
ABSTRACT

Title of thesis: DESIGN AND IMPLEMENTATION
OF A CONTROL SYSTEM FOR A
QUADROTOR MAV

Dean Bawek, Master of Science, 2012

Thesis directed by: Dr. Inderjit Chopra
Department of Aerospace Engineering

The quadrotor is a 200 g MAV with rapid-prototyped rotors that are driven by

four brushless electric motors, capable of a collective thrust of around 400 g using

an 11 V battery. The vehicle is compact with its largest dimension at 188 mm.

Without any feedback control, the quadrotor is unstable. For flight stability, the

vehicle incorporates a linear quadratic regulator to augment its dynamics for hover.

The quadrotor’s nonlinear dynamics are linearized about hover in order to be used in

controller formulation. Feedback comes both directly from sensors and a Luenberger

observer that computes the rotor velocities. A Simulink simulation uses hardware

and software properties to serve as an environment for controller gain tuning prior

to flight testing. The results from the simulation generate stabilizing control gains

for the on-board attitude controller and for an off-board PC autopilot that uses the

Vicon computer vision system for position feedback. Through the combined effort

of the on-board and off-board controllers, the quadrotor successfully demonstrates

stable hover in both nominal and disturbed conditions.

DESIGN AND IMPLEMENTATION OF A CONTROL SYSTEM

FOR A QUADROTOR MAV

by

Dean Bawek

Thesis submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Master of Science

2012

Advisory Committee:
Dr. Inderjit Chopra, Chair/Advisor
Dr. J. Sean Humbert
Dr. Robert M. Sanner

c© Copyright by

Dean Bawek
2012

Dedication

For Dr. William E. Lotz, who would never turn down a trip to the National Air &

Space Museum.

ii

Acknowledgments

I would like to give thanks to everyone who made this thesis possible. Many

thanks go to Dr. Inderjit Chopra, my advisor, for giving me the opportunity to

conduct research under his guidance, patience, and understanding. Thanks go as

well to Dr. J. Sean Humbert and Dr. Robert M. Sanner for not only being on my

committee, but also for setting a strong foundation for my knowledge of control

theory and its application. Gratitude is also in order for Dr. Paul Samuel for his

guidance and understanding of the challenges inherent with integrating hardware.

In addition, I would like to thank Dr. Vikram Hrishikeshavan for his support

on this thesis and his willingness to listen. Thank you to Dr. Jason Pereira for taking

me on the project and for his guidance, and to Shawn Westfall for introducing me

to the quadrotor project in the first place. Also, thanks to Greg Germillion and

UMD’s AVL team for all of their support with getting the quadrotor interfacing

properly with Vicon. Thanks to Cyrus Abdollahi and Bryan Patrick as well for the

brainstorms late into the night trying to work out our controls homework. Thanks

also to Nicole Johnston, for her love and patience.

Last but not least, thanks are in order for my family, whose care, support,

and patience helped me through my educational career. Thanks to my parents

Brad and Alison Bawek for their encouragement in all of my endeavors, my brother

Shane Bawek for always being there for me, my grandmother Ruth Lotz for her

kindness, and to my grandfather, the late Dr. William E. Lotz, for fostering my

passion for science and knowledge.

iii

Table of Contents

List of Tables v

List of Figures v

List of Abbreviations vii

1 Introduction 1
1.1 Motivation . 3
1.2 Control Implementation . 4
1.3 Contemporary Quadrotors . 5
1.4 Objectives and Overview . 7

2 Configuration 10
2.1 Structure . 11
2.2 Microcontroller . 15
2.3 Inertial Measurement Unit . 16

2.3.1 Kalman Filter . 17
2.4 Rotors . 23
2.5 Speed Controllers . 28
2.6 Rotor Dynamics . 31

3 Control 36
3.1 Quadrotor Rotational Dynamics . 36
3.2 System Linearization . 44
3.3 LQR . 56
3.4 Luenberger Observer . 64

4 Simulation and Testing 67
4.1 Simulation . 68

4.1.1 Attitude Control . 69
4.1.2 Position Control . 76

4.2 Flight Testing . 86
4.2.1 Implementation and Testing in Vicon 86
4.2.2 Quadrotor Flight Testing in Vicon 87
4.2.3 Quadrotor Flight Test Results 91

4.3 Concluding Remarks . 99

5 Conclusions 101
5.1 Future Work . 103

Bibliography 105

iv

List of Tables

2.1 Rotor Properties . 25

3.1 System Properties for LQR . 64

4.1 Position Control Gains . 78

List of Figures

1.1 Basic controls of a quadrotor. 2
1.2 Photographs of the Breguet-Richet and Oehmichen quadrotors. . . . 3
1.3 A small selection of quadrotors. 8

2.1 Exploded view of the quadrotor and its constituent parts. 11
2.2 CAD representation of quadrotor frame. 13
2.3 Custom PCB for connecting avionics components. 14
2.4 Arduino Pro Mini microcontroller. 14
2.5 Depiction of data flow to and from microcontroller and other compo-

nents. 16
2.6 Basic wiring diagram of avionics systems. 17
2.7 Power spectral density of sensor noise. 21
2.8 Recorded sensor data corrected using a Kalman filter simulated in

MATLAB. 24
2.9 Test apparatus for rotor performance testing. 26
2.10 Rotor test data. 27
2.11 Example of a PWM signal assuming a 5-volt input. 29
2.12 Rotor thrust and torque relative to PWM input. 31
2.13 Example of rotor dynamics test case. In this case, the hover input is

increased by a step of 30 µs. 33
2.14 When compared to test data, the first-order model accurately ap-

proximates the rotor dynamics. 34
2.15 Rotor models generated from different test runs were averaged to

approximate the rotor dynamics. 34

3.1 Coordinate frame for common symmetric quadrotor configuration. . . 37

4.1 Depiction of data flow for the simulation. 69
4.2 Results of hover simulation with zero initial conditions. 71
4.3 Error between predicted and simulated rotor states used to verify the

Luenberger observer. 72
4.4 Results of hover simulation with nonzero initial conditions. 72
4.5 Results of hover simulation with impulse. 73
4.6 Attitude results of hover simulation with different Q matrices. 73
4.7 Results of hover simulation with LQR controller using Q2. 74

v

4.8 An example of the unstable oscillation induced by increasing the pro-
portional gain for the z-axis. 78

4.9 Results of hover simulation with position control and zero initial con-
ditions. 80

4.10 Results of hover simulation with position control, K2 controller, and
zero initial conditions. 81

4.11 Results of hover simulation with position control and nonzero initial
conditions. 82

4.12 Results of hover simulation with position control, K2 controller, and
nonzero initial conditions. 83

4.13 Results of hover simulation with position control and impulse. 84
4.14 Results of hover simulation with position control, K2 controller, and

impulse. 85
4.15 Laboratory setup for quadrotor flight testing in Vicon (one of eight

cameras shown). 87
4.16 Diagrams depicting tests conducted in flight. 89
4.17 Results of three flight tests with position control in undisturbed hover. 90
4.18 Video frames from the quadrotor impulse flight test. 91
4.19 Results of flight test with position control in hover 93
4.20 Results of flight test with position control and K2 controller in hover. 94
4.21 Results of flight test with position control and impulse. 95
4.22 Results of flight test with position control, K2 controller, and impulse. 96
4.23 Results of flight test with position control and wind. 97
4.24 Results of flight test with position control, K2 controller, and wind. . 98

vi

Notation

0 Zero matrix with appropriate dimensions
A Rotor-disk area (m2)
A State matrix
a Acceleration vector
ai Acceleration along the i-axis
B Control matrix
C Observation matrix
CP Rotor power coefficient
CQ Rotor torque coefficient
CT Rotor thrust coefficient
g Gravity constant (m/s2)
g gravity vector (m/s2)

H Process noise covariance matrix
I Identity matrix with appropriate dimensions
Ii Moment of Inertia along the i-axis (kg·m2)
J Rotor inertia (kg·m2)
K LQR control gain matrix
Ki Integral motor gain (µs/m)
Km Motor gain
Kp Proportional motor gain (µs·s/m)
Ku Unstable motor gain (µs·s/m)
kQ Torque constant
kT Thrust constant
L Angular momentum (rad·kg·m2/s2)
L Luenberger observer matrix
l Moment arm of motors (m)
Mij Matrix comprising row i and column j of a partitioned matrix
m Vehicle mass (kg)
N Sensor measurement noise covariance matrix
n Accelerometer measurement vector (m/s2)
ni Accelerometer measurement along the i-axis (m/s2)
P Error covariance matrix
Q Rotor torque (N·m)
Q State accuracy cost matrix
Qi Torque of i-th rotor (N·m)
R Control cost matrix
R Rotor radius (m)

vii

T Rotor thrust (N)
∑

T Net thrust (N)
Ti Thrust of i-th rotor (N)
Tu Period of oscillations induced by Ku (s)
t Time (s)
tr Rise time (s)
U Motor input transfer function
u Vector of linearized system inputs (µs)
ui Input to i-th motor (µs)
up Vector of autopilot inputs (µs)

W Ω2 (rads2/s2)
Wi Ω2 of the i-th rotor (rads2/s2)
Wss Steady-state rotor velocity (rads2/s2)
W Matrix form of motor transfer function
x Position along the x-axis (m)
x Vector of linearized system states
x̂ Vector of system state estimates
y Position along the y-axis (m)
y Vector of linearized system measurements

z Position along the z-axis (m)
z Vector of actual system states
z∗ Vector of system states at reference condition

α Motor pole
η Sensor measurement noise
µ Vector of actual system inputs

µ∗ Vector of system inputs at reference condition

ν Sensor process noise
Ω Rotor rotational velocity (rad/s)
ΣΩ Total rotor rotational velocity (rad/s)
Ωi Rotational velocity of the i-th rotor (rad/s)
ω Angular velocity (rad/s)
ωp Rate of precession (rad/s)
φ Roll attitude (rad)
ψ Heading (rad)
θ Pitch attitude (rad)
ρ Air density (kg/m3)
τ Torque (N·m)

viii

AGRC Alfred Gessow Rotorcraft Center
ARE Algebraic Ricatti Equation
AVL Autonomous Vehicles Laboratory
CAD Computer-Aided Design
DAQ Data Acquisition
DARE Discrete Algebraic Ricatti Equation
EEPROM Electrically Erasable Programmable Read-Only Memory
EPFL cole Polytechnique Fdrale de Lausanne
ESC Electronic Speed Controller
FM Figure of Merit
GRASP General Robotics Automation Sensing and Perception
IDE Integrated Development Environment
IMU Inertial Measurement Unit
LQR Linear Quadratic Regulator
LiPo Lithium-Polymer
MAV Micro Air Vehicle
MBC Model Based Control
MEMS Micro Electro Mechanical System
MIMO Multi-Input-Multi-Output
PC Personal Computer
PCB Printed Circuit Board
PI Proportional-Integral
PID Proportional-Integral-Derivative
PWM Pulse Width Modulation
RPM Rotations Per Minute
SRAM Static Random-Access Memory
VI Virtual Instrument
VTOL Vertical Take Off and Landing
UAV Unmanned Air Vehicle

ix

Chapter 1

Introduction

The popularity of quadrotors has increased in recent years, due in part to

the mechanical simplicity of their design. Quadrotors utilize four rotors to lift and

control the vehicle without the need for complex rotor mechanisms. Instead of

controlling the vehicle via rotor blade articulation using a swashplate assembly, a

quadrotor simply changes the rotational velocity of each of its rotors (Fig. 1.1). Until

the mid-twentieth century, without the innovation of articulated blades to overcome

the challenges of vertical flight the quadrotor configuration seemed a logical choice

in the pursuit of a VTOL aircraft for Charles Richet and the Breguet brothers in

1906 (Fig. 1.2) [19]. Counter-rotating rotor pairs would take care of any torque

imbalances, and the thrust generated by four sets of propellers would lift the vehicle

given enough power. Thus the concept of a quadrotor is far from new, but the

Breguet-Richet quadrotor encountered challenges that exemplify the difficulty of

implementing such a configuration at a large scale. For the time period, and also

for large scale aircraft, the original quadrotor relied on a gasoline powered engine.

The Breguet-Richet design would require a complex transmission system to try and

control each rotor independently. Even if a contemporary combustion engine were

to be used for each of the four rotors, a considerable amount of weight would incur.

Additionally, the engines would have been very sluggish in making the necessary

1

Figure 1.1: Basic controls of a quadrotor.

torque changes for stabilizing the vehicle [2]. In the 1920’s, Etienne Oemichen tried

to stabilize his quadrotor using a series of additional propellers, but the vehicle

was too heavy to fly without the aid of a hydrogen balloon (Fig. 1.2) [29]. The

configuration’s promised simplicity seems to decay from limitations in methods of

actuation at large scales. However, quadrotors became viable at smaller scales,

which has been made possible in part due to electronics miniaturization and an

interest in unmanned aircraft.

2

(a) (b)

Figure 1.2: Photographs of the (a) Breguet-Richet and (b) Oehmichen quadrotors.

1.1 Motivation

Unmanned systems offer users the advantage of sending eyes into a location

that would otherwise be hostile to a human. These tasks are often designated

as dull, dirty, and dangerous, where a human would run the risk of fatigue from

monotonous, long, or difficult missions, or exposure to hazardous materials and

waste, or attracting hostile attention. Ground-based robots have been performing

many of these tasks since before the 1980’s, but it has not been until the last two

decades that the world has seen unmanned aerial drones in wide use. These UAVs

have demonstrated their efficacy at retreiving vital tactical information without

endangering the lives of skilled pilots. There are times, however, when a closer

look into a cluttered area, such as a city, is necessary. The ever-increasing rate

of urban sprawl makes such a scenario inevitable, and so the demand for MAVs

increases. Conversely, stringent size requirements and problematic aerodynamics

hamper MAV development. Fundamental aerodynamic principles lose efficacy at low

Reynolds numbers, so fixed- and rotary-wing aircraft drastically become less efficient

at the MAV-scale. Given a robust controller, quadrotors are more stable platforms

than conventional rotors and can tolerate a far more overall center of gravity shift.

3

Every hinge and linkage that makes a helicopter operable becomes a liability at

such a small scale, in which the structural integrity of the mechanisms becomes

suspect. Durability concerns undermine one of the primary appeals of MAVs, which

is their potential to navigate small, cluttered environments where the risk of mishap

increases. Despite a lack of success at larger scales, the advantages of the quadrotor

configuration come to light within the MAV and small UAV range. Using electric

motors and fixed, unarticulated rotors, quadrotors can perform as functional VTOL

MAV’s without the mechanical complexity of conventional helicopter or ornithopter

configurations. Quadrotors use four rotors for thrust, and thus have high control

authority and payload capacity. However, the increased simplicity comes at a cost to

stability. The four rotor configuration is unstable, but the benefits of the quadrotor

make it a challenge worth approaching.

1.2 Control Implementation

Quadrotors are unstable in their base configuration and require a control sys-

tem to augment stability. Control system design, as with any design process, can

be approached by multiple avenues to achieve a desired goal while trying to balance

advantages and disadvantages. In the case for the quadrotor, the objective is to

develop a system that manipulates the rotors to render a stable vehicle. The control

methodology to perform this task can take several forms, however the most notable

difference is between on-line tuning and model-based system design. Using on-line

techniques such as PID allow the designer to formulate a controller without prior

4

knowledge of the dynamical system model, though this can entail considerable time

dedicated to adjusting the control parameters. Tuning in such a manner generally

assumes that each state of a MIMO system can be addressed as an individual SISO

control problem, which neglects cross-coupling in the system dynamics [22]. As will

be detailed in Chapter 3, the quadrotor’s dynamics are coupled, so such an ap-

proach should be used with caution. Additionally, since the quadrotor is intended

for flight, gain adjustments must be performed on a gimble or other test hardware

to ensure the safety of the vehicle as well as the researcher. Conversely, the model-

based approach allows for design to be performed almost entirely via computation

and simulation. Provided that the model is known and accurate, any number of

techniques can be used to formulate and evaluate the control system. Bouabdallah

has formulated and analyzed several controllers through both simulation and flight

testing, using a dynamic model of a quadrotor [6]. The quadrotor model is non-

linear and several of the techniques tested use the Lyapunov theorem as the basis

for a nonlinear controller. For the sake of safety, simplicity, and repeatability, the

quadrotor in this thesis uses an LQR controller formulated with a linearized model

of the system.

1.3 Contemporary Quadrotors

As there are different methods of control design, there were a multitude of

quadrotors built by both researchers and commercial companies in pursuit of de-

veloping a stable hovering unmanned platform (Fig. 1.3). As mentioned previ-

5

ously, Bouabdallah at the EPFL autonomous vehicle laboratory in Switzerland

built the OS4 quadrotor, which studied implementation of PID, adaptive LQR,

and Lyupanov-based stabilization algorithms with substantial success [6]. The OS4

also established a groundwork simultaneous design of quadrotor configuration and

control, as well as simulation tools. Castillo et al designed a nonlinear nested sat-

uration controller implemented on a modified commercial quadrotor, the Draganfly

[8]. The Draganfly itself was offered for sale for consumer use as well as cinematic

and surveillance purposes [11]. The AVL at the University of Maryland used a mod-

ified X-UFO quadrotor for optic-flow station-keeping tests, as well as a platform for

embedded systems testing [25]. Stanford and Berkeleys STARMAC quadrotors have

been used for networked control systems research [14]. In a similar vein the GRASP

laboratory at Penn State University demonstrated cooperative quadrotor flight [2].

Additionally, the GRASP laboratory tested the aerobatic capabilities of a commer-

cial quadrotor when coupled with Vicon vision tracking. Though their quadrotors

operated using an in-house global reference system, the GRASP laboratory was also

working to eliminate reliance on an external system with implementation of SLAM

using a laser range finder [12]. The GRASP and other aforementioned quadrotors

were technically small UAVs as opposed to MAVs, since their dimensions were sub-

stantially outside DARPA’s specifications of 6 inches maximum length, width, or

height [21]. There had been several quadrotors in development that fall under MAV

specifications, however. The AVL’s Micro Quad was the subject of several theses

exploring hardware and software design ([13], [22]). The Micro Quad implemented

a PID control algorithm for attitude and translational control, making use of the

6

Vicon global reference system as well. The Mote microcontroller and sensor suite

was used for both on- and off-board processing of flight data and also kept the ve-

hicle’s size small. Another quadrotor MAV, the CrazyFlie, weighed 20 grams. The

low weight was achieved by designing the PCB to be the vehicle structure as well

[9]. The body of the vehicle contained all of the embedded avionics required for sta-

ble flight by a remote pilot. However, these quadrotor MAVs suffered from limited

payload capacity.

1.4 Objectives and Overview

The quadrotor described in this thesis fills the niche between the larger, heavy-

lift quadrotors and compact, low-payload MAVs, thus providing substantial payload

capabilities at a compact size. In addition to fabricating the airframe and selecting

the hardware necessary to achieve flight, a control algorithm is designed and tuned

to work from an on-board embedded microcontroller for stability in hover. The

controller is formulated via a model based LQR algorithm that includes motor dy-

namics in the system model to increase controller efficacy. Due to sensor limitations,

the rotor velocities are estimated by a Luenberger observer using the rotational sys-

tem dynamics. The controller is implemented and tested on the quadrotor with

the aid of an external autopilot using the Vicon visual positioning system to ensure

repeatability.

Specifically, Chapter 2 will discuss the selection of hardware, fabrication of

the airframe, and the methods used to determine the physical properties of the

7

(a)

(b) (c)

(d) (e)

Figure 1.3: A small selection of quadrotors including the (a) Ascending Technologies
Hummingbird, (b) Draganfly X4, (c) STARMAC, (d) AVL’s Micro Quad, and (e)
CrazyFlie.

8

quadrotor. Formulation of the vehicle dynamics control and estimation algorithms

used to achieve stability in hover are covered in Chapter 3. The algorithms are

tested, analyzed, and adjusted using a combination of simulation in Matlab as well

as flight testing with Vicon autopilot in Chapter 4. Finally, Chapter 5 discusses

the results of the testing and evaluates the relative efficacy of the control algorithm

in stabilizing the quadrotor. The chapter also presents conclusions that can be

gathered from the experimentation as well as suggestions for further research.

9

Chapter 2

Configuration

The fabricated quadrotor was designed around its propulsion and on-board

electronics (Fig. 2.1). Vehicle flight was achieved using rapid-prototyped rotors

driven by four brushless DC motors, capable of a collective thrust of nearly 400

g using a 3-cell Lithium-Polymer (LiPo) battery. The motors collectively drew

currents up to 8 A, which was more than enough to damage on-board electronics

if connected to the microcontroller directly. To protect the electronics, Dualsky

6 A brushless electronic speed controllers (ESC’s) were implemented. Also, each

ESC drove a motor with a three-phase signal converted from the output of an

Arduino Pro Mini with an ATmega328 microcontroller. The control signals were

based on a combination of sensor feedback from a Sparkfun 6 Degree-of-Freedom

Inertial Measurement Unit (IMU) and control inputs from an external PC delivered

via bluetooth. The electronics were held together by a custom-designed PCB and

received power via a voltage regulator board, which converted the 11.1 V power

supply to 5 V, as well as 3.3 V for auxiliary purposes. Placing a voltage regulator

between the power supply and the avionics reduced electronic noise from motor

operation. The electronics and propulsion system were mounted on a frame of

Dragonplate carbon-fiber composite material with a foam core for its durability, low

weight, and bending stiffness for the quadrotor arms. A frame of carbon rods served

10

Figure 2.1: Exploded view of the quadrotor and its constituent parts.

as both landing support and protection for the quadrotor. Taking a closer look at

these parts and their relations will reveal the trade-off between structural simplicity

and digital complexity.

2.1 Structure

The motors and other components were mounted symmetrically on an X-frame

(Fig. 2.2). A carbon fiber foam sandwich material from Dragonplate constituted

the vehicle body in order to keep the airframe as light as possible. The machinable 6

mm Depron single-layer carbon fiber composite was cut using computer-controlled

milling. The dimensions of the frame were designed to keep all components as

11

close as possible without interference. Additionally, the frame was such that four

units could be manufactured from one 12 in x 12 in sheet of the composite material.

Though foam appeared to separate the two carbon-fiber layers, there were also small

pegs spaced amongst the foam to add structural rigidity. Despite the added support,

the foam layer tended to tear laterally near the motor mounts from vibration. To

overcome this problem, a thin layer of epoxy was applied on the exposed foam inside

of motor mount holes, as well as on the outside and along part of the arms, thereby

eliminating this problem. The epoxy also bound the frame to the metal mounts that

came with the motors. A small hole was drilled at the end of each arm to allow access

for the motor mounting set screws. To protect the electronics from adverse motor

vibrations, a foam pad rested between the carbon frame and the avionics PCB. The

PCB itself was held in place using nylon screws that were inserted via through-holes

on the PCB and screwed into nylon nuts glued to the quadrotor frame. The screws

kept the PCB in place, while still allowing the foam to flex and act as a simple

vibration isolator to protect sensitive electronics. The electronics were plugged into

the custom PCB using various connectors, allowing modularity for the sake of easy

component replacement (Fig. 2.3). The only exceptions to this were the ESCs,

which were soldered into the tabs at each side of the PCB to avoid the weight that

would be added by connectors. With the speed controllers extended away from the

main PCB, the PCB’s pin locations were designed around microcontroller and IMU

placement.

12

Figure 2.2: CAD representation of quadrotor frame.

13

Figure 2.3: Custom PCB for connecting avionics components.

Figure 2.4: Arduino Pro Mini microcontroller.

14

2.2 Microcontroller

At the center of the on-board avionics package was an Arduino Pro Mini micro-

controller (Fig. 2.4) [3]. The microcontroller handled all digital filter and controls

implementation for the quadrotor. An ATmega328 chip provided 10-bit analog-to-

digital conversion for reading the sensor data, filtered the data digitally, processed

pilot inputs from the receiver, and modified the commands to stabilize the quadro-

tor (Fig. 2.5). Using an embedded system introduced restrictions, too. Though

a processor clock speed of 16 MHz was acceptable, circumventing the restrictive 2

kB of memory offered additional challenges. These restrictions could be avoided by

controlling the quadrotor via wireless communications with an off-board system like

a laptop or desktop PC performing the appropriate filter, observer, and feedback

control calculations. However, if the wireless connection failed, the quadrotor would

lose control. This fact, coupled with the risk of instability induced by transmission

latency, range limitations, and signal instability, made for a strong case supporting

on-board attitude control. Providing on-board stability augmentation allowed for

the quadrotor to maintain a level attitude even if the external PC dropped the con-

nection. Storing large matrices into the ATmega’s program memory compensated

for the low flash memory and allowed for expanded system capability. The pro-

grams stored in the Arduino were programmed using the Arduino’s free IDE. The

programming environment was open-source, making use of AVR-dude and GNU

compilers, which used the C++ programming language. These qualities made the

Arduino platform popular amongst hobbyists, but the current quadrotor attempted

15

Figure 2.5: Depiction of data flow to and from microcontroller and other compo-
nents.

to demonstrate the research potential for the microcontroller.

2.3 Inertial Measurement Unit

For an on-board system to augment the quadrotors stability, the microcon-

troller needed information on the vehicles attitude. MEMS electronics were com-

pact, light-weight, and inexpensive integrated sensing packages that provided the

required state measurements for a feedback system. The Sparkfun 6 DOF v4 IMU

consisted of two PCB’s: a sensor board with a tri-axis accelerometer, two dual-

axis gyros, and a magnetometer, and a control board with microcontrollers and a

bluetooth module for data transmission. The component boards were modular, and

the sensor board was removed to operate independent of the control board. Since

the sensors were analog, they were sensitive to changes in voltage and any elec-

16

Figure 2.6: Basic wiring diagram of avionics systems.

tronic noise. The IMU shared the power system with the microcontroller, utilizing

a 5 V voltage regulator connected to the main power supply (Fig. 2.6). The ESCs

themselves had on-board regulators with 5V output, but the voltage fluctuated with

motor startup and negatively affected sensor calibration. Once the electronics were

fully functional, the sensor readings were taken, averaged, and then zeroed while the

quadrotor was on the ground readying for takeoff. However, due to rotor vibrations,

it was important to further process sensor data to eliminate noise.

2.3.1 Kalman Filter

Data from the on-board gyroscopes and accelerometer could not be used in-

dependently. The accelerometer was extremely sensitive to vibration and became

17

noisy during flight even with a foam damper underneath the avionics PCB. Gyro

data appeared relatively unaffected by motor vibrations, but could not be integrated

for attitude determination because of a drift component that afflicted MEMS gyros

and caused integrations to diverge quickly [5]. A discrete Kalman filter took care of

both issues by effectively combining sensor data; the gyro measurements corrected

accelerometer noise, and the accelerometer compensated for the gyroscopes drift

component. The accelerometers contributed by essentially measuring the pitch and

roll angles of the quadrotor. Since the sensors measured acceleration in the quadro-

tor’s body-frame, then they were measuring the components of the gravity vector

in the body-frame, thus

g
B
= g

−sin(θ)

cos(θ)sin(φ)

cos(θ)cos(φ)

=

ax

ay

az

= aB (2.1)

where g
B
was the gravity vector in the body frame and aB was the body acceleration

vector. The accelerometer measured accelerations in g’s, so the measurements were

then related by

n =

nx

ny

nz

=

ax/g

ay/g

az/g

=

−sin(θ)

cos(θ)sin(φ)

cos(θ)cos(φ)

(2.2)

where n was the vector of accelerometer measurements. The above equations as-

18

sumed that the thrust vectors from the motors were all perpendicular to the x-y

(horizontal) plane of the quadrotor and thereby had no components along the x and

y body axes. Assuming small angles as well as setting aside the z-acceleration term

provided further simplification, resulting in

nx = −θ (2.3)

ny = φ (2.4)

As long as the quadrotor operated around level hover and translational accelerations

were negligible, the assumptions held well. Using the small angle approximation,

assume the accelerometers directly measured the attitudes. Thus, the sensor noise

dynamics could be used in formulation of a Kalman filter without modification.

Traditionally, a Kalman filter required knowledge of the system dynamics.

Since the system was embedded, and memory was a premium, a discrete Kalman

filter that accounted only for the sensor dynamics sufficed. The generic discrete-time

sensor dynamics for attitude angles and rates were as follows:

θk+1 = θ̇k∆t+ θk

θ̇k+1 = θ̇k (2.5)

19

or

θk+1 =

1 ∆t

0 1

θk (2.6)

where ∆t was the sampling period, θTk = [θk θ̇k], θ̇k was the gyroscope measure-

ment at sample k, and θk = nx,k from the relevant accelerometer axis. The sensor

dynamics applied to roll as well, substituting θ for φ, and nx for ny. As mentioned

previously, the IMU measurements contained noise, so introducing process noise ν

and measurement noise η into the sensor dynamics gave

θk+1 =

1 ∆t

0 1

θk + η
k

y
θ,k

=

1 0

0 1

θk + νk (2.7)

For effective implementation of a Kalman filter, the noise statistics were mea-

sured. Sensor readings were taken while the quadrotor was at rest to determine the

measurement noise ν. Again, it was expected that the quadrotors motors operated

near hover input to find the properties of the process noise η. Once collected, the

data was analyzed to determine the noise covariance of each sensor axis (Fig. 2.7).

Kalman filters required the assumption that the noise could be characterized as

white, though this did not appear so for the process noise statistics. For the sake of

20

0 0.2 0.4 0.6 0.8 1
−90

−80

−70

−60

−50

−40

−30

−20

−10

0

Normalized Frequency (×π rad/sample)

X
−

A
c
c
e

l
P

o
w

e
r/

fr
e

q
u

e
n

c
y
 (

d
B

/r
a

d
/s

a
m

p
le

)

Measurement Noise
Process Noise

0 0.2 0.4 0.6 0.8 1
−90

−80

−70

−60

−50

−40

−30

−20

−10

0

Normalized Frequency (×π rad/sample)

Y
−

A
c
c
e

l
P

o
w

e
r/

fr
e

q
u

e
n

c
y
 (

d
B

/r
a

d
/s

a
m

p
le

)

Measurement Noise
Process Noise

(a) (b)

0 0.2 0.4 0.6 0.8 1
−100

−80

−60

−40

−20

0

20

Normalized Frequency (×π rad/sample)

P
it
c
h

 G
y
ro

 P
o

w
e

r/
fr

e
q

u
e

n
c
y
 (

d
B

/r
a

d
/s

a
m

p
le

)

Measurement Noise
Process Noise

0 0.2 0.4 0.6 0.8 1
−80

−70

−60

−50

−40

−30

−20

−10

0

Normalized Frequency (×π rad/sample)

R
o

ll
G

y
ro

 P
o

w
e

r/
fr

e
q

u
e

n
c
y
 (

d
B

/r
a

d
/s

a
m

p
le

)

Measurement Noise
Process Noise

(c) (d)

Figure 2.7: Power spectral density of sensor noise, which includes the (a) x-axis
accelerometer, (b) y-axis accelerometer, (c) pitch gyro, and (d) roll gyro. Each PSD
plot shows the sensor noise at rest (Measurement Noise) and while the motors are
running in the hover condition (Process Noise).

21

simplicity and because of limited processing power, the process noise was the overall

covariance of the roll and pitch gyroscopes. The values were then used to build the

noise covariance matrices, with the x-accelerometer and pitch-gyro process noise

covariances with vibration inserted into Hθ, and the y-accelerometer and roll-gyro

process noise covariances with vibration populating Hφ. The sensors were assumed

to have no correlation with one another, so the covariance matrices were diagonal:

Hθ =

var[nx] 0

0 var[q]

=

0.0973 0

0 0.0040

Hφ =

var[ny] 0

0 var[p]

=

0.0708 0

0 0.0080

(2.8)

The measurement noise was white for all sensors (Fig. 2.7), and was used to compute

the measurement covariances for pitch and roll:

Nθ =

1.6115× 10−5 0

0 3.779× 10−5

Nφ =

1.6038× 10−5 0

0 5.1827× 10−5

(2.9)

These computed values were used on-board the quadrotor by computing the dis-

crete steady-state Kalman gain matrix for an LTI system. Using the LTI Kalman

22

gains significantly reduced the number of computations the embedded system had

to perform in flight. To compute the gains, Q = H and R = N were used for each

sensor axis. The Kalman filter improved the pitch and roll attitude measurements,

as evident in Figure 2.8, even though the noise was assumed to be white. The pitch

and roll rate estimates did not improve much, though this was because the gyros

were more accurate and resistant to the vibrational modes that adversely affected

the accelerometers. After the Kalman filter processed the sensor measurements and

estimated the quadrotor attitude, the angles and rates were used to convert to the

fixed body axis for control feedback.

2.4 Rotors

How the system behaved in response to feedback was determined in part by

the rotors’ properties. Rotor selection was based on prior rotor testing, which re-

vealed rotor design performance relative to varied camber and solidity. The rotors

operated with greater efficiency in a two-blade configuration than a four-blade one,

and high thrust performance was achieved using blades with a fixed collective of 20◦,

5% camber, 102 mm diameter, 13 mm chord, and thin plate airfoils [26]. Though

designing for increased endurance was important for long-duration flights, the ini-

tial focus was on high thrust performance for guaranteeing successful hover as well

as increased control authority. The rotors were fabricated using stereolithography

from a CAD model. The blades consisted of VeroWhite rapid-prototyping mate-

rial from Objet. Some blades of VeroBlue were tested, but they deformed at high

23

0 5 10 15
−1

−0.5

0

0.5

1

θ
(r

ad
)

Time (s)

0 5 10 15
−1

−0.5

0

0.5

1

φ
(r

ad
)

Time (s)

0 5 10 15
−0.5

0

0.5

dθ
/d

t (
ra

d/
s)

Time (s)
0 5 10 15

−0.5

0

0.5

dφ
/d

t (
ra

d/
s)

Time (s)

Measured
Kalman

Figure 2.8: Recorded sensor data corrected using a Kalman filter simulated in MAT-
LAB.

24

RPMs and degraded flight performance, drastically compromising the predictability

required for computing control gains. VeroGray was more brittle, but having to

produce large batches of brittle blades proved favorable compared to producing a

few under-performing blades. The resulting rotors were tested using an automated

experimental setup (Fig. 2.9). The rotor was mounted upside-down on one of the

18-11 2000 kv brushless outrunner motors used on the quadrotor. The inverted

rotor thrust upwards, reducing wake interference from the test apparatus as well as

eliminating erroneous thrust measurements from the wake impinging on the load

cell. The motor itself was mounted on a cylindrical structure attached to a load and

torque cell. The sensors were connected to a laptop through a National Instruments

DAQ board, and the resulting data recorded using a LabView interface. The rotor

RPM was measured with a laser tachometer that was modified to interface with

the DAQ unit. The RPM itself was controlled by an Arduino microcontroller that

took the motor through a range of set inputs. After testing, the data was processed

in MATLAB using custom scripts to help identify the rotor parameters to judge

performance as well as aid in controller design. The rotors performed as expected

(Fig. 2.10), with aerodynamic properties displayed in Table 2.1.

Table 2.1: Rotor Properties

CT 0.0264
CQ 0.0061
CP,ideal 0.0030
FM 0.5001

The results demonstrated the expected quadratic relationship between rotor RPM

and thrust, as well as RPM and torque. Observing the location of the operating

25

Figure 2.9: Test apparatus for rotor performance testing.

26

4000 6000 8000 10000 12000
0

20

40

60

80

100

RPM

T
h

ru
s
t

(g
)

Hover Condition

4000 6000 8000 10000 12000
0

0.002

0.004

0.006

0.008

0.01

RPM
T

o
rq

u
e

 (
N

−
m

)

Hover Condition

(a) (b)

4000 6000 8000 10000 12000
0

5

10

15

20

25

30

RPM

P
o

w
e

r
(W

)

Electric
Mechanical
Ideal
Hover Condition

0 20 40 60 80 100
0

5

10

15

Thrust (g)

M
e

c
h

a
n

ic
a

l
P

o
w

e
r

(W
)

Hover Condition

(c) (d)

Figure 2.10: Rotor test data showing (a) thrust, (b) torque, and (c) power relative
to the rotor’s RPM, as well as (d) power versus thrust.

27

condition in Figure 2.10a, the excess thrust was readily identifiable. Looking at

rotor power in Figure 2.10c, the discrepancy between mechanical and electric power

became apparent. Approximately 12 W of electrical power at hover translated to

only 5 W of mechanical power, signifying the losses due to electrical to mechanical

conversion, as well as aerodynamic inefficiency at the scale. With a Figure of Merit

of 0.5, rotor efficiency was relatively low, but expected [16]. However, the largest

thrust recorded in the tests was more than enough for the quadrotor to sustain

hover and carry a payload. The thrusts recorded were not the absolute maximum,

however; the rotors were capable of reaching over 100 g (0.980 N) of lift, but the

current draw of all four motors together was enough to damage the electronics

board that connected them. Looking again at Figure 2.10c, the electric power used

approaching maximum thrust was nearly 30 W for each motor. Even at the hover

condition, the electronics needed some protection.

2.5 Speed Controllers

Speed controllers protected the on-board electronics and converted PWM con-

trol inputs into multiple out-of-phase voltage outputs that spun the motor bell and

drove the rotor. Note that the motors could draw a current large enough to damage

sensitive equipment, so a direct connection without any means of current protection

could be catastrophic. The motor power supply, in this case a 11.1 V 680 mAh 3-cell

Lithium-Polymer battery, connected directly to the ESCs. Since there were four mo-

tors, four ESCs were connected in parallel with one another to the battery. Though

28

Figure 2.11: Example of a PWM signal assuming a 5-volt input.

an ESC did not directly affect the motor performance, it did affect how the motor

dynamics were represented. The relationship between the pulse-width input and the

motors rotational output depended entirely on the ESC. Consequently, dynamics of

the motor had to be reconsidered whenever a speed controller was changed. A pulse-

width was the duration of time that a digital signal was high, which was typically

at 5V (Fig. 2.11). Most ESCs for RC aircraft operated on a period of around 2

milliseconds, and the range of operational pulse-widths typically varied depending

on the ESC and the motor. For the Dualsky 6 A ESCs used on the quadrotor, the

input could be between 1200 and 1700 µs. However, the relationship with thrust

was only linear between 1200 and 1500 µs and began to saturate afterwards. These

ranges could be altered by following instructions included with the speed controllers

or by using a microcontroller. The process worked for Turnigy Plush 6A ESC’s as

well, so a set of Dualsky and Turnigy 6A ESC’s could perform similarly given the

29

same redefined pulse-width ranges. Data from the rotor tests mentioned previously

revealed the relationship between ESC input and rotor output, as seen in Figure

2.12, which was

Ti = kTui + T0 (2.10)

Qi = kQui +Q0 (2.11)

where kT = 3.38 × 10−3 N/µs and kQ = 3.72 × 10−5 Nm/µs were the slopes of

the linear best-fit approximation of the thrust and torque data, respectively. These

coefficients helped to characterize the relationship between the ESC and rotor per-

formance. Larger values of kT and kQ denoted a larger sensitivity in thrust and

torque for given control inputs compared to smaller coefficients. The values were

affected not only by the rotor aerodynamic properties, but also by the ESC’s input

range. As mentioned previously, the speed controllers could be reprogrammed to

accept different control input ranges. The speed controllers used on the quadrotor

were at default ranges, but they could have their inputs remapped such that kT

and kQ were increased. Changing the ESC performance in such a manner increased

control authority, but at the cost of control resolution. A similar effect could be

achieved by remapping control values digitally on the microcontroller. Either way,

the control resolution had a linearly proportional effect on the rotor output. This

relationship between speed controller input and rotor output was ideal for control

application, but it assumed the rotors instantaneously reach these values, which was

30

1250 1300 1350 1400 1450 1500
0

20

40

60

80

100

Pulse Width (µ s)

T
h

ru
s
t
(g

)

1250 1300 1350 1400 1450 1500
0

0.002

0.004

0.006

0.008

0.01

Pulse Width (µ s)

T
o

rq
u

e
 (

N
−

m
)

(a) (b)

Figure 2.12: Rotor (a) thrust and (b) torque relative to the input pulse width.

not the case.

2.6 Rotor Dynamics

Neglecting the rotor dynamics relative to ESC input could have detrimental

effects on control implementation. Any nonzero amount of time from control input

to steady-state rotor output was essentially introducing a delay to the dynamical

system and thus potentially causing instability when not accounted for. Though

thrust and torque depended on the square of the rotor RPM, the rotor still reached

a steady RPM without transience or overshoot, so it could be safely assumed that

the system was first order for the sake of simplicity. Under this assumption, the

system was expressed in the Laplace domain as:

W (s) =
KmU(s)

(s+ α)
(2.12)

31

where W = Ω2. The parameters were determined by analyzing test data taken

around the operating input for the quadrotor in hover, 1368 µs pulse-width, which

was found using Equation 2.10 and assuming the total thrust
∑

T was equal to the

quadrotor’s weight. Rotor testing was conducted using the same setup as previously

shown in Figure 2.9, but only the RPM data was recorded. The motor received the

hover input for 2 s, then got an additional step input that increased the pulse-width

by a different increment for each test, and then returned the motor to the hover

input. The first set of tests increased the input by 20 µs, and the second test set

increased the input by 30 µs (Fig. 2.13). The variation of motor input helped con-

firm that the rotor dynamics computed from the data remained constant regardless

of input. To find the dynamical parameters, the motor pole was determined by

identifying the rise-time of the system and using the relation tr = 4/α [24]. Because

the motor was given a step input, the Final Value Theorem was used to compute

Km:

lim
s→0

sW (s) = Wss

= lim
s→0

s
KmU(s)

(s+ α)

= lim
s→0

s
Km∆U

s(s+ α)

= lim
s→0

Km∆U

(s + α)

=
Km∆U

α
(2.13)

where ∆U was the step input given relative the initial input, and Wss was the

32

0 1 2 3 4 5
0

2

4

6

8

10

12
x 10

7

Time (s)

R
P

M
2

Figure 2.13: Example of rotor dynamics test case. In this case, the hover input is
increased by a step of 30 µs.

squared-RPM achieved by the motor.

The rotor dynamics parameters were determined for each test and compared

as shown in Figure 2.14. The tests were then averaged to compute the mean rotor

dynamics. A simulation of all tests along with the mean dynamics was recorded

in Figure 2.15. The mean dynamics fit neatly between the tested values and well

within the scatter of resultant outputs. Thus, the values Km = 1.195×105 and α =

18.5 could be used in dynamical simulation and for control algorithm formulation.

These values depended on the physical properties of the rotor and the electrical

properties of the motor; the rotor inertia and motor torque were the dominant

effects that determined α, however Km was also affected by ESC implementation.

33

0 0.2 0.4 0.6 0.8 1
8.5

9

9.5

10

10.5

11
x 10

7

Time (s)

R
P

M
2

Measured
Model

Figure 2.14: When compared to test data, the first-order model accurately approx-
imates the rotor dynamics.

0 0.1 0.2 0.3 0.4 0.5
0

1

2

3

4

5

6

7
x 10

5

Time (s)

R
P

M
2

Experimental
Mean

Figure 2.15: Rotor models generated from different test runs were averaged to ap-
proximate the rotor dynamics.

34

For completion and future reference, the time-domain dynamics for the rotor were

obtained by performing an inverse Laplace-transform on the transfer function, giving

Ẇ (t) = −αW (t) +Kmu(t) (2.14)

as the motor dynamics relative to a pulse-width input u(t). With the properties of

the rotors and the quadrotor found, the control laws governing the vehicle’s stability

were formulated.

35

Chapter 3

Control

The quadrotor’s mechanical simplicity comes at a cost to stability. Looking at

a formulation of the quadrotor’s attitude dynamics makes the inherent instability

clear, while also providing the necessary groundwork for designing a model-based

controller to augment the vehicle’s stability. Though a PID controller proves vi-

able for quadrotor operation [7], a MIMO MBC accounts for control couplings and

also reduces the complexity of gain tuning. Specifically, the quadrotor employs the

LQR algorithm for feedback control. Before either controller can be implemented,

a dynamical model of the quadrotor must be formulated.

3.1 Quadrotor Rotational Dynamics

The dynamics are formulated by considering the body and rotor gyroscopic

effects, as well as by balancing the torques and moments generated by the motors in

the inertial frame (Fig. 3.1). Since the goal of the project is to control a quadrotor

in hover, the vehicle’s lateral translations are considered small and slow enough so

as to neglect the body’s aerodynamic effects. Thus, the rotational kinematics of the

quadrotor are derived from the Newtonian relationship:

Iω̇ = −
∑

ωp × L+
∑

τ (3.1)

36

Figure 3.1: Coordinate frame for common symmetric quadrotor configuration.

37

where ω̇ is the angular acceleration about an axis, ωp is the rate of precession about

an orthogonal axis, L is the angular momentum of an axis orthogonal to both other

rates of rotation, and τ is any miscellaneous moment or torque imparted on the

system. In other words, the rotational momentum of the system about an axis

is equal to the summation of net gyroscopic effects and any additional torques or

moments affecting rotation on this axis. For example, if the quadrotor rotates about

the z-axis at a rate ψ̇, then

Lz = Izψ̇ (3.2)

and if the vehicle body precesses about the y-axis, then there is a torque about the

x-axis due to the gyroscopic coupling τb,x from body rotation,

τb,x = θ̇ × Izψ̇ (3.3)

The torque τb,x can also be generated by precession in the z-axis if the quad-rotor

is rotating about the y-axis:

τb,x = −ψ̇ × Iy θ̇ (3.4)

The two equations can then be summed to give the torque about the x-axis generated

by gyroscopic coupling:

τb,x = θ̇ψ̇(Iz − Iy)

38

This method can be applied to each axis of rotation as well to find the resultant

torques due to body rotation for the other axes as well:

τb,x = θ̇ψ̇(Iz − Iy)

τb,y = φ̇ψ̇(Ix − Iz)

τb,z = φ̇θ̇(Iy − Ix) (3.5)

As the quad-rotor rotates about an axis, it is changing the direction of a rotating

rotor. This only applies to rotation about the x and y axes, since the rotors are

always rotating about the body z-axis. The angular momentum of the rotor is

Lr = JΩ (3.6)

so the rotational torques for each axis are thus:

τr,x = θ̇ΣΩJ

τr,y = −φ̇ΣΩJ (3.7)

where Ω is the net rotational velocity of the rotors, i.e.,

ΣΩ = −ω1 + ω2 − ω3 + ω4 (3.8)

39

The summation of equations 3.5 and 3.7 gives the total torque due to gyroscopic

motion about each axis:

τg,x = θ̇ψ̇(Iz − Iy) + θ̇ΣΩJ

τg,y = φ̇ψ̇(Ix − Iz)− φ̇ΣΩJ

τg,z = φ̇θ̇(Iy − Ix) (3.9)

Since the motors are mounted at the end of each arm, there are additional

torques acting on the quad-rotor. Assuming that the motors are perfectly aligned,

each i-th motor generates a thrust vector Ti in the -z direction. Also assuming

symmetry, all motors are a distance l from the center of gravity of the quad-rotor.

As such, there are four moments in action at all times, but only specific pairs of

motors will generate motion about each axis. For example, the quad-rotor will roll

about the x-axis if motors 2 and 4 (fore and aft) have different thrusts:

τx = l(T4 − T2)

The quad-rotor will pitch about the y-axis in a similar fashion if motors 1 and 3 are

unbalanced. To yaw about the z-axis, however, involves unbalancing the net torque

of motor-pairs. Since motors 1 and 3 are rotating counter-clockwise, and motors 2

and 4 clockwise, then having the former pair operate at a net torque higher than

the latter will result in positive yaw rotation by conservation of angular momentum.

40

Therefore,

τz = (Q1 +Q3)− (Q2 +Q4)

where Qi is the torque of the i-th rotor. The net torques due directly to motor

control are then

τm,x = l(T4 − T2)

τm,y = l(T1 − T3)

τm,z = (Q1 −Q2 +Q3 −Q4) (3.10)

The rotational kinematics for the system, then, is the substitution of equations 3.9

and 3.10 into 3.1, giving:

Ixφ̈ = θ̇ψ̇(Iy − Iz) + θ̇ΣΩJ + l(T4 − T2)

Iyθ̈ = φ̇ψ̇(Iz − Ix)− φ̇ΣΩJ + l(T1 − T3)

Izψ̈ = φ̇θ̇(Ix − Iy) + (Q1 −Q2 +Q3 −Q4) (3.11)

Examining the above equations reveals some characteristics of the system. For ex-

ample, the rotational kinematics are nonlinear and highly coupled. If a quadrotor

begins to pitch about the y-axis, it will induce both roll and yaw rotation as well.

Unwanted rotations also result from imbalances in the rotor torques. Since the

rotors are arranged as counter-rotating pairs, there is an expectation of negligible

net torque when the operational RPMs are equal. Motor control inputs must be

41

kept equal and opposite among the pairs to preserve this equilibrium. For example,

if motor 2 needs to increase its thrust, then motor 4 must decrease its rotational

velocity by the same amount. As a result, controlling the quadrotors attitude in-

volves changing the RPM of rotor pairs rather than individually (Fig. 1.1). Roll

can be achieved by changing the thrust of motor 4 and the thrust of motor 2 in an

equal and opposite increment; pitch control operates similarly using motors 1 and 3.

The quadrotor changes its heading by offsetting the torque balance between motor

pairs, taking advantage of principles of angular momentum; since motors 1 and 3

are rotating counter-clockwise, and motors 2 and 4 clockwise, then the quadrotor

itself rotates clockwise if the 1-3 motor pair has a higher net torque than the 2-4

pair. Some other configurations make use of tilting rotors or motors mounted at

angles in order to provide heading control and balance, but at small scales, imple-

mentation is complex, thereby losing the design simplicity gained via the quadrotor

configuration. Since the quadrotor relies on adjusting thrust and torque for control,

the dynamics depend on rotor and motor performance. Knowing that

T = CTρAR
2Ω2

Q = CQρAR
3Ω2

(3.12)

42

the quadrotor dynamics described by equations 3.11 can be modified thusly:

Ixφ̈ = θ̇ψ̇(Iy − Iz) + θ̇ΣΩJ + l(CTρAR
2)(Ω4

2 − Ω2
2)

Iyθ̈ = φ̇ψ̇(Iz − Ix)− φ̇ΣΩJ + l(CTρAR
2)(Ω1

2 − Ω3
2)

Izψ̈ = φ̇θ̇(Ix − Iy) + (CQρAR
3)(Ω1

2 − Ω2
2 + Ω3

2 − Ω4
2) (3.13)

The above equations reveal that the quadrotor’s control authority is proportional

to the rotors’ aerodynamic properties. Higher rates of motion are achievable by

increasing either the rotor disk area or the rotor coefficients, which would help with

quadrotors that have high inertial properties. Since the changes in RPM are not

instantaneous, the more significant factors in determining the quadrotor’s attitude

kinematics are the motor dynamics. Recall that Ω2 = W , then substitute equation

2.14 into 3.13, and assume that all motors and rotors have identical properties:

Ixφ̈(t) = θ̇(t)ψ̇(t)(Iy − Iz) + θ̇(t)ΣΩ(t)J + l(CTρAR
2)(W4(t)−W2(t))

Iy θ̈(t) = φ̇(t)ψ̇(t)(Iz − Ix)− φ̇(t)ΣΩ(t)J + l(CTρAR
2)(W1(t)−W3(t))

Izψ̈(t) = φ̇(t)θ̇(t)(Ix − Iy) + (CQρAR
3)(W1(t)−W2(t) +W3(t)−W4(t))

Ẇ1(t) = −αW1(t) +Kmu1(t)

Ẇ2(t) = −αW2(t) +Kmu2(t)

Ẇ3(t) = −αW3(t) +Kmu3(t)

Ẇ4(t) = −αW4(t) +Kmu4(t) (3.14)

43

With the rotor states included, most of the significant factors in determining

the quadrotor’s dynamics in hover are accounted for. Aside from the rotors, most

of the equations derived are nonlinear, and so must be linearized.

3.2 System Linearization

As noted previously, the quadrotor’s dynamics are nonlinear. In order to use

LQR, the system must be linearized. Linearization can be performed by considering

small perturbations about a reference condition. Assume that the states of the

actual system dynamics can be denoted as z(t), where

z(t) = [φ(t) φ̇(t) θ(t) θ̇(t) ψ(t) ψ̇(t) W1(t) W2(t) W3(t) W4(t)]
T

= [z1(t) z2(t) z3(t) z4(t) z5(t) z6(t) z7(t) z8(t) z9(t) z10(t)]
T (3.15)

and the inputs of the system as:

µ(t) = [µ1(t) µ2(t) µ3(t) µ4(t)]
T (3.16)

44

Thus the dynamical equations 3.14 become

ż2(t) = z4(t)z6(t)(
Iy − Iz
Ix

)− z4(t)ΣΩ(t)
J

Ix
+
lCTρAR

2

Ix
(z10(t)− z8(t))

ż4(t) = z2(t)z6(t)(
Iz − Ix
Iy

) + z2(t)ΣΩ(t)
J

Iy
+
lCTρAR

2

Iy
(z7(t)− z9(t))

ż6(t) = z2(t)z4(t)(
Ix − Iy
Iz

) +
CQρAR

3

Iz
[(z7(t) + z9(t))− (z8(t) + z10(t))]

ż7(t) = −αz7(t) +Kmµ1(t)

ż8(t) = −αz8(t) +Kmµ2(t)

ż9(t) = −αz9(t) +Kmµ3(t)

ż10(t) = −αz10(t) +Kmµ4(t) (3.17)

with the additional stipulation

z2(t) = ż1(t)

z4(t) = ż3(t)

z6(t) = ż5(t) (3.18)

The equations will be linearized about a reference condition with states z∗(t) and

inputs µ∗(t). Assuming that the perturbations of the nonlinear states away from

the reference condition are minimal such that

0 = f(ż, z, µ, t)− f(ż∗, z∗, µ∗, t) (3.19)

45

the system can be linearized with a multi-variable Taylor series expansion of the

above expression [27]:

0 = f(ż∗, z∗, µ∗, t) +
∂f

∂ż

RC

(ż(t)− ż∗(t)) +
∂f

∂z

RC

(z(t)− z∗(t))

+
∂f

∂µ

RC

(µ(t)− µ∗(t)) + r(z(t), µ(t)) (3.20)

where f(ż, z, µ, t) is the nonlinear system dynamics as a function of the states,

inputs, and time t, or

f(ż, z, µ, t) =

ż1(t)− z2(t)

z4(t)z6(t)(
Iy − Iz
Ix

)− z4(t)ΣΩ(t)
J

Ix
+
lCTρAR

2

Ix
(z10(t)− z8(t))− ż2(t)

ż3(t)− z4(t)

z2(t)z6(t)(
Iz − Ix
Iy

) + z2(t)ΣΩ(t)
J

Iy
+
lCTρAR

2

Iy
(z7(t)− z9(t))− ż4(t)

ż5 − z6

z2(t)z4(t)(
Ix − Iy
Iz

) +
CQρAR

3

Iz
[(z7(t) + z9(t))− (z8(t) + z10(t))]− ż6(t)

− αz7(t) +Kmµ1(t)

− αz8(t) +Kmµ2(t)

− αz9(t) +Kmµ3(t)

− αz10(t) +Kmµ4(t)

(3.21)

46

Since linearization is for the hover condition, then f(ż∗, z∗, µ∗, t) = 0 and r(z, µ) = 0.

Then, compute the partial derivatives:

∂f

∂ż
=

∂f1
∂ż1

∂f1
∂ż2

· · · ∂f1
∂ż10

∂f2
∂ż1

∂f2
∂ż2

· · · ∂f2
∂ż10

...
. . .

...

∂f10
∂ż1

· · · ∂f10
∂ż9

∂f10
∂ż10

=

1 0 0 0 0 0 0 0 0 0

0 −1 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0

0 0 0 −1 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 −1 0 0 0 0

0 0 0 0 0 0 −1 0 0 0

0 0 0 0 0 0 0 −1 0 0

0 0 0 0 0 0 0 0 −1 0

0 0 0 0 0 0 0 0 0 −1

(3.22)

47

∂f

∂z
=

∂f1
∂z1

∂f1
∂z2

· · · ∂f1
∂z10

∂f2
∂z1

∂f2
∂z2

· · · ∂f2
∂z10

...
. . .

...

∂f10
∂z1

· · · ∂f10
∂z9

∂f10
∂z10

=

M11 M12

M21 M22

(3.23)

48

where

M11 =

0 −1 0 0 0 0

0 0 0 z6(t)(
Iy−Iz
Ix

)− ΣΩ(t) J
Ix

0 z4(t)(
Iy−Iz
Ix

)

0 0 0 −1 0 0

0 z6(t)(
Iz−Ix
Iy

) + ΣΩ(t) J
Iy

0 0 0 z2(t)(
Iz−Ix
Iy

)

0 0 0 0 0 −1

0 z4(t)(
Ix−Iy
Iz

) 0 z4(t)(
Ix−Iy
Iz

) 0 0

M12 =

0 0 0 0

0 − lCT ρAR2

Ix
0 lCT ρAR2

Ix

0 0 0 0

lCT ρAR2

Iy
0 − lCT ρAR2

Ix
0

0 0 0 0

CQρAR3

Iz
−

CQρAR3

Iz

CQρAR3

Iz
−

CQρAR3

Iz

M21 =

[

04×6

]

M22 =

−α 0 0 0

0 −α 0 0

0 0 −α 0

0 0 0 −α

49

∂f

∂µ
=

∂f1
∂µ1

∂f1
∂µ2

· · · ∂f1
∂µ4

∂f2
∂µ1

∂f2
∂µ2

· · · ∂f2
∂µ4

...
. . .

...

∂f10
∂µ1

· · · ∂f10
∂µ3

∂f10
∂µ4

=

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

Km 0 0 0

0 Km 0 0

0 0 Km 0

0 0 0 Km

(3.24)

50

To linearize about hover, evaluate the above matrices at the reference condition

z(t) = z∗(t) = 0 and µ(t) = µ∗(t) = 0 ∀t:

∂f

∂ż

RC

=

E =

1 0 0 0 0 0 0 0 0 0

0 −1 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0

0 0 0 −1 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 −1 0 0 0 0

0 0 0 0 0 0 −1 0 0 0

0 0 0 0 0 0 0 −1 0 0

0 0 0 0 0 0 0 0 −1 0

0 0 0 0 0 0 0 0 0 −1

(3.25)

51

∂f

∂z

RC

=

F =

0 −1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 − lCT ρAR2

Ix
0 lCT ρAR2

Ix

0 0 0 −1 0 0 0 0 0 0

0 0 0 0 0 0 lCT ρAR2

Iy
0 − lCT ρAR2

Ix
0

0 0 0 0 0 −1 0 0 0 0

0 0 0 0 0 0
CQρAR3

Iz
−

CQρAR3

Iz

CQρAR3

Iz
−

CQρAR3

Iz

0 0 0 0 0 0 −α 0 0 0

0 0 0 0 0 0 0 −α 0 0

0 0 0 0 0 0 0 0 −α 0

0 0 0 0 0 0 0 0 0 −α

(3.26)

52

∂f

∂z

RC

=

G =

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

Km 0 0 0

0 Km 0 0

0 0 Km 0

0 0 0 Km

(3.27)

As is already apparent, a large amount of information is lost in the linearization.

Bouabdullah warns of performing the process with hover as a reference condition

[7]. Though the resulting feedback system may not be suitable for a large flight

envelope, for the purposes of stabilized hover, they appear adequate. To finalize

and simplify the linearization process, revise the Taylor expansion from equation

3.20:

0 = E(ż(t)− ż∗(t)) + F(z(t)− z∗(t)) +G(µ(t)− µ∗(t)) (3.28)

53

Considering the perturbed states as

x(t) = (z(t)− z∗(t)) (3.29)

and the inputs as

u(t) = (µ(t)− µ∗(t)), (3.30)

the expansion can be rearranged to resemble the familiar form

ẋ(t) = −E−1Fx(t)− E−1Gu(t)

= Ax(t) +Bu(t) (3.31)

54

Thus, the linearized state-space form of the quad-rotor dynamics about hover is as

follows:

ẋ(t) =

0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 − lCT ρAR2

Ix
0 l(CT ρAR2)

Ix

0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 lCT ρAR2

Iy
0 l(CT ρAR2)

Iy
0

0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0
(CQρAR3)

Iz
−

(CQρAR3)

Iz

(CQρAR3)

Iz
−

(CQρAR3)

Iz

0 0 0 0 0 0 −α 0 0 0

0 0 0 0 0 0 0 −α 0 0

0 0 0 0 0 0 0 0 −α 0

0 0 0 0 0 0 0 0 0 −α

x(t)

+

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

Km 0 0 0

0 Km 0 0

0 0 Km 0

0 0 0 Km

u(t) (3.32)

55

Some of the eigenvalues of the state matrix A of the quadrotor dynamics are zero,

specifically those dealing with attitude kinematics, which means that the attitude

in hover is unstable [28]. Any disturbances can send the quadrotor away from level

hover without any correction. The quadrotor in hover behaves similar to a ball

sitting at the top of a hill, in which the ball only maintains equilibrium so long as

it is undisturbed. For the quadrotor to achieve stability, a feedback control system

must be implemented.

3.3 LQR

Before formulating an LQR controller for feedback control, several criteria

must be met. Specifically, the system must be at least stabilizable and detectable.

Since the state matrix A has zero eigenvalues and the quad-rotor’s heading is not

measured because of interference from the motors, these qualifications must be ver-

ified. First, recall that a stipulation of controllability is

rank[B|AB|A2B|...|An−1B] = n (3.33)

where A ∈ R
10×10 and B ∈ R

10×4, so n = 10 [1]. Using the matrices from equation

3.32, equation 3.33 is satisfied. As for observability, the observation matrix of the

56

system will be C ∈ R
9×10, since heading angle is neglected,

y(t) = Cx(t)

=

1 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 1

x(t) (3.34)

and is used in the equation

rank

C

CA

CA2

...

CAn−1

= m (3.35)

in which m = 9. The above equation is also satisfied, so the system is observable

as well. Considering that the system is observable despite lacking heading angle

measurements, and also considering that the yaw dynamics of the system in equation

57

3.11 has no direct dependence on the yaw angle itself, one more modification of the

dynamics can take place, simplifying the system further. Removing the yaw angle

from the system in the state-space representation of the dynamics gives:

ẋ(t) =

0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 − lCT ρAR2

Ix
0 l(CT ρAR2)

Ix

0 0 0 1 0 0 0 0 0

0 0 0 0 0 lCT ρAR2

Iy
0 l(CT ρAR2)

Iy
0

0 0 0 0 0
(CQρAR3)

Iz
−

(CQρAR3)

Iz

(CQρAR3)

Iz
−

(CQρAR3)

Iz

0 0 0 0 0 −α 0 0 0

0 0 0 0 0 0 −α 0 0

0 0 0 0 0 0 0 −α 0

0 0 0 0 0 0 0 0 −α

x(t)

+

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

Km 0 0 0

0 Km 0 0

0 0 Km 0

0 0 0 Km

u(t) (3.36)

58

which still satisfies equations 3.33 and 3.35. With the system linearized, the linear

quadratic control problem can be solved by defining the control input for the above

system as

u(t) = −Kx(t) (3.37)

where K is the solution of the Algebraic Ricatti Equation (ARE) for a linear time-

invariant system. The solution can be tuned by manipulating the state and control

cost matrices Q and R, respectively. Since their dimensions still reflect those of the

system, a scaling procedure known as Brysons method quickly establishes the basic

values for the cost matrices and allows them to be modified en masse with scalars.

Using Brysons method, assume that Q is a diagonal positive-definite matrix where

each entry is an equilibrium point of the system:

Q = q

(1
z1∗

)2 0 · · · 0

0 (1
z2∗

)2
. . .

...

...
. . .

. . . 0

0 · · · 0 (1
zi∗

)2

(3.38)

If the reference conditions for the system are zero, then consider the reference condi-

tions as the allowable accuracy of the states. The gain matrix K resulting from the

solution to the ARE can then be tuned by adjusting q, thus increasing or decreasing

the penalty on the system relative to state accuracy [27]. Likewise, the control cost

59

matrix R is populated with the control limits, so:

R = r

(1
µ1

∗
)2 0 · · · 0

0 (1
µ2

∗
)2

. . .
...

...
. . .

. . . 0

0 · · · 0 (1
µj

∗
)2

(3.39)

where µj is the j-th control limit, and r is an arbitrary scalar that can be adjusted

to affect control cost. Bryson’s method effectively scales the LQR problem by nor-

malizing the system states and controls, and thus computing K using the ARE [28].

Keeping this in mind, assume the attitudes are nominally within 0.005 rad and their

respective rates within 0.05 rad/s:

|φ| ≤ 0.005 rad

|φ̇| ≤ 0.05 rad/s

|θ| ≤ 0.005 rad

|θ̇| ≤ 0.05 rad/s

|ψ̇| ≤ 0.05 rad/s

(3.40)

Likewise, assume that the squares of the rotor velocities are within 10000 radians2/second2:

60

W1 ≤ 10000 rad2/s2

W2 ≤ 10000 rad2/s2

W3 ≤ 10000 rad2/s2

W4 ≤ 10000 rad2/s2

(3.41)

As seen in Section 2.5, the control inputs themselves are limited to a range of 200

µs:

u1 ≤ 200 µs

u2 ≤ 200 µs

u3 ≤ 200 µs

u4 ≤ 200 µs

(3.42)

The above assumptions generate the following Q and R matrices:

61

Q =

4× 104 0 0 0 0 0 0 0 0

0 4× 102 0 0 0 0 0 0 0

0 0 4× 104 0 0 0 0 0 0

0 0 0 4× 102 0 0 0 0 0

0 0 0 0 4× 102 0 0 0 0

0 0 0 0 0 1× 10−8 0 0 0

0 0 0 0 0 0 1× 10−8 0 0

0 0 0 0 0 0 0 1× 10−8 0

0 0 0 0 0 0 0 0 1× 10−8

(3.43)

R =

2.50× 10−5 0 0 0

0 2.50× 10−5 0 0

0 0 2.50× 10−5 0

0 0 0 2.50× 10−5

(3.44)

In order to compute K using Q and R, some of the system’s properties must

be found to complete the model in the system of equations 3.36. Principally, the

controller will be implemented on a discrete system, so the timing parameter ∆t for

62

the program is found experimentally by implementing the flight control software on

the quadrotor’s microcontroller and having a pin on the chip send a pulse during each

program iteration. Other parameters necessary for computation of K, such as the

motor dynamics and vehicle inertias, have been found in Chapter 2 and computed

via CAD models, respectively. The system parameters can be found in Table 3.1.

With the values for the variables in equation 3.36 identified, K is computed using

the Discrete Algebraic Ricatti Equation (DARE) with MATLAB’s lqrd() command,

which gives:

K =

3.30× 10−12 5.14× 10−14 1.49× 103 1.79× 102 1.38× 102 · · ·

−1.51× 103 −1.82× 102 −2.94× 10−11 2.58× 10−12 −1.38× 102 · · ·

−3.47 × 10−11 −3.13× 10−12 −1.49× 103 −1.79× 102 1.38× 102 · · ·

1.51× 103 1.82× 102 −1.37× 10−11 −3.78× 10−12 −1.38× 102 · · ·

· · · 1.37× 10−3 −5.85× 10−6 −9.46× 10−5 −5.85× 10−6

· · · −5.85× 10−6 1.37× 10−3 −5.85× 10−6 −9.10× 10−5

· · · −9.46× 10−5 −5.85× 10−6 1.37× 10−3 −5.85× 10−6

· · · −5.85× 10−6 −9.10× 10−5 −5.85× 10−6 1.37× 10−3

(3.45)

Since the values pertaining to attitude in the Q matrix are large compared to both

the rotor states and the control cost matrix R, the attitude gains in K are fairly

63

large. The emphasis on state accuracy will result in a system that responds quickly

to minute changes, theoretically minimizing drift when the quadrotor tries to hold

position. Notably, the gains associated with the rotor RPMs are orders of magnitude

smaller than those for the attitude, since the square of the rotor velocities will be

considerably larger than radians. These rotor states are not measured, however, and

so an observer must be formulated as well.

Table 3.1: System Properties for LQR

Ix 1.883× 10−4 kg ·m2

Iy 1.782× 10−4 kg ·m2

Iz 3.120× 10−4 kg ·m2

l 0.08255 m
A 0.007241 m2

R 0.04801 m
ρ 1.204 kg/m3

α 18.50
Km 1.195× 105

∆t 8 ms (125Hz)

3.4 Luenberger Observer

The system requires that the rotor velocity be measured, but there are no

sensors mounted on the quadrotor capable of measuring the new states. The values

are instead estimated by a Luenberger observer, which uses the systems dynamical

model. The technique computes the gain matrix L that allows the system to predict

unobserved states from measured ones via an algorithm similar to the Kalman filter.

The observer computes the expected rotor velocities from the quadrotor’s filtered

state measurements and makes corrections during each iteration. The observer gain

64

itself is computed using LQR [17], wherein the transpose of the state and observation

matrices are used in lieu of the state and control matrices, so the ARE would be

0 = AP+PAT +Q−PCTR−1CP (3.46)

and the Luenberger observer gain is

LT = R−1CP (3.47)

In this case, the matrices Q and R are identity for the sake of simplicity, and

C ∈ R
5×9:

C = [I5×5 05×4] (3.48)

because only the states measured by the IMU are actually observed. The resulting

observer gain matrix, L, is then used to compute the states estimates x̂ via the

following expression:

˙̂x(t) = Ax̂(t) +Bu(t) + LC[x(t)− x̂(t)] (3.49)

65

where

L =

6.18× 10−1 5.79× 10−3 −2.22× 10−18 7.31× 10−18 −3.28× 10−17

8.45× 10−4 6.18× 10−1 6.44× 10−19 −1.64× 10−18 −2.09× 10−17

−2.16× 10−18 6.05× 10−19 6.18× 10−1 5.79× 10−3 5.38× 10−19

7.32× 10−18 −1.58× 10−18 8.45× 10−4 6.18× 10−1 −2.26× 10−17

−3.27× 10−17 −2.09× 10−17 7.19× 10−19 −2.26× 10−17 6.18× 10−1

−5.20× 10−15 1.75× 10−14 1.43× 10−8 3.02× 10−6 2.32× 10−7

−1.35× 10−8 −2.86 × 10−6 −1.33× 10−14 −7.03× 10−16 −2.32× 10−7

−2.98× 10−15 −7.24× 10−15 −1.43× 10−8 −3.02× 10−6 2.32× 10−7

1.35× 10−8 2.86× 10−6 −3.37× 10−16 −1.54× 10−15 −2.32× 10−7

(3.50)

and L is computed using MATLAB’s lqrd() command, since the system is dis-

crete. Implementing the Luenberger observer requires some additional coding since

it introduces additional floating point data that needs to be stored on the micro-

controller. Fortunately, there is a method by which the values can be stored into

what is normally reserved for program memory. The values cannot, however, be

changed during runtime, so it is important to assume the observer time-invariant.

With the observer and controller gain matrices computed, the system can be tested

in simulation and then proven in flight.

66

Chapter 4

Simulation and Testing

With the quadrotor dynamics formulated and a control algorithm established,

the next step is testing the vehicle’s performance. Testing the control algorithm on

a physical system has to be carried out systematically, because there is no guarantee

that the calculated control gains will work in a physical system. Instead, a Simulink

simulation predicts the performance of the vehicle in various flight conditions. Thus,

the simulation helps in tuning the control system as well as verifying the assump-

tions made in the control algorithm’s formulation. Once the simulation shows that

the control configuration results in a stable hover in the presence of measurement

noise and other disturbance inputs, the system is implemented on-board the vehi-

cle. To ensure experimental repeatability, the quadrotor is operated by an external

computer acting as a pilot.

The autopilot is a position-hold system based on a proportional-integral con-

trol scheme that uses position and rate feedback from the Vicon visual positioning

system. The translational control problem is essentially wrapped around the atti-

tude control simulation in Simulink. Simulation results are then used to tune the

position-hold gains iteratively with the Ziegler-Nichols algorithm. A successful sim-

ulation exhibiting level attitude in hover as well as position hold using an external

autopilot leads to implementation in LabView on a laboratory PC. With on-board

67

attitude control and off-board position control implemented in the physical system,

the quadrotor is flown in hover next. In addition to having the quadrotor hold its po-

sition, a series of experiments are performed to check the robustness of the system,

including disturbance rejection and impulse response. Success in flight, however,

relies on the fidelity of the simulation.

4.1 Simulation

A simulation’s utility depends on its accuracy. In addition to the vehicle dy-

namics from Chapter 3, the Simulink model accounts for how data is handled in

the embedded system and the other physical properties that affect the vehicle as a

whole. The structure of the simulation as described in Figure 4.1 shows the associ-

ation between control algorithms and data flow. For example, the continuous plant

model computes the six vehicle states based on the attitude dynamics, and then

the states are converted from the inertial to body reference frames to account for

how the inertial sensors measure data. White noise is added to the sensor data to

account for vibration and electrical noise experienced during operation. Then, the

states are modified to account for data lost in converting from an analog to digital

signal with the microcontroller’s 10-bit resolution. A discrete Kalman filter using

the gains calculated from the data in Section 2.3.1 proceeds to correct the sensor

noise, then the measurements are converted back into the inertial reference frame.

With the states corrected, the simulation discards the yaw state and a discrete Luen-

berger observer estimates of rotor velocities, populating the now 9 degree-of-freedom

68

Figure 4.1: Depiction of data flow for the simulation.

state vector. The control inputs are then computed using the attitude and rotor

states while taking into account motor control resolution and input saturation. A

state-space representation of the continuous motor dynamics for all motors takes

the control vector as input, computing the resulting rotor velocity vector that be-

comes the input for the plant model. The model transitions between discrete and

continuous processes to take into account the implementation of algorithms in a

physical environment. With the system properties determined and Simulink model

built, simulations are performed to test the control system.

4.1.1 Attitude Control

Attitude control simulation testing consisted of observing the system response

to noise, non-zero initial conditions, and impulse disturbances. Running a simu-

lation with zero initial conditions and no external forces, the noise disrupted the

system slightly (Fig. 4.2). Though the Kalman filter reduced the noise signifi-

cantly, what remained was enough to induce small oscillations in the quadrotor’s

69

attitude. In implementation, this could be avoided by using more accurate sen-

sors, or by adding a damper to the sensor suite to physically alleviate noise level.

The oscillations were still within the assumptions from Section 3.2, however, they

were acceptable. Though the control algorithm neglected yaw, the heading stayed

roughly around zero. Additionally, the assumptions made in the previous chapter

held when looking at the components of the quadrotor dynamics negated by lin-

earization. In Figure 4.2, the gyroscopic body components (Eq. 3.5) and gyroscopic

rotor components (Eq. 3.7) were three orders of magnitude smaller than the mo-

tor moments (Eq. 3.10) in hover flight. While verifying previous assumptions, an

examination of the error between predicted and simulated rotor states showed that

the Luenberger observer worked properly (Fig. 4.3). The error between predicted

and simulated RPMs reached a maximum of approximately 0.04 RPM, which was

acceptable considering the changes in RPM for the vehicle were usually four or-

ders of magnitude greater. These assumptions also held when introducing nonzero

initial conditions; the system returned to equilibrium despite the sensor noise and

neglected dynamics (Fig. 4.4). A transient occurred when the quadrotor corrected

itself, but it returned to nominal conditions within 2 s. The simulation showed that

the vehicle was capable of correcting in multiple axes successfully. Corrections for

nonzero initial angles in multiple axes causes the heading to change to a nonzero

value, though it stabilizes once the reference condition is reached. The nonlinear

components of the attitude dynamics were generally two orders of magnitude smaller

than the motor moments, though near the start of the simulation they were only

an order of magnitude less than the motor moments. This was most likely due to

70

0 2 4 6 8 10 12
−1

0

1

R
o

ll

0 2 4 6 8 10 12
−1

0

1
P

it
c
h

0 2 4 6 8 10 12
−1

0

1

Time (s)

Y
a

w

φ (rad)
dφ/dt (rad/s)

θ (rad)
dθ/dt (rad/s)

ψ (rad)
dψ/dt (rad/s)

0 2 4 6 8 10 12
−100

0

100

R
o

ll
 (

ra
d

/s
2
)

0 2 4 6 8 10 12
−100

0

100

P
it
c
h

 (
ra

d
/s

2
)

0 2 4 6 8 10 12
−2

0

2

Time (s)

Y
a

w
 (

ra
d

/s
2
)

Motor
Rotor Gyro
Body Gyro

Motor
Rotor Gyro
Body Gyro

Motor
Body Gyro

(a) (b)

Figure 4.2: Results of hover simulation with zero initial conditions, showing (a)
vehicle attitudes and (b) a comparison of the components of the dynamics.

the nonzero initial yaw rate. Increasing the initial states caused the nonlinearities

to increase off-axis, but they were quickly corrected. The vehicle responded more

quickly in impulse tests, in which a step input with a duration of one sample was

added to the input vector. Since giving the same step input to all motors resulted

in no net moment, the control input was set such that roll, pitch, and yaw moments

were induced (Fig. 4.5). The system recovered from the impulses within 1.5 s. The

attitude nonlinearities remained at least two orders of magnitude smaller than the

motor moments, again maintaining previous assumptions.

The matrix K in Section 3.3 as used in the above simulation was found by

adjusting the Q matrix and simulating the results. The measurement cost matrix

was the focus since the attitude tolerances were arbitrary compared to the motor

limits used in computing R. For example, assuming Q = I generated a response

that took a minute to converge to equilibrium from nonzero initial conditions (Fig.

71

0 2 4 6 8 10
−0.06

−0.04

−0.02

0

0.02

0.04

0.06

Time (s)

R
P

M
 E

rr
or

Motor 1
Motor 2
Motor 3
Motor 4

Figure 4.3: Error between predicted and simulated rotor states used to verify the
Luenberger observer.

0 2 4 6 8 10 12
−1

0

1

R
o

ll

0 2 4 6 8 10 12
−1

0

1

P
it
c
h

0 2 4 6 8 10 12
−1

0

1

Time (s)

Y
a

w

φ (rad)
dφ/dt (rad/s)

θ (rad)
dθ/dt (rad/s)

ψ (rad)
dψ/dt (rad/s)

0 2 4 6 8 10 12
−100

0

100

R
o

ll
 (

ra
d

/s
2
)

0 2 4 6 8 10 12
−100

0

100

P
it
c
h

 (
ra

d
/s

2
)

0 2 4 6 8 10 12
−2

0

2

Time (s)

Y
a

w
 (

ra
d

/s
2
)

Motor
Rotor Gyro
Body Gyro

Motor
Rotor Gyro
Body Gyro

Motor
Body Gyro

(a) (b)

Figure 4.4: Results of hover simulation with xT0 = [0.5 0 0.5 0 1 0 0 0 0], showing
(a) vehicle attitudes and (b) a comparison of the components of the dynamics.

72

0 2 4 6 8 10 12
−1

0

1

R
o

ll

0 2 4 6 8 10 12
−1

0

1

P
it
c
h

0 2 4 6 8 10 12
−1

0

1

Time (s)

Y
a

w

φ (rad)
dφ/dt (rad/s)

θ (rad)
dθ/dt (rad/s)

ψ (rad)
dψ/dt (rad/s)

0 2 4 6 8 10 12
−100

0

100

R
o

ll
 (

ra
d

/s
2
)

0 2 4 6 8 10 12
−100

0

100

P
it
c
h

 (
ra

d
/s

2
)

0 2 4 6 8 10 12
−2

0

2

Time (s)

Y
a

w
 (

ra
d

/s
2
)

Motor
Rotor Gyro
Body Gyro

Motor
Rotor Gyro
Body Gyro

Motor
Body Gyro

(a) (b)

Figure 4.5: Results of hover simulation with impulse ∆uT = [50 − 150 − 50 150],
showing (a) vehicle attitudes and (b) a comparison of the components of the dy-
namics.

0 2 4 6 8 10 12
−1

0

1

R
o

ll

φ (rad)
dφ/dt (rad/s)

0 2 4 6 8 10 12
−1

0

1

P
it
c
h

θ (rad)
dθ/dt (rad/s)

0 2 4 6 8 10 12
−1

0

1

Time (s)

Y
a

w

ψ (rad)
dψ/dt (rad/s)

0 2 4 6 8 10 12
−1

0

1

R
o

ll

φ (rad)
dφ/dt (rad/s)

0 2 4 6 8 10 12
−1

0

1

P
it
c
h

θ (rad)
dθ/dt (rad/s)

0 2 4 6 8 10 12
−1

0

1

Time (s)

Y
a

w

ψ (rad)
dψ/dt (rad/s)

(a) (b)

Figure 4.6: Attitude results of hover simulation with xT0 = [0.5 0 0.5 0 1 0 0 0 0] and
controller tuned with (a) Q = I and (b) Q = diag([1 1 1 1 1 1× 10−8 1× 10−8 1×
10−8 1× 10−8]) .

73

0 2 4 6 8 10 12
−1

0

1

R
o

ll

φ (rad)
dφ/dt (rad/s)

0 2 4 6 8 10 12
−1

0

1

P
it
c
h

θ (rad)
dθ/dt (rad/s)

0 2 4 6 8 10 12
−1

0

1

Time (s)

Y
a

w

ψ (rad)
dψ/dt (rad/s)

(a)

0 2 4 6 8 10 12
−1

0

1

R
o

ll

φ (rad)
dφ/dt (rad/s)

0 2 4 6 8 10 12
−1

0

1

P
it
c
h

θ (rad)
dθ/dt (rad/s)

0 2 4 6 8 10 12
−1

0

1

Time (s)

Y
a

w

ψ (rad)
dψ/dt (rad/s)

(b)

0 2 4 6 8 10 12
−1

0

1

R
o

ll

φ (rad)
dφ/dt (rad/s)

0 2 4 6 8 10 12
−1

0

1

P
it
c
h

θ (rad)
dθ/dt (rad/s)

0 2 4 6 8 10 12
−1

0

1

Time (s)

Y
a

w

ψ (rad)
dψ/dt (rad/s)

(c)

Figure 4.7: Results of hover simulation with controller Q2 and (a) zero initial condi-
tions, (b) xT0 = [0.5 0 0.5 0 1 0 0 0 0], and (c) an impulse ∆uT = [50 −150 −50 150].

74

4.6a). Using the values in Section 3.3 for the rotor state references, but keeping

the first five terms along Q’s diagonal at unity, the simulated response converged

much sooner, but well after five seconds (Fig. 4.6b). Ideally, the response would

be faster to prevent large translational excursions. Reducing the attitude terms to

±0.01 and the angular rates to ±0.1 helped reduce the response time to less than

2 s, as well as had less oscillations than the original controller (Fig. 4.7b). The

resulting measurement cost matrix using these values was

Q2 =

1× 104 0 0 0 0 0 0 0 0

0 1× 102 0 0 0 0 0 0 0

0 0 1× 104 0 0 0 0 0 0

0 0 0 1× 102 0 0 0 0 0

0 0 0 0 1× 102 0 0 0 0

0 0 0 0 0 1× 10−8 0 0 0

0 0 0 0 0 0 1× 10−8 0 0

0 0 0 0 0 0 0 1× 10−8 0

0 0 0 0 0 0 0 0 1× 10−8

(4.1)

The resulting controller performed similarly to Q, though it experienced far reduced

transients in all test cases. In all simulations, the controller using the gain matrixK2

75

generated using Q2 had greater state accuracy and did not oscillate nearly as much

as the more aggressive controller (Fig. 4.7). Though the less aggressive controller

appeared better suited in these simulations, the difference between the two controller

became more apparent in position feedback simulation.

4.1.2 Position Control

Proper implementation of position control required modeling the translational

vehicle dynamics in the simulation. The translational kinematics were neglected

previously to emphasize the derivation of the on-board model-based control sys-

tem for the quadrotor. The system used a proportional-integral controller to avoid

complexity, but it required tuning. As mentioned previously, adjusting gains in

simulation expedited free flight testing implementation of hardware. Also, damage

to the vehicle was avoided or minimized in the initial flight tests. To tune the PI

controller in simulation, a system model for translational dynamics must be formu-

lated. According to Castillo, et al [8], the translational dynamics for the quadrotor

was expressed as follows:

mẍ(t) = −(CTρAR
2)(W1(t) +W2(t) +W3(t) +W4(t)) sin(θ(t))

mÿ(t) = (CTρAR
2)(W1(t) +W2(t) +W3(t) +W4(t)) cos(θ(t)) sin(φ(t))

mz̈(t) = −(CTρAR
2)(W1(t) +W2(t) +W3(t) +W4(t)) cos(θ(t)) cos(φ(t)) +mg

The above equations were in the body reference frame. Once the equations were

implemented in the simulation, it was possible to construct the position control loop

76

around the attitude simulation. To do so, the external loop was regarded as a pilot

adding inputs to the attitude control law. Thus, the control law in Equation 3.37,

using the discrete gain matrix K, became

uk = up,k −Kxk (4.2)

where up,k were the inputs computed by the PI algorithm at sample k. Vehicle

motion in the x- and y-direction depended on the pitch and roll of the vehicle,

respectively. By using the components of the vertical thrust in the x- and y-axes, the

desired translation was achieved. As such, the inputs for motors 1 and 3 controlled

motion along the x-axis, and motors 2 and 4 governed motion along the y-axis. Net

thrust along the z-axis affected vertical translation and were added to all motor

inputs. As a result, the discrete control law describing up was

up,k =

Ki,xxk +Kp,xẋk +Ki,zzk +Kp,zżk

−Ki,yyk −Kp,yẏk +Ki,zzk +Kp,zżk

−Ki,xxk −Kp,xẋk +Ki,zzk +Kp,zżk

Ki,yyk +Kp,yẏk +Ki,zzk +Kp,zżk

(4.3)

Since z-position and rate affected all motor inputs, the gainsKi,z andKp,z were tuned

first, followed by tuning the x-axis gains Ki,x and Kp,x. Assuming symmetry, the

values for Ki,y and Kp,y were assumed to be equivalent to their x-axis counterparts.

The gains were tuned using the Ziegler-Nichols method for PI gain tuning [4]. Before

starting, the simulation was set up such that all initial conditions were zero, and any

77

0 2 4 6 8 10
0

1

2

3

4

5

6

7

8
x 10

−3

Time (s)
z

(m
)

Figure 4.8: An example of the unstable oscillation induced by increasing the pro-
portional gain for the z-axis.

additional disturbances neglected, with the exception of sensor noise. Once set, the

simulation was started with Kp,z set to an arbitrary value that will send the system

response into unstable, sustained oscillations (Fig. 4.8). Then, the lowest value for

the gain to send the system into instability was found using binary search.

Table 4.1: Position Control Gains

K K2

Ki,x 60 40 µs/m
Kp,x 40 28 µs · s/m
Ki,y 60 40 µs/m
Kp,y 40 28 µs · s/m
Ki,z 132 146 µs/m
Kp,z 68 66 µs · s/m

The period of the oscillations was measured and used to help calculate the values

for Ki,z and Kp,z using the formulas

78

Kp = 0.45Ku (4.4)

Ki = 1.2Kp/Tu (4.5)

where Ku was the unstable gain and Tu was the period of the oscillations. Gains

Ki,x and Kp,x were found similarly, with the final values associated with both control

gain matrices shown in Table 4.1. In hover, the simulation showed the quadrotor

maintaining its position as intended (Fig. 4.9 and 4.10). The vehicle’s oscillations

in hover visibly disturbed the position of the vehicle, but the quadrotor stayed

within an 0.1 x 0.1 x 0.005 m area about the origin. There appeared to be little

difference between the two controllers thus far. Initializing the vehicle at a nonzero

attitude did not adversely affect the vehicle (Fig. 4.11 and 4.12) and neither did an

impulse (Fig. 4.13 and 4.14). The more aggressive controller appeared to perform

slightly better than the other in this instance. Flight paths generated using the K

controller exhibited less error, as did its attitudes despite transients in the angular

rates. Interactions between the autopilot and the attitude controller were observed,

but these did not destabilize the vehicle in either attitude or position. With the two

control algorithms tested in simulation, these were then implemented in physical

systems.

79

0 2 4 6 8 10 12
−1

0

1

R
o

ll

0 2 4 6 8 10 12
−1

0

1

P
it
c
h

0 2 4 6 8 10 12
−1

0

1

Time (s)

Y
a

w

φ (rad)
dφ/dt (rad/s)

θ (rad)
dθ/dt (rad/s)

ψ (rad)
dψ/dt (rad/s)

0 2 4 6 8 10
−0.5

0

0.5

x
 (

m
)

0 2 4 6 8 10
−0.5

0

0.5

y
 (

m
)

0 2 4 6 8 10
−0.5

0

0.5

z
 (

m
)

Time (s)

(a) (b)

−0.5 0 0.5
−0.5

0

0.5

x (m)

y
 (

m
)

(c)

Figure 4.9: Results of hover simulation with position control and zero initial condi-
tions, showing (a) vehicle attitudes, (b) translation, and (c) flight path.

80

0 2 4 6 8 10 12
−1

0

1

R
o

ll

φ (rad)
dφ/dt (rad/s)

0 2 4 6 8 10 12
−1

0

1
P

it
c
h

θ (rad)
dθ/dt (rad/s)

0 2 4 6 8 10 12
−1

0

1

Time (s)

Y
a

w

ψ (rad)
dψ/dt (rad/s)

0 2 4 6 8 10
−0.5

0

0.5

x
 (

m
)

0 2 4 6 8 10
−0.5

0

0.5

y
 (

m
)

0 2 4 6 8 10
−0.5

0

0.5

z
 (

m
)

Time (s)

(a) (b)

−0.5 0 0.5
−0.5

0

0.5

x (m)

y
 (

m
)

(c)

Figure 4.10: Results of hover simulation with position control, K2 controller, and
zero initial conditions, showing (a) vehicle attitudes, (b) translation, and (c) flight
path.

81

0 2 4 6 8 10 12
−1

0

1

R
o

ll

0 2 4 6 8 10 12
−1

0

1
P

it
c
h

0 2 4 6 8 10 12
−1

0

1

Time (s)

Y
a

w

φ (rad)
dφ/dt (rad/s)

θ (rad)
dθ/dt (rad/s)

ψ (rad)
dψ/dt (rad/s)

0 2 4 6 8 10
−0.5

0

0.5

x
 (

m
)

0 2 4 6 8 10
−0.5

0

0.5

y
 (

m
)

0 2 4 6 8 10
−0.5

0

0.5

z
 (

m
)

Time (s)

(a) (b)

−0.5 0 0.5
−0.5

0

0.5

x (m)

y
 (

m
)

(c)

Figure 4.11: Results of hover simulation with position control and xT0 =
[0.5 0 0.5 0 1 0 0 0 0], showing (a) vehicle attitudes, (b) translation, and (c) flight
path.

82

0 2 4 6 8 10 12
−1

0

1

R
o

ll

φ (rad)
dφ/dt (rad/s)

0 2 4 6 8 10 12
−1

0

1
P

it
c
h

θ (rad)
dθ/dt (rad/s)

0 2 4 6 8 10 12
−1

0

1

Time (s)

Y
a

w

ψ (rad)
dψ/dt (rad/s)

0 2 4 6 8 10
−0.5

0

0.5

x
 (

m
)

0 2 4 6 8 10
−0.5

0

0.5

y
 (

m
)

0 2 4 6 8 10
−0.5

0

0.5

z
 (

m
)

Time (s)

(a) (b)

−0.5 0 0.5
−0.5

0

0.5

x (m)

y
 (

m
)

(c)

Figure 4.12: Results of hover simulation with position control, K2 controller, and
xT0 = [0.5 0 0.5 0 1 0 0 0 0], showing (a) vehicle attitudes, (b) translation, and (c)
flight path.

83

0 2 4 6 8 10 12
−1

0

1

R
o

ll

0 2 4 6 8 10 12
−1

0

1
P

it
c
h

0 2 4 6 8 10 12
−1

0

1

Time (s)

Y
a

w

φ (rad)
dφ/dt (rad/s)

θ (rad)
dθ/dt (rad/s)

ψ (rad)
dψ/dt (rad/s)

0 2 4 6 8 10
−0.5

0

0.5

x
 (

m
)

0 2 4 6 8 10
−0.5

0

0.5

y
 (

m
)

0 2 4 6 8 10
−0.5

0

0.5

z
 (

m
)

Time (s)

(a) (b)

−0.5 0 0.5
−0.5

0

0.5

x (m)

y
 (

m
)

(c)

Figure 4.13: Results of hover simulation with position control and impulse ∆uT =
[50 − 150 − 50 150], showing (a) vehicle attitudes, (b) translation, and (c) flight
path.

84

0 2 4 6 8 10 12
−1

0

1

R
o

ll

φ (rad)
dφ/dt (rad/s)

0 2 4 6 8 10 12
−1

0

1
P

it
c
h

θ (rad)
dθ/dt (rad/s)

0 2 4 6 8 10 12
−1

0

1

Time (s)

Y
a

w

ψ (rad)
dψ/dt (rad/s)

0 2 4 6 8 10
−0.5

0

0.5

x
 (

m
)

0 2 4 6 8 10
−0.5

0

0.5

y
 (

m
)

0 2 4 6 8 10
−0.5

0

0.5

z
 (

m
)

Time (s)

(a) (b)

−0.5 0 0.5
−0.5

0

0.5

x (m)

y
 (

m
)

(c)

Figure 4.14: Results of hover simulation with position control, K2 controller, and
impulse ∆uT = [50 − 150 − 50 150], showing (a) vehicle attitudes, (b) translation,
and (c) flight path.

85

4.2 Flight Testing

Having determined via simulation that the gains computed in Sections 3.3 and

4.1.2 allowed the quadrotor to operate in stable hover while maintaining its position,

the physical vehicle was tested and the efficacy of the simulations verified. First, the

control methods were implemented on their respective systems. The quadrotor then

underwent a series of tests to determine its performance as well as the reliability of

the simulation, provided that the software and hardware were cooperating.

4.2.1 Implementation and Testing in Vicon

The attitude control and estimation algorithms were coded into the Arduino

microcontroller as described in Chapter 2. As for the position control system, the PI

controller was added to a VI in LabView on a laboratory PC. The VI communicated

with other programs written by AVL (UMD) researchers to extract pertinent state

information from the Vicon position system (Fig. 4.15). During initialization, the

program zeroed the initial conditions relative to the vehicle’s starting position, then

subtracted the current state data from reference conditions set by the user. In

effect, the PC user could fly the quadrotor by changing the reference conditions,

though the only reference changed during testing was vehicle altitude. The new

state information was then used to compute the control inputs as in Equation 4.3,

input to the quadrotor via bluetooth, and used the control law from Equation 4.2.

The program wrote the control inputs from the PC as well as the states observed

by the Vicon system to a file for post-processing in Matlab. After software and

86

Figure 4.15: Laboratory setup for quadrotor flight testing in Vicon (one of eight
cameras shown).

hardware communication was confirmed, the vehicle was tested.

4.2.2 Quadrotor Flight Testing in Vicon

Before any testing could take place, Vicon was calibrated and the quadrotor

airframe modeled in the program Tracker. Silver retro-reflective balls were placed on

the ends of the fore, left, right pylons, and on top of the bluetooth module to create

a triangular model in the software (Fig. 2.1). Once Tracker identified and followed

the vehicle around the test area adequately, the LabView VI was opened and the

vehicle placed in the middle of the experimental space. With the quadrotor as level

as possible on the floor, the vehicle and Labview were activated in an arbitrary

order. For ten seconds, the quadrotor initialized the motors as well as averaged the

sensor measurements to establish a level reference attitude. The x- and y-position

87

references were zeroed in the LabView program, and the altitude (z) reference was

set to -1 m, which kept the motor inputs as low as possible to prevent a sudden start-

up. Once the bluetooth connection was established properly, the microcontroller was

ready, and the motor safety disengaged via the PC and the motors turned on. The

quadrotor received a chain of 8-bit input channels encoded in a serial stream, so it

got motor inputs from 0 to 255. The 0 bit acted as a header for the quadrotor to

begin reading the data, while 1 acted as the safety signal; any value greater than

1 was interpreted as a motor command. With the safety off, the motors started

and the z-reference indicator on the PC increased until the vehicle barely began

to slide along the ground. Upon reaching this condition, the desired altitude was

quickly set to 0.5 m and the quadrotor jumped to the desired height. In stable hover,

the quadrotor flew at its designed equilibrium condition and stability experiments

were performed. First, the MAV flew in hover for 30 s without interruption. At

the end of 30 s, noting that the vehicle’s operation appeared stable, the operator

left the PC and imparted an impulse on the x and y axes individually by tapping

the ends of the safety pylons (Fig. 4.16a). Each tap was followed by ten seconds

without interruption to observe the behavior of the vehicle. Once impulse testing

was complete, the z-reference was gradually lowered gently to land. The quadrotor’s

performance was also tested in the presence of a wind disturbance. After taking the

quadrotor up into level hover, a box fan was directed at the MAV and turned on (Fig.

4.16b). The airflow was unsteady but averaged and tested at 2 m/s. Each test was

completed with three trials to demonstrate repeatability (Fig. 4.17). However, only

one of each test was selected for display in this document. Once testing completed,

88

(a) (b)

Figure 4.16: Diagrams depicting tests conducted during flight, which include (a)
imparting an impulse on a pylon and (b) subjecting the vehicle to a wind distur-
bance.

the flight data was analyzed.

89

−0.5 0 0.5
−0.5

0

0.5

x (m)

y
 (

m
)

(a)

−0.5 0 0.5
−0.5

0

0.5

x (m)

y
 (

m
)

(b)

−0.5 0 0.5
−0.5

0

0.5

x (m)

y
 (

m
)

(c)

Figure 4.17: Results of three flight tests with position control in undisturbed hover.

90

Figure 4.18: Video frames from the quadrotor impulse flight test.

4.2.3 Quadrotor Flight Test Results

Despite the assumptions made in implementing a linear control algorithm on

the nonlinear quadrotor system, the vehicle successfully achieved level hover. As

seen in Figures 4.20 and 4.19, the vehicle experienced some oscillations in each axis,

visually manifesting as a rolling oscillation, similar to a spinning top precessing.

This behavior appeared in simulation as well (Fig. 4.2), so the phenomenon was

expected. However, the reason for this transient was still under investigation. A

possibility was that the sensor noise was too large and the measurement bandwidth

too small such that aliasing occurred. Because the control algorithm used state

feedback, any results of aliasing could appear in the inputs and excite the system.

Similar behavior was noted in the AVL MicroQuad, which also suffered from sensor

noise issues, though there were also problems with the motor dynamics as well. Most

remarkably, however, was the increased accuracy of hover in the K controller over

K2 despite the unattractive transients in simulation. Though the vehicle oscillated

slightly in these axes, its stability and station keeping accuracy became readily

apparent when given an impulse (Figs. 4.22, 4.21, and 4.18). Any transient from

the impulse quickly died and the quadrotor returned to hover almost immediately.

This performance was predicted as well, in which the vehicle returned to equilibrium

91

within 2 s. Disturbance testing proved just as promising (Fig. 4.24 and 4.23), though

more so for the K controller. In both instances, the vehicle shifted from its reference

position but maintained level hover. However, controller K2 diverged approximately

0.5 m from its original position, whereas the K controller only shifted a maximum

of 0.3 m. Changes in reference condition were expected, since the position control

used PI with the proportional term using velocity, and thus the inputs became

constant in the absence of a term for integrated position, as opposed to position

itself. Still, the precision of the second controller was exceptional, as foreshadowed

in the position-hold simulations. Overall, the more aggressive controller computed

in Section 3.3 performed best when coupled with automated position control, but

both control gain matrices resulted in a stable vehicle.

92

0 5 10 15 20 25
−1

0

1

φ
 (

ra
d

)

0 5 10 15 20 25
−1

0

1

θ
 (

ra
d

)

0 5 10 15 20 25
−1

0

1

ψ
 (

ra
d

)

Time (s)

0 5 10 15 20 25
−0.5

0

0.5

x
 (

m
)

0 5 10 15 20 25
−0.5

0

0.5

y
 (

m
)

0 5 10 15 20 25
−0.5

0

0.5

z
 (

m
)

Time (s)

(a) (b)

−0.5 0 0.5
−0.5

0

0.5

x (m)

y
 (

m
)

(c)

Figure 4.19: Results of flight test with position control in undisturbed hover, showing
(a) vehicle attitudes, (b) translation, and (c) flight path.

93

0 5 10 15 20 25 30 35
−1

0

1

φ
 (

ra
d

)

0 5 10 15 20 25 30 35
−1

0

1

θ
 (

ra
d

)

0 5 10 15 20 25 30 35
−1

0

1

ψ
 (

ra
d

)

Time (s)

0 5 10 15 20 25 30 35
−0.5

0

0.5

x
 (

m
)

0 5 10 15 20 25 30 35
−0.5

0

0.5

y
 (

m
)

0 5 10 15 20 25 30 35
−0.5

0

0.5

z
 (

m
)

Time (s)

(a) (b)

−0.5 0 0.5
−0.5

0

0.5

x (m)

y
 (

m
)

(c)

Figure 4.20: Results of flight test with position control and K2 controller in undis-
turbed hover, showing (a) vehicle attitudes, (b) translation, and (c) flight path.

94

0 2 4 6 8 10 12 14
−1

0

1

φ
 (

ra
d

)

0 2 4 6 8 10 12 14
−1

0

1

θ
 (

ra
d

)

0 2 4 6 8 10 12 14
−1

0

1

ψ
 (

ra
d

)

Time (s)

0 2 4 6 8 10 12 14
−0.5

0

0.5

x
 (

m
)

0 2 4 6 8 10 12 14
−0.5

0

0.5

y
 (

m
)

0 2 4 6 8 10 12 14
−0.5

0

0.5

z
 (

m
)

Time (s)

(a) (b)

−0.5 0 0.5
−0.5

0

0.5

x (m)

y
 (

m
)

(c)

Figure 4.21: Results of flight test with position control and impulse on x-axis pylon,
showing (a) vehicle attitudes, (b) translation, and (c) flight path.

95

0 2 4 6 8 10 12 14
−1

0

1

φ
 (

ra
d

)

0 2 4 6 8 10 12 14
−1

0

1

θ
 (

ra
d

)

0 2 4 6 8 10 12 14
−1

0

1

ψ
 (

ra
d

)

Time (s)

0 2 4 6 8 10 12 14
−0.5

0

0.5

x
 (

m
)

0 2 4 6 8 10 12 14
−0.5

0

0.5

y
 (

m
)

0 2 4 6 8 10 12 14
−0.5

0

0.5

z
 (

m
)

Time (s)

(a) (b)

−0.5 0 0.5
−0.5

0

0.5

x (m)

y
 (

m
)

(c)

Figure 4.22: Results of flight test with position control,K2 controller, and impulse
on x-axis pylon, showing (a) vehicle attitudes, (b) translation, and (c) flight path.

96

0 5 10 15 20 25 30
−1

0

1

φ
 (

ra
d

)

0 5 10 15 20 25 30
−1

0

1

θ
 (

ra
d

)

0 5 10 15 20 25 30
−1

0

1

ψ
 (

ra
d

)

Time (s)

0 5 10 15 20 25 30
−0.5

0

0.5

x
 (

m
)

0 5 10 15 20 25 30
−0.5

0

0.5

y
 (

m
)

0 5 10 15 20 25 30
−0.5

0

0.5

z
 (

m
)

Time (s)

(a) (b)

−0.5 0 0.5
−0.5

0

0.5

x (m)

y
 (

m
)

(c)

Figure 4.23: Results of flight test with position control and a 2 m/s wind in the
y-direction, showing (a) vehicle attitudes, (b) translation, and (c) flight path.

97

0 10 20 30 40
−1

0

1

φ
 (

ra
d

)

0 10 20 30 40
−1

0

1
θ
 (

ra
d

)

0 10 20 30 40
−1

0

1

ψ
 (

ra
d

)

Time (s)

0 10 20 30 40
−0.5

0

0.5

x
 (

m
)

0 10 20 30 40
−0.5

0

0.5

y
 (

m
)

0 10 20 30 40
−0.5

0

0.5

z
 (

m
)

Time (s)

(a) (b)

−0.5 0 0.5
−0.5

0

0.5

x (m)

y
 (

m
)

(c)

Figure 4.24: Results of flight test with position control,K2 controller, and a 2 m/s
wind in the y-direction, showing (a) vehicle attitudes, (b) translation, and (c) flight
path.

98

4.3 Concluding Remarks

Several conclusions were drawn from the quadrotor’s performance in flight

testing. First, the vehicle was capable of maintaining stable hover in both the ab-

sence and presence of disturbances. At best, the quadrotor maintained an attitude

of ±0.1 rad and its lateral position within a 0.1 m square. With a pitch impulse,

the quadrotor returned to equilibrium while staying within the 0.1 m area and its

aforementioned ±0.1 rad attitude. With an unsteady wind disturbance averaging

2 m/s, the vehicle deviated from equilibrium by 0.3 m, but remained steady in its

new position. In all instances, the vehicle returned to its designated position and

attitude. Additionally, the quadrotor perfomed more accurately with an aggressive

on-board controller coupled with the Vicon auto-pilot and an aggressive on-board

controller. The Vicon auto-pilot provided an excellent means for flight testing. The

system kept test conditions consistent between trials and ensured some repeatability.

The PI controller successfully helped the quadrotor station-keep, though its altitude

hold drifted because of battery voltage drop. The success of the PC-based autopi-

lot and the quadrotor’s embedded control algorithm was a testament to the utility

of control formulation and tuning in simulation. Vehicle flight behavior resembled

that predicted by the Simulink simulation, and the gains computed and tested re-

quired very little extra tuning to guarantee operation of the physical system. The

simulation’s efficacy was also an indication that the assumptions made in control

algorithm and the dynamics formulation was appropriate for the quadrotor system

in hover. Linearizing the nonlinear dynamics and using small angle approximations,

99

as well as subsequently assuming that the net rotor torques are close to zero, all

contributed to simplifying the control problem while leading to a stable operating

vehicle.

100

Chapter 5

Conclusions

The process of developing and testing the quadrotor described in the thesis

demonstrated some of the trade-offs inherent in simplifying a vehicle’s mechanical

design. Keeping the number of moving and extraneous parts to a minimum helped

ensure expedient production and reduced sources for failure. For a quadrotor, this

guaranteed the necessity of computer augmented stability and required some com-

plexity in the algorithm employed. In overcoming the challenges of quadrotor design

and operation, some conclusions were drawn.

1. Linearization of the nonlinear quadrotor attitude dynamics about

level hover using perturbation method and small angle assumption

produced a valid linear model for hover.

Linearizing about zero attitude obfuscated a large amount of potentially per-

tinent information in the attitude dynamics. Doing so eliminated all nonlin-

earities introduced by gyroscopic effects and produced a linear system model

that had marginally stable attitudes. As discussed in Section 4.1.1, however,

simulations demonstrated that the nonlinear components of the attitude dy-

namics were negligible compared to the motor contribution, thus dismissal was

justified.

2. The motor dynamics dominated system behavior in hover.

101

Testing in Chapter 2 revealed that these dynamics were not to be ignored,

since the rise time for the motors were as long as 0.3 s. For a larger quadrotor

with higher inertias, this might not be as much of an issue, but for smaller

quadrotors such as the one under study, neglecting the motor dynamics could

introduce instability to the system.

3. An LQR controller supplemented with a Luenberger Observer to

estimate rotor states effectively stabilized the quadrotor.

Instead of adding complexity to the vehicle structure and circuitry, a Luen-

berger observer estimated the rotor states, thereby keeping the rotor dynamics

in the system model used to compute the control gain matrix with LQR. In

doing so, model uncertainty was reduced, as well as the theoretical delay that

would be added in neglected the motor dynamics. Simulations demonstrated

more than reasonable accuracy in the predictions. Granted, implementation

of the observer on an embedded system took up a considerable amount of

memory, especially if the matrix was represented as a floating point number.

Saving the matrix to program memory instead of the EEPROM or SRAM

avoided this issue but only worked because the system model was assumed to

be LTI. The assumptions held, however, as demonstrated both in simulation

and in flight testing, as the quadrotor maintained hover despite impulse and

wind disturbances.

4. The simulation suitably predicted vehicle behavior and could be

used to reliably tune the system, producing a flying, stable vehicle.

102

Using Simulink, the vehicle’s behavior was observed before the control system

was implemented on the physical vehicle. The simulation took into account

the interactions between the various systems and assumptions, such as using

a linear discrete controller in a system with nonlinear continuous dynamics,

and displayed results that closely resembled those seen in flight testing. For

instance, the oscillations predicted in the simulated vehicle response appeared

in flight as well. Additionally, tuning the position control system using the

simulation resulted in a working, stable vehicle that required minimal tuning

in flight testing. In other words, a control system could be designed, tested,

and tuned in the simulation, then implemented on the vehicle with positive

results. During flight testing, adjustment to either the attitude control gain

matrix K or the position control gains was usually to improve performance,

as opposed to ensuring operation.

5.1 Future Work

In designing the quadrotor, several possibilities for future pursuit have risen

that deserve some attention. Since the quadrotor’s dynamics in hover are dominated

by motors, it may be possible to improve system performance by using high-torque

motors that improve the rotor response. Alternately, reducing rotor inertia could

lead to similar results, though perhaps not as dramatically as using a new set of

motors. Another means to improving vehicle performance is the utilization of more

accurate digital sensors; the Arduino’s 10-bit resolution limits the accuracy of sensor

103

measurements and, coupled with the current sensors’ sensitivity, may be responsible

for the quadrotor’s oscillatory response in hover. The microcontroller is I2C-ready, so

using higher-resolution sensors is a definite possibility. With these improvements, it

could be possible to increase the quadrotor’s stability and make it an ideal platform

for experimenting with other algorithms and payloads. For example, the payload

capacity of the quadrotor could be used to test an additional sensor suite. Also,

quadrotor and MAV testing could be streamlined by using the simulation to predict

and tune the vehicles for use in Vicon. The simulation could be modified into

a modular design to facilitate use with other systems. Alternatively, using the

simulation and quadrotor dynamics, a design methodology could be developed for

determining an optimal structure and controller given certain starting constraints,

such as an off-the-shelf motor/rotor combination and battery. The algorithm could

design a quadrotor by minimizing nonlinearities as well as motor effects by adjusting

the vehicle’s inertia. Visa-versa, the motors, rotors, and battery could be selected

and placed based on the size and operating constraints of the vehicle. Overall, the

quadrotor is an excellent test platform.

104

Bibliography

[1] Abdallah, C. T., Cerone, V., Dorato, P., Linear Quadratic Control: An Intro-
duction, Krieger Publishing Company, Malabar, FL, 2000.

[2] Altug, E., Ostrowski, J., Mahony, R., Control of a Quadrotor Helicopter Using
Visual Feedback, IEEE International Conference on Robotics & Automation,
Washington, DC, May 2002.

[3] ”Arduino Pro Mini 328 - 5V/16MHz,” Sparkfun Electronics.
(http://www.sparkfun.com/products/9218).

[4] Balasubramaniam, P., ”Control, Computation and Information Systems,” First
International Conference on Logic, Information, Control and Computation,
Gandhigram, India, February 25-27, 2011.

[5] Borenstein, J., Ojeda, L., Kwanmuang, S., Heuristic Reduction of Gyro Drift
in IMU-based Personnel Tracking Systems, SPIE Defense, Security + Sensing
Conference, Orlando, FL, April 13-17, 2009.

[6] Bouabdallah, S., Design and Control of Quadrotors with Application to Au-
tonomous Flying, PhD Dissertation, cole Polytechnique Fdrale de Lausanne,
Lausanne, Switzerland, 2007.

[7] Bouabdallah, S., Noth, A., Siegwart, R., ”PID vs LQ Control Techniques Ap-
plied to an Indoor Micro Quadrotor,” IEEE/RSJ International Conference on
Intelligent Robots and Systems Proceedings, September 2004.

[8] Castillo, P., Lozano, R., and Dzul, A., ”Stabilization of a Mini Rotorcarft with
Four Rotors,” IEEE Control System Magazine, December 2005, pp. 45-55.

[9] ”CrazyFlie quadrotor description,” Daedalus Project, June 21, 2010.
(http://www.daedalus.nu/2010/06/crazyflie-quadcopter-description/)

[10] Domingues, J., ”Quadrotor prototype,” Master Thesis, Instituto Superior
Técnico, Universidade Técnica de Lisboa, Lisboa, Portugal, 2009.

[11] ”Draganfly.com Industrial Aerial Video Systems & UAVs,” Draganfly Innova-
tions, Inc. (http://www.draganfly.com).

[12] Grocholsky, B., Stump, E., and Kumar, V., ”An Extensive Representation for
Range-Only SLAM,” International Symposium on Experimental Robotics, Rio
de Janeiro, Brazil, July 7-10, 2006.

105

[13] Harrington, A., Optimal Propulsion System Design for a Micro Quadrotor,
Master’s Thesis, University of Maryland, College Park, MD, 2011.

[14] Hoffman, G., et al, The Stanford Testbed of Autonomous Rotorcraft for Multi
Agent Control (STARMAC), The 23rd IEEE Digital Avionics System Confer-
ence, 2004.

[15] Hoffmann, G., et al, ”Quadrotor Helicopter Flight Dynamics and Control: The-
ory and Experiment,” AIAA Guidance, Navigation, and Control Conference
Proceedings, 2007.

[16] Hrishikeshavan, V., Experimental Investigation of a Shrouded Rotor Micro Air
Vehicle in Hover and in Edgewise Gusts, PhD Dissertation, University of Mary-
land, College Park, MD, 2011.

[17] Hu, C., Qinghu Meng, M., Xiaoping Liu, P., ”Observer-Based LQR Control
of Shaping Process of Automobile Belt,” 5th World Congress on Intelligent
Control and Automation Proceedings, Hangzhou, China, June 15-19 2004.

[18] Kendoul, F., et al, ”Real-Time Nonlinear Embedded Control for an Au-
tonomous Quadrotor Helicopter,” Journal of Guidance, Control, and Dynam-
ics, Vol. 30, No. 4, July-August 2007, pp. 1049-1061.

[19] Leishman, J., The Breguet-Richet Quad-Rotor Helicopter of 1907.
(http://www.glue.umd.edu/ leishman/Aero/Breguet.pdf)

[20] Leishman, J., Principles of Helicopter Aerodynamics, 2nd ed., Cambridge
Aerospace Series, Cambridge University Press, New York, NY, 2006.

[21] McMichael, J. and Francis, C. M., USAF, ”Micro Air Vehicles Towards a New
Dimension in Flight,” U.S. Department of Defense Weapons Systems Technol-
ogy Information Analysis Center (WSTIAC) Newsletter, Vol. 1, No. 13, January
2000. (http://wstiac.alionscience.com/pdf/Vol1Num1.pdf)

[22] Miller, D., Open Loop System Identification of a Micro Quadrotor Helicopter
from Closed Loop Data, Master’s Thesis, University of Maryland, College Park,
MD, 2011.

[23] Niculescu, S., Fu, M., Li, H., ”Delay-Dependent Closed-Loop Stability of Linear
Systems with Input Delay: An LMI Approach,” 36th IEEE Conference on
Decision and Control Proceedings, San Diego, 1997.

[24] Nise, N., Control Systems Engineering, 5th ed., John Wiley & Sons, Inc., Hobo-
ken, NJ, 2008.

106

[25] Patrick, B., Optic Flow Based Station-Keeping and Wind Rejection For Small
Flying Vehicles, Master’s Thesis, University of Maryland, College Park, MD,
2010.

[26] Pereira, J., Bawek, D., Westfall, S., Design and Development of a Quad-
Shrouded-Rotor Micro Air Vehicle, AHS 65th Annual Forum, Grapevine, TX,
May 27-29, 2009.

[27] Sanner, R., ”Linear System Dynamics,” University of Maryland, Fall 2008,
Lecture.

[28] Skogestad, S. and Postlethwaite, I., ”Multivariable Feedback Control: Analysis
and Design,” John Wiley & Sons, Ltd., Chichester, UK, 1996.

[29] Spooner, S., ed, ”The Oehmichen Helicopter,” Flight, Vol. 13, No. 9, March 3,
1921, p. 160.

[30] Welch, G., and Bishop, G., An Introduction to the Kalman Filter, Department
of Computer Science, University of North Carolina, Chapel Hill, NC, 2006.

[31] Weng, K., and Mohamad, S., Design and Control of a Quad-Rotor Flying
Robot For Aerial Surveillance, 4th IEEE Student Conference on Research and
Development, 2006.

107

