Online Supplement to
 'Efficient Simulation Resource Sharing and Allocation for Selecting the Best,' published in IEEE Transactions on Automatic Control

Yijie Peng,* Chun-Hung Chen, Michael C. Fu and Jian-Qiang Hu

Appendix A: Proofs of Theorems 1 through 6

Proof of Theorem 1. The proof for Part (a) is quite straightforward, so we only give the proof for Part (b) here. Suppose N_{1}^{*} and N_{2}^{*} are optimal solution to (2) such that $N_{1}^{*}<N_{2}^{*}$. Let $N_{1}=N_{1}^{*}+x$ and $N_{2}=N_{2}^{*}-r^{\prime} x$. We want to show that there exists some x such that (i) $N_{1} \geq N_{2} \geq 0$, and (ii)

$$
\frac{r}{N_{1}}+\frac{1 / r}{N_{2}}-\frac{2 \rho}{N_{1}} \leq \frac{r}{N_{1}^{*}}+\frac{1 / r}{N_{2}^{*}}-\frac{2 \rho}{N_{2}^{*}},
$$

which implies that N_{1} and N_{2} are also optimal solution to (2).
To satisfy (i), we only need

$$
\frac{N_{2}^{*}-N_{1}^{*}}{1+r^{\prime}} \leq x \leq \frac{N_{2}^{*}}{r^{\prime}} .
$$

For (ii), we have

$$
-\frac{2 \rho}{N_{1}} \leq-\frac{2 \rho}{N_{2}^{*}}
$$

[^0]if $x \leq N_{2}^{*}-N_{1}^{*}($ note that $\rho>0)$, and
$$
\frac{r}{N_{1}}+\frac{1 / r}{N_{2}} \leq \frac{r}{N_{1}^{*}}+\frac{1 / r}{N_{2}^{*}},
$$
if
$$
x \leq \frac{r N_{2}^{*}-\sqrt{r^{\prime}} N_{1}^{*}}{\sqrt{r^{\prime}}+r^{\prime} r} .
$$

It is also easy to verify that if $\sqrt{r^{\prime}} \leq r$, then

$$
\frac{N_{2}^{*}-N_{1}^{*}}{1+r^{\prime}} \leq \frac{r N_{2}^{*}-\sqrt{r^{\prime}} N_{1}^{*}}{\sqrt{r^{\prime}}+r^{\prime} r}
$$

Putting the above together, we conclude that (i) and (ii) hold when

$$
\frac{N_{2}^{*}-N_{1}^{*}}{1+r^{\prime}} \leq x \leq \min \left(N_{2}^{*}-N_{1}^{*}, \frac{r N_{2}^{*}-\sqrt{r^{\prime}} N_{1}^{*}}{\sqrt{r^{\prime}}+r^{\prime} r}\right)
$$

This concludes the proof.

Proof of Theorem 2. Denote

$$
\begin{aligned}
\Upsilon^{*} & =\max \lambda_{i} / \alpha_{i} \\
\Omega_{1} & =\left\{i \in \Omega \mid \lambda_{i} / \alpha_{i}=\Upsilon^{*}\right\} \\
\Omega_{2} & =\left\{i \in \Omega_{1} \mid N_{1}^{*}<N_{i}^{*}\right\} \\
\Omega_{3} & =\left\{i \in \Omega_{1} \mid N_{1}^{*} \geq N_{i}^{*}\right\}
\end{aligned}
$$

Suppose the result does not hold, then $\Omega \backslash \Omega_{1}$ is not empty. Let

$$
\begin{aligned}
N^{\prime}(\varepsilon) & =N^{*}+\varepsilon, \\
N_{i}^{\prime}(\varepsilon) & = \begin{cases}N_{1}^{*}+\varepsilon & i=1, \\
N_{i}^{*} & i \in \Omega_{2} \\
N_{i}^{*}+\varepsilon & i \in \Omega_{3} \\
N_{i}^{*}-C_{0} \varepsilon & i \in \Omega \backslash \Omega_{1},\end{cases}
\end{aligned}
$$

where $C_{0}=\left(\sum_{i \in \Omega_{3}} b_{i}+b_{1}+b_{0}\right) /\left(\sum_{i \in \Omega \backslash \Omega_{1}} b_{i}\right), 0<\varepsilon<\delta=\max \left\{\min _{i \in \Omega_{2}}\left(N_{i}-N_{1}\right), \min _{i \in \Omega_{3}}\left(N_{i} / C_{0}\right)\right\}$. Note that we still have $\sum_{i} b_{i} N_{i}^{\prime}(\varepsilon)=T$.

For $i \in \Omega_{2}$, we have

$$
\left(\frac{\sigma_{i}^{2}-2 C_{1 i}}{N_{i}}+\frac{\sigma_{1}^{2}}{N_{1}+\varepsilon}\right)-\left(\frac{\sigma_{i}^{2}-2 C_{1 i}}{N_{i}}+\frac{\sigma_{1}^{2}}{N_{1}}\right)=-\frac{\sigma_{1}^{2}}{N_{1}\left(N_{1}+\varepsilon\right)} \varepsilon<0
$$

and for $i \in \Omega_{3}$, we have

$$
\begin{aligned}
& \left(\frac{\sigma_{1}^{2}-2 C_{1 i}}{N_{1}+\varepsilon}+\frac{\sigma_{i}^{2}}{N_{i}+\varepsilon}\right)-\left(\frac{\sigma_{1}^{2}-2 C_{1 i}}{N_{1}}+\frac{\sigma_{i}^{2}}{N_{i}}\right) \\
= & -\left[\frac{\sigma_{1}^{2}-2 C_{1 i}}{N_{1}\left(N_{1}+\varepsilon\right)}+\frac{\sigma_{i}^{2}}{N_{i}\left(N_{i}+\varepsilon\right)}\right] \varepsilon \leq-\frac{\sigma_{1}^{2}+\sigma_{i}^{2}-2 C_{1 i}}{N_{1}\left(N_{1}+\varepsilon\right)}<0 .
\end{aligned}
$$

Denote

$$
\begin{aligned}
& \Upsilon_{1}^{\prime}(\varepsilon)=\max _{i \in \Omega_{2} \bigcup \Omega_{3}}\left\{\lambda_{i} / \alpha_{i} \mid \sum_{i} b_{i} N_{i}^{\prime}(\varepsilon)=T\right\} \\
& \Upsilon_{2}^{\prime}(\varepsilon)=\max _{i \in \Omega \backslash \Omega_{1}}\left\{\lambda_{i} / \alpha_{i} \mid \sum_{i} b_{i} N_{i}^{\prime}(\varepsilon)=T\right\}
\end{aligned}
$$

then $\Upsilon_{1}^{\prime}(\varepsilon)<\Upsilon^{*}$, for $\varepsilon<\delta$. In addition, because $\Upsilon_{2}^{\prime}(0)<\Upsilon^{*}$ and it is an continuous function of ε, we can take ε small enough such that $\Upsilon_{2}^{\prime}(\varepsilon)<\Upsilon^{*}$. Therefore, $\left\{N_{i}^{\prime}(\varepsilon), i=1, \ldots, k\right\}$ is a better solution than $\left\{N_{i}^{*}, i=1, \ldots, k\right\}$, which is contradictory to the fact that $\left\{N_{i}^{*}, i=\right.$ $1, \ldots, k\}$ is the optimal solution. This completes the proof.

Proof of Theorem 3. For $N_{1}^{*} \geq N_{i}^{*}$, we have

$$
\frac{\sigma_{1}^{2}-2 C_{1 i}}{N_{1}^{*}}+\frac{\sigma_{i}^{2}}{N_{i}^{*}}=\Upsilon^{*} \alpha_{i}
$$

which leads to

$$
N_{i}^{*}=\frac{\sigma_{i}^{2}}{M \alpha_{i}-\sigma_{1}^{2}+2 C_{1 i}} N_{1}^{*} \Rightarrow \frac{\sigma_{i}^{2}}{M \alpha_{i}-\sigma_{1}^{2}+2 C_{1 i}} \leq 1 \quad \Rightarrow \quad A_{i} \leq M
$$

For $N_{1}^{*} \leq N_{i}^{*}$, we have

$$
\frac{\sigma_{1}^{2}}{N_{1}^{*}}+\frac{\sigma_{i}^{2}-2 C_{1 i}}{N_{i}^{*}}=\Upsilon^{*} \alpha_{i}
$$

which leads to

$$
N_{i}^{*}=\frac{\sigma_{i}^{2}-2 C_{1 i}}{M \alpha_{i}-\sigma_{1}^{2}} N_{1}^{*} \Rightarrow \frac{\sigma_{i}^{2}-2 C_{1 i}}{M \alpha_{i}-\sigma_{1}^{2}} \geq 1 \quad \Rightarrow \quad A_{i} \geq M
$$

The reverse of the above also holds. In other words,

$$
\begin{aligned}
& A_{i} \geq M \quad \Leftrightarrow \quad N_{1}^{*} \leq N_{i}^{*} \\
& A_{i} \leq M \quad \Leftrightarrow \quad N_{1}^{*} \geq N_{i}^{*} .
\end{aligned}
$$

In the following, we prove $2 \rho_{1 i} \geq \sigma_{i} / \sigma_{1} \Rightarrow N_{i}^{*} \leq N_{1}^{*}$. We denote $I^{\prime}=\left\{i \in I \mid N_{i}^{*}>\right.$ $\left.N_{1}^{*}\right\}, J^{\prime}=\left\{i \in J \mid N_{i}^{*}>N_{1}^{*}\right\}, \Omega^{\prime}=\left\{i \in \Omega \mid N_{i}^{*} \leq N_{1}^{*}\right\}$. If the result does not hold, then J^{\prime} is not empty, and let

$$
\begin{aligned}
N^{\prime}(\varepsilon) & =N^{*}+\varepsilon, \\
N_{i}^{\prime}(\varepsilon) & = \begin{cases}N_{1}^{*}+\varepsilon & i=1, \\
N_{i}^{*} & i \in I^{\prime}, \\
N_{i}^{*}+\varepsilon & i \in \Omega^{\prime} \\
N_{i}^{*}-C_{3} \varepsilon & i \in J^{\prime},\end{cases}
\end{aligned}
$$

where $C_{3}=\left(\sum_{i \in \Omega^{\prime}} b_{i}+b_{1}+b_{0}\right) /\left(\sum_{i \in J^{\prime}} b_{i}\right), 0<\varepsilon<\delta=\max \left\{\min _{i \in I^{\prime}}\left(N_{i}-N_{1}\right), \min _{i \in J^{\prime}} \frac{N_{i}-N_{1}}{1+C_{3}}\right\}$. We still have $\sum_{i} b_{i} N_{i}^{\prime}(\varepsilon)=T$.
For $i \in I^{\prime}$,

$$
\left(\frac{\sigma_{i}^{2}-2 C_{1 i}}{N_{i}^{*}}+\frac{\sigma_{1}^{2}}{N_{1}^{*}+\varepsilon}\right)-\left(\frac{\sigma_{i}^{2}-2 C_{1 i}}{N_{i}^{*}}+\frac{\sigma_{1}^{2}}{N_{1}^{*}}\right)=-\frac{\sigma_{1}^{2}}{N_{1}^{*}\left(N_{1}^{*}+\varepsilon\right)} \varepsilon<0 .
$$

For $i \in \Omega^{\prime}$,

$$
\begin{aligned}
& \left(\frac{\sigma_{i}^{2}-2 C_{1 i}}{N_{i}^{*}}+\frac{\sigma_{1}^{2}}{N_{1}^{*}+\varepsilon}\right)-\left(\frac{\sigma_{i}^{2}-2 C_{1 i}}{N_{i}^{*}}+\frac{\sigma_{1}^{2}}{N_{1}^{*}}\right) \\
= & -\left[\frac{\sigma_{1}^{2}-2 C_{1 i}}{N_{1}^{*}\left(N_{1}^{*}+\varepsilon\right)}+\frac{\sigma_{i}^{2}}{N_{i}^{*}\left(N_{i}^{*}+\varepsilon\right)}\right] \varepsilon \leq-\frac{\sigma_{1}^{2}+\sigma_{i}^{2}-2 C_{1 i}}{N_{1}^{*}\left(N_{1}^{*}+\varepsilon\right)}<0 .
\end{aligned}
$$

For $i \in J^{\prime}$,

$$
\begin{aligned}
& \left(\frac{\sigma_{i}^{2}-2 C_{1 i}}{N_{i}^{*}}+\frac{\sigma_{1}^{2}}{N_{1}^{*}+\varepsilon}\right)-\left(\frac{\sigma_{i}^{2}-2 C_{1 i}}{N_{i}^{*}}+\frac{\sigma_{1}^{2}}{N_{1}^{*}}\right) \\
= & -\left[\frac{\left(2 C_{1 i}-\sigma_{i}^{2}\right) C_{3}}{N_{i}^{*}\left(N_{i}^{*}-C_{3} \varepsilon\right)}+\frac{\sigma_{1}^{2}}{N_{1}^{*}\left(N_{1}^{*}+\varepsilon\right)}\right] \varepsilon<0 .
\end{aligned}
$$

Therefore, $\left\{N_{i}^{\prime}(\varepsilon), i=1, \ldots, k\right\}$ is a better solution to $\left(\mathrm{OP}_{3}\right)$ than $\left\{N_{i}^{*}, i=1, \ldots, k\right\}$, which contradicts to the fact that $\left\{N_{i}^{*}, i=1, \ldots, k\right\}$ is the optimal solution. This completes the proof.
Remark. Note that Theorem 3 implies that $2 \rho_{1 i} \geq \sigma_{i} / \sigma_{1} \Rightarrow A_{i} \leq M$, which also follows by applying $N_{i} \leq N_{1}$ to $\left(\mathrm{OP}_{3}\right)$.

Proof of Theorem 4. Let Υ^{*}, N_{i}^{*} denote the optimal solution. From Theorem 3, for $i \in I$, we have

$$
\Upsilon^{*} \alpha_{i}=\frac{\sigma_{1}^{2}}{N_{1}^{*}}+\frac{\sigma_{i}^{2}}{N_{i}^{*}}-\frac{2 C_{1 i}}{\max \left(N_{1}^{*}, N_{i}^{*}\right)} \geq \frac{\sigma_{1}^{2}}{N_{1}^{*}}+\frac{\sigma_{i}^{2}-2 C_{1 i}}{\max \left(N_{1}^{*}, N_{i}^{*}\right)}>\frac{\sigma_{1}^{2}}{N_{1}^{*}},
$$

hence, we have $M>\sigma_{1}^{2} / \alpha_{i}$, which further leads to $M \geq A_{0}$. Denote $x=\Upsilon N_{1}$. Under (4), we only need to consider $x \geq A_{0}$ and

$$
N_{i}= \begin{cases}\frac{\sigma_{i}^{2}}{x \alpha_{i}-\sigma_{1}^{2}+2 C_{1 i}} N_{1} \leq N_{1} & \text { if } A_{i} \leq x \\ \frac{\sigma_{i}^{2}-2 C_{1 i}}{x \alpha_{i}-\sigma_{1}^{2}} N_{1} \geq N_{1} & \text { otherwise }\end{cases}
$$

Substituting (7) and (15) into (5), we have

$$
\begin{equation*}
\left[\left(b_{1}+b_{0} \mathbf{1}_{K(x)}(1)\right)+\sum_{i \in J \cup I \backslash I(M)} \frac{b_{i} \sigma_{i}^{2}}{\alpha_{i} M-\sigma_{1}^{2}+2 C_{1 i}}+\sum_{i \in I(M)} \frac{\left(b_{i}+b_{0} \mathbf{1}_{K(x)}(i)\right)\left(\sigma_{i}^{2}-2 C_{1 i}\right)}{\alpha_{i} M-\sigma_{1}^{2}}\right] N_{1}^{*}=T, \tag{15}
\end{equation*}
$$

where

$$
j \in K(M)=\left\{i \mid N_{i}(M)=\max \left\{N_{m}(M), m=1, \ldots, k\right\}\right\}
$$

and

$$
\begin{equation*}
\left[\left(b_{1}+b_{0} \mathbf{1}_{K(x)}(1)\right)+\sum_{i \in J \cup I \backslash I(x)} \frac{b_{i} \sigma_{i}^{2}}{\alpha_{i} x-\sigma_{1}^{2}+2 C_{1 i}}+\sum_{i \in I(x)} \frac{\left(b_{i}+b_{0} \mathbf{1}_{K(x)}(i)\right)\left(\sigma_{i}^{2}-2 C_{1 i}\right)}{\alpha_{i} x-\sigma_{1}^{2}}\right] N_{1}=T, \tag{16}
\end{equation*}
$$

where

$$
j \in K(x)=\left\{i \mid N_{i}(x)=\max \left\{N_{m}(x), m=1, \ldots, k\right\}\right\} .
$$

In addition, $\forall j \in K(x), h(x)$ is constant (so it is well defined). (15) and (16) are equivalent to

$$
\frac{h(M)}{T}=\frac{M}{N_{1}^{*}}=\Upsilon^{*} \text { and } \frac{h(x)}{T}=\frac{x}{N_{1}}=\Upsilon,
$$

respectively. Therefore,

$$
\frac{h(M)}{T}=\Upsilon^{*} \leq \Upsilon=\frac{h(x)}{T}
$$

This completes the proof.

Proof of Theorem 5. Let

$$
\begin{aligned}
d_{i}^{\prime} & = \begin{cases}b_{i}\left(j_{n}^{m}\right) \sigma_{i}^{2}\left(\sigma_{1}^{2}-2 C_{1 i}\right) / \alpha_{i}^{2}, & i \in \Omega \backslash I_{n}, \\
b_{i}\left(j_{n}^{m}\right) \sigma_{1}^{2}\left(\sigma_{i}^{2}-2 C_{1 i}\right) / \alpha_{i}^{2}, & i \in I_{n} ;\end{cases} \\
d_{i} & = \begin{cases}\left(\sigma_{1}^{2}-2 C_{1 i}\right) / \alpha_{i}, & i \in \Omega \backslash I_{n}, \\
\sigma_{1}^{2} / \alpha_{i}, & i \in I_{n} ;\end{cases} \\
{\left[h_{n}^{j_{n}^{m}}(x)\right]^{\prime} x^{2} } & =b_{1}\left(j_{n}^{m}\right) x^{2}-\sum_{i=2}^{k} d_{i}^{\prime}-\frac{2 d_{i}^{\prime} d_{i}\left(x-d_{i} / 2\right)}{\left(x-d_{i}\right)^{2}} .
\end{aligned}
$$

Differentiating $\left[h_{n}^{j_{n}^{m}}(x)\right]^{\prime} x^{2}$, we obtain

$$
\left\{\left[h_{n}^{j_{n}^{m}}(x)\right]^{\prime} x^{2}\right\}^{\prime}=2 b_{1}\left(j_{n}^{m}\right) x+\sum_{i=2}^{k} 2 d_{i}^{\prime} d_{i} \frac{x}{\left(x-d_{i}\right)^{3}}
$$

In addition, for $i \in I_{n}$, by the definition of A_{0}, we have $A_{(n)}^{(m)}>A_{0} \geq d_{i}$, and for $i \in \Omega \backslash I_{n}$, by the definition of A_{i}. we have $A_{(n)}^{(m)} \geq A_{i}>d_{i}$. For all $i \in \Omega$, we have $x>d_{i}, x \in$ $\left[A_{(n)}^{(m)}, A_{(n)}^{(m+1)}\right]$, and $\left\{\left[h_{n}^{j_{n}^{m}}(x)\right]^{\prime} x^{2}\right\}^{\prime}>0$. Therefore, $\left[h_{n}^{j_{n}^{m}}(x)\right]^{\prime} x^{2}=0$ has at most one solution in $x \in\left[A_{(n)}^{(m)}, A_{(n)}^{(m+1)}\right]$. This completes the proof.

Proof of Theorem 6. If $x>\max _{i \in \Omega}\left\{A_{i}+C\left(\sigma_{1}^{2} \vee\left|\sigma_{1}^{2}-2 C_{1 i}\right|\right) / 4 \alpha_{i}\right\}$, for any $i \in \Omega$, we have both

$$
\alpha_{i} x-\sigma_{1}^{2}+2 C_{1 i}>\sigma_{i}^{2}+C\left|\sigma_{1}^{2}-2 C_{1 i}\right| / 4 \geq \sqrt{C \sigma_{i}^{2}\left|\sigma_{1}^{2}-2 C_{1 i}\right|},
$$

and

$$
\alpha_{i} x-\sigma_{1}^{2}>\sigma_{i}^{2}-2 C_{1 i}+C \sigma_{1}^{2} / 4 \geq \sqrt{C \sigma_{1}^{2}\left(\sigma_{i}^{2}-2 C_{1 i}\right)}
$$

Then, for any $i \in \Omega \backslash K(x)$, we have

$$
\left|\frac{b_{i} \sigma_{i}^{2}\left(\sigma_{1}^{2}-2 C_{1 i}\right)}{\left(\alpha_{i} x-\sigma_{1}^{2}+2 C_{1 i}\right)^{2}}\right|<\frac{b_{1} b_{i}}{\sum_{i \in \Omega} b_{i}+b_{0}}
$$

and

$$
\left|\frac{b_{i} \sigma_{1}^{2}\left(\sigma_{i}^{2}-2 C_{1 i}\right)}{\left(\alpha_{i} x-\sigma_{1}^{2}\right)^{2}}\right|<\frac{b_{1} b_{i}}{\sum_{i \in \Omega} b_{i}+b_{0}}
$$

For $i_{0} \in K(x)$, we have

$$
\left|\frac{\sigma_{1}^{2}\left(\sigma_{i_{0}}^{2}-2 C_{1 i_{0}}\right)\left(b_{i_{0}}+b_{0} \mathbf{1}_{K(x)}\left(i_{0}\right)\right)}{\left(\alpha_{i_{0}} x-\sigma_{1}^{2}\right)^{2}}\right|<\frac{b_{1}\left(b_{0}+b_{i_{0}}\right)}{\sum_{i \in \Omega} b_{i_{0}}+b_{0}} .
$$

Therefore

$$
\begin{aligned}
h^{\prime}(x)> & b_{1}-\left|\frac{\sigma_{1}^{2}\left(\sigma_{i_{0}}^{2}-2 C_{1 i_{0}}\right)\left(b_{0}+b_{i_{0}}\right)}{\left(\alpha_{i} x-\sigma_{1}^{2}\right)^{2}}\right|-\left|\sum_{i \in \Omega \backslash I(x)} \frac{b_{i} \sigma_{i}^{2}\left(\sigma_{1}^{2}-2 C_{1 i}\right)}{\left(\alpha_{i} x-\sigma_{1}^{2}+2 C_{1 i}\right)^{2}}\right| \\
& -\left|\sum_{i \in I(x) \backslash\left\{i_{0}\right\}} \frac{b_{i} \sigma_{1}^{2}\left(\sigma_{i}^{2}-2 C_{1 i}\right)}{\left(\alpha_{i} x-\sigma_{1}^{2}\right)^{2}}\right| \\
& >b_{1}-\frac{b_{1}\left(b_{0}+b_{i_{0}}\right)}{\sum_{i \in \Omega} b_{i}+b_{0}}-\sum_{i \in \Omega \backslash I(x)} \frac{b_{1} b_{i}}{\sum_{i \in \Omega} b_{i}+b_{0}}-\sum_{i \in I(x) \backslash\left\{i_{0}\right\}} \frac{b_{1} b_{i}}{\sum_{i \in \Omega} b_{i}+b_{0}}=0 .
\end{aligned}
$$

Appendix B: More Numerical Results

Additional tests with Example $1\left(\tilde{J}_{i m} \sim N\left(10-i, 6^{2}\right), i=1,2, \cdots, 10\right)$ for $n_{0}=5,10,15,20,25$. In all scenarios, GBA outperforms the other methods for the case of unequal and sharing simulation budget, in particular, when correlations are not too low, and the PCS for GBA is relatively insensitive to changes in parameters $\left\{b_{i}\right\}$ compared with the other methods. As can be seen in Tables 1 through 10 provided here, the OCBA algorithms work well as long as n_{0} is not too small.

We also tested four cases with negative correlation in Example 1, which include Case 1: $\rho=-0.1$, Case 2: $\rho_{1, i}=-0.2, \rho_{i, j}=0.2, i, j=2, . ., k, i \neq j$, Case 3: $\rho_{1, i}=-0.5, \rho_{i, j}=$ $0.5, i, j=2, . ., k, i \neq j$, and Case 4: $\rho_{1, i}=-0.9, \rho_{i, j}=0.9, i, j=2, . ., k, i \neq j$. The results shown in Tables 6 through 10 are very similar to the cases with positive correlation (see Tables 1 through 5). Although the performance of all OCBA algorithms deteriorates for negative correlation, GBA still remains the best among the four methods.

Table 1: Estimated PCS with $n_{0}=5$ for Example 1

	$b_{0}=0$				$b_{0}=1$				$b_{0}=2$			
$\rho=$	0	0.2	0.5	0.9	0	0.2	0.5	0.9	0	0.2	0.5	0.9
	$b_{i}=1.5, i=1, . .10$											
$G B A$. 711	. 733	. 801	. 937	. 688	. 714	. 771	. 927	. 660	. 696	. 760	. 926
$C B A$. 716	. 733	. 793	. 938	. 680	. 720	. 772	. 928	. 658	. 694	. 760	. 922
$I B A$. 702	. 726	. 772	. 854	. 677	. 705	. 745	. 833	. 662	. 685	. 732	. 825
$E B A$. 703	. 745	. 816	. 985	. 702	. 737	. 809	. 983	. 699	. 728	. 796	. 976
	$b_{2 i-1}=2, b_{2 i}=1, i=1, . ., 5$											
$G B A$. 721	. 741	. 795	. 940	. 690	. 715	. 785	. 925	. 666	. 702	. 757	. 921
$C B A$. 702	. 726	. 781	. 919	. 679	. 697	. 760	. 882	. 648	. 686	737	. 864
$I B A$. 696	. 723	. 753	. 848	. 673	. 693	. 730	. 810	. 646	. 676	. 719	. 804
$E B A$. 707	. 735	. 779	. 862	. 685	. 709	. 761	. 841	. 678	. 693	743	. 826
	$b_{2 i-1}=1, b_{2 i}=2, i=1, . ., 5$											
$G B A$. 707	. 737	. 800	. 941	. 688	. 714	. 777	. 933	. 654	. 698	. 765	. 924
$C B A$. 725	. 756	. 796	. 899	. 696	. 716	. 766	. 878	. 662	. 696	. 749	. 855
$I B A$. 728	. 742	. 772	. 840	. 701	. 713	. 751	. 818	. 665	. 691	. 724	. 785
$E B A$. 724	. 753	. 789	. 857	. 710	. 735	. 766	. 842	. 693	. 706	. 752	. 829
	$b_{i} \sim U(1,2), i=1, . ., 10$											
$G B A$. 673	. 703	. 756	. 923	. 690	. 722	. 780	. 936	. 670	. 695	. 759	. 927
$C B A$. 658	. 689	. 747	. 896	. 675	. 710	. 769	. 923	. 659	. 686	. 749	. 905
$I B A$. 661	. 679	. 727	. 813	. 677	. 700	. 743	. 839	. 660	. 679	. 723	. 820
$E B A$. 687	. 717	. 770	. 892	. 703	. 729	. 791	. 900	. 684	. 724	. 768	. 892

Table 2: Estimated PCS with $n_{0}=10$ for Example 1

	$b_{0}=0$				$b_{0}=1$				$b_{0}=2$			
$\rho=$	0	0.2	0.5	0.9	0	0.2	0.5	0.9	0	0.2	0.5	0.9
	$b_{i}=1.5, i=1, . ., 10$											
$G B A$. 778	. 811	. 868	. 974	. 756	. 777	. 848	. 969	. 730	. 766	. 828	. 962
$C B A$. 773	. 812	. 866	. 973	. 759	. 782	. 844	. 965	. 723	. 761	. 828	. 965
$I B A$. 775	. 799	. 853	. 914	. 755	. 770	. 828	. 909	. 728	. 757	. 809	. 896
$E B A$. 704	. 748	. 817	. 984	. 701	. 733	. 811	. 983	. 697	. 727	799	. 976
	$b_{2 i-1}=2, b_{2 i}=1, i=1, . ., 5$											
$G B A$. 783	. 818	. 864	. 974	. 748	. 781	. 837	. 964	. 731	. 767	826	963
$C B A$. 760	. 806	. 846	. 940	. 735	. 764	. 822	. 910	. 711	. 753	799	895
$I B A$. 769	. 802	. 839	. 901	. 741	. 767	. 807	. 874	. 712	. 744	787	860
$E B A$. 705	. 729	. 781	. 854	. 691	. 716	. 763	. 842	. 671	. 702	. 743	. 838
	$b_{2 i-1}=1, b_{2 i}=2, i=1, . ., 5$											
$G B A$. 784	. 810	. 875	. 970	. 746	. 782	. 847	. 970	. 733	. 760	. 827	. 963
$C B A$. 797	. 807	. 857	. 932	. 751	. 776	. 823	. 908	. 727	. 754	. 800	. 882
$I B A$. 798	. 810	. 850	. 897	. 752	. 778	. 816	. 873	. 723	. 743	. 788	. 846
$E B A$. 720	. 749	. 784	. 848	. 696	. 731	. 777	. 847	. 683	. 718	. 760	. 829
	$b_{i} \sim U(1,2), i=1, . .10$											
$G B A$. 787	. 816	. 870	. 971	. 752	. 782	. 848	. 968	. 738	. 773	. 839	. 965
$C B A$. 784	. 807	. 865	. 961	. 749	. 774	. 841	. 949	. 729	. 757	. 822	. 934
$I B A$. 780	. 808	. 851	. 912	. 746	. 777	. 818	. 894	. 736	. 754	. 799	. 880
$E B A$. 709	. 740	. 801	. 908	. 702	. 732	. 781	. 899	. 692	. 706	. 777	. 890

Table 3: Estimated PCS with $n_{0}=15$ for Example 1

	$b_{0}=0$				$b_{0}=1$				$b_{0}=2$			
$\rho=$	0	0.2	0.5	0.9	0	0.2	0.5	0.9	0	0.2	0.5	0.9
	$b_{i}=1.5, i=1, . .10$											
$G B A$. 801	. 831	. 896	. 982	. 776	. 799	. 870	. 982	. 753	. 791	. 852	. 980
$C B A$. 798	. 834	. 894	. 982	. 773	. 803	. 866	. 982	. 752	. 786	. 854	. 979
$I B A$. 792	. 830	. 879	. 939	. 777	. 795	. 853	. 939	743	. 781	. 834	. 934
$E B A$. 709	. 748	. 822	. 982	. 693	. 738	. 811	. 982	. 685	. 727	. 797	. 975
	$b_{2 i-1}=2, b_{2 i}=1, i=1, . ., 5$											
$G B A$. 797	. 835	. 890	. 982	. 772	. 812	. 868	. 981	. 748	. 786	. 848	978
$C B A$. 796	. 827	. 879	. 944	. 767	. 800	. 839	. 917	743	765	. 819	907
IBA	. 792	. 827	. 869	. 923	. 760	. 793	. 841	. 899	742	766	. 818	. 892
$E B A$. 704	. 732	. 778	. 857	. 684	. 713	. 766	. 841	. 667	. 695	. 746	. 831
	$b_{2 i-1}=1, b_{2 i}=2, i=1, . ., 5$											
$G B A$. 806	. 834	. 895	. 985	. 764	. 801	. 868	. 979	. 750	. 802	. 852	. 980
$C B A$. 809	. 837	. 877	. 939	. 764	. 796	. 846	. 917	. 743	. 774	. 815	. 906
IBA	. 804	. 839	. 872	. 923	. 765	. 794	. 839	. 893	. 743	. 771	. 808	. 878
$E B A$. 727	. 744	. 795	. 856	. 703	. 731	. 777	. 846	. 684	. 712	. 758	. 831
	$b_{i} \sim U(1,2), i=1, . ., 10$											
$G B A$. 813	. 835	. 895	. 984	. 778	. 813	. 875	. 981	. 757	. 785	. 857	. 983
$C B A$. 808	. 832	. 886	. 969	. 775	. 805	. 860	. 958	. 752	. 777	. 838	. 946
IBA	. 813	. 834	. 881	. 940	. 780	. 803	. 851	. 925	. 749	. 771	. 833	. 917
$E B A$. 709	. 739	. 794	. 912	. 694	. 727	. 790	. 898	. 679	. 712	. 774	. 891

Table 4: Estimated PCS with $n_{0}=20$ for Example 1

	$b_{0}=0$				$b_{0}=1$				$b_{0}=2$			
$\rho=$	0	0.2	0.5	0.9	0	0.2	0.5	0.9	0	0.2	0.5	0.9
	$b_{i}=1.5, i=1, . ., 10$											
$G B A$. 797	. 837	. 898	. 989	. 778	. 808	. 870	. 988	. 753	. 785	. 856	. 985
$C B A$. 798	. 840	. 894	. 991	. 774	. 809	. 876	. 989	. 747	. 784	. 853	. 986
$I B A$. 802	. 839	. 885	. 959	. 783	. 804	. 863	. 960	. 750	. 788	. 850	. 962
$E B A$. 702	. 746	. 819	. 984	. 700	. 741	. 810	. 979	. 690	. 726	. 799	. 977
	$b_{2 i-1}=2, b_{2 i}=1, i=1, . ., 5$											
$G B A$. 802	. 836	. 893	. 989	. 767	. 805	. 878	. 989	. 757	. 780	. 851	. 984
$C B A$. 798	. 828	. 881	. 944	. 765	. 798	. 845	. 925	. 744	. 771	. 824	909
$I B A$. 799	. 826	. 873	. 938	. 768	. 801	. 842	. 916	. 746	. 768	. 821	903
$E B A$. 701	. 728	. 777	. 859	. 684	. 716	. 768	. 843	. 669	. 700	738	. 830
	$b_{2 i-1}=1, b_{2 i}=2, i=1, . ., 5$											
$G B A$. 806	. 829	. 897	. 991	. 775	. 806	. 871	. 990	. 746	. 787	. 855	986
$C B A$. 805	. 826	. 877	. 941	. 769	. 799	. 840	. 920	. 743	. 770	. 821	. 904
$I B A$. 804	. 831	. 877	. 931	. 768	. 796	. 843	. 910	. 735	. 770	. 813	. 897
$E B A$. 712	. 745	. 784	. 858	. 705	. 729	. 772	. 841	. 690	. 716	. 765	. 833
	$b_{i} \sim U(1,2), i=1, . ., 10$											
$G B A$. 816	. 846	. 902	. 990	. 776	. 816	. 881	. 988	. 751	. 788	. 850	. 988
$C B A$. 813	. 843	. 896	. 976	. 769	. 802	. 869	. 961	. 750	. 788	. 839	. 948
$I B A$. 811	. 843	. 894	. 951	. 778	. 806	. 865	. 943	. 753	. 784	. 839	. 933
$E B A$. 706	. 736	. 806	. 913	. 706	. 727	. 787	. 898	. 684	. 713	. 783	. 894

Table 5: Estimated PCS with $n_{0}=25$ for Example 1

	$b_{0}=0$				$b_{0}=1$				$b_{0}=2$			
$\rho=$	0	0.2	0.5	0.9	0	0.2	0.5	0.9	0	0.2	0.5	0.9
	$b_{i}=1.5, i=1, . .10$											
$G B A$. 792	. 823	. 889	. 994	. 754	. 790	. 862	. 992	. 735	. 766	. 835	. 987
$C B A$. 784	. 826	. 887	. 993	. 757	. 789	. 859	. 991	. 725	. 762	. 831	. 986
$I B A$. 787	. 822	. 884	. 978	. 756	. 792	. 851	. 976	. 727	. 761	. 830	. 980
$E B A$. 703	. 745	. 819	. 984	. 702	. 735	. 806	. 983	. 691	. 727	. 803	. 978
	$b_{2 i-1}=2, b_{2 i}=1, i=1, . ., 5$											
$G B A$. 798	. 821	. 890	. 993	. 759	. 792	. 858	. 993	. 721	. 764	. 837	. 987
$C B A$. 790	. 823	. 873	. 942	. 760	. 784	. 842	. 937	. 727	. 761	. 816	925
$I B A$. 795	. 819	. 872	. 943	. 756	. 785	. 836	. 934	. 729	. 767	. 815	932
$E B A$. 702	. 725	. 782	. 867	. 681	. 710	. 747	. 839	. 662	. 695	731	. 835
	$b_{2 i-1}=1, b_{2 i}=2, i=1, . ., 5$											
$G B A$. 792	. 823	. 889	. 992	. 760	. 792	. 863	. 990	. 732	. 770	. 833	988
$C B A$. 794	. 821	. 869	. 938	. 755	. 786	. 837	. 922	. 719	. 761	. 806	. 918
$I B A$. 797	. 827	. 873	. 932	. 757	. 776	. 838	. 923	. 719	. 761	. 808	. 919
$E B A$. 733	. 751	. 797	. 854	. 704	. 723	. 777	. 842	. 692	. 714	. 760	. 826
	$b_{i} \sim U(1,2), i=1, . ., 10$											
$G B A$. 802	. 834	. 894	. 994	. 768	. 799	. 869	. 992	. 733	. 773	. 848	. 988
$C B A$. 805	. 836	. 882	. 972	. 760	. 795	. 856	. 965	. 733	. 767	. 827	. 954
$I B A$. 802	. 835	. 884	. 961	. 762	. 798	. 860	. 955	. 734	. 760	. 829	. 952
$E B A$. 714	. 747	. 801	. 911	. 695	. 734	. 778	. 894	. 688	. 723	. 776	. 887

We define four cases for negative correlation.
Case 1: $\rho=-0.1$;
Case 2: $\rho_{1, i}=-0.2, \rho_{i, j}=0.2, i, j=2, . ., k, i \neq j$;
Case 3: $\rho_{1, i}=-0.5, \rho_{i, j}=0.5, i, j=2, . ., k, i \neq j$;
Case 4: $\rho_{1, i}=-0.9, \rho_{i, j}=0.9, i, j=2, . ., k, i \neq j$.

Table 6: Estimated PCS with $n_{0}=5$ for Example 1

	$b_{0}=0$				$b_{0}=1$				$b_{0}=2$			
Case	1	2	3	4	1	2	3	4	1	2	3	4
	$b_{i}=1.5, i=1, . .10$											
$G B A$. 703	. 717	. 729	. 773	. 673	. 694	. 710	. 742	. 655	. 677	. 684	. 729
$C B A$. 703	. 712	. 728	. 766	. 670	. 685	. 709	. 749	. 652	. 671	. 683	. 723
$I B A$. 707	. 714	. 710	. 697	. 679	. 677	. 681	. 676	. 661	. 665	. 658	. 657
$E B A$. 695	. 726	. 731	. 757	. 694	. 711	. 725	. 739	. 683	. 703	. 717	730
	$b_{2 i-1}=2, b_{2 i}=1, i=1, . ., 5$											
$G B A$. 704	. 718	. 728	. 764	. 675	. 691	. 705	. 742	. 661	. 678	. 683	720
$C B A$. 690	. 712	. 721	. 763	. 657	. 673	. 699	. 733	. 638	. 657	. 674	. 704
IBA	. 691	. 694	. 701	. 695	. 661	. 669	. 671	. 660	. 646	. 658	. 655	. 647
$E B A$. 692	. 703	. 716	. 727	. 674	. 695	. 711	. 726	. 659	. 673	. 695	. 709
	$b_{2 i-1}=1, b_{2 i}=2, i=1, . .5$											
$G B A$. 705	. 715	. 733	. 766	. 675	. 695	. 709	. 744	. 655	. 670	. 693	. 726
$C B A$. 719	. 734	. 738	. 774	. 687	. 704	. 715	. 742	. 656	. 677	. 691	. 721
$I B A$. 723	. 713	. 718	. 708	. 693	. 696	. 686	. 680	. 658	. 678	. 668	. 658
$E B A$. 709	. 735	. 743	. 750	. 695	. 711	. 727	. 730	. 673	. 701	. 713	. 719
	$b_{i} \sim U(1,2), i=1, . .10$											
$G B A$. 709	. 718	. 740	. 776	. 670	. 699	. 719	. 745	. 659	. 678	. 689	. 731
$C B A$. 703	. 720	. 735	. 781	. 665	. 684	. 708	. 747	. 644	. 669	. 682	. 719
$I B A$. 705	. 702	. 708	. 708	. 667	. 683	. 676	. 668	. 651	. 664	. 650	. 657
$E B A$. 702	. 722	. 733	. 754	. 692	. 707	. 713	. 733	. 675	. 693	. 707	. 728

Table 7: Estimated PCS with $n_{0}=10$ for Example 1

	$b_{0}=0$				$b_{0}=1$				$b_{0}=2$			
Case	1	2	3	4	1	2	3	4	1	2	3	4
	$b_{i}=1.5, i=1, . ., 10$											
$G B A$. 759	. 784	792	. 811	. 739	. 760	. 759	. 787	. 724	. 741	. 737	. 770
$C B A$. 760	. 785	. 792	. 810	. 738	. 754	. 762	. 788	. 714	. 732	. 739	. 760
$I B A$. 757	. 772	. 773	. 759	. 736	. 746	. 742	. 730	. 720	. 731	. 719	. 714
$E B A$. 689	. 720	. 736	. 743	. 693	. 715	. 722	. 744	. 671	. 706	. 718	. 734
	$b_{2 i-1}=2, b_{2 i}=1, i=1, . ., 5$											
$G B A$. 771	. 783	. 786	. 808	. 745	. 748	. 764	. 786	. 724	. 747	. 736	. 758
$C B A$. 763	. 778	. 780	. 807	. 732	. 738	. 752	. 775	. 706	. 733	. 730	. 746
$I B A$. 760	. 767	. 759	. 748	. 738	. 730	. 730	. 717	. 709	. 725	. 715	. 699
$E B A$. 688	. 712	. 720	742	. 672	. 693	. 698	. 709	. 662	. 677	. 691	. 714
	$b_{2 i-1}=1, b_{2 i}=2, i=1, . ., 5$											
$G B A$. 757	. 778	791	. 819	. 740	. 755	. 757	. 788	. 719	. 735	740	. 774
$C B A$. 773	. 791	. 795	. 826	. 744	. 760	. 755	. 786	. 721	. 736	746	. 767
$I B A$. 775	. 783	. 775	. 767	. 743	. 749	. 740	. 735	. 725	. 725	725	. 730
$E B A$. 703	. 729	. 734	. 745	. 688	. 712	. 713	. 731	. 673	. 689	. 707	. 713
	$b_{i} \sim U(1,2), i=1, . ., 10$											
$G B A$. 772	. 788	. 790	. 823	. 751	. 761	. 760	. 792	. 712	. 743	. 747	. 779
$C B A$. 772	. 783	. 793	. 820	. 745	. 748	. 761	. 786	. 705	. 734	. 744	. 764
$I B A$. 765	. 782	. 773	. 765	. 743	. 741	. 730	. 733	. 702	. 726	. 728	. 714
$E B A$. 707	. 723	. 735	. 750	. 690	. 701	. 719	. 736	. 677	. 687	. 701	. 728

Table 8: Estimated PCS with $n_{0}=15$ for Example 1

	$b_{0}=0$				$b_{0}=1$				$b_{0}=2$			
Case	1	2	3	4	1	2	3	4	1	2	3	4
	$b_{i}=1.5, i=1, . ., 10$											
$G B A$. 789	. 803	. 808	. 827	. 753	. 775	. 782	. 799	. 739	. 754	. 761	. 779
$C B A$. 791	. 801	. 811	. 823	. 757	. 776	. 781	. 797	. 728	. 753	. 763	. 772
$I B A$. 791	. 796	. 783	. 783	. 766	. 768	. 766	. 753	. 731	. 746	. 746	. 741
$E B A$. 703	. 718	. 734	. 748	. 690	. 717	. 717	. 743	. 673	. 693	. 713	. 735
	$b_{2 i-1}=2, b_{2 i}=1, i=1, . ., 5$											
$G B A$. 793	. 796	. 802	. 822	. 755	. 776	. 784	. 788	. 735	. 748	. 768	. 769
$C B A$. 778	. 796	. 810	. 817	. 746	. 768	. 763	. 783	. 726	. 748	755	. 767
$I B A$. 782	. 788	. 785	. 773	. 741	. 764	. 755	. 739	. 725	. 730	. 739	. 733
$E B A$. 702	. 707	. 720	. 730	. 674	. 705	. 706	. 714	. 656	. 687	. 689	. 712
	$b_{2 i-1}=1, b_{2 i}=2, i=1, \ldots, 5$											
$G B A$. 790	. 807	. 810	. 831	. 763	. 782	. 790	. 803	. 735	. 760	758	779
$C B A$. 797	. 807	. 812	. 827	. 759	. 781	. 779	. 798	. 731	. 748	. 752	. 766
$I B A$. 797	. 806	. 793	. 789	. 762	. 777	. 763	. 753	. 733	. 743	. 734	. 736
$E B A$. 712	. 730	. 737	. 738	. 683	. 711	. 724	. 739	. 672	. 701	. 706	. 727
	$b_{i} \sim U(1,2), i=1, . ., 10$											
$G B A$. 799	. 808	. 809	. 832	. 756	. 779	. 783	. 803	. 739	. 756	. 764	. 779
$C B A$. 791	. 804	. 816	. 835	. 759	. 779	. 775	. 792	. 735	. 747	. 756	. 773
$I B A$. 794	. 799	. 792	. 789	. 761	. 771	. 763	. 754	. 735	. 748	. 745	. 730
$E B A$. 702	. 718	. 730	. 753	. 686	. 709	. 715	. 737	. 674	. 699	. 716	. 717

Table 9: Estimated PCS with $n_{0}=20$ for Example 1

	$b_{0}=0$				$b_{0}=1$				$b_{0}=2$			
Case	1	2	3	4	1	2	3	4	1	2	3	4
	$b_{i}=1.5, i=1, . .10$											
$G B A$. 786	. 807	. 810	. 830	. 762	. 780	. 776	. 793	. 730	. 755	. 758	. 772
$C B A$. 793	. 812	. 813	. 823	. 762	. 772	. 776	. 791	. 729	. 753	. 753	. 769
IBA	. 793	. 802	. 800	. 790	. 751	. 774	. 772	. 770	730	. 752	. 746	. 748
$E B A$. 690	. 731	. 739	. 757	. 693	. 715	. 727	. 742	. 674	. 702	. 709	. 730
	$b_{2 i-1}=2, b_{2 i}=1, i=1, . ., 5$											
$G B A$. 789	. 807	. 799	. 824	. 762	. 777	. 786	. 789	735	. 756	. 753	770
$C B A$. 793	. 805	. 800	. 816	. 754	. 774	. 781	. 785	733	. 746	. 748	. 762
IBA	. 789	. 802	. 789	. 784	. 749	. 768	. 771	. 753	731	. 744	. 737	. 736
$E B A$. 693	. 703	. 726	. 737	. 679	. 694	. 706	. 711	. 662	. 684	. 691	. 705
	$b_{2 i-1}=1, b_{2 i}=2, i=1, . ., 5$											
$G B A$. 795	. 814	. 817	. 828	. 750	. 771	. 784	. 797	. 736	. 750	. 760	. 771
$C B A$. 793	. 814	. 807	. 820	. 761	. 770	. 782	. 784	. 732	. 751	. 753	. 767
IBA	. 792	. 803	. 808	. 797	. 752	. 767	. 763	. 759	. 727	. 743	. 743	. 746
$E B A$. 715	. 728	. 737	. 749	. 692	. 718	. 718	. 735	. 679	. 697	. 713	. 722
	$b_{i} \sim U(1,2), i=1, . ., 10$											
$G B A$. 795	. 823	. 811	. 834	. 760	. 785	. 785	. 796	. 730	. 761	. 766	. 774
$C B A$. 800	. 815	. 815	. 836	. 766	. 779	. 785	. 796	. 730	. 760	. 762	. 779
IBA	. 801	. 811	. 801	. 803	. 761	. 783	. 772	. 774	. 742	. 756	. 749	. 745
$E B A$. 699	. 728	. 725	. 743	. 692	. 713	. 709	. 733	. 673	. 692	. 703	. 731

Table 10: Estimated PCS with $n_{0}=25$ for Example 1

	$b_{0}=0$				$b_{0}=1$				$b_{0}=2$			
Case	1	2	3	4	1	2	3	4	1	2	3	4
	$b_{i}=1.5, i=1, . .10$											
$G B A$. 782	. 796	. 801	. 820	. 750	. 760	. 770	. 779	. 719	. 740	. 750	. 758
$C B A$. 774	. 786	. 804	. 813	. 740	. 759	. 770	. 781	. 720	. 741	. 744	. 760
$I B A$. 781	. 786	. 789	. 786	. 746	. 763	. 763	. 762	. 719	. 739	. 743	. 749
$E B A$. 690	. 726	. 732	. 745	. 684	. 704	. 726	. 739	. 682	. 698	. 715	. 727
	$b_{2 i-1}=2, b_{2 i}=1, i=1, . ., 5$											
GBA	. 780	. 800	. 806	. 807	. 737	. 759	. 764	. 774	. 715	. 739	. 741	. 753
$C B A$. 781	. 802	. 795	. 801	. 741	. 756	. 766	. 777	. 721	. 737	. 739	. 748
$I B A$. 775	. 796	. 790	. 791	. 734	. 754	. 750	. 761	. 715	. 740	. 731	. 739
$E B A$. 688	. 718	721	. 734	. 675	. 693	. 702	. 716	. 661	. 681	. 691	. 703
	$b_{2 i-1}=1, b_{2 i}=2, i=1, . .5$											
$G B A$. 768	793	. 802	. 813	. 739	. 754	. 771	. 786	. 718	. 728	. 746	. 763
$C B A$. 779	. 798	. 798	. 807	. 734	. 758	. 761	. 785	. 713	. 725	. 734	. 757
$I B A$. 788	. 795	. 793	. 784	. 733	. 762	. 759	. 760	. 711	. 721	. 741	. 742
$E B A$. 715	. 731	. 736	. 744	. 693	. 708	. 722	. 727	. 682	. 697	. 707	. 727
	$b_{i} \sim U(1,2), i=1, . .10$											
$G B A$. 789	. 801	. 803	. 817	. 752	. 756	. 773	. 783	. 711	. 744	. 755	. 763
$C B A$. 787	. 805	. 807	. 816	. 750	. 763	. 772	. 784	. 718	. 742	. 749	. 761
$I B A$. 788	. 800	. 798	. 800	. 750	. 763	. 762	. 770	. 715	. 737	. 746	. 748
$E B A$. 704	. 728	. 735	. 754	. 686	. 711	. 714	. 732	. 680	. 692	. 712	. 731

[^0]: *Yijie Peng (10110690016@fudan.edu.cn) and Jian-Qiang Hu (hujq@fudan.edu.cn) are with Department of Management Science, School of Management, Fudan University. Chun-Hung Chen is with Department of Systems Engineering \& Operations Research, George Mason University (cchen9@gmu.edu). Michael C. Fu is with the Robert H. Smith School of Business and Institute for Systems Research, University of Maryland (mfu@umd.edu). This work was supported in part by the National Science Foundation (NSF) under Grants CMMI-0856256, EECS-0901543, by the Air Force Office of Scientific Research (AFOSR) under Grant FA9550-10-10340, by the Department of Energy under Award DE-SC0002223, by the National Institutes of Health (NIH) under Grant 1R21DK088368-01, by the National Natural Science Foundation of China under Grants 71071040, 71028001, 70832002, 71061160506, by the Shanghai Science and Technology PuJiang Funds under Grant 09PJ1401500, by the Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institution of Higher Learning, and by the National Science Council of Taiwan under Award NSC-100-2218-E-002-027-MY3. This material was also based in part on work supported by the National Science Foundation while M.C. Fu was working at the Foundation. Any opinion, finding, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation.

