2d'_i d_i \frac{x}{(x-d_i)^3}$$

In addition, for $i \in I_n$, by the definition of A_0 , we have $A_{(n)}^{(m)} > A_0 \ge d_i$, and for $i \in \Omega \setminus I_n$, by the definition of A_i . we have $A_{(n)}^{(m)} \ge A_i > d_i$. For all $i \in \Omega$, we have $x > d_i$, $x \in [A_{(n)}^{(m)}, A_{(n)}^{(m+1)}]$, and $\{[h_n^{j_n^m}(x)]'x^2\}' > 0$. Therefore, $[h_n^{j_n^m}(x)]'x^2 = 0$ has at most one solution in $x \in [A_{(n)}^{(m)}, A_{(n)}^{(m+1)}]$. This completes the proof.

<u>Proof of Theorem 6</u>. If $x > \max_{i \in \Omega} \{A_i + C(\sigma_1^2 \vee |\sigma_1^2 - 2C_{1i}|)/4\alpha_i\}$, for any $i \in \Omega$, we have both

$$\alpha_i x - \sigma_1^2 + 2C_{1i} > \sigma_i^2 + C|\sigma_1^2 - 2C_{1i}|/4 \ge \sqrt{C\sigma_i^2}|\sigma_1^2 - 2C_{1i}|,$$

and

$$\alpha_i x - \sigma_1^2 > \sigma_i^2 - 2C_{1i} + C\sigma_1^2/4 \ge \sqrt{C\sigma_1^2(\sigma_i^2 - 2C_{1i})}.$$

Then, for any $i \in \Omega \setminus K(x)$, we have

$$\left|\frac{b_i \sigma_i^2 (\sigma_1^2 - 2C_{1i})}{(\alpha_i x - \sigma_1^2 + 2C_{1i})^2}\right| < \frac{b_1 b_i}{\sum_{i \in \Omega} b_i + b_0}$$

and

$$\frac{b_i \sigma_1^2 (\sigma_i^2 - 2C_{1i})}{(\alpha_i x - \sigma_1^2)^2} \bigg| < \frac{b_1 b_i}{\sum_{i \in \Omega} b_i + b_0}$$

For $i_0 \in K(x)$, we have

$$\left|\frac{\sigma_1^2(\sigma_{i_0}^2 - 2C_{1i_0})(b_{i_0} + b_0 \mathbf{1}_{K(x)}(i_0))}{(\alpha_{i_0}x - \sigma_1^2)^2}\right| < \frac{b_1(b_0 + b_{i_0})}{\sum_{i \in \Omega} b_{i_0} + b_0}.$$

Therefore

$$\begin{split} h'(x) > b_1 - \left| \frac{\sigma_1^2 (\sigma_{i_0}^2 - 2C_{1i_0})(b_0 + b_{i_0})}{(\alpha_i x - \sigma_1^2)^2} \right| - \left| \sum_{i \in \Omega \setminus I(x)} \frac{b_i \sigma_i^2 (\sigma_1^2 - 2C_{1i})}{(\alpha_i x - \sigma_1^2 + 2C_{1i})^2} \right| \\ - \left| \sum_{i \in I(x) \setminus \{i_0\}} \frac{b_i \sigma_1^2 (\sigma_i^2 - 2C_{1i})}{(\alpha_i x - \sigma_1^2)^2} \right| \\ > b_1 - \frac{b_1 (b_0 + b_{i_0})}{\sum_{i \in \Omega} b_i + b_0} - \sum_{i \in \Omega \setminus I(x)} \frac{b_1 b_i}{\sum_{i \in \Omega} b_i + b_0} - \sum_{i \in I(x) \setminus \{i_0\}} \frac{b_1 b_i}{\sum_{i \in \Omega} b_i + b_0} = 0. \end{split}$$

Appendix B: More Numerical Results

Additional tests with Example 1 ($\tilde{J}_{im} \sim N(10-i, 6^2)$, $i = 1, 2, \dots, 10$) for $n_0 = 5, 10, 15, 20, 25$. In all scenarios, GBA outperforms the other methods for the case of unequal and sharing simulation budget, in particular, when correlations are not too low, and the PCS for GBA is relatively insensitive to changes in parameters $\{b_i\}$ compared with the other methods. As can be seen in Tables 1 through 10 provided here, the OCBA algorithms work well as long as n_0 is not too small.

We also tested four cases with negative correlation in Example 1, which include Case 1: $\rho = -0.1$, Case 2: $\rho_{1,i} = -0.2$, $\rho_{i,j} = 0.2$, i, j = 2, ..., k, $i \neq j$, Case 3: $\rho_{1,i} = -0.5$, $\rho_{i,j} = 0.5$, i, j = 2, ..., k, $i \neq j$, and Case 4: $\rho_{1,i} = -0.9$, $\rho_{i,j} = 0.9$, i, j = 2, ..., k, $i \neq j$. The results shown in Tables 6 through 10 are very similar to the cases with positive correlation (see Tables 1 through 5). Although the performance of all OCBA algorithms deteriorates for negative correlation, GBA still remains the best among the four methods.

		$b_0 =$	= 0			$b_0 =$	= 1			$b_0 =$	= 2	
$\rho =$	0	0.2	0.5	0.9	0	0.2	0.5	0.9	0	0.2	0.5	0.9
					$b_i =$	= 1.5, i	i = 1,	.,10				
GBA	.711	.733	.801	.937	.688	.714	.771	.927	.660	.696	.760	.926
CBA	.716	.733	.793	.938	.680	.720	.772	.928	.658	.694	.760	.922
IBA	.702	.726	.772	.854	.677	.705	.745	.833	.662	.685	.732	.825
EBA	.703	.745	.816	.985	.702	.737	.809	.983	.699	.728	.796	.976
				b_{2}	2i-1 = 2i	2, b_{2i} =	= 1, i	= 1,,	5			
GBA	.721	.741	.795	.940	.690	.715	.785	.925	.666	.702	.757	.921
CBA	.702	.726	.781	.919	.679	.697	.760	.882	.648	.686	.737	.864
IBA	.696	.723	.753	.848	.673	.693	.730	.810	.646	.676	.719	.804
EBA	.707	.735	.779	.862	.685	.709	.761	.841	.678	.693	.743	.826
				b_{2}	$_{2i-1} =$	$1, b_{2i} =$	= 2, i	= 1,,	5			
GBA	.707	.737	.800	.941	.688	.714	.777	.933	.654	.698	.765	.924
CBA	.725	.756	.796	.899	.696	.716	.766	.878	.662	.696	.749	.855
IBA	.728	.742	.772	.840	.701	.713	.751	.818	.665	.691	.724	.785
EBA	.724	.753	.789	.857	.710	.735	.766	.842	.693	.706	.752	.829
					$b_i \sim U$	U(1,2)	, i = 1	,, 10				
GBA	.673	.703	.756	.923	.690	.722	.780	.936	.670	.695	.759	.927
CBA	.658	.689	.747	.896	.675	.710	.769	.923	.659	.686	.749	.905
IBA	.661	.679	.727	.813	.677	.700	.743	.839	.660	.679	.723	.820
EBA	.687	.717	.770	.892	.703	.729	.791	.900	.684	.724	.768	.892

Table 1: Estimated PCS with $n_0 = 5$ for Example 1

		$b_0 =$	= 0			$b_0 =$	= 1			$b_0 =$	= 2	
$\rho =$	0	0.2	0.5	0.9	0	0.2	0.5	0.9	0	0.2	0.5	0.9
					$b_i =$	= 1.5, i	= 1,	.,10				
GBA	.778	.811	.868	.974	.756	.777	.848	.969	.730	.766	.828	.962
CBA	.773	.812	.866	.973	.759	.782	.844	.965	.723	.761	.828	.965
IBA	.775	.799	.853	.914	.755	.770	.828	.909	.728	.757	.809	.896
EBA	.704	.748	.817	.984	.701	.733	.811	.983	.697	.727	.799	.976
				b_2	2i-1 = 2i	2, b_{2i} =	= 1, i	= 1,,	5			
GBA	.783	.818	.864	.974	.748	.781	.837	.964	.731	.767	.826	.963
CBA	.760	.806	.846	.940	.735	.764	.822	.910	.711	.753	.799	.895
IBA	.769	.802	.839	.901	.741	.767	.807	.874	.712	.744	.787	.860
EBA	.705	.729	.781	.854	.691	.716	.763	.842	.671	.702	.743	.838
				b_{2}	$_{2i-1} =$	$1, b_{2i} =$	= 2, i	= 1,,	5			
GBA	.784	.810	.875	.970	.746	.782	.847	.970	.733	.760	.827	.963
CBA	.797	.807	.857	.932	.751	.776	.823	.908	.727	.754	.800	.882
IBA	.798	.810	.850	.897	.752	.778	.816	.873	.723	.743	.788	.846
EBA	.720	.749	.784	.848	.696	.731	.777	.847	.683	.718	.760	.829
					$b_i \sim U$	U(1,2)	i = 1	,, 10				
GBA	.787	.816	.870	.971	.752	.782	.848	.968	.738	.773	.839	.965
CBA	.784	.807	.865	.961	.749	.774	.841	.949	.729	.757	.822	.934
IBA	.780	.808	.851	.912	.746	.777	.818	.894	.736	.754	.799	.880
EBA	.709	.740	.801	.908	.702	.732	.781	.899	.692	.706	.777	.890

Table 2: Estimated PCS with $n_0 = 10$ for Example 1

		$b_0 =$	= 0			$b_0 =$	= 1			$b_0 =$	= 2	
$\rho =$	0	0.2	0.5	0.9	0	0.2	0.5	0.9	0	0.2	0.5	0.9
					$b_i =$	= 1.5, i	i = 1,	.,10				
GBA	.801	.831	.896	.982	.776	.799	.870	.982	.753	.791	.852	.980
CBA	.798	.834	.894	.982	.773	.803	.866	.982	.752	.786	.854	.979
IBA	.792	.830	.879	.939	.777	.795	.853	.939	.743	.781	.834	.934
EBA	.709	.748	.822	.982	.693	.738	.811	.982	.685	.727	.797	.975
				b_{2}	2i-1 = 2i	$2, b_{2i} =$	= 1, i	= 1,,	5			
GBA	.797	.835	.890	.982	.772	.812	.868	.981	.748	.786	.848	.978
CBA	.796	.827	.879	.944	.767	.800	.839	.917	.743	.765	.819	.907
IBA	.792	.827	.869	.923	.760	.793	.841	.899	.742	.766	.818	.892
EBA	.704	.732	.778	.857	.684	.713	.766	.841	.667	.695	.746	.831
				b_{2}	$_{2i-1} =$	$1, b_{2i} =$	= 2, i	= 1,,	5			
GBA	.806	.834	.895	.985	.764	.801	.868	.979	.750	.802	.852	.980
CBA	.809	.837	.877	.939	.764	.796	.846	.917	.743	.774	.815	.906
IBA	.804	.839	.872	.923	.765	.794	.839	.893	.743	.771	.808	.878
EBA	.727	.744	.795	.856	.703	.731	.777	.846	.684	.712	.758	.831
					$b_i \sim U$	U(1,2)	, i = 1	,, 10				
GBA	.813	.835	.895	.984	.778	.813	.875	.981	.757	.785	.857	.983
CBA	.808	.832	.886	.969	.775	.805	.860	.958	.752	.777	.838	.946
IBA	.813	.834	.881	.940	.780	.803	.851	.925	.749	.771	.833	.917
EBA	.709	.739	.794	.912	.694	.727	.790	.898	.679	.712	.774	.891

Table 3: Estimated PCS with $n_0 = 15$ for Example 1

		$b_0 =$	= 0			$b_0 =$	= 1			$b_0 =$	= 2	
$\rho =$	0	0.2	0.5	0.9	0	0.2	$\theta.5$	0.9	0	0.2	0.5	0.9
					$b_i =$	= 1.5, <i>i</i>	i = 1, .	.,10				
GBA	.797	.837	.898	.989	.778	.808	.870	.988	.753	.785	.856	.985
CBA	.798	.840	.894	.991	.774	.809	.876	.989	.747	.784	.853	.986
IBA	.802	.839	.885	.959	.783	.804	.863	.960	.750	.788	.850	.962
EBA	.702	.746	.819	.984	.700	.741	.810	.979	.690	.726	.799	.977
				b_{2}	2i-1 = 2i	2, b_{2i} =	= 1, i	= 1,,	5			
GBA	.802	.836	.893	.989	.767	.805	.878	.989	.757	.780	.851	.984
CBA	.798	.828	.881	.944	.765	.798	.845	.925	.744	.771	.824	.909
IBA	.799	.826	.873	.938	.768	.801	.842	.916	.746	.768	.821	.903
EBA	.701	.728	.777	.859	.684	.716	.768	.843	.669	.700	.738	.830
				b_{2}	$_{2i-1} =$	$1, b_{2i} =$	= 2, i	= 1,,	5			
GBA	.806	.829	.897	.991	.775	.806	.871	.990	.746	.787	.855	.986
CBA	.805	.826	.877	.941	.769	.799	.840	.920	.743	.770	.821	.904
IBA	.804	.831	.877	.931	.768	.796	.843	.910	.735	.770	.813	.897
EBA	.712	.745	.784	.858	.705	.729	.772	.841	.690	.716	.765	.833
					$b_i \sim U$	U(1,2)	, i = 1	,, 10				
GBA	.816	.846	.902	.990	.776	.816	.881	.988	.751	.788	.850	.988
CBA	.813	.843	.896	.976	.769	.802	.869	.961	.750	.788	.839	.948
IBA	.811	.843	.894	.951	.778	.806	.865	.943	.753	.784	.839	.933
EBA	.706	.736	.806	.913	.706	.727	.787	.898	.684	.713	.783	.894

Table 4: Estimated PCS with $n_0 = 20$ for Example 1

		$b_0 =$	= 0			$b_0 =$	= 1			$b_0 =$	= 2	
$\rho =$	0	0.2	0.5	0.9	0	0.2	0.5	0.9	0	0.2	0.5	0.9
					$b_i =$	= 1.5, i	i = 1,	.,10				
GBA	.792	.823	.889	.994	.754	.790	.862	.992	.735	.766	.835	.987
CBA	.784	.826	.887	.993	.757	.789	.859	.991	.725	.762	.831	.986
IBA	.787	.822	.884	.978	.756	.792	.851	.976	.727	.761	.830	.980
EBA	.703	.745	.819	.984	.702	.735	.806	.983	.691	.727	.803	.978
				b_{2}	2i-1 = 2i	$2, b_{2i} =$	= 1, i	= 1,,	5			
GBA	.798	.821	.890	.993	.759	.792	.858	.993	.721	.764	.837	.987
CBA	.790	.823	.873	.942	.760	.784	.842	.937	.727	.761	.816	.925
IBA	.795	.819	.872	.943	.756	.785	.836	.934	.729	.767	.815	.932
EBA	.702	.725	.782	.867	.681	.710	.747	.839	.662	.695	.731	.835
				b_{2}	$_{2i-1} =$	$1, b_{2i} =$	= 2, i	= 1,,	5			
GBA	.792	.823	.889	.992	.760	.792	.863	.990	.732	.770	.833	.988
CBA	.794	.821	.869	.938	.755	.786	.837	.922	.719	.761	.806	.918
IBA	.797	.827	.873	.932	.757	.776	.838	.923	.719	.761	.808	.919
EBA	.733	.751	.797	.854	.704	.723	.777	.842	.692	.714	.760	.826
					$b_i \sim U$	U(1,2)	, i = 1	,, 10				
GBA	.802	.834	.894	.994	.768	.799	.869	.992	.733	.773	.848	.988
CBA	.805	.836	.882	.972	.760	.795	.856	.965	.733	.767	.827	.954
IBA	.802	.835	.884	.961	.762	.798	.860	.955	.734	.760	.829	.952
EBA	.714	.747	.801	.911	.695	.734	.778	.894	.688	.723	.776	.887

Table 5: Estimated PCS with $n_0 = 25$ for Example 1

We define four cases for negative correlation.

Case 1: $\rho = -0.1$; Case 2: $\rho_{1,i} = -0.2$, $\rho_{i,j} = 0.2$, $i, j = 2, ..., k, i \neq j$; Case 3: $\rho_{1,i} = -0.5$, $\rho_{i,j} = 0.5$, $i, j = 2, ..., k, i \neq j$; Case 4: $\rho_{1,i} = -0.9$, $\rho_{i,j} = 0.9$, $i, j = 2, ..., k, i \neq j$.

Table 6: Estimated PCS with $n_0 = 5$ for Example 1

		$b_0 =$	= 0			$b_0 =$	= 1			b_0 :	= 2	
Case	1	2	3	4	1	2	3	4	1	2	3	4
					$b_i =$	= 1.5, <i>i</i>	i = 1,	.,10				
GBA	.703	.717	.729	.773	.673	.694	.710	.742	.655	.677	.684	.729
CBA	.703	.712	.728	.766	.670	.685	.709	.749	.652	.671	.683	.723
IBA	.707	.714	.710	.697	.679	.677	.681	.676	.661	.665	.658	.657
EBA	.695	.726	.731	.757	.694	.711	.725	.739	.683	.703	.717	.730
				b_{2}	$_{2i-1} =$	2, b_{2i} =	= 1, i	= 1,,	5			
GBA	.704	.718	.728	.764	.675	.691	.705	.742	.661	.678	.683	.720
CBA	.690	.712	.721	.763	.657	.673	.699	.733	.638	.657	.674	.704
IBA	.691	.694	.701	.695	.661	.669	.671	.660	.646	.658	.655	.647
EBA	.692	.703	.716	.727	.674	.695	.711	.726	.659	.673	.695	.709
				b_{2}	$_{2i-1} =$	$1, b_{2i} =$	= 2, i	= 1,,	5			
GBA	.705	.715	.733	.766	.675	.695	.709	.744	.655	.670	.693	.726
CBA	.719	.734	.738	.774	.687	.704	.715	.742	.656	.677	.691	.721
IBA	.723	.713	.718	.708	.693	.696	.686	.680	.658	.678	.668	.658
EBA	.709	.735	.743	.750	.695	.711	.727	.730	.673	.701	.713	.719
					$b_i \sim l$	U(1,2)	, i = 1	,, 10				
GBA	.709	.718	.740	.776	.670	.699	.719	.745	.659	.678	.689	.731
CBA	.703	.720	.735	.781	.665	.684	.708	.747	.644	.669	.682	.719
IBA	.705	.702	.708	.708	.667	.683	.676	.668	.651	.664	.650	.657
EBA	.702	.722	.733	.754	.692	.707	.713	.733	.675	.693	.707	.728

		$b_0 =$	= 0			$b_0 =$	= 1			$b_0 =$	= 2	
Case	1	2	3	4	1	2	3	4	1	2	3	4
					$b_i =$	= 1.5, <i>i</i>	i = 1,	.,10				
GBA	.759	.784	.792	.811	.739	.760	.759	.787	.724	.741	.737	.770
CBA	.760	.785	.792	.810	.738	.754	.762	.788	.714	.732	.739	.760
IBA	.757	.772	.773	.759	.736	.746	.742	.730	.720	.731	.719	.714
EBA	.689	.720	.736	.743	.693	.715	.722	.744	.671	.706	.718	.734
				b_{2}	2i-1 = 1	$2, b_{2i} =$	= 1, i	= 1,,	5			
GBA	.771	.783	.786	.808	.745	.748	.764	.786	.724	.747	.736	.758
CBA	.763	.778	.780	.807	.732	.738	.752	.775	.706	.733	.730	.746
IBA	.760	.767	.759	.748	.738	.730	.730	.717	.709	.725	.715	.699
EBA	.688	.712	.720	.742	.672	.693	.698	.709	.662	.677	.691	.714
				b_{2}	$_{2i-1} =$	$1, b_{2i} =$	= 2, i	= 1,,	5			
GBA	.757	.778	.791	.819	.740	.755	.757	.788	.719	.735	.740	.774
CBA	.773	.791	.795	.826	.744	.760	.755	.786	.721	.736	.746	.767
IBA	.775	.783	.775	.767	.743	.749	.740	.735	.725	.725	.725	.730
EBA	.703	.729	.734	.745	.688	.712	.713	.731	.673	.689	.707	.713
					$b_i \sim U$	U(1,2)	, i = 1	,, 10				
GBA	.772	.788	.790	.823	.751	.761	.760	.792	.712	.743	.747	.779
CBA	.772	.783	.793	.820	.745	.748	.761	.786	.705	.734	.744	.764
IBA	.765	.782	.773	.765	.743	.741	.730	.733	.702	.726	.728	.714
EBA	.707	.723	.735	.750	.690	.701	.719	.736	.677	.687	.701	.728

Table 7: Estimated PCS with $n_0 = 10$ for Example 1

		$b_0 =$	= 0			$b_0 =$	= 1			$b_0 =$	= 2	
Case	1	2	3	4	1	2	3	4	1	2	3	4
					$b_i =$	= 1.5, <i>i</i>	= 1,	.,10				
GBA	.789	.803	.808	.827	.753	.775	.782	.799	.739	.754	.761	.779
CBA	.791	.801	.811	.823	.757	.776	.781	.797	.728	.753	.763	.772
IBA	.791	.796	.783	.783	.766	.768	.766	.753	.731	.746	.746	.741
EBA	.703	.718	.734	.748	.690	.717	.717	.743	.673	.693	.713	.735
				b_{2}	2i-1 = 2i	2, b_{2i} =	= 1, i	= 1,,	5			
GBA	.793	.796	.802	.822	.755	.776	.784	.788	.735	.748	.768	.769
CBA	.778	.796	.810	.817	.746	.768	.763	.783	.726	.748	.755	.767
IBA	.782	.788	.785	.773	.741	.764	.755	.739	.725	.730	.739	.733
EBA	.702	.707	.720	.730	.674	.705	.706	.714	.656	.687	.689	.712
				b_{2}	$_{2i-1} =$	$1, b_{2i} =$	= 2, i	= 1,,	5			
GBA	.790	.807	.810	.831	.763	.782	.790	.803	.735	.760	.758	.779
CBA	.797	.807	.812	.827	.759	.781	.779	.798	.731	.748	.752	.766
IBA	.797	.806	.793	.789	.762	.777	.763	.753	.733	.743	.734	.736
EBA	.712	.730	.737	.738	.683	.711	.724	.739	.672	.701	.706	.727
					$b_i \sim U$	U(1,2)	i = 1	,, 10				
GBA	.799	.808	.809	.832	.756	.779	.783	.803	.739	.756	.764	.779
CBA	.791	.804	.816	.835	.759	.779	.775	.792	.735	.747	.756	.773
IBA	.794	.799	.792	.789	.761	.771	.763	.754	.735	.748	.745	.730
EBA	.702	.718	.730	.753	.686	.709	.715	.737	.674	.699	.716	.717

Table 8: Estimated PCS with $n_0 = 15$ for Example 1

		$b_0 =$	= 0			$b_0 =$	= 1			$b_0 =$	= 2	
Case	1	2	3	4	1	2	3	4	1	2	3	4
					$b_i =$	= 1.5, i	= 1,	.,10				
GBA	.786	.807	.810	.830	.762	.780	.776	.793	.730	.755	.758	.772
CBA	.793	.812	.813	.823	.762	.772	.776	.791	.729	.753	.753	.769
IBA	.793	.802	.800	.790	.751	.774	.772	.770	.730	.752	.746	.748
EBA	.690	.731	.739	.757	.693	.715	.727	.742	.674	.702	.709	.730
				b_{2}	2i-1 = 2i	$2, b_{2i} =$	= 1, i	= 1,,	5			
GBA	.789	.807	.799	.824	.762	.777	.786	.789	.735	.756	.753	.770
CBA	.793	.805	.800	.816	.754	.774	.781	.785	.733	.746	.748	.762
IBA	.789	.802	.789	.784	.749	.768	.771	.753	.731	.744	.737	.736
EBA	.693	.703	.726	.737	.679	.694	.706	.711	.662	.684	.691	.705
				b_{2}	$_{2i-1} =$	$1, b_{2i} =$	= 2, i	= 1,,	5			
GBA	.795	.814	.817	.828	.750	.771	.784	.797	.736	.750	.760	.771
CBA	.793	.814	.807	.820	.761	.770	.782	.784	.732	.751	.753	.767
IBA	.792	.803	.808	.797	.752	.767	.763	.759	.727	.743	.743	.746
EBA	.715	.728	.737	.749	.692	.718	.718	.735	.679	.697	.713	.722
					$b_i \sim U$	U(1,2)	i = 1	,, 10				
GBA	.795	.823	.811	.834	.760	.785	.785	.796	.730	.761	.766	.774
CBA	.800	.815	.815	.836	.766	.779	.785	.796	.730	.760	.762	.779
IBA	.801	.811	.801	.803	.761	.783	.772	.774	.742	.756	.749	.745
EBA	.699	.728	.725	.743	.692	.713	.709	.733	.673	.692	.703	.731

Table 9: Estimated PCS with $n_0 = 20$ for Example 1

		$b_0 =$	= 0			$b_0 =$	= 1			$b_0 =$	= 2	
Case	1	2	3	4	1	2	3	4	1	2	3	4
					$b_i =$	= 1.5, <i>i</i>	i = 1,	.,10				
GBA	.782	.796	.801	.820	.750	.760	.770	.779	.719	.740	.750	.758
CBA	.774	.786	.804	.813	.740	.759	.770	.781	.720	.741	.744	.760
IBA	.781	.786	.789	.786	.746	.763	.763	.762	.719	.739	.743	.749
EBA	.690	.726	.732	.745	.684	.704	.726	.739	.682	.698	.715	.727
				b_{2}	$_{2i-1} = 1$	2, b_{2i} =	= 1, i	= 1,,	5			
GBA	.780	.800	.806	.807	.737	.759	.764	.774	.715	.739	.741	.753
CBA	.781	.802	.795	.801	.741	.756	.766	.777	.721	.737	.739	.748
IBA	.775	.796	.790	.791	.734	.754	.750	.761	.715	.740	.731	.739
EBA	.688	.718	.721	.734	.675	.693	.702	.716	.661	.681	.691	.703
				b_{2}	$_{2i-1} =$	$1, b_{2i} =$	= 2, i	= 1,,	5			
GBA	.768	.793	.802	.813	.739	.754	.771	.786	.718	.728	.746	.763
CBA	.779	.798	.798	.807	.734	.758	.761	.785	.713	.725	.734	.757
IBA	.788	.795	.793	.784	.733	.762	.759	.760	.711	.721	.741	.742
EBA	.715	.731	.736	.744	.693	.708	.722	.727	.682	.697	.707	.727
					$b_i \sim U$	U(1,2)	, i = 1	,, 10				
GBA	.789	.801	.803	.817	.752	.756	.773	.783	.711	.744	.755	.763
CBA	.787	.805	.807	.816	.750	.763	.772	.784	.718	.742	.749	.761
IBA	.788	.800	.798	.800	.750	.763	.762	.770	.715	.737	.746	.748
EBA	.704	.728	.735	.754	.686	.711	.714	.732	.680	.692	.712	.731

Table 10: Estimated PCS with $n_0 = 25$ for Example 1