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Micro Air Vehicles (MAVs) are being developed for their envisioned applications in hostile

urban environments where they can provide a tactical advantage to the war fighter. A vehicle at

this scale faces many challenges; this paper aims to provide measures for one of these challenges.

MAVs are small, lightweight and highly agile vehicles, but their low mass and inertia properties

cause this class of vehicle to be highly susceptible to gust disturbances. This dissertation will focus

on building measures to analyze a vehicle’s performance when subjected to gust disturbances. The

study will concentrate on a 70 gram quadrotor using the linear time invariant model extracted from

system identification through flight test, as well as bench-top testing. The analyses explored here

will leverage well-known linear system tools, including gramians and singular value decompositions.

The techniques developed are easily extended to any platform and can provide key insight into

trade studies when determining platform selection, configuration and layout. The ultimate goal is

to determine the strengths and weaknesses of a vehicle amidst gust disturbances.
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Chapter 1

Introduction

There has been recent interest in the potential tactical advantages a small, agile vehicle can

provide in an urban environment. A large number of military causalities happen in a confined

environment. The enemy has the advantage of knowledge of their surroundings. Intelligence,

Surveillance, and Reconnaissance (ISR) capability in recent years has provided military forces

information to execute aggressive and successful battle strategies against hostile targets. Due to

the success of ISR capability there is an increase demand for the concept of layered sensing, which

provides information to the war fighter from different vantage points. One crucial component that

is missing is the ability to scout caves, buildings, and urban settings. For this flight regime, Micro

Air Vehicles (MAVs) can play a crucial role in closing the gap of essential information to the war

fighter.

There are several challenges to overcome in an urban environment. Autonomous flight

heavily relies on Global Positioning System (GPS), which can become intermittent or non-existent

due to loss of line of sight with GPS satellites. Communication between the vehicle and ground

station also poses a problem for the same reason. Since vehicles are operating close to the earth,

they are not able to loiter above valuable targets, thereby making hover and perching more ideal

for ISR in this environment. Yet hovering is often energy intensive, and perching is a definitively

complex maneuver that has yet to be perfected in areas with limited sensing. The flight space has

many obstacles such as power lines, buildings and gust disturbances. Even on a calm day, wind

gusts can become violent due to buildings funneling any slight breeze. This paper will focus on

analysis tools to evaluate vehicles against expected disturbances and will explore the limitations

of disturbance rejection.

There is limited work on disturbance rejection at this scale. A study at Georgia Institute of

Technology [1] used a WalkeraTM micro coaxial helicopter and tested its performance in an array
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of gust scenarios. In hover condition the Spherical Error Probability (SEP) was tracked, which

only measured the variations of the vehicle from its commanded position. Trajectory tracking

was also evaluated by looking at the error between the desired trajectory and the actual flight

path of the coaxial helicopter. This type of testing provides little insight about how this class of

vehicle operates in wind gust. Instead, it provided only the performance of a coaxial helicopter

for these specific scenarios. The coaxial helicopter is known to have limited agility due to being

an inherently stable platform. Similarly, University of Maryland evaluated the performance of an

X-UFO Quadrotor with optic flow measurements tied into the control law [2]. This study looked at

the setting time of a vehicle when faced with a steady gust disturbance from a box fan. Again this

study only tested one vehicle in a specific disturbance condition and provided limited information

on how MAVs perform in these types of environment.

Alternatively, Pisano took a different approach through an examination of varying flight

characteristics in the frequency domain, and observed how they change when scaled by size [3].

Doing so provides basic metrics for actuator bandwidth, update rates for gyros/sensor measure-

ments and necessary closed loop bandwidth of the vehicle. These three parameters where scaled

with wingspan, which is ultimately related to the vehicle’s inertia properties. Small moments of

inertias result in faster natural modes, therefore requiring increased bandwidth on actuation and

close loop performance. The faster dynamics also require higher bandwidth for measurements from

the sensor packages. This investigation provides key insight into design requirements at this scale.

The body of work presented in this paper supports the Micro Autonomous Systems Tech-

nology (MAST) Collaborative Technology Alliance (CTA) effort. This effort focuses on an array

of objectives. One of the goals is to provide models of several vehicle platforms at this scale and

compare performance of the vehicles with different metrics. The metric examined in this paper

is the vehicles disturbance rejection properties. Once a model has been identified, this method

can be performed to examine the platforms traits against various disturbances. The MAST CTA

focuses on an array of vehicles including quadrotors, single and coaxial helicopters, cyclocopters

and flappers. Once models are identified for these platforms the disturbance analysis outlined here
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can be applied. This will highlight each platform’s vulnerabilities and strengths, and provide a

layer of understanding of how different platforms at this scale perform under different disturbance

conditions.

The methods for examining disturbance properties will use a 70 gram quadrotor that has a

span of 6 inches from rotor tip to rotor tip. This small size gives the vehicle low inertia properties

resulting in fast body dynamics. This is a desirable trait since it allows the vehicle to be highly

agile; it only takes a small amount of control authority to create moments and forces on the

vehicle. This particular quadrotor is inherently unstable. Fighter jets also possess this trait, and

this instability adds to the vehicle’s agility. The rotors are arranged in an “X” configuration,

which differs from the conventional plus layout. Though this approach is slightly more complex, in

principle it provides more control authority owing to the fact that the rotors are involved in each

maneuver. A quadrotor is ideal for developing this methodology due to its intuitive flight control

layout.

The purpose of this dissertation is to investigate the disturbance properties of the microquad.

The list below outlines the contributions, which when coupled together present an all-encompassing

method of analysis that provides key insight into microquad sensitivity to disturbances and its

ability to reject them.

• Identify disturbance matrix from the microquad through an experimental setup.

• Develop framework for gramian based analysis aimed to determine maximum disturbances

the microquad is able to reject given a bounded control input. These results are subsequently

verified through simulations.

• Explore the directionality of the disturbance as it relates to the plant dynamics of the mi-

croquad.

• Examine relative control energy required for each disturbance parameter.

• Investigate actuator bandwidth as it relates to the dynamics of a disturbance.

3



Chapter 2

Quadrotor Overview

2.1 Vehicle Configuration

Quadrotors are the vehicle of choice for many research laboratories. They make an excellent

test platform due to their simplistic design and favorable thrust to weight ratio allowing the

vehicle to carry large payloads in relation to their size. Typically these vehicles are used for sensor

package and navigation algorithm development. The Autonomous Vehicles Laboratory (AVL) at

the University of Maryland has been developing a microquad intended to push the limits of Micro

Air Vehicle development and provide a better understanding of the limits of vehicles at this scale.

The ultimate goal is to demonstrate that a vehicle of this size can successfully navigate in a GPS

denied urban environment.

MAVs have many obstacles to overcome in their development. Their low inertias make the

dynamics of the vehicle very fast, resulting in a highly agile vehicle. As a result, high bandwidth

actuation is required to control the vehicles fast dynamics. Although there have been great ad-

vancements in electronics and processing, power continuous to be a limited resource at this scale.

Powerful processors require large amounts of power, which in turn requires larger sources of power,

typically lithium polymer batteries. Battery technology continues to be a bottleneck for long du-

ration missions. Currently, the microquad has a flight duration of approximately ten minutes; it is

doubtful that any mission could be completed in that amount of time. Another issue at this scale

is its limited payload capability, making it difficult to have redundant sensors for robustness. The

microquad still has many challenges before it can become a viable platform, but this iteration will

provide insight on the technology gaps that lie ahead and provide a baseline as to what can be

accomplished at this scale.

Quadrotors are typically arranged in a plus configuration with two sets of rotors: one set
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rotating counter-clockwise and the other set clockwise. This is depicted in Figure 2.1 from [15] and

will be used to describe how a quadrotor maneuvers. For a flight condition of hover, all four rotors

provide an identical amount of thrust equal to the weight of the vehicle. Altitude is controlled

by increasing and decreasing all four rotors in unison. The two sets of contour rotating rotors

provide the torque required to maintain a heading lock. Having a differential in RPM between

the two sets of rotors causes a yaw moment. For example, having rotors one and three decrease

RPM, and rotors two and four increase RPM to compensate for the loss in thrust will result in a

counter-clockwise rotation of the vehicle. In order to move forward and aft, pitching the vehicle is

required and is achieved by a difference in thrust from opposing rotors. The same is true for lateral

motions. These basics movements are fairly decoupled and will be broken down into heaver, yaw,

longitudinal and lateral dynamics depicted in [5].

Figure 2.1: Mechanics of a Cross Configuration Quadrotor

For the microquad an “X” configuration was settled on for the design. The reasoning is that

this layout requires more actuators to be involved for each maneuver. The benefit is additional

control authority; however, the downside is added complexity when mixing the control inputs to

motor actuation. The basic control concept is the same as the plus configuration, but rotated 90

degrees, requiring all four motors for longitudinal and lateral movements. Figure 2.2 depicts how
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more rotors are involved in longitudinal, lateral and yaw maneuvers. For instance, to translate

right, the vehicle needs to roll right. The desired attitude is achieved by decreasing RPM on the

right two rotors and increasing RPM the left rotors resulting in the microquad to transverse to

the right.

Figure 2.2: Mechanics of a “X” Configuration Quadrotor

The microquad is inherently unstable and requires rate gyros coupled inner-loop feedback to

maintain the attitude of the vehicle. This instability makes the vehicle highly maneuverable, but

also requires adequate sensing and control bandwidth to leverage these desired flight characteristics.

To control these fast inner-loop dynamics, the Guidance and Inertial Navigation Assistant (GINA)

mote, developed at the University of California Berkeley, is utilized for the avionics package.

The current microquad has the GINA 2.2c mote installed, which boasts KionixTM KXSD9-1026

accelerometer and the InvenSenseTM ITG3200 gyroscope. The rate gyroscope aids in damping for

the inner-loop of the vehicle allowing it to be stabilized. Damping adds stiffness to the system and

slows down the dynamics. A complimentary filter blends the measures from the accelerometer and

gyroscopes together to provide an estimate for the pitch θ and roll φ angles [15]. Having an accurate

estimate of the vehicle’s attitude is imperative for controlling the microquad in longitudinal and

lateral directions.
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Figure 2.3: University of California Berkeley GINA Mote

The GINA mote handles sensing, processing, and communication for the vehicles. The GINA

mote seen in Figure 2.3 is equipped with a Texas Instruments MSP430 microcontroller that operates

at a 333 Hz loop time. This can be varied depending on application. The lightweight sensor suite

weighs 2 grams and carries a 3-axis rate gyroscope and two 3-axis accelerometers. The board has

a 2.4 GHz Atmel AT86RF230 radio which is capable of bi-directional communication; therefore,

information is able to be transmitted and received. Communication to the ground station is carried

out by a USB Atmel RZ600 base station mote. The communication architecture is depicted in

Figure 2.4. The on-board microcontroller handles all data processing and communications, as well

as generating PWM signals to the microquad’s Electronic Speed Controllers (ESCs). The ESCs

ultimately drive the four rotors. The GINA mote requires 3.7 volt power source, which is the

typical output voltage of a single cell battery. This lower power, light weight sensor suite is an

effective avionics package at this scale.
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Figure 2.4: Communication Architecture

The microquad is equipped with 4 WalkeraTM ESCs that drive 4 KV7500 brushless motors

with 4 GWSTM counter-rotating 3x2 propellers. All these components were designed to operate

with a 3.7 volt power source. The vehicle’s power supply is a 2 cell lithium polymer battery, which

is rated for 7.4 volts. A power regulator break-out board, Figure 2.5, was designed to step down the

7.4 volts to 3.7 volts. This is the operating voltage for all of the electrical components installed on

the microquad. This solution was implemented to gain more consistent performance throughout

the duration of a flight. Using a power regular mitigates the problem of battery degradation

over a course of a flight. For example, a single cell LiPo provides 4.3 volts when fully changed

and will nonlinearly degrade to 3.5 volts. During this degradation of power, the vehicle performs

vastly different, making tuning gains extremely difficult because consistent performance cannot be

attained.

Figure 2.5: Power Regulation Breakout Board

8



This is the fifth generation microquad and is shown in Figure 2.6. Each new iteration

dealt with issues that the previous design encountered; these issues are discussed in detail by

Miller [15]. The current microquad has demonstrated reliable open-loop flights with damping

feedback, provided by the rate gyroscopes. Using damping feedback allows a pilot to fly the

vehicle open-loop. With this ability, system identification has been performed and a Linear Time

Invariant (LTI) model has been constructed by Miller [15]. Additionally, model based controllers

have been developed to control the outer-loop for position hold. These model based controllers

have not been successfully implemented as planned, due to actuation issues from the Commercial

Off The Shelf (COTS) ESCs. These ESCs are low quality and do not have the desired precision and

accuracy required to maintain position hold. Currently, this issue is being addressed by designing

an in-house ESC. Although the vehicle will not be flight tested for its disturbance properties,

information about the vehicle disturbance resiliency can be explored through the methodology

presented here.

Figure 2.6: Microquad Version 5
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Chapter 3

Vehicle Model

3.1 Overview

Having an accurate system model for a vehicle is vital for evaluating vehicle performance,

flight characteristics and controller development. The common state space representation is a

useful formulation that is supported by well-developed theory and powerful tools for both analysis

and controller design. Equation 3.1 is the typical state space model realization, which is presented

in any multi-variable linear controls book [13], [20]. In this formulation ~x is the state vector, ~̇x is

the time derivative of the state vector, ~u is the control input vector, and ~y is the measurements

vector. Matrix A describes the system’s dynamics, B is the control matrix, C is the observation

matrix, and D is the feedforward matrix. Matrix D will always be zero and will be eliminated

from the model.

~̇x = A~x+ B~u

~y = C~x+ D~u
(3.1)

Linear time invariant models relate the inputs and outputs of the system, which is typically

represented in a block diagram format as seen in Figure 3.1, where G is the system dynamics from

the state space model and sometimes is referred to as the plant. Block diagram models are a useful

tool when visualizing the structure of a system and can also aid in control design synthesis.

Figure 3.1: Block Diagram of the System Dynamics
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An additional D matrix is added to the state equation to account for disturbances. This

disturbance matrix is different from the D feedforward matrix and should not be confused. As

stated previously, the feedforward matrix will be zero; therefore from here on, D will denote the

disturbance matrix. The D matrix can be thought of as a controls matrix with ~d as the input.

In reality, the disturbances are not an input that is controlled, but thinking of it in this context

will aid in the analysis process, which will be seen in subsequent chapters. Since superposition is

a linear property, the contribution from the control input and distance input can simply be added

together.

~̇x = A~x+ B~u+ D~d

~y = C~x
(3.2)

3.2 System Identification

This chapter builds on the previous work of Miller [15] and will provide a brief overview of

the system identification techniques used to extract a bare air frame model of the microquad. The

control inputs and outputs of the system are recorded, and then the data is post-processed using

linear regression techniques to determine stability and control derivatives, which are contained in

the state space model. Once a model is extracted, it is verified by using other sets of flight data

as truth data, and finally the truth data can be compared with what the final model predicts.

The standard state space structure, ~̇x = A~x + B~u, was employed for the system model.

A first principle model approach is used to identify the dominant terms. This model closely

emulates the results from Gremillion [5]. The results of the linearization is seen in Equation 3.3

and shows the dominate stability and control derivatives. This is essential when performing system

identification with SIDPAC [16], a software package developed in MatlabTM , to aid in the system

identification process using flight data. This software package has tools for both time domain

and frequency domain methods. For the identified model for the microquad, a linear regression

algorithm determined the coefficients to fit the time domain flight data. These coefficients are

referred to as stability derivatives.
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Equation 3.3, from Miller [15], shows the LTI model, where the state vector is ~x = [u, v, w, p, q, r, φ, θ, ψ]T

and the control inputs are ~u = [δlon, δlat, δyaw, δthr]
T . This model represents the bare air frame

inner-loop vehicle dynamics. The terms that populate the dynamics matrix A are referred to as

stability derivatives. The terms in the controls matrix B are control derivatives. These are partial

derivatives for the forces and moments acting on the vehicle and the subscript indicates the cause

of the resulting force or moment. Forces are denoted as [X,Y, Z]T , where X is a force that acts

in the x-body direction and so on. In a similar fashion, moments are represented by [L,M,N ]T ,

where L is a moment about the x-body axis and so on. For example Xu is the stability derivative

relating X-force cause by the forward velocity u. Stability derivatives are typically normalized by

a mass term; derivatives relating force to a perturbation are normalized by mass, and stability

derivatives relating moment to a perturbation are normalized by the mass moment of inertia. An

example is Xu = 1
m
∂X
∂u . This is the same convention used in Nelson [12].

~̇x =



Xu 0 0 0 Xq 0 0 −g 0

0 Yv 0 Yp 0 0 g 0 0

0 0 Zw 0 0 0 0 0 0

0 Lv 0 Lp 0 0 Lφ 0 0

Mu 0 0 0 Mq 0 0 Mθ 0

0 0 0 0 0 Nr 0 0 0

0 0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0 0


~x+



0 0 0 0

0 0 0 0

0 0 0 Zthr

0 Llat 0 0

Mlon 0 0 0

0 0 Nyaw 0

0 0 0 0

0 0 0 0

0 0 0 0


~u (3.3)

For the system identification process, it is desirable to extract a dynamics model of the

system independent of control, this referred to as a bare airframe model. The microquad’s inherent

instability required inner-loop feedback control for it to be pilotable, making this an obstacle for

extracting a bare airframe model. To identify a model with feedback control already implemented

is rather pointless, as any closed-loop control effects the natural dynamics of the vehicle. This

would yield an inaccurate model making controller designs suboptimal and possibly unusable.

This is why extracting the bare airframe (no feedback control) is vital. This is achieved by setting
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feedback gains as low as possible and having knowledge of the exact control strategy. This allows

the full control signal to be reconstructed by adding the pilot commands and the feedback control

input together, and provides the total control input to the vehicle. Using this information coupled

with state information provided by a motion capture system, allows a model to be extracted to fit

the flight data.

Table 3.1 shows the longitudinal stability derivatives calculated over 10 different flights

from Miller [15]. The percent error indicates how well the identified model fits the flight test data.

Clearly, there is a large variation in the parameters. This is due to the stability derivatives being

reliant on one another. For instance, for forward flight to occur, the vehicle needs to provide

a moment that pitches the vehicle forward, tilting the thrust vector, and providing a resulting

force in the x-direction, and subsequently a forward velocity. Due to this build-up effect, the

weighting of Xu, Xq, Mu, and Mq can have various distributions and still adequately fit the flight

data. This does not mean that the model derived does not accurately represent the system, as a

system can have multiple realizations and still yield the same results. A perfect example of this

is representing a system in observer canonical form and controller canonical form. Both actually

represent the system, but are different realizations of the model [13]. However, in these instances,

the parameters within the model lose their physical meaning, which is important when constructing

the disturbance matrix D.
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Xu Xq Mu Mq

Parameter % Error Parameter % Error Parameter % Error Parameter % Error

-0.2004 13.28 -0.21191 19.96 6.3642 2.38 -6.404 2.43

-0.42149 7.45 -0.06105 68.31 24.139 7.68 -25.535 7.71

-0.27055 12.22 - 0.13251 28.21 17.351 4.44 -17.098 4.45

-0.47435 5.88 0.11572 32.56 19.656 4.09 -18.835 4.15

-0.64059 7.64 0.15584 34.37 19.182 10.19 -25.257 10.00

-0.5735 7.36 0.2164 25.46 13.327 0.53 -14.377 0.51

-0.57697 6.09 0.12209 29.13 18.737 0.25 -18.67 0.21

-0.34154 8.68 -0.05345 60.65 26.415 3.72 -27.169 3.64

-0.61581 5.51 0.17822 21.06 16.716 2.87 -15.037 2.70

-0.3762 8.00 -0.07195 35.05 26.691 3.66 -23.312 3.55

Table 3.1: LTI Longitudinal Stability Derivatives

3.3 Disturbance Matrix

3.3.1 Introduction

This section focuses on identifying the disturbance parameters in the disturbance matrix.

There are 3 translational and 3 rotational gust components denoted by ~d = [du, dv, dw, dp, dq, dr]
T .

With an accurate model, the conventional way to model atmospheric disturbance is to select the

stability derivatives for forces and moments that are influenced by [u, v, w, p, q, r]T components and

negate the terms [12]. These terms are represented by D = −A and is reflected in Equation 3.4.

Similar to Equation 3.3, a number of these terms will be zero. This, however, is not done here,

due to the large variations in the stability derivatives from the system identification process, which

was discussed in § 3.1. Therefore, a series of bench-top tests were performed, and from this data

stability derivatives were extracted.
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D =



−Xu −Xv −Xw −Xp −Xq −Xr

−Yu −Yv −Yw −Yp −Yq −Yr

−Zu −Zv −Zw −Zp −Zq −Zr

−Lu −Lv −Lw −Lp −Lq −Lr

−Mu −Mv −Mw −Mp −Mq −Mr

−Nu −Nv −Nw −Np −Nq −Nr



(3.4)

3.3.2 Experimental Setup for Translational Stability Derivatives

This section will focus on the stability derivatives influenced by [du, dv, dw]T wind compo-

nent, accomplished by using a fan bank to gust the microquad in a hover flight condition. The

vehicle itself is rigidly mounted to a 6 Degree of Freedom (DOF) force and moment transducer.

This measures the changes of the loading on the vehicle due to a particular translational distur-

bance, which is approximated by a linear relationship between the loading on the vehicle and the

magnitude of the disturbance. The slope of this curve yields the stability derivative when normal-

ized by its respected mass or moment of inertia, depending on whether it’s a force and moment

derivative.

The gust generator developed here is a simple and inexpensive test setup that is built from a

array of computer fans similar to Harland [14]. A bank of fans is a versatile solution and can serve

two purposes: first being a pseudo wind tunnel for bench-top experiments used to get stability

derivative, and second is its envisioned use as a disturbance generator for flight test. The gust

generator has the ability to pulse individual fans to simulate spatial and temporal variations.

This more accurately represents what a vehicle will encounter in an urban environment. The fan

bank is constructed from a matrix of 3.5 inch SuperfloTM fans, which is driven by a modified 12

volt, 250 Watt computer power supply. These DC brushless fans are controlled by a PIC18F8722

microcontrollerTM that produces PWM signal to command a duty cycle that controls the RPM of

the fans. The PIC receives commands via a RS-232 cable from Labview software.

This fan bank solution is crude, but was effective and delivered the required results. A
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quick survey was conducted to determine the optimal location to place the microquad for testing.

The fan bank has a 10.5 inch by 10.5 inch cross section, leaving little room for vehicle placement.

Figure 3.2 shows the propagation of the air velocity downstream of the honey comb outlet. The red

box indicates where the microquad is placed for experiments, roughly 17 inches downstream of the

honey comb. The error bars are the standard deviation over recording 20 seconds of measurements

which is σ = 0.18m/s in the area where the vehicle is placed. The span-wise velocity profile was

surveyed and is indicated in Figure 3.3. Again, the red box indicates where the microquad was

placed for testing. It should be noted, this setup is adequate, but not ideal. Expanding the fan

bank would provide a larger test area to place the vehicle.

Figure 3.2: Velocity Propagation Downstream from Gust Generator

LabviewTM was the central hub of each experimental setup; it integrates all hardware and

records all necessary data including velocity transducer measurements, force and moments trans-

ducer readings, and the RPM sensor. LabveiwTM sends commands to the baystation which relays

them to the GINA mote to drive the microquad’s motors, as well as sending commands to the

PIC microcontroller that controls the fan bank. A National InstrumentsTM terminal block records
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Figure 3.3: Spanwise Velocity Survey

measurements from the velocity transducer, force and moments transducer, and RPM sensor.

The microquad is mounted a Six-Axis Forces/Torques sensor system, the Nano17 Titanium

Transducer, produced by ATI Industrial Automation. This is a versatile sensor that is ideal for

measuring loads on the scale for MAVs. This transducer has ATI’s SI-12-0.12 calibration with a

max load capability of Fx, Fy = 12N,Fz = 17N,Tx, Ty = 12N−mm, and Tx, Ty, Tz = 120N−mm

with a resolution of Fx, Fy, Fz = 1/320N and Tx, Ty, Tz = 1/64N −mm. Figure 3.4 shows how the

vehicle is mounted to the F/T sensor system. Coordinate frame, [x̂s, ŷs, ẑs]
T , denotes the sensor

measurement frame and [x̂b, ŷb, ẑb]
T defines the body frame of the vehicle. It should be noted that

each experiment setup had to account for a coordinate rotation and the offset distance between

the sensor and the microquad. In this static case, the added moment had to be subtracted. This

was easily accomplished by subtracting the force multiplied by the moment arm.
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Figure 3.4: General Experimental Setup Between F/T Sensor and Microquad

Figure 3.5 depicts the setup for the vehicle encountering a u velocity disturbance. The test

procedure is to send a command that puts the vehicle in a hover condition, then step through

a test matrix of duty cycles for the fan bank, which changes the wind velocity. For each data

point, velocity and F/T measurements were acquired for 5 seconds sampling at 7 kHz, which is the

upper limit recommended for sampling with the F/T sensor. The high sample rate was needed to

record RPM sensor information; however this piece of information was never needed to compute

the stability derivatives.
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Figure 3.5: Experimental Setup for a Translational Disturbance

For v velocity disturbance, a similar configuration was employed with the vehicle rotated 90

degrees about the z-body axis. This rotation was accounted for during the data reduction process.

For w velocity component, the fan bank was oriented blowing upwards with the vehicle mounted

above it in an inverted fashion. This simulated a disturbance in the same direction as the z-body

axis. In this configuration the microquad was positioned where the downwash from the vehicle and

the air velocity are in the same direction. It should be noted that tests were performed with the

downwash and wind velocity opposed to one another. The results were extremely inconstant as the

air velocity and force measurements needed to be recorded in separate runs. Also the downwash

from the microquad blowing into the honey comb of the gust generator caused inconsistent results.

3.3.3 Filtering Data

An obstacle encountered when processing data was large amplitude vibrations. This is

common with imbalanced rotors operating at high RPM, but the magnitude of these vibrations
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caused concern about the accuracy of the measurement and a possible flaw in the experimental

setup. Examining the radial forces in Figure 3.6 from a single motor/rotor setup caused doubt in

the accuracy of the F/T sensor, as the radial forces from vibrational loading are on the same order

of magnitude as the thrust produced by the rotor itself. This section examines this issue, and

will determine whether this vibration noise is present as a result of imbalanced rotors. Figure 3.7

shows the frequency content of Fx component of the radial forces, which clearly shows an oscillatory

loading, which one would suspect from a rotor, but the real concern is the amplitude of 0.3665

Newtons. Performing a Fast Fourier Transform (FFT) on the data, provides information as to

which frequencies contribute most to the signal. As seen in Figure 3.7, the signals content is

concentrated at lower frequencies with a spike at 165 Hz. This corresponds to the hover revolutions

per second, which was determined to be 165 RPS from an optic sensor. This further points to a

rotor imbalance that causes relatively large amplitude vibration loading.

Figure 3.6: Vibrational Forces from Imbalanced Rotor
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Figure 3.7: Fast Fourier Transform

An ongoing issue with the microquad development is noisy sensor data. The selection for

counter-rotating rotors is quite limited at this size. The selected GWSTM 3x2 rotors are poor

quality and it is evident when comparing the consistency of each rotor. Each rotor needs to

be rebalanced before being installed. This is extremely time consuming, but has shown better

performance from the sensors with the procedure out lined in [15]. Although great lengths are

taken to balances the rotors evenly, Figure 3.8 shows that a small mass percent imbalance in the

rotors can cause large amplitude vibrations at this operational RPM. Equation 3.5 calculates the

magnitude of centripetal force caused by mass imbalances, where Fc is the centripetal force, m is

mass of the rotor, mp is the mass percent of imbalance, and ω is the angular velocity. By calculating

the resulting magnitude from the Fx and Fy forces and using the known RPM, the mass percent

imbalance is determined to be mp=0.1992%, which is indicated by a red ‘x’ in Figure 3.8. It is

highly probable that even after balancing; the rotors can still be 0.2 % imbalanced and could easily

be attributed to friction in the rotor balancing stand.
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Fc = mmpω
2 r

2
(3.5)

Figure 3.8: Rotor Imbalance Analysis

The results in Figure 3.6 show that there is considerable vibrational noise, which is attributed

to the rotors being imbalanced, as the Figures 3.7 and 3.8 suggests. This explains the large

magnitude oscillations seen in Figure 3.6. From flight data seen in Miller [15], the vehicle dynamics

are well below 10 Hz. This is an order of magnitude less than the vibration loads; therefore, it can

be assumed that vibrations does not affect the vehicle dynamics. Considering such, it is reasonable

to filter out these vibrational loads. A fourth order Butterworth low pass filter was employed using

a conservative cut-off frequency of 20 Hz. The filter design was generated from MatlabTM using

the ‘butter’ functions from the Filter Design Toolbox. This filtering technique will be used for all

data reduction for the remainder of the test data reduction.
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3.3.4 Results for Translational Stability Derivatives

Having laid to rest concerns over data, the translation components can be explored. Fig-

ure 3.9 shows how the loading on the microquad due to changes in the u velocity component. The

results illustrate a strong relationship between the force in the x-direction due to the change in

velocity. The error bars represent the standard deviation for each data point. Fy, Fz, Tx, and Tz

have little to no slope and have a fairly large scatter. Ty has an interesting trend, which initially

has a positive slope and then changes to a negative slope. This trend was repeatable over the

course of 30 data points. This unexpected trend can be explained by two flaws observed in the

experiment. The positive slope may be attributed to the vehicle being rigidly mounted. When

throttling up to hover condition, the vehicle would flex upward due to the thrust produced by the

motors. This accentually causes an increase in angle of attack, by slightly pitching up the forward

two rotors into the free stream. The second observed flaw is caused by the damping material that

was installed to the test apparatus to reduce vibration noise. The x-force caused by the u velocity

created a moment. This became strong enough to then cause the vehicle to pitch down. These two

phenomena explain the slope change for the Ty moment. As discussed earlier, this added moment

was subtracted off using Fxl where l is the distance between the Center of Gravity (CG) of the

vehicle and sensor measuring coordinate frame. Doing so more accurately represents the loads

experienced at the CG of the airframe.

Table 3.2 shows the stability derivatives, as well as the percent linear fit error. Stability

derivatives are determined by dividing the slope of the linear fit curve by its respected mass

property. For force terms, they are normalized by the mass of the vehicle, for example, Xu = 1
m
∂X
∂u .

For moment terms, the slope is normalized by its respected inertia, therefore Lu = 1
Ixx

∂L
∂u . The

slopes are found by using a first order ‘polyfit’ command in MatlabTM . Next, the linear error fit is

calculated by subtracting the measurements from the estimate provided from the linear fit curve:

ei = zi − yi for i = 1, 2, ..., n, where z is the measurement, y is the estimate from the linear fit

curve, and n is the number of measurements [16]. This gives a vector of error values ~e. Taking the

sum of the squares as seen in Equation 3.6, gives the fit error. This value has little significance
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as the magnitude needs to be scaled to put it in perspective. Therefore, a percent fit error was

calculated 3.7 by taking the absolute value of the difference between the maximum measurement

and the minimum measurement. This calculation measures how well the linear fit approximation

fits the data set. A large error indicates a large spread in the data compared to the linear fit,

which means there is weak trend and that stability derivative can be ignored. Using this logic, the

only parameter of importance from the u velocity is Xu.

s2 =
~eT~e

n
(3.6)

percentfiterror =

√
s2

||maxz −minz||
(3.7)

Figure 3.9: Vehicle Loading Due to u Velocity Component
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Stability Derivative Parameter % Error Fit

Xu -0.4703 4.3887

Yu -0.0019 23.1775

Zu 0.0088 22.2764

Lu -1.6188 14.6419

Mu 1.6962 30.6347

Nu -0.0395 23.5370

Table 3.2: u Stability Derivatives

The results from v velocity are seen in Figure 3.10 and 3.3. This yields a similar result to

the u velocity component, which is to be excepted as the vehicle is fairly symmetric about the

x̂b and ŷb body axes. There is a weak relationship for Fx, Fz, Tx, Ty and Tz, as indicated by the

percent error fit. The same trend occurs in Tx that was cause by the flexing of the vehicle and the

twisting from the damping material installed in the test apparatus. There is a strong correlation

between the y-force and the v velocity as expected. The only stability derivative of importance

from this data set is Yv.
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Figure 3.10: Vehicle Loading Due to v Velocity Component

Stability Derivative Parameter % Error Fit

Xv 0.0233 15.8952

Yv -0.4712 6.0404

Zv -0.0259 27.7602

Lv 1.2835 30.4374

Mv -1.4077 15.6470

Nv 0.0273 26.0793

Table 3.3: v Stability Derivatives

Finally, the w velocity is considered. Recall that in this instance, the test was setup in such

a way that the wind generator was blowing in the direction of the zb body axis, hence why the w

velocity is increasing negatively. Similar to the previous two tests, the only significant component
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is Fz for the w wind component, which is illustrated in Figure 3.11 and Table 3.4.

Figure 3.11: Vehicle Loading Due to w Velocity Component

Stability Derivative Parameter % Error Fit

Xw -0.0301 26.3286

Yw 0.0051 25.7114

Zw -0.5371 8.8420

Lw -0.7053 24.1293

Mw -0.1286 30.2218

Nw -0.2867 31.8211

Table 3.4: w Stability Derivatives
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3.3.5 Experimental Setup for Rotational Stability Derivatives

This section will describe the test setup for collecting data from the rotational stability

derivatives. This differs from the previous section, due to the challenge of producing and mea-

suring accurately a rotational disturbance. Another solution is to rotate the vehicle about its

principle axes. Having the vehicle rotate in “still” air is equivalent to the microquad encounter-

ing a rotational disturbance, because there is a relative rotation between the air and the vehicle.

Here the data processing is more intense, but achieves the same result of getting rotation stability

derivatives.

The initial setup is similar to the previous section as shown in Figure 3.12, where the

microquad is rigidly mounted to a 6-axis F/T sensor as described in §3.3.2. This configuration

can rotate the vehicle about either the xb or yb body axis, depending on the orientation in which

the vehicle is attached. For a r rate, the vehicle is rotated about the zb axis, this configuration

is depicted in Figure 3.13. The apparatus is designed to rotate about the vehicle’s principle axis.

This rotation is driven by a Hi-TecTM servo which is actuated through the LabviewTM interface.

Servos operate like a stepper motor where a PWM signal determines the position. Originally, the

servo was commanded steps to obtain the desired rotation rate, which resulted in a staircase start

and stop motion throughout the rotation, which is ill-desired. The solution was to start with 0%

duty cycle, then step to a 100% duty cycle. This resulted in a smooth 180◦ rotation from the

starting position to the ending position. The rate is controlled by changing the voltage supplied

to the servo motor. A low voltage source results in a slower rotation rate, while increasing the

voltage supply increases the rotation rate.

28



Figure 3.12: Setup for Simulating p and q Rotational Disturbances

Figure 3.13: Setup for Simulating r Rotational Disturbances
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The rotation of the vehicle is tracked by a motion caption system developed by ViconTM . A

ViconTM system is a network of cameras that track reflective markers. All the cameras are synced

together. Each individual camera has an array of LEDs that strobe at a given frequency, in this

case 100 Hz, which matches to the frame rate of the cameras. The light produced by the strobe hits

a reflective marker and is bounced into the camera, where a light filter only allows the wavelength

of the LED light pass through to illuminate the CCD of the camera. To determine the position of

the marker, a calibration procedure is required. This is accomplished by the TrackerTM software,

which determines the relative position of one camera to another. The capture volume is then

oriented to a desired coordinate system in the room by placing the calibration wand in the desired

location. This defines the origin of the control volume. During each strobe illumination, the

software computes the position of each marker the system detects. A cluster with a minimum of

3 markers in a known pattern represents a body; therefore, the position and orientation of the

object is calculated. An example of this is seen in Figure 3.14. All data computed by TrackerTM is

streamed via an Ethernet cable to the computer operating LabviewTM code developed for this test

configuration. The data is time stamped, so a rate is able to be calculated.
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Figure 3.14: ViconTM Markers Placed on the Vehicle, and TrackerTM Software Environment

3.3.6 Data Processing for Rotational Components

This section describes the process for data reduction for the rotational stability derivatives.

Once the data is collected, the force and moment data is first filtered as described in §3.3.3,

then re-sampled to sync with the motion capture data generated from ViconTM . This is easily

accomplished using MatlabTM ’s ‘interp1’ function. Typically, the motion capture data and F/T

sensor measurements are misaligned due to delays in recording these measurements, but in this

case these values consistently showed about 100 ms delay between the two data sets. This is due

to the F/T data being recorded on the DAQ board in a buffer, then being dumped to a data file in

LabviewTM , while the motion capture data was being streamed from a second computer. To align

the sets, both motion capture data and F/T data were normalized and the bias removed. The
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distinct spike at the start of each rotation in both the motion capture data and in the corresponding

moment data made aligning the two data sets effortless. Once data sets were aligned, the data was

truncated to provide 3 data sets for each rotation rate. This shows that each test is repeatable.

Figure 3.15: Example of Truncating Rotational Data Sets

Due to the F/T sensor not being on the vehicle’s CG, as illustrated in Figure 3.4, this

needs to be accounted for in the data reduction process. For example, for a q rotation rate, an

mg sin θ is subtracted from the X-force and for N moment, a lmg sin θ is subtracted from the

torque measurement about the yb-axis. The results from this provides a fairly constant force and

torque for a constant rotation rate. An example of this is seen in Figure 3.16 and accounts for the

different coordinate systems. It should be noted that the data is normally truncated further to

ignore the starting and stopping effects from the rotation. Once this is completed for every data

set, each set is averaged, providing 3 data points for each rotation rate. This process is repeated

several times to find a linear trend that are used for determining the stability derivative.
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Figure 3.16: Post-Process Data Set from a Rotational Disturbance

3.3.7 Results For Rotational Stability Derivatives

After the data is processed, it yields similar graphs found in § 3.3.4. The same approached

used in § 3.3.4 yield stability derivatives for the rotational states. For a p rate, which is a rotation

about the xb-axis of the vehicle, the results are seen in Figure 3.17 and Table 3.5. There is a

strong linear relationship between Fy and Tx, which is to be expected with a rotation about the

xb-axis. The result of this parameter has a fairly large scatter, indicated by the percent error fit.

These terms will be ignored, as they show a weak linear relationship to a q rate. A rotation about

the yb-axis corresponds to a q body rate. Here there is a strong linear relationship for Fx and Ty,

similar to the p body rate. This is expected as the vehicle is symmetric and should therefore yield

similar results. Again, the other parameters show a weak linear relationship to a p body rate. The

results are shown in Figure 3.18 and Table 3.6. For the r body rate, which is about the zb-axis, the

only significant parameter is Tz. This is reflected in Figure 3.19. The remaining parameters show

a weak linear relation to the r body rate. This is reinforced by Table 3.7, as the other parameters
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have high percent fit errors.

Figure 3.17: Vehicle Loading Due to p Rotational Component

Stability Derivative Parameter % Error Fit

Xp 0.0168 24.3065

Yp -0.4496 9.5037

Zp -0.0363 28.6406

Lp -15.8465 7.0356

Mp 1.4214 17.0019

Np 0.0169 28.5317

Table 3.5: p Stability Derivatives

34



Figure 3.18: Vehicle Loading Due to q Rotational Component

Stability Derivative Parameter % Error Fit

Xq -0.6005 9.1727

Yq 0.0614 23.3858

Zq 0.1528 18.3435

Lq -0.8858 25.2096

Mq -17.3849 7.9364

Nq -0.3752 13.7467

Table 3.6: q Stability Derivatives
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Figure 3.19: Vehicle Loading Due to r Rotational Component

Stability Derivative Parameter % Error Fit

Xr 0.1315 20.7173

Yr 0.0375 24.7293

Zr -0.0851 16.9127

Lr 1.3798 27.8799

Mr 1.5030 27.5254

Nr -0.5845 9.5657

Table 3.7: r Stability Derivatives
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3.3.8 Final Results for Full Linear Model

Combining the results described in this chapter with the results from the system identi-

fication performed by Miller [15] as explained in section§3.2, yields the full linear model with a

disturbance model. For the disturbance matrix D, the negative of the stability derivatives found in

the above sections make up the linear parameters of this matrix. These “disturbance” derivatives

are denoted with a subscript g. Any parameter having a percent fit error larger than 10% indicated

a weak linear relationship for that parameter, therefore will be ignored. The resulting model is

shown in Equation 3.9 with the parameters reflected in Table 3.8.

~̇x = A~x+ B~u+ D~d (3.8)



u̇

v̇

ẇ

ṗ

q̇

ṙ

φ̇

θ̇

ψ̇



=



Xu 0 0 0 Xq 0 0 −g 0

0 Yv 0 Yp 0 0 g 0 0

0 0 Zw 0 0 0 0 0 0

0 Lv 0 Lp 0 0 Lφ 0 0

Mu 0 0 0 Mq 0 0 Mθ 0

0 0 0 0 0 Nr 0 0 0

0 0 0 φp 0 0 0 0 0

0 0 0 0 θq 0 0 0 0

0 0 0 0 0 ψr 0 0 0





u

v

w

p

q

r

φ

θ

ψ



+



0 0 0 0

0 0 0 0

0 0 0 Zthr

0 Llat 0 0

Mlon 0 0 0

0 0 Nyaw 0

0 0 0 0

0 0 0 0

0 0 0 0




δlon

δlat

δyaw

δthr



+



Xug
0 0 0 Xqg 0

0 Yvg 0 Ypg 0 0

0 0 Zwg
0 0 0

0 Lvg 0 Lpg 0 0

Mug
0 0 0 Mqg 0

0 0 0 0 0 Nrg

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0





du

dv

dw

dp

dq

dr


(3.9)
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Parameter Value Parameter value Parameter value Parameter value

Xu -0.4425 Xq 0.0169 Mlon 0.6944 Ypg 0.4496

Mu 19.5699 Mq 8.8773 Llat 0.5436 Lpg 15.8465

Yv -0.8201 Nr -0.7578 Nyaw 0.1117 Xqg 0.6005

Lv -7.7109 Yφ 8.023 Zthr -0.014 Mqg 17.3849

Zw -0.5164 Lφ 4.5387 Xug 0.4703 Nrg 0.5845

Yp 0.0169 Xθ -9.2773 Yvg 0.4712 - -

Lp 0.4305 Mθ -27.6411 Zwg
0.5371 - -

Table 3.8: Complete Table of Stability, Control and Disturbance Derivatives

3.3.9 Actuator Response

When controlling both body dynamics and disturbance rejection, actuator response becomes

an important attribute. An accurate model of the actuator dynamics can aid in simulation and

control design. Typically, actuators roll off at a high frequency, making it important to understand

at what frequency this occurs. Modeling the actuator response for the microquad is straightfor-

ward, since all actuation is directly controlled by the motors. To identify a model for the motor

response a similar experimental setup as seen in Figure 3.4 is used. The motor response is ascer-

tained by commanding a throttle chirp input that sweeps from 0 Hz to 15 Hz about the nominal

command of 60% throttle with an amplitude of 15% throttle. This is completed over a duration

of 20 seconds. Data is acquired at 100 Hz – which captures the motor command and Fz force.

The mean command and force measurements were subtracted out of the data for identification

purposes; doing so illuminates how the motor magnitude and phase change with frequency.
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Figure 3.20: Motor Response to a Chirp Input

Once the mean is subtracted, MatlabTM ’s ‘ident’ toolbox is used for spectral analysis. First,

a spectral model was generated from the data, also known as a bode plot. This provides an input-

output relationship for the command-to-force measurements. In order to estimate the spectral

model, the ‘SPAFDR’ function is used. Once this is completed, the structure of the model is

determined by the shape the spectral plot. A single pole transfer function emulates the shape of

the motor response. Next, the ‘Process Model’ function is used to determine the parameters for

the first order model, which is reflected in Equation 3.11. Finally the coherence is computed 3.10

from [6],where Φuu and Φyy are autocorrelations and Φuy is the cross-correlation between the

input and output. This provides a measure for the validity of the model at a given frequency,

with 1 indicating it is 100% correlated, and 0 indicating there is no correlation. The experiment

correlated fairly well up to 10 HZ, at which point the magnitude began to drop off considerably.

The spectral data, identified motor model, and coherence is all reflected in Figure 3.21.

γ2uy(ω) =
|Φuy(ω)|2

|Φuu(ω)||Φyy(ω)|
(3.10)
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Figure 3.21: Bode Plot for Motor Response

Zthr
δthr

=
0.0007704

0.04429s+ 1
(3.11)
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Chapter 4

Vehicle Analysis

4.1 Overview

Now that a linear model has been established for the microquad, its disturbance properties

can be analyzed. The analysis tools presented here require a stable system. If a vehicle is naturally

stable, then the bare air frame dynamics can be examined independent of control, which is desirable.

Unfortunately, most agile vehicles at this scale are inherently unstable. They often require a fast

inner-loop control scheme to stabilize the attitude dynamics of the vehicle. The outer-loop is

typically intended for the position control of the vehicle in space, which is more closely associated

with disturbance rejection. Therefore, it is reasonable to look at the closed inner-loop system when

applying these analysis techniques. These are ideal techniques because every system has limitation

regardless of the control scheme. These types of techniques are valuable because they provide

insight on the vehicle strengths and weaknesses – vital information when comparing multiple

platforms.

4.2 Control Design

This section will discuss the system structure formulation for the inner and outer loops of

the microqrad. The inner-loop dynamics pertain to the attitude of the vehicle and require a higher

bandwidth than the outer-loop dynamics. Outer-loop dynamics deal with position and/or velocity

of the vehicle, as well as heading. The inner-loop dynamics are faster than those of the outer-loop,

which is why sensors such as rate gyros and accelerometers are useful for maintaining inner-loop

stability. Sensors like these possess fast update rates. For the outer-loop, lower sensing is adequate

and is typically provided by GPS measurements; however, in this case it is provided by ViconTM .

Control design for the microquad has been explored and analyzed by Miller [15]. This
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section will provide a basic overview of controller design and structure, but will not go into detail

of the complete development. If more details are needed, refer to [15].

4.3 Static H∞

Control designs of the microquad were heavily explored by Miller [15], but are laid out

here in a brief outline. There are several control design methods that can be applied to any

system, but the most useful for flight dynamics simulation are outlined in [10]. Due to limited on

board computing, it is important to implement a static gain controller. Since the vehicle is fairly

uncoupled, the model can be reduced to a Single Input Single Output (SISO) control design. There

are a lot of analysis tools for SISO systems, making this is an attractive method. Another route

is Linear Quadratic Gaussian (LGQ) method, which is a more complicated control structure that

employs a linear estimator, a Kalman Filter, which will provide an estimate for all the states in the

model. This is very useful, as are most systems that provide a limited number of measurements,

but this requires powerful processors, which cannot be afforded at this scale. Once an estimation

of the states is known, then a Linear Quadratic Regular (LQR) is used to finish the control design.

This is ideal for Multiple Input Multiple Output (MIMO) systems. One of the limitations of the

LQR controller is that it requires full state feedback; hence it is coupled with a LQG estimator.

However, Levine and Athans [21] came up with a solution, deemed Output LQR, for designing

a controller using the LQR framework with just the output measurements. This allows static

feedback control to be implemented. More modern techniques of H∞ design also require large

computing power, since the compensator usually has dynamics associated with it. H∞ designs

are highly desirable because they are able to incorporate model uncertainty to add robustness

to the system. H∞ tends to have good disturbance rejection properties. A Static H∞ method

was developed by Gadewadikar [19]. This method possesses the attributes H∞ control design, in

addition to possessing a simplistic static feedback controller. This is easy to implement and ideal

for platforms at this scale. For this paper, only the static H∞ controller will be considered.

The goal of static H∞ is to extend the concepts of H∞ design to static feedback framework.
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One advantage of this control design is that it boasts good disturbance rejection properties. The

algorithm does not require an initial stabilizing gain, which other methods such as output LQR

requires. Figure 4.1 shows the basic framework for the H∞ structure. The basic principle of the

control design is to minimize the signal ~z from exogenous inputs, in this case external atmospheric

disturbances ~d. To minimize the signal ~z, a quadratic function is formulated with both the states ~x

and the control inputs ~u; where Q is a positive definite weighting matrix for the states, and R is a

positive definite weighting matrix for the control inputs. These weighting matrices can be thought

of as control knobs, intended to emphasize reducing state fluctuation or limit control energy for a

specific control input.

~̇x = A~x+ B~u+ D~d

~̇y = C~x
(4.1)

Figure 4.1: H∞ Framework

There are several necessary and sufficient conditions outlined in [18]. A quick summary of

those conditions will be stated here using the LTI model repeated in Equation 4.1. The pair (A,B)

needs to be stabilizable, meaning there exists a K such that A−BK is asymptotically stable. The

pair (A,C) is detectable, meaning there exists a L such that A−LC is stable. Most importantly

the system is said to be output stabilizable if A−BKC is stable. Finally, the system is bounded

by γ if Equation 4.2 is satisfied.
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||~z(t)||22
||~d(t)||22

=

∫∞
0
||~z(t)||2dt∫∞

0
||~d(t)||2dt

=

∫∞
0

(
~xTQ~x+ ~uTR~u

)
dt∫∞

0
~dT ~ddt

≤ γ2 (4.2)

Once these conditions are met, then an optimal gain can be determined. The steps below

outline the algorithm [18], which centers around well-known algebraic Riccati equations.

Step 1:

Initialize Parameters.

• Set: n = 0, L0 = 0

• Select weighting matrices Q, R, and the bound γ.

Step 2:

nth iteration step:

• Solve Riccati equation for Pn

ATPn + PnA
T + Q−PnBR−1BTPn + 1

γ2PnDDTPn + LTnR
−1Ln

• Evaluate the gain, K and update L:

– Kn+1 = R−1
(
BTPn + Ln

)
CT

(
RKn+1C−BTPn

)
– Ln+1 = RKn+1C−BTPn

• if ||Kn+1−Kn||F (Frobenius Norm of ∆K) within tolerance, proceed to Step 3, otherwise

update n = n+ 1 and repeat Step 2.

Step 3:

Terminate.

• Set K∗ = Kn+1

This algorithm is easily implemented using MatlabTM ’s well understood Riccati equations.

This provides an optimal K∗ in the framework provided above. Once the basic framework is in

place, the weighting matrices are easily tweaked until the desired performance is achieved. This

control design technique will be used throughout the rest of the control design process.
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4.4 Inner-Loop Control Structure

The inner-loop focuses on regulating the attitude of the vehicle. A schematic of the system

is seen in Figure 4.2. Here, the matrices in Equation 3.9 will be partitioned in a manner aimed at

focusing on the inner-loop dynamics. For the inner-loop, the following states are included in the

model ~x = [u, v, w, p, q, r, φ, θ]T , with control inputs of ~u = [δlon, δlat, δyaw]T , and the GINA mote

providing measurements y = [φ̂, θ̂, p̂, q̂, r̂]T . The outer-loop control design will focus on heading ψ

and position [x, y, z]T . In later sections, this model will be partitioned further to help illustrate

the usefulness of analysis tools developed here. For example, the model can be reduced to include

only the longitudinal states [u, q, θ].

Figure 4.2: Inner-Loop of Microquad

Using the model from Chapter 3 § 3.9 and the following weighting matrices seen in Equa-

tions 4.3 and 4.4 from Miller [15], the static H∞ control algorithm can be applied.

45



Qi =



0.005 0 0 0 0 0 0 0

0 0.01 0 0 0 0 0 0

0 0 500 0 0 0 0 0

0 0 0 50 0 0 0 0

0 0 0 0 50 0 0 0

0 0 0 0 0 1500 0 0

0 0 0 0 0 0 0.05 0

0 0 0 0 0 0 0 0.05



(4.3)

Ri =


100 0 0

0 200 0

0 0 0.2

 (4.4)

The static H∞ algorithm yields a feedback gain matrix shown in 4.5. The closed-loop A matrix is

calculated by ACL = A−BKC.

K =


0 1.825 0 0.937 0

1.916 0 0.901 0 0

0 0 0 0 1.768

 (4.5)

4.5 Outer-Loop Control Structure

Once control for the inner-loop is attained, the next step is to construct the outer-loop model.

The basic outer-loop structure is represented by the block diagram shown in Figure 4.3. The outer-

loop states are ~x = [u, v, w, p, q, r, φ, θ, ψ, x, y, z]T , with the controls being ~u = [δlon, δlat, δyaw, δthr]
T .

Finally the measured states are y = [x̂, ŷ, ẑ, û, v̂, ŵ, ψ̂]T . These values are attained from the

ViconTM system. The outer-loop-control infrastructure is implemented in LabviewTM software.

Again, the static H∞ control design procedure is used to calculate the static gains for the system.
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Figure 4.3: Outer-Loop of Microquad

To account for the extra states, ~x = [ψ, x, y, z]T . These states are in the inertial frame and

are approximated by setting them equal to their body frame counterparts, as seen in Equations 4.6.

This is a common approximation with small perturbation models [12].

ψ̇ = r

ẋ = u

ẏ = v

ż = w

(4.6)

To achieve these states integrators are added into the system with matrix F 4.7, which is concate-

nated with the inner close-loop matrix, ACL shown in Equation 4.8.

F =



0 0 0 0 0 1 0 0

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0


(4.7)

Ao =

ACL 0

F 0

 (4.8)

Once the outer-loop matrices are constructed, the following weighting matrices were selected 4.9

and 4.10 from Miller [15].

Qo = diag

[
7.5 15 150 0.075 0.075 0.0225 0.75 0.75 75 1500 1500 75

]
(4.9)
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Ro =



0.5000 0 0 0

0 0.5000 0 0

0 0 0.0010 0

0 0 0 0.0020


(4.10)

Now that the frame work is in place to use the static H∞ control design, it yields the following

outer-loop gain matrix 4.11.

Ko =



−55.2396 0 0 −24.5147 0 0 0

0 58.2264 0 0 30.0822 0 0

0 0 0 0 0 0 273.8618

0 0 −193.6882 0 0 −285.7285 0


(4.11)

This gives the basic framework of a model for the microquad. With this model, both analysis and

simulation can be performed on the vehicle.

4.6 Gramian Based Analysis

This section will examine controllability (reachability) gramian and demonstrate how this

technique can extend to predicting the total disturbance a vehicle is able to reject. This is useful

because it provides a method to determine a maximum disturbance loading that a vehicle can

encounter in order for it to still be able to return the rates to zero. This is crucial information when

determining whether a vehicle is able to operate in a certain environment. First, the reachability

gramian will be formulated. This is a useful tool, being that it shows directionality and how easily

the state can be reached for a given input [6].

The controllability operator Ψc maps the input u(t) at t = −∞ to the final state x0 at t = 0

and is defined for an LTI system in Equation 4.12.
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Ψc : Lp2(−∞, 0]→ Cn; u→
∫ ∞
0

e−AtBu(τ)dτ (4.12)

Scaling the control input by its maximum control value provides the constraint ||u|| ≤ 1, so the

reachable states are defined by the set {Ψcu : xc ∈ Cn, ||u|| ≤ 1}. This is equivalent to stating 4.13.

εc = {X
1
2
c xc : xc ∈ Cn, ||xc|| ≤ 1} (4.13)

Figure 4.4: Illustration of Reachability Concept

The set 4.13 defines an ellipsoid in Cn space and is illustrated in Figure 4.4, where n is the

number of states. Xc is the controllability (reachability) gramian for the pair (A,B) and is defined

in [7], where ∗ denotes the conjugate.

Xc = ΨcΨ
∗
c =

∫ 0

−∞
e−AtBB∗e−A

∗tdt =

∫ 0

−∞
eAtBB∗eA

∗tdt (4.14)

Xc is the solution to the Lyapunov equation. MatlabTM has a function ‘lyap’ to solve for Xc. This

solution is known as the gramian.

AXc +XcA
∗ +BB∗ = 0 (4.15)

The solution Xc provides information about the system. If Xc > 0, it is said Xc is positive

definite and the pair (A,B) is controllable. Taking the Singular Value Decomposition (SVD) of
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X
1
2
c gives the magnitude and direction of the of the states. The square root of a matrix is found by

Q
1
2 = UΛ

1
2U∗, where Λ is a diagonal matrix of the eigenvalues, and U is matrix of eigenvectors.

The SVD is defined by Equation 4.16. While S is a diagonal matrix and gives the magnitude of

the principle axes of the ellipsoid, U provides the orientation of the ellipsoid in state space [11].

X
1
2
c = USV ′ (4.16)

This basic framework is extended to disturbances. The idea is to think of the disturbance in

the same manner as a control input. Scaling the disturbance input d by the maximum disturbances

expected to be encountered will map which states the vehicle can reach from a given disturbance

level. If this disturbance ellipsoid is completely contained within the reachability ellipsoid, then this

suggests that the disturbance can be rejected once feedback control is implemented for the outer-

loop. This is a powerful tool, owing to the fact it provides the maximum limit for a disturbance

acting on a vehicle that it is able to reject. Equation 4.17 is the resulting Lyapunov equation,

where Xd is the solution and will be referred to as the distance gramian. Taking the SVD of X
1
2

d

maps which states can be reached with the equation’s given disturbance input.

AXd +XdA
∗ +DD∗ = 0 (4.17)

4.7 Example of Gramian Based Disturbance Analysis

Here we will examine the usefulness of comparing the reachability and disturbance gramian.

To illustrate the power of this technique only the longitudinal dynamics will be considered. The

model will ignore fluctuation in disturbances; instead using constant wind loading. This model

will also not include actuator dynamics. A simple example is being used to clearly illustrate this

technique. Equation 4.18 is the LTI model for the longitudinal dynamics. In order to account

for the microquad’s inherent instability and for this process to work, a stabilizing gain must first

be found. The static H∞ formulation discussed in §4.3 is used for the controller design. It

should be noted that any applicable controller design will apply to this method. The controller

itself determines the performance of the vehicle. Therefore, an inner-loop controller would not be
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required, if the vehicle was inherently stable.


u̇

q̇

θ̇

 =

−0.4425 0.0169 −9.2773

19.5699 8.8773 −27.6411

0 1.0000 0



u

q

θ

+

 0

0.6944

0

{δlon}+

0.4703 0.6005

0 17.3849

0 0

{ug
qg

}
(4.18)

Using the algorithm outlined in section §4.3, a output stabilizing K was found using the

following weighting matrices Q = diag[1, 1, 1] and R = diag[1]. The inner closed-loop system can

be represented by ACL = A−CKB.

K =

[
1.4326 0.7442

]
(4.19)

Once the inner-loop dynamics are stable, the reachability and distance gramian’s can be

compared. The goal is to determine the maximum disturbance a given vehicle can reject. It will be

seen that this is easily illustrated by plotting the disturbance and reachability ellipsoid against one

another. If the disturbance ellipsoid is fully contained within the reachability ellipsoid, then it can

be said that the vehicle can adequately reject that disturbance once feedback control is applied.

This is verified by implementing a stabilizing outer-loop controller and by using simulations to

demonstrate this result.

For the reachability gramian, the control input must be bounded for a |~u| < 1. The model

as identified in equation 4.18 control input ~u ∈ [−500 500] for δlon, δlat, and δyaw. For δthr

the control input is ~u ∈ [0 1000]. These commands are mixed together to drive each motor.

Each motor can receive a command from 0 to 1000 and is the sum of the contribution of each

of the ~u = [δlon, δlat, δyaw, δthr]
T . For hover condition, the vehicle operates around 560 units,

leaving 440 units for disturbance and maneuvering. For the gramian, the control input needs to

be scaled to 1 or [-1 1] for longitudinal, lateral and yaw control inputs. Here it is chosen that

the control saturation limits are [-35 35]. This limiting value of 35 is arbitrary. Once a motor

model is introduced, these limits increase and become more realistic. To scale the control matrix

to these constraints, the control matrix is multiplied by the absolute value of the saturation limits,
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in this case 35 ∗ Blon. Once this is complete, then the reachability analysis described in §4.6 is

performed. The longitudinal dynamics only contain 3 states, making the ellipsoid easy to visualize

in 3-dimensional space with the axes being the states.

For the disturbance gramian, two cases will be explored. Similar to the control matrix, the

distance matrix is required to be normalized, making |~d| < 1. Here the limit is the maximum

constant disturbance the vehicle encounters. In the first case, the disturbance gramian is scaled

by ~dmax = [du,max, dq,max]T = [4 m/s,−0.2 rads/s]. In this instance, the disturbance ellipsoid

is bounded by the reachability ellipsoid, which is shown in Figure 4.5. The 2-D projections of

each state are plotted against one another. Clearly, the disturbance ellipsoid is bounded, which

predicts that this disturbance can be attenuated. More specifically, in this example, position hold

is desired. To attain this, the rates of the vehicle must be brought to zero. The 2-D projection

of the rotational rate q and translational velocity u best illustrates this point, as it is seen that

the control projection completely contains the disturbance projection. In the second scenario, the

disturbance matrix is scaled by ~dmax = [5 m/s,−0.2 rads/s]. Figure 4.6 shows that the distance

protruding outside the reachability ellipsoid, which suggests that the vehicle will not reject this

disturbance combination.
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Figure 4.5: Controllability Ellipsoid Bounding the Disturbance Ellipsoid

Figure 4.6: Unbounded Disturbance Ellipsoid
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To prove these predictions, the out-loop needs to be formulated and closed. The outer

states are ~x = [u, q, θ, x]T , where the x position is determined by integrating the u velocity. The

state space model is shown in 4.20, where the upper left 3x3 submatrix of AO is ACL. Zeros are

added to B and G to account for the added state as seen in Equations 4.20. The ViconTM system

measures position, x, and u velocity and is reflected in 4.20.

AO =


−0.4425 0.0169 −9.2773 0

19.5699 −14.5999 −92.5917 0

0 1.0000 0 0

1.0000 0 0 0

 BO =


0

0.6944

0

0



DO =


0.4703 0.6005

0 17.3849

0 0

0 0

 CO =

[
0 0 0 1

1 0 0 0

] (4.20)

Once the outer-loop matrices are formed, the static H∞ procedure outlined in §4.3 is used

to develop a static controller. The weighting matrices for this process are found in 4.21, with

γ = 50 and the resulting static gains are given in 4.22. Now, the system has been formulated,

a simulation can be performed to confirm the intuition stated earlier. The SimulinkTM feature

developed by MatlabTM will simulate the feedback control for the microquad model under the

given conditions. The basic structure of the SimulinkTM model is shown in 4.7. A saturation block

is used to constrain the maximum control input allowed.

Q =


10 0 0 0

0 10 0 0

0 0 1 0

0 0 0 10000

 R =
[
1
]

(4.21)

K =

[
−105.3855 −40.7541

]
(4.22)
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Figure 4.7: Motor Response to a Chirp Input

The simulation results from the two scenarios are shown below. First, examine the results

from case one with a constant disturbance input of ~dmax = [du,maxdq,max] = [4 m/s,−0.2 rads/s]T ,

represented in 4.8. From the gramian base analysis it was predicted that the vehicle had adequate

control authority to reject this disturbance. It is seen that all states come to a steady state value

and the vehicle is able to hold its position. The control input is below the saturation level. The

microquad is adequately able to reject this given disturbance. For the second case, a constant

disturbance of ~dmax = [5 m/s,−0.2 rads/s]T is applied. The gramian analysis predicts that the

vehicle would fail to reject such a disturbance. Figure 4.9 clearly shows that the vehicle does not

have the proper control authority to attenuate this disturbance condition. The u-velocity never

returns to zero, which results in the vehicle drifting away from the reference position as indicated

with the x-position. The longitudinal control input saturates as expected, since the vehicle is

unable to reject the disturbance. A stabilizing outer-loop controller does not affect whether the

vehicle will properly reject a disturbance; however, it does affect the performance of the vehicle

such as rise time, over shoot, and steady state error, to name a few.
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Figure 4.8: Simulation Results with a Bounded Disturbance Ellipsoid

Figure 4.9: Simulation Results with an Unbounded Disturbance Ellipsoid
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This example demonstrates several useful facts. This provides a means to determine the

maximum disturbance a vehicle can reject with a specified limit on control. This method is not

limited to single direction disturbances, but can look at combinations of disturbances, as can be

seen in the previous example, where both du and dq were considered. In this case, it was useful to

only explore a 3 state stable inner-loop system to help visualize this approach, but it can also be

expanded to larger systems, by partitioning the SVD matrices by the states of interest.

There are a couple of notes about this method that should be clearly stated. The gramian

ellipsoid analysis does not provide a limit to the upper bound of a disturbance that a vehicle can

reject, instead it only guarantees the vehicle is able to reject that disturbance. It has been found

that for this specific situation the most important bounded disturbance gramian 2-D projection

deals with rates, i.e. for longitudinal dynamics, u and q must be bounded for the vehicle to reject

the disturbance, meaning the disturbance ellipsoid is not bounded in the θ state. It is possible

that it is important to bound if, for instance, the vehicle was performing a maneuver that requires

tracking a specific attitude. It has also been observed that different outer-loop feedback controllers

allow the vehicle to reject different magnitudes of disturbances; however, each controller design

will still be able to reject the disturbance indicated by this gramian based method. In this case,

the closed inner loop, ACL, matrix was used. This was necessary, because the microquad itself is

inherently unstable. Once a stable inner-loop was formulated, this method was employed to obtain

information regarding the outer-loop station keeping.

The example above used less than optimal weighting matrices to illustrate the effectiveness

of this method. Now, let’s return to the controller design that was outlined in §4.4. The gramian

base method will be preformed on the closed inner system, and the simulations will be carried

out with the outer loop control scheme constructed in §4.5. Each individual disturbance will

be evaluated separately to provide a maximum magnitude the vehicle can reject for that given

disturbance.

Since, the model developed for the microquad is decoupled, which will be reaffirmed with the

analysis performed in §4.9, it is convenient to partition the matrices into longitudinal, lateral, heave
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and yaw categories. First, the longitudinal direction will be explored, and the closed inner-loop

matrix will be partitioned to include the ~x = [u, q, θ]T states, the ~u = [δlon] control, and the ~d =

[du, dq]
T disturbances. The control input will be scaled by the value of 35, which bounds the control

input. With these parameters in place, the reachability ellipsoid is found. For a du disturbance

it was determined that the vehicle can reject a 4m/s gust. The resulting ellipsoids found by the

gramian analysis is illustrated in Figure 4.10, and the simulation confirming the rejection of a

4m/s disturbance is shown in Figure 4.10. Next, the rotation component, dq was examined. A

disturbance input of dq = 1.27rad/s is used to scale the disturbance matrix. The reachability and

disturbance ellipsoids are depicted in Figure 4.12. The resulting simulation verifying the results

are given in Figure 4.13.

Figure 4.10: Gramian Ellipsoid for du = 4m/s Disturbance
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Figure 4.11: Simulation Verification for du = 4m/s Disturbance

Figure 4.12: Gramian Ellipsoid for dq = 1.27rad/s Disturbance
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Figure 4.13: Simulation Verification for dq = 1.27rad/s Disturbance

Next, the lateral dynamics are considered. Here, the closed inner-loop system was parti-

tioned to include ~x = [v, p, φ]T states, ~u = [δlat]
T input and d = [dv, dp]

T disturbances. Again,

the maximum control allotted for disturbance rejection is 35 control units, so the control matrix

was multiplied by this value to scale the control input to 1. It is found that the vehicle can re-

ject a dv = 6.1m/s and a dp = 1rad/s disturbance independently. The respected analysis and

simulations are shown in Figures 4.14, 4.15, 4.16, and 4.17.
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Figure 4.14: Gramian Ellipsoid for dv = 6.1m/s Disturbance

Figure 4.15: Simulation Verification for dv = 6.1m/s Disturbance
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Figure 4.16: Gramian Ellipsoid for dp = 1rad/s Disturbance

Figure 4.17: Simulation Verification for dp = 1rad/s Disturbance
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For heave and yaw dynamics, the analysis is greatly simplified, due to having one state

for the inner-loop. For the disturbance gramian to be contained in the reachability gramian the

simple relationship needs to be satisfied 4.23, since the control and disturbance only act in a single

direction. The vehicle has poor control authority in the heave direction, which is reinforced in

§4.10. For this reason, the control matrix is multiplied by 70 control units. The maximum dw

disturbance the vehicle is able to reject is 1.75m/s. The resulting simulation to verify this is

found in Figure 4.18. The yaw dynamics take a much smaller amount of control energy to reject

a dr, which will be reflected in §4.10. Due to this, the yaw control matrix was scaled to 1 with

the maximum control input of 10 units. Using the relation in 4.23, the microquad can reject a

dr = 1.8rad/s disturbance. The simulation verifying these findings is shown in Figure 4.19. A

table summarizing the findings of this section are listed in Table 4.1.

X
1
2
c ≥ X

1
2

d (4.23)

Figure 4.18: Gramian Ellipsoid for dw = 1.75m/s Disturbance and Simulation Verification
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Figure 4.19: Gramian Ellipsoid for dr = 1.8rad/s Disturbance and Simulation Verification

Control Input Disturbance Parameter abs Max

δlon 35 du 4 m/s

δlon 35 dq 1.27 rad/s

δlat 35 dv 6.1 m/s

δlat 35 dp 1 rad/s

δthr 70 dw 1.75 m/s

δyaw 10 dr 1.8 rad/s

Table 4.1: Max Disturbance by Bounded Control Input

4.8 Mu,g Sensitivity Study

To explore the non-linear loading observed from a u velocity disturbance in torque about

the y-body axis, three alternate scenarios will be explored here using the longitudinal model.

Figure 4.20 shows a closer look the non-linear loading due to the u velocity component, but this

can be broken down to two distinct linear trends. Each linear curve fit yields a disturbance
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derivative. Initially, this non-linear trend was attributed to the vehicle flexing and twisting in

the test apparatus, but will be consider here to explore the effect of the gramian analysis as the

disturbance changes. The resulting disturbance derivatives are Mu,g = 27.44 and Mu,g = −12.27.

The third scenario will be the negative of the Mu stability derivative. Table 4.2 sums up the

results from the gramian method. From the table, there is a drastic effect when including this

term. All three scenarios results in about 1 m/s disturbance rejection, while when this term was

not included, it was determined to be 4 m/s.

Figure 4.20: Vehicle Ty Loading Due to u Velocity Component
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Mu,g Resulting du (m/s)

27.44 0.84

-12.27 1.3

19.57 1.15

Table 4.2: Gramian Results from three Mu,g Scenarios

Next, Mu,g was arbitrary changed through a range of -20 to 20 to see the effects on the

gramian analysis. Figure 4.21 shows the results of this procedure. This graph demonstrates

the importance of having an accurate model, as there is a large difference in the results as the

disturbance derivative changes.

Figure 4.21: Progression of gramian method on u velocity as Mu,g varies
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4.9 Disturbance and Control Direction Analysis

This section will explore the directionality of the plant and provide a measure for the direc-

tion of each distance. This analysis is important, as it provides a measure on which disturbances

affect the plant the most. This measure is referred to as the plants ‘resilience’. The concept is to

assume the plant has perfect control, as described in [22], [20]. In this case only the disturbance

is being considered, so perfect control can be thought of as u = −G−1Gdd, meaning the control

inputs mirror the disturbance inputs. Thus, this evaluation provides insight into the inherent con-

trol properties of the plant and indicates ‘good’ and ‘bad’ control directions. In other words, if the

plant has perfect control and the plant still has poor control for the given disturbance, then the

response of the plant will be poor no matter which controller is implemented – assuming perfect

control indicates directional strengths and weaknesses of the plant.

For this analysis, we will consider an LTI system with a transfer function matrices (TFM)

as shown in 4.24, where G(s) is the TFM of the plant, u(s) is the control input, Gd(s) is the TFM

for the disturbances, and d(s) is the disturbance input.

y(s) = G(s)u(s) +Gd(s)d(s) (4.24)

Here, G(s) is a 4x4 matrix with measurements of ~y = [u, v, w, r]T , which are ultimately the steady

state measurements with the inputs of ~u = [δlon, δlat, δyaw, δthr]
T , while the disturbance TFM,

Gd(s), has inputs of ~d = [du, dv, dw, dp, dq, dr]
T . It is important in this analysis to scale the

control and disturbance inputs by the maximum expected disturbance and control. The results

from Table 4.1 are used to scale the respected B and D matrices. The transfer function matrix is

easily computed from the state space mode with Equation 4.25, where C will give measurements

of [u, v, w, r]T . Similarly, Gd(s) is calculated by Equation 4.26.

G(s) = C(sI−A)−1B (4.25)

Gd(s) = C(sI−A)−1D (4.26)

Once the plant and disturbance TFM are calculated, it is easiest to work with the steady state
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gain TFM. This is calculated by lims→0G(s) or is found by using MatlabTM ’s ‘dcgain’ command.

The resulting steady state gain matrices are found in 4.27 and 4.28.

G(s) =


−0.9787 0 0 0

0 1.2868 0 0

0 0 0 −1.8934

0 0 0.4029 0

 (4.27)

Gd(s) =


0.9013 0 0 0 −0.4948 0

0 1.6770 0 1.3341 0 0

0 0 1.8201 0 0 0

0 0 0 0 0 0.1084

 (4.28)

The first step in this process is to calculate the Relative Gain Array (RGA), shown in

Equation 4.29, where the symbol × is element by element multiplication [20]. For the microquad,

the results are trivial and seen in 4.30. This means the microquad model is decoupled and a

longitudinal input will only excite a longitudinal output. This reaffirms the approach taken in

§ 4.7 of partitioning the system into longitudinal, lateral, heave and yaw dynamics.

RGA(G) = Λ(G) = G× (G−1)T (4.29)

Λ(G) =


1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

 (4.30)

Next the condition number, γ, is calculated by the ratio between the maximum and min-

imum singular value as shown in Equation 4.31. This value is largely dependent on how the

matrices are scaled. This provides a measure of the input-output controllability of the plant.

Using Equation 4.31, yields a condition number of γ(G) = 10.9635.

γ(G) = σ(G)/σ(G) (4.31)

Finally, the disturbance condition number is computed. This provides a measure for how

each disturbance is aligned with the plant and is calculated by Equation 4.32, where d denotes each

disturbance. A smaller number indicates the disturbance is in a ‘good’ direction and is aligned

with the plant, and a larger number is a ‘bad’ direction and the disturbance is more difficult to
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reject. The disturbance condition number is bounded between 1 and the condition number. This

expression is shown in 4.33 from [24].

γd(G) =
||G−1d||2
||d||2

σ̄(G) (4.32)

1 ≤ γd(G) ≤ γ(G) (4.33)

The results from the disturbance condition number are shown in Table 4.3. For a vertical

disturbance, w is best aligned with the plant, which is logical, considering all four motors directly

act in the zb direction. The actuation can directly match the disturbance. The longitudinal and

lateral cases have slightly larger disturbance condition number. This is due to the actuators not

directly causing a u or v velocity. The actuators for these directions change the attitude of the

vehicle, which leads to a translational velocity. The vehicle is easiest perturbed in heading. This

is also a logical result because this pole is closest to the origin, meaning that it is near neutrally

stable [15]. This means the yaw mode is easily perturbed, but from the results of the gramian

analysis, it is known that the microquad has larger control authority in the yaw direction.

du dv dw dp dq dr

γd(G) 1.9346 1.4714 1.0000 1.4714 1.9346 10.9635

Table 4.3: Disturbance Condition Number

4.10 Control Energy Analysis

This section focuses on control energy. Typically, atmospheric disturbances are modeled

with a shaping filter with a white noise input [10]. The dynamics of this filter are normally

embedded into the A for analysis purposes. However, this causes the solution to the Lyapunov

Equation to be singular and not invertible due to the inability to control the disturbance states.

Therefore, for this analysis, the model will be left unaltered from 3.9, but will assume a white

noise input for the disturbances. Kang et al [25], proposes a means of measuring the control

energy of a system with a white noise input. The framework to the problem requires a LTI model
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in the form 4.34, with a Gaussian white noise input for the disturbance. Here Sw is a matrix

with intensities of the disturbance input and is defined to have zero mean and a known correlation

function as seen in Equation 4.35.

~̇x = A~x+ B~u+ D~d (4.34)

Rd(τ) = E[d(t)dT (t+ τ)] = Swδ(τ) (4.35)

Then, a disturbance sensitivity gramian is formulated [25] and solved using the following

Lyapunov Equation 4.36. Using this coupled with the results from the controllability gramian 4.14

a Disturbance control measure, ρ, is determined with Equation 4.37, where the over bar denotes

steady state.

AXd +XdA
∗ +DSwD

∗ = 0 (4.36)

ρ =

∫ ∞
0

E[uT (t)u(t)]dt = trace{X̄−1c X̄d} (4.37)

Using the analysis method above, the energy to control each separate disturbance is exam-

ined. This measure of control energy is unit-less, but will provide insight on which disturbances

will require the most energy for rejection. For simplicity, 1 will be used for the noise intensity

for the disturbance input. The results of this analysis are reflected in Table 4.4. Let’s examine

the translational, ~d = [du, dv, dw]T , disturbances first. Since the microquad is fairly symmetric,

the control energy to reject the u and v disturbance is about the same. A dw disturbance takes

about 13 times more energy to reject a disturbance in that direction. It should be noted that the

previous method determined how well a disturbance aligned with the plant, while this method

focuses on the amount of control energy required to reject a given disturbance. Although the dw

disturbance requires a large amount of control energy, the microquad at least is well aligned with

the disturbance. This result is also reflected in the gramian based analysis, in which it took double

the control input to reject a third of the disturbance input. The disturbance rotation components,

~d = [dp, dq, dr]
T have a similar trend where the longitudinal and lateral disturbances are roughly
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the same magnitudes. Again, it is contributed to a symmetric airframe. The dr disturbance takes

little control energy to reject the disturbance. This also aligns with the results from the gramian

analysis. The yaw dynamics are nearly neutrally stable; although it is easily perturbed from its

trim flight condition of hover, yaw perturbations take little control energy to return the vehicle to

a trim condition. This is also ideal, as the directional analysis determined this disturbance was

least aligned with the plant of the microquad.

du dv dw dp dq dr

ρ 1.5123 1.4704 19.3119 1.5333 1.3040 0.0223

Table 4.4: Relative Energy Measure

4.11 Actuator Bandwidth

Bandwidth is an important measure, as it illustrates which frequencies the vehicle is able to

operate effectively. Using the model response model found in §3.3.9, the control bandwidth is easily

determined. Bandwidth has multiple definitions, but is typically defined when the magnitude of

the response falls by 3 dB from its low frequency value [10]. This is denoted in Figure 4.22. The

motors have a bandwidth of ωB = 3.6Hz. The actuator bandwidth is at the low end for actuator

response of a vehicle at this size. From open loop flight data, shows the vehicle body dynamics

are 4̃ Hz, so this control bandwidth is nearly inadequate. Figure 3.21 showed the motors had good

coherence just above 10 Hz. This suggests that smaller amplitude control actuation may have high

bandwidth. Still, this is short of the ideal control bandwidth Pisano [3] calculated, which is in

the range of 10 Hz to 15 Hz. Clearly, this is a limitation for the vehicle in controlling both the

body dynamics and the disturbance rejection. Bandwidth provides the frequency at which roll off

occurs. This means as frequency increases the actuators become less effective.
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Figure 4.22: Control Bandwidth from the Spectral Analysis of the Motor Response

Power Density Spectrum (PSD) is typically used to describe gust disturbances. This repre-

sents the mean squared value of a stochastic process. The PSD from the disturbance generator is

determined by collecting velocity data. For the PSD, data was sampled at 100 Hz for 500 seconds.

Using the ‘periodogram’ function in MatlabTM provides the power distribution of the disturbance

at each frequency. Figure 4.23 shows the PSD from the disturbance generator. The gust gener-

ator had a constant operating condition; this is clearly seen as the magnitude rolls off at a low

frequency. This is the typical shape of a PSD and is often represented with a shaping filtering.

Common shaping filters used to model this behavior are the von Karman and Dryden. Here, a

Dryden shaping filter was fit to the data, as can be seen by the dashed red line. Equation 4.38 is

the general formulation for the Dryden model [26]. The disturbance generator PSD shows good

agreement with the shape of the classic Dryden model.

Φ(Ω) = σ2
w

2L

π

1 + 3L2Ω2

[1 + L2Ω2]2
(4.38)
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Figure 4.23: PSD from Gust Generator
s

The microquad has adequate control bandwidth to control the vehicle in the disturbance

conditions the gust generator can produce. Clearly, the frequency content of the disturbance falls

off at a lower frequency than the actuators. This suggests that the vehicle has the control au-

thority to reject this disturbance. However, the microquad will have difficulties if the disturbance

has a greater spatial content, which will push the roll off point to a higher frequency. Once the

Control bandwidth is eclipsed, the microquad will have more difficulties rejecting such distur-

bances. Bandwidth is a vital measure when determining if a vehicle can successfully reject gust

disturbances.
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Chapter 5

Conclusion

The goal of this dissertation is to explore the disturbance rejection properties of the mi-

croquad and to provide a framework analysis method that can be applied to any vehicle at this

scale. Micro Air Vehicles have a large range of platform configurations and a number of envisioned

missions. Therefore, it is crucial to provide a disturbance rejection analysis for trade studies that

are being performed for vehicle selection. This type of analysis is vital for determining whether

a vehicle is able to carry out a mission. These small vehicles are vulnerable to disturbances, and

this framework provides a means for comparing vehicle configurations. For an effective assessment

of a vehicle, it is important to attain an accurate LTI model. This work utilizes the LTI model

identified by Miller [15], and builds upon this model with a bench-top tests. The test data from the

experiment yield disturbance derivatives about hover. Through this combination, the effectiveness

of disturbances on the microquad is evaluated. Once an accurate model is achieved, a full analysis

process can be carried out. The list below provides a summary of accomplishments:

• Successfully identified the disturbance matrix for the microquad, which is vital for control

design, simulations and analysis purposes.

• Presented the framework for a measure to determine disturbance magnitude bounds. This

is achieved by creating reachability and disturbance ellipsoids defined by the singular value

decomposition of their respected gramian. These findings were then verified through simu-

lations.

• Explored the directionality of the disturbance using a procedure that assumed perfect control,

and thereby attained findings that related disturbance parameters to the direction of the

plant dynamics of the microquad. This provides insight into which disturbance parameters

the vehicle is most susceptible to, independent of the control scheme.
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• Analyzed relative control energy required for each disturbance parameter. This gave insight

into the effectiveness of actuators in order to attenuate a disturbance.

• Motor dynamics were identified, which yielded the actuator bandwidth for the microquad.

This result was compared to the Power Density Spectra generated by the fan bank system.

5.1 Concluding Remarks

As stated earlier, the microquad is an inherently unstable platform that requires both an

inner and outer-loop control strategy. The analysis tools explored provide a means to measure

disturbance properties independent of control; however, since the microquad requires a stabilizing

inner-loop, the analysis process starts from this baseline. This is reasonable, as Miller [15] did not

see a drastic performance difference between different control strategies for the inner-loop. Most

of the vehicles at this scale will require a stabilizing inner-loop control since highly maneuverable

platforms are inclined to be unstable. Once this baseline inner-loop is attained, the vehicle’s distur-

bance rejection characteristics are examined independent of outer-loop control. This is important,

as different control designs can skew the performance of the plant under different disturbance

conditions.

This disturbance analysis examines three different areas. The first method uses a gramian

based approach with a bound on the control input. Once this limit is determined, the maximum

disturbance the vehicle can reject is found independent of control strategy for the outer-loop. This

is a great measure that determines the maximum disturbance the vehicle is able to reject with

feedback control. The reverse problem could easily be explored, by examining how much control

input is required to attenuate a given disturbance. The second method explores how aligned a

disturbance is with plant dynamics. This provides a measure to see which disturbances are easiest

to reject and which ones the vehicle are most vulnerable to. The final method examined the amount

of control energy required to reject a given disturbance. In this instance, the translational and

rotation components were considered separately. This compliments the second analysis method

nicely. Although a disturbance may align with the plant, it could still take a large amount of
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control effort to reject a disturbance.

This process revealed what intuition suggests about the quadrotor. For example, the direc-

tion study showed that the vehicle is best aligned to reject a vertical disturbance. This is obvious,

due to all four actuators providing direct control in that direction. However, the amount of control

energy required is far greater than the other translational disturbance. This is due to the vehicle

having to produce the thrust to overcome the disturbance, while the longitudinal and lateral di-

rections only need a small differential in thrust to create a moment to change the vehicle attitude.

Both longitudinal and lateral components were rather similar, which is expected, as the vehicle is

fairly symmetrical about the x- and y-body axes. The yaw dynamics is easily perturbed from trim,

meaning it is not well-aligned with the plant. This is due to the pole being close to the imaginary

axis, causing the vehicle to be near neutrally stable. However, the energy analysis shows that it

takes little control energy to reject a disturbance.

All of these findings are also reflected in the gramian based analysis. The longitudinal and

lateral dynamics yielded similar results with the amount of disturbance the vehicle can attenuated

with a specified control bound. This method showed that the microquad required larger control

authority to reject a smaller gust input for a vertical disturbance then the other translational states.

Finally, the yaw state required a smaller input to reject a rotational gust then its longitudinal and

lateral counterparts. These three techniques support each other’s findings, and provide knowledge

on which components the microquad can easily reject, as well as give an upper limit on the

magnitude of the disturbance the microquad can reject for bounded control input.

Finally, the results from these procedures are all based on a linear model about hover. This

model is a small perturbation model; therefore this analysis process has its limitations. However,

Miller demonstrated a good fit to flight data with this linear model while performing aggressive

flight maneuvers. The control input for the analysis was limited to 10% of the vehicle’s control

input; therefore the results presented here are reasonable values. Although this method has limi-

tation, it can still provide valuable insight on the vehicle’s weaknesses when facing disturbances.
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5.2 Recommendations for Future Work

The missing piece of this approach is the lack of flight test data to verify the findings of these

methods. This is attributable to unforeseen development issues with the microquad, which were

elaborated on by Miller [15]. The remaining piece to the successful completion of the microquad lies

in a custom built speed control. It has been determined that the COTS ESC from WalkeraTM lacks

the response and RPM precision that is required for successful autonomous flight. The biggest

issue is the current speed controller’s repeatability of RPM as well as the fluctuations encountered.

These nonlinear characteristics greatly hinder the ability to implement an LTI static controller.

Once this problem is eradicated, it is believed that a model based controller can be implemented,

and the results presented in this paper can be examined.

A further benefit of improving the ESCs is increase in actuator bandwidth. This could

ultimately allow the motors to respond faster. Another way to increase bandwidth is improving

the rotor design. By using carbon fiber, the mass of the rotors would decrease, resulting in a lower

centripetal force to overcome when changing RPMs. This would require less energy and allow for

a faster response, which increases bandwidth. Furthermore, the carbon fiber blades will result

in a more efficient rotor. At this scale, rotors become more efficient with decreased thickness.

Due to limited options of counter rotating rotors at this scale, the microquad is limited to the

GWSTM rotors, which are low quality plastic and extremely out of balance. Carbon fiber rotors

can increase motor response and overall efficiency.

Generally, the disturbance derivatives should be the negative of the stability derivatives.

For reasons explained in § 3.2, these derivatives did not match with one another. As discussed

earlier, Miller had a large range of results for the stability derivatives over 10 different flight tests.

It may be beneficial to revisit the identification process and use the results from the bench-top

test presented in § 3.3.1. The bench-top test proved to be repeatable and demonstrate strong

trends. The identified stability derivatives from the bench-top testing could be used as constants

and perform the linear regression again to determine the remaining stability derivatives. If this

this adequately fits the flight data, these findings would reinforce the results from the bench-top
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test, providing increased confidence for the model.

The prediction of the reachability and disturbance ellipsoids needs to go through the mathe-

matical rigors to prove absolutely that a disturbance ellipsoid bounded by the reachability ellipsoid

does guarantee disturbance rejection. It is also envisioned that the controllability ellipsoids can

be defined through flight test. This is accomplished by having the microquad in hover condition

and providing an ‘impulse’ control input to the vehicle. Using the measurements of the states, one

may be able to define the reachability ellipsoid for the microquad. The advantage of this method

is that it can capture nonlinear attributes in the system.

A constant disturbance does not accurately represent the atmospheric disturbance a vehicle

encounters. A dynamics disturbance is typically represented by driving a shaping filter by a white

noise input. This better represents the frequency density of atmospheric disturbances. This has

been explored briefly and has shown promising results worth exploring more thoroughly. Another

layer to be added is the addition of actuator dynamics to the model. This has also been briefly

explored with promising results.

Finally, these analyses are intended to compare the disturbance properties of multiple plat-

forms at this scale. The MAST CTA is exploring several platforms. This type of method will

provide good measuring tools when comparing each vehicle. Disturbance rejection is a small piece

to the puzzle, but an important element to a vehicle’s success operating in urban environments.
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